WO2021065800A1 - Temperature-sensitive phantom, and ultrasonic evaluation device in which same is used - Google Patents

Temperature-sensitive phantom, and ultrasonic evaluation device in which same is used Download PDF

Info

Publication number
WO2021065800A1
WO2021065800A1 PCT/JP2020/036635 JP2020036635W WO2021065800A1 WO 2021065800 A1 WO2021065800 A1 WO 2021065800A1 JP 2020036635 W JP2020036635 W JP 2020036635W WO 2021065800 A1 WO2021065800 A1 WO 2021065800A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensitive
phantom
sensitive phantom
ultrasonic
Prior art date
Application number
PCT/JP2020/036635
Other languages
French (fr)
Japanese (ja)
Inventor
高木 亮
葭仲 潔
Original Assignee
国立研究開発法人 産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人 産業技術総合研究所 filed Critical 国立研究開発法人 産業技術総合研究所
Priority to JP2021551253A priority Critical patent/JP7272712B2/en
Publication of WO2021065800A1 publication Critical patent/WO2021065800A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

Provided is an ultrasonic evaluation device in which there is employed a temperature-sensitive phantom that has a broader band of temperature sensitivity while maintaining transparency. This ultrasonic evaluation device is accommodated in an accommodation box and comprises: a temperature-sensitive phantom provided with a plurality of temperature-sensitive phantom members formed so that temperature-sensitive materials are mixed into transparent phantoms, the temperature-sensitive phantom members having substantially the same shape and having different ranges of temperature sensitivity, and the temperature-sensitive phantom being such that the temperature-sensitive phantom members are positioned symmetrically with respect to the longitudinal center axis of the temperature-sensitive phantom; a sheet light source that radiates planar light perpendicular to the longitudinal center axis; and an image sensor that is positioned on an extension line of the longitudinal center axis and captures images of the temperature-sensitive phantom members that have received ultrasonic radiation. The accommodation box accommodates an ultrasonic output element so that the emission direction coincides with the longitudinal center axis and so that ultrasonic waves are focused at the longitudinal center axis.

Description

感温ファントム及びこれを用いた超音波評価装置Temperature-sensitive phantom and ultrasonic evaluation device using it
 感温ファントム及びこれを用いた超音波評価装置に関する。 Regarding the temperature-sensitive phantom and the ultrasonic evaluation device using it.
 電気抵抗又は色相に基づいて温度を測定する温度センサを備えるので、再現性が高く、2次元又は3次元の温度上昇又は温度分布を簡便に測定することができる超音波診断システムを提供することを課題として、生体内温度上昇を模擬するファントムと、ファントムの内部に分布し電気抵抗又は色相に基づいて温度を測定する温度センサとを備える超音波診断システムに関する、公報開示の技術が存在する(特許文献1)。 Since it is provided with a temperature sensor that measures temperature based on electrical resistance or hue, it is necessary to provide an ultrasonic diagnostic system that has high reproducibility and can easily measure a two-dimensional or three-dimensional temperature rise or temperature distribution. As an issue, there is a technique disclosed in Gazette regarding an ultrasonic diagnostic system including a phantom that simulates a temperature rise in a living body and a temperature sensor that is distributed inside the phantom and measures the temperature based on electrical resistance or hue (patented patent). Document 1).
 強力集束超音波(High Intensity Focused Ultrasound:HIFU)曝露中の3次元温度分布の評価に存在する限界の克服を課題として、温度に依存する反射スペクトルを放出するマイクロカプセル化サーモクロミック液晶を含む光学的に透明な温度感受性ファントムを作製し、光シート法を用いて3次元温度分布を可視化し、HIFU曝露中の光学ファントムの温度分布を0.6℃の誤差で決定したシステムにおいて、異なる焦点合わせを用いてHIFU曝露によって誘起される温度分布を可視化した、技術が存在する(非特許文献1)。 Optical including a microencapsulated thermochromic liquid crystal that emits a temperature-dependent reflection spectrum with the challenge of overcoming the limitations that exist in the evaluation of three-dimensional temperature distribution during High Intensity Focused Ultrasound (HIFU) exposure. In a system in which a transparent temperature-sensitive phantom was made, the three-dimensional temperature distribution was visualized using the optical sheet method, and the temperature distribution of the optical phantom during HIFU exposure was determined with an error of 0.6 ° C., different focusing was performed. There is a technique for visualizing the temperature distribution induced by HIFU exposure using HIFU (Non-Patent Document 1).
 感温液晶が温度により色を変える全温度領域で、3原色の各輝度から温度を直接求めるようにし、計測温度領域の拡大と精度向上を図ることを課題として、感温液晶が温度に応じて色を変える全温度領域を、感温液晶の3原色の輝度値と温度の関係が単調増加関数あるいは単調減少関数となる連続した多数の温度領域に区分し、各温度領域における3原色の輝度値範囲をそれぞれ求めておき、感温液晶で実際に得られた3原色の各輝度値を、各温度領域における3原色の輝度値範囲と対比して、3原色共に完全に対応し1対1の関係にある特定温度領域を決定し、該特定温度領域内で輝度値からの線形補間によって直接的に温度を演算する、感温液晶を用いる温度計測方法に関する、公報開示の技術が存在する(特許文献2)。 In the entire temperature range where the temperature-sensitive liquid crystal changes color depending on the temperature, the temperature can be obtained directly from each brightness of the three primary colors, and the temperature-sensitive liquid crystal can be adjusted according to the temperature with the task of expanding the measured temperature range and improving the accuracy. The entire temperature region that changes the color is divided into a large number of continuous temperature regions in which the relationship between the brightness values of the three primary colors of the temperature-sensitive liquid crystal and the temperature is a monotonically increasing function or a monotonically decreasing function, and the brightness values of the three primary colors in each temperature region. Each range is obtained, and each brightness value of the three primary colors actually obtained by the temperature-sensitive liquid crystal is compared with the brightness value range of the three primary colors in each temperature range, and all three primary colors correspond perfectly and are 1: 1. There is a technique disclosed in Gazette regarding a temperature measurement method using a temperature-sensitive liquid crystal, which determines a specific temperature region to be related and directly calculates the temperature within the specific temperature region by linear interpolation from a brightness value (Patent). Document 2).
特開2013-85898号公報Japanese Unexamined Patent Publication No. 2013-85898 特許3553048号公報Japanese Patent No. 3553048
 ここで、温度変化によって色相が変化するサーモクロミズム効果によって色相を変調させ、温度分布を測定する従来の温度測定方法では、ある面のみを選択的に抽出して色相を検出することはなかった。 Here, in the conventional temperature measurement method in which the hue is modulated by the thermochromism effect in which the hue changes due to the temperature change and the temperature distribution is measured, only a certain surface is selectively extracted and the hue is not detected.
 また、透明ファントムに感温素材を練りこんで、ガルバノスキャン技術によりシート光を走査して3次元情報を取得し、感温素材の色調変調により3次元の温度測定を検出する技術では、素材の感温範囲が10℃程度で狭かった。 In addition, in the technology of kneading a temperature-sensitive material into a transparent phantom, scanning the sheet light with galvanoscan technology to acquire three-dimensional information, and detecting three-dimensional temperature measurement by color tone modulation of the temperature-sensitive material, the material is used. The temperature sensing range was narrow at about 10 ° C.
 更に、感温液晶から色調変調する方法では、各温度領域における3原色(R,G,B)の輝度値範囲と対比して、3原色共に完全に対応し1対1の関係にある特定温度領域を決定し、特定温度領域内で輝度値からの線形補間によって直接的に温度を演算する感温液晶を用いていた。 Further, in the method of color-modulating from the temperature-sensitive liquid crystal, the specific temperature has a one-to-one relationship in which all three primary colors correspond perfectly with each other in comparison with the brightness value range of the three primary colors (R, G, B) in each temperature region. A temperature-sensitive liquid crystal was used in which a region was determined and the temperature was directly calculated by linear interpolation from the brightness value within a specific temperature region.
 ところで、強力な超音波を生体に対して集束して照射することで生体内組織の温度を上昇させ、組織を焼灼する等の治療を行う超音波治療機器は広く普及している。そして、超音波を受けて生体内の温度上昇を把握するために、生体組織の温度上昇を模擬するファントムも知られている。ファントムは生体内の超音波伝播特性を模擬しており、ファントム素材の代表的特性は例えばIEC61391-2に示されている。ファントム内部の温度分布を計測する方法として、温度変化によりファントムの色が変化するサームクロミズム効果(フォトクロミズム効果)を利用して、ファントムの色相を測定し、測定した色相に基いてファントムの温度を計測する技術も知られている。 By the way, ultrasonic therapy equipment that raises the temperature of tissues in the body by focusing and irradiating the living body with strong ultrasonic waves and performs treatment such as cauterizing the tissues is widely used. A phantom that simulates a temperature rise in a living tissue is also known in order to receive ultrasonic waves and grasp the temperature rise in the living body. The phantom simulates the ultrasonic propagation characteristics in the living body, and the typical characteristics of the phantom material are shown in, for example, IEC61391-2. As a method of measuring the temperature distribution inside the phantom, the hue of the phantom is measured using the therm chromism effect (photochromism effect) in which the color of the phantom changes due to temperature changes, and the temperature of the phantom is measured based on the measured hue. The technology to do is also known.
 強力集束超音波(HIFU)を採用した超音波治療機器等を使用する手術の準備段階、或いは、HIFUを採用する各種の超音波出力機器を製造・出荷する過程で、機器から出力される超音波を評価する手段として、感温素材(主にコレステリック液晶等)を透明なファントムに混ぜ込んだ感温ファントムの採用の可否に関する研究開発が行われている。また、近年、超音波診断分野においても、超音波診断探触子により超音波を集束させた比較的高強度の音響放射力パルスを用いて組織性状(硬さ等)を診断する技術が普及し、その音響放射力パルスの生体内の不必要な温度上昇を簡便に評価する手法が広く求められている。 Ultrasound output from the device in the preparatory stage of surgery using ultrasonic therapy equipment that uses strong focused ultrasound (HIFU), or in the process of manufacturing and shipping various ultrasonic output devices that use HIFU. As a means of evaluating the above, research and development are being conducted on whether or not to adopt a temperature-sensitive phantom in which a temperature-sensitive material (mainly cholesteric liquid crystal, etc.) is mixed with a transparent phantom. Further, in recent years, in the field of ultrasonic diagnosis, a technique for diagnosing tissue properties (hardness, etc.) using a relatively high-intensity acoustic radiation pulse that focuses ultrasonic waves with an ultrasonic diagnostic probe has become widespread. , There is a widespread demand for a method for easily evaluating an unnecessary temperature rise in the living body of the acoustic radiation pulse.
 透明なファントムに微量の感温素材を混ぜると半透明となるが、超音波を受けて発熱する感温素材(ファントム)の色相を光源と画像センサを用いて観察することで、感温ファントムの断面の温度上昇(加温状況)や温度分布を可視化できる。機器から出力される超音波の評価には、30℃~40℃程度の温度幅で温度上昇を観察する必要がある。しかし、観察に好適な透明性の維持に許容される量のコレステリック液晶では感温幅が10℃程度であり、従来の感温ファントムは10℃の感温幅(例えば40~50℃、50~60℃等の温度範囲)しか可視化できないという課題があった。多種類の温度範囲(40~50℃、50~60℃等)の感温素材を混ぜることで広範囲の温度を可視化する方法も考えられるが、感温素材を多量に混ぜると感温ファントムの透明性を維持できず、断面の色変化を観察できないという課題があった。実際、透明性を確保しつつ、30~40℃の感温幅を有する感温ファントムは存在しなかった。本発明は、透明性を維持しつつ、より広い感温幅を有する感温ファントムを提供すること、及び、これを採用した超音波評価装置を提供することを目的とする。 When a small amount of temperature-sensitive material is mixed with a transparent phantom, it becomes translucent, but by observing the hue of the temperature-sensitive material (phantom) that generates heat by receiving ultrasonic waves using a light source and an image sensor, the temperature-sensitive phantom It is possible to visualize the temperature rise (heating status) and temperature distribution of the cross section. In order to evaluate the ultrasonic waves output from the device, it is necessary to observe the temperature rise in a temperature range of about 30 ° C. to 40 ° C. However, an amount of cholesteric liquid crystal that is acceptable for maintaining transparency suitable for observation has a temperature sensitivity range of about 10 ° C., and a conventional temperature sensitive phantom has a temperature sensitivity range of 10 ° C. (for example, 40 to 50 ° C., 50 to 50 to 50). There was a problem that only the temperature range of 60 ° C.) could be visualized. It is possible to visualize a wide range of temperatures by mixing temperature-sensitive materials in various temperature ranges (40 to 50 ° C, 50 to 60 ° C, etc.), but if a large amount of temperature-sensitive material is mixed, the temperature-sensitive phantom becomes transparent. There was a problem that the property could not be maintained and the color change of the cross section could not be observed. In fact, there was no temperature-sensitive phantom having a temperature-sensitive range of 30 to 40 ° C. while ensuring transparency. An object of the present invention is to provide a temperature-sensitive phantom having a wider temperature-sensitive range while maintaining transparency, and to provide an ultrasonic evaluation device using the temperature-sensitive phantom.
 上記課題を解決するために、請求項1に記載の感温ファントムは、
 異なる感温範囲を有する複数の感温ファントム部材を備えた、感温ファントムであって、
 各感温ファントム部材は、感温素材を透明なファントムに混ぜて形成されている。
In order to solve the above problem, the temperature-sensitive phantom according to claim 1 is
A temperature-sensitive phantom with a plurality of temperature-sensitive phantom members having different temperature-sensitive ranges.
Each temperature-sensitive phantom member is formed by mixing a temperature-sensitive material with a transparent phantom.
 請求項2に記載の感温ファントムは、請求項1に記載の感温ファントムにおいて、
 前記複数の感温ファントム部材の感温範囲を連続させることで広範囲の感温範囲をカバーする。
The temperature-sensitive phantom according to claim 2 is the temperature-sensitive phantom according to claim 1.
A wide range of temperature sensing is covered by making the temperature sensing range of the plurality of temperature sensing phantom members continuous.
 請求項3に記載の感温ファントムは、請求項1又は2に記載の感温ファントムにおいて、
 前記複数の感温ファントム部材は、前記感温ファントムの長手軸に対して軸対称に配置されている。
The temperature-sensitive phantom according to claim 3 is the temperature-sensitive phantom according to claim 1 or 2.
The plurality of temperature-sensitive phantom members are arranged axially symmetrically with respect to the longitudinal axis of the temperature-sensitive phantom.
 請求項4に記載の感温ファントムは、請求項1乃至3のいずれか一項に記載の感温ファントムにおいて、
 各感温ファントム部材は略同一形状を有する。
The temperature-sensitive phantom according to claim 4 is the temperature-sensitive phantom according to any one of claims 1 to 3.
Each temperature-sensitive phantom member has substantially the same shape.
 上記課題を解決するために、請求項5に記載の超音波評価装置は、
 請求項1乃至4のいずれか一項に記載の感温ファントムと、
 前記感温ファントムに光を照射する光源と、
 超音波を受けた各感温ファントム部材を撮像する画像センサと、
を備える。
In order to solve the above problems, the ultrasonic evaluation device according to claim 5 is used.
The temperature-sensitive phantom according to any one of claims 1 to 4,
A light source that irradiates the temperature-sensitive phantom with light,
An image sensor that captures each temperature-sensitive phantom member that has received ultrasonic waves,
To be equipped.
 請求項6に記載の超音波評価装置は、請求項5に記載の超音波評価装置において、
 請求項3に記載の感温ファントムと前記光源と前記画像センサとを収納する収納ボックスを更に備え、
 前記収納ボックスは、前記感温ファントムに対して超音波を出射する超音波出力子を、出射方向が前記長手軸に合致し且つ超音波が当該長手軸で集束するように収納する。
The ultrasonic evaluation device according to claim 6 is the ultrasonic evaluation device according to claim 5.
A storage box for accommodating the temperature-sensitive phantom according to claim 3, the light source, and the image sensor is further provided.
The storage box stores an ultrasonic output element that emits ultrasonic waves to the temperature-sensitive phantom so that the emission direction coincides with the longitudinal axis and the ultrasonic waves are focused on the longitudinal axis.
 請求項7に記載の超音波評価装置は、請求項6に記載の超音波評価装置において、
 前記光源は、前記長手軸に対して垂直な面状の光を照射するシート光源であり、
 前記画像センサは、前記長手軸の延長線上に配置されている。
The ultrasonic evaluation device according to claim 7 is the ultrasonic evaluation device according to claim 6.
The light source is a sheet light source that irradiates planar light perpendicular to the longitudinal axis.
The image sensor is arranged on an extension line of the longitudinal axis.
 請求項8に記載の超音波評価装置は、請求項7に記載の超音波評価装置において、
 前記シート光源が照射する光が超音波の集束位置付近で前記長手軸方向に移動させる移動機構を更に備える。
The ultrasonic evaluation device according to claim 8 is the ultrasonic evaluation device according to claim 7.
Further provided is a moving mechanism for moving the light emitted by the sheet light source in the longitudinal axis direction in the vicinity of the focused position of ultrasonic waves.
 請求項9に記載の超音波評価装置は、請求項6に記載の超音波評価装置において、
 前記光源は、前記長手軸に対して垂直な方向から各感温ファントム部材全体に光を照射し、
 前記画像センサは、前記感温ファントムを挟んで前記光源とは反対側に配置されている。
The ultrasonic evaluation device according to claim 9 is the ultrasonic evaluation device according to claim 6.
The light source irradiates the entire temperature-sensitive phantom member with light from a direction perpendicular to the longitudinal axis.
The image sensor is arranged on the side opposite to the light source with the temperature-sensitive phantom in between.
 請求項10に記載の超音波評価装置は、請求項7に記載の超音波評価装置において、
 前記感温ファントムに対して超音波を出射する超音波出力子を、超音波の本来の出射方向を前記境界面に平行となるように維持しつつ当該超音波出力子を当該境界面に垂直な2軸(X,Y)方向に移動させる出力子移動機構を更に備える。
The ultrasonic evaluation device according to claim 10 is the ultrasonic evaluation device according to claim 7.
The ultrasonic output element that emits ultrasonic waves to the temperature-sensitive phantom is perpendicular to the boundary surface while maintaining the original emission direction of the ultrasonic waves parallel to the boundary surface. An output child moving mechanism for moving in two axes (X, Y) directions is further provided.
 請求項11に記載の超音波評価装置は、請求項5乃至10のいずれか一項に記載の超音波評価装置において、
 前記超音波評価装置全体が遮光されている。
The ultrasonic evaluation device according to claim 11 is the ultrasonic evaluation device according to any one of claims 5 to 10.
The entire ultrasonic evaluation device is shielded from light.
 本発明によれば、感温ファントムは、透明性を維持しつつ、より広い感温幅を有する。 According to the present invention, the temperature sensitive phantom has a wider temperature sensitive range while maintaining transparency.
第1実施形態に係る超音波評価装置の構成を示す概略図である。It is the schematic which shows the structure of the ultrasonic wave evaluation apparatus which concerns on 1st Embodiment. シート光を用いる理由を説明する図である。It is a figure explaining the reason why sheet light is used. シート光を用いる理由を説明する図である。It is a figure explaining the reason why sheet light is used. 図1に示す光源の移動機構を示す説明図である。It is explanatory drawing which shows the moving mechanism of the light source shown in FIG. 図1に示す感温ファントムの一例を示す側面図である。It is a side view which shows an example of the temperature sensitive phantom shown in FIG. 超音波が出射されたときの2層の感温ファントムの色変化を説明する図である。It is a figure explaining the color change of the temperature-sensitive phantom of two layers when ultrasonic waves are emitted. 図1に示す感温ファントムの他の例を示す図である。It is a figure which shows another example of the temperature sensitive phantom shown in FIG. 特定の分割面について、図7に示す4つの感温ファントム部材の色変化を説明する図である。It is a figure explaining the color change of the four temperature sensitive phantom members shown in FIG. 7 about a specific division surface. 図8の分割面について、対称性を考慮して温度換算した結果を表示する図である。It is a figure which displays the result of having temperature-converted about the divided plane of FIG. 8 in consideration of symmetry. 図9の画像を合算して、時間:t1~t4の温度幅40℃を可視化した温度マップである。It is a temperature map which visualized the temperature width 40 degreeC of time: t1 to t4 by summing up the images of FIG. 図7に示す感温ファントムの変形例を示す図である。It is a figure which shows the modification of the temperature sensitive phantom shown in FIG. 7. 第2実施形態に係る超音波評価装置の構成を示す概略図である。It is the schematic which shows the structure of the ultrasonic wave evaluation apparatus which concerns on 2nd Embodiment. 超音波が非対称に出射されたときの2層の感温ファントム部材の色変化を説明する図である。It is a figure explaining the color change of the two-layer temperature sensitive phantom member when ultrasonic waves are emitted asymmetrically. 超音波が非対称に出射されたとき図7に示す4つの感温ファントム部材の色変化を説明する図である。It is a figure explaining the color change of the four temperature sensitive phantom members shown in FIG. 7 when ultrasonic waves are emitted asymmetrically. 画像センサから見た実際の感温ファントムの写真である。(a)は実際の感温ファントムを示し、(b)は強力集束超音波(HIFU)が紙面奥から手前に照射されるときの温度変化の様子を示す。It is a photograph of an actual temperature-sensitive phantom seen from an image sensor. (A) shows an actual temperature-sensitive phantom, and (b) shows a state of temperature change when a strong focused ultrasonic wave (HIFU) is irradiated from the back to the front of the paper surface.
(第1実施形態)
 本発明の一実施形態に係る超音波評価装置を図面を用いて以下に説明する。図1は、第1実施形態に係る超音波評価装置1の構成を示す概略図である。超音波評価装置1は、温度上昇又は温度分布を色相(色の濃淡変化及び階調変化)で示す感温ファントム10と、感温ファントム10に面状の光(シート光)を照射する光源20と、超音波照射を受けた感温ファントム10を撮像する画像センサ30と、を備え、破線で表示された遮光ボックス32に収納されて構成される。また、超音波出力機器40の探触子42が、感温ファントム10の長手軸の延長線上に配置され、超音波の出射方向が長手軸に合致するように遮光ボックス32内に収納される。探触子42は、チタン・ジルコン酸鉛(PZT)圧電材料やコンポジット圧電材料等を用いた集束型の単盤素子や、それら材料を用いた複数素子を集束型・平面型にアレイ状に配置したものを採り得る。集束型の場合は出射する超音波の集束領域(点)が、平面型の場合は各素子の超音波出射タイミング(時間)遅延調整により生成した集束領域(点)が感温ファントム10の長手軸上で集束するように配置される。また、探触子42は、超音波を感温ファントム10に良好に伝播させるために感温ファントム10に接触して配置される。超音波評価装置1はまた、光源20の長手軸方向の移動(移動機構は後述する)とスキャン、及び、画像センサ30による画像の取得を行う機器制御部50と、取得した画像から温度を換算し、温度上昇領域を2次元又は3次元画像に構成し直す演算処理部52と、感温ファントム10の温度上昇領域を表示する画像表示部54と、を有する。
(First Embodiment)
An ultrasonic evaluation device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing the configuration of the ultrasonic wave evaluation device 1 according to the first embodiment. The ultrasonic evaluation device 1 includes a temperature-sensitive phantom 10 that indicates a temperature rise or temperature distribution by hue (change in shade and gradation of color), and a light source 20 that irradiates the temperature-sensitive phantom 10 with planar light (sheet light). And an image sensor 30 that captures an image of the temperature-sensitive phantom 10 that has been irradiated with ultrasonic waves, and is housed in a light-shielding box 32 displayed by a broken line. Further, the probe 42 of the ultrasonic output device 40 is arranged on an extension line of the longitudinal axis of the temperature-sensitive phantom 10, and is housed in the light-shielding box 32 so that the emission direction of ultrasonic waves matches the longitudinal axis. The probe 42 is a focusing type single disk element using a titanium / lead zirconate tit (PZT) piezoelectric material, a composite piezoelectric material, or the like, or a plurality of elements using these materials arranged in an array in a focusing type / planar type. You can pick up what you have done. In the case of the focusing type, the focusing region (point) of the emitted ultrasonic waves is, and in the case of the flat type, the focusing region (point) generated by adjusting the ultrasonic emission timing (time) delay of each element is the longitudinal axis of the temperature sensitive phantom 10. Arranged to focus on. Further, the probe 42 is arranged in contact with the temperature sensitive phantom 10 in order to satisfactorily propagate the ultrasonic wave to the temperature sensitive phantom 10. The ultrasonic evaluation device 1 also has a device control unit 50 that moves and scans the light source 20 in the longitudinal direction (the movement mechanism will be described later) and acquires an image by the image sensor 30, and converts the temperature from the acquired image. It also has an arithmetic processing unit 52 that reconstructs the temperature rise region into a two-dimensional or three-dimensional image, and an image display unit 54 that displays the temperature rise region of the temperature-sensitive phantom 10.
 ここで、感温ファントム10は、アクリルアミド、アガー(寒天)、ウレタン等の透明で生体特性に近い素材を母材とし、コレステリック液晶等の感温素材を例えば0.1%以下の濃度で混入し硬化させて形成される。光源20は、感温ファントム10内の超音波集束位置付近であって長手軸に垂直な分割面のすべてを含むように、超音波出射方向に対して垂直方向からシート光を照射する。光源20は、後述する移動機構(図示省略)によって感温ファントム10の長手軸方向に移動する。画像センサ30は、CCDやCMOS等を有して構成され、感温ファントム10の分割面(シート光照射面)の温度上昇を撮像し画像化する。超音波出力機器40は、治療や診断を目的とした医療用の超音波診断探触子の他に加湿器やセンサ用途の民生用の超音波出力機器がある。 Here, the temperature-sensitive phantom 10 uses a transparent material such as acrylamide, agar (agar), or urethane, which has close to biological characteristics, as a base material, and a temperature-sensitive material such as cholesteric liquid crystal is mixed at a concentration of, for example, 0.1% or less. It is formed by curing. The light source 20 irradiates the sheet light from a direction perpendicular to the ultrasonic emission direction so as to include all of the divided surfaces perpendicular to the longitudinal axis in the vicinity of the ultrasonic focusing position in the temperature sensitive phantom 10. The light source 20 moves in the longitudinal axis direction of the temperature-sensitive phantom 10 by a moving mechanism (not shown) described later. The image sensor 30 is configured to include a CCD, CMOS, or the like, and images the temperature rise of the divided surface (sheet light irradiation surface) of the temperature-sensitive phantom 10 to image it. The ultrasonic output device 40 includes a consumer ultrasonic output device for a humidifier and a sensor, in addition to a medical ultrasonic diagnostic probe for the purpose of treatment and diagnosis.
(シート光を用いる理由)
 図2及び図3は、感温ファントム10の温度分布の観察にシート光を用いる理由を説明するための図である。図2(a)は、感温ファントム10にシート光を照射したときに画像センサ30が取得する画像のイメージを示し、図2(b)は、図2(a)の画像を長手軸方向に複数取得して感温ファントム10の3次元温度分布を再構築するイメージを示す。図3は、感温ファントム10に対して通常のスポット光を正面や側面、斜め方向等から照射したときに画像センサ30が取得する画像のイメージを示す。感温ファントム10の観察にシート光を用いる場合、シート光が照射され取得される画像はシート光照射面の像だけである。その結果、照射面での感温ファントム10の温度分布を把握できる(図2(a))。この画像を感温ファントム10の長手軸方向に複数取得することで、感温ファントム10の温度分布領域を3次元で再構築できる(図2(b))。これに対して、感温ファントム10の観察に通常のスポット光を用いる場合、通常のスポット光を採用するので感温ファントム全体が照らされる。画像センサ30によって取得される画像は、感温ファントム10の長手軸方向に積層された温度分布の像である。温度分布が重複しているので、感温ファントム10の温度分布領域を3次元で把握できない(図3)。シート光を用いて感温ファントム10の長手軸方向の異なる位置で複数の分割面の画像を取得することで、感温ファントム10の温度分布領域を3次元で正確に把握できる。
(Reason for using sheet light)
2 and 3 are diagrams for explaining the reason why the sheet light is used for observing the temperature distribution of the temperature-sensitive phantom 10. FIG. 2A shows an image of an image acquired by the image sensor 30 when the temperature-sensitive phantom 10 is irradiated with sheet light, and FIG. 2B shows an image of FIG. 2A in the longitudinal direction. An image is shown in which a plurality of images are acquired to reconstruct the three-dimensional temperature distribution of the temperature-sensitive phantom 10. FIG. 3 shows an image of an image acquired by the image sensor 30 when the temperature-sensitive phantom 10 is irradiated with normal spot light from the front, the side surface, an oblique direction, or the like. When sheet light is used for observing the temperature-sensitive phantom 10, the image obtained by irradiating the sheet light is only the image of the sheet light irradiation surface. As a result, the temperature distribution of the temperature-sensitive phantom 10 on the irradiation surface can be grasped (FIG. 2A). By acquiring a plurality of these images in the longitudinal direction of the temperature-sensitive phantom 10, the temperature distribution region of the temperature-sensitive phantom 10 can be reconstructed in three dimensions (FIG. 2B). On the other hand, when ordinary spot light is used for observing the temperature-sensitive phantom 10, the entire temperature-sensitive phantom is illuminated because the ordinary spot light is adopted. The image acquired by the image sensor 30 is an image of the temperature distribution stacked in the longitudinal axis direction of the temperature sensitive phantom 10. Since the temperature distributions overlap, the temperature distribution region of the temperature-sensitive phantom 10 cannot be grasped in three dimensions (FIG. 3). By acquiring images of a plurality of divided surfaces at different positions in the longitudinal axis direction of the temperature-sensitive phantom 10 using sheet light, the temperature distribution region of the temperature-sensitive phantom 10 can be accurately grasped in three dimensions.
(光源の移動機構)
 図4は、図1に示す光源20の移動機構を示す説明図である。光源20の移動の方法として、例えば、光源20自体を直接移動させてシート光照射面を動かす方法(図4(a))、光源20の位置を固定して光の出射位置を動かしてシート光照射面を動かす方法(図4(b))が考えられる。前者では、図4(a)に示されるように、機器制御部50の制御の下、移動ステージ22により光源20を感温ファントム10の長手軸方向に移動させ、シート光照射面を動かす。後者では、図4(b)に示されるように、光源20の位置を固定し、機器制御部50の制御の下、ガルバノミラー24を感温ファントム10の長手軸方向に移動させ、シート光照射面を動かす。この他に、光源20内部のスリットを移動させる方法が考えられる(図示省略)。
(Light source movement mechanism)
FIG. 4 is an explanatory diagram showing a moving mechanism of the light source 20 shown in FIG. As a method of moving the light source 20, for example, a method of directly moving the light source 20 itself to move the sheet light irradiation surface (FIG. 4A), a method of fixing the position of the light source 20 and moving the light emitting position to move the sheet light. A method of moving the irradiation surface (FIG. 4B) can be considered. In the former, as shown in FIG. 4A, the light source 20 is moved in the longitudinal axis direction of the temperature-sensitive phantom 10 by the moving stage 22 under the control of the device control unit 50, and the sheet light irradiation surface is moved. In the latter, as shown in FIG. 4B, the position of the light source 20 is fixed, the galvanometer mirror 24 is moved in the longitudinal axis direction of the temperature sensitive phantom 10 under the control of the device control unit 50, and the sheet light irradiation is performed. Move the face. In addition to this, a method of moving the slit inside the light source 20 can be considered (not shown).
(生体と感温ファントムとの換算)
 生体内の振幅吸収係数αは、ピーク強度Iとおくとき、単位体積当たりの発熱量qは、
Figure JPOXMLDOC01-appb-M000001
とおける。また、超音波の周波数fの軟部生体組織内では、振幅吸収係数αは、
Figure JPOXMLDOC01-appb-M000002
と近似できる。生体内の伝熱現象は、生体熱輸送方程式(3)で記述できる。
Figure JPOXMLDOC01-appb-M000003
ρ,Cp,kは、生体中の密度、比熱、熱伝導率であり、Wb,cb,Tbは、血流量、血液の比熱と温度である。
(Conversion between living body and temperature sensitive phantom)
When the amplitude absorption coefficient α in the living body is set to the peak intensity I, the calorific value q per unit volume is
Figure JPOXMLDOC01-appb-M000001
I can do it. Further, in the soft tissue of the ultrasonic frequency f, the amplitude absorption coefficient α is
Figure JPOXMLDOC01-appb-M000002
Can be approximated to. The heat transfer phenomenon in the living body can be described by the bioheat transport equation (3).
Figure JPOXMLDOC01-appb-M000003
ρ, C p , and k are the density, specific heat, and thermal conductivity in the living body, and W b , c b , and T b are blood flow, specific heat and temperature of blood.
 強力集束超音波治療は比較的短時間で高強度の照射であることから、血流によってもたらさられる熱量は発熱量qと比べて無視できるので、式(3)は(4)のように書ける。
Figure JPOXMLDOC01-appb-M000004
式(4)右辺の熱伝導項の大きさが発熱量qと比べて無視できるかどうかは温度Tの分布の急峻さによるが、今、強力集束超音波焦点領域寸法をdとすると、照射時間τc
Figure JPOXMLDOC01-appb-M000005
より照射時間が短いとき、熱伝導kを無視することができる。よって、式(4)は下記のように近似できる。
Figure JPOXMLDOC01-appb-M000006
超音波照射直後の直前に対する温度上昇分ΔTは照射時間Δt(≦τc)とおくとき、
Figure JPOXMLDOC01-appb-M000007
と概算される。d~1mmのときは~10sとなる。
Since the intense focused ultrasonic therapy is a high-intensity irradiation in a relatively short time, the amount of heat generated by the blood flow can be ignored as compared with the calorific value q, so that the equation (3) can be written as (4).
Figure JPOXMLDOC01-appb-M000004
Whether or not the size of the heat conduction term on the right side of equation (4) can be ignored compared to the calorific value q depends on the steepness of the distribution of the temperature T. Now, assuming that the dimension of the strongly focused ultrasonic focal region is d, the irradiation time τ c
Figure JPOXMLDOC01-appb-M000005
When the irradiation time is shorter, the heat conduction k can be ignored. Therefore, the equation (4) can be approximated as follows.
Figure JPOXMLDOC01-appb-M000006
When the temperature rise ΔT immediately before the ultrasonic irradiation is set to the irradiation time Δt (≦ τ c ),
Figure JPOXMLDOC01-appb-M000007
Is estimated. When it is d to 1 mm, it is about 10 s.
 式(7)の感温ファントムの各種パラメータをΔTT,αT,ρT,CpTとし、生体の各種パラメータをΔTB、αB=X・αT,ρB=Y・ρT,CpB=Z・CpTとする。X,Y,Zは感温ファントムと生体のパラメータの各比率になる(事前に感温ファントムの各種パラメータの計測を行い、既知の生体パラメータとの比率は算出できる)。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
The various parameters of the temperature sensitive phantom [Delta] T T of the formula (7), α T, ρ T, C pT and the various parameters of the biological ΔT B, α B = X · α T, ρ B = Y · ρ T, C Let pB = Z · C pT . X, Y, and Z are the ratios of the temperature-sensitive phantom and the parameters of the living body (various parameters of the temperature-sensitive phantom can be measured in advance, and the ratio with the known biological parameters can be calculated).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 事前に計測した感温ファントムのパラメータ密度ρ、比熱Cp、超音波吸収係数αの感温ファントムと、実際の既知の臓器のパラメータ(密度ρ、比熱Cp、超音波吸収係数α)との比率(X,Y,Z)が判れば、実際の生体の温度上昇も推測可能である。従来の感温ファントムは感温幅が10℃であり、実際の生体の温度上昇も生体温度上昇換算係数×10℃であるが、本発明が提案する感温ファントムは生体温度上昇換算係数×40℃(原理的には50℃、60℃も可能)となり、従来の定数倍の生体内の温度上昇を可視化できることになる。よって、本発明は、40℃幅という特定の幅に限定されるのではなく、従来の定数倍の温度幅の領域を可視化できる。 Pre-measured temperature-sensitive phantom parameter density ρ, specific heat C p , ultrasonic absorption coefficient α temperature-sensitive phantom and actual known organ parameters (density ρ, specific heat C p , ultrasonic absorption coefficient α) If the ratio (X, Y, Z) is known, the actual temperature rise of the living body can be estimated. The conventional temperature-sensitive phantom has a temperature sensitivity range of 10 ° C., and the actual temperature rise of the living body is also the living body temperature rise conversion coefficient × 10 ° C. However, the temperature-sensitive phantom proposed by the present invention has a living body temperature rise conversion coefficient × 40. The temperature becomes ℃ (in principle, 50 ℃ and 60 ℃ are possible), and it becomes possible to visualize the temperature rise in the living body which is a constant multiple of the conventional one. Therefore, the present invention is not limited to a specific width of 40 ° C., but can visualize a region having a temperature width that is a constant multiple of the conventional one.
(2層化された感温ファントム)
 図5は、図1に示す感温ファントムの一例を示す側面図である。感温ファントム12は、長手軸を含む水平面で重なった上下2層構造の直方体形状を有する感温ファントム部材12a,12bで構成される。上層の感温ファントム部材12aは40~50℃の第1の感温範囲を有し、下層の感温ファントム部材12bは50~60℃の第2の感温範囲を有する。探触子42は、出射する超音波が感温ファントム10の長手軸を含む水平面で集束するように配置される。図6は、探触子42から超音波が出射されたとき画像センサ30が撮像する各色変化を説明する図である。図6(a)は感温ファントム12の色の経時変化を説明する図であり、図6(b)は感温ファントム12の色変化を再構成した図である。感温ファントム部材12a,12bは、境界面(水平面)に対して面対称の位置関係にある。或いは、感温ファントム部材12a,12bは、長手軸(図の水平面の中央)に対して軸対称の位置関係にあるといえる。
(Two-layered temperature-sensitive phantom)
FIG. 5 is a side view showing an example of the temperature-sensitive phantom shown in FIG. The temperature-sensitive phantom 12 is composed of temperature- sensitive phantom members 12a and 12b having a rectangular parallelepiped shape having an upper and lower two-layer structure overlapping in a horizontal plane including a longitudinal axis. The upper temperature sensitive phantom member 12a has a first temperature sensitive range of 40 to 50 ° C., and the lower temperature sensitive phantom member 12b has a second temperature sensitive range of 50 to 60 ° C. The probe 42 is arranged so that the emitted ultrasonic waves are focused on a horizontal plane including the longitudinal axis of the temperature-sensitive phantom 10. FIG. 6 is a diagram illustrating each color change imaged by the image sensor 30 when ultrasonic waves are emitted from the probe 42. FIG. 6A is a diagram for explaining the change in color of the temperature-sensitive phantom 12 with time, and FIG. 6B is a diagram in which the color change of the temperature-sensitive phantom 12 is reconstructed. The temperature- sensitive phantom members 12a and 12b are in a plane-symmetrical positional relationship with respect to the boundary surface (horizontal plane). Alternatively, it can be said that the temperature- sensitive phantom members 12a and 12b have an axisymmetric positional relationship with respect to the longitudinal axis (center of the horizontal plane in the figure).
 ここで、2つの感温ファントム部材12a,12bは、好適には、略同一形状を有する。本明細書においてこの文脈で使用される「略同一形状」という用語は、同一形状に加えて、長手軸を含む水平面に対して面対称の位置関係にあれば、製造または他の目的のために僅かに相違する形状も含むことを意図する。好適な一実施形態では、各感温ファントム部材12a,12bは、長手軸を含む水平面に対して面対称の位置関係、又は、長手軸に対して軸対称の位置関係にあり、感温ファントムの昇温の程度やその温度分布が画像センサ(図1参照)からの観察に支障のない範囲で、長手軸から離れた周辺領域が僅かに相違する場合も含む。 Here, the two temperature- sensitive phantom members 12a and 12b preferably have substantially the same shape. As used herein in this context, the term "substantially identical shape" is used for manufacturing or other purposes as long as it is in a plane-symmetrical position with respect to the horizontal plane, including the longitudinal axis, in addition to the same shape. It is intended to include slightly different shapes. In one preferred embodiment, the temperature- sensitive phantom members 12a and 12b have a plane-symmetrical positional relationship with respect to the horizontal plane including the longitudinal axis or an axially symmetric positional relationship with respect to the longitudinal axis, and the temperature- sensitive phantom members 12a and 12b have a positional relationship of the temperature-sensitive phantom. It also includes the case where the peripheral region away from the longitudinal axis is slightly different within the range in which the degree of temperature rise and the temperature distribution thereof do not interfere with the observation from the image sensor (see FIG. 1).
 また、感温ファントム12は、それぞれの感温ファントム部材12a,12bを別個に作製し、2つの感温ファントム部材12a,12bを貼り合わせる方法や、感温ファントム部材12aを作製し、母材と感温素材との混合液を感温ファントム部材12aに接する位置に配置して硬化させて感温ファントム部材12bを作製する方法で形成される。 Further, for the temperature-sensitive phantom 12, a method in which the temperature- sensitive phantom members 12a and 12b are separately produced and the two temperature- sensitive phantom members 12a and 12b are bonded together, or a temperature-sensitive phantom member 12a is produced and used as a base material. It is formed by a method of producing a temperature-sensitive phantom member 12b by arranging a mixed solution with the temperature-sensitive material at a position in contact with the temperature-sensitive phantom member 12a and curing the mixture.
 探触子42が超音波を感温ファントム12に出射すると、超音波が集束する集束位置付近の感温ファントム12は時間を違えて色を変化し、画像センサ30が撮像する画も、図6(a)に示すように変化する。即ち、超音波を受けて感温ファントム10が昇温し始め、所定時間が経過して感温ファントム12が第1の感温範囲(40~50℃)になると、上層の感温ファントム部材12aが可視化する様が観察される。更に継続して超音波が出射されると感温ファントム10は更に昇温し、第1の感温範囲を超えて(時間:t1)第2の感温範囲(50~60℃)になり、上層の感温ファントム部材12aの色が消える一方下層の感温ファントム部材12bの可視化が観察される。更に継続して超音波が出射され感温ファントム10が更に昇温すると(時間:t2)、第2の感温範囲から更に昇温して、下層の感温ファントム部材12bは色が消える。 When the probe 42 emits ultrasonic waves to the temperature-sensitive phantom 12, the temperature-sensitive phantom 12 near the focusing position where the ultrasonic waves focus changes in color at different times, and the image captured by the image sensor 30 is also shown in FIG. It changes as shown in (a). That is, when the temperature-sensitive phantom 10 starts to rise in temperature in response to ultrasonic waves and the temperature-sensitive phantom 12 reaches the first temperature-sensitive range (40 to 50 ° C.) after a predetermined time elapses, the upper temperature-sensitive phantom member 12a Is observed to be visualized. When ultrasonic waves are continuously emitted, the temperature of the temperature-sensitive phantom 10 rises further, exceeds the first temperature-sensitive range (time: t1), and reaches the second temperature-sensitive range (50 to 60 ° C.). The color of the temperature-sensitive phantom member 12a in the upper layer disappears, while the visualization of the temperature-sensitive phantom member 12b in the lower layer is observed. Further, when ultrasonic waves are continuously emitted and the temperature sensitive phantom 10 is further heated (time: t2), the temperature is further increased from the second temperature sensitive range, and the color of the lower temperature sensitive phantom member 12b disappears.
 感温ファントム10のこの一連の色変化を、演算処理部52(図1)で再構築した図が図6(b)である。超音波が長手軸を含む水平面に対して面対称(或いは、「長手軸に対して軸対称」と言える)に出射されることを前提とする。上下2層の感温ファントム部材12a,12bが可視化する様を時間軸方向に並べ(図6(a))、画像を合成し再構築することで広い温度幅での可視化が可能になる(図6(b))。この例では感温範囲40~60℃で温度幅20℃の可視化を行っている。2つの感温ファントム部材12a,12bの感温範囲が連続しているので、感温ファントム12の一連の色変化が表示される。 FIG. 6 (b) is a diagram in which this series of color changes of the temperature-sensitive phantom 10 is reconstructed by the arithmetic processing unit 52 (FIG. 1). It is assumed that the ultrasonic waves are emitted plane-symmetrically (or can be said to be "axisymmetric with respect to the longitudinal axis") with respect to the horizontal plane including the longitudinal axis. Visualization of the temperature- sensitive phantom members 12a and 12b in the upper and lower layers is arranged in the time axis direction (FIG. 6 (a)), and the images are synthesized and reconstructed to enable visualization in a wide temperature range (FIG. 6). 6 (b)). In this example, the temperature range of 40 to 60 ° C. and the temperature range of 20 ° C. are visualized. Since the temperature sensitive ranges of the two temperature sensitive phantom members 12a and 12b are continuous, a series of color changes of the temperature sensitive phantom 12 are displayed.
 超音波の出射方向が感温ファントム10の長手軸に合致するように探触子42が配置されると、超音波によって感温ファントム10の上下2層の色は長手軸を含む水平面に対して面対称に変化する。感温ファントム10の上下2層の色相が面対称にならないことが観察されるとき、探触子42は超音波を対称に出射していない。これにより、探触子42が出射する超音波の対称性を評価できる。また、感温ファントム12の昇温の経過を経時的に観察するので、探触子42の出力の継続性を評価できる。 When the probe 42 is arranged so that the emission direction of the ultrasonic waves matches the longitudinal axis of the temperature-sensitive phantom 10, the colors of the upper and lower two layers of the temperature-sensitive phantom 10 are changed by the ultrasonic waves with respect to the horizontal plane including the longitudinal axis. It changes in a plane symmetric manner. When it is observed that the hues of the upper and lower two layers of the temperature-sensitive phantom 10 are not plane-symmetrical, the probe 42 does not emit ultrasonic waves symmetrically. This makes it possible to evaluate the symmetry of the ultrasonic waves emitted by the probe 42. Further, since the progress of the temperature rise of the temperature-sensitive phantom 12 is observed over time, the continuity of the output of the probe 42 can be evaluated.
 2層化された感温ファントム12は、感温ファントム部材12a,12bが水平面に対して面対称の位置関係にある例を説明したが、これに限定されるものではない。例えば、2つの感温ファントム部材が垂直面に対して面対称の位置関係となるように配置してもよい(図示省略)。かかる配置も、2つの感温ファントム部材が感温ファントムの長手軸に対して軸対称の位置関係にあるといえる。 The two-layered temperature-sensitive phantom 12 has described an example in which the temperature- sensitive phantom members 12a and 12b are in a plane-symmetrical positional relationship with respect to the horizontal plane, but the present invention is not limited to this. For example, the two temperature-sensitive phantom members may be arranged so as to have a plane-symmetrical positional relationship with respect to a vertical plane (not shown). In such an arrangement, it can be said that the two temperature-sensitive phantom members are in an axially symmetrical positional relationship with respect to the longitudinal axis of the temperature-sensitive phantom.
 超音波評価装置1は感温ファントム10と光源20と画像センサ30とが遮光ボックス32に収納されて構成される例を説明したが、これに限定されるものではない。例えば、装置の稼働状況を観察できる透明な窓部を有する収納ボックスに、感温ファントムと光源と画像センサとが収納されて構成される超音波評価装置であってもよい。使用時に暗幕布で覆う、或いは、装置を暗室に設置する等、装置全体を遮光して稼働させることもできる。 The ultrasonic evaluation device 1 has described an example in which the temperature-sensitive phantom 10, the light source 20, and the image sensor 30 are housed in a light-shielding box 32, but the present invention is not limited to this. For example, it may be an ultrasonic evaluation device in which a temperature-sensitive phantom, a light source, and an image sensor are housed in a storage box having a transparent window for observing the operating state of the device. It is also possible to operate the entire device with light shielding, such as covering it with a dark curtain cloth at the time of use or installing the device in a dark room.
(4つの感温範囲を有する感温ファントム)
 図7は、画像センサ30から見た、図1に示す感温ファントムの他の例を示す図である。感温ファントム14は、長手中心軸を含む水平面と垂直面で4つに区分けすることができる。それぞれの区分には、同一の直方体形状だが異なる感温範囲を有する感温ファントム部材14a,14b,14c,14dが長手中心軸に対して軸対称の関係で配置される。第1の感温ファントム部材14aは40~50℃の第1の感温範囲を有し、第2の感温ファントム部材14bは50~60℃の第2の感温範囲を、第3の感温ファントム部材14cは60~70℃の第3の感温範囲を、第4の感温ファントム部材14dは70~80℃の第4の感温範囲を有する。これにより、感温ファントム14は、全体として、探触子42が出射する超音波を適切に捕捉するのに必要な感温範囲40~80℃をカバーする。
(Temperature-sensitive phantom with four temperature-sensitive ranges)
FIG. 7 is a diagram showing another example of the temperature sensitive phantom shown in FIG. 1 as viewed from the image sensor 30. The temperature-sensitive phantom 14 can be divided into four in a horizontal plane including a longitudinal central axis and a vertical plane. In each section, temperature- sensitive phantom members 14a, 14b, 14c, and 14d having the same rectangular parallelepiped shape but different temperature sensing ranges are arranged in an axisymmetric relationship with respect to the longitudinal central axis. The first temperature-sensitive phantom member 14a has a first temperature-sensitive range of 40 to 50 ° C., and the second temperature-sensitive phantom member 14b has a second temperature-sensitive range of 50 to 60 ° C. and a third feeling. The warm phantom member 14c has a third temperature sensitive range of 60 to 70 ° C., and the fourth temperature sensitive phantom member 14d has a fourth temperature sensitive range of 70 to 80 ° C. As a result, the temperature-sensitive phantom 14 covers the temperature-sensitive range of 40 to 80 ° C. required to properly capture the ultrasonic waves emitted by the probe 42 as a whole.
 図5に示した感温ファントム12の例と同様に、探触子42(図1)が超音波を感温ファントム14に出射すると、超音波が集束する集束位置付近で4つの感温ファントム部材14a,14b,14c,14dが時間を違えて色を変化する。図8は、特定の分割面について、画像センサ30が撮像する4つの感温ファントム部材14a,14b,14c,14dの色相を説明する図である。超音波を受けて感温ファントム14が昇温し、時間の経過と共に、各々の感温ファントム部材14a,14b,14c,14dが各々の感温範囲になると可視化し、画像センサ30は、可視化した感温ファントム14を観察する(図8(a)~(d))。 Similar to the example of the temperature-sensitive phantom 12 shown in FIG. 5, when the probe 42 (FIG. 1) emits ultrasonic waves to the temperature-sensitive phantom 14, four temperature-sensitive phantom members are located near the focusing position where the ultrasonic waves are focused. 14a, 14b, 14c, 14d change color at different times. FIG. 8 is a diagram for explaining the hues of the four temperature- sensitive phantom members 14a, 14b, 14c, and 14d imaged by the image sensor 30 with respect to the specific divided surface. The temperature-sensitive phantom 14 was heated by receiving ultrasonic waves, and with the passage of time, each of the temperature- sensitive phantom members 14a, 14b, 14c, and 14d was visualized within the respective temperature-sensitive range, and the image sensor 30 was visualized. Observe the temperature-sensitive phantom 14 (FIGS. 8 (a) to 8 (d)).
 超音波を受けて感温ファントム14が昇温し始め、所定時間が経過して第1の感温ファントム部材14aが第1の感温範囲(40~50℃)になると、第1の感温ファントム部材14aが可視化する様が観察される(図8(a))。継続して超音波が出射されると感温ファントム14は昇温し、第1の感温範囲を超えて(時間:t1)第2の感温範囲(50~60℃)になり、第1の感温ファントム部材14aの色が消える一方第2の感温ファントム部材14bが可視化する(図8(b))。更に継続して超音波が出射されると感温ファントム14は更に昇温し、第2の感温範囲を超えて(時間:t2)第3の感温範囲(60~70℃)になり、第2の感温ファントム部材14bの色が消える一方第3の感温ファントム部材14cが可視化する(図8(c))。更に継続して超音波が出射されると感温ファントム14は更に昇温し、第3の感温範囲を超えて(時間:t3)第4の感温範囲(70~80℃)になり、第3の感温ファントム部材14cの色が消える一方第4の感温ファントム部材14dの可視化が観察される(図8(d))。更に継続して超音波が出射され感温ファントム14が更に昇温すると(時間:t4)、第4の感温範囲から更に昇温して、第4の感温ファントム部材14dから色が消える。 When the temperature-sensitive phantom 14 begins to rise in temperature in response to ultrasonic waves and the first temperature-sensitive phantom member 14a reaches the first temperature-sensitive range (40 to 50 ° C.) after a predetermined time elapses, the first temperature-sensitive phantom member 14a reaches the first temperature sensing range (40 to 50 ° C.). It is observed that the phantom member 14a is visualized (FIG. 8 (a)). When ultrasonic waves are continuously emitted, the temperature of the temperature-sensitive phantom 14 rises, exceeds the first temperature-sensitive range (time: t1), reaches the second temperature-sensitive range (50 to 60 ° C.), and becomes the first. While the color of the temperature-sensitive phantom member 14a disappears, the second temperature-sensitive phantom member 14b is visualized (FIG. 8 (b)). When ultrasonic waves are continuously emitted, the temperature of the temperature-sensitive phantom 14 rises further, exceeds the second temperature-sensitive range (time: t2), and reaches the third temperature-sensitive range (60 to 70 ° C.). While the color of the second temperature-sensitive phantom member 14b disappears, the third temperature-sensitive phantom member 14c is visualized (FIG. 8 (c)). When ultrasonic waves are continuously emitted, the temperature of the temperature-sensitive phantom 14 rises further, exceeds the third temperature-sensitive range (time: t3), and reaches the fourth temperature-sensitive range (70 to 80 ° C.). While the color of the third temperature-sensitive phantom member 14c disappears, the visualization of the fourth temperature-sensitive phantom member 14d is observed (FIG. 8 (d)). When ultrasonic waves are continuously emitted and the temperature of the temperature-sensitive phantom 14 is further increased (time: t4), the temperature is further increased from the fourth temperature-sensitive range, and the color disappears from the fourth temperature-sensitive phantom member 14d.
 画像センサ30(図1)が撮像した感温ファントム14の分割面(シート光照射面)の温度上昇画像を取得した演算処理部52(図1)は、感温ファントム14の4分割の対称性(図7)を考慮して、各分割面について画像から温度を換算し、温度上昇領域を2次元画像に構成し直す。図9は、特定の分割面について、対称性を考慮して温度換算した結果を表示する図である。図10は、特定の分割面について、図9の画像を合算し、時間:t1~t4の温度幅40℃を可視化した温度マップである。4つの感温ファントム部材14a,14b,14c,14dの感温範囲が連続しているので、感温ファントム14の一連の色変化が表示される。長手中心軸を指標にして4つの画像を合成することで、広い温度幅での可視化が可能になる。この例では感温範囲40~80℃で温度幅40℃の可視化が可能になる。探触子42が超音波を対称に出射するとき、4つの感温ファントム部材14a,14b,14c,14dの色相は長手中心軸に対して軸対称に変化する。4つの色相が軸対称にならないことが観察されるとき、探触子42は超音波を対称に出射していない。これにより、探触子42が出射する超音波の対称性を評価できる。また、感温ファントム14の昇温の経過を経時的に観察するので、探触子42の出力の継続性を評価できる。 The arithmetic processing unit 52 (FIG. 1) that acquired the temperature rise image of the divided surface (sheet light irradiation surface) of the temperature-sensitive phantom 14 imaged by the image sensor 30 (FIG. 1) has the symmetry of the four divisions of the temperature-sensitive phantom 14. In consideration of (FIG. 7), the temperature is converted from the image for each divided surface, and the temperature rise region is reconstructed into a two-dimensional image. FIG. 9 is a diagram showing the result of temperature conversion for a specific divided surface in consideration of symmetry. FIG. 10 is a temperature map in which the images of FIG. 9 are added up for a specific divided surface and the temperature range of 40 ° C. at time: t1 to t4 is visualized. Since the temperature sensitive ranges of the four temperature sensitive phantom members 14a, 14b, 14c, and 14d are continuous, a series of color changes of the temperature sensitive phantom 14 are displayed. By synthesizing four images using the longitudinal central axis as an index, visualization in a wide temperature range becomes possible. In this example, the temperature range of 40 to 80 ° C. and the temperature range of 40 ° C. can be visualized. When the probe 42 emits ultrasonic waves symmetrically, the hues of the four temperature- sensitive phantom members 14a, 14b, 14c, and 14d change axisymmetrically with respect to the longitudinal central axis. When it is observed that the four hues are not axisymmetric, the probe 42 does not emit ultrasonic waves symmetrically. This makes it possible to evaluate the symmetry of the ultrasonic waves emitted by the probe 42. Further, since the progress of the temperature rise of the temperature-sensitive phantom 14 is observed over time, the continuity of the output of the probe 42 can be evaluated.
 感温ファントム14に対してシート光を照射するのは、着目面(分割面(シート光照射面))の温度上昇を可視化するためである。シート光にすることで、着目面だけ(数mmの幅はあるが)を照射することができるので、着目面の画像を画像センサ30(図1)により取得できる。図4に示す光源20の移動機構を使用して、感温ファントム14をスキャンして1面ずつ画像を撮ることで、超音波集束位置付近の3次元温度上昇を把握できる。 The reason why the temperature-sensitive phantom 14 is irradiated with the sheet light is to visualize the temperature rise of the surface of interest (the divided surface (sheet light irradiation surface)). By using sheet light, it is possible to irradiate only the surface of interest (although it has a width of several mm), so that an image of the surface of interest can be acquired by the image sensor 30 (FIG. 1). By scanning the temperature-sensitive phantom 14 and taking images one by one using the moving mechanism of the light source 20 shown in FIG. 4, it is possible to grasp the three-dimensional temperature rise near the ultrasonic focusing position.
(変形例)
 図11は、図7に示す感温ファントム14の変形例を示す図である。4種類の感温ファントム16は、同じ感温範囲を有する感温ファントム部材16aと16a,16bと16b,16cと16c,16dと16dが長手中心軸を中心として軸対称に配置される(図11(a))。探触子42が超音波を対称に出射するとき、相対する2つの感温ファントム部材16aと16a,16bと16b,16cと16c,16dと16dの色相は長手中心軸に対して軸対称に変化する(図11(b))。長手中心軸に対して軸対称にならないとき(図11(c))、探触子42は超音波を対称に出射していない。これにより、探触子42が出射する超音波の対称性を評価できる。
(Modification example)
FIG. 11 is a diagram showing a modified example of the temperature sensitive phantom 14 shown in FIG. 7. In the four types of temperature-sensitive phantoms 16, the temperature-sensitive phantom members 16a 1 and 16a 2 , 16b 1 and 16b 2 , 16c 1 and 16c 2 , 16d 1 and 16d 2 having the same temperature sensing range are axes centered on the longitudinal central axis. They are arranged symmetrically (FIG. 11 (a)). When the probe 42 emits ultrasonic waves symmetrically, the hues of the two opposing temperature-sensitive phantom members 16a 1 and 16a 2 , 16b 1 and 16b 2 , 16c 1 and 16c 2 , 16d 1 and 16d 2 are longitudinal centers. It changes axisymmetrically with respect to the axis (FIG. 11 (b)). When the probe 42 is not axisymmetric with respect to the longitudinal central axis (FIG. 11 (c)), the probe 42 does not emit ultrasonic waves symmetrically. This makes it possible to evaluate the symmetry of the ultrasonic waves emitted by the probe 42.
 ここで、長手中心軸を中心として軸対称に配置された2つの感温ファントム部材16a,と16aは、「略同一形状」を有する。より詳しくは、同一形状に加えて、長手中心軸を中心として軸対称の位置関係にあり、感温ファントムの昇温の程度やその温度分布が画像センサ(図1参照)からの観察に支障のない範囲で、長手軸から離れた周辺領域が僅かに相違する場合も含む。同様に、長手中心軸を中心として軸対称に配置された感温ファントム部材16bと16b,16cと16c,16dと16dも、「略同一形状」を有する。 Here, the two temperature-sensitive phantom members 16a 1 and 16a 2 arranged axially symmetrically with respect to the longitudinal central axis have "substantially the same shape". More specifically, in addition to the same shape, the positional relationship is axisymmetric with respect to the longitudinal central axis, and the degree of temperature rise of the temperature-sensitive phantom and its temperature distribution hinder observation from the image sensor (see FIG. 1). It also includes the case where the peripheral area away from the longitudinal axis is slightly different within the range. Similarly, the temperature-sensitive phantom members 16b 1 and 16b 2 , 16c 1 and 16c 2 , 16d 1 and 16d 2 arranged axially symmetrically with respect to the longitudinal central axis also have "substantially the same shape".
 以上に述べたように、複数の感温ファントム素材が長手中心軸を中心として軸対称に配置されれば接触子が出射する超音波の対称性を評価できるので、感温ファントム素材の数はここで挙げた2個、4個、8個に限定されず、3個でも5個以上でもよい。また、図6や図7では感温ファントム12,14は長手軸に垂直な断面が正方形であるように示したが、これに限定されない。例えば、断面が長方形や円形等でもよい。 As described above, if a plurality of temperature-sensitive phantom materials are arranged axisymmetrically with respect to the longitudinal central axis, the symmetry of the ultrasonic waves emitted by the contacts can be evaluated, so the number of temperature-sensitive phantom materials is here. The number is not limited to 2, 4, and 8 mentioned in the above, and may be 3 or 5 or more. Further, in FIGS. 6 and 7, the temperature- sensitive phantoms 12 and 14 are shown to have a square cross section perpendicular to the longitudinal axis, but the present invention is not limited to this. For example, the cross section may be rectangular or circular.
 図7に示す感温ファントム14では、第1の感温ファントム部材14aが40~50℃の第1の感温範囲を有し、第2の感温ファントム部材14bが50~60℃の第2の感温範囲を、第3の感温ファントム部材14cが60~70℃の第3の感温範囲を、第4の感温ファントム部材14dが70~80℃の第4の感温範囲を有する例を説明したが、これに限定されるものではない。例えば、第1の感温ファントム部材14aと第4の感温ファントム部材14dが40~50℃の第1の感温範囲を有し、第2の感温ファントム部材14bが50~60℃の第2の感温範囲を、第3の感温ファントム部材14cが60~70℃の第3の感温範囲を有するなど、同じ感温領域(第1の感温範囲)を長手中心軸を中心として軸対称に配置してもよい。或いは、第1の感温ファントム部材14aと第2の感温ファントム部材14bが40~50℃の第1の感温範囲を有し、第3の感温ファントム部材14cが50~60℃の第2の感温範囲を、第4の感温ファントム部材14dが60~70℃の第3の感温範囲を有するなど、同じ感温領域(第1の感温範囲)が必ずしも長手中心軸を中心として軸対称でなく隣り合った配置でも、複数の感温ファントム部材の感温範囲が連続すればよい。 In the temperature-sensitive phantom 14 shown in FIG. 7, the first temperature-sensitive phantom member 14a has a first temperature-sensitive range of 40 to 50 ° C., and the second temperature-sensitive phantom member 14b has a second temperature-sensitive phantom member 14b of 50 to 60 ° C. The third temperature-sensitive phantom member 14c has a third temperature-sensitive range of 60 to 70 ° C., and the fourth temperature-sensitive phantom member 14d has a fourth temperature-sensitive range of 70 to 80 ° C. An example has been described, but the present invention is not limited to this. For example, the first temperature-sensitive phantom member 14a and the fourth temperature-sensitive phantom member 14d have a first temperature-sensitive range of 40 to 50 ° C., and the second temperature-sensitive phantom member 14b has a second temperature-sensitive phantom member 14b of 50 to 60 ° C. The same temperature sensing region (first temperature sensing range) is centered on the longitudinal central axis, such that the third temperature sensing phantom member 14c has a third temperature sensing range of 60 to 70 ° C. It may be arranged axisymmetrically. Alternatively, the first temperature-sensitive phantom member 14a and the second temperature-sensitive phantom member 14b have a first temperature-sensitive range of 40 to 50 ° C., and the third temperature-sensitive phantom member 14c has a third temperature-sensitive phantom member 14c of 50 to 60 ° C. The same temperature sensing region (first temperature sensing range) is not necessarily centered on the longitudinal central axis, such that the fourth temperature sensing phantom member 14d has a third temperature sensing range of 60 to 70 ° C. Even if they are arranged adjacent to each other instead of being axisymmetric, the temperature sensing ranges of the plurality of temperature sensing phantom members may be continuous.
(第2実施形態)
 図12は、2層化された感温ファントム12の観察に好適な第2実施形態に係る超音波評価装置101の構成を示す概略図である。第1実施形態に係る超音波評価装置1との同一又は類似の要素については、同一又は類似の符号を付して説明を省略する。第1実施形態に係る超音波評価装置1は探触子42を固定して感温ファントム10の分割面を撮像するのに対して、第2実施形態に係る超音波評価装置101は、以下に述べるように、探触子42を移動させて感温ファントム12(図5)を撮像する点で相違する。超音波の出射方向の対称性が確保できない場合でも探触子42を移動させて撮像できるので有効である。超音波評価装置101は、超音波の本来の出射方向が2つの感温ファントム部材12a,12b(図5)の境界面に平行となるように探触子42を維持しつつ、探触子42を境界面に対して垂直な2軸(X,Y)方向に移動させる探触子移動機構(不図示)と、探触子42の移動を制御する移動制御部150と、を備える。
(Second Embodiment)
FIG. 12 is a schematic view showing the configuration of the ultrasonic evaluation device 101 according to the second embodiment suitable for observing the two-layered temperature-sensitive phantom 12. The same or similar elements as those of the ultrasonic evaluation device 1 according to the first embodiment are designated by the same or similar reference numerals, and the description thereof will be omitted. The ultrasonic evaluation device 1 according to the first embodiment fixes the probe 42 and images the divided surface of the temperature-sensitive phantom 10, whereas the ultrasonic evaluation device 101 according to the second embodiment is described below. As described, the difference is that the probe 42 is moved to image the temperature-sensitive phantom 12 (FIG. 5). Even when the symmetry of the ultrasonic wave emission direction cannot be ensured, it is effective because the probe 42 can be moved to take an image. The ultrasonic evaluation device 101 maintains the probe 42 so that the original emission direction of the ultrasonic wave is parallel to the boundary surface of the two temperature- sensitive phantom members 12a and 12b (FIG. 5), and the probe 42 A probe moving mechanism (not shown) for moving the probe 42 in two axes (X, Y) directions perpendicular to the boundary surface, and a movement control unit 150 for controlling the movement of the probe 42 are provided.
 図13は、探触子42から超音波が非対称に出射されたときの画像センサ30が撮像する感温ファントム12の色変化を説明する図である。図13(a),(b)は感温ファントム12の色の経時変化を説明する図であり、図13(c)は感温ファントム12の色変化を再構成した図である。光源20が超音波の本来の出射方向に垂直な面にシート光を照射した状態で、探触子42を感温ファントム部材12aに移動する。超音波を探触子42から感温ファントム12(感温ファントム部材12a)に出射させる。超音波の集束位置付近でシート光照射面を長手軸方向に移動させて、画像センサ30で感温ファントム12(感温ファントム部材12a)をスキャンする(図13(a))。これにより、感温ファントム部材12aの3次元温度分布が可視化する。続いて、探触子移動機構(不図示)が探触子42を感温ファントム部材12bに移動させ、同様に、探触子42から感温ファントム部材12bに超音波を出射させ、超音波の集束位置付近でシート光照射面を長手軸方向に移動させて、感温ファントム部材12bをスキャンする(図13(b))。これにより、感温ファントム部材12bの3次元温度分布が可視化する。第1実施形態の場合と同様に、取得した2つの3次元温度分布を合成し再構築することで、軸非対称温度上昇領域を従来の2倍の温度幅で可視化が可能になる(図13(c))。尚、最終的に取得した温度分布を合成し再構築するので、観察を感温ファントム部材12a,12bのいずれから開始するかは問題でない。 FIG. 13 is a diagram for explaining the color change of the temperature-sensitive phantom 12 imaged by the image sensor 30 when ultrasonic waves are asymmetrically emitted from the probe 42. 13 (a) and 13 (b) are diagrams for explaining the change in color of the temperature-sensitive phantom 12 with time, and FIG. 13 (c) is a diagram reconstructing the color change of the temperature-sensitive phantom 12. The probe 42 is moved to the temperature-sensitive phantom member 12a in a state where the light source 20 irradiates the surface perpendicular to the original emission direction of the ultrasonic waves with the sheet light. Ultrasonic waves are emitted from the probe 42 to the temperature-sensitive phantom 12 (temperature-sensitive phantom member 12a). The sheet light irradiation surface is moved in the longitudinal axis direction near the ultrasonic focusing position, and the temperature-sensitive phantom 12 (temperature-sensitive phantom member 12a) is scanned by the image sensor 30 (FIG. 13 (a)). As a result, the three-dimensional temperature distribution of the temperature-sensitive phantom member 12a is visualized. Subsequently, the probe moving mechanism (not shown) moves the probe 42 to the temperature-sensitive phantom member 12b, and similarly, ultrasonic waves are emitted from the probe 42 to the temperature-sensitive phantom member 12b to generate ultrasonic waves. The temperature-sensitive phantom member 12b is scanned by moving the sheet light irradiation surface in the longitudinal axis direction near the focusing position (FIG. 13 (b)). As a result, the three-dimensional temperature distribution of the temperature-sensitive phantom member 12b is visualized. By synthesizing and reconstructing the two acquired three-dimensional temperature distributions as in the case of the first embodiment, it is possible to visualize the axially asymmetric temperature rise region with a temperature width twice that of the conventional one (FIG. 13 (FIG. 13). c)). Since the finally acquired temperature distribution is synthesized and reconstructed, it does not matter which of the temperature- sensitive phantom members 12a and 12b the observation is started from.
(4つの感温範囲を有する感温ファントム)
 図7に示す4つの感温範囲を有する感温ファントムを使用すれば、超音波の出射方向の対称性が確保できない超音波出力機器の探触子でも移動させて撮像することで、従来の4倍の温度幅で軸非対称温度上昇領域を可視化できる。図14は、超音波が非対称に出射されたとき図7に示す4つの感温ファントム部材の色変化を説明する図である。超音波を受けて感温ファントム14が昇温し、時間の経過と共に、各々の感温ファントム部材14a,14b,14c,14dが各々の感温範囲になると可視化し、画像センサ30は、可視化した感温ファントム14を観察する(図14(a)~(d))。光源20が超音波の本来の出射方向に垂直な面にシート光を照射した状態で、探触子42を感温ファントム部材14aに移動する。超音波を感温ファントム部材14aに出射させシート光を照射して画像センサ30がスキャンし(図14(a))、感温ファントム部材14aの3次元温度分布を可視化する。これを感温ファントム部材14b,14c,14dについて繰り返して、可視化した感温ファントム14を観察する(図14(b)~(d))。取得した4つの3次元温度分布を合成し再構築することで、軸非対称温度上昇領域を従来の4倍の温度幅で可視化が可能になる。
(Temperature phantom with 4 temperature ranges)
If a temperature-sensitive phantom having four temperature-sensitive ranges shown in FIG. 7 is used, even a probe of an ultrasonic output device whose symmetry in the emission direction of ultrasonic waves cannot be ensured can be moved to take an image. The axially asymmetric temperature rise region can be visualized with double the temperature width. FIG. 14 is a diagram for explaining the color change of the four temperature-sensitive phantom members shown in FIG. 7 when ultrasonic waves are emitted asymmetrically. The temperature-sensitive phantom 14 was heated by receiving ultrasonic waves, and with the passage of time, each of the temperature- sensitive phantom members 14a, 14b, 14c, and 14d was visualized within the respective temperature-sensitive range, and the image sensor 30 was visualized. Observe the temperature-sensitive phantom 14 (FIGS. 14 (a) to 14 (d)). The probe 42 is moved to the temperature-sensitive phantom member 14a in a state where the light source 20 irradiates the surface perpendicular to the original emission direction of the ultrasonic waves with the sheet light. The image sensor 30 scans the temperature-sensitive phantom member 14a by emitting ultrasonic waves to irradiate the sheet light (FIG. 14A) to visualize the three-dimensional temperature distribution of the temperature-sensitive phantom member 14a. This is repeated for the temperature- sensitive phantom members 14b, 14c, 14d, and the visualized temperature-sensitive phantom 14 is observed (FIGS. 14 (b) to 14 (d)). By synthesizing and reconstructing the four acquired three-dimensional temperature distributions, it is possible to visualize the axially asymmetric temperature rise region with a temperature width four times that of the conventional one.
 図7に示す、4つの感温範囲を有する感温ファントムを実際に作製した。感温ファントムの母材には熱硬化性ウレタン材料を使用した。そして、40℃~50℃の感度範囲を得るには日本カプセルプロダクツのコレステリック液晶(型番:KXN-4050)を、50℃~60℃の感度範囲には同液晶(型番:KXN-5060)を、60℃~70℃の感度範囲には同液晶(型番:KXN-6070)を、70℃~80℃の感度範囲には同液晶(型番:KXN-7080)を、それぞれ重量比で液晶/母材(ウレタン)=0.05%程度の濃度で母材に混入して硬化させ、感温ファントムを作製した。 A temperature-sensitive phantom having four temperature-sensitive ranges shown in FIG. 7 was actually produced. A thermosetting urethane material was used as the base material of the temperature-sensitive phantom. Then, in order to obtain a sensitivity range of 40 ° C to 50 ° C, a cholesteric liquid crystal (model number: KXN-4050) of Nippon Capsule Products is used, and in a sensitivity range of 50 ° C to 60 ° C, the same liquid crystal (model number: KXN-5060) is used. The same liquid crystal (model number: KXN-6070) is used in the sensitivity range of 60 ° C to 70 ° C, and the same liquid crystal (model number: KXN-7080) is used in the sensitivity range of 70 ° C to 80 ° C. A temperature-sensitive phantom was prepared by mixing it with a base material at a concentration of (urethane) = about 0.05% and curing it.
 実際に作製した感温ファントムを図15に示す。図15は画像センサ(図1参照)から見た実際の感温ファントムの写真である。(a)は実際の感温ファントムを示し、4つの感温範囲の配置は図7の配置に対応する。(b)は強力集束超音波(HIFU)が紙面奥から手前に照射されるときの温度変化の様子を示す。図15(b)に示すように、図8(a)~(d)を用いて説明した40℃~80℃までの感度範囲の変化を実際に観察できた。 FIG. 15 shows a temperature-sensitive phantom actually produced. FIG. 15 is a photograph of an actual temperature-sensitive phantom seen from an image sensor (see FIG. 1). (A) shows an actual temperature-sensitive phantom, and the arrangement of the four temperature-sensitive ranges corresponds to the arrangement of FIG. 7. (B) shows the state of temperature change when strong focused ultrasonic waves (HIFU) are irradiated from the back to the front of the paper surface. As shown in FIG. 15 (b), the change in the sensitivity range from 40 ° C. to 80 ° C. described with reference to FIGS. 8 (a) to 8 (d) could be actually observed.
1:超音波評価装置、10:感温ファントム、
12:感温ファントム、12a:上層の感温ファントム部材、12b:下層の感温ファントム部材、
14:感温ファントム、14a:第1の感温ファントム部材、14b:第2の感温ファントム部材、14c:第3の感温ファントム部材、14d:第4の感温ファントム部材、
16:感温ファントム、16a,16a,16b,16b,16c,16c,16d,16d:感温ファントム部材、
20:光源、22:移動ステージ、24:ガルバノミラー、30:画像センサ、32:遮光ボックス、40:超音波出力機器、42:探触子、50:機器制御部、52:演算処理部、54:画像表示部、
101:超音波評価装置、150:移動制御部
1: Ultrasonic evaluation device, 10: Temperature sensitive phantom,
12: Temperature-sensitive phantom, 12a: Upper-layer temperature-sensitive phantom member, 12b: Lower-layer temperature-sensitive phantom member,
14: Temperature-sensitive phantom, 14a: First temperature-sensitive phantom member, 14b: Second temperature-sensitive phantom member, 14c: Third temperature-sensitive phantom member, 14d: Fourth temperature-sensitive phantom member,
16: Temperature-sensitive phantom, 16a 1 , 16a 2 , 16b 1 , 16b 2 , 16c 1 , 16c 2 , 16d 1 , 16d 2 : Temperature-sensitive phantom member,
20: Light source, 22: Moving stage, 24: Galvano mirror, 30: Image sensor, 32: Shading box, 40: Ultrasonic output device, 42: Detector, 50: Device control unit, 52: Arithmetic processing unit, 54 : Image display,
101: Ultrasonic evaluation device, 150: Movement control unit

Claims (11)

  1.  異なる感温範囲を有する複数の感温ファントム部材を備えた、感温ファントムであって、
     各感温ファントム部材は、感温素材を透明なファントムに混ぜて形成されている、感温ファントム。
    A temperature-sensitive phantom with a plurality of temperature-sensitive phantom members having different temperature-sensitive ranges.
    Each temperature-sensitive phantom member is a temperature-sensitive phantom formed by mixing a temperature-sensitive material with a transparent phantom.
  2.  前記複数の感温ファントム部材の感温範囲を連続させることで広範囲の感温範囲をカバーする、請求項1に記載の感温ファントム。 The temperature-sensitive phantom according to claim 1, which covers a wide range of temperature-sensing by making the temperature-sensing ranges of the plurality of temperature-sensitive phantom members continuous.
  3.  前記複数の感温ファントム部材は、前記感温ファントムの長手軸に対して軸対称に配置されている、請求項1又は2に記載の感温ファントム。 The temperature-sensitive phantom according to claim 1 or 2, wherein the plurality of temperature-sensitive phantom members are arranged axially symmetrically with respect to the longitudinal axis of the temperature-sensitive phantom.
  4.  各感温ファントム部材は略同一形状を有する、請求項1乃至3のいずれか一項に記載の感温ファントム。 The temperature-sensitive phantom according to any one of claims 1 to 3, wherein each temperature-sensitive phantom member has substantially the same shape.
  5.  請求項1乃至4のいずれか一項に記載の感温ファントムと、
     前記感温ファントムに光を照射する光源と、
     超音波を受けた各感温ファントム部材を撮像する画像センサと、
    を備える、超音波評価装置。
    The temperature-sensitive phantom according to any one of claims 1 to 4,
    A light source that irradiates the temperature-sensitive phantom with light,
    An image sensor that captures each temperature-sensitive phantom member that has received ultrasonic waves,
    An ultrasonic evaluation device.
  6.  請求項3に記載の感温ファントムと前記光源と前記画像センサとを収納する収納ボックスを更に備え、
     前記収納ボックスは、前記感温ファントムに対して超音波を出射する超音波出力子を、出射方向が前記長手軸に合致し且つ超音波が当該長手軸で集束するように収納する、請求項5に記載の超音波評価装置。
    A storage box for accommodating the temperature-sensitive phantom according to claim 3, the light source, and the image sensor is further provided.
    5. The storage box stores an ultrasonic output element that emits ultrasonic waves to the temperature-sensitive phantom so that the emission direction coincides with the longitudinal axis and the ultrasonic waves are focused on the longitudinal axis. The ultrasonic evaluation device according to.
  7.  前記光源は、前記長手軸に対して垂直な面状の光を照射するシート光源であり、
     前記画像センサは、前記長手軸の延長線上に配置されている、請求項6に記載の超音波評価装置。
    The light source is a sheet light source that irradiates planar light perpendicular to the longitudinal axis.
    The ultrasonic evaluation device according to claim 6, wherein the image sensor is arranged on an extension line of the longitudinal axis.
  8.  前記シート光源が照射する光が超音波の集束位置付近で前記長手軸方向に移動させる移動機構を更に備える、請求項7に記載の超音波評価装置。 The ultrasonic evaluation device according to claim 7, further comprising a moving mechanism for moving the light emitted by the sheet light source in the longitudinal axis direction near the focused position of ultrasonic waves.
  9.  前記光源は、前記長手軸に対して垂直な方向から各感温ファントム部材全体に光を照射し、
     前記画像センサは、前記感温ファントムを挟んで前記光源とは反対側に配置されている、請求項6に記載の超音波評価装置。
    The light source irradiates the entire temperature-sensitive phantom member with light from a direction perpendicular to the longitudinal axis.
    The ultrasonic evaluation device according to claim 6, wherein the image sensor is arranged on the opposite side of the temperature-sensitive phantom from the light source.
  10.  前記感温ファントムに対して超音波を出射する超音波出力子を、超音波の本来の出射方向を前記境界面に平行となるように維持しつつ当該超音波出力子を当該境界面に垂直な2軸(X,Y)方向に移動させる出力子移動機構を更に備える、請求項7に記載の超音波評価装置。 The ultrasonic output element that emits ultrasonic waves to the temperature-sensitive phantom is perpendicular to the boundary surface while maintaining the original emission direction of the ultrasonic waves parallel to the boundary surface. The ultrasonic evaluation device according to claim 7, further comprising an output child moving mechanism for moving in two axes (X, Y) directions.
  11.  前記超音波評価装置全体が遮光されている、請求項5乃至10のいずれか一項に記載の超音波評価装置。 The ultrasonic evaluation device according to any one of claims 5 to 10, wherein the entire ultrasonic evaluation device is shielded from light.
PCT/JP2020/036635 2019-10-04 2020-09-28 Temperature-sensitive phantom, and ultrasonic evaluation device in which same is used WO2021065800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551253A JP7272712B2 (en) 2019-10-04 2020-09-28 Thermal phantom and ultrasonic evaluation device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183644 2019-10-04
JP2019-183644 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021065800A1 true WO2021065800A1 (en) 2021-04-08

Family

ID=75338329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036635 WO2021065800A1 (en) 2019-10-04 2020-09-28 Temperature-sensitive phantom, and ultrasonic evaluation device in which same is used

Country Status (2)

Country Link
JP (1) JP7272712B2 (en)
WO (1) WO2021065800A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230719A1 (en) * 2021-04-30 2022-11-03 国立研究開発法人 産業技術総合研究所 Temperature rise evaluation device
GB2610588A (en) * 2021-09-08 2023-03-15 Univ Warwick Acoustic field visualisation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212356A (en) * 1987-02-28 1988-09-05 株式会社島津製作所 Hyperthermia phantom
JPH1080421A (en) * 1996-09-10 1998-03-31 Furuno Electric Co Ltd Sonic phantom and its producing method
JP2006010320A (en) * 2004-06-22 2006-01-12 Tama Tlo Kk Observation method of temperature distribution, observation device and observation object
JP2008000281A (en) * 2006-06-21 2008-01-10 Hitachi Ltd Phantom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212356A (en) * 1987-02-28 1988-09-05 株式会社島津製作所 Hyperthermia phantom
JPH1080421A (en) * 1996-09-10 1998-03-31 Furuno Electric Co Ltd Sonic phantom and its producing method
JP2006010320A (en) * 2004-06-22 2006-01-12 Tama Tlo Kk Observation method of temperature distribution, observation device and observation object
JP2008000281A (en) * 2006-06-21 2008-01-10 Hitachi Ltd Phantom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230719A1 (en) * 2021-04-30 2022-11-03 国立研究開発法人 産業技術総合研究所 Temperature rise evaluation device
GB2610588A (en) * 2021-09-08 2023-03-15 Univ Warwick Acoustic field visualisation
WO2023037108A1 (en) * 2021-09-08 2023-03-16 The University Of Warwick Acoustic field visualisation

Also Published As

Publication number Publication date
JP7272712B2 (en) 2023-05-12
JPWO2021065800A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US7996066B2 (en) Topographic optical infrared tomography system for biophysical imaging with infrared diagnostic exploratory algorithm sequencing (IDEAS) scripting language
JP4820239B2 (en) Probe for optical tomography equipment
WO2021065800A1 (en) Temperature-sensitive phantom, and ultrasonic evaluation device in which same is used
JP6192297B2 (en) SUBJECT INFORMATION ACQUISITION DEVICE, DISPLAY CONTROL METHOD, AND PROGRAM
JP6025513B2 (en) Subject information acquisition apparatus and control method thereof
EP2036488A2 (en) Measurement apparatus
JP2010125260A (en) Biological testing apparatus
EP1965692A2 (en) System for non-invasive measurement of blood glucose concentration
Pulkkinen et al. Ultrasound field characterization using synthetic schlieren tomography
US20170325692A1 (en) Acoustic wave receiving apparatus
CN107923881A (en) Optoacoustic subject information acquisition device and method
KR20170074171A (en) Photoacoustic apparatus, information acquiring apparatus, information acquiring method, and program
CN111727013B (en) Imaging method and imaging system
EP3329843B1 (en) Display control apparatus, display control method, and program
US20200275840A1 (en) Information-processing apparatus, method of processing information, and medium
Fomin et al. New possibilities of investigating blood flow in soft tissues of the mouth
JP6188843B2 (en) Biopsy device
CN106455994A (en) Photoacoustic apparatus
JP6324456B2 (en) Biological information acquisition device
JP6548405B2 (en) phantom
JP5885768B2 (en) Biopsy device
WO2022230719A1 (en) Temperature rise evaluation device
JP2020039809A (en) Subject information acquisition device and control method therefor
JP6444462B2 (en) Biopsy device
JP2017202313A (en) Acoustic wave reception device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871149

Country of ref document: EP

Kind code of ref document: A1