JPS63212356A - Hyperthermia phantom - Google Patents

Hyperthermia phantom

Info

Publication number
JPS63212356A
JPS63212356A JP4601787A JP4601787A JPS63212356A JP S63212356 A JPS63212356 A JP S63212356A JP 4601787 A JP4601787 A JP 4601787A JP 4601787 A JP4601787 A JP 4601787A JP S63212356 A JPS63212356 A JP S63212356A
Authority
JP
Japan
Prior art keywords
temperature
phantom
liquid crystal
hyperthermia
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4601787A
Other languages
Japanese (ja)
Other versions
JPH0720480B2 (en
Inventor
高山 直彦
奥村 義孝
辰男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4601787A priority Critical patent/JPH0720480B2/en
Publication of JPS63212356A publication Critical patent/JPS63212356A/en
Publication of JPH0720480B2 publication Critical patent/JPH0720480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、ハイパーサーミア装置を評価するために用
いるファントムに関する。
The present invention relates to a phantom used for evaluating hyperthermia devices.

【従来の技術】[Conventional technology]

ハイパーサーミア装置は、ファントムを用いた加温実験
によって評価される。すなわち、ハイパーサーミア装置
によってファントムを加温してみて温度分布(加温パタ
ーン)などの加温情報を得る。 従来のファントムは、生体等個物質の単なる塊からなり
、加温情報を得るため、サーミスタ等の多数の測温プロ
ーブをこの塊に刺し入れて多数点で温度計測するのが普
通である。 他に、分割型のファントムを用い、加温した後分離して
分離面における温度分布を観測することも行われている
。すなわち、熱放射を利用した赤外線温度計(いわゆる
サーモビューア−装置)で温度分布を測定するのである
(G、 Kantor:”Eva 1 ua−tion
 and 5urvey of Microwave 
and Radiofrequ−ency Appli
cators”、Journal of Microw
ave Power16(2)、1981)。
The hyperthermia device is evaluated by heating experiments using a phantom. That is, a phantom is heated using a hyperthermia device to obtain heating information such as temperature distribution (heating pattern). A conventional phantom consists of a simple mass of a substance similar to that of a living body, and in order to obtain heating information, a number of temperature measurement probes such as thermistors are inserted into the mass to measure the temperature at multiple points. Another method is to use a split phantom, heat it, separate it, and observe the temperature distribution on the separated surface. In other words, temperature distribution is measured with an infrared thermometer (so-called thermoviewer device) that uses thermal radiation (G. Kantor: "Eva 1 ua-tion").
and 5urvey of Microwave
and Radio frequency Appli
"Cators", Journal of Microw
ave Power 16(2), 1981).

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、多数の測温プローブを使用する場合には
、作業が非常に煩雑であるし、しかも高価なものとなる
。 また、赤外線温度計は非常に高価なもので、入手するの
は容易でないし、たとえ入手できたとしても保守・管理
に十分な注意が必要であるとともに使い方も簡便なもの
でないことから、実際上の使用が妨げられている。 この発明は、容易な作業で筒便に使用でき、しかも安価
に温度分布を計測することを可能とするハイパーサーミ
アファントムを提供することを目的とする。
However, when a large number of temperature measuring probes are used, the work is very complicated and also expensive. In addition, infrared thermometers are very expensive and difficult to obtain, and even if they are available, they require careful maintenance and management, and are not easy to use. is prevented from being used. An object of the present invention is to provide a hyperthermia phantom that can be used as a tube with easy operation and that can measure temperature distribution at low cost.

【問題点を解決するための手段】[Means to solve the problem]

この発明によるハイパーサーミアのファントムは、少な
くとも2個に分離できる生体等価体と、これらの分離面
に挟まれる感温フィルムとからなる。
The hyperthermia phantom according to the present invention consists of a bioequivalent body that can be separated into at least two parts, and a temperature-sensitive film sandwiched between these separation surfaces.

【作  用】[For production]

少なくとも2個に分離できる生体等価体の、その分離面
に感温液晶フィルムなどの感温フィルムを挟んでいるの
で、この感温フィルムは、ハイパーサーミア装置で加温
される生体等価体のその分離面の温度を反映する。した
がってこの感温フィルムを挟む生体等価体をハイパーサ
ーミア装置で加温した後、分離して感温フィルムを観察
すれば、その分離面での温度分布が色分布として測定で
きる。
Since a temperature-sensitive film such as a temperature-sensitive liquid crystal film is sandwiched between the separated surfaces of the bioequivalent body that can be separated into at least two pieces, this temperature-sensitive film is a bioequivalent body that is heated by a hyperthermia device. reflects the temperature of Therefore, by heating the bioequivalent material sandwiching the thermosensitive film using a hyperthermia device, and then separating it and observing the thermosensitive film, the temperature distribution on the separated surface can be measured as a color distribution.

【実 施 例】【Example】

この発明の一実施例にがかるハイパーサーミアのファン
トムは、第1図に示すように感温液晶フィルム1を筋肉
等価体2.3で挟んで構成される。 感温液晶フィルム1は、コレステリック液晶が特定の波
長領域の光を選択的に反射し、その波長領域が温度に応
じて変化する性質を利用したもので、この液晶をフィル
ム面に塗布したものである。この液晶が温度に応じて黒
→赤→緑→青と色変化するので、フィルム面上の色分布
を観測することにより温度分布を測定することができる
。筋肉等価体2.3はTX−150(米国Oil Ce
nter Re5erch社の商品名)などを基材とし
たゲル状のものが取り扱いも楽で感温液晶フィルム1と
の密着性もよく、適している。筋肉等価体2は基台であ
り、その上に感温液晶フィルム1が載せられ、さらにそ
の上に厚さtの筋肉等価体3が載せられ、この液晶感温
フィルム1が筋肉等価体2.3の間に隙間なくしっかり
と挟み込まれている。 そして、ハイパーサーミア装置の加温実験を行う場合、
このような構成のファントムの上にアプリケータ4が接
触して(あるいは非接触で)配置され、給電ケーブル5
より加温エネルギーが供給される。アプリケータ4から
電磁波などの加温エネルギーがファントム中に照射され
、筋肉等価体2.3が加温される。このとき、感温液晶
フィルム1自体は非常に薄いものなのでこの加温エネル
ギーの放射を妨げることがなく、アプリケータ4の面か
ら深さtの面上での温度分布(加温パターン)に対応し
て感温液晶フィルム1の色分布が定まる。 第2図に示すように一方の筋肉等価体3として種々の厚
さの筋肉等価体を用意し、これらを取り替えてすべて同
じ条件(加温時間、加温エネルギーのパワー、初期温度
など)で加温実験を繰り返す、そして、その都度感温液
晶フィルム1の色分布を記録する。記録方法としてもっ
とも簡単なものはインスタントカメラによるカラー写真
記録である。こうして第3図のように多数のインスタン
ト写真6を得れば、その各々はある深さでの2次元的な
温度分布を示しているので、これらを深さ方向に並べる
ことにより3次元的な温度分布く加温パターン)を観察
できる。 この゛ように1枚の感温液晶フィルム1により種々の深
さでの2次元的な温度分布を知ることができ、非常に経
済的であるが、加温実験の再現性を懸念するなら感温液
晶フィルム1を複数枚用意し、第4図に示すように多数
の筋肉等価体2で挟むようにする。そしてアプリケータ
4から加温エネルギーを照射して行う加温実験を1回だ
け行う。すると、1回の加温実験により異なる深さでの
温度分布を同時に測定できる。 上記ではいずれもある一定の深さでの2次元的な温度分
布を求めたが、深さ方向に平行な面における2次元的な
温度分布を測定できることも勿論である。すなわち、た
とえば第5図のようにポリエチレン容器7内に基台とし
ての筋肉等価体2を入れた後厚さtの筋肉等価体3を縦
に並べてそれらの間に感温液晶フィルム1を挟むように
すればよい。 また、感温液晶フィルム1の面上に、第6図のようにス
ケール8を設ければ、温度分布を観察するときの位置の
基準になり観察が容易になる。インスタント写真記録す
る場合も写真に色分布とともにスケール8も記録される
ので好都合である。 感温液晶の色変化は上記のように黒→赤→緑→青という
ものであるから、スケール8は白色系の塗料で形成すれ
ば見やすくなる。
A hyperthermia phantom according to an embodiment of the present invention is constructed by sandwiching a temperature-sensitive liquid crystal film 1 between muscle equivalent bodies 2.3, as shown in FIG. The temperature-sensitive liquid crystal film 1 utilizes the property of cholesteric liquid crystal to selectively reflect light in a specific wavelength range, and the wavelength range changes depending on the temperature, and this liquid crystal is coated on the film surface. be. Since this liquid crystal changes color from black to red to green to blue depending on the temperature, temperature distribution can be measured by observing the color distribution on the film surface. Muscle equivalent 2.3 is TX-150 (US Oil Ce
A gel-like material having a base material such as (trade name of Terre Re5erch) is suitable because it is easy to handle and has good adhesion to the temperature-sensitive liquid crystal film 1. The muscle equivalent body 2 is a base, on which the temperature-sensitive liquid crystal film 1 is placed, and on top of that the muscle equivalent body 3 having a thickness of t is placed, and this liquid crystal temperature-sensitive film 1 is used as the muscle equivalent body 2. It is firmly sandwiched between 3 without any gaps. When conducting a heating experiment with a hyperthermia device,
The applicator 4 is placed in contact with (or without contact with) the phantom having such a configuration, and the power supply cable 5 is connected to the phantom.
More heating energy is supplied. Heating energy such as electromagnetic waves is irradiated into the phantom from the applicator 4, and the muscle equivalent body 2.3 is heated. At this time, since the temperature-sensitive liquid crystal film 1 itself is very thin, it does not hinder the radiation of this heating energy, and corresponds to the temperature distribution (heating pattern) on the surface at a depth t from the surface of the applicator 4. As a result, the color distribution of the temperature-sensitive liquid crystal film 1 is determined. As shown in Figure 2, muscle equivalent bodies with various thicknesses are prepared as one muscle equivalent body 3, and they are all heated under the same conditions (heating time, power of heating energy, initial temperature, etc.) by replacing them. The temperature experiment is repeated, and the color distribution of the temperature-sensitive liquid crystal film 1 is recorded each time. The simplest recording method is color photographic recording using an instant camera. In this way, if a large number of instant photographs 6 are obtained as shown in Fig. 3, each of them shows a two-dimensional temperature distribution at a certain depth, so by arranging them in the depth direction, a three-dimensional Temperature distribution (warming pattern) can be observed. In this way, it is possible to know the two-dimensional temperature distribution at various depths with one temperature-sensitive liquid crystal film 1, and it is very economical. However, if you are concerned about the reproducibility of heating experiments, A plurality of hot liquid crystal films 1 are prepared and sandwiched between a number of muscle equivalent bodies 2 as shown in FIG. Then, a heating experiment performed by irradiating heating energy from the applicator 4 is performed only once. Then, temperature distributions at different depths can be measured simultaneously in a single heating experiment. In each case above, a two-dimensional temperature distribution at a certain depth was determined, but it is also possible to measure a two-dimensional temperature distribution in a plane parallel to the depth direction. That is, for example, as shown in FIG. 5, a muscle equivalent body 2 as a base is placed in a polyethylene container 7, then muscle equivalent bodies 3 having a thickness of t are arranged vertically, and a thermosensitive liquid crystal film 1 is sandwiched between them. Just do it. Furthermore, if a scale 8 is provided on the surface of the temperature-sensitive liquid crystal film 1 as shown in FIG. 6, it will serve as a positional reference when observing the temperature distribution, making observation easier. This is also advantageous when instant photographic recording is performed because the scale 8 is also recorded in the photograph along with the color distribution. Since the temperature-sensitive liquid crystal changes color from black to red to green to blue as described above, it will be easier to see if the scale 8 is formed with white paint.

【発明の効果】【Effect of the invention】

この発明のハイパーサーミアファントムによれば、感温
フィルムを分割型生体等価体に挟み加温した後分離して
取り出せばよいだけなので、極めて簡単な構造であり、
作業も容易であって、しかも感温フィルムは非常に安価
であるから、経済的に非常に有利である。
According to the hyperthermia phantom of the present invention, it is an extremely simple structure because all that is required is to sandwich the temperature-sensitive film between split-type bioequivalent bodies, heat it, and then separate and take it out.
It is easy to work with, and the temperature-sensitive film is very inexpensive, so it is very economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の斜視図、第2図は各種の
筋肉等価体を示す斜視図、第3図は得られた3次元的な
温度分布の模式図、第4図及び第5図はそれぞれ他の実
施例の断面図、第6図は感温液晶フィルム面を示す図で
ある。 1・・・感温液晶フィルム、2.3・・・筋肉等価体、
4・・・アプリケータ、5・・・給電ケーブル、6・・
・インスタント写真、7・・・ポリエチレン容器、8・
・・スケール。
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a perspective view showing various muscle equivalents, FIG. 3 is a schematic diagram of the obtained three-dimensional temperature distribution, and FIGS. FIG. 5 is a sectional view of each of the other embodiments, and FIG. 6 is a diagram showing the temperature-sensitive liquid crystal film surface. 1... Temperature-sensitive liquid crystal film, 2.3... Muscle equivalent,
4... Applicator, 5... Power supply cable, 6...
・Instant photo, 7...Polyethylene container, 8.
··scale.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも2個に分離できる生体等価体と、これ
らの分離面に挟まれる感温フィルムとからなるハイパー
サーミアファントム。
(1) A hyperthermia phantom consisting of a bioequivalent body that can be separated into at least two pieces and a temperature-sensitive film sandwiched between these separation surfaces.
(2)上記の感温フィルムは、感温液晶フィルムからな
ることを特徴とする特許請求の範囲第1項記載のハイパ
ーサーミアファントム。
(2) The hyperthermia phantom according to claim 1, wherein the temperature-sensitive film is a temperature-sensitive liquid crystal film.
JP4601787A 1987-02-28 1987-02-28 Hyperthermia phantom Expired - Lifetime JPH0720480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4601787A JPH0720480B2 (en) 1987-02-28 1987-02-28 Hyperthermia phantom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4601787A JPH0720480B2 (en) 1987-02-28 1987-02-28 Hyperthermia phantom

Publications (2)

Publication Number Publication Date
JPS63212356A true JPS63212356A (en) 1988-09-05
JPH0720480B2 JPH0720480B2 (en) 1995-03-08

Family

ID=12735281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4601787A Expired - Lifetime JPH0720480B2 (en) 1987-02-28 1987-02-28 Hyperthermia phantom

Country Status (1)

Country Link
JP (1) JPH0720480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065800A1 (en) * 2019-10-04 2021-04-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065800A1 (en) * 2019-10-04 2021-04-08
WO2021065800A1 (en) * 2019-10-04 2021-04-08 国立研究開発法人 産業技術総合研究所 Temperature-sensitive phantom, and ultrasonic evaluation device in which same is used

Also Published As

Publication number Publication date
JPH0720480B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US20050002435A1 (en) Method for thermal analysis and system for thermal analysis
FI96066C (en) Method and apparatus for determining the internal temperature and coefficient of heat conduction in a structure
Hippensteele et al. Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals
US20080071189A1 (en) Temperature Measurement Device
US7981046B2 (en) Temperature measurement device
US4906105A (en) Measurement of thermal conditions
JP2003177109A (en) Method and apparatus for measuring local heat transfer distribution on a surface
Simonich et al. New technique for mapping heat‐transfer coefficient contours
US3788135A (en) Peel adhesion apparatus and method
US20020006152A1 (en) Transient heat conduction using thermocouples, thermochromic liquid crystals, and numerical simulation
GB2182152A (en) Probe for measuring the thermal conductivity of materials
FR2606213B1 (en) NOVEL COMPOSITE MATERIAL PREFERABLY FLEXIBLE, MEASURING DEVICE FORMING A FLUX METER AND A TEMPERATURE SENSOR COMPRISING SUCH A COMPOSITE MATERIAL AND METHOD FOR PREPARING SUCH A MATERIAL
JPS63212356A (en) Hyperthermia phantom
Buffone et al. Temperature measurement near the triple line during phase change using thermochromic liquid crystal thermography
Hippensteele et al. Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals
DE19614112A1 (en) Measurement and display of temperature and liquid level in Dewar vessels
JPH0541708Y2 (en)
Guadagni et al. Contact probe for skin temperature measurements
SU1469413A1 (en) Apparatus for measuring local thermo-emf
Suryantari et al. Application of Smart Material in Block Calorimeters Experiment
Idso Calibration of soil heat flux plates by a radiation technique
RU2029929C1 (en) Digital thermometer
Burkhart et al. Determination of the thermal conductivity of barium sodium niobate
Perry Cholesteric liquid crystals and their application to space technology
Heidmann The determination of transient heat transfer properties for acrylic using thermochromic liquid crystals