WO2021065745A1 - Steering assistance device for straddle type vehicle - Google Patents

Steering assistance device for straddle type vehicle Download PDF

Info

Publication number
WO2021065745A1
WO2021065745A1 PCT/JP2020/036428 JP2020036428W WO2021065745A1 WO 2021065745 A1 WO2021065745 A1 WO 2021065745A1 JP 2020036428 W JP2020036428 W JP 2020036428W WO 2021065745 A1 WO2021065745 A1 WO 2021065745A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
steering
brake
vehicle
threshold value
Prior art date
Application number
PCT/JP2020/036428
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚 爾
容輔 和田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112020004670.2T priority Critical patent/DE112020004670T5/en
Priority to JP2021551203A priority patent/JP7262603B2/en
Publication of WO2021065745A1 publication Critical patent/WO2021065745A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17558Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for collision avoidance or collision mitigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3225Systems specially adapted for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J27/00Safety equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/18Connections between forks and handlebars or handlebar stems

Definitions

  • the present invention relates to a steering assist device for a saddle-riding vehicle.
  • the present application claims priority based on Japanese Patent Application No. 2019-179928 filed on September 30, 2019, the contents of which are incorporated herein by reference.
  • a steering assist device for a saddle-riding vehicle in which a vehicle body is rolled to generate a steering angle on the steering wheels, appropriate assist steering control is performed when the driving support system is activated.
  • control means does not strengthen the behavior stabilization control during the first brake control, or controls the behavior stabilization within a range of output weaker than that during the strong brake control. You may strengthen it.
  • the assist torque is strengthened at the time of the strong brake control at the stage where the control parameter exceeds the second threshold value.
  • Strengthen behavior stabilization control As a result, it is possible to carry out assist steering control with less discomfort to the driver.
  • the control parameter in a configuration in which a plurality of stages of brake strength and threshold value are set for automatic brake control, the control parameter is the first threshold value during weak brake control at a stage where the control parameter exceeds the first threshold value.
  • the behavior stabilization control is not strengthened or the behavior stabilization control is strengthened with a weaker output than when the strong brake control is performed, as compared with the control at the stage where the above is not exceeded (when there is no brake control, etc.). As a result, it is possible to gradually strengthen the behavior stabilization control up to the strong brake control, and it is possible to carry out the assist steer control with less discomfort to the driver.
  • a pair of left and right mainframes 7 extend diagonally downward and rearward.
  • the rear ends of the left and right main frames 7 are connected to the upper ends of a pair of left and right pivot frames 8, respectively.
  • a power unit U including, for example, a horizontally opposed six-cylinder engine is mounted below the left and right main frames 7 and in front of the left and right pivot frames 8.
  • the front fork member 3b supports the front wheel 2 at the lower ends of the left and right forks.
  • a steering shaft is integrally provided at the upper end of the front fork member 3b, and the steering shaft is inserted and supported by the head pipe 3a. The upper end of the steering shaft projects above the head pipe 3a, and the steering member 3c is attached to the upper end.
  • the steering torque sensor 36 is, for example, a magnetostrictive torque sensor provided on the steering shaft (or the rotation shaft of the handle post 4a) of the fork member 3b.
  • the steering torque sensor 36 detects the torsional torque (steering input) input from the bar handle 4.
  • the steering torque sensor 36 is an example of a load sensor that detects a steering force input to the bar handle 4 (steering operator).
  • the external detection means 38 includes, for example, a camera, a radar device, a finder, and an object recognition device.
  • the camera is, for example, a digital camera using a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera is attached to any part of the motorcycle 1.
  • the camera When photographing the front, the camera is attached to a vehicle body part (including a steering side and a non-steering side), various exterior parts, and the like.
  • the camera periodically and repeatedly images the periphery of the motorcycle 1 (for example, front, back, left, and right).
  • the image captured by the camera is subjected to appropriate image processing to become desired image data, which is used for various controls.
  • the object recognition device performs sensor fusion processing on the detection results of a part or all of the camera, radar device, and finder, and recognizes the position, type, speed, etc. of the object.
  • the object recognition device outputs the recognition result to the control device 23.
  • the object recognition device may output the detection results of the camera, the radar device, and the finder to the control device 23 as they are.
  • the object recognition device may be omitted.
  • the brake actuator 42 supplies hydraulic pressure to the front and rear brakes 2B12B in response to an operation on the brake operator to operate them.
  • the brake actuator 42 also serves as a control unit for ABS (Anti-lock Brake System).
  • the wobble suppression assist torque calculation block 300 calculates the wobble suppression assist torque Tw applied to the bar handle 4 based on the vehicle speed V, the yaw angular velocity Y, and the roll angular velocity R.
  • the yaw angular velocity Y and the roll angular velocity R are calculated from the detection information of the vehicle body angular velocity sensor 34.
  • the wobble suppression assist torque Tw is a torque for suppressing the wobble of the motorcycle 1.
  • the wobble suppression assist torque Tw acts in the direction of turning the bar handle 4 and the front wheel 2 to the left when the motorcycle 1 is tilted to the left.
  • the wobble suppression assist torque Tw acts in the direction of turning the bar handle 4 and the front wheel 2 to the right when the motorcycle 1 is tilted to the right.
  • the applied torque calculation unit 400 calculates the applied torque Tms, which will be described later, based on the detection information of the external detection means 38 and the like.
  • the wobble suppression assist torque calculation block 300 includes a composite angular speed generation unit 302, a multiplier 304, a first vehicle speed correction coefficient generation unit 306, a second vehicle speed correction coefficient generation unit 308, and a multiplier 310. , An adder 312, a divider 314, and a multiplier 316.
  • the combined angular velocity generation unit 302 synthesizes the yaw angular velocity Y and the roll angular velocity R detected by the vehicle body angular velocity sensor 34 to generate a combined angular velocity (vehicle body behavior rate) S indicating the behavior of the motorcycle 1.
  • the multiplier 304 multiplies the combined angular velocity S and the combined angular velocity S to generate the square of the combined angular velocity S.
  • the multiplier 316 multiplies the value (F / (G ⁇ S 2 + ⁇ )) output by the divider 314 by the combined angular velocity S. That is, the multiplier 316 outputs the wobble suppression assist torque Tw shown in the following equation (3).
  • Tw F ⁇ S / (G ⁇ S 2 + ⁇ )... (3)
  • the control device 23 determines that it is due to the weight operation of the driver and reduces the assist torque Tw.
  • the control device 23 determines that the vehicle body is wobbling rather than the driver's weight operation, and increases the assist torque Tw. In this way, regardless of whether the motorcycle 1 is at low speed or at high speed, it is possible to assist the driver to suppress wobbling without discomfort.
  • a three-step warning threshold TTC is set.
  • a relative time distance distance traveling within a specified time at the current speed
  • the first warning threshold value t1 is a threshold value for performing a caution display (first warning) using an indicator lamp, a liquid crystal panel, or the like.
  • the first warning is activated when the relative time distance from the obstacle becomes less than or equal to the threshold value t1 (when the threshold value t1 is exceeded on the decreasing side or when the threshold value is less than t1). In the first warning, the brake operation (braking) by the automatic brake control is not performed.
  • the third warning threshold (second threshold) t3 is a threshold for issuing a third warning (for example, a warning due to stronger vibration or the like and a warning due to stronger braking or the like) that is stronger than the second warning.
  • the third warning is activated when the distance from the lane marking L1 becomes the threshold value t3 or less, which is shorter than the threshold value t2 (when the threshold value t3 is exceeded on the decreasing side or when the threshold value is below the threshold value t3).
  • the threshold value t3 includes the case of a negative distance. That is, there may be a setting in which the third warning is activated when the lane departure amount becomes the threshold value t3 or more.
  • a relatively strong braking operation (braking) is performed by automatic braking control.
  • Each of the first to third warnings is set so as to become stronger as the distance from the lane marking L1 becomes shorter or becomes larger on the minus side.
  • the motorcycle shifts to high stabilization control prioritizing the improvement of the attitude control of the motorcycle 1.
  • the assist steer control gain is corrected to a higher stable gain.
  • the decrease of the assist torque Tm is suppressed and maintained at a high value, and the attitude control of the motorcycle 1 is improved.
  • a two-step warning threshold is set.
  • a predetermined number of detection flags is used as a control parameter for the BMI warning threshold.
  • the detection flags used for the BMI warning threshold are, for example, the following two flags, the first flag and the second flag.
  • the first flag is a flag indicating that the presence of another vehicle T has been detected in the detection area AR on either the left or right side behind the own vehicle M.
  • the second flag is a flag indicating that the course change prediction operation (the action in which the course change is predicted) of the own vehicle M to the side where the other vehicle T is detected is detected while the first flag is set. is there.
  • the first flag indicates that the other vehicle T is actually detected by a camera, radar, or the like in the embodiment, but the present invention is not limited to this.
  • the first flag may predict and detect the presence of the other vehicle T by the fact that the other vehicle T located behind the own vehicle M in the same lane emits either the left or right winker.
  • the second flag is not limited to the operation of the winker of the own vehicle M on the side where the presence of the other vehicle T is recognized in the embodiment.
  • the second flag may indicate that at least one of the seating position, the sitting posture, the operation of the reverse steering wheel, and the like of the rider of the own vehicle M is detected as the course change prediction operation.
  • the assist steering control gain is adjusted so that the reverse steering wheel operation to the side opposite to the side where the presence of the other vehicle T is recognized is heavier than the steering wheel operation to the side where the presence of the other vehicle T is recognized. ..
  • the assist steering control gain is corrected to a higher stable gain only for the reverse steering operation to the side opposite to the side where the presence of the other vehicle T is recognized, and the presence of the other vehicle T is present. For the steering wheel operation to the permitted side, the control to reduce the assist torque Tm is maintained.
  • the following formula 1 is a formula for calculating the applied torque Tms for variable maneuverability when the flag of ARAS operation or operation warning is set.
  • a indicates the front wheel inertia correction coefficient
  • the front wheel presession effect (gyro moment effect) is amplified by (a + FlagARAS ⁇ GainARAS).
  • Iwhere indicates the front wheel rotational inertia
  • ⁇ whel indicates the front wheel rotational angular velocity
  • indicates the vehicle body roll rate.
  • the vertical axis represents the assist strength with respect to the roll rate
  • the horizontal axis represents the vehicle speed.
  • the maneuverability of a plain motorcycle 1 without control is along the horizontal axis of the graph.
  • the assist strength is increased to the minus side between the medium speed range and the high speed range. This reduces the entire assist torque Tm and contributes to light maneuverability.
  • the assist strength is increased to the plus side between the medium speed range and the high speed range.
  • the relative time distance to the obstacle (distance traveled within the specified time at the current speed) is controlled.
  • the brake strength of automatic brake control is controlled.
  • the entire assist torque Tm is increased to achieve high stabilization as compared with control when the control parameter does not exceed the threshold value. Contribute to control. In other words, the behavior stabilization control by assist steer control is strengthened.
  • the steering assist device 50 in the above embodiment is a saddle-riding vehicle (for example, a saddle-riding vehicle) (for example, a body frame 5) that swings in the roll direction to generate a steering angle on the steering wheels (for example, the front wheels 2). It is a steering assist device 50 of a motorcycle 1).
  • the steering assist device 50 includes a steering actuator 43 that applies an assist torque Tm in the steering direction to the front wheel suspension device 3 that supports the front wheels 2, a control device 23 that drives and controls the steering actuator 43, and an external device that detects the situation around the vehicle.
  • the detection means 38 and the like are provided.
  • the control device 23 shifts to control that emphasizes stability of vehicle body behavior.
  • the control device 23 changes the control gain based on the warning of ARAS (CMBS, LDW, BSI, etc.), the operation determination threshold information, or the information indicating that the operation is in progress. As a result, it is possible to carry out an more appropriate degree of assist steer control according to each situation during ARAS operation, and it is possible to improve the attitude control of the vehicle.
  • ARAS ARAS
  • LDW LDW
  • BSI BSI
  • the control device 23 changes the control gain based on the warning of ARAS (CMBS, LDW, BSI, etc.), the operation determination threshold information, or the information indicating that the operation is in progress.
  • the behavior of the vehicle becomes large and the stability is affected. Therefore, when the control parameter that determines the brake strength of the automatic brake control exceeds the threshold value t3, the strong brake control is performed, as compared with the control when the control parameter does not exceed the threshold value t3 (weak brake control or no brake control). ,
  • the behavior stabilization control is strengthened by strengthening the assist torque Tm. In this way, it is possible to carry out appropriate assist steering control according to the braking strength of the automatic brake control, and it is possible to enhance the effect of the driving support system.
  • the control device 23 sets a plurality of stages of brake strength and a plurality of threshold values t2 and t3 corresponding to each brake strength in automatic brake control, and when the control parameter exceeds the first threshold value t2. , The relatively weak weak brake control is performed, and when the control parameter exceeds the second threshold value t3, the relatively strong strong brake control is performed and the behavior stabilization control by the assist steer control is strengthened.
  • this configuration in a configuration in which a plurality of stages of brake strength and threshold value are set for automatic brake control, behavior is stabilized by increasing the assist torque Tm during strong brake control at a stage where the control parameter exceeds the second threshold value t3. Strengthen the control of conversion. As a result, it is possible to carry out assist steering control with less discomfort to the driver.
  • the control device 23 does not strengthen the behavior stabilization control during the weak brake control, or strengthens the behavior stabilization control in a range of output weaker than that during the strong brake control.
  • the control parameter exceeds the first threshold value t2 during weak brake control at a stage where the control parameter exceeds the first threshold value t2.
  • the behavior stabilization control is not strengthened as compared with the control at no stage (when there is no brake control, etc.), or the behavior stabilization control is strengthened with a weaker output than when the strong brake control is performed. As a result, it is possible to gradually strengthen the behavior stabilization control up to the strong brake control, and it is possible to carry out the assist steer control with less discomfort to the driver.
  • the saddle-riding vehicle includes all vehicles in which the driver rides across the vehicle body and rolls the vehicle body to balance the vehicle. Not only motorcycles, but also three-wheeled vehicles (including front two-wheeled and rear one-wheeled vehicles in addition to front one-wheeled and rear two-wheeled vehicles) or four-wheeled vehicles are also included. Includes scooter-type vehicles with step floors and motorbikes. Vehicles that include an electric motor in the prime mover are also included.
  • the configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention, such as replacing the constituent elements of the embodiment with well-known constituent elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

In the steering assistance device for a straddle type vehicle according to the present invention, when an external detection means detects an obstacle (other vehicle (T)) in front of an own vehicle M, a control means carries out automatic brake control which actuates a brake without an operation by a driver, while controlling a braking force of the automatic brake control according to a preset control parameter (relative time distance). During hard brake control in the case of the control parameter being greater than a preset threshold (t3), behavior stabilizing control by means of assist steering control is strengthened compared to during the control in the case of the control parameter being no greater than the threshold (t3).

Description

鞍乗り型車両の操舵アシスト装置Steering assist device for saddle-riding vehicles
 本発明は、鞍乗り型車両の操舵アシスト装置に関する。
 本願は、2019年9月30日に出願された日本国特願2019-179928号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steering assist device for a saddle-riding vehicle.
The present application claims priority based on Japanese Patent Application No. 2019-179928 filed on September 30, 2019, the contents of which are incorporated herein by reference.
 特許文献1には、乗用車の駐車を支援する制御装置において、運転者によるステアリング操作の方向が、障害物との接触を回避する回避方向と同方向である場合と、前記回避方向と逆方向である場合とで、ステアリングアクチュエータが発生する操舵トルクの方向または大きさを異ならせることが開示されている。これにより、ステアリングアクチュエータが発生する操舵トルクによって障害物との接触回避を支援しながら、アクチュエータが発生する操舵トルクに邪魔されることなく、運転者の意思に沿うステアリング操作を可能としている。 According to Patent Document 1, in a control device that assists parking of a passenger vehicle, the direction of steering operation by the driver is the same as the avoidance direction for avoiding contact with an obstacle, and the direction opposite to the avoidance direction. It is disclosed that the direction or magnitude of the steering torque generated by the steering actuator differs depending on the case. As a result, the steering torque generated by the steering actuator assists the avoidance of contact with obstacles, and the steering operation can be performed according to the driver's intention without being disturbed by the steering torque generated by the actuator.
日本国特開2008-55985号公報Japanese Patent Application Laid-Open No. 2008-55985
 ところで、上記従来技術には、鞍乗り型車両の運転支援システムの作動時における適切なアシストステアについては開示がない。例えば追突軽減ブレーキや車線逸脱警告、ブラインドスポットインフォメーションといったシステムの作動時における適切な制御が要望されている。 By the way, in the above-mentioned prior art, there is no disclosure about an appropriate assist steer when the driving support system of a saddle-riding vehicle is activated. For example, there is a demand for appropriate control during system operation such as collision mitigation braking, lane departure warning, and blind spot information.
 本発明の態様は、車体をロールさせて操舵輪に舵角を発生させる鞍乗り型車両の操舵アシスト装置において、運転支援システムの作動時における適切なアシストステア制御を図る。 According to the aspect of the present invention, in a steering assist device for a saddle-riding vehicle in which a vehicle body is rolled to generate a steering angle on the steering wheels, appropriate assist steering control is performed when the driving support system is activated.
 (1)本発明に係る一態様の鞍乗り型車両の操舵アシスト装置は、車体をロール方向に揺動させて操舵輪に舵角を発生させる鞍乗り型車両の操舵アシスト装置において、前記操舵輪を支持する懸架装置にアシストトルクを付与するステアリングアクチュエータと、前記ステアリングアクチュエータを駆動制御する制御手段と、車両周囲の状況を検知する外部検知手段と、を備え、前記制御手段は、前記外部検知手段が自車の前方に障害物を検知した場合には、運転者の操作によらずブレーキを作動させる自動ブレーキ制御を行うとともに、予め定めた制御パラメータに応じて前記自動ブレーキ制御のブレーキ強さを制御し、前記制御パラメータが予め定めた閾値を越える場合の強ブレーキ制御時には、前記制御パラメータが前記閾値越えない場合の制御時に比べて、アシストステア制御による挙動安定化制御を強める。 (1) The steering assist device for a saddle-riding vehicle according to the present invention is the steering assist device for a saddle-riding vehicle in which the vehicle body is swung in the roll direction to generate a steering angle on the steering wheels. A steering actuator that applies an assist torque to a suspension device that supports the vehicle, a control means that drives and controls the steering actuator, and an external detection means that detects a situation around the vehicle are provided, and the control means is the external detection means. When an obstacle is detected in front of the vehicle, automatic brake control is performed to operate the brake regardless of the driver's operation, and the braking strength of the automatic brake control is adjusted according to predetermined control parameters. At the time of strong brake control when the control parameter exceeds a predetermined threshold value, the behavior stabilization control by the assist steering control is strengthened as compared with the control time when the control parameter does not exceed the threshold value.
 (2)上記(1)の態様において、前記制御手段は、前記自動ブレーキ制御において複数段階のブレーキ強さおよび各ブレーキ強さに対応する複数の閾値を設定してもよく、前記制御パラメータが第一閾値を越えると、相対的に弱い第一ブレーキ制御を行い、前記制御パラメータが第二閾値を越えると、相対的に強い第二ブレーキ制御を行うとともに、前記アシストステア制御による挙動安定化制御を強めてもよい。 (2) In the aspect of (1) above, the control means may set a plurality of stages of brake strength and a plurality of threshold values corresponding to each brake strength in the automatic brake control, and the control parameter is the first. When one threshold is exceeded, a relatively weak first brake control is performed, and when the control parameter exceeds the second threshold, a relatively strong second brake control is performed, and behavior stabilization control by the assist steer control is performed. You may strengthen it.
 (3)上記(2)の態様において、前記制御手段は、前記第一ブレーキ制御時には、挙動安定化制御を強めないか、あるいは前記強ブレーキ制御時よりも弱い出力の範囲で挙動安定化制御を強めてもよい。 (3) In the aspect of (2) above, the control means does not strengthen the behavior stabilization control during the first brake control, or controls the behavior stabilization within a range of output weaker than that during the strong brake control. You may strengthen it.
 上記(1)の態様によれば、運転支援システムにより自車前方の障害物を検知させながら、この障害物検知情報を基に、障害物の接近を検知する場合には自動ブレーキ制御を行う。自動ブレーキ制御によって運転者が意図しないハンドル操作が生じると、車両の挙動が大きくなって安定性に影響を与える。よって自動ブレーキ制御のブレーキ強さを決める制御パラメータが閾値を越える場合の強ブレーキ制御時には、制御パラメータが閾値を越えない場合の制御時(弱ブレーキ制御時またはブレーキ制御無し時)に比べて、アシストトルクを強める等により挙動安定化制御を強める。このように、自動ブレーキ制御のブレーキ強さに応じて適切なアシストステア制御を実施することが可能となり、運転支援システムの効果を高めることができる。
 上記(2)の態様によれば、自動ブレーキ制御に複数段階のブレーキ強さおよび閾値が設定される構成において、制御パラメータが第二閾値を越える段階の強ブレーキ制御時には、アシストトルクを強める等により挙動安定化制御を強める。これにより、運転者の違和感の少ないアシストステア制御を実施することができる。
 上記(3)の態様によれば、自動ブレーキ制御に複数段階のブレーキ強さおよび閾値が設定される構成において、制御パラメータが第一閾値を越える段階の弱ブレーキ制御時には、制御パラメータが第一閾値を越えない段階の制御時(ブレーキ制御無し時等)に比べて、挙動安定化制御を強めないか、あるいは強ブレーキ制御時よりも弱い出力で挙動安定化制御を強める。これにより、強ブレーキ制御まで段階的に挙動安定化制御を強めることが可能となり、運転者の違和感の少ないアシストステア制御を実施することができる。
According to the aspect (1) above, while the driving support system detects an obstacle in front of the vehicle, automatic braking control is performed when the approach of the obstacle is detected based on the obstacle detection information. When the driver unintentionally operates the steering wheel due to the automatic brake control, the behavior of the vehicle becomes large and the stability is affected. Therefore, during strong brake control when the control parameter that determines the brake strength of automatic brake control exceeds the threshold value, assist is performed compared to control when the control parameter does not exceed the threshold value (when weak brake control or no brake control). The behavior stabilization control is strengthened by strengthening the torque. In this way, it is possible to carry out appropriate assist steering control according to the braking strength of the automatic brake control, and it is possible to enhance the effect of the driving support system.
According to the aspect (2) above, in the configuration in which the brake strength and the threshold value of a plurality of stages are set for the automatic brake control, the assist torque is strengthened at the time of the strong brake control at the stage where the control parameter exceeds the second threshold value. Strengthen behavior stabilization control. As a result, it is possible to carry out assist steering control with less discomfort to the driver.
According to the aspect (3) above, in a configuration in which a plurality of stages of brake strength and threshold value are set for automatic brake control, the control parameter is the first threshold value during weak brake control at a stage where the control parameter exceeds the first threshold value. The behavior stabilization control is not strengthened or the behavior stabilization control is strengthened with a weaker output than when the strong brake control is performed, as compared with the control at the stage where the above is not exceeded (when there is no brake control, etc.). As a result, it is possible to gradually strengthen the behavior stabilization control up to the strong brake control, and it is possible to carry out the assist steer control with less discomfort to the driver.
本発明の実施形態における自動二輪車の左側面図である。It is a left side view of the motorcycle in embodiment of this invention. 上記自動二輪車の制御装置の構成図である。It is a block diagram of the control device of the motorcycle. 上記自動二輪車の操舵アシスト装置の構成図である。It is a block diagram of the steering assist device of the motorcycle. 上記操舵アシスト装置のふらつき抑制アシストトルク算出ブロックの構成図である。It is a block diagram of the wobbling suppression assist torque calculation block of the steering assist device. 図1のV矢視図である。It is a V arrow view of FIG. 上記自動二輪車の運転支援システムの機能別の警告例、および高安定化制御に移行する際のトリガー案を示す表である。It is a table which shows the warning example by function of the above-mentioned motorcycle driving support system, and the trigger plan when shifting to high stabilization control. 上記運転支援システムの追突軽減ブレーキの警告閾値の説明図である。It is explanatory drawing of the warning threshold value of the collision mitigation brake of the said driving support system. 上記運転支援システムの車線逸脱警告の警告閾値の説明図である。It is explanatory drawing of the warning threshold of the lane departure warning of the said driving support system. 上記運転支援システムのブラインドスポットインフォメーションの警告閾値の説明図である。It is explanatory drawing of the warning threshold value of the blind spot information of the said driving support system. 上記操舵アシスト装置のアシスト強さと車速との関係を示すグラフである。It is a graph which shows the relationship between the assist strength of the steering assist device, and a vehicle speed.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UP、車体左右中心を示す線CL、が示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The orientations of the front, rear, left, right, etc. in the following description shall be the same as the orientations in the vehicle described below unless otherwise specified. An arrow FR indicating the front of the vehicle, an arrow LH indicating the left side of the vehicle, an arrow UP indicating the upper part of the vehicle, and a line CL indicating the center of the left and right sides of the vehicle body are shown at appropriate positions in the drawings used in the following description.
<車両全体>
 図1に示すように、本実施形態は、大型のカウリングを備えた自動二輪車(鞍乗り型車両)1に適用されている。自動二輪車1の前輪2は、前輪懸架装置3に支持されている。前輪懸架装置3は、車体フレーム5の前端部に支持されている。車体フレーム5の前端部には、前輪懸架装置3を支持するフロントブロック6が設けられる。フロントブロック6の上部には、前輪転舵用のバーハンドル4が取り付けられている。バーハンドル4は、ライダー(運転者)Jが把持する左右一対のグリップを備えている。
<Whole vehicle>
As shown in FIG. 1, this embodiment is applied to a motorcycle (saddle-riding vehicle) 1 provided with a large cowling. The front wheel 2 of the motorcycle 1 is supported by the front wheel suspension device 3. The front wheel suspension device 3 is supported by the front end portion of the vehicle body frame 5. A front block 6 for supporting the front wheel suspension device 3 is provided at the front end portion of the vehicle body frame 5. A bar handle 4 for steering the front wheels is attached to the upper part of the front block 6. The bar handle 4 includes a pair of left and right grips gripped by the rider (driver) J.
 フロントブロック6の後方には、左右一対のメインフレーム7が斜め下後方に延びている。左右メインフレーム7の後端部は、それぞれ左右一対のピボットフレーム8の上端部に接続されている。左右メインフレーム7の下方かつ左右ピボットフレーム8の前方には、例えば水平対向六気筒型のエンジンを含むパワーユニットUが搭載されている。 Behind the front block 6, a pair of left and right mainframes 7 extend diagonally downward and rearward. The rear ends of the left and right main frames 7 are connected to the upper ends of a pair of left and right pivot frames 8, respectively. A power unit U including, for example, a horizontally opposed six-cylinder engine is mounted below the left and right main frames 7 and in front of the left and right pivot frames 8.
 左右ピボットフレーム8には、スイングアーム11の前端部が支持されている。スイングアーム11の後端部には、自動二輪車1の後輪12が支持されている。スイングアーム11の前部と車体フレーム5の前後中間部との間には、不図示のリヤクッションが介設されている。 The front end portion of the swing arm 11 is supported by the left and right pivot frames 8. The rear wheel 12 of the motorcycle 1 is supported at the rear end of the swing arm 11. A rear cushion (not shown) is interposed between the front portion of the swing arm 11 and the front / rear intermediate portion of the vehicle body frame 5.
 左右ピボットフレーム8の後部には、リヤフレーム9の前端部が接続されている。リヤフレーム9の上方には、乗員着座用のシート14が配置されている。シート14の下方には、燃料タンク15が配置されている。シート14の後方には、リヤトランク16が配置されている。リヤトランク16の下方の左右両側には、左右サドルバッグ17がそれぞれ配置されている。 The front end of the rear frame 9 is connected to the rear of the left and right pivot frames 8. A seat 14 for seating an occupant is arranged above the rear frame 9. A fuel tank 15 is arranged below the seat 14. A rear trunk 16 is arranged behind the seat 14. Left and right saddle bags 17 are arranged on both left and right sides below the rear trunk 16.
 自動二輪車1は、前輪2を制動する前輪ブレーキ2Bと、後輪12を制動する後輪ブレーキ12Bと、を備えている。前後ブレーキ2B,12Bは、それぞれ油圧ディスクブレーキである。自動二輪車1は、前後ブレーキ2B,12Bに対する油圧を給排するブレーキアクチュエータ42(図5参照)を備えている。自動二輪車1は、前後ブレーキ2B,12Bと、ライダーJが操作するブレーキレバーおよびブレーキペダル等のブレーキ操作子と、を電気的に連係させるバイワイヤ式のブレーキシステムを構成している。 The motorcycle 1 includes a front wheel brake 2B for braking the front wheel 2 and a rear wheel brake 12B for braking the rear wheel 12. The front and rear brakes 2B and 12B are hydraulic disc brakes, respectively. The motorcycle 1 includes a brake actuator 42 (see FIG. 5) that supplies and discharges hydraulic pressure to the front and rear brakes 2B and 12B. The motorcycle 1 constitutes a bi-wire type brake system in which the front and rear brakes 2B and 12B and brake operators such as a brake lever and a brake pedal operated by the rider J are electrically linked.
<前輪懸架装置>
 前輪懸架装置3は、ハンドル支持部6aと、ハンドルポスト4aと、ヘッドパイプ3aと、フロントフォーク部材3bと、転舵部材3cと、リンク部材4bと、揺動アーム3dと、クッションユニット3eと、を備えている。ハンドル支持部6aは、フロントブロック6の上端部に設けられている。ハンドルポスト4aは、ハンドル支持部6aに回動可能に支持されている。ヘッドパイプ3aは、車体フレーム5とは別体に設けられている。フロントフォーク部材3bは、ヘッドパイプ3aに回動可能に支持されている。転舵部材3cは、フロントフォーク部材3bの上端部に一体回動可能に取り付けられている。リンク部材4bは、転舵部材3cとハンドルポスト4aとを連結している。揺動アーム3dは、フロントブロック6に対してヘッドパイプ3aを揺動可能に連結している。クッションユニット3eは、フロントフォーク部材3bとフロントブロック6との間に介設されている。
<Front wheel suspension device>
The front wheel suspension device 3 includes a handle support portion 6a, a handle post 4a, a head pipe 3a, a front fork member 3b, a steering member 3c, a link member 4b, a swing arm 3d, a cushion unit 3e, and the like. It has. The handle support portion 6a is provided at the upper end portion of the front block 6. The handle post 4a is rotatably supported by the handle support portion 6a. The head pipe 3a is provided separately from the vehicle body frame 5. The front fork member 3b is rotatably supported by the head pipe 3a. The steering member 3c is integrally rotatably attached to the upper end portion of the front fork member 3b. The link member 4b connects the steering member 3c and the handle post 4a. The swing arm 3d swingably connects the head pipe 3a to the front block 6. The cushion unit 3e is interposed between the front fork member 3b and the front block 6.
 フロントフォーク部材3bは、左右フォークの下端部に前輪2を支持する。フロントフォーク部材3bの上端部には、ステアリング軸が一体に設けられ、このステアリング軸がヘッドパイプ3aに挿通支持されている。ステアリング軸の上端部は、ヘッドパイプ3aの上方に突出し、この上端部に転舵部材3cが取り付けられている。 The front fork member 3b supports the front wheel 2 at the lower ends of the left and right forks. A steering shaft is integrally provided at the upper end of the front fork member 3b, and the steering shaft is inserted and supported by the head pipe 3a. The upper end of the steering shaft projects above the head pipe 3a, and the steering member 3c is attached to the upper end.
 以下、ハンドル支持部6aに対するハンドルポスト4aの回動中心軸線をハンドル回動軸線C2と称する。ヘッドパイプ3aに対するフロントフォーク部材3bの回動中心軸線をステアリング軸線C3と称する。ステアリング軸線C3は、ハンドル回動軸線C2よりも前方にオフセット(離間)している。ステアリング軸線C3とハンドル回動軸線C2とは、車両の1G状態で互いに実質的に平行である。 Hereinafter, the rotation center axis of the handle post 4a with respect to the handle support portion 6a will be referred to as a handle rotation axis C2. The rotation center axis of the front fork member 3b with respect to the head pipe 3a is referred to as a steering axis C3. The steering axis C3 is offset (separated) forward from the steering wheel rotation axis C2. The steering axis C3 and the steering wheel rotation axis C2 are substantially parallel to each other in the 1G state of the vehicle.
 図5は、図1におけるステアリング軸線C3およびハンドル回動軸線C2に沿う矢印V方向から見た矢視図である。図5において、リンク部材4bは、転舵部材3c及びハンドルポスト4aと共に平行リンクを形成する。これにより、バーハンドル4の操舵角と前輪2の転舵角とが互いに同一になる。 FIG. 5 is an arrow view taken from the direction of the arrow V along the steering axis C3 and the steering wheel rotation axis C2 in FIG. In FIG. 5, the link member 4b forms a parallel link together with the steering member 3c and the handle post 4a. As a result, the steering angle of the bar handle 4 and the steering angle of the front wheels 2 become the same as each other.
 図1を参照し、揺動アーム3dの前端部は、ヘッドパイプ3aに上下揺動可能に支持されている。揺動アーム3dの後端部は、フロントブロック6に上下揺動可能に支持されている。揺動アーム3dは、上下一対のアーム部材を備えている。揺動アーム3dは、ヘッドパイプ3aを規定の軌跡で上下動可能とする。例えば下アーム部材には、クッションユニット3eの下端部が連結されている。 With reference to FIG. 1, the front end portion of the swing arm 3d is supported by the head pipe 3a so as to be swingable up and down. The rear end portion of the swing arm 3d is supported by the front block 6 so as to be swingable up and down. The swing arm 3d includes a pair of upper and lower arm members. The swing arm 3d enables the head pipe 3a to move up and down along a specified trajectory. For example, the lower end of the cushion unit 3e is connected to the lower arm member.
 前輪懸架装置は、揺動アーム3dを上方へ揺動させて、フロントフォーク部材3b及びヘッドパイプ3aを上方移動させる。このとき、下アーム部材がクッションユニット3eの下端部を上方移動させて、クッションユニット3eを圧縮させる。
 前輪懸架装置は、揺動アーム3dを下方へ揺動させて、フロントフォーク部材3b及びヘッドパイプ3aを下方移動させる。このとき、下アーム部材がクッションユニット3eの下端部を下方移動させて、クッションユニット3eを伸長させる。
The front wheel suspension device swings the swing arm 3d upward to move the front fork member 3b and the head pipe 3a upward. At this time, the lower arm member moves the lower end portion of the cushion unit 3e upward to compress the cushion unit 3e.
The front wheel suspension device swings the swing arm 3d downward to move the front fork member 3b and the head pipe 3a downward. At this time, the lower arm member moves the lower end portion of the cushion unit 3e downward to extend the cushion unit 3e.
<制御装置>
 図2は、本実施形態における自動二輪車1の制御装置23の構成図である。
 自動二輪車1は、各種センサ類21から取得した検知情報に基づき、各種装置類22を作動制御する制御装置23を備えている。制御装置23は、例えば一体または複数体の電子制御装置(ECU:Electronic Control Unit)として構成されている。制御装置23は、少なくとも一部がソフトウェアとハードウェアの協働によって実現されてもよい。制御装置23は、エンジン10の運転を制御する燃料噴射制御部、点火制御部およびスロットル制御部を含んでいる。自動二輪車1は、スロットル装置48等のエンジン補機と、ライダーJが操作するアクセルグリップ等のアクセル操作子と、を電気的に連係させるバイワイヤ式のエンジン制御システムを構成している。
<Control device>
FIG. 2 is a configuration diagram of the control device 23 of the motorcycle 1 according to the present embodiment.
The motorcycle 1 includes a control device 23 that controls the operation of the various devices 22 based on the detection information acquired from the various sensors 21. The control device 23 is configured as, for example, an integral or a plurality of electronic control units (ECUs: Electronic Control Units). The control device 23 may be realized at least in part by the cooperation of software and hardware. The control device 23 includes a fuel injection control unit, an ignition control unit, and a throttle control unit that control the operation of the engine 10. The motorcycle 1 constitutes a bi-wire engine control system in which an engine auxiliary device such as a throttle device 48 and an accelerator operator such as an accelerator grip operated by a rider J are electrically linked.
 各種センサ類21は、スロットルセンサ31、車輪速センサ32およびブレーキ圧センサ33の他、車体加速度センサ34、舵角センサ35、操舵トルクセンサ36および車速センサ37、ならびに外部検知手段38を含んでいる。
 各種センサ類21は、ライダーJの各種操作入力、ならびに自動二輪車1および乗員の各種状態、ならびに自車周囲の状況を検知する。各種センサ類21は、制御装置23に各種の検知情報を出力する。
The various sensors 21 include a throttle sensor 31, a wheel speed sensor 32, a brake pressure sensor 33, a vehicle body acceleration sensor 34, a steering angle sensor 35, a steering torque sensor 36 and a vehicle speed sensor 37, and an external detection means 38. ..
The various sensors 21 detect various operation inputs of the rider J, various states of the motorcycle 1 and the occupants, and the situation around the own vehicle. The various sensors 21 output various detection information to the control device 23.
 スロットルセンサ31は、スロットルグリップ等のアクセル操作子の操作量(加速要求)を検知する。
 ブレーキ圧センサ33は、前記ブレーキ操作子の操作力(減速要求)を検知する。
 車体加速度センサ34は、5軸または6軸のIMU(Inertial Measurement Unit:慣性計測装置)である。車体加速度センサ34は、車体における3軸(ロール軸、ピッチ軸、ヨー軸)の角速度および加速度を検知し、さらにその結果から角度を検知する。以下、車体加速度センサ34を車体角速度センサ34ということがある。
 舵角センサ35は、例えば操舵軸(ステアリング軸又はハンドル回動軸)に設けられたポテンショメータである。舵角センサ35は、車体に対する操舵軸の回動角度(操舵角度)を検知する。
The throttle sensor 31 detects the amount of operation (acceleration request) of the accelerator operator such as the throttle grip.
The brake pressure sensor 33 detects the operating force (deceleration request) of the brake operator.
The vehicle body acceleration sensor 34 is a 5-axis or 6-axis IMU (Inertial Measurement Unit). The vehicle body acceleration sensor 34 detects the angular velocities and accelerations of the three axes (roll axis, pitch axis, yaw axis) in the vehicle body, and further detects the angle from the results. Hereinafter, the vehicle body acceleration sensor 34 may be referred to as a vehicle body angular velocity sensor 34.
The steering angle sensor 35 is, for example, a potentiometer provided on a steering shaft (steering shaft or steering wheel rotation shaft). The steering angle sensor 35 detects the rotation angle (steering angle) of the steering shaft with respect to the vehicle body.
 操舵トルクセンサ36は、例えばフォーク部材3bのステアリング軸(又はハンドルポスト4aの回動軸)に設けられた磁歪式トルクセンサである。操舵トルクセンサ36は、バーハンドル4から入力される捩じりトルク(操舵入力)を検知する。操舵トルクセンサ36は、バーハンドル4(ステアリング操作子)に入力される操舵力を検知する荷重センサの一例である。 The steering torque sensor 36 is, for example, a magnetostrictive torque sensor provided on the steering shaft (or the rotation shaft of the handle post 4a) of the fork member 3b. The steering torque sensor 36 detects the torsional torque (steering input) input from the bar handle 4. The steering torque sensor 36 is an example of a load sensor that detects a steering force input to the bar handle 4 (steering operator).
 実施形態の前輪懸架装置3は、バーハンドル4を支持するハンドルポスト4aの回動軸と、前輪2を操向可能とするステアリング軸と、が互いに別体であるが、これに限らない。例えば、一般的な前輪懸架装置のように、ハンドル回動軸と操舵軸(前輪回動軸)とが互いに同一であってもよい。前輪懸架装置が車体フレーム5前端部のヘッドパイプに支持される構成であってもよい。 In the front wheel suspension device 3 of the embodiment, the rotation shaft of the handle post 4a that supports the bar handle 4 and the steering shaft that enables the front wheel 2 to be steered are separate from each other, but the present invention is not limited to this. For example, the steering wheel rotation shaft and the steering shaft (front wheel rotation shaft) may be the same as each other, as in a general front wheel suspension device. The front wheel suspension device may be supported by the head pipe at the front end of the vehicle body frame 5.
 外部検知手段38は、例えば、カメラと、レーダ装置と、ファインダと、物体認識装置と、を含んでいる。
 カメラは、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラは、自動二輪車1の任意の箇所に取り付けられる。前方を撮像する場合、カメラは、車体部品(転舵側および非転舵側を含む)や種々外装部品等に取り付けられる。カメラは、例えば、周期的に繰り返し自動二輪車1の周辺(例えば前後左右)を撮像する。カメラが撮像した画像は、適宜の画像処理がなされ、所望の画像データとなって種々の制御に用いられる。カメラからの情報は、検知方向の物体の位置、種類、速度等の認識に供され、この認識に基づいて、自動二輪車1の運転アシスト制御や自動運転制御等がなされる。例えば、カメラは、可視光のみならず赤外線等の不可視光を撮影するカメラでもよい。
The external detection means 38 includes, for example, a camera, a radar device, a finder, and an object recognition device.
The camera is, for example, a digital camera using a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The camera is attached to any part of the motorcycle 1. When photographing the front, the camera is attached to a vehicle body part (including a steering side and a non-steering side), various exterior parts, and the like. The camera periodically and repeatedly images the periphery of the motorcycle 1 (for example, front, back, left, and right). The image captured by the camera is subjected to appropriate image processing to become desired image data, which is used for various controls. The information from the camera is used for recognizing the position, type, speed, etc. of the object in the detection direction, and based on this recognition, the driving assist control, the automatic driving control, and the like of the motorcycle 1 are performed. For example, the camera may be a camera that captures not only visible light but also invisible light such as infrared light.
 レーダ装置は、自動二輪車1の周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検知する。レーダ装置は、自動二輪車1の任意の箇所に取り付けられる。レーダ装置は、自動二輪車1の前後左右の物体の位置および速度を検知する。 The radar device radiates radio waves such as millimeter waves around the motorcycle 1 and detects radio waves (reflected waves) reflected by the object to at least detect the position (distance and orientation) of the object. The radar device is attached to any part of the motorcycle 1. The radar device detects the position and speed of the front, rear, left, and right objects of the motorcycle 1.
 ファインダは、LIDAR(Light Detection and Ranging)である。ファインダは、自動二輪車1の周辺に光を照射し、散乱光を測定する。ファインダは、発光から受光までの時間に基づいて、対象までの距離を検知する。照射される光は、例えば、パルス状のレーザー光である。ファインダは、自動二輪車1の任意の箇所に取り付けられる。 The finder is LIDAR (Light Detection and Ringing). The finder irradiates the periphery of the motorcycle 1 with light and measures the scattered light. The finder detects the distance to the target based on the time from light emission to light reception. The emitted light is, for example, a pulsed laser beam. The finder can be attached to any part of the motorcycle 1.
 物体認識装置は、カメラ、レーダ装置、およびファインダのうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置は、認識結果を制御装置23に出力する。物体認識装置は、カメラ、レーダ装置、およびファインダの検出結果をそのまま制御装置23に出力してもよい。物体認識装置は省略されてもよい。 The object recognition device performs sensor fusion processing on the detection results of a part or all of the camera, radar device, and finder, and recognizes the position, type, speed, etc. of the object. The object recognition device outputs the recognition result to the control device 23. The object recognition device may output the detection results of the camera, the radar device, and the finder to the control device 23 as they are. The object recognition device may be omitted.
 自動二輪車1には、自動運転システムが採用されている。
 ここで、車両の自動運転には、以下の度合が存在する。自動運転の度合は、例えば、所定の基準未満であるか、所定の基準以上であるかといった尺度で判断することができる。 自動運転の度合が所定の基準未満とは、例えば、手動運転が実行されている場合、またはACC(Adaptive Cruise Control System)やLKAS(Lane Keeping Assistance System)等の運転支援装置のみが作動している場合である。自動運転の度合が所定の基準未満の運転モードは、「第1の運転モード」の一例である。
An automatic driving system is adopted for the motorcycle 1.
Here, there are the following degrees in the automatic driving of the vehicle. The degree of automatic driving can be determined by, for example, a scale such as whether it is less than a predetermined standard or more than a predetermined standard. The degree of automatic driving is less than the specified standard, for example, when manual driving is being executed, or only driving support devices such as ACC (Adaptive Cruise Control System) and LKAS (Lane Keeping Assistance System) are operating. The case. An operation mode in which the degree of automatic operation is less than a predetermined reference is an example of the "first operation mode".
 自動運転の度合が所定の基準以上とは、例えば、ACCやLKASよりも制御度合の高い、ALC(Auto Lane Changing)、LSP(Low Speed Car Passing)等の運転支援装置が作動している場合、或いは、車線変更や合流、分岐までを自動的に行う自動運転が実行されている場合である。自動運転の度合が所定の基準以上の運転モードは、「第2の運転モード」の一例である。
 上記「所定の基準」については任意に設定することができる。第1の運転モードは手動運転であり、第2の運転モードは自動運転であるものとする。本実施形態は、第1の運転モードに相当する運転アシスト制御(運転支援システム)に適用されるが、自動運転制御に適用されてもよい。
The degree of automatic driving exceeds a predetermined standard, for example, when a driving support device such as ALC (Auto Lane Changing) or LSP (Low Speed Car Passing), which has a higher degree of control than ACC or LKAS, is operating. Alternatively, it is a case where automatic driving that automatically changes lanes, merges, and branches is being executed. An operation mode in which the degree of automatic operation is equal to or higher than a predetermined reference is an example of a "second operation mode".
The above "predetermined standard" can be set arbitrarily. It is assumed that the first operation mode is manual operation and the second operation mode is automatic operation. This embodiment is applied to the driving assist control (driving support system) corresponding to the first driving mode, but may be applied to the automatic driving control.
 図2を参照し、各種装置類22には、エンジン制御手段45、ブレーキアクチュエータ42およびステアリングアクチュエータ43を含んでいる。
 エンジン制御手段45は、燃料噴射装置46、点火装置47およびスロットル装置48等を含んでいる。すなわち、エンジン制御手段45は、エンジン10を駆動させるエンジン補機を含んでいる。
With reference to FIG. 2, various devices 22 include an engine control means 45, a brake actuator 42, and a steering actuator 43.
The engine control means 45 includes a fuel injection device 46, an ignition device 47, a throttle device 48, and the like. That is, the engine control means 45 includes an engine auxiliary machine for driving the engine 10.
 ブレーキアクチュエータ42は、ブレーキ操作子への操作に応じて前後ブレーキ2B12Bに油圧を供給してこれらを作動させる。ブレーキアクチュエータ42は、ABS(Anti-lock Brake System)の制御ユニットを兼ねている。 The brake actuator 42 supplies hydraulic pressure to the front and rear brakes 2B12B in response to an operation on the brake operator to operate them. The brake actuator 42 also serves as a control unit for ABS (Anti-lock Brake System).
 ステアリングアクチュエータ43は、バーハンドル4からフォーク部材3bまでの操舵機構に操舵トルクを出力する。ステアリングアクチュエータ43は、操舵トルクセンサ36の検知情報に応じて、自身の駆動源である電気モータを作動させ、操舵機構にアシストトルクを付与する。ステアリングアクチュエータ43は、前記電気モータの作動を電気的に制御するST-ECUを含んでいる。 The steering actuator 43 outputs steering torque to the steering mechanism from the bar handle 4 to the fork member 3b. The steering actuator 43 operates an electric motor, which is its own drive source, in response to the detection information of the steering torque sensor 36, and applies an assist torque to the steering mechanism. The steering actuator 43 includes an ST-ECU that electrically controls the operation of the electric motor.
 図5を参照し、ステアリングアクチュエータ43は、ハンドル支持部6aの左側方に配置されて車体フレーム5に取り付けられている。ステアリングアクチュエータ43は、前記電気モータの駆動軸43aをハンドル回動軸と平行にして配置されている。駆動軸43aには、揺動アーム43bが一体回動可能に取り付けられている。揺動アーム43bは、ハンドルポスト4aのアクチュエータ連結部4a1と連結ロッド43cを介して連結されている。これにより、前記電気モータの駆動力(トルク)がハンドルポスト4aに伝達可能であり、もって前輪2の操舵がアシストされる。
<操舵アシスト制御>
With reference to FIG. 5, the steering actuator 43 is arranged on the left side of the steering wheel support portion 6a and attached to the vehicle body frame 5. The steering actuator 43 is arranged so that the drive shaft 43a of the electric motor is parallel to the steering wheel rotation shaft. A swing arm 43b is integrally rotatably attached to the drive shaft 43a. The swing arm 43b is connected to the actuator connecting portion 4a1 of the handle post 4a via a connecting rod 43c. As a result, the driving force (torque) of the electric motor can be transmitted to the handle post 4a, and the steering of the front wheels 2 is assisted.
<Steering assist control>
 図1を参照し、車体加速度センサ34は、自動二輪車1の車体(例えば車体フレーム5)に支持されている。例えば、車体加速度センサ34は、側面視で後輪12の接地点Gpとヘッドパイプ3aの略中央部とを結ぶ線分Lの近傍に配置されている。車体加速度センサ34は、自動二輪車1のヨー方向の角速度Yとロール方向の角速度Rとを検知する。以下、ヨー方向の角速度YをヨーレートYということがある。なお、実施形態の車体とは、車体フレーム5のみならず、車体フレーム5と一体的にローリング、ピッチングおよびヨーイングといった挙動をなす構成を含む。 With reference to FIG. 1, the vehicle body acceleration sensor 34 is supported by the vehicle body of the motorcycle 1 (for example, the vehicle body frame 5). For example, the vehicle body acceleration sensor 34 is arranged in the vicinity of the line segment L connecting the ground contact point Gp of the rear wheel 12 and the substantially central portion of the head pipe 3a in a side view. The vehicle body acceleration sensor 34 detects the angular velocity Y in the yaw direction and the angular velocity R in the roll direction of the motorcycle 1. Hereinafter, the angular velocity Y in the yaw direction may be referred to as a yaw rate Y. The vehicle body of the embodiment includes not only the vehicle body frame 5 but also a configuration that integrally performs behaviors such as rolling, pitching, and yawing with the vehicle body frame 5.
 自動二輪車1の低速時には、バーハンドル4の操作による転舵(ヨー)が発生してから車体のバンク(ロール)が発生する特性を有する。つまり、自動二輪車1の低速時には、ヨーが先行して発生するので、ヨー角速度Yを多く検知することが好ましい。一方、自動二輪車1の高速時には、車体のバンク(ロール)が発生してから転舵(ヨー)が発生する特性を有する。つまり、自動二輪車1の高速時には、ロールが先行して発生するので、ロール角速度Rを多く検知することが好ましい。この特性を自動二輪車1の転舵特性と称する。 At low speeds of the motorcycle 1, it has the characteristic that the bank (roll) of the vehicle body is generated after the steering (yaw) is generated by the operation of the bar handle 4. That is, when the motorcycle 1 has a low speed, yaw is generated in advance, so it is preferable to detect a large yaw angular velocity Y. On the other hand, at high speeds of the motorcycle 1, the motorcycle has a characteristic that the steering (yaw) is generated after the bank (roll) of the vehicle body is generated. That is, at the high speed of the motorcycle 1, the roll is generated in advance, so it is preferable to detect a large roll angular velocity R. This characteristic is referred to as a steering characteristic of the motorcycle 1.
 図4を参照し、制御装置23は、車体加速度センサ34が検知したヨー角速度Y及びロール角速度Rを合成し、合成角速度Sを生成する。制御装置23は、検知された車速Vに応じて、車体加速度センサ34が検知したヨー角速度Y及びロール角速度Rの重み付けを以下のように変えて合成する。つまり、上記した自動二輪車1の転舵特性から、車速Vが低いときにはヨー角速度Yの重み付けをロール角速度Rより大きくして合成し、車速Vが高いときにはロール角速度Rの重み付けをヨー角速度Yより大きくして合成する。 With reference to FIG. 4, the control device 23 synthesizes the yaw angular velocity Y and the roll angular velocity R detected by the vehicle body acceleration sensor 34 to generate the combined angular velocity S. The control device 23 synthesizes the yaw angular velocity Y and the roll angular velocity R detected by the vehicle body acceleration sensor 34 by changing the weights as follows according to the detected vehicle speed V. That is, from the steering characteristics of the motorcycle 1 described above, when the vehicle speed V is low, the weight of the yaw angular velocity Y is combined to be larger than the roll angular velocity R, and when the vehicle speed V is high, the weight of the roll angular velocity R is larger than the yaw angular velocity Y. And synthesize.
 合成角速度Sの生成は、例えば、次の(1)式に示すように、ヨー角速度Yに第1調整値AD1を乗算した値(Y×AD1)と、ロール角速度Rに第2調整値AD2を乗算した値(R×AD2)と、を加算することで、合成角速度Sを生成してもよい。
 S=Y×AD1+R×AD2…(1)
For the generation of the composite angular velocity S, for example, as shown in the following equation (1), a value (Y × AD1) obtained by multiplying the yaw angular velocity Y by the first adjustment value AD1 and a second adjustment value AD2 for the roll angular velocity R are used. The composite angular velocity S may be generated by adding the multiplied value (R × AD2).
S = Y × AD1 + R × AD2 ... (1)
 この場合、第1調整値AD1は、低速側で大きく高速側で小さくなるように設定され、第2調整値AD2は、低速側で小さく高速側で大きくなるように設定される。 In this case, the first adjustment value AD1 is set to be large on the low speed side and small on the high speed side, and the second adjustment value AD2 is set to be small on the low speed side and large on the high speed side.
 図3は、操舵アシスト装置50の構成図である。
 操舵アシスト装置50は、操舵トルクセンサ36、車速センサ37、車体角速度センサ34、外部検知手段38、制御装置23およびステアリングアクチュエータ43を備えている。
FIG. 3 is a configuration diagram of the steering assist device 50.
The steering assist device 50 includes a steering torque sensor 36, a vehicle speed sensor 37, a vehicle body angular velocity sensor 34, an external detection means 38, a control device 23, and a steering actuator 43.
 車速センサ37は、例えば自動二輪車1のパワーユニットUの出力軸の回転速度を検知し、この回転速度から後輪12の回転速度ひいては自動二輪車1の車速を検知する。なお、ABSおよびTCS(Traction Control System)の少なくとも一方から車輪速情報を得て車速を検知してもよい。 The vehicle speed sensor 37 detects, for example, the rotation speed of the output shaft of the power unit U of the motorcycle 1, and detects the rotation speed of the rear wheels 12 and thus the vehicle speed of the motorcycle 1 from this rotation speed. The vehicle speed may be detected by obtaining wheel speed information from at least one of ABS and TCS (Traction Control System).
 制御装置23は、パワーアシストトルク算出ブロック00、およびふらつき抑制アシストトルク算出ブロック300、ならびに付与トルク算出部400を備えている。各ブロック00、300は、単独に動作することが可能であり、全体として動作することも可能である。 The control device 23 includes a power assist torque calculation block 00, a wobble suppression assist torque calculation block 300, and an applied torque calculation unit 400. Each block 00, 300 can operate independently, or can operate as a whole.
 パワーアシストトルク算出ブロック00は、車速Vと操舵トルクTsとに基づき、バーハンドル4に付与するパワーアシストトルクTpを算出する。車速Vは、車速センサ37の検知情報すなわち駆動輪(後輪12)の回転速度から算出される。操舵トルクTsは、運転者によるバーハンドル4への入力トルクに相当し、操舵トルクセンサ36の検知情報から算出される。パワーアシストトルクTpは、運転者のバーハンドル4の操舵を軽減するためのトルクである。 The power assist torque calculation block 00 calculates the power assist torque Tp to be applied to the bar handle 4 based on the vehicle speed V and the steering torque Ts. The vehicle speed V is calculated from the detection information of the vehicle speed sensor 37, that is, the rotation speed of the driving wheels (rear wheels 12). The steering torque Ts corresponds to the input torque to the bar handle 4 by the driver and is calculated from the detection information of the steering torque sensor 36. The power assist torque Tp is a torque for reducing the steering of the driver's bar handle 4.
 ふらつき抑制アシストトルク算出ブロック300は、車速Vとヨー角速度Yおよびロール角速度Rとに基づき、バーハンドル4に付与するふらつき抑制アシストトルクTwを算出する。ヨー角速度Yおよびロール角速度Rは、車体角速度センサ34の検知情報から算出される。ふらつき抑制アシストトルクTwは、自動二輪車1のふらつきを抑制するためのトルクである。例えば、ふらつき抑制アシストトルクTwは、自動二輪車1が左に傾いた場合は、バーハンドル4および前輪2を左に切る方向に作用する。ふらつき抑制アシストトルクTwは、自動二輪車1が右に傾いた場合は、バーハンドル4および前輪2を右に切る方向に作用する。
 付与トルク算出部400は、外部検知手段38の検知情報等に基づき、後述の付与トルクTmsを算出する。
The wobble suppression assist torque calculation block 300 calculates the wobble suppression assist torque Tw applied to the bar handle 4 based on the vehicle speed V, the yaw angular velocity Y, and the roll angular velocity R. The yaw angular velocity Y and the roll angular velocity R are calculated from the detection information of the vehicle body angular velocity sensor 34. The wobble suppression assist torque Tw is a torque for suppressing the wobble of the motorcycle 1. For example, the wobble suppression assist torque Tw acts in the direction of turning the bar handle 4 and the front wheel 2 to the left when the motorcycle 1 is tilted to the left. The wobble suppression assist torque Tw acts in the direction of turning the bar handle 4 and the front wheel 2 to the right when the motorcycle 1 is tilted to the right.
The applied torque calculation unit 400 calculates the applied torque Tms, which will be described later, based on the detection information of the external detection means 38 and the like.
 制御装置23は、加算器224及びモータ駆動部226を備えている。
 加算器224は、次の(2)式に示すように、パワーアシストトルクTpと、ふらつき抑制アシストトルクTwと、を加算し、アシストトルクTmを生成する。加算器224は、生成したアシストトルクTmをモータ駆動部226に出力する。
 Tm=Tp+Tw…(2)
The control device 23 includes an adder 224 and a motor drive unit 226.
As shown in the following equation (2), the adder 224 adds the power assist torque Tp and the wobble suppression assist torque Tw to generate the assist torque Tm. The adder 224 outputs the generated assist torque Tm to the motor drive unit 226.
Tm = Tp + Tw ... (2)
 モータ駆動部226は、アシストトルクTmをトルク電流に変換し、ステアリングアクチュエータ43の電動モータに供給する。電動モータは、トルク電流が供給されている間に駆動し、トルク電流に応じた駆動力を発生する。電動モータの駆動力は、連結ロッド43c等を介してハンドルポスト4aに伝達され、バーハンドル4および前輪2の回動をアシストする。すなわち、バーハンドル4および前輪2に対し、アシストトルクTmに応じた駆動力(補助力)が付与される。 The motor drive unit 226 converts the assist torque Tm into a torque current and supplies it to the electric motor of the steering actuator 43. The electric motor is driven while the torque current is being supplied, and generates a driving force according to the torque current. The driving force of the electric motor is transmitted to the handle post 4a via the connecting rod 43c or the like, and assists the rotation of the bar handle 4 and the front wheels 2. That is, a driving force (auxiliary force) corresponding to the assist torque Tm is applied to the bar handle 4 and the front wheel 2.
 図4を参照し、ふらつき抑制アシストトルク算出ブロック300は、合成角速度生成部302と、乗算器304と、第1車速補正係数生成部306と、第2車速補正係数生成部308と、乗算器310と、加算器312と、除算器314と、乗算器316と、を備えている。
 合成角速度生成部302は、車体角速度センサ34が検知したヨー角速度Y及びロール角速度Rを合成して、自動二輪車1の挙動を示す合成角速度(車体挙動レート)Sを生成する。
 乗算器304は、合成角速度Sと合成角速度Sとを乗算して合成角速度Sの二乗を生成する。
With reference to FIG. 4, the wobble suppression assist torque calculation block 300 includes a composite angular speed generation unit 302, a multiplier 304, a first vehicle speed correction coefficient generation unit 306, a second vehicle speed correction coefficient generation unit 308, and a multiplier 310. , An adder 312, a divider 314, and a multiplier 316.
The combined angular velocity generation unit 302 synthesizes the yaw angular velocity Y and the roll angular velocity R detected by the vehicle body angular velocity sensor 34 to generate a combined angular velocity (vehicle body behavior rate) S indicating the behavior of the motorcycle 1.
The multiplier 304 multiplies the combined angular velocity S and the combined angular velocity S to generate the square of the combined angular velocity S.
 第1車速補正係数生成部306は、車速Vに基づきふらつきを抑制する第1車速補正係数Fを生成する。
 第2車速補正係数生成部308は、車速Vに基づきふらつきを抑制する第2車速補正係数Gを生成する。
 乗算器310は、第2車速補正係数Gと合成角速度Sの二乗とを乗算する。
 加算器312は、乗算器310が出力した値(G×S)と定数αとを加算する。
 除算器314は、第1車速補正係数Fを加算器312が出力した値(G×S+α)で除算する。
The first vehicle speed correction coefficient generation unit 306 generates a first vehicle speed correction coefficient F that suppresses wobbling based on the vehicle speed V.
The second vehicle speed correction coefficient generation unit 308 generates a second vehicle speed correction coefficient G that suppresses wobbling based on the vehicle speed V.
The multiplier 310 multiplies the second vehicle speed correction coefficient G by the square of the combined angular velocity S.
The adder 312 adds the value (G × S 2 ) output by the multiplier 310 and the constant α.
The divider 314 divides the first vehicle speed correction coefficient F by the value (G × S 2 + α) output by the adder 312.
 乗算器316は、除算器314が出力した値(F/(G×S+α))に合成角速度Sを乗算する。すなわち、乗算器316は、次の(3)式に示すふらつき抑制アシストトルクTwを出力する。
 Tw=F×S/(G×S+α)…(3)
The multiplier 316 multiplies the value (F / (G × S 2 + α)) output by the divider 314 by the combined angular velocity S. That is, the multiplier 316 outputs the wobble suppression assist torque Tw shown in the following equation (3).
Tw = F × S / (G × S 2 + α)… (3)
 自動二輪車1がふらついている場合(運転者の意図しない傾きが発生している場合)、合成角速度Sは相対的に小さい値となる。自動二輪車1が運転者の体重移動の操作により傾いている場合、合成角速度Sは相対的に大きい値となる。これらの場合に対し、ふらつき抑制アシストトルクTwを(3)式によって算出することで、以下の効果を得る。すなわち、合成角速度Sが大きい時には、ふらつき抑制アシストトルクTwを小さくすることができる。従って、運転者の体重移動による操作の邪魔をしないよう、ふらつき抑制アシストトルクTwを設定し、ドライバビリティの向上を図ることができる。 When the motorcycle 1 is swaying (when the driver does not intend to tilt), the combined angular velocity S becomes a relatively small value. When the motorcycle 1 is tilted by the driver's weight transfer operation, the combined angular velocity S becomes a relatively large value. In these cases, the following effects can be obtained by calculating the wobble suppression assist torque Tw by the equation (3). That is, when the combined angular velocity S is large, the wobble suppression assist torque Tw can be reduced. Therefore, the wobble suppression assist torque Tw can be set so as not to interfere with the operation due to the driver's weight shift, and the drivability can be improved.
 合成角速度生成部302は、前述したように、低速側ではヨー角速度Yの重み付けを大きくロール角速度Rの重み付けを小さくしてこれらを合成(加算)する。合成角速度生成部302は、高速側ではヨー角速度Yの重み付けを小さくロール角速度Rの重み付けを大きくしてこれらを合成(加算)する。自動二輪車1の転舵特性を鑑みると、低速時にはヨー角速度Yを多く検知し、高速時にはロール角速度Rを多く検知することが、自動二輪車1の挙動を高精度に検知する点で好ましい。 As described above, the composite angular velocity generation unit 302 synthesizes (adds) these on the low speed side by increasing the weighting of the yaw angular velocity Y and decreasing the weighting of the roll angular velocity R. On the high-speed side, the composite angular velocity generation unit 302 synthesizes (adds) these by reducing the weighting of the yaw angular velocity Y and increasing the weighting of the roll angular velocity R. Considering the steering characteristics of the motorcycle 1, it is preferable to detect a large yaw angular velocity Y at low speed and a large roll angular velocity R at high speed from the viewpoint of detecting the behavior of the motorcycle 1 with high accuracy.
 そして、制御装置23は、自動二輪車1の挙動が大きい場合は、運転者の体重操作によるものと判断してアシストトルクTwを小さくする。制御装置23は、自動二輪車1の挙動が小さい場合は、運転者の体重操作ではなく車体のふらつきであると判断してアシストトルクTwを大きくする。
 このように、自動二輪車1が低速時及び高速時のどちらにあっても、運転者の操作に対して違和感のないふらつき抑制アシストを行うことができる。
Then, when the behavior of the motorcycle 1 is large, the control device 23 determines that it is due to the weight operation of the driver and reduces the assist torque Tw. When the behavior of the motorcycle 1 is small, the control device 23 determines that the vehicle body is wobbling rather than the driver's weight operation, and increases the assist torque Tw.
In this way, regardless of whether the motorcycle 1 is at low speed or at high speed, it is possible to assist the driver to suppress wobbling without discomfort.
 ところで、前述した運転アシスト制御を行う場合、自動二輪車1にはライダーが意図しない挙動が生じる。このため、運転アシスト制御を行わない場合の通常のアシストステア制御に比べて、車体の安定化の効果を高めることが望ましい。つまり、運転アシスト制御の発動時には、アシストトルクTmを増加させることが望ましい。本実施形態では、自動二輪車1の運転支援システム(ARAS:Advanced rider assistance system)の規定の機能(警告を含む)が作動した際には、車体挙動安定性重視の制御に移行する。 By the way, when the above-mentioned driving assist control is performed, the motorcycle 1 has behavior that the rider does not intend. Therefore, it is desirable to enhance the effect of stabilizing the vehicle body as compared with the normal assist steering control when the driving assist control is not performed. That is, it is desirable to increase the assist torque Tm when the driving assist control is activated. In the present embodiment, when the specified functions (including warnings) of the driving support system (ARAS: Advanced rider assistance system) of the motorcycle 1 are activated, the control shifts to the control focusing on the stability of the vehicle body behavior.
 本実施形態において、車体挙動安定性重視の制御を適用する機能は、自動二輪車1の運転支援システムの諸機能の内、例えば以下の三つである。
 第一に、追突軽減ブレーキ(CMBS:Collision Mitigation Brake System)であり、第二に、車線逸脱警告(LDW:Lane Departure Warning)であり、第三に、ブラインドスポットインフォメーション(BSI:Blind Spot Information)である。
In the present embodiment, the functions for applying the control emphasizing the stability of vehicle body behavior are, for example, the following three functions among the various functions of the driving support system of the motorcycle 1.
The first is Collision Mitigation Brake System (CMBS), the second is Lane Departure Warning (LDW), and the third is Blind Spot Information (BSI). is there.
 まず、CMBSの例について説明する。
 図6、図7を参照し、実施形態のCMBSでは、三段階の警告閾値TTCが設定されている。CMBSの警告閾値TTCには、自車M前方の他車T等の障害物に対する相対時間距離(現状速度で規定時間内に進む距離)が制御パラメータとして用いられる。第一の警告閾値t1は、インジケータランプや液晶パネル等を用いた注意表示(第一の警告)を行う際の閾値である。第一の警告は、障害物からの相対時間距離が閾値t1以下になったとき(閾値t1を減少側に越えたとき、閾値t1を下回ったとき)に発動する。第一の警告では、自動ブレーキ制御によるブレーキ作動(制動)は行われない。
First, an example of CMBS will be described.
With reference to FIGS. 6 and 7, in the CMBS of the embodiment, a three-step warning threshold TTC is set. For the warning threshold TTC of CMBS, a relative time distance (distance traveling within a specified time at the current speed) with respect to an obstacle such as another vehicle T in front of the own vehicle M is used as a control parameter. The first warning threshold value t1 is a threshold value for performing a caution display (first warning) using an indicator lamp, a liquid crystal panel, or the like. The first warning is activated when the relative time distance from the obstacle becomes less than or equal to the threshold value t1 (when the threshold value t1 is exceeded on the decreasing side or when the threshold value is less than t1). In the first warning, the brake operation (braking) by the automatic brake control is not performed.
 第二の警告閾値(第一閾値)t2は、第一の警告よりも強い第二の警告(例えば車体の身体接触部分を振動させる等のライダーの触覚に対する警告、および弱い制動を行う等の車体挙動を発生させる警告)を行う際の閾値である。第二の警告は、障害物からの相対時間距離が閾値t1よりも短い閾値t2以下になったとき(閾値t2を減少側に越えたとき、閾値t2を下回ったとき)に発動する。第二の警告では、自動ブレーキ制御による比較的弱いブレーキ作動(制動)が行われる。 The second warning threshold (first threshold) t2 is a stronger second warning than the first warning (for example, a warning to the rider's tactile sensation such as vibrating the body contact portion of the vehicle body, and a vehicle body such as performing weak braking. This is the threshold value when performing a warning) that causes behavior. The second warning is activated when the relative time distance from the obstacle becomes the threshold value t2 or less, which is shorter than the threshold value t1 (when the threshold value t2 is exceeded on the decreasing side or when the threshold value is below the threshold value t2). In the second warning, a relatively weak braking operation (braking) is performed by automatic braking control.
 第三の警告閾値(第二閾値)t3は、第二の警告よりも強い第三の警告(例えばより強い振動等による警告、およびより強い制動等による警告)を行う際の閾値である。第三の警告は、障害物からの相対時間距離が閾値t2よりも短い閾値t3以下になったとき(閾値t3を減少側に越えたとき、閾値t3を下回ったとき)に発動する。第三の警告では、自動ブレーキ制御による比較的強いブレーキ作動(制動)が行われる。 The third warning threshold (second threshold) t3 is a threshold for issuing a third warning (for example, a warning due to stronger vibration or the like and a warning due to stronger braking or the like) that is stronger than the second warning. The third warning is activated when the relative time distance from the obstacle becomes the threshold value t3 or less, which is shorter than the threshold value t2 (when the threshold value t3 is exceeded on the decreasing side or when the threshold value is below the threshold value t3). In the third warning, a relatively strong braking operation (braking) is performed by automatic braking control.
 第一から第三の各警告は、障害物からの相対時間距離が短くなるほど強まるように設定されている。
 実施形態では、障害物からの相対時間距離が閾値t3以下となったとき(第三の警告フラグONのとき)、自動二輪車1の姿勢制御の向上を優先した高安定化制御に移行する。高安定化制御では、アシストステア制御ゲインをより高い高安定ゲインに補正する。これにより、アシストトルクTmの減少を抑えて高い値に維持し、自動二輪車1の姿勢制御の向上を図る。なお、相対時間距離が閾値t2と閾値t3との間にあるときは、高安定化制御を行わないが、閾値t3以下となったときよりも弱い出力で高安定化制御を行ってもよい。
Each of the first to third warnings is set to become stronger as the relative time distance from the obstacle becomes shorter.
In the embodiment, when the relative time distance from the obstacle becomes the threshold value t3 or less (when the third warning flag is ON), the motorcycle shifts to the high stabilization control that prioritizes the improvement of the attitude control of the motorcycle 1. In the high stabilization control, the assist steer control gain is corrected to a higher stable gain. As a result, the decrease of the assist torque Tm is suppressed and maintained at a high value, and the attitude control of the motorcycle 1 is improved. When the relative time distance is between the threshold value t2 and the threshold value t3, the high stabilization control is not performed, but the high stabilization control may be performed with a weaker output than when the relative time distance is equal to or less than the threshold value t3.
 次に、LDWの例について説明する。
 図6、図8を参照し、実施形態のLDWでは、三段階の警告閾値TTLDが設定されている。LDWの警告閾値TTLDには、車両通行帯(走行レーン)の区画線(中央線、境界線および外側線等)L1から自車までの距離が制御パラメータとして用いられる。第一の警告閾値t1は、インジケータランプや液晶パネル等を用いた注意表示(第一の警告)を行う際の閾値である。第一の警告は、区画線L1からの距離が閾値t1以下になったとき(閾値t1を減少側に越えたとき、閾値t1を下回ったとき)に発動する。第一の警告では、自動ブレーキ制御によるブレーキ作動(制動)は行われない。
Next, an example of LDW will be described.
With reference to FIGS. 6 and 8, in the LDW of the embodiment, a three-step warning threshold TTLD is set. For the LDW warning threshold TTLD, the distance from the lane marking line (center line, boundary line, outer line, etc.) L1 of the vehicle lane (traveling lane) to the own vehicle is used as a control parameter. The first warning threshold value t1 is a threshold value for performing a caution display (first warning) using an indicator lamp, a liquid crystal panel, or the like. The first warning is activated when the distance from the lane marking L1 is equal to or less than the threshold value t1 (when the threshold value t1 is exceeded on the decreasing side or when the distance is below the threshold value t1). In the first warning, the brake operation (braking) by the automatic brake control is not performed.
 第二の警告閾値(第一閾値)t2は、第一の警告よりも強い第二の警告(例えば車体の身体接触部分を振動させる等のライダーの触覚に対する警告、および弱い制動を行う等の車体挙動を発生させる警告)を行う際の閾値である。第二の警告は、区画線L1からの距離が閾値t1よりも短い閾値t2以下になったとき(閾値t2を減少側に越えたとき、閾値t2を下回ったとき)に発動する。なお、閾値t2は距離0の場合を含む。すなわち、車線逸脱直前に第二の警告が発動する設定も有り得る。第二の警告では、自動ブレーキ制御による比較的弱いブレーキ作動(制動)が行われる。 The second warning threshold (first threshold) t2 is a stronger second warning than the first warning (for example, a warning to the rider's tactile sensation such as vibrating the body contact portion of the vehicle body, and a vehicle body such as performing weak braking. This is the threshold value when performing a warning) that causes behavior. The second warning is activated when the distance from the lane marking L1 becomes less than or equal to the threshold value t2, which is shorter than the threshold value t1 (when the threshold value t2 is exceeded on the decreasing side or when the distance is below the threshold value t2). The threshold value t2 includes the case where the distance is 0. That is, there may be a setting in which the second warning is activated immediately before the departure from the lane. In the second warning, a relatively weak braking operation (braking) is performed by automatic braking control.
 第三の警告閾値(第二閾値)t3は、第二の警告よりも強い第三の警告(例えばより強い振動等による警告、およびより強い制動等による警告)を行う際の閾値である。第三の警告は、区画線L1からの距離が閾値t2よりも短い閾値t3以下になったとき(閾値t3を減少側に越えたとき、閾値t3を下回ったとき)に発動する。なお、閾値t3は負の距離の場合を含む。すなわち、車線逸脱量が閾値t3以上になったときに第三の警告が発動する設定も有り得る。第三の警告では、自動ブレーキ制御による比較的強いブレーキ作動(制動)が行われる。 The third warning threshold (second threshold) t3 is a threshold for issuing a third warning (for example, a warning due to stronger vibration or the like and a warning due to stronger braking or the like) that is stronger than the second warning. The third warning is activated when the distance from the lane marking L1 becomes the threshold value t3 or less, which is shorter than the threshold value t2 (when the threshold value t3 is exceeded on the decreasing side or when the threshold value is below the threshold value t3). The threshold value t3 includes the case of a negative distance. That is, there may be a setting in which the third warning is activated when the lane departure amount becomes the threshold value t3 or more. In the third warning, a relatively strong braking operation (braking) is performed by automatic braking control.
 第一から第三の各警告は、区画線L1からの距離が短くなるかマイナス側に大きくなるほど強まるように設定されている。
 実施形態では、区画線L1からの距離が閾値t3以下となったとき(第三の警告フラグONのとき)、自動二輪車1の姿勢制御の向上を優先した高安定化制御に移行する。高安定化制御では、アシストステア制御ゲインをより高い高安定ゲインに補正する。これにより、アシストトルクTmの減少を抑えて高い値に維持し、自動二輪車1の姿勢制御の向上を図る。なお、区画線L1からの距離が閾値t2と閾値t3との間にあるときは、高安定化制御を行わないが、閾値t3以下となったときよりも弱い出力で高安定化制御を行ってもよい。
Each of the first to third warnings is set so as to become stronger as the distance from the lane marking L1 becomes shorter or becomes larger on the minus side.
In the embodiment, when the distance from the lane marking L1 is equal to or less than the threshold value t3 (when the third warning flag is ON), the motorcycle shifts to high stabilization control prioritizing the improvement of the attitude control of the motorcycle 1. In the high stabilization control, the assist steer control gain is corrected to a higher stable gain. As a result, the decrease of the assist torque Tm is suppressed and maintained at a high value, and the attitude control of the motorcycle 1 is improved. When the distance from the lane marking L1 is between the threshold value t2 and the threshold value t3, the high stabilization control is not performed, but the high stabilization control is performed with a weaker output than when the threshold value is t3 or less. May be good.
 次に、BSIの例について説明する。
 図6、図9を参照し、実施形態のBMIでは、二段階の警告閾値が設定されている。BMIの警告閾値には、予め定めた検知フラグの数が制御パラメータとして用いられる。
 BMIの警告閾値に用いる検知フラグは、例えば以下の第一フラグ及び第二フラグの二つのフラグである。
 第一フラグは、自車Mよりも後方の左右何れかの検出エリアARに他車Tの存在を検知したことを示すフラグである。第二フラグは、第一フラグが立った状態で、他車Tが検知されている側への自車Mの進路変更予測動作(進路変更が予測される動作)を検知したことを示すフラグである。
Next, an example of BSI will be described.
With reference to FIGS. 6 and 9, in the BMI of the embodiment, a two-step warning threshold is set. A predetermined number of detection flags is used as a control parameter for the BMI warning threshold.
The detection flags used for the BMI warning threshold are, for example, the following two flags, the first flag and the second flag.
The first flag is a flag indicating that the presence of another vehicle T has been detected in the detection area AR on either the left or right side behind the own vehicle M. The second flag is a flag indicating that the course change prediction operation (the action in which the course change is predicted) of the own vehicle M to the side where the other vehicle T is detected is detected while the first flag is set. is there.
 第一フラグは、実施形態ではカメラやレーダ等で実際に他車Tを検知したことを示すが、これに限らない。例えば、第一フラグは、同一車線内で自車Mの後方に位置する他車Tが左右何れかのウインカを出していることで他車Tの存在を予測して検知してもよい。
 第二フラグは、実施形態では他車Tの存在が認められる側の自車Mのウインカの作動を示す、これに限らない。例えば、第二フラグは、自車Mのライダーの着座位置、着座姿勢、逆ハンドル等の操作、の少なくとも一つを進路変更予測動作として検知したことを示してもよい。
The first flag indicates that the other vehicle T is actually detected by a camera, radar, or the like in the embodiment, but the present invention is not limited to this. For example, the first flag may predict and detect the presence of the other vehicle T by the fact that the other vehicle T located behind the own vehicle M in the same lane emits either the left or right winker.
The second flag is not limited to the operation of the winker of the own vehicle M on the side where the presence of the other vehicle T is recognized in the embodiment. For example, the second flag may indicate that at least one of the seating position, the sitting posture, the operation of the reverse steering wheel, and the like of the rider of the own vehicle M is detected as the course change prediction operation.
 第一フラグが立ったとき(検出エリアに他車Tの存在を検知したとき)、第一の警告が発動する。第一の警告は、例えばインジケータランプや液晶パネル等を用いた注意表示である。第一の警告では、自動ブレーキ制御によるブレーキ作動(制動)は行われないが、自動ブレーキ制御による比較的弱いブレーキ作動(制動)が行われてもよい。
 第二フラグが立ったとき(進路変更予測動作を検知したとき、二つのフラグが立ったとき)、第一の警告よりも強い第二の警告(例えば車体の身体接触部分を振動させる等のライダーの触覚に対する警告、および規定以上の強い制動を行う等の車体挙動を発生させる警告)を行うとともに、他車Tの存在が認められる側へのロール(ひいては車線変更)を抑制するべく、アシストステア制御ゲインを調整する。第三の警告では、自動ブレーキ制御による比較的強いブレーキ作動(制動)が行われる。
When the first flag is set (when the presence of another vehicle T is detected in the detection area), the first warning is activated. The first warning is a caution display using, for example, an indicator lamp or a liquid crystal panel. In the first warning, the brake operation (braking) by the automatic brake control is not performed, but the relatively weak brake operation (braking) by the automatic brake control may be performed.
When the second flag is set (when the course change prediction motion is detected, when two flags are set), the second warning (for example, vibrating the body contact part of the vehicle body) is stronger than the first warning. Assist steer to warn the tactile sensation of the vehicle and to generate vehicle body behavior such as braking stronger than specified) and to suppress roll (and lane change) to the side where the presence of another vehicle T is recognized. Adjust the control gain. In the third warning, a relatively strong braking operation (braking) is performed by automatic braking control.
 具体的に、他車Tの存在が認められる側と反対側への逆ハンドル操作が、他車Tの存在が認められる側へのハンドル操作よりも重くなるように、アシストステア制御ゲインを調整する。例えば、高安定化制御では、他車Tの存在が認められる側と反対側への逆ハンドル操作に対してのみ、アシストステア制御ゲインをより高い高安定ゲインに補正し、他車Tの存在が認められる側へのハンドル操作に対しては、アシストトルクTmを減少させる制御を維持する。 Specifically, the assist steering control gain is adjusted so that the reverse steering wheel operation to the side opposite to the side where the presence of the other vehicle T is recognized is heavier than the steering wheel operation to the side where the presence of the other vehicle T is recognized. .. For example, in the high stabilization control, the assist steering control gain is corrected to a higher stable gain only for the reverse steering operation to the side opposite to the side where the presence of the other vehicle T is recognized, and the presence of the other vehicle T is present. For the steering wheel operation to the permitted side, the control to reduce the assist torque Tm is maintained.
 以下の数式1は、ARASの作動または作動警告があることのフラグが立ったときに、操縦性可変のための付与トルクTmsを算出するための式である。式中aは前輪慣性補正係数を示し、(a+FlagARAS×GainARAS)によって前輪プリセッション効果(ジャイロモーメント効果)を増幅する。式中Iwheelは前輪回転慣性、ωwheelは前輪回転角速度、Ωは車体ロールレート、をそれぞれ示す。 The following formula 1 is a formula for calculating the applied torque Tms for variable maneuverability when the flag of ARAS operation or operation warning is set. In the formula, a indicates the front wheel inertia correction coefficient, and the front wheel presession effect (gyro moment effect) is amplified by (a + FlagARAS × GainARAS). In the formula, Iwhere indicates the front wheel rotational inertia, ωwhel indicates the front wheel rotational angular velocity, and Ω indicates the vehicle body roll rate.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図10のグラフを参照し、実施形態の操舵アシストの強さについて説明する。図10のグラフにおいて、縦軸はロールレートに対するアシスト強さ、横軸は車速をそれぞれ示す。
 制御の無い素の自動二輪車1がもつ操縦性は、グラフの横軸に沿うものとなる。これに対し、舵の切れ込み特性を弱める制御(図の領域R1)では、中速域から高速域の間においてアシスト強さをマイナス側に増加させる。これにより、アシストトルクTm全体を減少させて軽快な操縦性に寄与する。
 舵の切れ込み特性を強める制御(図の領域R2)では、中速域から高速域の間においてアシスト強さをプラス側に増加させる。これにより、アシストトルクTm全体を増加させて重厚な操縦性に寄与する。このとき、あたかも前輪2のジャイロモーメントを増加させたような操縦性を得る。
 これらの制御に加えて、アシスト強さをさらにプラス側に増加させる制御(図の領域R3)では、中速域から高速域の間において、領域R2にさらに式3の付与トルクTmsを加える。これにより、アシストトルクTm全体をさらに増加させて、直進性の増加(高安定化制御)に寄与する。
The strength of the steering assist of the embodiment will be described with reference to the graph of FIG. In the graph of FIG. 10, the vertical axis represents the assist strength with respect to the roll rate, and the horizontal axis represents the vehicle speed.
The maneuverability of a plain motorcycle 1 without control is along the horizontal axis of the graph. On the other hand, in the control that weakens the turning characteristic of the rudder (region R1 in the figure), the assist strength is increased to the minus side between the medium speed range and the high speed range. This reduces the entire assist torque Tm and contributes to light maneuverability.
In the control for strengthening the turning characteristic of the rudder (region R2 in the figure), the assist strength is increased to the plus side between the medium speed range and the high speed range. This increases the overall assist torque Tm and contributes to heavy maneuverability. At this time, maneuverability is obtained as if the gyro moment of the front wheel 2 was increased.
In addition to these controls, in the control for further increasing the assist strength to the plus side (region R3 in the figure), the applied torque Tms of Equation 3 is further added to the region R2 between the medium speed range and the high speed range. As a result, the entire assist torque Tm is further increased, which contributes to an increase in straightness (high stabilization control).
 特に、自車M前方に他車T等の障害物を検知して追突軽減ブレーキ(自動ブレーキ制御)を行う際、障害物との相対時間距離(現状速度で規定時間内に進む距離)を制御パラメータとして、自動ブレーキ制御のブレーキ強さを制御する。そして、制御パラメータが予め定めた閾値(第三の閾値t3)を越える場合の強ブレーキ制御時には、制御パラメータが閾値を越えない場合の制御時に比べて、アシストトルクTm全体を増加させて高安定化制御に寄与する。換言すれば、アシストステア制御による挙動安定化制御を強める。 In particular, when an obstacle such as another vehicle T is detected in front of the own vehicle M and collision mitigation braking (automatic brake control) is applied, the relative time distance to the obstacle (distance traveled within the specified time at the current speed) is controlled. As a parameter, the brake strength of automatic brake control is controlled. Then, during strong braking control when the control parameter exceeds a predetermined threshold value (third threshold value t3), the entire assist torque Tm is increased to achieve high stabilization as compared with control when the control parameter does not exceed the threshold value. Contribute to control. In other words, the behavior stabilization control by assist steer control is strengthened.
 このように、ARAS作動時には、ARAS作動の閾値をトリガーにして、自動二輪車1の姿勢制御の向上を優先する制御に移行することができる。特に、CMBSの作動時において、自動ブレーキ制御のブレーキ強さに応じて適切なアシストステア制御を実施することができる。つまり、自動ブレーキ制御のブレーキ強さを複数段階に設定し、強ブレーキ制御を行う状況までは、ブレーキ制御を行わないあるいは弱ブレーキ制御を行う等、運転者のハンドル操作を優先する第二ブレーキ制御を行う。そして、強ブレーキ制御を行う状況では、自動二輪車1の姿勢制御の向上を優先する制御を行うことで、BSIの効果を高めることができる。 In this way, at the time of ARAS operation, it is possible to shift to the control that prioritizes the improvement of the attitude control of the motorcycle 1 by using the threshold value of ARAS operation as a trigger. In particular, when the CMBS is operating, appropriate assist steer control can be performed according to the braking strength of the automatic brake control. In other words, the brake strength of the automatic brake control is set in multiple stages, and until the situation where the strong brake control is performed, the second brake control that gives priority to the driver's steering wheel operation, such as not performing the brake control or performing the weak brake control. I do. Then, in the situation where the strong brake control is performed, the effect of the BSI can be enhanced by performing the control that gives priority to the improvement of the attitude control of the motorcycle 1.
 以上説明したように、上記実施形態における操舵アシスト装置50は、車体(例えば車体フレーム5)をロール方向に揺動させて操舵輪(例えば前輪2)に舵角を発生させる鞍乗り型車両(例えば自動二輪車1)の操舵アシスト装置50である。操舵アシスト装置50は、前輪2を支持する前輪懸架装置3に操舵方向のアシストトルクTmを付与するステアリングアクチュエータ43と、ステアリングアクチュエータ43を駆動制御する制御装置23と、車両周囲の状況を検知する外部検知手段38と、を備えている。
 制御装置23は、運転支援制御を行う際、車体挙動安定性重視の制御に移行する。制御装置23は、ARAS(CMBS、LDW、BSI等)の警告、作動判断閾値情報、または作動中である旨の情報を基に、制御ゲインを変化させる。これにより、ARAS作動時の各状況に応じて、より適切な度合いのアシストステア制御を実施することが可能となり、車両の姿勢制御の向上を図ることができる。
As described above, the steering assist device 50 in the above embodiment is a saddle-riding vehicle (for example, a saddle-riding vehicle) (for example, a body frame 5) that swings in the roll direction to generate a steering angle on the steering wheels (for example, the front wheels 2). It is a steering assist device 50 of a motorcycle 1). The steering assist device 50 includes a steering actuator 43 that applies an assist torque Tm in the steering direction to the front wheel suspension device 3 that supports the front wheels 2, a control device 23 that drives and controls the steering actuator 43, and an external device that detects the situation around the vehicle. The detection means 38 and the like are provided.
When performing driving support control, the control device 23 shifts to control that emphasizes stability of vehicle body behavior. The control device 23 changes the control gain based on the warning of ARAS (CMBS, LDW, BSI, etc.), the operation determination threshold information, or the information indicating that the operation is in progress. As a result, it is possible to carry out an more appropriate degree of assist steer control according to each situation during ARAS operation, and it is possible to improve the attitude control of the vehicle.
 そして、上記操舵アシスト装置50において、制御装置23は、外部検知手段38が自車Mの前方に障害物(他車T)を検知した場合には、運転者の操作によらずブレーキを作動させる自動ブレーキ制御を行うとともに、予め定めた制御パラメータ(相対時間距離)に応じて自動ブレーキ制御のブレーキ強さを制御する。そして、制御パラメータが予め定めた閾値t3を越える場合の強ブレーキ制御時には、制御パラメータが閾値t3を越えない場合の制御時に比べて、アシストステア制御による挙動安定化制御を強める。
 この構成によれば、運転支援システムにより自車M前方の障害物を検知させながら、この障害物検知情報を基に、障害物の接近を検知する場合には自動ブレーキ制御を行う。自動ブレーキ制御によって運転者が意図しないハンドル操作が生じると、車両の挙動が大きくなって安定性に影響を与える。よって自動ブレーキ制御のブレーキ強さを決める制御パラメータが閾値t3を越える場合の強ブレーキ制御時には、制御パラメータが閾値t3を越えない場合の制御時(弱ブレーキ制御時またはブレーキ制御無し時)に比べて、アシストトルクTmを強める等により挙動安定化制御を強める。このように、自動ブレーキ制御のブレーキ強さに応じて適切なアシストステア制御を実施することが可能となり、運転支援システムの効果を高めることができる。
Then, in the steering assist device 50, when the external detection means 38 detects an obstacle (another vehicle T) in front of the own vehicle M, the control device 23 operates the brake regardless of the driver's operation. In addition to performing automatic brake control, the brake strength of automatic brake control is controlled according to a predetermined control parameter (relative time distance). Then, in the case of strong brake control when the control parameter exceeds the predetermined threshold value t3, the behavior stabilization control by the assist steer control is strengthened as compared with the control in the case where the control parameter does not exceed the threshold value t3.
According to this configuration, while the driving support system detects an obstacle in front of the vehicle M, automatic braking control is performed when the approach of the obstacle is detected based on the obstacle detection information. When the driver unintentionally operates the steering wheel due to the automatic brake control, the behavior of the vehicle becomes large and the stability is affected. Therefore, when the control parameter that determines the brake strength of the automatic brake control exceeds the threshold value t3, the strong brake control is performed, as compared with the control when the control parameter does not exceed the threshold value t3 (weak brake control or no brake control). , The behavior stabilization control is strengthened by strengthening the assist torque Tm. In this way, it is possible to carry out appropriate assist steering control according to the braking strength of the automatic brake control, and it is possible to enhance the effect of the driving support system.
 上記操舵アシスト装置50において、制御装置23は、自動ブレーキ制御において複数段階のブレーキ強さおよび各ブレーキ強さに対応する複数の閾値t2,t3を設定し、制御パラメータが第一閾値t2を越えると、相対的に弱い弱ブレーキ制御を行い、制御パラメータが第二閾値t3を越えると、相対的に強い強ブレーキ制御を行うとともに、アシストステア制御による挙動安定化制御を強める。
 この構成によれば、自動ブレーキ制御に複数段階のブレーキ強さおよび閾値が設定される構成において、制御パラメータが第二閾値t3を越える段階の強ブレーキ制御時には、アシストトルクTmを強める等により挙動安定化制御を強める。これにより、運転者の違和感の少ないアシストステア制御を実施することができる。
In the steering assist device 50, the control device 23 sets a plurality of stages of brake strength and a plurality of threshold values t2 and t3 corresponding to each brake strength in automatic brake control, and when the control parameter exceeds the first threshold value t2. , The relatively weak weak brake control is performed, and when the control parameter exceeds the second threshold value t3, the relatively strong strong brake control is performed and the behavior stabilization control by the assist steer control is strengthened.
According to this configuration, in a configuration in which a plurality of stages of brake strength and threshold value are set for automatic brake control, behavior is stabilized by increasing the assist torque Tm during strong brake control at a stage where the control parameter exceeds the second threshold value t3. Strengthen the control of conversion. As a result, it is possible to carry out assist steering control with less discomfort to the driver.
 上記操舵アシスト装置50において、制御装置23は、前記弱ブレーキ制御時には、挙動安定化制御を強めないか、あるいは強ブレーキ制御時よりも弱い出力の範囲で挙動安定化制御を強める。
 この構成によれば、自動ブレーキ制御に複数段階のブレーキ強さおよび閾値が設定される構成において、制御パラメータが第一閾値t2を越える段階の弱ブレーキ制御時には、制御パラメータが第一閾値t2を越えない段階の制御時(ブレーキ制御無し時等)に比べて、挙動安定化制御を強めないか、あるいは、強ブレーキ制御時よりも弱い出力で挙動安定化制御を強める。これにより、強ブレーキ制御まで段階的に挙動安定化制御を強めることが可能となり、運転者の違和感の少ないアシストステア制御を実施することができる。
In the steering assist device 50, the control device 23 does not strengthen the behavior stabilization control during the weak brake control, or strengthens the behavior stabilization control in a range of output weaker than that during the strong brake control.
According to this configuration, in a configuration in which a plurality of stages of brake strength and threshold value are set for automatic brake control, the control parameter exceeds the first threshold value t2 during weak brake control at a stage where the control parameter exceeds the first threshold value t2. The behavior stabilization control is not strengthened as compared with the control at no stage (when there is no brake control, etc.), or the behavior stabilization control is strengthened with a weaker output than when the strong brake control is performed. As a result, it is possible to gradually strengthen the behavior stabilization control up to the strong brake control, and it is possible to carry out the assist steer control with less discomfort to the driver.
 なお、本発明は上記実施形態に限られない。上述の実施例では、例えば、リンク式の前輪懸架装置3を備える車両を例示したがこれに限らない。例えば、前輪懸架装置に周知のテレスコピック式フロントフォークを備える車両であってもよい。
 自動二輪車は、運転者が車体を跨いで乗車する車両に限らず、ステップフロアを有するスクータ型車両や原動機付自転車を含む。自動二輪車に限らず、前輪および前輪懸架装置を、車体フレーム5とともに傾斜させて旋回する、鞍乗り型車両への適用も可能である。
The present invention is not limited to the above embodiment. In the above-described embodiment, for example, a vehicle including the link type front wheel suspension device 3 has been illustrated, but the present invention is not limited to this. For example, the vehicle may be provided with a well-known telescopic front fork in the front wheel suspension system.
Motorcycles are not limited to vehicles in which the driver rides across the vehicle body, but also include scooter-type vehicles having a step floor and motorized bicycles. Not limited to motorcycles, it can also be applied to saddle-riding vehicles in which the front wheels and the front wheel suspension device are tilted and turned together with the vehicle body frame 5.
 鞍乗り型車両には、運転者が車体を跨いで乗車し、かつ車体をロールさせてバランスをとる車両全般が含まれる。自動二輪車のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪の車両も含まれる。ステップフロアを有するスクータ型車両や原動機付自転車も含まれる。原動機に電気モータを含む車両も含まれる。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
The saddle-riding vehicle includes all vehicles in which the driver rides across the vehicle body and rolls the vehicle body to balance the vehicle. Not only motorcycles, but also three-wheeled vehicles (including front two-wheeled and rear one-wheeled vehicles in addition to front one-wheeled and rear two-wheeled vehicles) or four-wheeled vehicles are also included. Includes scooter-type vehicles with step floors and motorbikes. Vehicles that include an electric motor in the prime mover are also included.
The configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention, such as replacing the constituent elements of the embodiment with well-known constituent elements.
 1 自動二輪車(鞍乗り型車両)
 2 前輪(操舵輪)
 3 前輪懸架装置(懸架装置)
 23 制御装置(制御手段)
 38 外部検知手段
 43 ステアリングアクチュエータ
 50 操舵アシスト装置
 Tm アシストトルク
 t2 第二の閾値(第一閾値)
 t3 第三の閾値(第二閾値)
1 Motorcycle (saddle-riding vehicle)
2 Front wheels (steering wheels)
3 Front wheel suspension system (suspension system)
23 Control device (control means)
38 External detection means 43 Steering actuator 50 Steering assist device Tm Assist torque t2 Second threshold value (first threshold value)
t3 Third threshold (second threshold)

Claims (3)

  1.  車体(5)をロール方向に揺動させて操舵輪(2)に舵角を発生させる鞍乗り型車両(1)の操舵アシスト装置(50)において、
     前記操舵輪(2)を支持する懸架装置(3)にアシストトルク(Tm)を付与するステアリングアクチュエータ(43)と、
     前記ステアリングアクチュエータ(43)を駆動制御する制御手段(23)と、
     車両周囲の状況を検知する外部検知手段(38)と、を備え、
     前記制御手段(23)は、前記外部検知手段(38)が自車の前方に障害物を検知した場合には、運転者の操作によらずブレーキを作動させる自動ブレーキ制御を行うとともに、予め定めた制御パラメータに応じて前記自動ブレーキ制御のブレーキ強さを制御し、前記制御パラメータが予め定めた閾値(t3)を越える場合の強ブレーキ制御時には、前記制御パラメータが前記閾値(t3)を越えない場合の制御時に比べて、アシストステア制御による挙動安定化制御を強める、鞍乗り型車両の操舵アシスト装置。
    In the steering assist device (50) of the saddle-riding vehicle (1) that swings the vehicle body (5) in the roll direction to generate a steering angle on the steering wheels (2).
    A steering actuator (43) that applies assist torque (Tm) to the suspension device (3) that supports the steering wheel (2), and
    A control means (23) that drives and controls the steering actuator (43), and
    It is equipped with an external detection means (38) that detects the situation around the vehicle.
    The control means (23) performs automatic brake control that activates the brake regardless of the driver's operation when the external detection means (38) detects an obstacle in front of the own vehicle, and is predetermined. The brake strength of the automatic brake control is controlled according to the control parameter, and the control parameter does not exceed the threshold value (t3) at the time of strong brake control when the control parameter exceeds a predetermined threshold value (t3). A steering assist device for saddle-riding vehicles that strengthens behavior stabilization control by assist steering control compared to when controlling the case.
  2.  前記制御手段(23)は、前記自動ブレーキ制御において複数段階のブレーキ強さおよび各ブレーキ強さに対応する複数の閾値(t2、t3)を設定し、前記制御パラメータが第一閾値(t2)を越えると、相対的に弱い第一ブレーキ制御を行い、前記制御パラメータが第二閾値(t3)を越えると、相対的に強い第二ブレーキ制御を行うとともに、前記アシストステア制御による挙動安定化制御を強める、請求項1に記載の鞍乗り型車両の操舵アシスト装置。 The control means (23) sets a plurality of stages of brake strength and a plurality of threshold values (t2, t3) corresponding to each brake strength in the automatic brake control, and the control parameter sets the first threshold value (t2). When it exceeds, relatively weak first brake control is performed, and when the control parameter exceeds the second threshold value (t3), relatively strong second brake control is performed, and behavior stabilization control by the assist steer control is performed. The steering assist device for a saddle-riding vehicle according to claim 1, which is strengthened.
  3.  前記制御手段(23)は、前記第一ブレーキ制御時には、挙動安定化制御を強めないか、あるいは前記強ブレーキ制御時よりも弱い出力の範囲で挙動安定化制御を強める、請求項2に記載の鞍乗り型車両の操舵アシスト装置。 The control means (23) according to claim 2, wherein the behavior stabilization control is not strengthened at the time of the first brake control, or the behavior stabilization control is strengthened in a range of an output weaker than that at the time of the strong brake control. Steering assist device for saddle-riding vehicles.
PCT/JP2020/036428 2019-09-30 2020-09-25 Steering assistance device for straddle type vehicle WO2021065745A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020004670.2T DE112020004670T5 (en) 2019-09-30 2020-09-25 Steering assist device for a ride-on type vehicle
JP2021551203A JP7262603B2 (en) 2019-09-30 2020-09-25 Steering assist device for saddle type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179928 2019-09-30
JP2019-179928 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065745A1 true WO2021065745A1 (en) 2021-04-08

Family

ID=75338271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036428 WO2021065745A1 (en) 2019-09-30 2020-09-25 Steering assistance device for straddle type vehicle

Country Status (3)

Country Link
JP (1) JP7262603B2 (en)
DE (1) DE112020004670T5 (en)
WO (1) WO2021065745A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436551B2 (en) 2022-03-30 2024-02-21 本田技研工業株式会社 Motorcycle steering control device
WO2024122244A1 (en) * 2022-12-06 2024-06-13 本田技研工業株式会社 Driving assistance device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012903A (en) * 2008-07-02 2010-01-21 Toshio Asaumi Brake control device of motorcycle
JP2016185746A (en) * 2015-03-27 2016-10-27 スズキ株式会社 Travel control device of electric two-wheel vehicle and travel control method thereof
JP2019501053A (en) * 2015-10-27 2019-01-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for controlling steering elements of a two-wheel-powered vehicle without depending on a driver
JP2019026166A (en) * 2017-08-02 2019-02-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control device, vehicle body behavior control system, motorcycle, and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055985A (en) 2006-08-30 2008-03-13 Honda Motor Co Ltd Contact avoidance assistant device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012903A (en) * 2008-07-02 2010-01-21 Toshio Asaumi Brake control device of motorcycle
JP2016185746A (en) * 2015-03-27 2016-10-27 スズキ株式会社 Travel control device of electric two-wheel vehicle and travel control method thereof
JP2019501053A (en) * 2015-10-27 2019-01-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for controlling steering elements of a two-wheel-powered vehicle without depending on a driver
JP2019026166A (en) * 2017-08-02 2019-02-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control device, vehicle body behavior control system, motorcycle, and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436551B2 (en) 2022-03-30 2024-02-21 本田技研工業株式会社 Motorcycle steering control device
WO2024122244A1 (en) * 2022-12-06 2024-06-13 本田技研工業株式会社 Driving assistance device

Also Published As

Publication number Publication date
DE112020004670T5 (en) 2022-06-15
JP7262603B2 (en) 2023-04-21
JPWO2021065745A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7106752B2 (en) Driving support device for saddle type vehicle
WO2019130743A1 (en) Brake device for saddle-type vehicles
JP7285673B2 (en) Attitude control device for saddle type vehicle
WO2021065745A1 (en) Steering assistance device for straddle type vehicle
WO2021065780A1 (en) Steering assistance device for straddle type vehicle
JP7170125B2 (en) Driving support device for saddle type vehicle
WO2020202283A1 (en) Drive assistance device for saddle riding-type vehicle
JP7253422B2 (en) Automatic control device for saddle type vehicle
US20220161788A1 (en) Driving support device of saddle-riding type vehicle
JP6967092B2 (en) Motorcycle
CN113631471B (en) Driving support device for saddle-ride type vehicle
WO2021065671A1 (en) Saddle-type vehicle
DE102020125067B4 (en) STEERING ASSISTANCE DEVICE FOR A SEMI-TRAIL TYPE VEHICLE
JPWO2021065671A5 (en) Saddle-type vehicle
US20220371676A1 (en) Saddle-riding vehicle
JP6964151B2 (en) Motorcycle
WO2020202264A1 (en) Driving assistance device for saddle-type vehicle
JP2021112937A (en) Saddle-riding type vehicle
WO2022137819A1 (en) Vehicle
JP7138611B2 (en) Vehicle contact avoidance support device, vehicle contact avoidance support control method, and vehicle contact avoidance support program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870619

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021551203

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20870619

Country of ref document: EP

Kind code of ref document: A1