WO2021065731A1 - Sealed light control element with surface protection film - Google Patents

Sealed light control element with surface protection film Download PDF

Info

Publication number
WO2021065731A1
WO2021065731A1 PCT/JP2020/036326 JP2020036326W WO2021065731A1 WO 2021065731 A1 WO2021065731 A1 WO 2021065731A1 JP 2020036326 W JP2020036326 W JP 2020036326W WO 2021065731 A1 WO2021065731 A1 WO 2021065731A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface protective
film
protective film
transparent conductive
pdlc
Prior art date
Application number
PCT/JP2020/036326
Other languages
French (fr)
Japanese (ja)
Inventor
雅徳 大塚
晃宏 澁谷
平井 真理子
武本 博之
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080068343.5A priority Critical patent/CN114503024A/en
Priority to KR1020227008175A priority patent/KR20220074862A/en
Publication of WO2021065731A1 publication Critical patent/WO2021065731A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate

Definitions

  • the present invention relates to a sealed dimming element with a surface protective film.
  • a dimming element (hereinafter, also referred to as a PDLC element) including a pair of transparent conductive films and a polymer-dispersed liquid crystal layer arranged between them, the end face thereof is intended to prevent leakage of the liquid crystal and improve durability.
  • a sealing structure may be provided (for example, Patent Document 1 and Patent Document 2).
  • the PDLC element is shipped with a surface protective film provided on its surface in order to prevent scratches and stains, and can be used after the surface protective film has been peeled off by the user.
  • a long surface protective film is attached to the surface of the long PDLC element by a roll-to-roll process, and then the surface is cut to a desired size and then sealed.
  • a sealing structure is also formed on the end face of the protective film.
  • the present invention has been made to solve the above problems, and a main object thereof is a sealing PDLC element with a surface protective film having a sealing layer on the end face, and the residue of the sealing layer is a PDLC element. It is an object of the present invention to provide a PDLC element capable of peeling off a surface protective film without remaining on the surface.
  • the present inventors did not find a sufficient effect in examining the composition of the resin or the like used for the encapsulant, and also found that the base material and the adhesiveness of the surface protective film were not sufficiently effective. It has been found that reducing the thickness of the agent layer does not greatly prevent burrs and debris, but causes a problem of floating of the surface protective film. Therefore, as a result of further studies by the present inventors, the surface protective film is made into PDLC by designing the thickness of the sealing layer, the thickness of the base material of the surface protective film, and the thickness of the PDLC element to satisfy a specific relationship.
  • the first transparent conductive film, the second transparent conductive film arranged so as to face the first transparent conductive film, and the first transparent conductive film.
  • a dimming element comprising a transparent conductive film and a polymer-dispersed liquid crystal layer disposed between the second transparent conductive film; provided on one side of the base material and the base material.
  • a surface protective film provided with an adhesive layer and laminated on at least one main surface of the dimming element via the adhesive layer; a seal provided on the end face of the dimming element and the surface protective film.
  • the thickness of the sealing layer is a ( ⁇ m)
  • the thickness of the base material of the surface protective film is b ( ⁇ m)
  • the thickness of the dimming element is c ( ⁇ m).
  • a sealed dimming element with a surface protective film that satisfies all of (1) to (3) is provided.
  • the first transparent conductive film and the second transparent conductive film each have a transparent base material and a transparent electrode layer provided on one side of the transparent base material. ..
  • the sealing layer comprises a resin having a breaking elongation of 5% to 30% when molded into a film having a thickness of 50 ⁇ m.
  • a part of the end face of the sealing dimming element with a surface protective film is an exposed portion not provided with a sealing layer.
  • it is a laminated body in which two or more sealing dimming elements with a surface protective film are laminated, and the sealing layer is integrally formed on the end face of the laminated body. The laminate is provided.
  • the sealing layer coagulates and breaks when the surface protective film is peeled off, and the sealing layer is formed. A condition was found in which no residue remained. Therefore, according to the present invention, it is possible to provide a sealed PDLC element with a surface protective film capable of peeling off the surface protective film without leaving the residue of the sealing layer on the end face of the PDLC element.
  • FIG. 1A is a schematic cross-sectional view of a sealed PDLC element with a surface protective film according to one embodiment of the present invention
  • FIG. 1B is a sealing with a surface protective film shown in FIG. 1A
  • It is a schematic top view of a PDLC element.
  • It is a schematic top view of an example of a sealed PDLC element with a surface protective film having an exposed portion.
  • It is the schematic explaining the manufacturing method of the sealing PDLC element with the surface protection film by one Embodiment.
  • It is a figure which shows the relationship between the peeling state and each parameter at the time of peeling the surface protection film in the sealing PDLC element with the surface protection film of an Example and a comparative example.
  • It is the schematic explaining the problem which may occur when the surface protection film is peeled off from the sealing PDLC element with a surface protection film.
  • FIG. 1 (a) is a schematic cross-sectional view of the sealed PDLC device with a surface protective film according to one embodiment of the present invention
  • FIG. 1 (b) is FIG. It is a schematic top view of the sealed PDLC element with a surface protective film shown in (a).
  • the sealed PDLC element 100a with a surface protective film includes a first transparent conductive film 11, a second transparent conductive film 12 arranged so as to face the first transparent conductive film 11, and a first transparent conductive film 12.
  • a PDLC element 10 including a polymer-dispersed liquid crystal layer 13 arranged between the transparent conductive film 11 and the second transparent conductive film 12; on one side of the base material 21 and the base material 21.
  • the surface protective films 20a and 20b provided with the pressure-sensitive adhesive layer 22 and laminated (bonded) on both main surfaces of the PDLC element 10 via the pressure-sensitive adhesive layer 22; the PDLC element 10 and the surface protection It has a sealing layer 30 provided on the entire surface of the end faces of the films 20a and 20b;
  • either one of the surface protective films 20a and 20b may be omitted depending on the purpose.
  • an antifouling film for preventing stains and scratches may be further provided on the outermost surface of the sealed PDLC element 100a with a surface protective film, for example, until shipment.
  • the sealing layer may also be provided so as to cover the end face of the antifouling film.
  • the thickness of the sealing layer 30 (indicated by the reference numeral “t” in FIG. 1 (b)) is a ( ⁇ m), and the base materials 21 of the surface protective films 20a and 20b.
  • a, b, and c satisfy all the relational expressions (1) to (3) (however, of the surface protective film 20a).
  • the base material thickness and the base material thickness of the surface protective film 20b are different, all the relational expressions (1) to (3) are satisfied for each base material thickness).
  • the thickness (a: ⁇ m) of the sealing layer 30, the thickness (b: ⁇ m) of the base material 21 of the surface protective films 20a and 20b, and the thickness (c: ⁇ m) of the PDLC element 10 are the relational expressions (1) to (1) to (1).
  • the breaking force of the sealing layer is appropriately reduced due to the thinning of the sealing layer and the thickening of the surface protective film base material, and the sealing layer and the surface protective film are combined. Adhesion can be moderately increased. As a result, the surface protective film can be peeled off from the PDLC element without leaving the sealing layer in the state of burrs or debris on the surface of the PDLC element and without causing the problem of sealing removal.
  • the thickness of the sealing layer 30 (a: ⁇ m), the thickness of the base material 21 of the surface protective films 20a and 20b (b: ⁇ m), and the thickness of the PDLC element 10 (c: ⁇ m) are preferably the relational expression (1').
  • any one of the relational expressions (1') to (3') is satisfied, more preferably any two are satisfied, and further preferably all are satisfied).
  • the sealed PDLC element with a surface protective film may have a part of its end face as an exposed portion without a sealing layer. Since the exposed portion can function as a trigger for peeling, the operability when peeling the surface protective film from the PDLC element can be improved.
  • FIG. 2 is a schematic top view of an example of a sealed PDLC element with a surface protective film having an exposed portion.
  • the sealed PDLC element 100b with a surface protective film has take-out electrode portions 112 and 114 for applying a driving voltage to the rectangular PDLC element main body (main body portion functioning as a PDLC element) 110 and the PDLC element main body 110 in a top view.
  • the sealing layer 30 is provided on the outer peripheral end faces excluding the take-out electrode portions 112 and 114.
  • the take-out electrode portion 112 is formed by extending a part of the first transparent conductive film constituting the PDLC element main body 110 outward from the main body 110, and the take-out electrode portion 114 is a PDLC element.
  • the exposed portion may be provided at any appropriate location other than the take-out electrode portion.
  • the end faces of one or more corners of the sealed PDLC element with a surface protective film formed in a rectangular shape in top view can be used as an exposed portion.
  • the PDLC element includes a first transparent conductive film, a second transparent conductive film arranged so as to face the first transparent conductive film, the first transparent conductive film, and the like. It includes a polymer-dispersed liquid crystal layer arranged between the second transparent conductive film.
  • the degree of light diffusion (as a result, haze) changes according to the application of voltage.
  • a case where the haze of the PDLC element is equal to or more than a predetermined value (for example, 30% or more, preferably 50% or more) is set as a scattering state, and the haze is less than a predetermined value (for example, less than 30%, preferably less than 30%). Is 15% or less, more preferably 10% or less), which can be said to be a transparent state.
  • the voltage (driving voltage) applied to the PDLC element to control the degree of light diffusion is, for example, 100 V or less, preferably 50 V or less.
  • the thickness of the PDLC element is set within a range satisfying the above formula (1).
  • the thickness of the PDLC element is, for example, 30 ⁇ m to 250 ⁇ m, preferably 50 ⁇ m to 200 ⁇ m.
  • the first transparent conductive film typically includes a first transparent substrate and a first transparent electrode layer provided on one side of the first transparent substrate.
  • the first transparent electrode layer is arranged so as to be on the polymer-dispersed liquid crystal layer side.
  • the first transparent conductive film may further have an arbitrary appropriate functional layer (refractive index adjusting layer, antireflection layer, hard coat layer, etc.) depending on the purpose.
  • the surface resistance value of the first transparent conductive film is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and even more preferably 1 ⁇ / ⁇ to 200 ⁇ . / ⁇ .
  • the haze value of the first transparent conductive film is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 10%.
  • the total light transmittance of the first transparent conductive film is preferably 30% or more, more preferably 60% or more, and further preferably 80% or more.
  • the first transparent electrode layer can be formed by using, for example, a metal oxide such as indium tin oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO 2).
  • the metal oxide may be an amorphous metal oxide or a crystallized metal oxide.
  • the first transparent electrode layer may be formed of metal nanowires such as silver nanowires (AgNW), carbon nanotubes (CNTs), organic conductive films, metal layers or laminates thereof.
  • the first transparent electrode layer can be patterned into a desired shape depending on the purpose.
  • the thickness of the first transparent electrode layer is preferably 0.01 ⁇ m to 0.10 ⁇ m, and more preferably 0.01 ⁇ m to 0.045 ⁇ m.
  • the first transparent electrode layer can be typically provided on one surface of the first transparent substrate by using a method such as sputtering.
  • the first transparent substrate is formed from any suitable material. Specifically, a glass base material or a polymer base material is preferably used, and a polymer base material is more preferable.
  • the polymer base material is typically a polymer film containing a thermoplastic resin as a main component.
  • the thermoplastic resin include cycloolefin resins such as polynorbornene; acrylic resins; polyester resins such as polyethylene terephthalate resins; polycarbonate resins; cellulose resins and the like. Of these, cycloolefin-based resins or polyethylene terephthalate-based resins can be preferably used.
  • the above-mentioned thermoplastic resin may be used alone or in combination of two or more kinds.
  • the thickness of the first transparent substrate is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 80 ⁇ m.
  • the second transparent conductive film typically includes a second transparent substrate and a second transparent electrode layer provided on one side of the second transparent substrate.
  • the second transparent electrode layer is arranged so as to be on the polymer-dispersed liquid crystal layer side.
  • the second transparent conductive film may further have an arbitrary appropriate functional layer (refractive index adjusting layer, antireflection layer, hard coat layer, etc.) depending on the purpose.
  • the surface resistance value of the second transparent conductive film is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and even more preferably 1 ⁇ / ⁇ to 200 ⁇ . / ⁇ .
  • the haze value of the second transparent conductive film is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 10%.
  • the total light transmittance of the second transparent conductive film is preferably 30% or more, more preferably 60% or more, and further preferably 80% or more.
  • the same description as for the first transparent electrode layer and the first transparent base material can be applied to the second transparent electrode layer and the second transparent base material, respectively.
  • the first transparent conductive film and the second transparent conductive film may have the same configuration or different configurations.
  • the polymer-dispersed liquid crystal (PDLC) layer typically has a structure in which a liquid crystal compound is dispersed in a resin matrix.
  • the degree of scattering of transmitted light is changed through a change in the degree of orientation of the liquid crystal compound corresponding to the amount of voltage applied, whereby the transparent state and the scattered state can be switched.
  • the PDLC layer becomes transparent when a voltage is applied, and becomes a scattered state when no voltage is applied (normal mode).
  • the liquid crystal compound when no voltage is applied, the liquid crystal compound is not oriented, so that it is in a scattered state.
  • the voltage is applied, the liquid crystal compound is oriented and the refractive index of the liquid crystal compound and the refractive index of the resin matrix are aligned. , Becomes transparent.
  • the PDLC layer becomes a scattered state when a voltage is applied, and becomes a transparent state when a voltage is not applied (reverse mode).
  • the alignment film provided on the surface of the transparent electrode layer causes the liquid crystal compound to be oriented and becomes transparent when no voltage is applied, and the orientation of the liquid crystal compound is disturbed by the application of voltage to cause a scattered state.
  • any suitable non-polymerized liquid crystal compound is used.
  • nematic type, smectic type, and cholesteric type liquid crystal compounds can be mentioned. From the viewpoint of achieving excellent transparency in the transmission mode, it is preferable to use a nematic liquid crystal compound.
  • the nematic liquid crystal compound include biphenyl compounds, phenylbenzoate compounds, cyclohexylbenzene compounds, azoxybenzene compounds, azobenzene compounds, azomethine compounds, terphenyl compounds, biphenylbenzoate compounds, and cyclohexylbiphenyl compounds. , Phenylpyridine compounds, cyclohexylpyrimidine compounds, cholesterol compounds and the like.
  • the content ratio of the liquid crystal compound in the PDLC layer is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 35% by weight or more, still more preferably 40% by weight or more.
  • the content ratio is, for example, 90% by weight or less, preferably 70% by weight or less.
  • the resin forming the resin matrix can be appropriately selected depending on the light transmittance, the refractive index of the liquid crystal compound, the adhesion to the transparent conductive film, and the like.
  • water-soluble resins such as urethane resins, polyvinyl alcohol resins, polyethylene resins, polypropylene resins, acrylic resins, water-dispersible resins and liquid crystal polymers, (meth) acrylic resins, silicone resins, epoxy resins.
  • Fluorine-based resin, polyester-based resin, polyimide resin and other curable resins can be mentioned.
  • the content ratio of the matrix-forming resin in the PDLC layer is, for example, 90% by weight or less, preferably 70% by weight or less, more preferably 65% by weight or less, and further preferably 60% by weight or less.
  • the content ratio is, for example, 10% by weight or more, preferably 30% by weight or more.
  • the thickness of the PDLC layer is, for example, 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the lower limit of the thickness of the PDLC layer can be, for example, 5 ⁇ m.
  • the PDLC layer can be made by any suitable method. Specific examples include methods for producing an emulsion method and a phase separation method.
  • the method for producing an emulsion-type PDLC layer is, for example, to form a coating layer by applying an emulsion coating liquid containing a matrix-forming resin and a liquid crystal compound to the transparent electrode layer surface of one of the transparent conductive films. , And drying the coating layer to form a resin matrix on the matrix-forming resin.
  • the emulsion coating liquid is preferably an emulsion containing a mixed solution of a matrix-forming resin and a coating solvent in a continuous phase and a liquid crystal compound in a dispersed phase.
  • the method for producing a phase-separated PDLC layer is, for example, a coating layer in which a coating liquid containing a radiation-curable matrix-forming resin and a liquid crystal compound is applied to the transparent electrode layer surface of one of the transparent conductive films.
  • the resin matrix is formed by forming a laminate by laminating the other transparent conductive film on the coating layer, and irradiating the laminate with radiation to polymerize the matrix-forming resin. Including phase separation from the liquid crystal compound, which gives a PDLC element.
  • the coating liquid is preferably in a uniform phase state. Alternatively, a coating liquid may be filled between the first transparent conductive film and the second transparent conductive film laminated via a spacer, and then phase separation by irradiation may be performed.
  • the surface protective film comprises a base material and an adhesive layer provided on one side of the base material.
  • the surface protective film is provided to prevent scratches and stains on the surface of the PDLC element, and is usually peeled off and removed before the PDLC element is used.
  • surface protective films are provided on both sides of the PDLC element, surface protective films having the same configuration may be used, or surface protective films having different configurations may be used.
  • the thickness of the surface protective film is, for example, 15 ⁇ m to 200 ⁇ m, preferably 30 ⁇ m to 150 ⁇ m.
  • Examples of the material for forming the base material include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and co-weights thereof. Examples include resin. An ester resin (particularly, a polyethylene terephthalate resin) is preferable.
  • the thickness of the base material is set within a range that satisfies the above formulas (2) and (3).
  • the thickness of the base material is, for example, more than 10 ⁇ m and less than 150 ⁇ m, preferably 30 ⁇ m to 130 ⁇ m, and more preferably 30 ⁇ m to 100 ⁇ m.
  • the base material thickness of the surface protective film is within the above range, problems such as sealing can be prevented, and the surface protective film can be suitably peeled from the PDLC element.
  • the pressure-sensitive adhesive layer is formed by any suitable pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition include pressure-sensitive adhesive compositions using (meth) acrylic polymers, silicone-based polymers, polyesters, polyurethanes, polyamides, polyethers, fluorine-based polymers, rubber-based polymers, and the like as base polymers. .. Among them, an acrylic pressure-sensitive adhesive composition using an acrylic polymer as a base polymer is preferable from the viewpoint of transparency, weather resistance, heat resistance and the like.
  • the thickness of the pressure-sensitive adhesive layer is, for example, 3 ⁇ m to 100 ⁇ m, preferably 4 ⁇ m to 80 ⁇ m, and more preferably 5 ⁇ m to 60 ⁇ m.
  • the sealing layer is provided on the end faces of the PDLC element and the surface protective film for the purpose of preventing leakage of the liquid crystal compound, improving durability, and the like.
  • an organic material can be used as the material for forming the sealing layer.
  • the organic material include curing of UV curable resin (for example, UV curable acrylic resin), thermocurable resin (for example, thermocurable urethane resin, acrylic resin, urethane acrylic resin and a mixture thereof). Mold resin can be mentioned.
  • the curable resin a curable resin similar to the resin for forming the resin matrix of the PDLC layer can be used.
  • an organic material that can be formed by vapor deposition (including vapor deposition polymerization) can also be used.
  • Examples of such an organic material include a dimer (di-p-xylene) capable of forming a parylene film by vapor deposition polymerization, a monomer capable of forming a polyurethane film (diol and diisocyanate), and a monomer capable of forming a polyimide film (diamine). And acid anhydride), monomers capable of forming a polyurea film (diamine and diisocyanate), and the like.
  • a vapor-deposited film is used, a highly dense sealing layer can be obtained.
  • an inorganic material can be used as the material for forming the sealing layer.
  • the inorganic material include metals such as zinc, aluminum, titanium, copper and magnesium, or oxides of metalloids such as silicon, bismuth and germanium, nitrides, carbides, nitride oxides, carbide oxides, carbide nitrides and oxides. Carbide nitride and the like can be mentioned.
  • the sealing layer may be formed by using a resin containing an inorganic material such as inorganic fine particles, or may include a laminated structure of a resin layer and an inorganic layer.
  • the sealing layer is typically obtained by applying a material for forming the sealing layer (for example, a composition containing the above-mentioned curable resin and / or inorganic material) to the end face of a PDLC element with a surface protective film and curing the sealing layer.
  • a material for forming the sealing layer for example, a composition containing the above-mentioned curable resin and / or inorganic material
  • the coating method include spray coating, dispenser coating, brush coating, screen printing, dipping, and vapor deposition.
  • the resin composition containing the curable resin can contain a polymerization initiator (for example, "Irgacure TPO” manufactured by BASF), if necessary.
  • a silane coupling agent for example, "KBM903” manufactured by Shinetsu Silicone Co., Ltd.
  • an adhesion auxiliary agent for example, "KAYAMER® PM-2” manufactured by Nippon Kayaku Co., Ltd.
  • the thickness of the sealing layer is set within a range satisfying the above formulas (1) and (3).
  • the thickness of the sealing layer when formed of an organic material is, for example, 2 ⁇ m to 50 ⁇ m, preferably 3 ⁇ m to 40 ⁇ m, and more preferably 4 ⁇ m to 30 ⁇ m.
  • the thickness thereof may be preferably 0.05 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 1 ⁇ m.
  • the thickness of the sealing layer when formed of an inorganic material is, for example, 0.1 ⁇ m to 5 ⁇ m, preferably 0.2 ⁇ m to 3 ⁇ m, and more preferably 0.2 ⁇ m to 2 ⁇ m.
  • the breaking elongation of the material forming the sealing layer (the breaking elongation of the film obtained by forming the material forming the sealing layer to a thickness of 50 ⁇ m) is not particularly limited as long as the effect of the present invention can be obtained.
  • the lower limit is usually 1% or more, while the upper limit is usually 30% or less.
  • the upper limit of the elongation at break is preferably 20% or less, more preferably 10% or less.
  • the lower limit of the elongation at break is preferably 5% or more.
  • the elongation at break of the material forming the sealing layer is measured by the following procedure.
  • an aqueous solution of the resin composition forming the sealing layer is prepared, applied on a polyester film that has undergone a mold release treatment, and allowed to stand at room temperature for 1 hour. , 70 ° C. for 3 hours to prepare a resin film having a thickness of 50 ⁇ m.
  • a film sample having a width of 10 mm and a length of 50 mm is cut out from the resin film.
  • Autograph AGS-X manufactured by Shimadzu Corporation
  • a tensile test is performed at a chuck distance of 30 mm and a tensile speed of 200 mm / min, and the elongation at break is measured.
  • the material forming the sealing layer is a fat-soluble resin
  • a solution of the resin composition is prepared using an arbitrary organic solvent
  • a resin film is prepared in the same manner as described above.
  • the material forming the sealing layer is an energy active ray-curable resin such as an ultraviolet curable resin
  • a solution of an arbitrary energy active ray curable resin is prepared, applied on a polyester film, and the energy active ray such as ultraviolet irradiation is applied. Is irradiated to prepare a resin film.
  • a film having a thickness of 50 ⁇ m may be formed by any other method such as thin film deposition. The elongation at break can be measured for these films in the same manner as described above.
  • the sealed PDLC device with a surface protective film according to Item A can be manufactured by any suitable manufacturing method.
  • the method for manufacturing a sealed PDLC element with a surface protective film is a roll-to-roll method in which a long surface protective film is attached to one or both surfaces of a long PDLC element.
  • a PDLC element with a long surface protective film is obtained, a PDLC element with a long surface protective film is cut into a desired shape to obtain a single-wafer-shaped PDLC element with a surface protective film, and a sheet is obtained.
  • the end face of the PDLC element with a surface protective film before forming the sealing layer may be surface-treated.
  • the surface treatment it is possible to reduce the surface tension of the treated surface, remove minute foreign substances (for example, organic substances), and smooth the treated surface.
  • the end face of the PDLC element and the sealing layer Adhesion strength can be improved.
  • Examples of such a surface treatment include coating of an easily adhesive material, UV ozone treatment, plasma treatment and the like.
  • the sealing layer may be formed individually for the PDLC element with a surface protective film cut into a desired shape, or may be collectively performed for a laminate of a plurality of PDLC elements with a surface protective film. Good.
  • FIG. 3 is a schematic view illustrating an example of a manufacturing method in which a sealing layer is collectively formed on a laminated body of PDLC elements with a surface protective film.
  • long surface protective films 20a and 20b are attached to both sides of a long PDLC element 10 in a roll-to-roll manner to provide a long surface protective film.
  • a PDLC element 50 (bonding), cutting a long PDLC element 50 with a surface protective film into a desired shape to obtain a single-wafer-shaped PDLC element 50a with a surface-protecting film (punching), single-wafer-shaped
  • a plurality of PDLC elements 50a with a surface protective film are laminated to obtain a laminated body 50b (manufacturing of a laminated body), a sealing layer 60 is integrally formed on the end face of the laminated body 50b (sealing treatment), and This includes separating the laminate 50c on which the sealing layer is formed into individual sealing PDLC elements 100 with a surface protective film (single-waving).
  • the sealing layer 60 is formed on the entire surface of the end face of the laminated body 50b, but unlike the illustrated example, a part of the end face of the laminated body 50b (for example, the end face of the take-out electrode portion) is formed. It may be an exposed portion without forming a sealing layer.
  • the sealing layer is a laminated body of the laminated body.
  • a method of separating the laminated body 50c (which is continuously formed in the direction) into individual sealed PDLC elements 100 with a surface protective film for example, a release tool such as a spatula is attached to an adjacent sealed PDLC element with a surface protective film. Examples include inserting the device between the devices to separate the device, and peeling the sealed PDLC element with a surface protective film from the adjacent device to separate the device by using the exposed portion as a trigger.
  • the number of single-wafer-shaped PDLC elements 50a with a surface protective film contained in the laminate 50b is not limited as long as the effects of the present invention can be obtained, and is preferably 3 or more, more preferably 10 to 200, still more preferably 50. It can be up to 100.
  • the sealing layer on the laminated body 50b for example, surface treatment is arbitrarily applied to the entire surface of the end face of the laminated body 50b or a portion excluding the exposed portion, and then the material for forming the sealing layer (for example, the cured type). It can be done by applying a resin and / or a composition containing an inorganic or organic material) and curing if necessary.
  • the coating method include the coating methods exemplified in Section A-4, and among them, spray coating or vapor deposition is preferable.
  • Example 1 Manufacturing of PDLC element
  • ITO layer transparent electrode layer with a thickness of 0.08 ⁇ m is formed on one surface of a transparent base material (norbornene resin film (manufactured by Zeon Corporation, product name "ZF-16"), thickness: 40 ⁇ m) by a sputtering method. Then, it was annealed at 150 ° C. and crystallized. In this way, first and second transparent conductive films having a structure of [COP base material / transparent electrode layer] were obtained.
  • a UV curable resin manufactured by Norland
  • 60 parts (solid content) was applied to form a coating layer.
  • a second transparent conductive film was laminated on the coating layer so that the transparent electrode layer faces the coating layer.
  • the obtained laminate was irradiated with ultraviolet rays to cure the UV curable resin, thereby forming a PDLC layer having a thickness of 20 ⁇ m.
  • a PDLC device thickness 100 ⁇ m
  • a surface protective film (manufactured by Nitto Denko KK, product name "RP207") having a PET-based resin base material (38 ⁇ m) and an acrylic adhesive layer (21 ⁇ m) provided on one side of the PET-based resin base material (38 ⁇ m) is bonded to both sides of the PDLC element.
  • a PDLC device with a surface protective film was obtained.
  • a resin composition for forming a sealing layer was applied to the entire surface of the end face of the PDLC element with a surface protective film, and the resin composition was cured by heating and drying at 70 ° C. for 3 hours to form a sealing layer having a thickness of 10 ⁇ m.
  • the coating liquid of the resin composition for forming the sealing layer the breaking elongation of the film formed by forming the acrylic resin emulsion aqueous solution, the polyolefin resin and the isocyanate-based curing agent so as to have a thickness of 50 ⁇ m is 10%.
  • the breaking elongation of the film formed by forming the acrylic resin emulsion aqueous solution, the polyolefin resin and the isocyanate-based curing agent so as to have a thickness of 50 ⁇ m is 10%.
  • Examples 2 to 8, Comparative Examples 1 to 5 A sealed PDLC device with a surface protective film was obtained in the same manner as in Example 1 except that the substrate thickness of the PDLC element, the sealing layer and / or the surface protective film was changed as shown in Table 1.
  • Example 9 Manufacturing of PDLC element
  • a PDLC device (thickness 100 ⁇ m) was obtained in the same manner as in Example 1.
  • a surface protective film having a PET-based resin base material (30 ⁇ m) and an acrylic pressure-sensitive adhesive layer (10 ⁇ m) provided on one side of the PET-based resin base material (30 ⁇ m) was bonded to both sides of the PDLC element to obtain a PDLC element with a surface-protected film.
  • Saling process The entire surface of the end face of the PDLC element with the surface protection film was subjected to plasma treatment.
  • a parylene coating layer (sealing layer) having a thickness of 5 ⁇ m was formed on the plasma-treated surface by a vacuum vapor deposition method using a parylene raw material (manufactured by Kisco, product name “dixC”).
  • Example 6 A sealed PDLC element with a surface protective film was obtained in the same manner as in Example 9 except that the thickness of the sealing layer was 15 ⁇ m.
  • the surface protective film is preferably removed from the PDLC element without leaving the residue of the sealing layer on the surface of the PDLC element. Can be peeled off.
  • the sealed dimming element with a surface protective film of the present invention is suitably used for a display device having a dimming function, an optical member having an optical shutter function, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a sealed PDLC element with a surface protection film having a sealing layer on an end surface thereof, in which the surface protection film can be peeled off without a residue of the sealing layer remaining on the end surface of the PDLC element. This sealed light control element with a surface protection film comprises: a light control element including a first transparent conductive film, a second transparent conductive film that is disposed so as to oppose the first transparent conductive film, and a polymer-dispersed liquid crystal layer that is disposed between the first transparent conductive film and the second transparent conductive film; a surface protection film including a substrate and an adhesive layer provided to one side of the substrate, the surface protection film being layered via the adhesive layer onto at least one of the primary surfaces of the light control element; and a sealing layer that is provided to an end surface of the light control element and the surface protection film. If the thickness of the sealing layer is a (μm), the substrate thickness of the surface protection film is b (μm), and the thickness of the light control element is c (μm), all of the following relationships (1) to (3) are satisfied. a<0.3c (1) 10<b<150 (2) a<0.4b (3)

Description

表面保護フィルム付き封止調光素子Sealed dimming element with surface protective film
 本発明は、表面保護フィルム付き封止調光素子に関する。 The present invention relates to a sealed dimming element with a surface protective film.
 一対の透明導電性フィルムとその間に配置された高分子分散型液晶層とを備える調光素子(以下、PDLC素子とも称する)においては、液晶の漏洩防止、耐久性向上等を目的として、端面に封止構造が設けられる場合がある(例えば、特許文献1、特許文献2)。 In a dimming element (hereinafter, also referred to as a PDLC element) including a pair of transparent conductive films and a polymer-dispersed liquid crystal layer arranged between them, the end face thereof is intended to prevent leakage of the liquid crystal and improve durability. A sealing structure may be provided (for example, Patent Document 1 and Patent Document 2).
 PDLC素子の製造においては、ロール・トゥ・ロールプロセスで作製した大面積の長尺状PDLC素子を所望のサイズに切断することが多く、この場合、所望のサイズへの切断後に端面を封止することが必要となる。 In the manufacture of PDLC devices, large-area long PDLC devices manufactured by a roll-to-roll process are often cut to a desired size, and in this case, the end face is sealed after cutting to the desired size. Is required.
 また、PDLC素子は、傷や汚れ防止のために、その表面に表面保護フィルムが設けられた状態で出荷され、使用者によって表面保護フィルムが剥離された後に使用に供され得る。この場合、ロール・トゥ・ロールプロセスで長尺状のPDLC素子表面に長尺状の表面保護フィルムを貼り合せた後に、所望のサイズへの切断、次いで、封止処理が行われることから、表面保護フィルムの端面にも封止構造が形成される。 Further, the PDLC element is shipped with a surface protective film provided on its surface in order to prevent scratches and stains, and can be used after the surface protective film has been peeled off by the user. In this case, a long surface protective film is attached to the surface of the long PDLC element by a roll-to-roll process, and then the surface is cut to a desired size and then sealed. A sealing structure is also formed on the end face of the protective film.
特開2002-6342号公報JP-A-2002-6342 特開2017-97221号公報JP-A-2017-97221
 本発明者らは、図5に示すように、端面に封止層を有する表面保護フィルム付き封止PDLC素子200に関して、表面保護フィルム20をPDLC素子10から剥離する際に、表面保護フィルム20の端面に存在する封止層30の残滓がバリやカスの状態でPDLC素子10の表面に残存する問題が生じることを見出した。 As shown in FIG. 5, regarding the sealed PDLC element 200 with a surface protective film having a sealing layer on the end face, the present inventors of the surface protective film 20 when peeling the surface protective film 20 from the PDLC element 10. It has been found that the residue of the sealing layer 30 existing on the end face has a problem of remaining on the surface of the PDLC element 10 in the state of burrs and debris.
 本発明は、上記課題を解決するためになされたものであり、その主たる目的は、端面に封止層を有する表面保護フィルム付き封止PDLC素子であって、封止層の残滓がPDLC素子の表面に残存することなく、表面保護フィルムを剥離可能なPDLC素子を提供することにある。 The present invention has been made to solve the above problems, and a main object thereof is a sealing PDLC element with a surface protective film having a sealing layer on the end face, and the residue of the sealing layer is a PDLC element. It is an object of the present invention to provide a PDLC element capable of peeling off a surface protective film without remaining on the surface.
 本発明者らは、上記課題を解決すべく試行錯誤を重ねたところ、封止材に用いられる樹脂等の組成の検討では十分な効果が見られず、また、表面保護フィルムの基材や粘着剤層の厚みを薄くすることでは、バリやカスを大きく防ぐことはできない一方で、表面保護フィルムの浮きの問題が生じることが分かった。そこで、本発明者らがさらに検討を進めたところ、封止層の厚み、表面保護フィルムの基材厚みおよびPDLC素子の厚みが特定の関係を満たすように設計することにより、表面保護フィルムをPDLC素子から剥離する際に、バリやカスの発生を良好に抑制でき、さらには、PDLC素子の端面から封止層が剥離すること(図5の「封止取られ」)を防止できることを見出し、本発明を完成するに至った。 As a result of repeated trial and error in order to solve the above problems, the present inventors did not find a sufficient effect in examining the composition of the resin or the like used for the encapsulant, and also found that the base material and the adhesiveness of the surface protective film were not sufficiently effective. It has been found that reducing the thickness of the agent layer does not greatly prevent burrs and debris, but causes a problem of floating of the surface protective film. Therefore, as a result of further studies by the present inventors, the surface protective film is made into PDLC by designing the thickness of the sealing layer, the thickness of the base material of the surface protective film, and the thickness of the PDLC element to satisfy a specific relationship. We have found that the generation of burrs and debris can be satisfactorily suppressed when peeling from the element, and that the sealing layer can be prevented from peeling from the end face of the PDLC element (“seal removal” in FIG. 5). The present invention has been completed.
 すなわち、本発明の1つの局面によれば、第1の透明導電性フィルムと、該第1の透明導電性フィルムと対向するように配置された第2の透明導電性フィルムと、該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に配置された高分子分散型液晶層と、を備えた調光素子と;基材と該基材の一方の側に設けられた粘着剤層とを備え、該調光素子の少なくとも一方の主面に該粘着剤層を介して積層された表面保護フィルムと;該調光素子および該表面保護フィルムの端面に設けられた封止層と;を有し、該封止層の厚みをa(μm)、該表面保護フィルムの基材厚みをb(μm)、該調光素子の厚みをc(μm)としたとき、関係式(1)~(3)を全て満たす、表面保護フィルム付き封止調光素子が提供される。
   a<0.3c      (1)
   10<b<150    (2)
   a<0.4b      (3)
 1つの実施形態において、上記第1の透明導電性フィルムおよび上記第2の透明導電性フィルムがそれぞれ、透明基材と、該透明基材の一方の側に設けられた透明電極層と、を有する。
 1つの実施形態において、上記封止層が、厚み50μmのフィルムに成形した場合の破断伸度が5%~30%である樹脂を含む。
 1つの実施形態において、上記表面保護フィルム付き封止調光素子の端面の一部が、封止層が設けられていない露出部である。
 本発明の1つの局面によれば、上記表面保護フィルム付き封止調光素子が2つ以上積層された積層体であって、該封止層が、該積層体の端面において、一体的に形成されている、積層体が提供される。
That is, according to one aspect of the present invention, the first transparent conductive film, the second transparent conductive film arranged so as to face the first transparent conductive film, and the first transparent conductive film. A dimming element comprising a transparent conductive film and a polymer-dispersed liquid crystal layer disposed between the second transparent conductive film; provided on one side of the base material and the base material. A surface protective film provided with an adhesive layer and laminated on at least one main surface of the dimming element via the adhesive layer; a seal provided on the end face of the dimming element and the surface protective film. When the thickness of the sealing layer is a (μm), the thickness of the base material of the surface protective film is b (μm), and the thickness of the dimming element is c (μm). A sealed dimming element with a surface protective film that satisfies all of (1) to (3) is provided.
a <0.3c (1)
10 <b <150 (2)
a <0.4b (3)
In one embodiment, the first transparent conductive film and the second transparent conductive film each have a transparent base material and a transparent electrode layer provided on one side of the transparent base material. ..
In one embodiment, the sealing layer comprises a resin having a breaking elongation of 5% to 30% when molded into a film having a thickness of 50 μm.
In one embodiment, a part of the end face of the sealing dimming element with a surface protective film is an exposed portion not provided with a sealing layer.
According to one aspect of the present invention, it is a laminated body in which two or more sealing dimming elements with a surface protective film are laminated, and the sealing layer is integrally formed on the end face of the laminated body. The laminate is provided.
 本発明においては、封止層の厚みと表面保護フィルムの基材厚みと調光素子の厚みとを最適化することにより、表面保護フィルムの剥離時に封止層が凝集破壊して封止層の残滓が残らない条件が見出された。よって、本発明によれば、封止層の残滓をPDLC素子の端面に残存させることなく、表面保護フィルムを剥離可能な表面保護フィルム付き封止PDLC素子が提供され得る。 In the present invention, by optimizing the thickness of the sealing layer, the thickness of the base material of the surface protective film, and the thickness of the dimming element, the sealing layer coagulates and breaks when the surface protective film is peeled off, and the sealing layer is formed. A condition was found in which no residue remained. Therefore, according to the present invention, it is possible to provide a sealed PDLC element with a surface protective film capable of peeling off the surface protective film without leaving the residue of the sealing layer on the end face of the PDLC element.
図1(a)は、本発明の1つの実施形態による表面保護フィルム付き封止PDLC素子の概略断面図であり、図1(b)は、図1(a)に示す表面保護フィルム付き封止PDLC素子の概略上面図である。FIG. 1A is a schematic cross-sectional view of a sealed PDLC element with a surface protective film according to one embodiment of the present invention, and FIG. 1B is a sealing with a surface protective film shown in FIG. 1A. It is a schematic top view of a PDLC element. 露出部を有する表面保護フィルム付き封止PDLC素子の一例の概略上面図である。It is a schematic top view of an example of a sealed PDLC element with a surface protective film having an exposed portion. 1つの実施形態による表面保護フィルム付き封止PDLC素子の製造方法を説明する概略図である。It is the schematic explaining the manufacturing method of the sealing PDLC element with the surface protection film by one Embodiment. 実施例および比較例の表面保護フィルム付き封止PDLC素子において、表面保護フィルムを剥離した際の剥離状態と各パラメータとの関係を示す図である。It is a figure which shows the relationship between the peeling state and each parameter at the time of peeling the surface protection film in the sealing PDLC element with the surface protection film of an Example and a comparative example. 表面保護フィルム付き封止PDLC素子から表面保護フィルムを剥離する際に生じ得る問題を説明する概略図である。It is the schematic explaining the problem which may occur when the surface protection film is peeled off from the sealing PDLC element with a surface protection film.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.表面保護フィルム付き封止PDLC素子
A-1.表面保護フィルム付き封止PDLC素子の全体構成
 図1(a)は、本発明の1つの実施形態による表面保護フィルム付き封止PDLC素子の概略断面図であり、図1(b)は、図1(a)に示す表面保護フィルム付き封止PDLC素子の概略上面図である。表面保護フィルム付き封止PDLC素子100aは、第1の透明導電性フィルム11と、第1の透明導電性フィルム11と対向するように配置された第2の透明導電性フィルム12と、第1の透明導電性フィルム11と第2の透明導電性フィルム12との間に配置された高分子分散型液晶層13と、を備えたPDLC素子10と;基材21と基材21の一方の側に設けられた粘着剤層22とを備え、PDLC素子10の両方の主面に粘着剤層22を介して積層された(貼り合せられた)表面保護フィルム20a、20bと;PDLC素子10および表面保護フィルム20a、20bの端面の全面に設けられた封止層30と;を有する。
A. Sealed PDLC element with surface protective film A-1. Overall Configuration of Sealed PDLC Device with Surface Protective Film FIG. 1 (a) is a schematic cross-sectional view of the sealed PDLC device with a surface protective film according to one embodiment of the present invention, and FIG. 1 (b) is FIG. It is a schematic top view of the sealed PDLC element with a surface protective film shown in (a). The sealed PDLC element 100a with a surface protective film includes a first transparent conductive film 11, a second transparent conductive film 12 arranged so as to face the first transparent conductive film 11, and a first transparent conductive film 12. A PDLC element 10 including a polymer-dispersed liquid crystal layer 13 arranged between the transparent conductive film 11 and the second transparent conductive film 12; on one side of the base material 21 and the base material 21. With the surface protective films 20a and 20b provided with the pressure-sensitive adhesive layer 22 and laminated (bonded) on both main surfaces of the PDLC element 10 via the pressure-sensitive adhesive layer 22; the PDLC element 10 and the surface protection It has a sealing layer 30 provided on the entire surface of the end faces of the films 20a and 20b;
 図1に示す表面保護フィルム付き封止PDLC素子100aにおいて、表面保護フィルム20aおよび20bのいずれか一方は、目的に応じて省略されてもよい。また、図示しないが、表面保護フィルム付き封止PDLC素子100aの最表面には、例えば出荷までの間、汚れや傷を防止するための汚れ防止フィルムがさらに設けられていてもよく、その場合、封止層は、汚れ防止フィルムの端面も覆うように設けられ得る。 In the sealed PDLC element 100a with a surface protective film shown in FIG. 1, either one of the surface protective films 20a and 20b may be omitted depending on the purpose. Further, although not shown, an antifouling film for preventing stains and scratches may be further provided on the outermost surface of the sealed PDLC element 100a with a surface protective film, for example, until shipment. The sealing layer may also be provided so as to cover the end face of the antifouling film.
 上記表面保護フィルム付き封止PDLC素子100aにおいて、封止層30の厚み(図1(b)中、符号“t”で示される)をa(μm)、表面保護フィルム20a、20bの基材21の厚みをb(μm)、PDLC素子10の厚みをc(μm)としたとき、a、b、およびcは、関係式(1)~(3)を全て満たす(ただし、表面保護フィルム20aの基材厚みと表面保護フィルム20bの基材厚みとが異なる場合、それぞれの基材厚みに関して、関係式(1)~(3)が全て満たされる。)。
   a<0.3c      (1)
   10<b<150    (2)
   a<0.4b      (3)
In the sealing PDLC element 100a with a surface protective film, the thickness of the sealing layer 30 (indicated by the reference numeral “t” in FIG. 1 (b)) is a (μm), and the base materials 21 of the surface protective films 20a and 20b. When the thickness of the PDLC element 10 is c (μm) and the thickness of the PDLC element 10 is c (μm), a, b, and c satisfy all the relational expressions (1) to (3) (however, of the surface protective film 20a). When the base material thickness and the base material thickness of the surface protective film 20b are different, all the relational expressions (1) to (3) are satisfied for each base material thickness).
a <0.3c (1)
10 <b <150 (2)
a <0.4b (3)
 上記封止層30の厚み(a:μm)、表面保護フィルム20a、20bの基材21の厚み(b:μm)およびPDLC素子10の厚み(c:μm)が上記関係式(1)~(3)を全て満たす場合、封止層の薄手化および表面保護フィルム基材の厚手化等に起因して、封止層の破断力が適度に低下するとともに、封止層と表面保護フィルムとの密着力が適度に増大し得る。その結果、封止層をバリやカスの状態でPDLC素子の表面に残存させることなく、また、封止取られの問題を生じさせることなく、表面保護フィルムをPDLC素子から剥離することができる。 The thickness (a: μm) of the sealing layer 30, the thickness (b: μm) of the base material 21 of the surface protective films 20a and 20b, and the thickness (c: μm) of the PDLC element 10 are the relational expressions (1) to (1) to (1). When all of 3) are satisfied, the breaking force of the sealing layer is appropriately reduced due to the thinning of the sealing layer and the thickening of the surface protective film base material, and the sealing layer and the surface protective film are combined. Adhesion can be moderately increased. As a result, the surface protective film can be peeled off from the PDLC element without leaving the sealing layer in the state of burrs or debris on the surface of the PDLC element and without causing the problem of sealing removal.
 上記封止層30の厚み(a:μm)、表面保護フィルム20a、20bの基材21の厚み(b:μm)およびPDLC素子10の厚み(c:μm)は、好ましくは関係式(1’)~(3’)のいずれか1つを満たし、より好ましくはいずれか2つを満たし、さらに好ましくは全て満たす(表面保護フィルム20aの基材厚みと表面保護フィルム20bの基材厚みとが異なる場合、それぞれの基材厚みに関して、好ましくは関係式(1’)~(3’)のいずれか1つが満たされ、より好ましくはいずれか2つが満たされ、さらに好ましくは全て満たされる)。
   a≦0.2c      (1’)
   30≦b≦130    (2’)
   a≦0.3b      (3’)
The thickness of the sealing layer 30 (a: μm), the thickness of the base material 21 of the surface protective films 20a and 20b (b: μm), and the thickness of the PDLC element 10 (c: μm) are preferably the relational expression (1'). ) To (3'), more preferably any two, and even more preferably all (the base material thickness of the surface protective film 20a and the base material thickness of the surface protective film 20b are different). In the case, with respect to the thickness of each base material, preferably any one of the relational expressions (1') to (3') is satisfied, more preferably any two are satisfied, and further preferably all are satisfied).
a ≤ 0.2c (1')
30 ≦ b ≦ 130 (2')
a ≤ 0.3b (3')
 1つの実施形態においては、表面保護フィルム付き封止PDLC素子は、その端面の一部が、封止層が設けられていない露出部とされ得る。露出部は、剥離のきっかけとして機能し得ることから、表面保護フィルムをPDLC素子から剥離する際の操作性が向上され得る。 In one embodiment, the sealed PDLC element with a surface protective film may have a part of its end face as an exposed portion without a sealing layer. Since the exposed portion can function as a trigger for peeling, the operability when peeling the surface protective film from the PDLC element can be improved.
 図2は、露出部を有する表面保護フィルム付き封止PDLC素子の一例の概略上面図である。表面保護フィルム付き封止PDLC素子100bは、上面視において、矩形状のPDLC素子本体(PDLC素子として機能する本体部分)110とPDLC素子本体110に駆動電圧を印加するための取出し電極部112、114とを有し、取出し電極部112、114を除く外周端面に封止層30が設けられている。図示例において、取出し電極部112は、PDLC素子本体110を構成する第1の透明導電性フィルムの一部を本体110から外方に延出させることによって形成され、取出し電極部114は、PDLC素子本体110を構成する第2の透明導電性フィルムの一部を本体110から外方に延出させることによって形成され得る。なお、露出部は、図示例とは異なり、取出し電極部以外の任意の適切な箇所に設けられ得る。例えば、上面視矩形状に形成された表面保護フィルム付き封止PDLC素子の1つ以上の角部の端面を露出部とすることができる。 FIG. 2 is a schematic top view of an example of a sealed PDLC element with a surface protective film having an exposed portion. The sealed PDLC element 100b with a surface protective film has take-out electrode portions 112 and 114 for applying a driving voltage to the rectangular PDLC element main body (main body portion functioning as a PDLC element) 110 and the PDLC element main body 110 in a top view. The sealing layer 30 is provided on the outer peripheral end faces excluding the take-out electrode portions 112 and 114. In the illustrated example, the take-out electrode portion 112 is formed by extending a part of the first transparent conductive film constituting the PDLC element main body 110 outward from the main body 110, and the take-out electrode portion 114 is a PDLC element. It can be formed by extending a part of the second transparent conductive film constituting the main body 110 outward from the main body 110. In addition, unlike the illustrated example, the exposed portion may be provided at any appropriate location other than the take-out electrode portion. For example, the end faces of one or more corners of the sealed PDLC element with a surface protective film formed in a rectangular shape in top view can be used as an exposed portion.
A-2.PDLC素子
 PDLC素子は、第1の透明導電性フィルムと、該第1の透明導電性フィルムと対向するように配置された第2の透明導電性フィルムと、該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に配置された高分子分散型液晶層と、を備える。
A-2. PDLC element The PDLC element includes a first transparent conductive film, a second transparent conductive film arranged so as to face the first transparent conductive film, the first transparent conductive film, and the like. It includes a polymer-dispersed liquid crystal layer arranged between the second transparent conductive film.
 後述のA-2-3項で説明するとおり、PDLC素子は、電圧の印加に応じて光の拡散度合い(結果として、ヘイズ)が変化する。1つの実施形態においては、PDLC素子のヘイズが所定の値以上(例えば30%以上、好ましくは50%以上)である場合を散乱状態とし、該ヘイズが所定の値未満(例えば30%未満、好ましくは15%以下、より好ましくは10%以下)である場合を透明状態ということができる。光の拡散度合いを制御するためにPDLC素子に印加される電圧(駆動電圧)は、例えば100V以下、好ましくは50V以下である。 As described in Section A-2-3 described later, in the PDLC element, the degree of light diffusion (as a result, haze) changes according to the application of voltage. In one embodiment, a case where the haze of the PDLC element is equal to or more than a predetermined value (for example, 30% or more, preferably 50% or more) is set as a scattering state, and the haze is less than a predetermined value (for example, less than 30%, preferably less than 30%). Is 15% or less, more preferably 10% or less), which can be said to be a transparent state. The voltage (driving voltage) applied to the PDLC element to control the degree of light diffusion is, for example, 100 V or less, preferably 50 V or less.
 上記PDLC素子の厚みは、上記式(1)を満たす範囲に設定される。PDLC素子の厚みは、例えば30μm~250μm、好ましくは50μm~200μmである。 The thickness of the PDLC element is set within a range satisfying the above formula (1). The thickness of the PDLC element is, for example, 30 μm to 250 μm, preferably 50 μm to 200 μm.
A-2-1.第1の透明導電性フィルム
 第1の透明導電性フィルムは、代表的には、第1の透明基材と、第1の透明基材の一方の側に設けられた第1の透明電極層とを有し、第1の透明電極層が高分子分散型液晶層側となるように配置される。第1の透明導電性フィルムは、目的に応じて任意の適切な機能層(屈折率調整層、反射防止層、ハードコート層等)をさらに有していてもよい。
A-2-1. First Transparent Conductive Film The first transparent conductive film typically includes a first transparent substrate and a first transparent electrode layer provided on one side of the first transparent substrate. The first transparent electrode layer is arranged so as to be on the polymer-dispersed liquid crystal layer side. The first transparent conductive film may further have an arbitrary appropriate functional layer (refractive index adjusting layer, antireflection layer, hard coat layer, etc.) depending on the purpose.
 第1の透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、さらに好ましくは1Ω/□~200Ω/□である。 The surface resistance value of the first transparent conductive film is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 300Ω / □, and even more preferably 1Ω / □ to 200Ω. / □.
 第1の透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~10%である。 The haze value of the first transparent conductive film is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 10%.
 第1の透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは60%以上であり、さらに好ましくは80%以上である。 The total light transmittance of the first transparent conductive film is preferably 30% or more, more preferably 60% or more, and further preferably 80% or more.
 第1の透明電極層は、例えば、インジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO)等の金属酸化物を用いて形成され得る。この場合、金属酸化物は、アモルファス金属酸化物であってもよく、結晶化金属酸化物であってもよい。あるいは、第1の透明電極層は、銀ナノワイヤー(AgNW)等の金属ナノワイヤ、カーボンナノチューブ(CNT)、有機導電膜、金属層またはこれらの積層体によって形成され得る。第1の透明電極層は、目的に応じて、所望の形状にパターニングされ得る。 The first transparent electrode layer can be formed by using, for example, a metal oxide such as indium tin oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO 2). In this case, the metal oxide may be an amorphous metal oxide or a crystallized metal oxide. Alternatively, the first transparent electrode layer may be formed of metal nanowires such as silver nanowires (AgNW), carbon nanotubes (CNTs), organic conductive films, metal layers or laminates thereof. The first transparent electrode layer can be patterned into a desired shape depending on the purpose.
 第1の透明電極層の厚みは、好ましくは0.01μm~0.10μmであり、より好ましくは0.01μm~0.045μmである。 The thickness of the first transparent electrode layer is preferably 0.01 μm to 0.10 μm, and more preferably 0.01 μm to 0.045 μm.
 第1の透明電極層は、代表的には、スパッタ等の方法を用いて、第1の透明基材の一方の面に設けられ得る。 The first transparent electrode layer can be typically provided on one surface of the first transparent substrate by using a method such as sputtering.
 第1の透明基材は、任意の適切な材料から形成される。具体的には、ガラス基材または高分子基材が好ましく用いられ、高分子基材がより好ましい。 The first transparent substrate is formed from any suitable material. Specifically, a glass base material or a polymer base material is preferably used, and a polymer base material is more preferable.
 上記高分子基材は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリエチレンテレフタレート系樹脂等のポリエステル系樹脂;ポリカーボネート樹脂;セルロース系樹脂等が挙げられる。なかでも、シクロオレフィン系樹脂またはポリエチレンテレフタレート系樹脂が好ましく用いられ得る。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。 The polymer base material is typically a polymer film containing a thermoplastic resin as a main component. Examples of the thermoplastic resin include cycloolefin resins such as polynorbornene; acrylic resins; polyester resins such as polyethylene terephthalate resins; polycarbonate resins; cellulose resins and the like. Of these, cycloolefin-based resins or polyethylene terephthalate-based resins can be preferably used. The above-mentioned thermoplastic resin may be used alone or in combination of two or more kinds.
 第1の透明基材の厚みは、好ましくは10μm~100μmであり、より好ましくは20μm~80μmである。 The thickness of the first transparent substrate is preferably 10 μm to 100 μm, more preferably 20 μm to 80 μm.
A-2-2.第2の透明導電性フィルム
 第2の透明導電性フィルムは、代表的には、第2の透明基材と、第2の透明基材の一方の側に設けられた第2の透明電極層とを有し、第2の透明電極層が高分子分散型液晶層側となるように配置される。第2の透明導電性フィルムは、目的に応じて任意の適切な機能層(屈折率調整層、反射防止層、ハードコート層等)をさらに有していてもよい。
A-2-2. Second Transparent Conductive Film The second transparent conductive film typically includes a second transparent substrate and a second transparent electrode layer provided on one side of the second transparent substrate. The second transparent electrode layer is arranged so as to be on the polymer-dispersed liquid crystal layer side. The second transparent conductive film may further have an arbitrary appropriate functional layer (refractive index adjusting layer, antireflection layer, hard coat layer, etc.) depending on the purpose.
 第2の透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、さらに好ましくは1Ω/□~200Ω/□である。 The surface resistance value of the second transparent conductive film is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 300Ω / □, and even more preferably 1Ω / □ to 200Ω. / □.
 第2の透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~10%である。 The haze value of the second transparent conductive film is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 10%.
 第2の透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは60%以上であり、さらに好ましくは80%以上である。 The total light transmittance of the second transparent conductive film is preferably 30% or more, more preferably 60% or more, and further preferably 80% or more.
 第2の透明電極層および第2の透明基材についてはそれぞれ、第1の透明電極層および第1の透明基材と同様の説明を適用することができる。第1の透明導電性フィルムと第2の透明導電性フィルムとは、同じ構成であってもよく、異なる構成であってもよい。 The same description as for the first transparent electrode layer and the first transparent base material can be applied to the second transparent electrode layer and the second transparent base material, respectively. The first transparent conductive film and the second transparent conductive film may have the same configuration or different configurations.
A-2-3.高分子分散型液晶層
 高分子分散型液晶(PDLC)層は、代表的には、樹脂マトリクス中に液晶化合物が分散した構造を有する。PDLC層においては、電圧の印加量に対応する液晶化合物の配向度の変化を介して透過光の散乱度合いを変化させ、これにより、透明状態と散乱状態とを切り替えることができる。
A-2-3. Polymer-dispersed liquid crystal layer The polymer-dispersed liquid crystal (PDLC) layer typically has a structure in which a liquid crystal compound is dispersed in a resin matrix. In the PDLC layer, the degree of scattering of transmitted light is changed through a change in the degree of orientation of the liquid crystal compound corresponding to the amount of voltage applied, whereby the transparent state and the scattered state can be switched.
 1つの実施形態において、PDLC層は、電圧が印加されることにより透明状態となり、電圧が印加されていない状態で散乱状態となる(ノーマルモード)。この実施形態においては、電圧無印加時においては液晶化合物が配向していないために散乱状態となり、電圧の印加によって液晶化合物が配向して液晶化合物の屈折率と樹脂マトリクスの屈折率とが揃う結果、透明状態となる。 In one embodiment, the PDLC layer becomes transparent when a voltage is applied, and becomes a scattered state when no voltage is applied (normal mode). In this embodiment, when no voltage is applied, the liquid crystal compound is not oriented, so that it is in a scattered state. When the voltage is applied, the liquid crystal compound is oriented and the refractive index of the liquid crystal compound and the refractive index of the resin matrix are aligned. , Becomes transparent.
 別の実施形態において、PDLC層は、電圧が印加されることにより散乱状態となり、電圧が印加されていない状態で透明状態となる(リバースモード)。この実施形態においては、透明電極層表面に設けられた配向膜によって電圧無印加時に液晶化合物が配向して透明状態となり、電圧の印加によって液晶化合物の配向が乱れて散乱状態となる。 In another embodiment, the PDLC layer becomes a scattered state when a voltage is applied, and becomes a transparent state when a voltage is not applied (reverse mode). In this embodiment, the alignment film provided on the surface of the transparent electrode layer causes the liquid crystal compound to be oriented and becomes transparent when no voltage is applied, and the orientation of the liquid crystal compound is disturbed by the application of voltage to cause a scattered state.
 上記液晶化合物としては、非重合型の任意の適切な液晶化合物が用いられる。例えば、ネマティック型、スメクティック型、コレステリック型液晶化合物が挙げられる。透過モードにおいて優れた透明性を実現する観点からは、ネマティック型液晶化合物を用いることが好ましい。上記ネマティック型液晶化合物としては、ビフェニル系化合物、フェニルベンゾエート系化合物、シクロヘキシルベンゼン系化合物、アゾキシベンゼン系化合物、アゾベンゼン系化合物、アゾメチン系化合物、ターフェニル系化合物、ビフェニルベンゾエート系化合物、シクロヘキシルビフェニル系化合物、フェニルピリジン系化合物、シクロヘキシルピリミジン系化合物、コレステロール系化合物等が挙げられる。 As the liquid crystal compound, any suitable non-polymerized liquid crystal compound is used. For example, nematic type, smectic type, and cholesteric type liquid crystal compounds can be mentioned. From the viewpoint of achieving excellent transparency in the transmission mode, it is preferable to use a nematic liquid crystal compound. Examples of the nematic liquid crystal compound include biphenyl compounds, phenylbenzoate compounds, cyclohexylbenzene compounds, azoxybenzene compounds, azobenzene compounds, azomethine compounds, terphenyl compounds, biphenylbenzoate compounds, and cyclohexylbiphenyl compounds. , Phenylpyridine compounds, cyclohexylpyrimidine compounds, cholesterol compounds and the like.
 PDLC層における液晶化合物の含有割合は、例えば10重量%以上、好ましくは30重量%以上、より好ましくは35重量%以上、さらに好ましくは40重量%以上である。該含有割合は、例えば90重量%以下、好ましくは70重量%以下である。 The content ratio of the liquid crystal compound in the PDLC layer is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 35% by weight or more, still more preferably 40% by weight or more. The content ratio is, for example, 90% by weight or less, preferably 70% by weight or less.
 上記樹脂マトリクスを形成する樹脂としては、光透過率、上記液晶化合物の屈折率、透明導電性フィルムとの密着力等に応じて適切に選択され得る。例えば、ウレタン系樹脂、ポリビニルアルコール系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂等の水溶性樹脂または水分散性樹脂および液晶ポリマー、(メタ)アクリル系樹脂、シリコーン系樹脂、エポキシ系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリイミド樹脂等の硬化型樹脂が挙げられる。 The resin forming the resin matrix can be appropriately selected depending on the light transmittance, the refractive index of the liquid crystal compound, the adhesion to the transparent conductive film, and the like. For example, water-soluble resins such as urethane resins, polyvinyl alcohol resins, polyethylene resins, polypropylene resins, acrylic resins, water-dispersible resins and liquid crystal polymers, (meth) acrylic resins, silicone resins, epoxy resins. , Fluorine-based resin, polyester-based resin, polyimide resin and other curable resins can be mentioned.
 PDLC層におけるマトリクス形成用樹脂の含有割合は、例えば90重量%以下、好ましくは70重量%以下、より好ましくは65重量%以下、さらに好ましくは60重量%以下である。また、該含有割合は、例えば10重量%以上、好ましくは30重量%以上である。 The content ratio of the matrix-forming resin in the PDLC layer is, for example, 90% by weight or less, preferably 70% by weight or less, more preferably 65% by weight or less, and further preferably 60% by weight or less. The content ratio is, for example, 10% by weight or more, preferably 30% by weight or more.
 PDLC層の厚みは、例えば50μm以下、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは15μm以下である。PDLC層の厚みの下限は、例えば5μmとすることができる。 The thickness of the PDLC layer is, for example, 50 μm or less, preferably 30 μm or less, more preferably 20 μm or less, still more preferably 15 μm or less. The lower limit of the thickness of the PDLC layer can be, for example, 5 μm.
 PDLC層は、任意の適切な方法で作製され得る。具体例としては、エマルション方式および相分離方式の作製方法が挙げられる。 The PDLC layer can be made by any suitable method. Specific examples include methods for producing an emulsion method and a phase separation method.
 エマルション方式のPDLC層の作製方法は、例えば、一方の透明導電性フィルムの透明電極層面に、マトリクス形成用樹脂と液晶化合物とを含むエマルション塗工液を塗工して塗工層を形成すること、および、該塗工層を乾燥させて該マトリクス形成用樹脂に樹脂マトリクスを形成させること、を含む。該エマルション塗工液は、好ましくはマトリクス形成用樹脂と塗工溶剤の混合液を連続相に含み、液晶化合物を分散相に含むエマルションである。エマルション化された塗工液を塗工および乾燥することにより、樹脂マトリクス中に液晶化合物が分散された構成を有するPDLC層が形成され得る。代表的には、PDLC層上に他方の透明導電性フィルムを積層することにより、PDLC素子が得られる。 The method for producing an emulsion-type PDLC layer is, for example, to form a coating layer by applying an emulsion coating liquid containing a matrix-forming resin and a liquid crystal compound to the transparent electrode layer surface of one of the transparent conductive films. , And drying the coating layer to form a resin matrix on the matrix-forming resin. The emulsion coating liquid is preferably an emulsion containing a mixed solution of a matrix-forming resin and a coating solvent in a continuous phase and a liquid crystal compound in a dispersed phase. By coating and drying the emulsified coating liquid, a PDLC layer having a structure in which a liquid crystal compound is dispersed in a resin matrix can be formed. Typically, a PDLC element is obtained by laminating the other transparent conductive film on the PDLC layer.
 相分離方式のPDLC層の作製方法は、例えば、一方の透明導電性フィルムの透明電極層面に、放射線硬化型のマトリクス形成用樹脂と液晶化合物とを含む塗工液を塗工して塗工層を形成すること、塗工層上に他方の透明導電性フィルムを積層して積層体を形成すること、および、該積層体に放射線を照射してマトリクス形成用樹脂を重合させることにより樹脂マトリクスと液晶化合物とを相分離させること、を含み、これにより、PDLC素子が得られる。塗工液は、好ましくは均一相状態である。代替的には、スペーサーを介して積層された第1の透明導電性フィルムと第2の透明導電性フィルムとの間に塗工液を充填し、その後、放射線照射による相分離が行われ得る。 The method for producing a phase-separated PDLC layer is, for example, a coating layer in which a coating liquid containing a radiation-curable matrix-forming resin and a liquid crystal compound is applied to the transparent electrode layer surface of one of the transparent conductive films. The resin matrix is formed by forming a laminate by laminating the other transparent conductive film on the coating layer, and irradiating the laminate with radiation to polymerize the matrix-forming resin. Including phase separation from the liquid crystal compound, which gives a PDLC element. The coating liquid is preferably in a uniform phase state. Alternatively, a coating liquid may be filled between the first transparent conductive film and the second transparent conductive film laminated via a spacer, and then phase separation by irradiation may be performed.
A-3.表面保護フィルム
 表面保護フィルムは、基材と該基材の一方の側に設けられた粘着剤層とを備える。表面保護フィルムは、PDLC素子表面の傷や汚れ防止のために設けられるものであり、通常は、PDLC素子の使用前に剥離除去される。なお、PDLC素子の両面に表面保護フィルムが設けられる場合、同じ構成の表面保護フィルムを用いてもよく、異なる構成の表面保護フィルムを用いてもよい。
A-3. Surface Protective Film The surface protective film comprises a base material and an adhesive layer provided on one side of the base material. The surface protective film is provided to prevent scratches and stains on the surface of the PDLC element, and is usually peeled off and removed before the PDLC element is used. When surface protective films are provided on both sides of the PDLC element, surface protective films having the same configuration may be used, or surface protective films having different configurations may be used.
 表面保護フィルムの厚みは、例えば15μm~200μm、好ましくは30μm~150μmである。 The thickness of the surface protective film is, for example, 15 μm to 200 μm, preferably 30 μm to 150 μm.
 上記基材の形成材料としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重体樹脂等が挙げられる。好ましくは、エステル系樹脂(特に、ポリエチレンテレフタレート系樹脂)である。 Examples of the material for forming the base material include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and co-weights thereof. Examples include resin. An ester resin (particularly, a polyethylene terephthalate resin) is preferable.
 上記基材の厚みは、上記式(2)および(3)を満たす範囲に設定される。基材の厚みは、例えば10μmを超え150μm未満であり、好ましくは30μm~130μmであり、より好ましくは30μm~100μmである。表面保護フィルムの基材厚みが上記範囲であることにより、封止取られ等の問題を防止して、表面保護フィルムを好適にPDLC素子から剥離することができる。 The thickness of the base material is set within a range that satisfies the above formulas (2) and (3). The thickness of the base material is, for example, more than 10 μm and less than 150 μm, preferably 30 μm to 130 μm, and more preferably 30 μm to 100 μm. When the base material thickness of the surface protective film is within the above range, problems such as sealing can be prevented, and the surface protective film can be suitably peeled from the PDLC element.
 上記粘着剤層は、任意の適切な粘着剤組成物によって形成される。粘着剤組成物の具体例としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系ポリマー、ゴム系ポリマー等をベースポリマーとする粘着剤組成物が挙げられる。なかでも、透明性、耐候性、耐熱性等の観点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤組成物が好ましい。 The pressure-sensitive adhesive layer is formed by any suitable pressure-sensitive adhesive composition. Specific examples of the pressure-sensitive adhesive composition include pressure-sensitive adhesive compositions using (meth) acrylic polymers, silicone-based polymers, polyesters, polyurethanes, polyamides, polyethers, fluorine-based polymers, rubber-based polymers, and the like as base polymers. .. Among them, an acrylic pressure-sensitive adhesive composition using an acrylic polymer as a base polymer is preferable from the viewpoint of transparency, weather resistance, heat resistance and the like.
 粘着剤層の厚みは、例えば3μm~100μm、好ましくは4μm~80μm、より好ましくは5μm~60μmである。 The thickness of the pressure-sensitive adhesive layer is, for example, 3 μm to 100 μm, preferably 4 μm to 80 μm, and more preferably 5 μm to 60 μm.
A-4.封止層
 封止層は、液晶化合物の漏洩防止、耐久性向上等を目的として、PDLC素子および表面保護フィルムの端面に設けられる。1つの実施形態において、封止層の形成材料として有機材料を用いることができる。有機材料の具体例としては、UV硬化型樹脂(例えば、UV硬化型アクリル樹脂)、熱硬化型樹脂(例えば、熱硬化型のウレタン樹脂、アクリル樹脂、ウレタンアクリル樹脂およびこれらの混合物)等の硬化型樹脂が挙げられる。硬化型樹脂としては、PDLC層の樹脂マトリクス形成用樹脂と同様の硬化型樹脂を用いることができる。また、蒸着(蒸着重合を含む)によって成膜可能な有機材料を用いることもできる。このような有機材料としては、例えば、蒸着重合によってパリレン膜を形成可能なダイマー(ジ-p-キシレン)、ポリウレタン膜を形成可能なモノマー(ジオールとジイソシアネート)、ポリイミド膜を形成可能なモノマー(ジアミンと酸無水物)、ポリ尿素膜を形成可能なモノマー(ジアミンとジイソシアナート)等が挙げられる。蒸着膜を用いる場合、緻密性が高い封止層が得られ得る。別の実施形態において、封止層の形成材料として無機材料を用いることができる。無機材料の具体例としては、亜鉛、アルミニウム、チタン、銅、マグネシウム等の金属またはケイ素、ビスマス、ゲルマニウム等の半金属の酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物、酸化窒化炭化物等が挙げられる。また、封止層は、無機微粒子等の無機材料を含む樹脂を用いて形成されてもよく、あるいは、樹脂層と無機層との積層構造を含んでもよい。
A-4. Sealing layer The sealing layer is provided on the end faces of the PDLC element and the surface protective film for the purpose of preventing leakage of the liquid crystal compound, improving durability, and the like. In one embodiment, an organic material can be used as the material for forming the sealing layer. Specific examples of the organic material include curing of UV curable resin (for example, UV curable acrylic resin), thermocurable resin (for example, thermocurable urethane resin, acrylic resin, urethane acrylic resin and a mixture thereof). Mold resin can be mentioned. As the curable resin, a curable resin similar to the resin for forming the resin matrix of the PDLC layer can be used. Further, an organic material that can be formed by vapor deposition (including vapor deposition polymerization) can also be used. Examples of such an organic material include a dimer (di-p-xylene) capable of forming a parylene film by vapor deposition polymerization, a monomer capable of forming a polyurethane film (diol and diisocyanate), and a monomer capable of forming a polyimide film (diamine). And acid anhydride), monomers capable of forming a polyurea film (diamine and diisocyanate), and the like. When a vapor-deposited film is used, a highly dense sealing layer can be obtained. In another embodiment, an inorganic material can be used as the material for forming the sealing layer. Specific examples of the inorganic material include metals such as zinc, aluminum, titanium, copper and magnesium, or oxides of metalloids such as silicon, bismuth and germanium, nitrides, carbides, nitride oxides, carbide oxides, carbide nitrides and oxides. Carbide nitride and the like can be mentioned. Further, the sealing layer may be formed by using a resin containing an inorganic material such as inorganic fine particles, or may include a laminated structure of a resin layer and an inorganic layer.
 封止層は、代表的には、表面保護フィルム付きPDLC素子の端面に封止層の形成材料(例えば、上記硬化型樹脂および/または無機材料を含む組成物)を塗布し、硬化させることによって形成され得る。塗布方法としては、スプレー塗布、ディスペンサ塗工、刷毛塗り、スクリーン印刷、ディッピング、蒸着等が挙げられる。 The sealing layer is typically obtained by applying a material for forming the sealing layer (for example, a composition containing the above-mentioned curable resin and / or inorganic material) to the end face of a PDLC element with a surface protective film and curing the sealing layer. Can be formed. Examples of the coating method include spray coating, dispenser coating, brush coating, screen printing, dipping, and vapor deposition.
 上記硬化型樹脂を含む樹脂組成物は、必要に応じて重合開始剤(例えば、BASF社製「イルガキュアTPO」等)を含むことができる。また、密着性向上の観点から、シランカップリング剤(例えば、信越シリコーン社製「KBM903」等)、密着補助剤(例えば、日本化薬社製「KAYAMER(登録商標)PM-2」等)を用いてもよい。 The resin composition containing the curable resin can contain a polymerization initiator (for example, "Irgacure TPO" manufactured by BASF), if necessary. Further, from the viewpoint of improving adhesion, a silane coupling agent (for example, "KBM903" manufactured by Shinetsu Silicone Co., Ltd.) and an adhesion auxiliary agent (for example, "KAYAMER® PM-2" manufactured by Nippon Kayaku Co., Ltd.) are used. You may use it.
 上記封止層の厚みは、上記式(1)および(3)を満たす範囲で設定される。有機材料で形成される場合の封止層の厚みは、例えば、2μm~50μm、好ましくは3μm~40μmであり、より好ましくは4μm~30μmである。なかでも、封止層が有機蒸着膜である場合、その厚みは、好ましくは0.05μm~5μm、より好ましくは0.2μm~1μmであり得る。また、無機材料で形成される場合の封止層の厚みは、例えば、0.1μm~5μm、好ましくは0.2μm~3μmであり、より好ましくは0.2μm~2μmである。 The thickness of the sealing layer is set within a range satisfying the above formulas (1) and (3). The thickness of the sealing layer when formed of an organic material is, for example, 2 μm to 50 μm, preferably 3 μm to 40 μm, and more preferably 4 μm to 30 μm. Among them, when the sealing layer is an organic thin-film film, the thickness thereof may be preferably 0.05 μm to 5 μm, more preferably 0.2 μm to 1 μm. The thickness of the sealing layer when formed of an inorganic material is, for example, 0.1 μm to 5 μm, preferably 0.2 μm to 3 μm, and more preferably 0.2 μm to 2 μm.
 封止層を形成する材料の破断伸度(封止層を形成する材料を50μmの厚みに成膜して得られるフィルムの破断伸度)は、本発明の効果が得られるかぎり、特に限定されないが、下限は通常1%以上であり、一方で、上限は通常30%以下である。可撓性の観点から、当該破断伸度の上限は、好ましくは20%以下であり、より好ましくは10%以下である。一方で、当該破断伸度の下限は、好ましくは5%以上である。本発明において封止層を形成する材料の破断伸度は、以下の手順で測定される。
 封止層を形成する材料が水溶性樹脂の場合は、封止層を形成する樹脂組成物の水溶液を調製し、離型処理を施したポリエステルフィルム上に塗布し、室温で1時間静置後、70℃で3時間乾燥し、厚み50μmの樹脂フィルムを作成する。当該樹脂フィルムより、幅10mm、長さ50mmのフィルムの試料を切り出す。オートグラフAGS-X(島津製作所社製)を用いて、チャック間30mm、引張速度200mm/minで引張試験を行い、破断時の伸度を測定する。
 封止層を形成する材料が脂溶性樹脂の場合は、任意の有機溶媒を用いて樹脂組成物の溶解液を調製し、上記と同様にして、樹脂フィルムを作成する。封止層を形成する材料が紫外線硬化樹脂等のエネルギー活性線硬化樹脂の場合には、任意のエネルギー活性線硬化樹脂の溶液を調製し、ポリエステルフィルム上に塗布し、紫外線照射等のエネルギー活性線の照射を行い、樹脂フィルムを作成する。あるいは、蒸着等の他の任意の方法によって、50μmの厚みを有するフィルムを成膜してもよい。これらのフィルムについても上記と同様にして破断伸度を測定することができる。
The breaking elongation of the material forming the sealing layer (the breaking elongation of the film obtained by forming the material forming the sealing layer to a thickness of 50 μm) is not particularly limited as long as the effect of the present invention can be obtained. However, the lower limit is usually 1% or more, while the upper limit is usually 30% or less. From the viewpoint of flexibility, the upper limit of the elongation at break is preferably 20% or less, more preferably 10% or less. On the other hand, the lower limit of the elongation at break is preferably 5% or more. In the present invention, the elongation at break of the material forming the sealing layer is measured by the following procedure.
When the material forming the sealing layer is a water-soluble resin, an aqueous solution of the resin composition forming the sealing layer is prepared, applied on a polyester film that has undergone a mold release treatment, and allowed to stand at room temperature for 1 hour. , 70 ° C. for 3 hours to prepare a resin film having a thickness of 50 μm. A film sample having a width of 10 mm and a length of 50 mm is cut out from the resin film. Using Autograph AGS-X (manufactured by Shimadzu Corporation), a tensile test is performed at a chuck distance of 30 mm and a tensile speed of 200 mm / min, and the elongation at break is measured.
When the material forming the sealing layer is a fat-soluble resin, a solution of the resin composition is prepared using an arbitrary organic solvent, and a resin film is prepared in the same manner as described above. When the material forming the sealing layer is an energy active ray-curable resin such as an ultraviolet curable resin, a solution of an arbitrary energy active ray curable resin is prepared, applied on a polyester film, and the energy active ray such as ultraviolet irradiation is applied. Is irradiated to prepare a resin film. Alternatively, a film having a thickness of 50 μm may be formed by any other method such as thin film deposition. The elongation at break can be measured for these films in the same manner as described above.
B.製造方法
 A項に記載の表面保護フィルム付き封止PDLC素子は、任意の適切な製造方法で製造され得る。1つの実施形態における上記表面保護フィルム付き封止PDLC素子の製造方法は、長尺状に作製したPDLC素子の一方または両方の表面に長尺状の表面保護フィルムをロール・トゥ・ロール形式で貼り合せて長尺状の表面保護フィルム付きPDLC素子を得ること、長尺状の表面保護フィルム付きPDLC素子を所望の形状に切断して枚葉状の表面保護フィルム付きPDLC素子を得ること、および、枚葉状の表面保護フィルム付きPDLC素子の端面の全面に、または、一部(露出部)を除いて封止層を形成すること、を含む。必要に応じて、封止層を形成する前の表面保護フィルム付きPDLC素子の端面に表面処理を施してもよい。表面処理を施すことにより、処理面の表面張力を下げるとともに、微少な異物(例えば、有機物)の除去や処理面の平滑化を行うことができ、結果として、PDLC素子の端面と封止層との密着強度を向上させることができる。このような表面処理としては、易接着材料のコーティング、UVオゾン処理、プラズマ処理等が挙げられる。
B. Manufacturing Method The sealed PDLC device with a surface protective film according to Item A can be manufactured by any suitable manufacturing method. In one embodiment, the method for manufacturing a sealed PDLC element with a surface protective film is a roll-to-roll method in which a long surface protective film is attached to one or both surfaces of a long PDLC element. In addition, a PDLC element with a long surface protective film is obtained, a PDLC element with a long surface protective film is cut into a desired shape to obtain a single-wafer-shaped PDLC element with a surface protective film, and a sheet is obtained. It includes forming a sealing layer on the entire surface of the end face of the PDLC element with a leaf-shaped surface protective film or except for a part (exposed portion). If necessary, the end face of the PDLC device with a surface protective film before forming the sealing layer may be surface-treated. By applying the surface treatment, it is possible to reduce the surface tension of the treated surface, remove minute foreign substances (for example, organic substances), and smooth the treated surface. As a result, the end face of the PDLC element and the sealing layer Adhesion strength can be improved. Examples of such a surface treatment include coating of an easily adhesive material, UV ozone treatment, plasma treatment and the like.
 封止層の形成は、所望の形状に切断された表面保護フィルム付きPDLC素子に対して個別に行ってもよく、複数の表面保護フィルム付きPDLC素子の積層体に対して一括して行ってもよい。複数の表面保護フィルム付きPDLC素子の積層体に対して一括して封止層を形成することにより、封止処理の効率を顕著に向上でき、結果として、高い製造効率で表面保護フィルム付き封止PDLC素子を得ることができる。 The sealing layer may be formed individually for the PDLC element with a surface protective film cut into a desired shape, or may be collectively performed for a laminate of a plurality of PDLC elements with a surface protective film. Good. By forming a sealing layer on a laminated body of a plurality of PDLC elements with a surface protective film at once, the efficiency of the sealing process can be remarkably improved, and as a result, the sealing with the surface protective film is performed with high manufacturing efficiency. A PDLC element can be obtained.
 図3は、表面保護フィルム付きPDLC素子の積層体に対して一括して封止層を形成する場合の製造方法の一例を説明する概略図である。図3に示される製造方法は、長尺状に作製したPDLC素子10の両面に長尺状の表面保護フィルム20a、20bをロール・トゥ・ロール形式で貼り合せて長尺状の表面保護フィルム付きPDLC素子50を得ること(貼り合せ)、長尺状の表面保護フィルム付きPDLC素子50を所望の形状に切断して枚葉状の表面保護フィルム付きPDLC素子50aを得ること(打ち抜き)、枚葉状の表面保護フィルム付きPDLC素子50aを複数枚積層して積層体50bを得ること(積層体作製)、積層体50bの端面に封止層60を一体的に形成すること(封止処理)、および、封止層が形成された積層体50cを個々の表面保護フィルム付き封止PDLC素子100に分離すること(枚葉化)を含む。図示しないが、長尺状の表面保護フィルム付きPDLC素子50の一方または両方の表面に長尺状の汚れ防止フィルムをロール・トゥ・ロール形式で貼り合せた後に、打ち抜き以降の処理を行ってもよい。また、図示例では、積層体50bの端面の全面に封止層60を形成しているが、図示例とは異なり、積層体50bの端面の一部(例えば、取出し電極部の端面)には封止層を形成せずに露出部としてもよい。 FIG. 3 is a schematic view illustrating an example of a manufacturing method in which a sealing layer is collectively formed on a laminated body of PDLC elements with a surface protective film. In the manufacturing method shown in FIG. 3, long surface protective films 20a and 20b are attached to both sides of a long PDLC element 10 in a roll-to-roll manner to provide a long surface protective film. Obtaining a PDLC element 50 (bonding), cutting a long PDLC element 50 with a surface protective film into a desired shape to obtain a single-wafer-shaped PDLC element 50a with a surface-protecting film (punching), single-wafer-shaped A plurality of PDLC elements 50a with a surface protective film are laminated to obtain a laminated body 50b (manufacturing of a laminated body), a sealing layer 60 is integrally formed on the end face of the laminated body 50b (sealing treatment), and This includes separating the laminate 50c on which the sealing layer is formed into individual sealing PDLC elements 100 with a surface protective film (single-waving). Although not shown, even if a long antifouling film is attached to one or both surfaces of the PDLC element 50 with a long surface protective film in a roll-to-roll format, and then the processing after punching is performed. Good. Further, in the illustrated example, the sealing layer 60 is formed on the entire surface of the end face of the laminated body 50b, but unlike the illustrated example, a part of the end face of the laminated body 50b (for example, the end face of the take-out electrode portion) is formed. It may be an exposed portion without forming a sealing layer.
 表面保護フィルム付き封止調光素子が2つ以上積層された積層体であって、封止層が積層体端面において一体的に形成されている(換言すれば、封止層が積層体の積層方向に連続的に形成されている)積層体50cを個々の表面保護フィルム付き封止PDLC素子100に分離する方法としては、例えば、ヘラ等の剥離具を隣り合う表面保護フィルム付き封止PDLC素子間に挿入して分離すること、露出部をきっかけとして表面保護フィルム付き封止PDLC素子を隣接する素子から剥離して分離すること等が挙げられる。 It is a laminated body in which two or more sealing dimming elements with a surface protective film are laminated, and the sealing layer is integrally formed on the end face of the laminated body (in other words, the sealing layer is a laminated body of the laminated body. As a method of separating the laminated body 50c (which is continuously formed in the direction) into individual sealed PDLC elements 100 with a surface protective film, for example, a release tool such as a spatula is attached to an adjacent sealed PDLC element with a surface protective film. Examples include inserting the device between the devices to separate the device, and peeling the sealed PDLC element with a surface protective film from the adjacent device to separate the device by using the exposed portion as a trigger.
 上記積層体50bに含まれる枚葉状の表面保護フィルム付きPDLC素子50aの数は、本発明の効果が得られる限りにおいて制限されず、好ましくは3以上、より好ましくは10~200、さらに好ましくは50~100であり得る。 The number of single-wafer-shaped PDLC elements 50a with a surface protective film contained in the laminate 50b is not limited as long as the effects of the present invention can be obtained, and is preferably 3 or more, more preferably 10 to 200, still more preferably 50. It can be up to 100.
 積層体50bに対する封止層の形成は、例えば、積層体50bの端面の全面または露出部を除いた部分に任意に表面処理を施し、次いで、上記封止層の形成材料(例えば、上記硬化型樹脂および/または無機材料または有機材料を含む組成物)を塗布し、必要に応じて硬化させることによって行われ得る。塗布方法としては、A-4項で例示された塗布方法が挙げられ、なかでもスプレー塗布または蒸着が好ましい。 To form the sealing layer on the laminated body 50b, for example, surface treatment is arbitrarily applied to the entire surface of the end face of the laminated body 50b or a portion excluding the exposed portion, and then the material for forming the sealing layer (for example, the cured type). It can be done by applying a resin and / or a composition containing an inorganic or organic material) and curing if necessary. Examples of the coating method include the coating methods exemplified in Section A-4, and among them, spray coating or vapor deposition is preferable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
[実施例1]
(PDLC素子の作製)
 透明基材(ノルボルネン系樹脂フィルム(日本ゼオン社製、製品名「ZF-16」)、厚み:40μm)の一方の面に、スパッタ法により0.08μm厚みの透明電極層(ITO層)を形成し、その後150℃でアニールし結晶化させた。こうして、[COP基材/透明電極層]の構成を有する第1および第2の透明導電性フィルムを得た。
 第1の透明導電性フィルムの透明電極層側表面に、液晶化合物(HCCH社製、製品名「HPC854600-100」、複屈折Δn=0.232)40部と、UV硬化型樹脂(Norland社製、製品名「NOA65」)60部(固形分)とを含む塗工液を塗布して塗布層を形成した。次いで、塗布層上に、透明電極層が塗布層に対向するように第2の透明導電性フィルムを積層した。得られた積層体に紫外線を照射してUV硬化型樹脂を硬化させ、これにより、20μmの厚みを有するPDLC層を形成した。以上のようにして、PDLC素子(厚み100μm)を得た。
[Example 1]
(Manufacturing of PDLC element)
A transparent electrode layer (ITO layer) with a thickness of 0.08 μm is formed on one surface of a transparent base material (norbornene resin film (manufactured by Zeon Corporation, product name "ZF-16"), thickness: 40 μm) by a sputtering method. Then, it was annealed at 150 ° C. and crystallized. In this way, first and second transparent conductive films having a structure of [COP base material / transparent electrode layer] were obtained.
On the surface of the first transparent conductive film on the transparent electrode layer side, 40 parts of a liquid crystal compound (manufactured by HCCH, product name "HPC854600-100", birefringence Δn = 0.232) and a UV curable resin (manufactured by Norland). , Product name "NOA65") 60 parts (solid content) was applied to form a coating layer. Next, a second transparent conductive film was laminated on the coating layer so that the transparent electrode layer faces the coating layer. The obtained laminate was irradiated with ultraviolet rays to cure the UV curable resin, thereby forming a PDLC layer having a thickness of 20 μm. As described above, a PDLC device (thickness 100 μm) was obtained.
(表面保護フィルム付きPDLC素子の作製)
 上記PDLC素子の両面にPET系樹脂基材(38μm)とその片側に設けられたアクリル系粘着剤層(21μm)とを有する表面保護フィルム(日東電工社製、製品名「RP207」)を貼り合せて、表面保護フィルム付きPDLC素子を得た。
(Manufacturing of PDLC element with surface protection film)
A surface protective film (manufactured by Nitto Denko KK, product name "RP207") having a PET-based resin base material (38 μm) and an acrylic adhesive layer (21 μm) provided on one side of the PET-based resin base material (38 μm) is bonded to both sides of the PDLC element. A PDLC device with a surface protective film was obtained.
(封止処理)
 上記表面保護フィルム付きPDLC素子の端面の全面に封止層形成用樹脂組成物を塗布し、70℃3時間加熱乾燥することによって硬化させて厚みが10μmの封止層を形成した。なお、封止層形成用樹脂組成物の塗布液としては、アクリル樹脂エマルション水溶液、ポリオレフィン樹脂およびイソシアネート系硬化剤を、厚みが50μmとなるように形成したフィルムの破断伸度が10%となるように配合および混合したものを用いた。
(Sealing process)
A resin composition for forming a sealing layer was applied to the entire surface of the end face of the PDLC element with a surface protective film, and the resin composition was cured by heating and drying at 70 ° C. for 3 hours to form a sealing layer having a thickness of 10 μm. As the coating liquid of the resin composition for forming the sealing layer, the breaking elongation of the film formed by forming the acrylic resin emulsion aqueous solution, the polyolefin resin and the isocyanate-based curing agent so as to have a thickness of 50 μm is 10%. Was blended and mixed with.
 以上のようにして表面保護フィルム付き封止PDLC素子を得た。 As described above, a sealed PDLC element with a surface protective film was obtained.
[実施例2~8、比較例1~5]
 PDLC素子、封止層および/または表面保護フィルムの基材厚みを表1に記載のように変化させたこと以外は実施例1と同様にして、表面保護フィルム付き封止PDLC素子を得た。
[Examples 2 to 8, Comparative Examples 1 to 5]
A sealed PDLC device with a surface protective film was obtained in the same manner as in Example 1 except that the substrate thickness of the PDLC element, the sealing layer and / or the surface protective film was changed as shown in Table 1.
[実施例9]
(PDLC素子の作製)
 実施例1と同様にして、PDLC素子(厚み100μm)を得た。
(表面保護フィルム付きPDLC素子の作製)
 上記PDLC素子の両面にPET系樹脂基材(30μm)とその片側に設けられたアクリル系粘着剤層(10μm)とを有する表面保護フィルムを貼り合せて、表面保護フィルム付きPDLC素子を得た。
(封止処理)
 上記表面保護フィルム付きPDLC素子の端面の全面にプラズマ処理を行った。パリレン原料(Kisco社製、製品名「dixC」)を用いた真空蒸着法により、プラズマ処理面に厚み5μmのパリレンコーティング層(封止層)を形成した。
[Example 9]
(Manufacturing of PDLC element)
A PDLC device (thickness 100 μm) was obtained in the same manner as in Example 1.
(Manufacturing of PDLC element with surface protection film)
A surface protective film having a PET-based resin base material (30 μm) and an acrylic pressure-sensitive adhesive layer (10 μm) provided on one side of the PET-based resin base material (30 μm) was bonded to both sides of the PDLC element to obtain a PDLC element with a surface-protected film.
(Sealing process)
The entire surface of the end face of the PDLC element with the surface protection film was subjected to plasma treatment. A parylene coating layer (sealing layer) having a thickness of 5 μm was formed on the plasma-treated surface by a vacuum vapor deposition method using a parylene raw material (manufactured by Kisco, product name “dixC”).
[比較例6]
 封止層の厚みを15μmにしたこと以外は実施例9と同様にして、表面保護フィルム付き封止PDLC素子を得た。
[Comparative Example 6]
A sealed PDLC element with a surface protective film was obtained in the same manner as in Example 9 except that the thickness of the sealing layer was 15 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記実施例および比較例で得られた表面保護フィルム付き封止PDLC素子において、剥離具を用いて一方の表面保護フィルムをPDLC素子から剥離した。剥離後のPDLC素子の端部を顕微鏡観察し、「バリ」および「封止取られ」の有無を評価した。結果を表2および図4に示す。 In the sealed PDLC element with a surface protective film obtained in the above Examples and Comparative Examples, one surface protective film was peeled from the PDLC element using a release tool. The end of the PDLC element after peeling was observed under a microscope, and the presence or absence of "burrs" and "sealing" was evaluated. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図4に示されるとおり、実施例の表面保護フィルム付き封止PDLC素子によれば、封止層の残滓をPDLC素子の表面に残存させることなく、表面保護フィルムをPDLC素子から好適に剥離することができる。 As shown in Table 2 and FIG. 4, according to the sealing PDLC element with the surface protective film of the embodiment, the surface protective film is preferably removed from the PDLC element without leaving the residue of the sealing layer on the surface of the PDLC element. Can be peeled off.
 本発明の表面保護フィルム付き封止調光素子は、調光機能を有する表示装置、光シャッター機能を有する光学部材等に好適に用いられる。 The sealed dimming element with a surface protective film of the present invention is suitably used for a display device having a dimming function, an optical member having an optical shutter function, and the like.
100 表面保護フィルム付き封止調光素子
10  調光素子
11  第1の透明導電性フィルム
12  第2の透明導電性フィルム
13  高分子分散型液晶層
20  表面保護フィルム
21  基材
22  粘着剤層
30  封止層
100 Sealed dimming element with surface protective film 10 Dimming element 11 First transparent conductive film 12 Second transparent conductive film 13 Polymer-dispersed liquid crystal layer 20 Surface protective film 21 Base material 22 Adhesive layer 30 Sealed Stop layer

Claims (5)

  1.  第1の透明導電性フィルムと、該第1の透明導電性フィルムと対向するように配置された第2の透明導電性フィルムと、該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に配置された高分子分散型液晶層と、を備えた調光素子と、
     基材と該基材の一方の側に設けられた粘着剤層とを備え、該調光素子の少なくとも一方の主面に該粘着剤層を介して積層された表面保護フィルムと、
     該調光素子および該表面保護フィルムの端面に設けられた封止層と、を有し、
     該封止層の厚みをa(μm)、該表面保護フィルムの基材厚みをb(μm)、該調光素子の厚みをc(μm)としたとき、関係式(1)~(3)を全て満たす、表面保護フィルム付き封止調光素子。
       a<0.3c      (1)
       10<b<150    (2)
       a<0.4b      (3)
    A first transparent conductive film, a second transparent conductive film arranged so as to face the first transparent conductive film, the first transparent conductive film, and the second transparent conductive film. A dimming element provided with a polymer-dispersed liquid crystal layer arranged between the film and the film.
    A surface protective film comprising a base material and an adhesive layer provided on one side of the base material, and laminated on at least one main surface of the dimming element via the pressure-sensitive adhesive layer.
    It has a dimming element and a sealing layer provided on the end face of the surface protective film.
    When the thickness of the sealing layer is a (μm), the thickness of the base material of the surface protective film is b (μm), and the thickness of the dimming element is c (μm), the relational expressions (1) to (3) A sealed dimming element with a surface protection film that meets all of the requirements.
    a <0.3c (1)
    10 <b <150 (2)
    a <0.4b (3)
  2.  前記第1の透明導電性フィルムおよび前記第2の透明導電性フィルムがそれぞれ、透明基材と、該透明基材の一方の側に設けられた透明電極層と、を有する、請求項1に記載の表面保護フィルム付き封止調光素子。 10. The first aspect of claim 1, wherein the first transparent conductive film and the second transparent conductive film each have a transparent base material and a transparent electrode layer provided on one side of the transparent base material. Sealed dimming element with surface protection film.
  3.  前記封止層が、厚み50μmのフィルムに成形した場合の破断伸度が5%~30%である樹脂を含む、請求項1または2に記載の表面保護フィルム付き封止調光素子。 The sealing dimming element with a surface protective film according to claim 1 or 2, wherein the sealing layer contains a resin having a breaking elongation of 5% to 30% when molded into a film having a thickness of 50 μm.
  4.  端面の一部が、封止層が設けられていない露出部である、請求項1から3のいずれかに記載の表面保護フィルム付き封止調光素子。 The sealing dimming element with a surface protective film according to any one of claims 1 to 3, wherein a part of the end face is an exposed portion not provided with a sealing layer.
  5.  請求項1から4のいずれかに記載の表面保護フィルム付き封止調光素子が2つ以上積層された積層体であって、
     該封止層が、該積層体の端面において、一体的に形成されている、積層体。
     

     
    A laminate in which two or more sealing dimming elements with a surface protective film according to any one of claims 1 to 4 are laminated.
    A laminate in which the sealing layer is integrally formed on the end face of the laminate.


PCT/JP2020/036326 2019-09-30 2020-09-25 Sealed light control element with surface protection film WO2021065731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080068343.5A CN114503024A (en) 2019-09-30 2020-09-25 Sealed light modulation element with surface protection film
KR1020227008175A KR20220074862A (en) 2019-09-30 2020-09-25 Encapsulated light control element with surface protection film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019178606 2019-09-30
JP2019-178606 2019-09-30
JP2020-158721 2020-09-23
JP2020158721A JP2021056505A (en) 2019-09-30 2020-09-23 Sealed light control element with surface protection film

Publications (1)

Publication Number Publication Date
WO2021065731A1 true WO2021065731A1 (en) 2021-04-08

Family

ID=75270677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036326 WO2021065731A1 (en) 2019-09-30 2020-09-25 Sealed light control element with surface protection film

Country Status (5)

Country Link
JP (1) JP2021056505A (en)
KR (1) KR20220074862A (en)
CN (1) CN114503024A (en)
TW (1) TW202121037A (en)
WO (1) WO2021065731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023192117A1 (en) 2022-03-29 2023-10-05 Nitto Denko Corporation Polymer matrix with mesogenic ligand and light shutter including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195209A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Polarizing plate, manufacturing method thereof, optical film and image forming display device
KR20070112426A (en) * 2004-03-22 2007-11-23 노키아 코포레이션 Conveying parameters for broadcast/multicast sessions via a communication protocol
WO2017026349A1 (en) * 2015-08-12 2017-02-16 富士フイルム株式会社 Layered film
WO2018159376A1 (en) * 2017-02-28 2018-09-07 日東電工株式会社 Polarizing plate and method for producing polarizing plate
WO2018190181A1 (en) * 2017-04-13 2018-10-18 日東電工株式会社 Image display device production method, and image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937130B2 (en) 2000-04-20 2007-06-27 富士ゼロックス株式会社 Liquid crystal device and manufacturing method thereof
JP2011022202A (en) * 2009-07-13 2011-02-03 Sumitomo Chemical Co Ltd Polarizing plate and image display device using the same
JP6740596B2 (en) 2015-11-26 2020-08-19 大日本印刷株式会社 Liquid crystal device and method of manufacturing liquid crystal device
CN108274731A (en) * 2017-12-15 2018-07-13 广州市华惠材料科技有限公司 A kind of applying method of automobile-used pdlc film
JP2019159139A (en) * 2018-03-14 2019-09-19 凸版印刷株式会社 Dimming film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112426A (en) * 2004-03-22 2007-11-23 노키아 코포레이션 Conveying parameters for broadcast/multicast sessions via a communication protocol
JP2006195209A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Polarizing plate, manufacturing method thereof, optical film and image forming display device
WO2017026349A1 (en) * 2015-08-12 2017-02-16 富士フイルム株式会社 Layered film
WO2018159376A1 (en) * 2017-02-28 2018-09-07 日東電工株式会社 Polarizing plate and method for producing polarizing plate
WO2018190181A1 (en) * 2017-04-13 2018-10-18 日東電工株式会社 Image display device production method, and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023192117A1 (en) 2022-03-29 2023-10-05 Nitto Denko Corporation Polymer matrix with mesogenic ligand and light shutter including the same

Also Published As

Publication number Publication date
CN114503024A (en) 2022-05-13
TW202121037A (en) 2021-06-01
KR20220074862A (en) 2022-06-03
JP2021056505A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101448418B1 (en) Photocurable resin composition and method of manufacturing image display device using the same
JP2010039458A (en) Polarizing plate, manufacturing method therefor, and composite polarizing plate using the same
KR20230043240A (en) Replaceable cover lens for flexible display
KR100722342B1 (en) Transparent Gel Self-Adhesive Agent, Transparent Gel Self-Adhesive Sheet, Optical Filter for Display
US20130220511A1 (en) Method for manufacturing an image display device
EP3570094B1 (en) Light control film
WO2014061478A1 (en) Adhesive layer-equipped transparent surface material and display device
JP2011507034A (en) Liquid crystal display and method for manufacturing the same
JP2003131032A (en) Tacky optical member and liquid crystal display device
WO2020071110A1 (en) Method of manufacturing dimming element
JP2015217530A (en) Adhesive high hardness transparent film
JP2015151472A (en) Adhesive composition for hard coat film, adhesive type hard coat film, and curable hard coat film
WO2021065731A1 (en) Sealed light control element with surface protection film
EP3234744A1 (en) Adhesives to replace ink step bezels in electronic devices
JP2008197310A (en) Thin polarizing plate, composite polarizing plate, image display device, and method for manufacturing composite polarizing plate
JP7171181B2 (en) light control film
KR20100102392A (en) Optical clear adhesion sheet for smart glass and method thereof
JP6508169B2 (en) Optical laminate for front of in-cell touch panel liquid crystal element, in-cell touch panel liquid crystal display device, and method of manufacturing them
JP2019215480A (en) Optical laminate with touch sensor layer, image display device, and method of manufacturing optical laminate
JP2018112703A (en) Method for manufacturing light control device
KR102176231B1 (en) Transmittance variable film and method for manufacturing transmittance variable film
JP2019191481A (en) Dimming body
WO2021095516A1 (en) Optical film set and liquid crystal panel
JP7326733B2 (en) Light control film, light control device
CN113195214A (en) Light modulation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871142

Country of ref document: EP

Kind code of ref document: A1