WO2021065727A1 - Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body of said antistatic resin composition - Google Patents

Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body of said antistatic resin composition Download PDF

Info

Publication number
WO2021065727A1
WO2021065727A1 PCT/JP2020/036310 JP2020036310W WO2021065727A1 WO 2021065727 A1 WO2021065727 A1 WO 2021065727A1 JP 2020036310 W JP2020036310 W JP 2020036310W WO 2021065727 A1 WO2021065727 A1 WO 2021065727A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic agent
acid
antistatic
mol
polymer compound
Prior art date
Application number
PCT/JP2020/036310
Other languages
French (fr)
Japanese (ja)
Inventor
美帆 永井
直樹 圓城
和清 野村
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2021065727A1 publication Critical patent/WO2021065727A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials

Definitions

  • the present invention relates to an antistatic agent, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing the antistatic agent, and a molded product thereof.
  • An antistatic agent that can be continuously applied and has excellent storage stability and productivity (cutting property), an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing these, and molding thereof. Regarding the body.
  • thermoplastic resins are indispensable in modern times because they are not only lightweight and easy to process, but also have excellent properties such as the ability to design a base material according to the application. It is an important material. Further, since the thermoplastic resin has a property of being excellent in electrical insulation, it is frequently used for components of electric products and the like. However, since the thermoplastic resin has too high an insulating property, there is a problem that it is easily charged by friction or the like.
  • thermoplastic resin attracts dust and dirt around it, which causes a problem of spoiling the appearance of the resin molded product.
  • precision instruments such as computers may not be able to operate normally due to charging.
  • electric shock there are problems with electric shock. When an electric shock is generated from the resin to the human body, it not only causes discomfort to the human body, but may also induce an explosion accident in the presence of flammable gas or dust.
  • the synthetic resin has been conventionally treated to prevent charging.
  • the most common antistatic treatment method is to add an antistatic agent to the synthetic resin.
  • antistatic agents include a coating type that is applied to the surface of a resin molded body and a kneading type that is added when the resin is processed and molded, but the coating type is inferior in sustainability.
  • a large amount of organic matter is applied to the surface, there is a problem that the material touching the surface is contaminated.
  • Patent Documents 1 and 2 a polyether is used to impart antistatic properties to a polyolefin resin. Esteramides have been proposed. Further, Patent Document 3 proposes a polyether ester for imparting antistatic property (antistatic property) to a thermoplastic resin.
  • conventional antistatic agents are not always sufficient in antistatic performance, and further improvement is desired at present.
  • conventional polymer-type antistatic agents have problems in storage stability such as stickiness and blocking during long-term storage and storage in a high temperature state.
  • polymer-type antistatic agents are often used by cutting the polymer obtained by polymerization into pellets, and when these pellets are stored for a long period of time or in a high temperature state, they become sticky or block. There was a problem with its storage stability. In addition, when cutting into pellets, the pellets may be uneven and have an irregular shape, some of the pellets may not be completely cut and several pellets may remain connected, or the pellet surface may be jagged. There is also a problem that cutting defects such as burrs and cracks occur, which greatly reduces productivity.
  • an object of the present invention is to contain an antistatic agent which can continuously impart an excellent antistatic effect to a synthetic resin and is also excellent in storage stability and productivity (cutting property). It is an object of the present invention to provide an antistatic agent composition, an antistatic resin composition containing these, and a molded product thereof.
  • the present inventors have excellent storage stability and productivity (cutting property) in the polymer compound having a predetermined structure, which is superior to the synthetic resin. It has been found that the above-mentioned problems can be solved by continuously imparting antistatic performance, and by using this, the present invention has been completed.
  • the antistatic agent of the present invention has a polyester segment (A) and a polyether segment (B).
  • the polyester segment (A) is (A1) At least one of 1,4-butanediol or ethylene glycol, (A2) Adipic acid and terephthalic acid, and (A3) A polyester obtained from a polyhydric alcohol compound having three or more hydroxyl groups.
  • A2 The ratio of terephthalic acid to adipic acid and terephthalic acid is 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid.
  • the polyether segment (B) is (b) polyethylene glycol, It is characterized by containing one or more kinds of polymer compounds (C) having a structure in which a polyester segment (A) and a polyether segment (B) are bonded via an ester bond.
  • the proportion of the polyhydric alcohol compound having three or more hydroxyl groups (a3) in the polymer compound (C) is equal to at least one of (a1) 1,4-butanediol or ethylene glycol.
  • (A3) is preferably 0.05 to 5 mol% with respect to the total number of moles of the polyhydric alcohol compound having 3 or more hydroxyl groups.
  • the mass ratio (A) / (B) of the polyester segment (A) and the polyether segment (B) of the polymer compound (C) is 0.1 to 1. It is preferably 4.0.
  • the polymer compound (C) has a melting point in the range of 100 ° C. or higher and 200 ° C. or lower.
  • the antistatic agent composition of the present invention is characterized in that the antistatic agent of the present invention is further blended with one or more selected from the group of alkali metal salts and ionic liquids. is there.
  • the antistatic resin composition of the present invention is characterized in that the antistatic agent of the present invention is blended with the synthetic resin.
  • the other antistatic resin composition of the present invention is characterized in that the antistatic agent composition of the present invention is blended with the synthetic resin.
  • the synthetic resin is at least one selected from the group consisting of polyolefin-based resins or polystyrene-based resins.
  • the molded product of the present invention is characterized by being obtained from the antistatic resin composition of the present invention.
  • an antistatic agent which can continuously impart an excellent antistatic effect to a synthetic resin and is also excellent in storage stability and productivity (cutting property), and an antistatic agent containing the same.
  • An agent composition, an antistatic resin composition containing these, and a molded product thereof can be provided.
  • the antistatic agent of the present invention contains one or more of the polymer compound (C), and the polymer compound (C) has a polyester segment (A) and a polyether segment (B). ..
  • the polyester segment (A) is obtained from (a1) at least one of 1,4-butanediol or ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) a polyhydric alcohol compound having three or more hydroxyl groups. Is polyester. Then, (a2) the ratio of terephthalic acid in adipic acid and terephthalic acid is 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid. Further, the polyether segment (B) is (b) polyethylene glycol, and has a structure in which the polyester segment (A) and the polyether segment (B) are bonded via an ester bond.
  • the monomer (a1) constituting the polyester of the polyester segment (A) is at least one of 1,4-butanediol or ethylene glycol, and may be only 1,4-butanediol. , Ethylene glycol alone, or a mixture of 1,4-butanediol and ethylene glycol.
  • 1,4-butanediol or a mixture of 1,4-butanediol and ethylene glycol is preferable from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property).
  • 4-Butanediol is most preferred.
  • the ratio of 1,4-butanediol is preferably 50 mol% or more, more preferably 70 mol% or more, based on the total number of moles of both.
  • 80 mol% or more is more preferable, and 90 mol% or more is particularly preferable.
  • the monomer (a2) constituting the polyester of the polyester segment (A) is adipic acid and terephthalic acid.
  • the ratio of terephthalic acid is in the range of 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid, and antistatic property, its durability, and storage stability. From the viewpoint of productivity (cutting property), 45 mol% or more and 95 mol% or less are preferable, 50 mol% or more and 90 mol% or less are more preferable, and 60 mol% or more and 90 mol% or less are further preferable.
  • the adipic acid and terephthalic acid of (a2) may be derivatives thereof as long as they can react with a hydroxyl group to form an ester bond, and the derivatives include, for example, an acid anhydride and an ester (for example, a methyl ester). , Etc.), alkali metal salts (for example, sodium salts), acid halides (for example, acid chloride), and alkyl esters such as methyl esters are preferable from the viewpoint of easiness of reaction.
  • a dicarboxylic acid other than the adipic acid and terephthalic acid of (a2) may be used as long as the effect of the present invention is not impaired.
  • the dicarboxylic acid other than adipic acid and terephthalic acid include sebacic acid and isophthalic acid.
  • orthophthalic acid and its derivatives for example, phthalic anhydride and orthophthalic acid ester
  • the monomer (a3) constituting the polyester of the polyester segment (A) is a polyhydric alcohol compound having three or more hydroxyl groups.
  • the polyhydric alcohol compound (a3) having 3 or more hydroxyl groups is not particularly limited as long as it has 3 or more hydroxyl groups, and is, for example, glycerin, 1,2,3-butantriol, 1,2,4-.
  • Butantriol 2-methyl-1,2,3-propanetriol, 1,2,3-pentantriol, 1,2,4-pentantriol, 1,3,5-pentantriol, 2,3,4-pentane Triol, 2-methyl-2,3,4-butanetriol, trimethylolethane, 2,3,4-hexanetriol, 2-ethyl-1,2,3-butanetriol, trimethylpropane, 4-propyl-3 , 4,5-Heptanetriol, 2,4-dimethyl-2,3,4-pentantriol, triethanolamine, triisopropanolamine, 1,3,5-tris (2-hydroxyethyl) isocyanurate, etc.
  • the polyhydric alcohol compound is not particularly limited, and high molecular weight polyhydric alcohols such as polypentaerythritol and polyvinyl alcohol can also be used.
  • the polyhydric alcohol compound (a3) having three or more hydroxyl groups may be used alone or in combination of two or more.
  • the polyhydric alcohol compound (a3) having three or more hydroxyl groups contains pentaerythritol and di, from the viewpoints of antistatic property, its durability, storage stability, and productivity (cutting property).
  • Pentaerythritol, glycerin, diglycerin, trimethylolpropane, ditrimethylolpropane are preferable, and glycerin is the most preferable.
  • the proportion of the polyhydric alcohol compound having three or more hydroxyl groups (a3) in the polymer compound (C) is (a1) from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). It is preferably 0.05 to 5 mol% with respect to the total number of moles of at least one of 1,4-butanediol or ethylene glycol and the polyhydric alcohol compound having 3 or more hydroxyl groups (a3). It is more preferably 1 to 3.0 mol%, and even more preferably 0.3 to 2.0 mol%.
  • the polyethylene glycol (b) of the polyether segment (B) is preferably polyethylene glycol represented by the following general formula (1).
  • m represents a number from 4 to 250. m is preferably 20 to 200, more preferably 40 to 180, from the viewpoint of antistatic property, its durability, and storage stability.
  • the number average molecular weight of polyethylene glycol is calculated from the measured value of the hydroxyl value, and from the viewpoint of antistatic property and its sustainability, storage stability, and productivity (cutting property). It is preferably 400 to 10,000, more preferably 900 to 8,000, and even more preferably 2,000 to 8,000.
  • the method for measuring the hydroxyl value and the method for calculating the number average molecular weight from the hydroxyl value are described below.
  • the number average molecular weight of the polyester segment (A) in the polymer compound (C) is preferably 1,000 in terms of polystyrene conversion from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). It is ⁇ 10,000, more preferably 1,500 to 8,000, and even more preferably 2,500 to 7,500. If the number average molecular weight is less than 1,000, the storage stability may be inferior, and if it exceeds 10,000, the reaction for obtaining the polymer compound (C) may take a long time and the economic efficiency may be inferior.
  • the molecular compound (C) may be colored by a long-term reaction.
  • the gel permeation chromatography (GPC) method is preferable as the method for measuring the number average molecular weight in terms of polystyrene, and the measuring method is shown below.
  • Mn number average molecular weight by polystyrene conversion
  • GPC gel permeation chromatography
  • the number average molecular weight of the polyester segment (A) is determined by measuring the polystyrene-equivalent number average molecular weight of polyester (A'), polyester (A "), etc., which are intermediates obtained in the manufacturing process of the polymer compound (C). It may be calculated from them.
  • the gel permeation chromatography (GPC) method is preferable, and the measuring method is shown above.
  • the degree of polymerization of the polyester segment (A) in the polymer compound (C) is preferably 4 to 50, preferably 6 to 50, from the viewpoints of antistatic property, its durability, storage stability, and productivity (cutting property). 40 is more preferable.
  • the polymer compound (C) according to the antistatic agent of the present invention has at least one of (a1) 1,4-butanediol or ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) three or more hydroxyl groups. It can be obtained by subjecting a polyhydric alcohol compound and (b) polyethylene glycol to an esterification reaction.
  • the esterification reaction may be any one that forms an ester bond by the reaction, and includes a transesterification reaction.
  • Each component may be a derivative thereof, and examples of the derivative of adipic acid and terephthalic acid in (a2) include acid anhydrides, esters such as alkyl esters, alkali metal salts, and acid halides such as acid chloride.
  • the use of terephthalic acid methyl ester is preferable for terephthalic acid.
  • a catalyst that promotes the esterification reaction may be used, and as the catalyst, dibutyltin oxide, tetraalkyl titanate, zirconium acetate, acetic acid Conventionally known substances such as zinc can be used.
  • the esterification reaction or transesterification reaction may be carried out under reduced pressure.
  • an antioxidant such as a phenolic antioxidant may be added to the reaction system.
  • polyester (A') is synthesized from at least one of (a1) 1,4-butanediol or ethylene glycol, and (a2) adipic acid and terephthalic acid. After that, a method of subjecting the polyester (A'), (a3) a polyhydric alcohol compound having three or more hydroxyl groups, and (b) polyethylene glycol to an esterification reaction (including a transesterification reaction) is preferable.
  • the polyhydric alcohol compound having three or more hydroxyl groups (a3) and the polyethylene glycol (b) are used in the reaction system without isolating the polyester (A').
  • the reaction may be carried out as it is.
  • the polyhydric alcohol compound (a3) having three or more hydroxyl groups and (b) polyethylene glycol may be added to the reaction system at the same time, or (b) polyethylene glycol is added first, and then (a3) hydroxyl groups are added to 3.
  • Polyhydric alcohol compounds having more than one may be added, and vice versa.
  • Polyester (A') has hydroxyl groups at both ends from the viewpoint of ease of subsequent reaction for obtaining the polymer compound (C) and suppression of coloration during the synthesis reaction of the obtained polymer compound (C). Is preferable.
  • the reaction ratio of at least one of (a1) 1,4-butanediol or ethylene glycol to (a2) adipic acid and terephthalic acid was such that (a1) was out of the system during the reaction.
  • (a1) in excess so that both ends become hydroxyl groups, and (a1) is added in excess of 1 mol with respect to (a2) in terms of molar ratio. It is preferable to use 1.2 times the value obtained.
  • the polyester (A') having hydroxyl groups at both ends obtained here, (a3) a polyhydric alcohol compound having three or more hydroxyl groups, and (b) polyethylene glycol are preferably subjected to a transesterification reaction to form a polymer compound.
  • (C) can be obtained.
  • 1,4-butanediol or ethylene glycol bonded to both ends of the polyester (A') is transesterified, and they can be easily removed from the reaction system, so that the reaction is easy. Proceeding, preferably the polymer compound (C) can be obtained. Further, the obtained polymer compound (C) is preferable because it is not colored during the synthesis reaction.
  • This transesterification reaction is preferably carried out under reduced pressure because the reaction easily proceeds.
  • the number average molecular weight of polyester (A') is preferably 1,200 to 10,200 in terms of polystyrene in terms of antistatic property, its durability, storage stability, and productivity (cutting property). It is preferably 1,700 to 8,200, more preferably 2,000 to 7,700, more preferably 2,000 to 4,500, and even more preferably 2,000 to 4,000. is there. If the number average molecular weight is less than 1,200, the storage stability may be inferior, and if it exceeds 10,200, the reaction for obtaining the polymer compound (C) may take a long time and the economic efficiency may be inferior.
  • the molecular compound (C) may be colored by a long-term reaction.
  • a gel permeation chromatography (GPC) method is preferable, and the measuring method is as described above.
  • the polymer compound (C) first, at least one of (a1) 1,4-butanediol or ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) hydroxyl group are added to three.
  • Another method is to synthesize a polyester (A ") from a polyhydric alcohol compound having one or more compounds, and then cause the polyester (A") and (b) polyethylene glycol to undergo an esterification reaction (including a transesterification reaction).
  • (b) polyethylene glycol may be added to the reaction system and the reaction may be carried out as it is without isolating the polyester (A ′′).
  • the number average molecular weight of the polyester (A ") is preferably 1,100 to 10,100 in terms of polystyrene, from the viewpoint of antistatic property and its durability, storage stability, and productivity (cutting property). It is preferably 1,600 to 8,100, more preferably 2,100 to 7,600. If the number average molecular weight is less than 1,100, the storage stability may be inferior, and if it exceeds 10,100.
  • the reaction for obtaining the polymer compound (C) may take a long time and may be inferior in economic efficiency, or the obtained polymer compound (C) may be colored by a long-term reaction.
  • the gel permeation chromatography (GPC) method is preferable as the method for measuring the number average molecular weight in terms of polystyrene, and the measuring method is as described above.
  • the number average molecular weight of the polyether segment (B) may be calculated from the number average molecular weight of (b) polyethylene glycol.
  • the number average molecular weight of the polyether segment (B) is preferably 380 to 9,980, more preferably 880 to 7, from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). , 980, more preferably 1,980 to 7,980.
  • the mass ratio (A) of the polyester segment (A) and the polyether segment (B) is considered from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property).
  • / (B) is preferably 0.1 to 4.0, more preferably 0.2 to 3.0, and even more preferably 0.3 to 2.5.
  • the polymer compound (C) according to the antistatic agent of the present invention has a melting point within the range of 100 ° C. or higher and 200 ° C. or lower from the viewpoint of antistatic property and its durability, particularly storage stability and productivity (cutting property). It is preferably 110 ° C. or higher and 195 ° C. or lower, more preferably 120 ° C. or higher and 190 ° C. or lower. If the melting point is less than 100 ° C, storage stability and productivity (cutting property) may deteriorate, and if it exceeds 200 ° C, processing must be performed at a high temperature, limiting the temperature range in which processing is possible. There is a risk of being done.
  • the melting point in the present invention is measured by the following melting point measuring method.
  • ⁇ Melting point measurement method> The melting point is measured using a differential scanning calorimetry device (DSC). The sample is weighed in an aluminum pan at 3 ⁇ 1 mg, heated from 50 ° C to 250 ° C at 10 ° C / min, cooled from 250 ° C to -20 ° C at 10 ° C / min, and then lowered to 250 ° C at 10 ° C / min. Let the peak top of the melting peak at the time of the second temperature rise be the melting point.
  • DSC differential scanning calorimetry device
  • the polymer compound (C) according to the antistatic agent of the present invention is preferably used in the form of pellets from the viewpoint of handleability.
  • the polymer may be extruded from an extruder and cut into pellets.
  • a machine such as a pelletizer may be used for cutting.
  • the antistatic agent composition of the present invention is obtained by further blending the antistatic agent of the present invention with one or more selected from the group of alkali metal salts and ionic liquids.
  • the antistatic agent of the present invention further contains one or more selected from the group consisting of alkali metal salts and ionic liquids, whereby an antistatic agent composition having excellent antistatic performance and durability thereof. It is preferable.
  • alkali metal salts include salts of organic acids or inorganic acids, and examples of alkali metals include lithium, sodium, potassium, cesium, rubidium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • An aliphatic dicarboxylic acid having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane.
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid
  • sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid
  • salts of lithium, sodium, and potassium are preferable, and sodium is more preferable, from the viewpoints of friction band voltage, surface resistivity, and safety to living organisms and the environment. Further, from the viewpoint of antistatic property and its durability, a salt of acetic acid, a salt of perchloric acid, a salt of p-toluenesulfonic acid and a salt of dodecylbenzenesulfonic acid are preferable, and a salt of dodecylbenzenesulfonic acid is more preferable. Two or more kinds of alkali metal salts may be used.
  • alkali metal salts include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfate, sodium sulfate, potassium sulfate.
  • lithium p-toluenesulfonate, sodium p-toluenesulfonate, lithium dodecylbenzenesulfonate, and dodecylbenzenesulfone are preferable from the viewpoints of antistatic property, their sustainability, and safety to living organisms and the environment.
  • the alkali metal salt may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin. Further, it may be added to the reaction vessel at the time of producing the polymer compound (C) and blended.
  • the blending amount of the alkali metal salt is preferably 0.01 to 30 parts by mass, preferably 0.1 to 100 parts by mass, based on 100 parts by mass of the polymer compound (C) from the viewpoint of antistatic property, its durability, and storage stability. Up to 20 parts by mass is more preferable, and 3.0 to 15 parts by mass is most preferable.
  • ionic liquids have a melting point of 100 ° C. or lower, at least one of the cations or anions constituting the ionic liquid is an organic ion, and has an initial conductivity of 1 to 200 ms / cm, preferably 10 to 10.
  • a room temperature molten salt at 200 ms / cm for example, the room temperature molten salt described in International Publication No. 95/15572.
  • Examples of the cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations.
  • Imidazolinium cations examples thereof include those having 5 to 15 carbon atoms, for example, 1,2,3,4-tetramethylimidazolinium, 1,3-dimethylimidazolinium; (2) Imidazole cation Examples thereof include those having 5 to 15 carbon atoms, for example, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium; (3) Tetrahydropyrimidinium cations Examples thereof include those having 6 to 15 carbon atoms, for example, 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra.
  • Examples of the pyridinium cation include those having 6 to 20 carbon atoms, and examples thereof include 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
  • Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, and examples thereof include 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium.
  • guanidinium cations examples include the following.
  • Guanidinium cation having an imidazolinium skeleton examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium and 2-diethylamino-1,3. , 4-trimethylimidazolinium;
  • Guanidinium cation having an imidazolium skeleton examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolium and 2-diethylamino-1,3,4.
  • Guanidinium cation having a tetrahydropyrimidinium skeleton examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4,5,6-tetrahydro. Pyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4,5,6-tetrahydropyrimidinium; (4) Guanidinium cation having a dihydropyrimidinium skeleton Examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4-dihydropyrimidinium.
  • cations may be used alone or in combination of two or more.
  • an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • examples of the organic acid or the inorganic acid constituting the anion include the following.
  • Organic acids include, for example, carboxylic acids, sulfuric acid esters, sulfonic acids and phosphoric acids; inorganic acids include, for example, super-strong acids (eg, borofluoric acid, boron tetrafluoroacid, perchloric acid, phosphorus hexafluoride). Acids, antimonic acid hexafluoride and arsenic hexafluoride), phosphoric acid and boric acid.
  • the organic acid and the inorganic acid may be used alone or in combination of two or more.
  • the ionic liquid is preferably from the viewpoint of antistatic property and its durability, and the Hammett acidity function ( ⁇ H0) of the anion constituting the ionic liquid is 12 to 100. Acids that form anions other than superacid conjugate bases, superacid conjugate bases, and mixtures thereof.
  • halogen eg, fluorine, chlorine and bromine
  • alkyl (1-12 carbon atoms alkyl (1-12 carbon atoms
  • benzenesulfonic acid eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid.
  • examples of the super strong acid include those derived from a protonic acid and a combination of a protonic acid and a Lewis acid, and a mixture thereof.
  • borofluoric acid trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imide acid and bis (pentafluoroethylsulfonyl) imide acid are preferable from the viewpoint of ease of synthesis.
  • Protonic acids used in combination with Lewis acid include, for example, hydrogen halide (eg, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, trifluoromethane. Included are sulfonic acids, pentafluoroethane sulfonic acids, nonafluorobutane sulfonic acids, undecafluoropentane sulfonic acids, tridecafluorohexane sulfonic acids and mixtures thereof. Of these, hydrogen fluoride is preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • hydrogen fluoride is preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • Lewis acid examples include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof. Of these, boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • the combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid composed of these combinations include tetrafluoroboric acid, hexafluorophosphate, tantalum hexafluoride, antimonic acid hexafluoride, and hexafluoride.
  • examples thereof include tantalum sulphonic acid, boron tetrafluoride acid, phosphoric acid hexafluoride, boron trifluoride chloride, arsenic hexafluoride and mixtures thereof.
  • a conjugated base of a super strong acid (a super strong acid composed of a protonic acid and a super strong acid composed of a combination of a protonic acid and a Lewis acid) is more preferable.
  • a conjugate base of a superacid consisting of a protonic acid and a superacid consisting of a boron trifluoride and / or a phosphorus pentafluoride is more preferable.
  • an ionic liquid having an amidinium cation is preferable, a ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and an ionic liquid having a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • 1-Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide is particularly preferable.
  • the ionic liquid may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin. Further, it may be added to the reaction vessel at the time of producing the polymer compound (C) and blended.
  • the blending amount of the ionic liquid is preferably 0.01 to 20 parts by mass, preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymer compound (C) from the viewpoint of antistatic property, its durability, and storage stability. 15 parts by mass is more preferable, and 1 to 12 parts by mass is most preferable.
  • an alkali metal salt and an ionic liquid may be used in combination.
  • the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a salt of a Group 2 element as long as the effect of the present invention is not impaired.
  • the salt of the Group 2 element include salts of organic acids or inorganic acids, and examples of the Group 2 element include beryllium, magnesium, calcium, strontium, barium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • An aliphatic dicarboxylic acid having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane.
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid
  • sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid
  • the salt of the Group 2 element may be blended with the polymer compound (C), or may be blended with the polymer compound (C) and used with a synthetic resin.
  • the amount of the salt of the Group 2 element is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and 3.0 to 12 parts by mass with respect to 100 parts by mass of the polymer compound (C). Parts by mass are most preferred.
  • the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a surfactant as long as the effects of the present invention are not impaired.
  • a surfactant a nonionic, anionic, cationic or amphoteric surfactant can be used.
  • nonionic surfactant examples include polyethylene glycol-type nonionic surfactants such as higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, higher alkylamine ethylene oxide adduct, and polypropylene glycol ethylene oxide adduct; and fatty acid esters of polyethylene oxide and glycerin. , Pentaerythlit fatty acid ester, sorbit or sorbitan fatty acid ester, polyhydric alcohol alkyl ether, polyhydric alcohol type nonionic surfactant such as aliphatic amide of alkanolamine and the like.
  • anionic surfactant examples include carboxylates such as alkali metal salts of higher fatty acids; sulfate esters such as higher alcohol sulfates and higher alkyl ether sulfates, alkylbenzene sulfonates and alkyl sulfonates. Sulfates such as paraffin sulfonates; phosphate salts such as higher alcohol phosphates and the like can be mentioned.
  • Examples of the cationic surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts.
  • amphoteric tenside examples include amino acid amphoteric tenside agents such as higher alkylaminopropionate, betaine amphoteric tenside agents such as higher alkyldimethylbetaine and higher alkyldihydroxyethyl betaine, and these may be used alone or. Two or more types can be used in combination.
  • anionic surfactants are preferable, and sulfonates such as alkylbenzene sulfonates, alkyl sulfonates, and paraffin sulfonates are particularly preferable. ..
  • the surfactant may be blended with the polymer compound (C) or may be blended with the polymer compound (C) into a synthetic resin for use.
  • the blending amount of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (C). ..
  • the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a polymer type antistatic agent as long as the effects of the present invention are not impaired.
  • a polymer type antistatic agent such as a polyether ester amide
  • a known polyether ester amide for example, JP-A-7-10989
  • examples thereof include the polyether ester amide composed of the polyoxyalkylene adduct of bisphenol A described above.
  • a block polymer having a repeating structure in which the bonding unit between the polyolefin block and the hydrophilic polymer block is 2 to 50 can be used, and examples thereof include the block polymer described in US Pat. No. 6,552,131.
  • the polymer-type antistatic agent may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin.
  • the blending amount of the polymer-type antistatic agent is preferably 0 to 50 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the polymer compound (C).
  • the antistatic agent of the present invention may be blended with a compatibilizer as long as the effects of the present invention are not impaired to prepare an antistatic agent composition having antistatic properties.
  • a compatibilizer include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group. Examples thereof include the polymer described in Japanese Patent Application Laid-Open No. 3-258850, the modified vinyl polymer having a sulfonyl group described in JP-A-6-345927, and the block polymer having a polyolefin moiety and an aromatic vinyl polymer moiety. Be done.
  • the compatibilizer may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin.
  • the blending amount of the compatibilizer is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (C).
  • the antistatic agent composition of the present invention may contain other components as arbitrary components in addition to the polymer compound (C) and the components listed above, as long as the effects of the present invention are not impaired. .. These other components may be directly blended with the antistatic agent composition of the present invention, or the polymer compound (C) or the antistatic agent composition of the present invention may be blended with a synthetic resin such as a thermoplastic resin. , When used as a resin composition having antistatic properties, it may be blended with a synthetic resin.
  • the antistatic resin composition of the present invention is obtained by blending the antistatic agent of the present invention with a synthetic resin.
  • the polymer compound (C) and the antistatic agent composition according to the antistatic agent of the present invention are blended with a synthetic resin, particularly preferably a thermoplastic resin, and used as an antistatic resin composition having antistatic properties.
  • a synthetic resin particularly preferably a thermoplastic resin
  • thermoplastic resins include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, crosslinked polyethylene, ultrahigh-molecular-weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, and the like.
  • thermoplastic resins include isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, olefin elastomer, styrene elastomer, polyester elastomer, nitrile elastomer, and nylon. It may be an elastomer such as a system elastomer, a vinyl chloride elastomer, a polyamide elastomer, or a polyurethane elastomer. In the antistatic resin composition of the present invention, these thermoplastic resins may be used alone or in combination of two or more. Moreover, the thermoplastic resin may be alloyed.
  • thermoplastic resins have molecular weight, degree of polymerization, density, softening point, ratio of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and compounding ratio of monomer as raw material, type of polymerization catalyst. It can be used regardless of (for example, Ziegler catalyst, metallocene catalyst, etc.).
  • thermoplastic resins one or more selected from the group of polyolefin-based resins or polystyrene-based resins is preferable from the viewpoint of antistatic properties.
  • the mass ratio of the synthetic resin to the polymer compound (C) according to the antistatic agent of the present invention or the antistatic agent composition of the present invention in the antistatic resin composition of the present invention is 99/1 to 40.
  • the range of / 60 is preferable.
  • the method for blending the polymer compound (C) according to the antistatic agent of the present invention into the synthetic resin, particularly preferably the thermoplastic resin, is not particularly limited, and any commonly used method can be used, for example. It may be mixed and kneaded by roll kneading, bumper kneading, extrusion machine, kneader or the like. At that time, one or more selected from the group consisting of alkali metal salts and ionic liquids may be mixed and kneaded at the same time. Further, the polymer compound (C) may be added to the synthetic resin as it is, or may be added after impregnating the carrier, if necessary.
  • the mixture may be heated and mixed as it is, or if necessary, the carrier may be impregnated after diluting with an organic solvent, and then the solvent may be removed.
  • a carrier those known as fillers and fillers for synthetic resins, flame retardants and light stabilizers that are solid at room temperature can be used, and for example, calcium silicate powder, silica powder, talc powder, and alumina powder can be used.
  • Titanium oxide powder those obtained by chemically modifying the surface of these carriers, and solid ones among the flame retardants and antioxidants listed below.
  • these carriers those in which the surface of the carrier is chemically modified are preferable, and those in which the surface of the silica powder is chemically modified are more preferable.
  • These carriers preferably have an average particle size of 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m.
  • the polymer compound (C) and a synthetic resin are mixed at the time of molding such as injection molding. It may be blended by a method for obtaining a molded product, and at that time, one or more selected from the group of alkali metal salts and ionic liquids may be further blended, and further, with the polymer compound (C) in advance.
  • a masterbatch with a synthetic resin may be produced and this masterbatch may be blended, and at that time, one or more selected from the group of alkali metal salts and ionic liquids may be blended.
  • the antistatic resin composition of the present invention may contain various additives such as a phenolic antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, an ultraviolet absorber, and a hindered amine-based light stabilizer, if necessary. Further can be added, which can stabilize the antistatic resin composition of the present invention.
  • antioxidants such as these antioxidants may be added to the antistatic agent composition of the present invention before being added to the synthetic resin. Further, it may be blended at the time of producing the polymer compound (C). In particular, an antioxidant is preferable because it can prevent oxidative deterioration of the polymer compound (C) during production by blending it at the time of producing the polymer compound (C).
  • phenolic antioxidant examples include 2,6-ditertiary butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, and distearyl (3,5-ditertiary butyl-4-4).
  • phosphorus-based antioxidants examples include trisnonylphenyl phosphite and tris [2-tertiary butyl-4- (3-third butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phos.
  • thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid) ester.
  • dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate
  • pentaerythritol tetra ( ⁇ -alkylthiopropionic acid) ester kind.
  • the amount of these thioether-based antioxidants added is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-Hydroxybenzophenones such as 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-ditertiary butylphenyl) -5-chlorobenzo Triazol, 2- (2'-hydroxy-3'-tertiary butyl-5'-methylphenyl) -5-chlorobenzotriazol, 2- (2'-hydroxy-5'-tertiary octyl) Phenyl) benzotriazol, 2- (2'-hydroxy-3', 5'-dicumylphenyl) benzotriazol, 2,2'-methylenebis (4-third octyl-6- (benzotriazolyl) phenol ), 2- (2'-Hydroxyphenyl) benzotriazoles such as 2- (2'-hydroxy-3'-tertiary butyl-5'-carboxyphenyl) benzotriazole; phenylsalicylate, resorcinol mono
  • hindered amine-based light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6. , 6-Tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane Tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, bis (2,2,6,6-tetramethyl-4) -Piperidil) bis (
  • a known neutralizing agent is added as necessary to further neutralize the residual catalyst in the polyolefin resin as long as the effects of the present invention are not impaired. It is preferable to do so.
  • the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearoamide), ethylene bis (12-hydroxystearoamide), and stearic acid amide. Compounds are mentioned, and these neutralizing agents may be mixed and used.
  • an aromatic carboxylic acid metal salt an alicyclic alkyl carboxylic acid metal salt, as long as the effects of the present invention are not impaired.
  • Crystal nucleating agents such as aluminum p-tertiary butyl benzoate, aromatic phosphate metal salts, dibenzylidene sorbitols, metal soaps, hydrotalcites, triazine ring-containing compounds, metal hydroxides, phosphoric acid ester flame retardants.
  • triazine ring-containing compound examples include melamine, ammeline, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylene guanamine, norbornene diguanamine, methylene diguanamine, ethylene dimeramine, and trimethylene di.
  • examples thereof include melamine, tetramethylene dimelamine, hexamethylene dimelamine, and 1,3-hexylene melamine.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Kagaku Kogyo Co., Ltd.) and the like.
  • Examples of the phosphoric acid ester flame retardant include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyldiphenyl phosphate and triki.
  • Sirenyl phosphate octyldiphenyl phosphate, xylenyldiphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyldiphenyl phosphate, t-butylphenyldiphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) ) Phosphate, isopropylphenyldiphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate and the like.
  • condensed phosphate ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and the like.
  • Examples of (poly) phosphate-based flame retardants include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate.
  • inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talcite, and montmorillonite, and surface-treated products thereof.
  • inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talcite, and montmorillonite, and surface-treated products thereof.
  • TIPAQUE R-680 Titanium oxide: Ishihara Sangyo Co., Ltd.
  • Kyowa Mag 150 magnesium oxide: Kyowa Chemical Industry Co., Ltd.
  • DHT-4A hydrotalcite: Kyowa Chemical Industry Co., Ltd.
  • Alchemizer 4 zinc-modified hydro
  • Hydrotalcite Various commercially available products such as Kyowa Kagaku Kogyo Co., Ltd. can be used.
  • pentaerythritol can be mentioned.
  • anti-aging agent examples include naphthylamine-based, diphenylamine-based, p-phenyldiamine-based, quinoline-based, hydroquinone derivatives, monophenol-based, thiobisphenol-based, hindered phenol-based, and phosphite ester-based agents.
  • crystal nucleating agent examples include an inorganic crystal nucleating agent and an organic crystal nucleating agent
  • specific examples of the inorganic crystal nucleating agent include kaolinite, synthetic mica, clay, zeolite, silica, graphite, carbon black, and oxidation.
  • Metal salts such as magnesium, titanium oxide, calcium sulfide, boron nitride, calcium carbonate, barium sulfate, aluminum oxide, neodium oxide and phenylphosphonate can be mentioned.
  • These inorganic crystal nucleating agents may be modified with an organic substance in order to enhance the dispersibility in the composition.
  • organic crystal nucleating agent examples include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, potassium terephthalate, calcium oxalate.
  • organic sulfonates such as sodium p-toluenesulfonate, sodium sulfoisophthalate, stearic acid amide, ethylenebislauric acid amide, partimate amide, hydroxystearic acid amide, erucic acid amide, tristrimethic acid (t-butylamide) ) Etc., benzylidene sorbitol and its derivatives, phosphorus compound metal salts such as sodium-2,2'-methylenebis (4,6-di-t-butylphenyl) phosphate, and 2,2-methylbis (4). , 6-di-t-butylphenyl) sodium and the like.
  • the neutralizing agent is added to neutralize the residual catalyst in the synthetic resin, and is, for example, a fatty acid metal salt such as calcium stearate, lithium stearate, sodium stearate, or ethylene bis (stearoamide).
  • a fatty acid metal salt such as calcium stearate, lithium stearate, sodium stearate, or ethylene bis (stearoamide).
  • fatty acid amide compounds such as ethylene bis (12-hydroxystearoamide) and stearic acid amide.
  • the lubricant examples include pure hydrocarbon-based lubricants such as liquid paraffin, natural paraffin, microwax, synthetic paraffin, low molecular weight polyethylene, and polyethylene wax; halogenated hydrocarbon-based lubricants; fatty acid-based lubricants such as higher fatty acids and oxyfatty acids; Fatty acid amide-based lubricants such as fatty acid amide and bis fatty acid amide; ester-based lubricants such as lower alcohol ester of fatty acid, polyhydric alcohol ester of fatty acid such as glyceride, polyglycol ester of fatty acid, and fatty alcohol ester of fatty acid (ester wax); Examples thereof include metal soaps, fatty alcohols, polyhydric alcohols, polyglycols, polyglycerols, partial esters of fatty acids and polyhydric alcohols, fatty acids and polyglycols, partial ester-based lubricants of polyglycerols, silicone oils, mineral oils and the like.
  • processing aid examples include acrylic processing aids, and as the acrylic processing aid, one type of (meth) acrylic acid ester may be polymerized or two or more types may be copolymerized.
  • polymerized or copolymerized (meth) acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl acrylate, isobutyl.
  • Examples thereof include (meth) acrylic acid esters such as acrylate, t-butyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate and tridecyl methacrylate.
  • (meth) acrylic acid and (meth) acrylic acid ester containing a hydroxy group can also be mentioned.
  • plasticizer examples include polyester-based plasticizers, glycerin-based plasticizers, polyvalent carboxylic acid ester-based plasticizers, polyalkylene glycol-based plasticizers, ether ester-based plasticizers, epoxy-based plasticizers, and the like.
  • the reinforcing material examples include glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wallastenite, sepiolite, asbestos, and slag fiber.
  • Inorganic fibrous reinforcing materials such as zonolite, elestadite, gypsum fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, acetate.
  • Organic fibrous reinforcements such as fiber, kenaf, ramie, cotton, jute, hemp, sisal, flax, linen, silk, Manila hemp, sugar cane, wood pulp, paper scraps, waste paper and wool, glass flakes, non-swelling mica, graphite, Metal foil, ceramic beads, clay, mica, cericite, zeolite, bentonite, dolomite, kaolin, fine powder silicic acid, pebbles, potassium titanate, silas balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide, aluminum oxide, Examples thereof include plate-like or granular reinforcing materials such as titanium oxide, aluminum silicate, silicon oxide, gypsum, novacurite, dosonite and white clay.
  • These reinforcing materials may be coated or focused with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, and may be coated or focused with a coupling agent such as aminosilane or epoxysilane. It may have been processed.
  • a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin
  • a coupling agent such as aminosilane or epoxysilane. It may have been processed.
  • additives usually used for synthetic resins such as a cross-linking agent and a fungicide
  • Antifogging agents, antistatic agents, surface treatment agents, fluorescent agents, fungicides, fungicides, metal deactivators, mold release agents and the like can be blended within a range that does not impair the effects of the present invention.
  • the additive contained in the antistatic resin composition of the present invention may be added directly to the synthetic resin, or may be added to the polymer compound (C) or the antistatic agent composition which is the antistatic agent of the present invention. Then, it may be added to the synthetic resin.
  • the molded product of the present invention is obtained from the antistatic resin composition of the present invention.
  • a resin molded product having antistatic properties can be obtained.
  • the molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotary molding, and the like, and include resin plates, sheets, films, bottles, fibers, and deformed products. It is possible to manufacture molded products having various shapes such as.
  • the molded product obtained by the antistatic resin composition of the present invention is excellent in antistatic performance and its durability.
  • the antistatic resin composition of the present invention and a molded product using the same can be used for electricity / electronics / communication, agriculture, forestry and fisheries, mining, construction, food, textiles, clothing, medical care, coal, petroleum, rubber, leather, automobiles, precision. It can be used in a wide range of industrial fields such as equipment, wood, building materials, civil engineering, furniture, printing, and musical instruments.
  • the resin composition of the present invention and a molded product thereof include a printer, a personal computer, a word processor, a keyboard, a PDA (small information terminal), a telephone, a copier, a facsimile, an ECR (electronic money registration machine), and the like.
  • Office work such as calculators, electronic notebooks, cards, holders, stationery, OA equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, household appliances such as kotatsu, TVs, VTRs, video cameras, radio cassette recorders.
  • Video recorders such as liquid crystal displays, connectors, relays, capacitors, switches, printed boards, coil bobbins, semiconductor encapsulation materials, LED encapsulation materials, electric wires, cables, transformers, deflection yokes.
  • Distribution boards, electrical and electronic parts such as watches and communication equipment, interior and exterior materials for automobiles, plate making films, adhesive films, bottles, food containers, food packaging films, pharmaceutical / pharmaceutical wrap films, product packaging films , Agricultural film, agricultural sheet, greenhouse film, etc.
  • the resin composition of the present invention and a molded product thereof are used for seats (filling, outer material, etc.), belts, ceiling coverings, compatible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers, mattress covers.
  • roofing materials deck materials, wall materials, pillar materials, floor boards, wall materials, skeletons and plywood, window and door shapes, moss boards, siding, terraces, balconies, soundproof boards, heat insulating boards, window materials, etc.
  • the polymer compound (C), which is the antistatic agent of the present invention was produced according to the following production example. Further, in the following production example, the number average molecular weight of the compound (b) is calculated by the following ⁇ method for calculating the number average molecular weight from the hydroxyl value>, and the number average molecular weights other than the compound (b) are calculated by the following ⁇ polystyrene conversion]. It was calculated by the method for measuring the number average molecular weight according to>.
  • ⁇ Calculation method of number average molecular weight from hydroxyl value> The hydroxyl value was measured by the following method for measuring the hydroxyl value, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
  • Number average molecular weight (56110 ⁇ 2) / hydroxyl value ⁇ hydroxyl value measurement method> ⁇
  • Reagent A acetylating agent
  • the above reagents are mixed in the order of (1) ⁇ (2) ⁇ (3).
  • ⁇ Reagent B Pyridine and pure water are mixed in a volume ratio of 3: 1.
  • ⁇ Reagent C Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol and neutralize with 1N-KOH aqueous solution.
  • Mn number average molecular weight by polystyrene conversion
  • GPC gel permeation chromatography
  • polyester (A')-1 160 g was used, 0.92 g (0.01 mol) of glycerin as the polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and the number average molecular weight of polyethylene glycol. 3300, 98 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and 10 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, it is extruded at 230 ° C.
  • the obtained pellets were sampled, and visually good-shaped (5 mm square) pellets and other defective-shaped pellets were confirmed, and the whole of the good-shaped pellets was confirmed.
  • the ratio (mass%) to the amount was calculated, and ⁇ productivity (cutting property)> was evaluated.
  • the defective shape of the pellets includes those in which a part of the pellets cannot be cut and several pellets are connected, those in which the pellet surface is in a jagged state, and those in which burrs and cracks are observed in the pellets. It can be said that the smaller the proportion of defectively shaped pellets, the better the cutting performance and the higher the productivity.
  • the obtained pellets were evaluated for storage stability by the following ⁇ method for testing storage stability of antistatic agent>. The results are shown in Table 1.
  • ⁇ Melting point measurement method> The melting point was measured using a differential scanning calorimetry device (Diamond DSC manufactured by Perkin). That is, the pellet of the sample is cut into small pieces, 3 ⁇ 1 mg is weighed in an aluminum pan, the temperature is raised from 50 ° C. to 250 ° C. at 10 ° C./min, the temperature is lowered from 250 ° C. to -20 ° C. at 10 ° C./min, and then.
  • the melting point is defined as the peak top of the melting peak at the time of the second temperature rise when the temperature is raised to 250 ° C. at 10 ° C./min.
  • ⁇ Preservation stability test method for antistatic agents 5 g of pellets was placed in a glass sample bottle having a capacity of 130 mL, and the mixture was allowed to stand in an oven at 100 ° C. for 3 hours. After 3 hours, the sample bottle was taken out, the lid was closed, the sample bottle was gently turned upside down, and the blocking property was evaluated from the falling state of the antistatic agent pellets.
  • All antistatic agent pellets fell without adhering to the bottom of the bottle. It is evaluated as having excellent storage stability. ⁇ : A part of the antistatic agent pellet remains attached to the bottom of the bottle. Evaluate that the storage stability is a little poor. X: All of the antistatic agent pellets remain attached to the bottom of the bottle. Evaluate as poor storage stability.
  • pellets of the polymer compound (C) -2 (antistatic agent (C) -2), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -2 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • pellets of the polymer compound (C) -3 (antistatic agent (C) -3), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -3 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • pellets of the polymer compound (C) -4 (antistatic agent (C) -4), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -4 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -5 (antistatic agent (C) -5), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -5 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -6 (antistatic agent (C) -6), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -6 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -7 (antistatic agent (C) -7), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -7 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -8 (antistatic agent (C) -8), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -8 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -9 (antistatic agent (C) -9), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -9 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -10 (antistatic agent (C) -10), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -10 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -11 (antistatic agent (antistatic agent)) which is the antistatic agent of the present invention is carried out in the same manner as in Production Example 1. 200 g of pellets of C) -11) was obtained. The melting point of the obtained pellet of the polymer compound (C) -11 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • pellets (charged) of the polymer compound (C) -12 which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g of the inhibitor (C) -12) was obtained. The melting point of the obtained pellet of the polymer compound (C) -12 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -13 (antistatic agent) which is the antistatic agent of the present invention is the same as in Production Example 1. 200 g of pellets of (C) -13) were obtained. The melting point of the obtained pellet of the polymer compound (C) -13 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the polymer compound (C) -14 (antistatic agent (antistatic agent)) which is the antistatic agent of the present invention is carried out in the same manner as in Production Example 1. 200 g of pellets of C) -14) were obtained. The melting point of the obtained pellet of the polymer compound (C) -14 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • pellets of the polymer compound (C) -16 (antistatic agent (C) -16), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1.
  • the melting point of the obtained pellet of the polymer compound (C) -16 was measured in the same manner as in Production Example 1.
  • the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • pellets of the polymer compound (C) -19 (antistatic agent (C) -19), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 220 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -19 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
  • the values in parentheses after the antistatic agents (C) -1 to (C) -20 are the total moles of adipic acid and terephthalic acid of the constituent monomer (a2) of the polymer compound (C).
  • the ratio (mol%) of terephthalic acid (including derivatives such as dimethyl terephthalate) to the number is shown.
  • the comparative antistatic agents (C') -1 to 3 the ratio (mol%) of terephthalic acid (including derivatives such as dimethyl terephthalate) in the total carboxylic acid used is shown.
  • Examples 1 to 53, Comparative Examples 1 to 20 Using each resin composition blended based on the blending amounts (parts by mass) shown in Tables 2 to 11 below, test pieces were obtained according to the test piece preparation conditions shown below. Using the obtained test piece, the surface resistivity (SR value) was measured according to the following, and the antistatic property and its durability were evaluated. The results are shown in Tables 2-11.
  • SR value ⁇ Surface resistivity (SR value) measurement method>
  • the obtained test piece was stored under the conditions of a temperature of 25 ° C. and a humidity of 50% RH, and after 1 day and 30 days of the molding process, the R8340 resistor meter manufactured by Advantest Co., Ltd.
  • the surface resistivity ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 500 V and an applied time of 1 minute. The measurement was performed on 5 test pieces at 5 points per piece, and the average value was calculated.
  • NaDBS represents sodium dodecylbenzenesulfonate.
  • C2mimDBS represents 1-ethyl-3-methylimidazolium dodecylbenzene sulfonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: an antistatic agent which is capable of continuously imparting a synthetic resin with an excellent antistatic effect, while having excellent storage stability and excellent productivity (cutting properties); an antistatic agent composition which contains this antistatic agent; an antistatic resin composition which contains this antistatic agent or this antistatic agent composition; and a molded body of this antistatic resin composition. The present invention contains one or more polymer compounds (C), each of which has a polyester segment (A) and a polyether segment (B), while having a structure where the segments (A) and (B) are bonded to each other via an ester bond, wherein: the segment (A) is composed of a polyester that is obtained from (a1) at least one of 1,4-butanediol and ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) a polyhydric alcohol compound that has three or more hydroxyl groups; the ratio of the terephthalic acid in component (a2) is 40% by mole or more but less than 100% by mole relative to the total number of moles of the adipic acid and the terephthalic acid; and the segment (B) is composed of (b) a polyethylene glycol.

Description

帯電防止剤、これを含有する帯電防止剤組成物、これらを含有する帯電防止性樹脂組成物、およびその成形体An antistatic agent, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing the antistatic agent, and a molded product thereof.
 本発明は、帯電防止剤、これを含有する帯電防止剤組成物、これらを含有する帯電防止性樹脂組成物、およびその成形体に関し、詳しくは、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができ、さらに保存安定性と生産性(カッティング性)に優れる帯電防止剤、これを含有する帯電防止剤組成物、これらを含有する帯電防止性樹脂組成物、およびその成形体に関する。 The present invention relates to an antistatic agent, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing the antistatic agent, and a molded product thereof. An antistatic agent that can be continuously applied and has excellent storage stability and productivity (cutting property), an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing these, and molding thereof. Regarding the body.
 熱可塑性樹脂等の合成樹脂は、軽量で加工が容易であるのみならず、用途に応じて基材を設計することができる等の優れた特性を有しているため、現代では欠かすことのできない重要な素材である。また、熱可塑性樹脂は電気絶縁性に優れるという特性を有するため、電気製品のコンポーネント等に頻繁に利用されている。しかしながら、熱可塑性樹脂はあまりにも絶縁性が高いため、摩擦等により帯電しやすいという問題がある。 Synthetic resins such as thermoplastic resins are indispensable in modern times because they are not only lightweight and easy to process, but also have excellent properties such as the ability to design a base material according to the application. It is an important material. Further, since the thermoplastic resin has a property of being excellent in electrical insulation, it is frequently used for components of electric products and the like. However, since the thermoplastic resin has too high an insulating property, there is a problem that it is easily charged by friction or the like.
 帯電した熱可塑性樹脂は周囲の埃や塵を引き付けるため、樹脂成形品の外観を損ねるという問題が生ずる。また、電子製品の中でも、例えば、コンピューター等の精密機器は、帯電により回路が正常に作動することができなくなる場合がある。さらに、電撃による問題も存在する。樹脂から人体に対して電撃が発生すると、人に不快感を与えるだけでなく、可燃性気体や粉塵のあるところでは、爆発事故を誘引する可能性もある。 The charged thermoplastic resin attracts dust and dirt around it, which causes a problem of spoiling the appearance of the resin molded product. Further, among electronic products, for example, precision instruments such as computers may not be able to operate normally due to charging. In addition, there are problems with electric shock. When an electric shock is generated from the resin to the human body, it not only causes discomfort to the human body, but may also induce an explosion accident in the presence of flammable gas or dust.
 このような問題を解消するために、従来から、合成樹脂に対して帯電を防止する処理がなされている。最も一般的な帯電防止処理方法は、合成樹脂に帯電防止剤を加える方法である。このような帯電防止剤には、樹脂成形体表面に塗布する塗布型のものと、樹脂を加工成形する際に添加する練り込み型のものとがあるが、塗布型のものは持続性に劣ることに加え、表面に大量の有機物が塗布されるために、その表面に触れたものが汚染されるという問題があった。 In order to solve such a problem, the synthetic resin has been conventionally treated to prevent charging. The most common antistatic treatment method is to add an antistatic agent to the synthetic resin. Such antistatic agents include a coating type that is applied to the surface of a resin molded body and a kneading type that is added when the resin is processed and molded, but the coating type is inferior in sustainability. In addition, since a large amount of organic matter is applied to the surface, there is a problem that the material touching the surface is contaminated.
 かかる観点から、従来、主として合成樹脂に練り込んで使用する高分子型帯電防止剤が検討されており、例えば、特許文献1、2では、ポリオレフィン系樹脂への帯電防止性付与のためにポリエーテルエステルアミドが提案されている。また、特許文献3では、熱可塑性樹脂へ帯電防止性(制電性)を付与するためにポリエーテルエステルが提案されている。 From this point of view, conventional polymer-type antistatic agents that are mainly used by kneading them into synthetic resins have been studied. For example, in Patent Documents 1 and 2, a polyether is used to impart antistatic properties to a polyolefin resin. Esteramides have been proposed. Further, Patent Document 3 proposes a polyether ester for imparting antistatic property (antistatic property) to a thermoplastic resin.
特開昭58-118838号公報Japanese Unexamined Patent Publication No. 58-118838 特開平3-290464号公報Japanese Unexamined Patent Publication No. 3-290464 特開平6-57153号公報Japanese Unexamined Patent Publication No. 6-57153
 しかしながら、これら従来の帯電防止剤は、帯電防止性能において、必ずしも充分とはいえず、さらなる改良が望まれているのが現状である。また、従来の高分子型帯電防止剤は、長期保存時や、高温状態での保存時に、ベタついたり、ブロッキングしたりする等、その保存安定性に問題があった。 However, these conventional antistatic agents are not always sufficient in antistatic performance, and further improvement is desired at present. In addition, conventional polymer-type antistatic agents have problems in storage stability such as stickiness and blocking during long-term storage and storage in a high temperature state.
 特に高分子型帯電防止剤は、重合して得られたポリマーをペレット状にカッティングして使用することが多く、これらペレットの長期保存時や、高温状態での保存時に、ベタついたり、ブロッキングしたりする等、その保存安定性に問題があった。また、カッティングしてペレット状にする際に、ペレットが不揃いで不定形状となったり、ペレットの一部がカッティングしきれずに数ペレット繋がった状態のままだったり、ペレット表面がギザギザの状態になったり、バリや割れが見られたり等のカッティング不良が発生し、生産性を大きく低下させる問題もあった。 In particular, polymer-type antistatic agents are often used by cutting the polymer obtained by polymerization into pellets, and when these pellets are stored for a long period of time or in a high temperature state, they become sticky or block. There was a problem with its storage stability. In addition, when cutting into pellets, the pellets may be uneven and have an irregular shape, some of the pellets may not be completely cut and several pellets may remain connected, or the pellet surface may be jagged. There is also a problem that cutting defects such as burrs and cracks occur, which greatly reduces productivity.
 そこで、本発明の目的は、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができ、さらに保存安定性と生産性(カッティング性)に優れる帯電防止剤、これを含有する帯電防止剤組成物、これらを含有する帯電防止性樹脂組成物、およびその成形体を提供することにある。 Therefore, an object of the present invention is to contain an antistatic agent which can continuously impart an excellent antistatic effect to a synthetic resin and is also excellent in storage stability and productivity (cutting property). It is an object of the present invention to provide an antistatic agent composition, an antistatic resin composition containing these, and a molded product thereof.
 本発明者等は、上記課題を解消するために鋭意検討した結果、所定の構造を有する高分子化合物が、優れた保存安定性と生産性(カッティング性)を有し、合成樹脂に対して優れた帯電防止性能を持続的に付与することができ、これを用いることで、上記課題を解消することができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have excellent storage stability and productivity (cutting property) in the polymer compound having a predetermined structure, which is superior to the synthetic resin. It has been found that the above-mentioned problems can be solved by continuously imparting antistatic performance, and by using this, the present invention has been completed.
 すなわち、本発明の帯電防止剤は、ポリエステルセグメント(A)とポリエーテルセグメント(B)とを有し、
 ポリエステルセグメント(A)が、
(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方、
(a2)アジピン酸およびテレフタル酸、および、
(a3)水酸基を3個以上有する多価アルコール化合物、から得られるポリエステルであり、
 (a2)アジピン酸およびテレフタル酸におけるテレフタル酸の割合が、アジピン酸およびテレフタル酸の合計モル数に対して、40モル%以上100モル%未満であり、
 ポリエーテルセグメント(B)が、(b)ポリエチレングリコールであり、
 ポリエステルセグメント(A)とポリエーテルセグメント(B)とがエステル結合を介して結合した構造を有する高分子化合物(C)の1種以上を含有することを特徴とするものである。
That is, the antistatic agent of the present invention has a polyester segment (A) and a polyether segment (B).
The polyester segment (A) is
(A1) At least one of 1,4-butanediol or ethylene glycol,
(A2) Adipic acid and terephthalic acid, and
(A3) A polyester obtained from a polyhydric alcohol compound having three or more hydroxyl groups.
(A2) The ratio of terephthalic acid to adipic acid and terephthalic acid is 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid.
The polyether segment (B) is (b) polyethylene glycol,
It is characterized by containing one or more kinds of polymer compounds (C) having a structure in which a polyester segment (A) and a polyether segment (B) are bonded via an ester bond.
 本発明の帯電防止剤においては、高分子化合物(C)の、(a3)水酸基を3個以上有する多価アルコール化合物の割合が、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方と、(a3)水酸基を3個以上有する多価アルコール化合物と、の合計モル数に対して、0.05~5モル%であることが好ましい。また、本発明の帯電防止剤においては、高分子化合物(C)の、ポリエステルセグメント(A)と、ポリエーテルセグメント(B)と、の質量比(A)/(B)が、0.1~4.0であることが好ましい。さらに、本発明の帯電防止剤においては、高分子化合物(C)が、100℃以上200℃以下の範囲内の融点を有することが好ましい。 In the antistatic agent of the present invention, the proportion of the polyhydric alcohol compound having three or more hydroxyl groups (a3) in the polymer compound (C) is equal to at least one of (a1) 1,4-butanediol or ethylene glycol. , (A3) is preferably 0.05 to 5 mol% with respect to the total number of moles of the polyhydric alcohol compound having 3 or more hydroxyl groups. Further, in the antistatic agent of the present invention, the mass ratio (A) / (B) of the polyester segment (A) and the polyether segment (B) of the polymer compound (C) is 0.1 to 1. It is preferably 4.0. Further, in the antistatic agent of the present invention, it is preferable that the polymer compound (C) has a melting point in the range of 100 ° C. or higher and 200 ° C. or lower.
 本発明の帯電防止剤組成物は、本発明の帯電防止剤に対し、さらに、アルカリ金属の塩およびイオン性液体の群から選択される1種以上が配合されていることを特徴とするものである。 The antistatic agent composition of the present invention is characterized in that the antistatic agent of the present invention is further blended with one or more selected from the group of alkali metal salts and ionic liquids. is there.
 本発明の帯電防止性樹脂組成物は、合成樹脂に対し、本発明の帯電防止剤が配合されていることを特徴とするものである。 The antistatic resin composition of the present invention is characterized in that the antistatic agent of the present invention is blended with the synthetic resin.
 本発明の他の帯電防止性樹脂組成物は、合成樹脂に対し、本発明の帯電防止剤組成物が配合されていることを特徴とするものである。 The other antistatic resin composition of the present invention is characterized in that the antistatic agent composition of the present invention is blended with the synthetic resin.
 本発明の帯電防止性樹脂組成物においては、前記合成樹脂が、ポリオレフィン系樹脂またはポリスチレン系樹脂からなる群から選ばれる1種以上であることが好ましい。 In the antistatic resin composition of the present invention, it is preferable that the synthetic resin is at least one selected from the group consisting of polyolefin-based resins or polystyrene-based resins.
 本発明の成形体は、本発明の帯電防止性樹脂組成物から得られることを特徴とするものである。 The molded product of the present invention is characterized by being obtained from the antistatic resin composition of the present invention.
 本発明によれば、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができ、さらに保存安定性と生産性(カッティング性)に優れる帯電防止剤、これを含有する帯電防止剤組成物、これらを含有する帯電防止性樹脂組成物、およびその成形体を提供することができる。 According to the present invention, an antistatic agent which can continuously impart an excellent antistatic effect to a synthetic resin and is also excellent in storage stability and productivity (cutting property), and an antistatic agent containing the same. An agent composition, an antistatic resin composition containing these, and a molded product thereof can be provided.
 以下、本発明の実施形態について詳細に説明する。
 まず、本発明の帯電防止剤について説明する。本発明の帯電防止剤は、高分子化合物(C)の1種以上を含有しており、この高分子化合物(C)は、ポリエステルセグメント(A)とポリエーテルセグメント(B)を有している。
Hereinafter, embodiments of the present invention will be described in detail.
First, the antistatic agent of the present invention will be described. The antistatic agent of the present invention contains one or more of the polymer compound (C), and the polymer compound (C) has a polyester segment (A) and a polyether segment (B). ..
 ポリエステルセグメント(A)は、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方、(a2)アジピン酸およびテレフタル酸、および、(a3)水酸基を3個以上有する多価アルコール化合物、から得られるポリエステルである。そして、(a2)アジピン酸およびテレフタル酸におけるテレフタル酸の割合が、アジピン酸およびテレフタル酸の合計モル数に対して、40モル%以上100モル%未満である。また、ポリエーテルセグメント(B)は、(b)ポリエチレングリコールであり、ポリエステルセグメント(A)とポリエーテルセグメント(B)とがエステル結合を介して結合した構造を有している。 The polyester segment (A) is obtained from (a1) at least one of 1,4-butanediol or ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) a polyhydric alcohol compound having three or more hydroxyl groups. Is polyester. Then, (a2) the ratio of terephthalic acid in adipic acid and terephthalic acid is 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid. Further, the polyether segment (B) is (b) polyethylene glycol, and has a structure in which the polyester segment (A) and the polyether segment (B) are bonded via an ester bond.
 本発明の帯電防止剤において、ポリエステルセグメント(A)のポリエステルを構成するモノマーである(a1)は、1,4-ブタンジオールまたはエチレングリコールの少なくとも一方であり、1,4-ブタンジオールのみでもよく、エチレングリコールのみでもよく、1,4-ブタンジオールとエチレングリコールの混合物でもよい。(a1)は、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、1,4-ブタンジオール、または1,4-ブタンジオールとエチレングリコールの混合物が好ましく、1,4-ブタンジオールが最も好ましい。(a1)が1,4-ブタンジオールとエチレングリコールとの混合物の場合、1,4-ブタンジオールの割合は、両者の合計モル数に対して50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましく、90モル%以上が特に好ましい。 In the antistatic agent of the present invention, the monomer (a1) constituting the polyester of the polyester segment (A) is at least one of 1,4-butanediol or ethylene glycol, and may be only 1,4-butanediol. , Ethylene glycol alone, or a mixture of 1,4-butanediol and ethylene glycol. In (a1), 1,4-butanediol or a mixture of 1,4-butanediol and ethylene glycol is preferable from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). , 4-Butanediol is most preferred. When (a1) is a mixture of 1,4-butanediol and ethylene glycol, the ratio of 1,4-butanediol is preferably 50 mol% or more, more preferably 70 mol% or more, based on the total number of moles of both. Preferably, 80 mol% or more is more preferable, and 90 mol% or more is particularly preferable.
 本発明の帯電防止剤において、ポリエステルセグメント(A)のポリエステルを構成するモノマーである(a2)は、アジピン酸およびテレフタル酸である。(a2)は、テレフタル酸の割合が、アジピン酸およびテレフタル酸の合計モル数に対して、40モル%以上100モル%未満の範囲内であり、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、45モル%以上95モル%以下が好ましく、50モル%以上90モル%以下がより好ましく、60モル%以上90モル%以下がさらに好ましい。 In the antistatic agent of the present invention, the monomer (a2) constituting the polyester of the polyester segment (A) is adipic acid and terephthalic acid. In (a2), the ratio of terephthalic acid is in the range of 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid, and antistatic property, its durability, and storage stability. From the viewpoint of productivity (cutting property), 45 mol% or more and 95 mol% or less are preferable, 50 mol% or more and 90 mol% or less are more preferable, and 60 mol% or more and 90 mol% or less are further preferable.
 (a2)のアジピン酸およびテレフタル酸は、水酸基と反応してエステル結合を形成できるものであれば、その誘導体であってもよく、誘導体としては、例えば、酸無水物、エステル(例えば、メチルエステル等のアルキルエステル)、アルカリ金属塩(例えば、ナトリウム塩)、酸ハライド(例えば、酸クロライド)が挙げられ、反応の容易性の点からメチルエステル等のアルキルエステルが好ましい。 The adipic acid and terephthalic acid of (a2) may be derivatives thereof as long as they can react with a hydroxyl group to form an ester bond, and the derivatives include, for example, an acid anhydride and an ester (for example, a methyl ester). , Etc.), alkali metal salts (for example, sodium salts), acid halides (for example, acid chloride), and alkyl esters such as methyl esters are preferable from the viewpoint of easiness of reaction.
 本発明の帯電防止剤に係る高分子化合物(C)においては、本発明の効果を損なわない範囲で、(a2)のアジピン酸およびテレフタル酸以外のジカルボン酸が使用されてもかまわない。アジピン酸およびテレフタル酸以外のジカルボン酸としては、セバシン酸、イソフタル酸等が挙げられる。ただし、オルトフタル酸とその誘導体(例えば、無水フタル酸、オルトフタル酸エステル)の使用は、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から好ましくない。 In the polymer compound (C) according to the antistatic agent of the present invention, a dicarboxylic acid other than the adipic acid and terephthalic acid of (a2) may be used as long as the effect of the present invention is not impaired. Examples of the dicarboxylic acid other than adipic acid and terephthalic acid include sebacic acid and isophthalic acid. However, the use of orthophthalic acid and its derivatives (for example, phthalic anhydride and orthophthalic acid ester) is not preferable from the viewpoint of antistatic property and its durability, storage stability and productivity (cutting property).
 本発明の帯電防止剤において、ポリエステルセグメント(A)のポリエステルを構成するモノマーである(a3)は、水酸基を3個以上有する多価アルコール化合物である。水酸基を3個以上有する多価アルコール化合物(a3)としては、水酸基を3個以上有するものであれば特に制限されず、例えば、グリセリン、1,2,3-ブタントリオール、1,2,4-ブタントリオール、2-メチル-1,2,3-プロパントリオール、1,2,3-ペンタントリオール、1,2,4-ペンタントリオール、1,3,5-ペンタントリオール、2,3,4-ペンタントリオール、2-メチル-2,3,4-ブタントリオール、トリメチロールエタン、2,3,4-ヘキサントリオール、2-エチル-1,2,3-ブタントリオール、トリメチロールプロパン、4-プロピル-3,4,5-ヘプタントリオール、2,4-ジメチル-2,3,4-ペンタントリオール、トリエタノールアミン、トリイソプロパノールアミン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート等の3価アルコール;ペンタエリスリトール、1,2,3,4-ペンタンテトロール、2,3,4,5-ヘキサンテトロール、1,2,4,5-ペンタンテトロール、1,3,4,5-ヘキサンテトロール、ジグリセリン、ジトリメチロールプロパン、ソルビタン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)エチレンジアミン等の4価アルコール;アドニトール、アラビトール、キシリトール、トリグリセリン等の5価アルコール;ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、タロース、アロース等の6価アルコール;さらには、トリペンタエリスリトールが挙げられる。また、多価アルコール化合物の分子量には特に制限はなく、ポリペンタエリスリトールやポリビニルアルコール等の高分子量の多価アルコールも使用できる。本発明の帯電防止剤においては、水酸基を3個以上有する多価アルコール化合物(a3)は、1種単独で用いてもよく、2種以上を併用してもよい。 In the antistatic agent of the present invention, the monomer (a3) constituting the polyester of the polyester segment (A) is a polyhydric alcohol compound having three or more hydroxyl groups. The polyhydric alcohol compound (a3) having 3 or more hydroxyl groups is not particularly limited as long as it has 3 or more hydroxyl groups, and is, for example, glycerin, 1,2,3-butantriol, 1,2,4-. Butantriol, 2-methyl-1,2,3-propanetriol, 1,2,3-pentantriol, 1,2,4-pentantriol, 1,3,5-pentantriol, 2,3,4-pentane Triol, 2-methyl-2,3,4-butanetriol, trimethylolethane, 2,3,4-hexanetriol, 2-ethyl-1,2,3-butanetriol, trimethylpropane, 4-propyl-3 , 4,5-Heptanetriol, 2,4-dimethyl-2,3,4-pentantriol, triethanolamine, triisopropanolamine, 1,3,5-tris (2-hydroxyethyl) isocyanurate, etc. Alcohol; pentaerythritol, 1,2,3,4-pentantetrol, 2,3,4,5-hexanetetrol, 1,2,4,5-pentantetrol, 1,3,4,5-hexane Tetrol, diglycerin, ditrimethylol propane, sorbitan, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine, N, N, N', N'-tetrakis (2-hydroxyethyl) ethylenediamine, etc. 4 valent alcohols; pentavalent alcohols such as adonitol, arabitol, xylitol, triglycerin; hexavalent alcohols such as dipentaerythritol, sorbitol, mannitol, iditol, inositol, darcitol, talose, allose; Be done. The molecular weight of the polyhydric alcohol compound is not particularly limited, and high molecular weight polyhydric alcohols such as polypentaerythritol and polyvinyl alcohol can also be used. In the antistatic agent of the present invention, the polyhydric alcohol compound (a3) having three or more hydroxyl groups may be used alone or in combination of two or more.
 本発明の帯電防止剤においては、水酸基を3個以上有する多価アルコール化合物(a3)は、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、ペンタエリスリトール、ジペンタエリスリトール、グリセリン、ジグリセリン、トリメチロールプロパン、ジトリメチロールプロパンが好ましく、グリセリンが最も好ましい。 In the antistatic agent of the present invention, the polyhydric alcohol compound (a3) having three or more hydroxyl groups contains pentaerythritol and di, from the viewpoints of antistatic property, its durability, storage stability, and productivity (cutting property). Pentaerythritol, glycerin, diglycerin, trimethylolpropane, ditrimethylolpropane are preferable, and glycerin is the most preferable.
 高分子化合物(C)における、(a3)水酸基を3個以上有する多価アルコール化合物の割合は、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方と、(a3)水酸基を3個以上有する多価アルコール化合物の合計モル数に対して、0.05~5モル%であることが好ましく、0.1~3.0モル%がより好ましく、0.3~2.0モル%であるのがさらに好ましい。 The proportion of the polyhydric alcohol compound having three or more hydroxyl groups (a3) in the polymer compound (C) is (a1) from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). It is preferably 0.05 to 5 mol% with respect to the total number of moles of at least one of 1,4-butanediol or ethylene glycol and the polyhydric alcohol compound having 3 or more hydroxyl groups (a3). It is more preferably 1 to 3.0 mol%, and even more preferably 0.3 to 2.0 mol%.
 本発明の帯電防止剤において、ポリエーテルセグメント(B)の(b)ポリエチレングリコールは、下記一般式(1)で表されるポリエチレングリコールが好ましい。 In the antistatic agent of the present invention, the polyethylene glycol (b) of the polyether segment (B) is preferably polyethylene glycol represented by the following general formula (1).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 一般式(1)で、mは4~250の数を表す。mは、帯電防止性とその持続性、保存安定性の点から、20~200が好ましく、40~180がより好ましい。 In the general formula (1), m represents a number from 4 to 250. m is preferably 20 to 200, more preferably 40 to 180, from the viewpoint of antistatic property, its durability, and storage stability.
 本発明の帯電防止剤において、(b)ポリエチレングリコールの数平均分子量は、水酸基価の測定値から算出し、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、好ましくは400~10,000であり、より好ましくは900~8,000であり、さらに好ましくは2,000~8,000である。水酸基価の測定方法と水酸基価からの数平均分子量の算出方法を以下に記す。 In the antistatic agent of the present invention, (b) the number average molecular weight of polyethylene glycol is calculated from the measured value of the hydroxyl value, and from the viewpoint of antistatic property and its sustainability, storage stability, and productivity (cutting property). It is preferably 400 to 10,000, more preferably 900 to 8,000, and even more preferably 2,000 to 8,000. The method for measuring the hydroxyl value and the method for calculating the number average molecular weight from the hydroxyl value are described below.
<水酸基価からの数平均分子量の算出方法>
 下記水酸基価測定方法で水酸基価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 数平均分子量=(56110×2)/水酸基価
<Calculation method of number average molecular weight from hydroxyl value>
The hydroxyl value was measured by the following method for measuring the hydroxyl value, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
Number average molecular weight = (56110 × 2) / hydroxyl value
<水酸基価測定法>
・試薬A(アセチル化剤)
 (1)トリエチルホスフェート 1560mL
 (2)無水酢酸 193mL
 (3)過塩素酸(60%) 16g
 上記試薬を(1)→(2)→(3)の順に混合する。
・試薬B
 ピリジンと純水を体積比率で3:1に混合する。
・試薬C
 500mLのイソプロピルアルコールにフェノールフタレイン液を2~3滴加え、1N-KOH水溶液で中性にする。
<Measurement method of hydroxyl value>
・ Reagent A (acetylating agent)
(1) Triethyl phosphate 1560 mL
(2) Acetic anhydride 193 mL
(3) Perchloric acid (60%) 16g
The above reagents are mixed in the order of (1) → (2) → (3).
・ Reagent B
Pyridine and pure water are mixed in a volume ratio of 3: 1.
・ Reagent C
Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol and neutralize with 1N-KOH aqueous solution.
 まず、200mL三角フラスコにサンプルを2g量りとり、キシレン10mLを加え、加熱溶解させる。試薬A15mLを加え、共栓をして激しく振盪する。試薬B20mLを加え、共栓をして激しく振盪する。試薬C50mLを加える。1N-KOH水溶液で滴定し、下式で計算する。
 水酸基価[mgKOH/g]=56.11×f×(T-B)/S
 f:1N-KOH水溶液のfactor
 B:空試験滴定量[mL]
 T:本試験滴定量[mL]
 S:サンプル量[g]
First, weigh 2 g of a sample into a 200 mL Erlenmeyer flask, add 10 mL of xylene, and heat to dissolve. Add 15 mL of Reagent A, plug and shake vigorously. Add 20 mL of Reagent B, plug and shake vigorously. Add 50 mL of Reagent C. Titrate with 1N-KOH aqueous solution and calculate by the following formula.
Hydroxy group value [mgKOH / g] = 56.11 × f × (TB) / S
f: Factor of 1N-KOH aqueous solution
B: Blank test titration [mL]
T: Quantitative test titration [mL]
S: Sample amount [g]
 高分子化合物(C)における、ポリエステルセグメント(A)の数平均分子量は、ポリスチレン換算で、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、好ましくは1,000~10,000であり、より好ましくは1,500~8,000であり、さらに好ましくは2,500~7,500である。数平均分子量が1,000未満だと保存安定性が劣る恐れがあり、10,000を超えると高分子化合物(C)を得るための反応に時間がかかり経済性に劣る恐れや、得られる高分子化合物(C)が長時間の反応により着色する恐れがある。 The number average molecular weight of the polyester segment (A) in the polymer compound (C) is preferably 1,000 in terms of polystyrene conversion from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). It is ~ 10,000, more preferably 1,500 to 8,000, and even more preferably 2,500 to 7,500. If the number average molecular weight is less than 1,000, the storage stability may be inferior, and if it exceeds 10,000, the reaction for obtaining the polymer compound (C) may take a long time and the economic efficiency may be inferior. The molecular compound (C) may be colored by a long-term reaction.
 ポリスチレン換算による数平均分子量の測定方法は、ゲルパーミエーションクロマトグラフィー(GPC)法が好ましく、その測定方法を以下に示す。 The gel permeation chromatography (GPC) method is preferable as the method for measuring the number average molecular weight in terms of polystyrene, and the measuring method is shown below.
<ポリスチレン換算による数平均分子量の測定方法>
 数平均分子量(以下、「Mn」とも称する)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定した。Mnの測定条件は以下の通りである。
装置     :日本分光(株)製GPC装置
溶媒     :クロロホルム
基準物質   :ポリスチレン
検出器    :UV検出器
カラム固定相 :昭和電工(株)製Shodex LF-804
カラム温度  :40℃
サンプル濃度 :1mg/1mL
流量     :0.5mL/min.
注入量    :30μL
<Measurement method of number average molecular weight by polystyrene conversion>
The number average molecular weight (hereinafter, also referred to as “Mn”) was measured by a gel permeation chromatography (GPC) method. The measurement conditions for Mn are as follows.
Equipment: GPC equipment manufactured by JASCO Corporation Solvent: Chloroform reference material: Polystyrene detector: UV detector Column stationary phase: Showa Denko Corporation Shodex LF-804
Column temperature: 40 ° C
Sample concentration: 1 mg / 1 mL
Flow rate: 0.5 mL / min.
Injection volume: 30 μL
 ポリエステルセグメント(A)の数平均分子量は、高分子化合物(C)の製造工程で得られる中間体であるポリエステル(A’)、ポリエステル(A”)等のポリスチレン換算の数平均分子量を測定し、それらから算出してもよい。ポリスチレン換算による数平均分子量の測定方法は、ゲルパーミエーションクロマトグラフィー(GPC)法が好ましく、その測定方法を上記に示した。 The number average molecular weight of the polyester segment (A) is determined by measuring the polystyrene-equivalent number average molecular weight of polyester (A'), polyester (A "), etc., which are intermediates obtained in the manufacturing process of the polymer compound (C). It may be calculated from them. As a method for measuring the number average molecular weight in terms of polystyrene, the gel permeation chromatography (GPC) method is preferable, and the measuring method is shown above.
 また、高分子化合物(C)における、ポリエステルセグメント(A)の重合度は、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、4~50が好ましく、6~40がより好ましい。 The degree of polymerization of the polyester segment (A) in the polymer compound (C) is preferably 4 to 50, preferably 6 to 50, from the viewpoints of antistatic property, its durability, storage stability, and productivity (cutting property). 40 is more preferable.
 本発明の帯電防止剤に係る高分子化合物(C)は、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方、(a2)アジピン酸およびテレフタル酸、(a3)水酸基を3個以上有する多価アルコール化合物、および(b)ポリエチレングリコールを、エステル化反応させることにより得ることができる。エステル化反応は、反応によりエステル結合を形成するものであればよく、エステル交換反応も含まれる。それぞれの成分は、その誘導体でもよく、例えば、(a2)のアジピン酸およびテレフタル酸の誘導体としては、酸無水物、アルキルエステル等のエステル、アルカリ金属塩、酸クロライド等の酸ハライドが挙げられ、特に、反応の容易性の点から、テレフタル酸においては、テレフタル酸メチルエステルの使用が好ましい。 The polymer compound (C) according to the antistatic agent of the present invention has at least one of (a1) 1,4-butanediol or ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) three or more hydroxyl groups. It can be obtained by subjecting a polyhydric alcohol compound and (b) polyethylene glycol to an esterification reaction. The esterification reaction may be any one that forms an ester bond by the reaction, and includes a transesterification reaction. Each component may be a derivative thereof, and examples of the derivative of adipic acid and terephthalic acid in (a2) include acid anhydrides, esters such as alkyl esters, alkali metal salts, and acid halides such as acid chloride. In particular, from the viewpoint of ease of reaction, the use of terephthalic acid methyl ester is preferable for terephthalic acid.
 エステル化反応(エステル交換反応も含む)には、エステル化反応(エステル交換反応も含む)を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。エステル化反応またはエステル交換反応は、減圧下で行ってもよい。 For the esterification reaction (including the transesterification reaction), a catalyst that promotes the esterification reaction (including the transesterification reaction) may be used, and as the catalyst, dibutyltin oxide, tetraalkyl titanate, zirconium acetate, acetic acid Conventionally known substances such as zinc can be used. The esterification reaction or transesterification reaction may be carried out under reduced pressure.
 また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。 Further, in order to suppress the oxidation of the product during the reaction, an antioxidant such as a phenolic antioxidant may be added to the reaction system.
 高分子化合物(C)を得る好ましい製造方法としては、まず、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方と、(a2)アジピン酸およびテレフタル酸からポリエステル(A’)を合成し、その後、そのポリエステル(A’)と、(a3)水酸基を3個以上有する多価アルコール化合物および(b)ポリエチレングリコールを、エステル化反応(エステル交換反応も含む)させる方法が好ましい。反応に際しては、ポリエステル(A’)の合成反応の完結後に、ポリエステル(A’)を単離せずに、(a3)水酸基を3個以上有する多価アルコール化合物および(b)ポリエチレングリコールを反応系に加えて、そのまま反応させてもよい。(a3)水酸基を3個以上有する多価アルコール化合物および(b)ポリエチレングリコールは、同時に反応系に加えてもよいし、先に(b)ポリエチレングリコールを加えてから、その後(a3)水酸基を3個以上有する多価アルコール化合物を加えてもよいし、その逆でもよい。 As a preferable production method for obtaining the polymer compound (C), first, polyester (A') is synthesized from at least one of (a1) 1,4-butanediol or ethylene glycol, and (a2) adipic acid and terephthalic acid. After that, a method of subjecting the polyester (A'), (a3) a polyhydric alcohol compound having three or more hydroxyl groups, and (b) polyethylene glycol to an esterification reaction (including a transesterification reaction) is preferable. In the reaction, after the synthesis reaction of the polyester (A') is completed, the polyhydric alcohol compound having three or more hydroxyl groups (a3) and the polyethylene glycol (b) are used in the reaction system without isolating the polyester (A'). In addition, the reaction may be carried out as it is. The polyhydric alcohol compound (a3) having three or more hydroxyl groups and (b) polyethylene glycol may be added to the reaction system at the same time, or (b) polyethylene glycol is added first, and then (a3) hydroxyl groups are added to 3. Polyhydric alcohol compounds having more than one may be added, and vice versa.
 ポリエステル(A’)は、高分子化合物(C)を得るためのその後の反応の容易性の点と、得られる高分子化合物(C)の合成反応時の着色抑制の点から、両末端が水酸基のものが好ましい。 Polyester (A') has hydroxyl groups at both ends from the viewpoint of ease of subsequent reaction for obtaining the polymer compound (C) and suppression of coloration during the synthesis reaction of the obtained polymer compound (C). Is preferable.
 ポリエステル(A’)の合成反応において、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方と、(a2)アジピン酸およびテレフタル酸、の反応比は、反応時に(a1)が系外に留出することを考慮し、かつ、両末端が水酸基となるように、(a1)を過剰に使用することが好ましく、(a1)を、モル比で、(a2)に対して1モル過剰にした値に対して1.2倍使用することが好ましい。ここで得られた両末端が水酸基であるポリエステル(A’)と、(a3)水酸基を3個以上有する多価アルコール化合物および(b)ポリエチレングリコールを、エステル交換反応させることによって、好ましく高分子化合物(C)を得ることができる。このエステル交換反応では、ポリエステル(A’)の両末端に結合している1,4-ブタンジオールまたはエチレングリコールが、エステル交換され、それらは反応系外に容易に除去できるため、反応が容易に進行し、好ましく高分子化合物(C)を得ることができる。また、得られる高分子化合物(C)が、合成反応時に着色することもなく好ましい。このエステル交換反応は、減圧下で行うのが、容易に反応が進行するため好ましい。 In the synthetic reaction of polyester (A'), the reaction ratio of at least one of (a1) 1,4-butanediol or ethylene glycol to (a2) adipic acid and terephthalic acid was such that (a1) was out of the system during the reaction. Considering distillation, it is preferable to use (a1) in excess so that both ends become hydroxyl groups, and (a1) is added in excess of 1 mol with respect to (a2) in terms of molar ratio. It is preferable to use 1.2 times the value obtained. The polyester (A') having hydroxyl groups at both ends obtained here, (a3) a polyhydric alcohol compound having three or more hydroxyl groups, and (b) polyethylene glycol are preferably subjected to a transesterification reaction to form a polymer compound. (C) can be obtained. In this transesterification reaction, 1,4-butanediol or ethylene glycol bonded to both ends of the polyester (A') is transesterified, and they can be easily removed from the reaction system, so that the reaction is easy. Proceeding, preferably the polymer compound (C) can be obtained. Further, the obtained polymer compound (C) is preferable because it is not colored during the synthesis reaction. This transesterification reaction is preferably carried out under reduced pressure because the reaction easily proceeds.
 ポリエステル(A’)の数平均分子量は、ポリスチレン換算で、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、好ましくは1,200~10,200であり、より好ましくは1,700~8,200であり、より好ましくは2,000~7,700であり、より好ましくは2,000~4,500であり、さらにより好ましくは2,000~4,000である。数平均分子量が1,200未満だと保存安定性が劣る恐れがあり、10,200を超えると高分子化合物(C)を得るための反応に時間がかかり経済性に劣る恐れや、得られる高分子化合物(C)が長時間の反応により着色する恐れがある。なお、ポリスチレン換算による数平均分子量の測定方法は、ゲルパーミエーションクロマトグラフィー(GPC)法が好ましく、その測定方法は前述のとおりである。 The number average molecular weight of polyester (A') is preferably 1,200 to 10,200 in terms of polystyrene in terms of antistatic property, its durability, storage stability, and productivity (cutting property). It is preferably 1,700 to 8,200, more preferably 2,000 to 7,700, more preferably 2,000 to 4,500, and even more preferably 2,000 to 4,000. is there. If the number average molecular weight is less than 1,200, the storage stability may be inferior, and if it exceeds 10,200, the reaction for obtaining the polymer compound (C) may take a long time and the economic efficiency may be inferior. The molecular compound (C) may be colored by a long-term reaction. As a method for measuring the number average molecular weight in terms of polystyrene, a gel permeation chromatography (GPC) method is preferable, and the measuring method is as described above.
 他に、高分子化合物(C)を得る製造方法としては、まず、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方と、(a2)アジピン酸およびテレフタル酸および(a3)水酸基を3個以上有する多価アルコール化合物からポリエステル(A”)を合成し、その後、そのポリエステル(A”)と、(b)ポリエチレングリコールを、エステル化反応(エステル交換反応も含む)させる方法も挙げられる。反応に際しては、ポリエステル(A”)の合成反応の完結後に、ポリエステル(A”)を単離せずに、(b)ポリエチレングリコールを反応系に加えて、そのまま反応させてもよい。 In addition, as a production method for obtaining the polymer compound (C), first, at least one of (a1) 1,4-butanediol or ethylene glycol, (a2) adipic acid and terephthalic acid, and (a3) hydroxyl group are added to three. Another method is to synthesize a polyester (A ") from a polyhydric alcohol compound having one or more compounds, and then cause the polyester (A") and (b) polyethylene glycol to undergo an esterification reaction (including a transesterification reaction). In the reaction, after the synthesis reaction of the polyester (A ″) is completed, (b) polyethylene glycol may be added to the reaction system and the reaction may be carried out as it is without isolating the polyester (A ″).
 ポリエステル(A”)の数平均分子量は、ポリスチレン換算で、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、好ましくは1,100~10,100であり、より好ましくは1,600~8,100であり、より好ましくは2,100~7,600である。数平均分子量が1,100未満だと保存安定性が劣る恐れがあり、10,100を超えると高分子化合物(C)を得るための反応に時間がかかり経済性に劣る恐れや、得られる高分子化合物(C)が長時間の反応により着色する恐れがある。 The number average molecular weight of the polyester (A ") is preferably 1,100 to 10,100 in terms of polystyrene, from the viewpoint of antistatic property and its durability, storage stability, and productivity (cutting property). It is preferably 1,600 to 8,100, more preferably 2,100 to 7,600. If the number average molecular weight is less than 1,100, the storage stability may be inferior, and if it exceeds 10,100. The reaction for obtaining the polymer compound (C) may take a long time and may be inferior in economic efficiency, or the obtained polymer compound (C) may be colored by a long-term reaction.
 ポリスチレン換算による数平均分子量の測定方法は、ゲルパーミエーションクロマトグラフィー(GPC)法が好ましく、その測定方法は前述のとおりである。 The gel permeation chromatography (GPC) method is preferable as the method for measuring the number average molecular weight in terms of polystyrene, and the measuring method is as described above.
 ポリエーテルセグメント(B)の数平均分子量は、(b)ポリエチレングリコールの数平均分子量から算出すればよい。ポリエーテルセグメント(B)の数平均分子量は、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、好ましくは380~9,980であり、より好ましくは880~7,980であり、さらに好ましくは1,980~7,980である。 The number average molecular weight of the polyether segment (B) may be calculated from the number average molecular weight of (b) polyethylene glycol. The number average molecular weight of the polyether segment (B) is preferably 380 to 9,980, more preferably 880 to 7, from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). , 980, more preferably 1,980 to 7,980.
 高分子化合物(C)においては、帯電防止性とその持続性、保存安定性、生産性(カッティング性)の点から、ポリエステルセグメント(A)と、ポリエーテルセグメント(B)の質量比(A)/(B)が、0.1~4.0であるのが好ましく、0.2~3.0がより好ましく、0.3~2.5がさらに好ましい。 In the polymer compound (C), the mass ratio (A) of the polyester segment (A) and the polyether segment (B) is considered from the viewpoint of antistatic property, its durability, storage stability, and productivity (cutting property). / (B) is preferably 0.1 to 4.0, more preferably 0.2 to 3.0, and even more preferably 0.3 to 2.5.
 本発明の帯電防止剤に係る高分子化合物(C)は、帯電防止性とその持続性、特に保存安定性および生産性(カッティング性)の点から、融点が100℃以上200℃以下の範囲内であることが好ましく、110℃以上195℃以下がより好ましく、120℃以上190℃以下がさらに好ましい。融点が、100℃未満であると、保存安定性と生産性(カッティング性)が悪化する恐れがあり、また200℃を超えると、高温で加工せざるをえず、加工可能な温度範囲が制限される恐れがある。 The polymer compound (C) according to the antistatic agent of the present invention has a melting point within the range of 100 ° C. or higher and 200 ° C. or lower from the viewpoint of antistatic property and its durability, particularly storage stability and productivity (cutting property). It is preferably 110 ° C. or higher and 195 ° C. or lower, more preferably 120 ° C. or higher and 190 ° C. or lower. If the melting point is less than 100 ° C, storage stability and productivity (cutting property) may deteriorate, and if it exceeds 200 ° C, processing must be performed at a high temperature, limiting the temperature range in which processing is possible. There is a risk of being done.
 本発明における融点は、以下の融点測定方法により測定される。
<融点測定方法>
 融点は示差走査熱量測定器(DSC)を用いて測定する。
 試料を、アルミニウムパンに3±1mg秤取り、50℃から250℃まで10℃/分で昇温し、250℃から-20℃まで10℃/分で降温し、その後250℃まで10℃/分で昇温した際の第二昇温時の融解ピークのピークトップを融点とする。
The melting point in the present invention is measured by the following melting point measuring method.
<Melting point measurement method>
The melting point is measured using a differential scanning calorimetry device (DSC).
The sample is weighed in an aluminum pan at 3 ± 1 mg, heated from 50 ° C to 250 ° C at 10 ° C / min, cooled from 250 ° C to -20 ° C at 10 ° C / min, and then lowered to 250 ° C at 10 ° C / min. Let the peak top of the melting peak at the time of the second temperature rise be the melting point.
 本発明の帯電防止剤に係る高分子化合物(C)は、ペレット状で使用することがハンドリング性から好ましい。ペレット状にするには、重合反応後に、ポリマーを押出機から押し出し、カッティングしてペレット状とすればよい。カッティングにはペレタイザー等の機械を使用してもよい。 The polymer compound (C) according to the antistatic agent of the present invention is preferably used in the form of pellets from the viewpoint of handleability. To make pellets, after the polymerization reaction, the polymer may be extruded from an extruder and cut into pellets. A machine such as a pelletizer may be used for cutting.
 次に、本発明の帯電防止剤組成物について説明する。
 本発明の帯電防止剤組成物は、本発明の帯電防止剤に対し、さらに、アルカリ金属の塩およびイオン性液体の群から選択される1種以上が配合されてなるものである。本発明の帯電防止剤は、さらに、アルカリ金属の塩およびイオン性液体からなる群から選択される1種以上を配合することにより、優れた帯電防止性能とその持続性を有する帯電防止剤組成物となり好ましい。
Next, the antistatic agent composition of the present invention will be described.
The antistatic agent composition of the present invention is obtained by further blending the antistatic agent of the present invention with one or more selected from the group of alkali metal salts and ionic liquids. The antistatic agent of the present invention further contains one or more selected from the group consisting of alkali metal salts and ionic liquids, whereby an antistatic agent composition having excellent antistatic performance and durability thereof. It is preferable.
 以下、まずはアルカリ金属の塩について説明する。アルカリ金属の塩としては有機酸または無機酸の塩が挙げられ、アルカリ金属の例としては、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。中でも、摩擦帯電圧と表面抵抗率、生体や環境に対する安全性の点から、リチウム、ナトリウム、カリウムの塩が好ましく、ナトリウムがより好ましい。また、帯電防止性とその持続性の点から、酢酸の塩、過塩素酸の塩、p-トルエンスルホン酸の塩、ドデシルベンゼンスルホン酸の塩が好ましく、ドデシルベンゼンスルホン酸の塩がより好ましい。アルカリ金属の塩は2種以上でもよい。 Below, the alkali metal salt will be explained first. Examples of alkali metal salts include salts of organic acids or inorganic acids, and examples of alkali metals include lithium, sodium, potassium, cesium, rubidium and the like. Examples of organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc. An aliphatic dicarboxylic acid having 1 to 12 carbon atoms; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane. Examples thereof include sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids. Examples of inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the like. Among them, salts of lithium, sodium, and potassium are preferable, and sodium is more preferable, from the viewpoints of friction band voltage, surface resistivity, and safety to living organisms and the environment. Further, from the viewpoint of antistatic property and its durability, a salt of acetic acid, a salt of perchloric acid, a salt of p-toluenesulfonic acid and a salt of dodecylbenzenesulfonic acid are preferable, and a salt of dodecylbenzenesulfonic acid is more preferable. Two or more kinds of alkali metal salts may be used.
 アルカリ金属の塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらの中で、帯電防止性とその持続性、生体や環境に対する安全性の点から、好ましいのは、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム等であり、最も好ましいのはドデシルベンゼンスルホン酸ナトリウムである。 Specific examples of alkali metal salts include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfate, sodium sulfate, potassium sulfate. , Lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium p-toluenesulfonate, sodium p-toluenesulfonate, potassium p-toluenesulfonate, lithium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, dodecyl Examples thereof include potassium benzenesulfonate. Of these, lithium p-toluenesulfonate, sodium p-toluenesulfonate, lithium dodecylbenzenesulfonate, and dodecylbenzenesulfone are preferable from the viewpoints of antistatic property, their sustainability, and safety to living organisms and the environment. Sodium acid and the like, most preferably sodium dodecylbenzenesulfonate.
 アルカリ金属の塩は、本発明の帯電防止剤に係る高分子化合物(C)に配合してもよいし、高分子化合物(C)とともに合成樹脂に配合して使用してもよい。また、高分子化合物(C)の製造時に、その反応容器に添加して配合してもよい。アルカリ金属の塩の配合量は、帯電防止性とその持続性、保存安定性の点から、高分子化合物(C)100質量部に対して、0.01~30質量部が好ましく、0.1~20質量部がより好ましく、3.0~15質量部が最も好ましい。 The alkali metal salt may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin. Further, it may be added to the reaction vessel at the time of producing the polymer compound (C) and blended. The blending amount of the alkali metal salt is preferably 0.01 to 30 parts by mass, preferably 0.1 to 100 parts by mass, based on 100 parts by mass of the polymer compound (C) from the viewpoint of antistatic property, its durability, and storage stability. Up to 20 parts by mass is more preferable, and 3.0 to 15 parts by mass is most preferable.
 次にイオン性液体について説明する。
 イオン性液体の例としては、100℃以下の融点を有し、イオン性液体を構成するカチオンまたはアニオンのうち少なくとも一つが有機物イオンであり、初期電導度が1~200ms/cm、好ましくは10~200ms/cmである常温溶融塩であって、例えば、国際公開第95/15572号に記載の常温溶融塩が挙げられる。
Next, the ionic liquid will be described.
Examples of ionic liquids have a melting point of 100 ° C. or lower, at least one of the cations or anions constituting the ionic liquid is an organic ion, and has an initial conductivity of 1 to 200 ms / cm, preferably 10 to 10. A room temperature molten salt at 200 ms / cm, for example, the room temperature molten salt described in International Publication No. 95/15572.
 イオン性液体を構成するカチオンとしては、アミジニウム、ピリジニウム、ピラゾリウムおよびグアニジニウムカチオンからなる群から選ばれるカチオンが挙げられる。 Examples of the cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations.
 このうち、アミジニウムカチオンとしては、下記のものが挙げられる。 Of these, the following are examples of amidinium cations.
(1)イミダゾリニウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルイミダゾリニウム;
(2)イミダゾリウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム;
(3)テトラヒドロピリミジニウムカチオン
 炭素原子数6~15のものが挙げられ、例えば、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウムカチオン
 炭素原子数6~20のものが挙げられ、例えば、1,3-ジメチル-1,4-ジヒドロピリミジニウム、1,3-ジメチル-1,6-ジヒドロピリミジニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,9-ウンデカジエニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,10-ウンデカジエニウム。
(1) Imidazolinium cations Examples thereof include those having 5 to 15 carbon atoms, for example, 1,2,3,4-tetramethylimidazolinium, 1,3-dimethylimidazolinium;
(2) Imidazole cation Examples thereof include those having 5 to 15 carbon atoms, for example, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium;
(3) Tetrahydropyrimidinium cations Examples thereof include those having 6 to 15 carbon atoms, for example, 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra. Methyl-1,4,5,6-tetrahydropyrimidinium;
(4) Dihydropyrimidinium cation Examples thereof include those having 6 to 20 carbon atoms, for example, 1,3-dimethyl-1,4-dihydropyrimidinium, 1,3-dimethyl-1,6-dihydropyrimidi. Nium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecagenium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decagenium.
 ピリジニウムカチオンとしては、炭素原子数6~20のものが挙げられ、例えば、3-メチル-1-プロピルピリジニウム、1-ブチル-3,4-ジメチルピリジニウムが挙げられる。 Examples of the pyridinium cation include those having 6 to 20 carbon atoms, and examples thereof include 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
 ピラゾリウムカチオンとしては、炭素原子数5~15のものが挙げられ、例えば、1、2-ジメチルピラゾリウム、1-n-ブチル-2-メチルピラゾリウムが挙げられる。 Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, and examples thereof include 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium.
 グアニジニウムカチオンとしては、下記のものが挙げられる。 Examples of guanidinium cations include the following.
(1)イミダゾリニウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリニウム;
(2)イミダゾリウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリウム;
(3)テトラヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4-ジヒドロピリミジニウム、2-ジメチルアミノ-1,3,4-トリメチル-1,6-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,6-ジヒドロピリミジニウム。
(1) Guanidinium cation having an imidazolinium skeleton Examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium and 2-diethylamino-1,3. , 4-trimethylimidazolinium;
(2) Guanidinium cation having an imidazolium skeleton Examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolium and 2-diethylamino-1,3,4. -Trimethylimidazolium;
(3) Guanidinium cation having a tetrahydropyrimidinium skeleton Examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4,5,6-tetrahydro. Pyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4,5,6-tetrahydropyrimidinium;
(4) Guanidinium cation having a dihydropyrimidinium skeleton Examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4-dihydropyrimidinium. 2-Dimethylamino-1,3,4-trimethyl-1,6-dihydropyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4-dihydropyrimidinium, 2-diethylamino-1 , 3-Dimethyl-4-ethyl-1,6-dihydropyrimidinium.
 これらカチオンは1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。これらのうち、摩擦帯電圧と表面抵抗率の点から、好ましくはアミジニウムカチオン、より好ましくはイミダゾリウムカチオン、特に好ましくは1-エチル-3-メチルイミダゾリウムカチオンである。 These cations may be used alone or in combination of two or more. Of these, from the viewpoint of friction zone voltage and surface resistivity, an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
 イオン性液体において、アニオンを構成する有機酸または無機酸としては、下記のものが挙げられる。有機酸としては、例えば、カルボン酸、硫酸エステル、スルホン酸およびリン酸エステル;無機酸としては、例えば、超強酸(例えば、ホウフッ素酸、四フッ化ホウ素酸、過塩素酸、六フッ化リン酸、六フッ化アンチモン酸および六フッ化ヒ素酸)、リン酸およびホウ酸が挙げられる。上記有機酸および無機酸は、1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。 In the ionic liquid, examples of the organic acid or the inorganic acid constituting the anion include the following. Organic acids include, for example, carboxylic acids, sulfuric acid esters, sulfonic acids and phosphoric acids; inorganic acids include, for example, super-strong acids (eg, borofluoric acid, boron tetrafluoroacid, perchloric acid, phosphorus hexafluoride). Acids, antimonic acid hexafluoride and arsenic hexafluoride), phosphoric acid and boric acid. The organic acid and the inorganic acid may be used alone or in combination of two or more.
 上記有機酸および無機酸のうち、イオン性液体の、帯電防止性とその持続性の点から好ましいのは、イオン性液体を構成するアニオンのHammett酸度関数(-H0)が12~100である、超強酸の共役塩基、超強酸の共役塩基以外のアニオンを形成する酸およびこれらの混合物である。 Among the above organic acids and inorganic acids, the ionic liquid is preferably from the viewpoint of antistatic property and its durability, and the Hammett acidity function (−H0) of the anion constituting the ionic liquid is 12 to 100. Acids that form anions other than superacid conjugate bases, superacid conjugate bases, and mixtures thereof.
 超強酸の共役塩基以外のアニオンとしては、例えば、ハロゲン(例えば、フッ素、塩素および臭素)イオン、アルキル(炭素原子数1~12)ベンゼンスルホン酸(例えば、p-トルエンスルホン酸およびドデシルベンゼンスルホン酸)イオンおよびポリ(n=1~25)フルオロアルカンスルホン酸(例えば、ウンデカフルオロペンタンスルホン酸)イオンが挙げられる。 Examples of anions other than the conjugated base of the superacid include halogen (eg, fluorine, chlorine and bromine) ions, alkyl (1-12 carbon atoms) benzenesulfonic acid (eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid). ) Ions and poly (n = 1-25) fluoroalkanesulfonic acid (eg, undecafluoropentanesulfonic acid) ions.
 また、超強酸としては、プロトン酸およびプロトン酸とルイス酸との組み合わせから誘導されるもの、およびこれらの混合物が挙げられる。超強酸としてのプロトン酸としては、例えば、ビス(トリフルオロメチルスルホニル)イミド酸、ビス(ペンタフルオロエチルスルホニル)イミド酸、トリス(トリフルオロメチルスルホニル)メタン、過塩素酸、フルオロスルホン酸、アルカン(炭素原子数1~30)スルホン酸(例えば、メタンスルホン酸、ドデカンスルホン酸等)、ポリ(n=1~30)フルオロアルカン(炭素原子数1~30)スルホン酸(例えば、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸およびトリデカフルオロヘキサンスルホン酸)、ホウフッ素酸および四フッ化ホウ素酸が挙げられる。これらのうち、合成の容易さの観点から好ましいのはホウフッ素酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド酸およびビス(ペンタフルオロエチルスルホニル)イミド酸である。 Further, examples of the super strong acid include those derived from a protonic acid and a combination of a protonic acid and a Lewis acid, and a mixture thereof. Examples of the protonic acid as a super strong acid include bis (trifluoromethylsulfonyl) imide acid, bis (pentafluoroethylsulfonyl) imide acid, tris (trifluoromethylsulfonyl) methane, perchloric acid, fluorosulfonic acid, and alkane ( 1 to 30 carbon atoms) sulfonic acid (eg, methane sulfonic acid, dodecane sulfonic acid, etc.), poly (n = 1 to 30) fluoroalkane (1 to 30 carbon atoms) sulfonic acid (eg, trifluoromethane sulfonic acid, etc.) Pentafluoroethane sulfonic acid, heptafluoropropane sulfonic acid, nonafluorobutane sulfonic acid, undecafluoropentane sulfonic acid and tridecafluorohexane sulfonic acid), borofluoric acid and boron tetrafluorofluoric acid. Of these, borofluoric acid, trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imide acid and bis (pentafluoroethylsulfonyl) imide acid are preferable from the viewpoint of ease of synthesis.
 ルイス酸と組合せて用いられるプロトン酸としては、例えば、ハロゲン化水素(例えば、フッ化水素、塩化水素、臭化水素およびヨウ化水素)、過塩素酸、フルオロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸およびこれらの混合物が挙げられる。これらのうち、イオン性液体の初期電導度の観点から好ましいのはフッ化水素である。 Protonic acids used in combination with Lewis acid include, for example, hydrogen halide (eg, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, trifluoromethane. Included are sulfonic acids, pentafluoroethane sulfonic acids, nonafluorobutane sulfonic acids, undecafluoropentane sulfonic acids, tridecafluorohexane sulfonic acids and mixtures thereof. Of these, hydrogen fluoride is preferable from the viewpoint of the initial conductivity of the ionic liquid.
 ルイス酸としては、例えば、三フッ化ホウ素、五フッ化リン、五フッ化アンチモン、五フッ化ヒ素、五フッ化タンタルおよびこれらの混合物が挙げられる。これらのうちでも、イオン性液体の初期電導度の観点から好ましいのは三フッ化ホウ素および五フッ化リンである。 Examples of Lewis acid include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof. Of these, boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
 プロトン酸とルイス酸との組み合わせは任意であるが、これらの組み合わせからなる超強酸としては、例えば、テトラフルオロホウ酸、ヘキサフルオロリン酸、六フッ化タンタル酸、六フッ化アンチモン酸、六フッ化タンタルスルホン酸、四フッ化ホウ素酸、六フッ化リン酸、塩化三フッ化ホウ素酸、六フッ化ヒ素酸およびこれらの混合物が挙げられる。 The combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid composed of these combinations include tetrafluoroboric acid, hexafluorophosphate, tantalum hexafluoride, antimonic acid hexafluoride, and hexafluoride. Examples thereof include tantalum sulphonic acid, boron tetrafluoride acid, phosphoric acid hexafluoride, boron trifluoride chloride, arsenic hexafluoride and mixtures thereof.
 これらアニオンのうち、イオン性液体の帯電防止性の観点から好ましいのは超強酸の共役塩基(プロトン酸からなる超強酸およびプロトン酸とルイス酸との組合せからなる超強酸)であり、さらに好ましいのはプロトン酸からなる超強酸およびプロトン酸と、三フッ化ホウ素および/または五フッ化リンとからなる超強酸の共役塩基である。 Among these anions, from the viewpoint of antistatic property of the ionic liquid, a conjugated base of a super strong acid (a super strong acid composed of a protonic acid and a super strong acid composed of a combination of a protonic acid and a Lewis acid) is more preferable. Is a conjugate base of a superacid consisting of a protonic acid and a superacid consisting of a boron trifluoride and / or a phosphorus pentafluoride.
 イオン性液体のうち、帯電防止性の観点から好ましいのは、アミジニウムカチオンを有するイオン性液体、より好ましいのは1-エチル-3-メチルイミダゾリウムカチオンを有するイオン性液体、特に好ましいのは1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。 Among the ionic liquids, from the viewpoint of antistatic properties, an ionic liquid having an amidinium cation is preferable, a ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and an ionic liquid having a 1-ethyl-3-methylimidazolium cation is particularly preferable. 1-Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.
 イオン性液体は、本発明の帯電防止剤に係る高分子化合物(C)に配合してもよいし、高分子化合物(C)とともに合成樹脂に配合して使用してもよい。また、高分子化合物(C)の製造時に、その反応容器に添加して配合してもよい。イオン性液体の配合量は、帯電防止性とその持続性、保存安定性の点から、高分子化合物(C)100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~12質量部が最も好ましい。 The ionic liquid may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin. Further, it may be added to the reaction vessel at the time of producing the polymer compound (C) and blended. The blending amount of the ionic liquid is preferably 0.01 to 20 parts by mass, preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymer compound (C) from the viewpoint of antistatic property, its durability, and storage stability. 15 parts by mass is more preferable, and 1 to 12 parts by mass is most preferable.
 なお、本発明の帯電防止剤組成物においては、アルカリ金属の塩とイオン性液体は併用してもよい。 In the antistatic agent composition of the present invention, an alkali metal salt and an ionic liquid may be used in combination.
 本発明の帯電防止剤組成物を得るためには、高分子化合物(C)と、アルカリ金属の塩およびイオン性液体の群から選択される1種以上と、さらに必要に応じて他の任意成分とを混合すればよく、混合には各種混合機を用いることができる。混合時には加熱してもよい。使用できる混合機の例を挙げると、タンブラーミキサー、ヘンシェルミキサー、リボンブレンダー、V型混合機、W型混合機、スーパーミキサー、ナウターミキサー等が挙げられる。また、高分子化合物(C)の合成反応中に、反応系にアルカリ金属の塩およびイオン性液体からなる群から選択される1種以上を添加したものでもよい。 In order to obtain the antistatic agent composition of the present invention, the polymer compound (C), one or more selected from the group of alkali metal salts and ionic liquids, and other optional components as necessary. And may be mixed, and various mixers can be used for mixing. It may be heated at the time of mixing. Examples of mixers that can be used include tumbler mixers, henschel mixers, ribbon blenders, V-type mixers, W-type mixers, super mixers, nouter mixers and the like. Further, one or more selected from the group consisting of alkali metal salts and ionic liquids may be added to the reaction system during the synthesis reaction of the polymer compound (C).
 また、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、第2族元素の塩を配合して、帯電防止性を有する帯電防止剤組成物として使用してもよい。第2族元素の塩としては、有機酸または無機酸の塩が挙げられ、第2族元素の例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。 Further, the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a salt of a Group 2 element as long as the effect of the present invention is not impaired. Examples of the salt of the Group 2 element include salts of organic acids or inorganic acids, and examples of the Group 2 element include beryllium, magnesium, calcium, strontium, barium and the like. Examples of organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc. An aliphatic dicarboxylic acid having 1 to 12 carbon atoms; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane. Examples thereof include sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids. Examples of inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the like.
 第2族元素の塩は、高分子化合物(C)に配合してもよく、高分子化合物(C)とともに合成性樹脂に配合して使用してもよい。第2族元素の塩の配合量は、高分子化合物(C)100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、3.0~12質量部が最も好ましい。 The salt of the Group 2 element may be blended with the polymer compound (C), or may be blended with the polymer compound (C) and used with a synthetic resin. The amount of the salt of the Group 2 element is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and 3.0 to 12 parts by mass with respect to 100 parts by mass of the polymer compound (C). Parts by mass are most preferred.
 また、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、界面活性剤を配合して、帯電防止性を有する帯電防止剤組成物として使用してもよい。界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を使用することができる。 Further, the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a surfactant as long as the effects of the present invention are not impaired. As the surfactant, a nonionic, anionic, cationic or amphoteric surfactant can be used.
 非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤;ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビット若しくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン界面活性剤等が挙げられる。アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等のカルボン酸塩;高級アルコール硫酸エステル塩、高級アルキルエーテル硫酸エステル塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩;高級アルコールリン酸エステル塩等のリン酸エステル塩等が挙げられる。カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩等が挙げられる。両性界面活性剤としては、高級アルキルアミノプロピオン酸塩等のアミノ酸型両性界面活性剤、高級アルキルジメチルベタイン、高級アルキルジヒドロキシエチルベタイン等のベタイン型両性界面活性剤等が挙げられ、これらは単独でまたは2種以上組み合わせて使用することができる。本発明の帯電防止剤組成物においては、これらの界面活性剤の中でも、アニオン性界面活性剤が好ましく、特に、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩が好ましい。 Examples of the nonionic surfactant include polyethylene glycol-type nonionic surfactants such as higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, higher alkylamine ethylene oxide adduct, and polypropylene glycol ethylene oxide adduct; and fatty acid esters of polyethylene oxide and glycerin. , Pentaerythlit fatty acid ester, sorbit or sorbitan fatty acid ester, polyhydric alcohol alkyl ether, polyhydric alcohol type nonionic surfactant such as aliphatic amide of alkanolamine and the like. Examples of the anionic surfactant include carboxylates such as alkali metal salts of higher fatty acids; sulfate esters such as higher alcohol sulfates and higher alkyl ether sulfates, alkylbenzene sulfonates and alkyl sulfonates. Sulfates such as paraffin sulfonates; phosphate salts such as higher alcohol phosphates and the like can be mentioned. Examples of the cationic surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts. Examples of the amphoteric tenside include amino acid amphoteric tenside agents such as higher alkylaminopropionate, betaine amphoteric tenside agents such as higher alkyldimethylbetaine and higher alkyldihydroxyethyl betaine, and these may be used alone or. Two or more types can be used in combination. In the antistatic agent composition of the present invention, among these surfactants, anionic surfactants are preferable, and sulfonates such as alkylbenzene sulfonates, alkyl sulfonates, and paraffin sulfonates are particularly preferable. ..
 界面活性剤は、高分子化合物(C)に配合してもよく、高分子化合物(C)とともに合成樹脂に配合して使用してもよい。界面活性剤の配合量は、高分子化合物(C)100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。 The surfactant may be blended with the polymer compound (C) or may be blended with the polymer compound (C) into a synthetic resin for use. The blending amount of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (C). ..
 さらに、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、高分子型帯電防止剤を配合して、帯電防止性を有する帯電防止剤組成物として使用してもよい。高分子帯電防止剤としては、例えば、公知のポリエーテルエステルアミド等の高分子型帯電防止剤を使用することができ、公知のポリエーテルエステルアミドとしては、例えば、特開平7-10989号公報に記載のビスフェノールAのポリオキシアルキレン付加物からなるポリエーテルエステルアミドが挙げられる。また、ポリオレフィンブロックと親水性ポリマーブロックとの結合単位が2~50の繰り返し構造を有するブロックポリマーを使用することができ、例えば、米国特許第6552131号明細書記載のブロックポリマーを挙げることができる。 Further, the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a polymer type antistatic agent as long as the effects of the present invention are not impaired. As the polymer antistatic agent, for example, a known polymer type antistatic agent such as a polyether ester amide can be used, and as a known polyether ester amide, for example, JP-A-7-10989 can be used. Examples thereof include the polyether ester amide composed of the polyoxyalkylene adduct of bisphenol A described above. Further, a block polymer having a repeating structure in which the bonding unit between the polyolefin block and the hydrophilic polymer block is 2 to 50 can be used, and examples thereof include the block polymer described in US Pat. No. 6,552,131.
 高分子型帯電防止剤は、本発明の帯電防止剤に係る高分子化合物(C)に配合してもよく、高分子化合物(C)とともに、合成樹脂に配合して使用してもよい。高分子型帯電防止剤の配合量は、高分子化合物(C)100質量部に対して、0~50質量部が好ましく、5~20質量部がより好ましい。 The polymer-type antistatic agent may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin. The blending amount of the polymer-type antistatic agent is preferably 0 to 50 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the polymer compound (C).
 さらにまた、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、相溶化剤を配合して、帯電防止性を有する帯電防止剤組成物としてもよい。相溶化剤を配合することで、高分子化合物(C)と他成分や合成樹脂との相溶性を向上させることができる。かかる相溶化剤としては、カルボキシル基、エポキシ基、アミノ基、ヒドロキシル基およびポリオキシアルキレン基からなる群から選ばれる少なくとも1種の官能基(極性基)を有する変性ビニル重合体、例えば、特開平3-258850号公報に記載の重合体や、特開平6-345927号公報に記載のスルホニル基を有する変性ビニル重合体、あるいはポリオレフィン部分と芳香族ビニル重合体部分とを有するブロック重合体等が挙げられる。 Furthermore, the antistatic agent of the present invention may be blended with a compatibilizer as long as the effects of the present invention are not impaired to prepare an antistatic agent composition having antistatic properties. By blending the compatibilizer, the compatibility between the polymer compound (C) and other components or synthetic resin can be improved. Examples of such a compatibilizer include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group. Examples thereof include the polymer described in Japanese Patent Application Laid-Open No. 3-258850, the modified vinyl polymer having a sulfonyl group described in JP-A-6-345927, and the block polymer having a polyolefin moiety and an aromatic vinyl polymer moiety. Be done.
 相溶化剤は、本発明の帯電防止剤に係る高分子化合物(C)に配合してもよく、高分子化合物(C)とともに合成樹脂に配合して使用してもよい。相溶化剤の配合量は、高分子化合物(C)100質量部に対して、0.1~15質量部が好ましく、1~10質量部がより好ましい。 The compatibilizer may be blended with the polymer compound (C) according to the antistatic agent of the present invention, or may be blended with the polymer compound (C) and used in a synthetic resin. The blending amount of the compatibilizer is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymer compound (C).
 本発明の帯電防止剤組成物には、本発明の効果を損なわない範囲で、高分子化合物(C)とこれまで挙げた成分以外にも、任意の成分として他の成分を配合してもよい。これら他の成分は、本発明の帯電防止剤組成物に直接配合してもよいし、高分子化合物(C)や本発明の帯電防止剤組成物を熱可塑性樹脂等の合成樹脂に配合して、帯電防止性を有する樹脂組成物として使用する場合に、合成樹脂に配合してもよい。 The antistatic agent composition of the present invention may contain other components as arbitrary components in addition to the polymer compound (C) and the components listed above, as long as the effects of the present invention are not impaired. .. These other components may be directly blended with the antistatic agent composition of the present invention, or the polymer compound (C) or the antistatic agent composition of the present invention may be blended with a synthetic resin such as a thermoplastic resin. , When used as a resin composition having antistatic properties, it may be blended with a synthetic resin.
 次に、本発明の帯電防止性樹脂組成物について説明する。
 本発明の帯電防止性樹脂組成物は、合成樹脂に対し、本発明の帯電防止剤が配合されてなるものである。本発明の帯電防止剤に係る高分子化合物(C)および帯電防止剤組成物は、合成樹脂、特に好ましくは、熱可塑性樹脂に配合して、帯電防止性を有する帯電防止性樹脂組成物として使用できる。熱可塑性樹脂の例としては、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等の、オレフィンモノマーの単独重合体または共重合体であるポリオレフィン系樹脂;ポリスチレン、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS(アクリロニトリルブタジエンスチレン共重合体)樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等)等の、スチレンモノマーの単独重合体または共重合体であるポリスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。また、熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーであってもよい。本発明の帯電防止性樹脂組成物において、これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、熱可塑性樹脂はアロイ化されていてもよい。
Next, the antistatic resin composition of the present invention will be described.
The antistatic resin composition of the present invention is obtained by blending the antistatic agent of the present invention with a synthetic resin. The polymer compound (C) and the antistatic agent composition according to the antistatic agent of the present invention are blended with a synthetic resin, particularly preferably a thermoplastic resin, and used as an antistatic resin composition having antistatic properties. it can. Examples of thermoplastic resins include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, crosslinked polyethylene, ultrahigh-molecular-weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, and the like. Α-Olefin polymer or ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, etc., a polyolefin resin which is a homopolymer or copolymer of an olefin monomer; polystyrene, Polymers of styrene and / or α-methylstyrene and other monomers (eg, maleic anhydride, phenylmaleimide, methyl methacrylate, butadiene, acrylonitrile, etc.) (eg, AS resin, ABS (with acrylonitrile butadiene styrene, etc.) Polymer) resin, ACS resin, SBS resin, MBS resin, heat-resistant ABS resin, etc.) and other polystyrene-based resins that are homopolymers or copolymers of styrene monomers; polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, Chlorinated polypropylene, polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate ternary copolymer , Halogen-containing resins such as vinyl chloride-acrylic acid ester copolymers, vinyl chloride-maleic acid ester copolymers, vinyl chloride-cyclohexylmaleimide copolymers; petroleum resins, kumaron resins, polyvinyl acetate, acrylic resins, polymethyl Methacrylate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral; aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyalkylene terephthalate such as polycyclohexanedimethylene terephthalate, polyethylene naphthalate, polyalkylene naphthalate such as polybutylene naphthalate, and poly Linear polyesters such as tetramethylene terephthalate; degradable fats such as polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succinate, polylactic acid, polyapple acid, polyglycolic acid, polydioxane, poly (2-oxetanone) Group polyesters; polymers such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonate, polycarbonate / ABS resin, branched Examples thereof include thermoplastic resins such as polycarbonate, polyacetal, polyphenylene sulfide, polyurethane, fibrous resin, polyimide resin, polysulfone, polyphenylene ether, polyetherketone, polyetheretherketone, and liquid crystal polymer, and blends thereof. The thermoplastic resins include isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, olefin elastomer, styrene elastomer, polyester elastomer, nitrile elastomer, and nylon. It may be an elastomer such as a system elastomer, a vinyl chloride elastomer, a polyamide elastomer, or a polyurethane elastomer. In the antistatic resin composition of the present invention, these thermoplastic resins may be used alone or in combination of two or more. Moreover, the thermoplastic resin may be alloyed.
 これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。これらの熱可塑性樹脂の中でも、帯電防止性の点から、ポリオレフィン系樹脂またはポリスチレン系樹脂の群から選ばれる1種以上が好ましい。 These thermoplastic resins have molecular weight, degree of polymerization, density, softening point, ratio of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and compounding ratio of monomer as raw material, type of polymerization catalyst. It can be used regardless of (for example, Ziegler catalyst, metallocene catalyst, etc.). Among these thermoplastic resins, one or more selected from the group of polyolefin-based resins or polystyrene-based resins is preferable from the viewpoint of antistatic properties.
 本発明の帯電防止性樹脂組成物中の、合成樹脂と、本発明の帯電防止剤に係る高分子化合物(C)または本発明の帯電防止剤組成物との質量比は、99/1~40/60の範囲が好ましい。 The mass ratio of the synthetic resin to the polymer compound (C) according to the antistatic agent of the present invention or the antistatic agent composition of the present invention in the antistatic resin composition of the present invention is 99/1 to 40. The range of / 60 is preferable.
 本発明の帯電防止剤に係る高分子化合物(C)の合成樹脂、特に好ましくは熱可塑性樹脂への配合方法は特に限定されず、通常使用されている任意の方法を用いることができ、例えば、ロール混練り、バンパー混練り、押し出し機、ニーダー等により混合、練り込みして配合すればよい。そのときに、さらにアルカリ金属の塩およびイオン性液体からなる群から選択される1種以上を同時に、混合、練り込みしてもよい。また、高分子化合物(C)は、そのまま合成樹脂に添加してもよいが、必要に応じて、担体に含浸させてから添加してもよい。担体に含浸させるには、そのまま加熱混合してもよいし、必要に応じて、有機溶媒で希釈してから担体に含浸させ、その後に溶媒を除去する方法でもよい。こうした担体としては、合成樹脂のフィラーや充填剤として知られているもの、または、常温で固体の難燃剤や光安定剤が使用でき、例えば、ケイ酸カルシウム粉末、シリカ粉末、タルク粉末、アルミナ粉末、酸化チタン粉末、または、これら担体の表面を化学修飾したもの、下記に挙げる難燃剤や酸化防止剤の中で固体のもの等が挙げられる。これらの担体の中でも担体の表面を化学修飾したものが好ましく、シリカ粉末の表面を化学修飾したものがより好ましい。これらの担体は、平均粒径が0.1~100μmのものが好ましく、0.5~50μmのものがより好ましい。 The method for blending the polymer compound (C) according to the antistatic agent of the present invention into the synthetic resin, particularly preferably the thermoplastic resin, is not particularly limited, and any commonly used method can be used, for example. It may be mixed and kneaded by roll kneading, bumper kneading, extrusion machine, kneader or the like. At that time, one or more selected from the group consisting of alkali metal salts and ionic liquids may be mixed and kneaded at the same time. Further, the polymer compound (C) may be added to the synthetic resin as it is, or may be added after impregnating the carrier, if necessary. In order to impregnate the carrier, the mixture may be heated and mixed as it is, or if necessary, the carrier may be impregnated after diluting with an organic solvent, and then the solvent may be removed. As such a carrier, those known as fillers and fillers for synthetic resins, flame retardants and light stabilizers that are solid at room temperature can be used, and for example, calcium silicate powder, silica powder, talc powder, and alumina powder can be used. , Titanium oxide powder, those obtained by chemically modifying the surface of these carriers, and solid ones among the flame retardants and antioxidants listed below. Among these carriers, those in which the surface of the carrier is chemically modified are preferable, and those in which the surface of the silica powder is chemically modified are more preferable. These carriers preferably have an average particle size of 0.1 to 100 μm, more preferably 0.5 to 50 μm.
 さらに、本発明の帯電防止剤に係る高分子化合物(C)の配合方法を挙げると、射出成形等の成形時に高分子化合物(C)と合成樹脂、特に好ましくは熱可塑性樹脂とを混合して成形品を得る方法で配合してもよく、そのときにさらにアルカリ金属の塩およびイオン性液体の群から選択される1種以上を配合してもよく、さらに、あらかじめ高分子化合物(C)と合成樹脂とのマスターバッチを製造しておき、このマスターバッチを配合してもよく、そのときにアルカリ金属の塩およびイオン性液体の群から選択される1種以上を配合してもよい。 Further, to give a method of blending the polymer compound (C) according to the antistatic agent of the present invention, the polymer compound (C) and a synthetic resin, particularly preferably a thermoplastic resin, are mixed at the time of molding such as injection molding. It may be blended by a method for obtaining a molded product, and at that time, one or more selected from the group of alkali metal salts and ionic liquids may be further blended, and further, with the polymer compound (C) in advance. A masterbatch with a synthetic resin may be produced and this masterbatch may be blended, and at that time, one or more selected from the group of alkali metal salts and ionic liquids may be blended.
 本発明の帯電防止性樹脂組成物には、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の各種添加剤をさらに添加することができ、これにより、本発明の帯電防止性樹脂組成物を安定化させることができる。 The antistatic resin composition of the present invention may contain various additives such as a phenolic antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, an ultraviolet absorber, and a hindered amine-based light stabilizer, if necessary. Further can be added, which can stabilize the antistatic resin composition of the present invention.
 これら酸化防止剤等の各種添加剤は、合成樹脂に配合するまえに、本発明の帯電防止剤組成物中に配合しておいてもよい。さらには高分子化合物(C)の製造時に配合しておいてもよい。特に酸化防止剤は、高分子化合物(C)の製造時に配合することで、製造中の高分子化合物(C)の酸化劣化も防ぐことができるので好ましい。 Various additives such as these antioxidants may be added to the antistatic agent composition of the present invention before being added to the synthetic resin. Further, it may be blended at the time of producing the polymer compound (C). In particular, an antioxidant is preferable because it can prevent oxidative deterioration of the polymer compound (C) during production by blending it at the time of producing the polymer compound (C).
 フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の添加量は、合成樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of the phenolic antioxidant include 2,6-ditertiary butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, and distearyl (3,5-ditertiary butyl-4-4). Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-dithiary butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tertiary butyl-m-cresol) , 2,2'-Methylenebis (4-methyl-6-tertiary butylphenol), 2,2'-methylenebis (4-ethyl-6-third butylphenol), 4,4'-butylidenebis (6-tertiary butyl-) m-cresol), 2,2'-etylidenebis (4,6-di-tertiary butylphenol), 2,2'-etylidenebis (4-second butyl-6-third butylphenol), 1,1,3- Tris (2-methyl-4-hydroxy-5-third butylphenyl) butane, 1,3,5-tris (2,6-dimethyl-3-hydroxy-4-third butylbenzyl) isocyanurate, 1,3 , 5-Tris (3,5-di-tertiary butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-Tris (3,5-di-tertiary butyl-4-hydroxybenzyl) -2,4,6 -Trimethylbenzene, 2-third butyl-4-methyl-6- (2-acryloyloxy-3-third butyl-5-methylbenzyl) phenol, stearyl (3,5-ditriary butyl-4-hydroxyphenyl) ) Propionate, tetrakis [3- (3,5-ditriary butyl-4-hydroxyphenyl) methyl propionate] methane, thiodiethylene glycol bis [(3,5-ditritiary butyl-4-hydroxyphenyl) propionate], 1,6-Hexamethylenebis [(3,5-ditertiary butyl-4-hydroxyphenyl) propionate], bis [3,3-bis (4-hydroxy-3-third butylphenyl) butyric acid] glycol Estel, bis [2-tertiary butyl-4-methyl-6- (2-hydroxy-3-third butyl-5-methylbenzyl) phenyl] terephthalate, 1,3,5-tris [(3,5-di) Tertiary Butyl-4-Hydroxyphenyl) Propionyloxyethyl] Isocyanurate, 3,9-Bis [1,1-Dimethyl-2-{(3-Triary Butyl-4-Hydroxy-5-Methylphenyl) Propionyloxy} Ethyl] -2,4,8,10-tetraoxaspiro [5,5] ung Decane, triethylene glycol bis [(3-tertiary butyl-4-hydroxy-5-methylphenyl) propionate] and the like can be mentioned. The amount of these phenolic antioxidants added is preferably 0.001 to 10 parts by mass and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
 リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、合成樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of phosphorus-based antioxidants include trisnonylphenyl phosphite and tris [2-tertiary butyl-4- (3-third butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phos. Fight, tridecylphosphite, octyldiphenylphosphite, di (decyl) monophenylphosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-dith) Tributylphenyl) pentaerythritol diphosphite, bis (2,6-ditertiary butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritrith butylphenyl) pentaerythritol diphos Fight, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, tetra (tridecyl) isopropyridene diphenol diphosphite, tetra (tridecyl) -4,4'-n-butylidenebis (2-third butyl-) 5-Methylphenol) diphosphite, hexa (tridecyl) -1,1,3-tris (2-methyl-4-hydroxy-5-3 butylphenyl) butanetriphosphite, tetrakis (2,4-ditertiary butylphenyl) ) Biphenylenediphosphonite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 2,2'-methylenebis (4,6-tertiary butylphenyl) -2-ethylhexyl phosphite , 2,2'-Methylenebis (4,6-3rd Butylphenyl) -Octadecylphosphite, 2,2'-Echilidenebis (4,6-di3rd Butylphenyl) Fluorophosphite, Tris (2-[( 2,4,8,10-Tetraxyl butyldibenzo [d, f] [1,3,2] dioxaphosfepin-6-yl) oxy] ethyl) amine, 2-ethyl-2-butylpropylene glycol And 2,4,6-triterone butylphenol phosphite and the like. The amount of these phosphorus-based antioxidants added is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
 チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸)エステル類が挙げられる。これらのチオエーテル系酸化防止剤の添加量は、合成樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of the thioether-based antioxidant include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra (β-alkylthiopropionic acid) ester. Kind. The amount of these thioether-based antioxidants added is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の添加量は、合成樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone). 2-Hydroxybenzophenones such as 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-ditertiary butylphenyl) -5-chlorobenzo Triazol, 2- (2'-hydroxy-3'-tertiary butyl-5'-methylphenyl) -5-chlorobenzotriazol, 2- (2'-hydroxy-5'-tertiary octyl) Phenyl) benzotriazol, 2- (2'-hydroxy-3', 5'-dicumylphenyl) benzotriazol, 2,2'-methylenebis (4-third octyl-6- (benzotriazolyl) phenol ), 2- (2'-Hydroxyphenyl) benzotriazoles such as 2- (2'-hydroxy-3'-tertiary butyl-5'-carboxyphenyl) benzotriazole; phenylsalicylate, resorcinol monobenzoate, 2,4 -Di-tertiary butylphenyl-3,5-di-tertiary butyl-4-hydroxybenzoate, 2,4-di-tertiary amylphenyl-3,5-di-tertiary butyl-4-hydroxybenzoate, hexadecyl-3,5 -Benzoates such as di-ternary butyl-4-hydroxybenzoate; substituted oxanilides such as 2-ethyl-2'-ethoxyoxanilide and 2-ethoxy-4'-dodecyloxanilide; ethyl-α-cyano- Cyanoacrylates such as β, β-diphenyl acrylate, methyl-2-cyano-3-methyl-3- (p-methoxyphenyl) acrylate; 2- (2-hydroxy-4-octoxyphenyl) -4,6- Bis (2,4-ditertiary butylphenyl) -s-triazine, 2- (2-hydroxy-4-methoxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy) Examples thereof include triaryltriazines such as -5-methylphenyl) -4,6-bis (2,4-ditertiary butylphenyl) -s-triazine. The amount of these ultraviolet absorbers added is preferably 0.001 to 30 parts by mass, and more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the synthetic resin.
 ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1,2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、1,2,3,4-ブタンカルボン酸/2,2-ビス(ヒドロキシメチル)-1,3-プロパンジオール/3-ヒドロキシ-2,2-ジメチルプロパナール/1,2,2,6,6-ペンタメチル-4-ピペリジニルエステル重縮合物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=デカンジオアート/メチル=1,2,2,6,6-ペンタメチル-4-ピペリジル=セバカート混合物、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8,12-テトラアザドデカン、1,6,11-トリス[2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ]ウンデカン、1,6,11-トリス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ]ウンデカン、3,9-ビス〔1,1-ジメチル-2-{トリス(2,2,6,6-テトラメチル-4-ピペリジルオキシカルボニル)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、3,9-ビス〔1,1-ジメチル-2-{トリス(1,2,2,6,6-ペンタメチル-4-ピペリジルオキシカルボニル)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、ビス(1-ウンデシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6-テトラメチル-4-ピペリジルヘキサデカノエート、2,2,6,6-テトラメチル-4-ピペリジルオクタデカノエート等のヒンダードアミン化合物が挙げられる。これらのヒンダードアミン系光安定剤の添加量は、合成樹脂100質量部に対して0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 Examples of the hindered amine-based light stabilizer include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6. , 6-Tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane Tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, bis (2,2,6,6-tetramethyl-4) -Piperidil) bis (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) bis (tridecyl) -1,2, 3,4-Butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2-butyl-2- (3,5-ditertiary butyl-4-hydroxybenzyl) malonate , 1,2,2,6,6-tetramethyl-4-piperidyl methacrylate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4 -Diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], 1,2,3 , 4-Butancarboxylic acid / 2,2-bis (hydroxymethyl) -1,3-propanediol / 3-hydroxy-2,2-dimethylpropanal / 1,2,2,6,6-pentamethyl-4- Piperidinyl ester polycondensate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) = decandioate / methyl = 1,2,2,6,6-pentamethyl-4-piperidyl = sebacato mixture , 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 1- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol / diethyl succinate polycondensate, 1, 6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / dibromoethane polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4-) Piperidineamino) hexane / 2,4-dichloro-6-morpholino-s-triazine polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / 2,4- Dichloro-6-3 octylamino-s-triazine polycondensate, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (2,2,6,6-tetramethyl-) 4-Piperidyl) amino) -s-triazine-6-yl] -1,5,8,12-tetraazadodecane, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N-) (1,2,2,6,6-pentamethyl-4-piperidyl) amino) -s-triazine-6-yl] -1,5,8,12-tetraazadodecane, 1,6,11-tris [2 , 4-Bistyl (N-Butyl-N- (2,2,6,6-Tetramethyl-4-piperidyl) Amino) -s-Triazine-6-ylamino] Undecane, 1,6,11-Tris [2, 4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino) -s-triazine-6-ylamino] undecane, 3,9-bis [1,1-bis] Dimethyl-2- {tris (2,2,6,6-tetramethyl-4-piperidyloxycarbonyl) butylcarbonyloxy} ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 3 , 9-bis [1,1-dimethyl-2- {tris (1,2,2,6,6-pentamethyl-4-piperidyloxycarbonyl) butylcarbonyloxy} ethyl] -2,4,8,10-tetra Oxaspiro [5.5] undecane, bis (1-undecyloxy-2,2,6,6-tetramethylpiperidine-4-yl) carbonate, 2,2,6,6-tetramethyl-4-piperidylhexa Examples thereof include hindered amine compounds such as decanoate and 2,2,6,6-tetramethyl-4-piperidyl octadecanoate. The amount of these hindered amine-based light stabilizers added is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the synthetic resin.
 また、合成樹脂としてポリオレフィン系樹脂を使用する場合は、本発明の効果を損なわない範囲で、必要に応じてさらに、ポリオレフィン樹脂中の残渣触媒を中和するために、公知の中和剤を添加することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられ、これら中和剤は混合して用いてもよい。 When a polyolefin resin is used as the synthetic resin, a known neutralizing agent is added as necessary to further neutralize the residual catalyst in the polyolefin resin as long as the effects of the present invention are not impaired. It is preferable to do so. Examples of the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearoamide), ethylene bis (12-hydroxystearoamide), and stearic acid amide. Compounds are mentioned, and these neutralizing agents may be mixed and used.
 本発明の帯電防止性樹脂組成物には、その他の添加剤として、必要に応じてさらに、本発明の効果を損なわない範囲で、芳香族カルボン酸金属塩、脂環式アルキルカルボン酸金属塩、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の結晶核剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、三酸化アンチモン等の酸化アンチモン、その他の無機系難燃助剤、その他の有機系難燃助剤、中和剤、老化防止剤、充填剤、顔料、滑剤、加工助剤、可塑剤、強化材、発泡剤等を添加してもよい。 In the antistatic resin composition of the present invention, as other additives, if necessary, an aromatic carboxylic acid metal salt, an alicyclic alkyl carboxylic acid metal salt, as long as the effects of the present invention are not impaired. Crystal nucleating agents such as aluminum p-tertiary butyl benzoate, aromatic phosphate metal salts, dibenzylidene sorbitols, metal soaps, hydrotalcites, triazine ring-containing compounds, metal hydroxides, phosphoric acid ester flame retardants. , Condensed Phosphate Flame Retardant, Inorganic Phosphate Flame Retardant, (Poly) Phosphate Flame Retardant, Halogen Flame Retardant, Silicon Flame Retardant, Antimonium Oxide such as Antimon Trioxide, Other Inorganic Flame Retardant Agents, other organic flame retardant aids, neutralizers, anti-aging agents, fillers, pigments, lubricants, processing aids, plasticizers, reinforcements, foaming agents and the like may be added.
 トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。 Examples of the triazine ring-containing compound include melamine, ammeline, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylene guanamine, norbornene diguanamine, methylene diguanamine, ethylene dimeramine, and trimethylene di. Examples thereof include melamine, tetramethylene dimelamine, hexamethylene dimelamine, and 1,3-hexylene melamine.
 金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。 Examples of the metal hydroxide include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Kagaku Kogyo Co., Ltd.) and the like.
 リン酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリスイソプロピルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等が挙げられる。 Examples of the phosphoric acid ester flame retardant include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyldiphenyl phosphate and triki. Sirenyl phosphate, octyldiphenyl phosphate, xylenyldiphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyldiphenyl phosphate, t-butylphenyldiphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) ) Phosphate, isopropylphenyldiphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate and the like.
 縮合リン酸エステル系難燃剤の例としては、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。 Examples of the condensed phosphate ester flame retardant include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and the like.
 (ポリ)リン酸塩系難燃剤の例としては、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン等の(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。 Examples of (poly) phosphate-based flame retardants include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate.
 その他の無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、タルク、モンモリロナイト等の無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)等の種々の市販品を用いることができる。また、その他の有機系難燃助剤としては、例えば、ペンタエリスリトールが挙げられる。 Examples of other inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talcite, and montmorillonite, and surface-treated products thereof. For example, TIPAQUE R-680 ( Titanium oxide: Ishihara Sangyo Co., Ltd., Kyowa Mag 150 (magnesium oxide: Kyowa Chemical Industry Co., Ltd.), DHT-4A (hydrotalcite: Kyowa Chemical Industry Co., Ltd.), Alchemizer 4 (zinc-modified hydro) Hydrotalcite: Various commercially available products such as Kyowa Kagaku Kogyo Co., Ltd. can be used. Further, as another organic flame retardant aid, for example, pentaerythritol can be mentioned.
 老化防止剤としては、ナフチルアミン系、ジフェニルアミン系、p-フェニルジアミン系、キノリン系、ヒドロキノン誘導体、モノフェノール系、チオビスフェノール系、ヒンダートフェノール系、亜リン酸エステル系等が挙げられる。 Examples of the anti-aging agent include naphthylamine-based, diphenylamine-based, p-phenyldiamine-based, quinoline-based, hydroquinone derivatives, monophenol-based, thiobisphenol-based, hindered phenol-based, and phosphite ester-based agents.
 結晶核剤としては、無機系結晶核剤および有機系結晶核剤が挙げられ、無機系結晶核剤の具体例としては、カオリナイト、合成マイカ、クレー、ゼオライト、シリカ、グラファイト、カーボンブラック、酸化マグネシウム、酸化チタン、硫化カルシウム、窒化ホウ素、炭酸カルシウム、硫酸バリウム、酸化アルミニウム、酸化ネオジウムおよびフェニルホスホネート等の金属塩を挙げることができる。これらの無機系結晶核剤は、組成物中での分散性を高めるために、有機物で修飾されていてもよい。 Examples of the crystal nucleating agent include an inorganic crystal nucleating agent and an organic crystal nucleating agent, and specific examples of the inorganic crystal nucleating agent include kaolinite, synthetic mica, clay, zeolite, silica, graphite, carbon black, and oxidation. Metal salts such as magnesium, titanium oxide, calcium sulfide, boron nitride, calcium carbonate, barium sulfate, aluminum oxide, neodium oxide and phenylphosphonate can be mentioned. These inorganic crystal nucleating agents may be modified with an organic substance in order to enhance the dispersibility in the composition.
 有機系結晶核剤の具体例としては、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シュウ酸カルシウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、オクタコサン酸ナトリウム、オクタコサン酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾエート、ナトリウムβ-ナフタレート、ナトリウムシクロヘキサンカルボキシレート等の有機カルボン酸金属塩、p-トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウム等の有機スルホン酸塩、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t-ブチルアミド)等のカルボン酸アミド、ベンジリデンソルビトールおよびその誘導体、ナトリウム-2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)フォスフェート等のリン化合物金属塩、および2,2-メチルビス(4,6-ジ-t-ブチルフェニル)ナトリウム等を挙げることができる。 Specific examples of the organic crystal nucleating agent include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, potassium terephthalate, calcium oxalate. , Sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, sodium octacosate, calcium octacosate, sodium stearate, potassium stearate, lithium stearate, calcium stearate, magnesium stearate, stearic acid Organic carboxylates such as barium, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, zinc salicylate, aluminum dibenzoate, potassium dibenzoate, lithium dibenzoate, sodium β-naphthalate, sodium cyclohexanecarboxylate, etc. Salt, organic sulfonates such as sodium p-toluenesulfonate, sodium sulfoisophthalate, stearic acid amide, ethylenebislauric acid amide, partimate amide, hydroxystearic acid amide, erucic acid amide, tristrimethic acid (t-butylamide) ) Etc., benzylidene sorbitol and its derivatives, phosphorus compound metal salts such as sodium-2,2'-methylenebis (4,6-di-t-butylphenyl) phosphate, and 2,2-methylbis (4). , 6-di-t-butylphenyl) sodium and the like.
 中和剤は、合成樹脂中の残渣触媒を中和するために、添加されるもので、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられる。 The neutralizing agent is added to neutralize the residual catalyst in the synthetic resin, and is, for example, a fatty acid metal salt such as calcium stearate, lithium stearate, sodium stearate, or ethylene bis (stearoamide). Examples thereof include fatty acid amide compounds such as ethylene bis (12-hydroxystearoamide) and stearic acid amide.
 滑剤としては、例えば、流動パラフィン、天然パラフィン、マイクロワックス、合成パラフィン、低分子量ポリエチレン、ポリエチレンワックス等の純炭化水素系滑剤;ハロゲン化炭化水素系滑剤;高級脂肪酸、オキシ脂肪酸等の脂肪酸系滑剤;脂肪酸アミド、ビス脂肪酸アミド等の脂肪酸アミド系滑剤;脂肪酸の低級アルコールエステル、グリセリド等の脂肪酸の多価アルコールエステル、脂肪酸のポリグリコールエステル、脂肪酸の脂肪アルコールエステル(エステルワックス)等のエステル系滑剤;金属石鹸、脂肪アルコール、多価アルコール、ポリグリコール、ポリグリセロール、脂肪酸と多価アルコールの部分エステル、脂肪酸とポリグリコール、ポリグリセロールの部分エステル系の滑剤や、シリコーンオイル、鉱油等が挙げられる。 Examples of the lubricant include pure hydrocarbon-based lubricants such as liquid paraffin, natural paraffin, microwax, synthetic paraffin, low molecular weight polyethylene, and polyethylene wax; halogenated hydrocarbon-based lubricants; fatty acid-based lubricants such as higher fatty acids and oxyfatty acids; Fatty acid amide-based lubricants such as fatty acid amide and bis fatty acid amide; ester-based lubricants such as lower alcohol ester of fatty acid, polyhydric alcohol ester of fatty acid such as glyceride, polyglycol ester of fatty acid, and fatty alcohol ester of fatty acid (ester wax); Examples thereof include metal soaps, fatty alcohols, polyhydric alcohols, polyglycols, polyglycerols, partial esters of fatty acids and polyhydric alcohols, fatty acids and polyglycols, partial ester-based lubricants of polyglycerols, silicone oils, mineral oils and the like.
 加工助剤としては、アクリル系加工助剤が挙げられ、アクリル系加工助剤は、(メタ)アクリル酸エステルの1種を重合または2種以上を共重合させたものが使用できる。重合または共重合する(メタ)アクリル酸エステルの例としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルメタクリレート、n-ヘキシルアクリレート、n-ヘキシルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、トリデシルメタクリレート等の(メタ)アクリル酸エステル等が挙げられる。また、上記以外にも、(メタ)アクリル酸、ヒドロキシ基を含有した(メタ)アクリル酸エステルも挙げられる。 Examples of the processing aid include acrylic processing aids, and as the acrylic processing aid, one type of (meth) acrylic acid ester may be polymerized or two or more types may be copolymerized. Examples of polymerized or copolymerized (meth) acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl acrylate, isobutyl. Examples thereof include (meth) acrylic acid esters such as acrylate, t-butyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate and tridecyl methacrylate. In addition to the above, (meth) acrylic acid and (meth) acrylic acid ester containing a hydroxy group can also be mentioned.
 可塑剤としては、例えばポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、エーテルエステル系可塑剤およびエポキシ系可塑剤等が挙げられる。 Examples of the plasticizer include polyester-based plasticizers, glycerin-based plasticizers, polyvalent carboxylic acid ester-based plasticizers, polyalkylene glycol-based plasticizers, ether ester-based plasticizers, epoxy-based plasticizers, and the like.
 強化材としては、例えば、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、アスベスト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維および硼素繊維等の無機繊維状強化材、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、亜麻、リネン、絹、マニラ麻、さとうきび、木材パルプ、紙屑、古紙およびウール等の有機繊維状強化材、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、セラミックビーズ、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、ケイ酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトおよび白土等の板状や粒状の強化材が挙げられる。これらの強化材は、エチレン/酢酸ビニル共重合体等の熱可塑性樹脂や、エポキシ樹脂等の熱硬化性樹脂で被覆または集束処理されていてもよく、アミノシランやエポキシシラン等のカップリング剤等で処理されていても良い。 Examples of the reinforcing material include glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wallastenite, sepiolite, asbestos, and slag fiber. Inorganic fibrous reinforcing materials such as zonolite, elestadite, gypsum fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, acetate. Organic fibrous reinforcements such as fiber, kenaf, ramie, cotton, jute, hemp, sisal, flax, linen, silk, Manila hemp, sugar cane, wood pulp, paper scraps, waste paper and wool, glass flakes, non-swelling mica, graphite, Metal foil, ceramic beads, clay, mica, cericite, zeolite, bentonite, dolomite, kaolin, fine powder silicic acid, pebbles, potassium titanate, silas balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide, aluminum oxide, Examples thereof include plate-like or granular reinforcing materials such as titanium oxide, aluminum silicate, silicon oxide, gypsum, novacurite, dosonite and white clay. These reinforcing materials may be coated or focused with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, and may be coated or focused with a coupling agent such as aminosilane or epoxysilane. It may have been processed.
 本発明の帯電防止性樹脂組成物には、さらにその他の添加剤として、本発明の効果を損なわない範囲で、必要に応じて、通常合成樹脂に使用される添加剤、例えば、架橋剤、防曇剤、プレートアウト防止剤、表面処理剤、蛍光剤、防黴剤、殺菌剤、金属不活性剤、離型剤等を、本発明の効果を損なわない範囲で配合することができる。 In the antistatic resin composition of the present invention, as other additives, as long as the effects of the present invention are not impaired, if necessary, additives usually used for synthetic resins, such as a cross-linking agent and a fungicide, are used. Antifogging agents, antistatic agents, surface treatment agents, fluorescent agents, fungicides, fungicides, metal deactivators, mold release agents and the like can be blended within a range that does not impair the effects of the present invention.
 本発明の帯電防止性樹脂組成物に配合される添加剤は、合成樹脂に直接添加してもよく、本発明の帯電防止剤である高分子化合物(C)または帯電防止剤組成物に配合してから、合成樹脂に添加してもよい。 The additive contained in the antistatic resin composition of the present invention may be added directly to the synthetic resin, or may be added to the polymer compound (C) or the antistatic agent composition which is the antistatic agent of the present invention. Then, it may be added to the synthetic resin.
 次に本発明の成形品について説明する。
 本発明の成形体は、本発明の帯電防止性樹脂組成物から得られるものである。本発明の帯電防止性樹脂組成物を成形することにより、帯電防止性を有する樹脂成形体を得ることができる。成形方法としては、特に限定されるものではなく、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形品が製造できる。
Next, the molded product of the present invention will be described.
The molded product of the present invention is obtained from the antistatic resin composition of the present invention. By molding the antistatic resin composition of the present invention, a resin molded product having antistatic properties can be obtained. The molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotary molding, and the like, and include resin plates, sheets, films, bottles, fibers, and deformed products. It is possible to manufacture molded products having various shapes such as.
 本発明の帯電防止性樹脂組成物により得られる成形体は、帯電防止性能およびその持続性に優れるものである。 The molded product obtained by the antistatic resin composition of the present invention is excellent in antistatic performance and its durability.
 本発明の帯電防止性樹脂組成物およびこれを用いた成形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用できる。 The antistatic resin composition of the present invention and a molded product using the same can be used for electricity / electronics / communication, agriculture, forestry and fisheries, mining, construction, food, textiles, clothing, medical care, coal, petroleum, rubber, leather, automobiles, precision. It can be used in a wide range of industrial fields such as equipment, wood, building materials, civil engineering, furniture, printing, and musical instruments.
 より具体的には、本発明の樹脂組成物およびその成形体は、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器、自動車用内外装材、製版用フィルム、粘着フィルム、ボトル、食品用容器、食品包装用フィルム、製薬・医薬用ラップフィルム、製品包装フィルム、農業用フィルム、農業用シート、温室用フィルム等の用途に用いられる。 More specifically, the resin composition of the present invention and a molded product thereof include a printer, a personal computer, a word processor, a keyboard, a PDA (small information terminal), a telephone, a copier, a facsimile, an ECR (electronic money registration machine), and the like. Office work such as calculators, electronic notebooks, cards, holders, stationery, OA equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, household appliances such as kotatsu, TVs, VTRs, video cameras, radio cassette recorders. , Tape recorders, mini discs, CD players, speakers, AV equipment such as liquid crystal displays, connectors, relays, capacitors, switches, printed boards, coil bobbins, semiconductor encapsulation materials, LED encapsulation materials, electric wires, cables, transformers, deflection yokes. , Distribution boards, electrical and electronic parts such as watches and communication equipment, interior and exterior materials for automobiles, plate making films, adhesive films, bottles, food containers, food packaging films, pharmaceutical / pharmaceutical wrap films, product packaging films , Agricultural film, agricultural sheet, greenhouse film, etc.
 さらに、本発明の樹脂組成物およびその成形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の自動車、車両、船舶、航空機、建物、住宅および建築用材料や土木材料、衣料、カーテン、シーツ、不織布、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品等の各種用途に使用することができる。 Further, the resin composition of the present invention and a molded product thereof are used for seats (filling, outer material, etc.), belts, ceiling coverings, compatible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers, mattress covers. , Airbags, Insulations, Hanging Hands, Hanging Bands, Wire Coatings, Electrical Insulations, Paints, Coatings, Upholstery, Flooring, Corner Walls, Carpets, Wallpapers, Wall Covers, Exteriors, Interior Materials , Roofing materials, deck materials, wall materials, pillar materials, floor boards, wall materials, skeletons and plywood, window and door shapes, moss boards, siding, terraces, balconies, soundproof boards, heat insulating boards, window materials, etc. Automobiles, vehicles, ships, aircraft, buildings, housing and building materials and civil engineering materials, clothing, curtains, sheets, non-woven fabrics, plywood, synthetic fiber boards, rugs, entrance mats, sheets, buckets, hoses, containers, glasses, bags, cases , Goggles, ski boards, rackets, tents, daily necessities such as musical instruments, sporting goods, etc.
 以下、本発明を、実施例を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 下記の製造例に従い、本発明の帯電防止剤である高分子化合物(C)を製造した。また、下記の製造例において、化合物(b)の数平均分子量は、下記<水酸基価からの数平均分子量の算出方法>で算出し、化合物(b)以外の数平均分子量は、下記<ポリスチレン換算による数平均分子量の測定方法>で算出した。 The polymer compound (C), which is the antistatic agent of the present invention, was produced according to the following production example. Further, in the following production example, the number average molecular weight of the compound (b) is calculated by the following <method for calculating the number average molecular weight from the hydroxyl value>, and the number average molecular weights other than the compound (b) are calculated by the following <polystyrene conversion]. It was calculated by the method for measuring the number average molecular weight according to>.
<水酸基価からの数平均分子量の算出方法>
 下記水酸基価測定方法で水酸基価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 数平均分子量=(56110×2)/水酸基価
<水酸基価測定法>
・試薬A(アセチル化剤)
 (1)トリエチルホスフェート 1560mL
 (2)無水酢酸 193mL
 (3)過塩素酸(60%) 16g
 上記試薬を(1)→(2)→(3)の順に混合する。
・試薬B
 ピリジンと純水を体積比率で3:1に混合する。
・試薬C
 500mLのイソプロピルアルコールにフェノールフタレイン液を2~3滴加え、1N-KOH水溶液で中性にする。
<Calculation method of number average molecular weight from hydroxyl value>
The hydroxyl value was measured by the following method for measuring the hydroxyl value, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
Number average molecular weight = (56110 × 2) / hydroxyl value <hydroxyl value measurement method>
・ Reagent A (acetylating agent)
(1) Triethyl phosphate 1560 mL
(2) Acetic anhydride 193 mL
(3) Perchloric acid (60%) 16g
The above reagents are mixed in the order of (1) → (2) → (3).
・ Reagent B
Pyridine and pure water are mixed in a volume ratio of 3: 1.
・ Reagent C
Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol and neutralize with 1N-KOH aqueous solution.
 まず、200mL三角フラスコにサンプルを2g量りとり、トリエチルホスフェート10mLを加え、加熱溶解させる。試薬A15mLを加え、共栓をして激しく振盪する。試薬B20mLを加え、共栓をして激しく振盪する。試薬C50mLを加える。1N-KOH水溶液で滴定し、下式で計算する。
 水酸基価[mgKOH/g]=56.11×f×(T-B)/S
 f:1N-KOH水溶液のfactor
 B:空試験滴定量[mL]
 T:本試験滴定量[mL]
 S:サンプル量[g]
First, weigh 2 g of a sample into a 200 mL Erlenmeyer flask, add 10 mL of triethyl phosphate, and dissolve by heating. Add 15 mL of Reagent A, plug and shake vigorously. Add 20 mL of Reagent B, plug and shake vigorously. Add 50 mL of Reagent C. Titrate with 1N-KOH aqueous solution and calculate by the following formula.
Hydroxy group value [mgKOH / g] = 56.11 × f × (TB) / S
f: Factor of 1N-KOH aqueous solution
B: Blank test titration [mL]
T: Quantitative test titration [mL]
S: Sample amount [g]
<ポリスチレン換算による数平均分子量の測定方法>
 数平均分子量(以下、「Mn」とも称する)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定した。Mnの測定条件は以下の通りである。
装置     :日本分光(株)製GPC装置
溶媒     :クロロホルム
基準物質   :ポリスチレン
検出器    :UV検出器
カラム固定相 :昭和電工(株)製Shodex LF-804
カラム温度  :40℃
サンプル濃度 :1mg/1mL
流量     :0.5mL/min.
注入量    :30μL
<Measurement method of number average molecular weight by polystyrene conversion>
The number average molecular weight (hereinafter, also referred to as “Mn”) was measured by a gel permeation chromatography (GPC) method. The measurement conditions for Mn are as follows.
Equipment: GPC equipment manufactured by JASCO Corporation Solvent: Chloroform reference material: Polystyrene detector: UV detector Column stationary phase: Showa Denko Corporation Shodex LF-804
Column temperature: 40 ° C
Sample concentration: 1 mg / 1 mL
Flow rate: 0.5 mL / min.
Injection volume: 30 μL
〔製造例1〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを87g(0.96モル)、(a2)としてアジピン酸を33g(0.22モル)とテレフタル酸ジメチルを102g(0.52モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で6時間重合して、両末端が水酸基のポリエステル(A’)-1を得た。得られたポリエステル(A’)-1の数平均分子量は3300であった。
[Manufacturing Example 1]
In a separable flask, 87 g (0.96 mol) of 1,4-butanediol as (a1), 33 g (0.22 mol) of adipic acid and 102 g (0.52 mol) of dimethyl terephthalate as (a2). , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 6 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A')-1 having hydroxyl groups at both ends. The number average molecular weight of the obtained polyester (A')-1 was 3300.
 次に、得られたポリエステル(A’)-1を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、ラボプラストミルμ((株)東洋精機製作所製)を用いて230℃で押し出し、5mm角のペレット状にカッティングして、本発明の帯電防止剤である高分子化合物(C)-1(帯電防止剤(C)-1)のペレットを200g得た。得られたペレットの融点を下記<融点測定方法>で測定した。 Next, 160 g of the obtained polyester (A')-1 was used, 0.92 g (0.01 mol) of glycerin as the polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and the number average molecular weight of polyethylene glycol. 3300, 98 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and 10 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, it is extruded at 230 ° C. using Laboplastomill μ (manufactured by Toyo Seiki Seisakusho Co., Ltd.) and cut into 5 mm square pellets to prevent antistatic of the present invention. 200 g of pellets of the polymer compound (C) -1 (antistatic agent (C) -1) as an agent were obtained. The melting point of the obtained pellet was measured by the following <melting point measuring method>.
 また、得られたペレットの15g(ペレット個数約2000個)をサンプリングして、目視で良好形状(5mm角形状)のものと、それ以外の不良形状のペレットを確認し、良好形状のペレットの全体に対する割合(質量%)を算出し、<生産性(カッティング性)>を評価した。ペレットの不良形状には、ペレットの一部がカッティングしきれずに数ペレット繋がった状態のもの、ペレット表面がギザギザの状態のもの、ペレットにバリや割れが見られるものも含まれる。不良形状のペレットの割合が少ないほどカッティング性が良く、生産性が高いといえる。また、得られたペレットを、下記<帯電防止剤の保存安定性試験方法>で保存安定性を評価した。結果を表1に示す。 In addition, 15 g of the obtained pellets (about 2000 pellets) were sampled, and visually good-shaped (5 mm square) pellets and other defective-shaped pellets were confirmed, and the whole of the good-shaped pellets was confirmed. The ratio (mass%) to the amount was calculated, and <productivity (cutting property)> was evaluated. The defective shape of the pellets includes those in which a part of the pellets cannot be cut and several pellets are connected, those in which the pellet surface is in a jagged state, and those in which burrs and cracks are observed in the pellets. It can be said that the smaller the proportion of defectively shaped pellets, the better the cutting performance and the higher the productivity. In addition, the obtained pellets were evaluated for storage stability by the following <method for testing storage stability of antistatic agent>. The results are shown in Table 1.
<融点測定方法>
 示差走査熱量測定器(Perkin社製Diamond DSC)を用いて融点を測定した。すなわち、試料のペレットを細かく切断し、アルミニウムパンに3±1mg秤取り、50℃から250℃まで10℃/分で昇温し、250℃から-20℃まで10℃/分で降温し、その後250℃まで10℃/分で昇温した際の第二昇温時の融解ピークのピークトップを融点とする。
<Melting point measurement method>
The melting point was measured using a differential scanning calorimetry device (Diamond DSC manufactured by Perkin). That is, the pellet of the sample is cut into small pieces, 3 ± 1 mg is weighed in an aluminum pan, the temperature is raised from 50 ° C. to 250 ° C. at 10 ° C./min, the temperature is lowered from 250 ° C. to -20 ° C. at 10 ° C./min, and then. The melting point is defined as the peak top of the melting peak at the time of the second temperature rise when the temperature is raised to 250 ° C. at 10 ° C./min.
<帯電防止剤の保存安定性試験方法>
 容量130mLのガラス製のサンプル瓶に、ペレットを5g入れ、100℃のオーブン内に3時間静置した。3時間後、サンプル瓶を取り出したのち、蓋をし、静かにサンプル瓶を逆さまにして、帯電防止剤ペレットの落下状況からブロッキング性を評価した。
<Preservation stability test method for antistatic agents>
5 g of pellets was placed in a glass sample bottle having a capacity of 130 mL, and the mixture was allowed to stand in an oven at 100 ° C. for 3 hours. After 3 hours, the sample bottle was taken out, the lid was closed, the sample bottle was gently turned upside down, and the blocking property was evaluated from the falling state of the antistatic agent pellets.
〇:帯電防止剤ペレットが瓶の底に付着することなく、すべて落下した。保存安定性に優れると評価する。
△:帯電防止剤ペレットの一部が瓶の底に付着したままである。保存安定性が少し悪いと評価する。
×:帯電防止剤ペレットのすべてが瓶の底に付着して残ったままである。保存安定性が悪いと評価する。
〇: All antistatic agent pellets fell without adhering to the bottom of the bottle. It is evaluated as having excellent storage stability.
Δ: A part of the antistatic agent pellet remains attached to the bottom of the bottle. Evaluate that the storage stability is a little poor.
X: All of the antistatic agent pellets remain attached to the bottom of the bottle. Evaluate as poor storage stability.
〔製造例2〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを88g(0.98モル)、(a2)としてアジピン酸を62g(0.42モル)とテレフタル酸ジメチルを67g(0.35モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で6時間重合して、両末端が水酸基のポリエステル(A’)-2を得た。得られたポリエステル(A’)-2の数平均分子量は3100であった。
[Manufacturing Example 2]
In a separable flask, 88 g (0.98 mol) of 1,4-butanediol as (a1), 62 g (0.42 mol) of adipic acid as (a2) and 67 g (0.35 mol) of dimethyl terephthalate as (a2). , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 6 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A')-2 having hydroxyl groups at both ends. The number average molecular weight of the obtained polyester (A')-2 was 3100.
 次に、得られたポリエステル(A’)-2を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で16時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-2(帯電防止剤(C)-2)のペレットを200g得た。得られた高分子化合物(C)-2のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A')-2, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average molecular weight as polyethylene glycol. 3300, 98 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and 16 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, pellets of the polymer compound (C) -2 (antistatic agent (C) -2), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -2 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例3〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを88g(0.98モル)、(a2)としてアジピン酸を56g(0.38モル)とテレフタル酸ジメチルを74g(0.38モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で5時間重合して、両末端が水酸基のポリエステル(A’)-3を得た。得られたポリエステル(A’)-3の数平均分子量は2900であった。
[Manufacturing Example 3]
In a separable flask, 88 g (0.98 mol) of 1,4-butanediol as (a1), 56 g (0.38 mol) of adipic acid as (a2) and 74 g (0.38 mol) of dimethyl terephthalate as (a2). , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 5 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A')-3 having hydroxyl groups at both ends. The number average molecular weight of the obtained polyester (A')-3 was 2900.
 次に、得られたポリエステル(A’)-3を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で15時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-3(帯電防止剤(C)-3)のペレットを200g得た。得られた高分子化合物(C)-3のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A')-3, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average molecular weight as polyethylene glycol. 3300, 98 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and 15 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, pellets of the polymer compound (C) -3 (antistatic agent (C) -3), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -3 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例4〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを88g(0.97モル)、(a2)としてアジピン酸を50g(0.34モル)とテレフタル酸ジメチルを81g(0.42モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で7時間重合して、両末端が水酸基のポリエステル(A’)-4を得た。得られたポリエステル(A’)-4の数平均分子量は3000であった。
[Manufacturing Example 4]
88 g (0.97 mol) of 1,4-butanediol as (a1), 50 g (0.34 mol) of adipic acid and 81 g (0.42 mol) of dimethyl terephthalate as (a2) in a separable flask. , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 7 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A')-4 having hydroxyl groups at both ends. The number average molecular weight of the obtained polyester (A')-4 was 3000.
 次に、得られたポリエステル(A’)-4を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で12時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-4(帯電防止剤(C)-4)のペレットを200g得た。得られた高分子化合物(C)-4のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A') -4, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average molecular weight as polyethylene glycol. 3300, 98 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and 12 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, pellets of the polymer compound (C) -4 (antistatic agent (C) -4), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -4 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例5〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを87g(0.96モル)、(a2)としてアジピン酸を44g(0.30モル)とテレフタル酸ジメチルを88g(0.45モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で11時間重合して、両末端が水酸基のポリエステル(A’)-5を得た。得られたポリエステル(A’)-5の数平均分子量は3100であった。
[Manufacturing Example 5]
In a separable flask, 87 g (0.96 mol) of 1,4-butanediol as (a1), 44 g (0.30 mol) of adipic acid as (a2), and 88 g (0.45 mol) of dimethyl terephthalate as (a2). , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 11 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -5 having hydroxyl groups at both ends. The obtained polyester (A')-5 had a number average molecular weight of 3100.
 次に、得られたポリエステル(A’)-5を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で8時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-5(帯電防止剤(C)-5)のペレットを200g得た。得られた高分子化合物(C)-5のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A') -5, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 98 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.2 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 8 hours to polymerize, the polymer compound (C) -5 (antistatic agent (C) -5), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -5 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例6〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを86g(0.95モル)、(a2)としてアジピン酸を22g(0.15モル)とテレフタル酸ジメチルを115g(0.59モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で9時間重合して、両末端が水酸基のポリエステル(A’)-6を得た。得られたポリエステル(A’)-6の数平均分子量は3000であった。
[Manufacturing Example 6]
In a separable flask, 86 g (0.95 mol) of 1,4-butanediol as (a1), 22 g (0.15 mol) of adipic acid as (a2) and 115 g (0.59 mol) of dimethyl terephthalate as (a2). , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 9 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A')-6 having hydroxyl groups at both ends. The obtained polyester (A')-6 had a number average molecular weight of 3000.
 次に、得られたポリエステル(A’)-6を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で9時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-6(帯電防止剤(C)-6)のペレットを200g得た。得られた高分子化合物(C)-6のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A')-6, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 98 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.2 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 9 hours to polymerize, the polymer compound (C) -6 (antistatic agent (C) -6), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -6 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例7〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを85g(0.94モル)、(a2)としてアジピン酸を11g(0.073モル)とテレフタル酸ジメチルを128g(0.66モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で8時間重合して、両末端が水酸基のポリエステル(A’)-7を得た。得られたポリエステル(A’)-7の数平均分子量は3000であった。
[Manufacturing Example 7]
In a separable flask, 85 g (0.94 mol) of 1,4-butanediol as (a1), 11 g (0.073 mol) of adipic acid as (a2) and 128 g (0.66 mol) of dimethyl terephthalate as (a2). , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.24 g, tetraisopropyl titanate 0 .27 g was charged and polymerized at normal pressure for 8 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -7 having hydroxyl groups at both ends. The obtained polyester (A')-7 had a number average molecular weight of 3000.
 次に、得られたポリエステル(A’)-7を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で9時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-7(帯電防止剤(C)-7)のペレットを200g得た。得られた高分子化合物(C)-7のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A') -7, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 98 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.2 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 9 hours to polymerize, the polymer compound (C) -7 (antistatic agent (C) -7), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -7 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例8〕
 セパラブルフラスコに、(a1)としてエチレングリコールを69g(1.11モル)、(a2)としてアジピン酸を38g(0.26モル)とテレフタル酸ジメチルを118g(0.61モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で4時間重合して、両末端が水酸基のポリエステル(A’)-8を得た。得られたポリエステル(A’)-8の数平均分子量は3000であった。
[Manufacturing Example 8]
In a separable flask, 69 g (1.11 mol) of ethylene glycol as (a1), 38 g (0.26 mol) of adipic acid and 118 g (0.61 mol) of dimethyl terephthalate as (a2), an antioxidant. (Tetrax [3- (3,5-ditertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) was charged in 0.24 g, and tetraisopropyl titanate was charged in 0.27 g. Polymerization was carried out at normal pressure for 4 hours while gradually raising the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -8 having hydroxyl groups at both ends. The obtained polyester (A')-8 had a number average molecular weight of 3000.
 次に、得られたポリエステル(A’)-8を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を100g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.3g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-8(帯電防止剤(C)-8)のペレットを200g得た。得られた高分子化合物(C)-8のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A') -8, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 100 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.3 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 10 hours to polymerize, the polymer compound (C) -8 (antistatic agent (C) -8), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -8 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例9〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを46g(0.51モル)とエチレングリコールを32g(0.51モル)、(a2)としてアジピン酸を35g(0.24モル)とテレフタル酸ジメチルを109g(0.56モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で5時間重合して、両末端が水酸基のポリエステル(A’)-9を得た。得られたポリエステル(A’)-9の数平均分子量は3300であった。
[Manufacturing Example 9]
In a separable flask, 46 g (0.51 mol) of 1,4-butanediol as (a1) and 32 g (0.51 mol) of ethylene glycol, and 35 g (0.24 mol) of adipic acid as (a2). 109 g (0.56 mol) of dimethyl terephthalate, antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation ) And 0.27 g of tetraisopropyl titanate were charged and polymerized at normal pressure for 5 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -9 having hydroxyl groups at both ends. It was. The obtained polyester (A')-9 had a number average molecular weight of 3300.
 次に、得られたポリエステル(A’)-9を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を99g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.3g仕込み、220℃で9時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-9(帯電防止剤(C)-9)のペレットを200g得た。得られた高分子化合物(C)-9のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A') -9, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 99 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.3 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 9 hours to polymerize, the polymer compound (C) -9 (antistatic agent (C) -9), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -9 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例10〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを71g(0.79モル)とエチレングリコールを12g(0.20モル)、(a2)としてアジピン酸を34g(0.23モル)とテレフタル酸ジメチルを105g(0.54モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.24g、テトライソプロピルチタネートを0.27g仕込み、25℃から195℃まで徐々に昇温しながら常圧で6時間重合して、両末端が水酸基のポリエステル(A’)-10を得た。得られたポリエステル(A’)-10の数平均分子量は3300であった。
[Manufacturing Example 10]
In a separable flask, 71 g (0.79 mol) of 1,4-butanediol as (a1) and 12 g (0.20 mol) of ethylene glycol, and 34 g (0.23 mol) of adipic acid as (a2). 105 g (0.54 mol) of dimethyl terephthalate, antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation ) And 0.27 g of tetraisopropyl titanate were charged and polymerized at normal pressure for 6 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -10 having hydroxyl groups at both ends. It was. The obtained polyester (A')-10 had a number average molecular weight of 3300.
 次に、得られたポリエステル(A’)-10を160g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.3g仕込み、220℃で11時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-10(帯電防止剤(C)-10)のペレットを200g得た。得られた高分子化合物(C)-10のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained polyester (A') -10, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 98 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.3 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 11 hours to polymerize, the polymer compound (C) -10 (antistatic agent (C) -10), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. 200 g of pellets were obtained. The melting point of the obtained pellet of the polymer compound (C) -10 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例11〕
 製造例1と同様にして得られたポリエステル(A’)-1の160gに、水酸基を3個以上有する多価アルコール化合物(a3)-2としてペンタエリスリトールを1.0g(0.0074モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で14時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-11(帯電防止剤(C)-11)のペレットを200g得た。得られた高分子化合物(C)-11のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。
[Manufacturing Example 11]
To 160 g of polyester (A')-1 obtained in the same manner as in Production Example 1, 1.0 g (0.0074 mol) of pentaerythritol as a polyhydric alcohol compound (a3) -2 having 3 or more hydroxyl groups was added. As polyethylene glycol, 98 g of polyethylene glycol (b) -1 having a number average molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and tetraisopropyl titanate were used. After charging 2 g and carrying out an ester exchange reaction at 220 ° C. for 14 hours under reduced pressure to polymerize, the polymer compound (C) -11 (antistatic agent (antistatic agent)) which is the antistatic agent of the present invention is carried out in the same manner as in Production Example 1. 200 g of pellets of C) -11) was obtained. The melting point of the obtained pellet of the polymer compound (C) -11 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例12〕
 製造例1と同様にして得られたポリエステル(A’)-1の160gに、水酸基を3個以上有する多価アルコール化合物(a3)-3としてトリメチロールプロパンを1.34g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-12のペレット(帯電防止剤(C)-12)を200g得た。得られた高分子化合物(C)-12のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。
[Manufacturing Example 12]
To 160 g of polyester (A')-1 obtained in the same manner as in Production Example 1, 1.34 g (0.01 mol) of trimethylolpropane as a polyhydric alcohol compound (a3) -3 having three or more hydroxyl groups. As polyethylene glycol, 98 g of polyethylene glycol (b) -1 having a number average molecular weight of 3300 and 75 repeating units of ethyleneoxy groups, 0.2 g of an antioxidant (Adecastab AO-60), and 1 tetraisopropyl titanate. After charging 2 g and carrying out an ester exchange reaction at 220 ° C. for 10 hours under reduced pressure to polymerize, pellets (charged) of the polymer compound (C) -12, which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 200 g of the inhibitor (C) -12) was obtained. The melting point of the obtained pellet of the polymer compound (C) -12 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例13〕
 製造例1と同様にして得られたポリエステル(A’)-1の160gに、水酸基を3個以上有する多価アルコール化合物(a3)-4としてジトリメチロールプロパンを1.9g(0.0074モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-13(帯電防止剤(C)-13)のペレットを200g得た。得られた高分子化合物(C)-13のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。
[Manufacturing Example 13]
To 160 g of polyester (A')-1 obtained in the same manner as in Production Example 1, 1.9 g (0.0074 mol) of ditrimethylolpropane as a polyhydric alcohol compound (a3) -4 having three or more hydroxyl groups was added. As polyethylene glycol, 98 g of polyethylene glycol (b) -1 having a number average molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1 tetraisopropyl titanate. After charging 2 g and carrying out an ester exchange reaction at 220 ° C. for 10 hours under reduced pressure to polymerize, the polymer compound (C) -13 (antistatic agent) which is the antistatic agent of the present invention is the same as in Production Example 1. 200 g of pellets of (C) -13) were obtained. The melting point of the obtained pellet of the polymer compound (C) -13 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例14〕
 製造例1と同様にして得られたポリエステル(A’)-1の160gに、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリンを0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量1000、エチレンオキシ基の繰り返し単位の数=22のポリエチレングリコール(b)-2を30g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で12時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-14(帯電防止剤(C)-14)のペレットを200g得た。得られた高分子化合物(C)-14のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。
[Manufacturing Example 14]
As a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups in 160 g of polyester (A') -1 obtained in the same manner as in Production Example 1, 0.92 g (0.01 mol) of glycerin was added. As polyethylene glycol, 30 g of polyethylene glycol (b) -2 having a number average molecular weight of 1000 and 22 repeating units of ethyleneoxy groups, 0.2 g of an antioxidant (Adecastab AO-60), and tetraisopropyl titanate were used. After charging 2 g and carrying out an ester exchange reaction at 220 ° C. for 12 hours under reduced pressure to polymerize, the polymer compound (C) -14 (antistatic agent (antistatic agent)) which is the antistatic agent of the present invention is carried out in the same manner as in Production Example 1. 200 g of pellets of C) -14) were obtained. The melting point of the obtained pellet of the polymer compound (C) -14 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例15〕
 製造例1と同様にして得られたポリエステル(A’)-1の160gに、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリンを0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量6000、エチレンオキシ基の繰り返し単位の数=136のポリエチレングリコール(b)-3を178g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で14時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-15(帯電防止剤(C)-15)のペレットを200g得た。得られた高分子化合物(C)-15のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。
[Manufacturing Example 15]
To 160 g of polyester (A') -1 obtained in the same manner as in Production Example 1, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, polyethylene. As glycol, 178 g of polyethylene glycol (b) -3 having a number average molecular weight of 6000 and the number of repeating units of ethyleneoxy groups = 136 g, 0.2 g of an antioxidant (Adecastab AO-60), and 1.2 g of tetraisopropyl titanate. After charging, the ester exchange reaction was carried out at 220 ° C. for 14 hours under reduced pressure to polymerize, and then the polymer compound (C) -15 (antistatic agent (C)), which is the antistatic agent of the present invention, was prepared in the same manner as in Production Example 1. ) -15) pellets were obtained in an amount of 200 g. The melting point of the obtained pellet of the polymer compound (C) -15 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例16〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを170g(1.9モル)、(a2)としてアジピン酸を56g(0.38モル)とテレフタル酸ジメチルを173g(0.89モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.84g、テトライソプロピルチタネートを0.95g仕込み、25℃から195℃まで徐々に昇温しながら常圧で3時間重合して、両末端が水酸基のポリエステル(A’)-11を得た。得られたポリエステル(A’)-11の数平均分子量は1000であった。
[Manufacturing Example 16]
170 g (1.9 mol) of 1,4-butanediol as (a1), 56 g (0.38 mol) of adipic acid and 173 g (0.89 mol) of dimethyl terephthalate as (a2) in a separable flask. , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.84 g, tetraisopropyl titanate 0 .95 g was charged and polymerized at normal pressure for 3 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A')-11 having hydroxyl groups at both ends. The number average molecular weight of the obtained polyester (A')-11 was 1000.
 次に、得られたポリエステル(A’)-11を100g、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリン1.9g(0.02モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を201g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.5g仕込み、220℃で15時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-16(帯電防止剤(C)-16)のペレットを250g得た。得られた高分子化合物(C)-16のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 100 g of the obtained polyester (A')-11, 1.9 g (0.02 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average molecular weight as polyethylene glycol. 3300, 201 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.5 g of tetraisopropyl titanate were charged, and 15 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, pellets of the polymer compound (C) -16 (antistatic agent (C) -16), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. Was obtained in an amount of 250 g. The melting point of the obtained pellet of the polymer compound (C) -16 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例17〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを124g(1.4モル)、(a2)としてアジピン酸を48g(0.33モル)とテレフタル酸ジメチルを150g(0.77モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.29g、テトライソプロピルチタネートを0.33g仕込み、25℃から195℃まで徐々に昇温しながら常圧で10時間重合して、両末端が水酸基のポリエステル(A’)-12を得た。得られたポリエステル(A’)-12の数平均分子量は6000であった。
[Manufacturing Example 17]
In a separable flask, 124 g (1.4 mol) of 1,4-butanediol as (a1), 48 g (0.33 mol) of adipic acid as (a2), and 150 g (0.77 mol) of dimethyl terephthalate. , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.29 g, tetraisopropyl titanate 0 .33 g was charged and polymerized at normal pressure for 10 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -12 having hydroxyl groups at both ends. The obtained polyester (A')-12 had a number average molecular weight of 6000.
 次に、得られたポリエステル(A’)-12を200g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.63g(0.0068モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を68g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.3g仕込み、220℃で14時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-17のペレット(帯電防止剤(C)-17)を230g得た。得られた高分子化合物(C)-17のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 200 g of the obtained polyester (A')-12, 0.63 g (0.0068 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 68 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.3 g of tetraisopropyl titanate were charged at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for 14 hours, pellets of the polymer compound (C) -17, which is the antistatic agent of the present invention, (antistatic agent (C) -17) were carried out in the same manner as in Production Example 1. ) Was obtained in an amount of 230 g. The melting point of the obtained pellet of the polymer compound (C) -17 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例18〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを107g(1.2モル)、(a2)としてアジピン酸を39g(0.27モル)とテレフタル酸ジメチルを121g(0.62モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.39g、テトライソプロピルチタネートを0.44g仕込み、25℃から195℃まで徐々に昇温しながら常圧で4時間重合して、両末端が水酸基のポリエステル(A’)-13を得た。得られたポリエステル(A’)-13の数平均分子量は2000であった。
[Manufacturing Example 18]
In a separable flask, 107 g (1.2 mol) of 1,4-butanediol as (a1), 39 g (0.27 mol) of adipic acid and 121 g (0.62 mol) of dimethyl terephthalate as (a2) , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.39 g, tetraisopropyl titanate 0 .44 g was charged and polymerized at normal pressure for 4 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -13 having hydroxyl groups at both ends. The number average molecular weight of the obtained polyester (A') -13 was 2000.
 次に、得られたポリエステル(A’)-13を130g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を148g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.4g仕込み、220℃で13時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-18のペレット(帯電防止剤(C)-18)を250g得た。得られた高分子化合物(C)-18のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 130 g of the obtained polyester (A') -13, 0.92 g (0.01 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average as polyethylene glycol. 148 g of polyethylene glycol (b) -1 having a molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, 0.2 g of an antioxidant (Adecastab AO-60), and 1.4 g of tetraisopropyl titanate were charged at 220 ° C. After the ester exchange reaction was carried out under reduced pressure for 13 hours to polymerize, pellets of the polymer compound (C) -18, which is the antistatic agent of the present invention, (antistatic agent (C) -18) were carried out in the same manner as in Production Example 1. ) Was obtained. The melting point of the obtained pellet of the polymer compound (C) -18 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例19〕
 セパラブルフラスコに、(a1)として1,4-ブタンジオールを129g(1.4モル)、(a2)としてアジピン酸を50g(0.34モル)とテレフタル酸ジメチルを156g(0.80モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.29g、テトライソプロピルチタネートを0.33g仕込み、25℃から195℃まで徐々に昇温しながら常圧で9時間重合して、両末端が水酸基のポリエステル(A’)-14を得た。得られたポリエステル(A’)-14の数平均分子量は5000であった。
[Manufacturing Example 19]
In a separable flask, 129 g (1.4 mol) of 1,4-butanediol as (a1), 50 g (0.34 mol) of adipic acid as (a2) and 156 g (0.80 mol) of dimethyl terephthalate. , Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.29 g, tetraisopropyl titanate 0 .33 g was charged and polymerized at normal pressure for 9 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain polyester (A') -14 having hydroxyl groups at both ends. The obtained polyester (A')-14 had a number average molecular weight of 5000.
 次に、得られたポリエステル(A’)-14を200g、水酸基を3個以上有する多価アルコール化合物(a3)-1としてグリセリン1.1g(0.012モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を61g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で8時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-19(帯電防止剤(C)-19)のペレットを220g得た。得られた高分子化合物(C)-19のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 200 g of the obtained polyester (A')-14, 1.1 g (0.012 mol) of glycerin as a polyhydric alcohol compound (a3) -1 having three or more hydroxyl groups, and a number average molecular weight as polyethylene glycol. 3300, 61 g of polyethylene glycol (b) -1 having 75 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and 8 at 220 ° C. After polymerizing by performing an ester exchange reaction under reduced pressure for a long time, pellets of the polymer compound (C) -19 (antistatic agent (C) -19), which is the antistatic agent of the present invention, are carried out in the same manner as in Production Example 1. 220 g was obtained. The melting point of the obtained pellet of the polymer compound (C) -19 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔製造例20〕
 得られたポリエステル(A’)-1を160g、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール(b)-1を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを0.24g仕込み、195℃で7.5時間、減圧下でエステル交換反応を行い重合し、ブロックポリマーを得た。
[Manufacturing Example 20]
160 g of the obtained polyester (A') -1 was used as polyethylene glycol, 98 g of polyethylene glycol (b) -1 having a number average molecular weight of 3300 and the number of repeating units of ethyleneoxy groups = 75, and an antioxidant (Adecastab AO-). 0.2 g of 60) and 0.24 g of tetraisopropyl titanate were charged, and a transesterification reaction was carried out at 195 ° C. for 7.5 hours under reduced pressure to carry out polymerization to obtain a block polymer.
 次に、得られたブロックポリマーを100g、水酸基を3個以上有する多価アルコール化合物(a3)-1として、グリセリン0.34g(0.0037モル)、テトライソプロピルチタネートを1.2g仕込み、220℃で3時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、本発明の帯電防止剤である高分子化合物(C)-20(帯電防止剤(C)-20)のペレットを80g得た。得られた高分子化合物(C)-20のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, as a polyhydric alcohol compound (a3) -1 having 100 g of the obtained block polymer and three or more hydroxyl groups, 0.34 g (0.0037 mol) of glycerin and 1.2 g of tetraisopropyl titanate were charged, and the temperature was 220 ° C. After the transesterification reaction was carried out under reduced pressure for 3 hours to polymerize, the polymer compound (C) -20 (antistatic agent (C) -20), which is the antistatic agent of the present invention, was obtained in the same manner as in Production Example 1. 80 g of pellets was obtained. The melting point of the obtained pellet of the polymer compound (C) -20 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔比較製造例1〕
 セパラブルフラスコに、1,4-ブタンジオール((a1)に該当)を184g(2.0モル)、アジピン酸を235g(1.6モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.48g仕込み、25℃から195℃まで徐々に昇温しながら常圧で3時間重合して、両末端が水酸基の比較ポリエステル-1を得た。得られた比較ポリエステル-1の数平均分子量は3300であった。
[Comparative Manufacturing Example 1]
In a separable flask, 184 g (2.0 mol) of 1,4-butanediol (corresponding to (a1)), 235 g (1.6 mol) of adipic acid, and an antioxidant (tetrakis [3- (3,5 mol)). -Ditertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.48 g, and the temperature was gradually raised from 25 ° C to 195 ° C for 3 hours at normal pressure. The polymerization gave a comparative polyester-1 having hydroxyl groups at both ends. The number average molecular weight of the obtained comparative polyester-1 was 3300.
 次に、得られた比較ポリエステル-1を160g、グリセリン((a3)に該当)を0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール((b)に該当)を97g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、比較高分子化合物(C’)-1(比較帯電防止剤(C’)-1)のペレットを200g得た。得られた比較高分子化合物(C’)-1のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained comparative polyester-1 was used, 0.92 g (0.01 mol) of glycerin (corresponding to (a3)), polyethylene glycol, a number average molecular weight of 3300, and the number of repeating units of ethyleneoxy groups = 97 g of 75 polyethylene glycol (corresponding to (b)), 0.2 g of antioxidant (Adecastab AO-60), 1.2 g of tetraisopropyl titanate were charged, and the transesterification reaction was carried out at 220 ° C. for 10 hours under reduced pressure. After polymerization, 200 g of pellets of the comparative polymer compound (C') -1 (comparative antistatic agent (C') -1) were obtained in the same manner as in Production Example 1. The melting point of the obtained pellet of the comparative polymer compound (C')-1 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔比較製造例2〕
 セパラブルフラスコに、1,4-ブタンジオール((a1)に該当)を118g(1.3モル)、テレフタル酸ジメチルを198g(1.0モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.34g、テトライソプロピルチタネートを0.38g仕込み、25℃から195℃まで徐々に昇温しながら常圧で4時間重合して、両末端が水酸基の比較ポリエステル-2を得た。得られた比較ポリエステル-2の数平均分子量は3000であった。
[Comparative Manufacturing Example 2]
In a separable flask, 118 g (1.3 mol) of 1,4-butanediol (corresponding to (a1)), 198 g (1.0 mol) of dimethyl terephthalate, and an antioxidant (tetrakis [3- (3, 3,)). 5-Ditertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) 0.34 g, tetraisopropyl titanate 0.38 g, gradually from 25 ° C to 195 ° C Polymerization was carried out at normal pressure for 4 hours while raising the temperature to obtain comparative polyester-2 having hydroxyl groups at both ends. The number average molecular weight of the obtained comparative polyester-2 was 3000.
 次に、得られた比較ポリエステル-2を160g、グリセリン((a3)に該当)0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール((b)に該当)を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、比較高分子化合物(C’)-2(比較帯電防止剤(C’)-2)のペレットを240g得た。得られた比較高分子化合物(C’)-2のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained comparative polyester-2, 0.92 g (0.01 mol) of glycerin (corresponding to (a3)), polyethylene glycol, a number average molecular weight of 3300, and the number of repeating units of ethyleneoxy groups = 75. 98 g of polyethylene glycol (corresponding to (b)), 0.2 g of antioxidant (Adecastab AO-60), and 1.2 g of tetraisopropyl titanate were charged, and a transesterification reaction was carried out at 220 ° C. for 10 hours under reduced pressure. After the polymerization, 240 g of pellets of the comparative polymer compound (C')-2 (comparative antistatic agent (C')-2) were obtained in the same manner as in Production Example 1. The melting point of the obtained pellet of the comparative polymer compound (C')-2 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔比較製造例3〕
 セパラブルフラスコに、1,4-ブタンジオール((a1)に該当)を161g(1.8モル)、セバシン酸を84g(0.42モル)とテレフタル酸ジメチルを189g(0.97モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.48g、テトライソプロピルチタネートを0.55g仕込み、25℃から195℃まで徐々に昇温しながら常圧で7時間重合して、両末端が水酸基の比較ポリエステル-3を得た。得られた比較ポリエステル-3の数平均分子量は3300であった。
[Comparative Manufacturing Example 3]
In a separable flask, 161 g (1.8 mol) of 1,4-butanediol (corresponding to (a1)), 84 g (0.42 mol) of sebacic acid and 189 g (0.97 mol) of dimethyl terephthalate, Antioxidant (tetrakis [3- (3,5-ditetrabutyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.48 g, tetraisopropyl titanate 0. 55 g was charged and polymerized at normal pressure for 7 hours while gradually increasing the temperature from 25 ° C. to 195 ° C. to obtain Comparative Polyester-3 having hydroxyl groups at both ends. The number average molecular weight of the obtained comparative polyester-3 was 3300.
 次に、得られた比較ポリエステル-3を160g、グリセリン((a3)に該当)を0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール((b)に該当)を99g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.3g仕込み、220℃で10時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、比較高分子化合物(C’)-3(比較帯電防止剤(C’)-3)のペレットを200g得た。得られた比較高分子化合物(C’)-3のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。 Next, 160 g of the obtained comparative polyester-3, 0.92 g (0.01 mol) of glycerin (corresponding to (a3)), polyethylene glycol, a number average molecular weight of 3300, and the number of repeating units of ethyleneoxy groups = 99 g of 75 polyethylene glycol (corresponding to (b)), 0.2 g of antioxidant (Adecastab AO-60), 1.3 g of tetraisopropyl titanate were charged, and the transesterification reaction was carried out at 220 ° C. for 10 hours under reduced pressure. After polymerization, 200 g of pellets of the comparative polymer compound (C')-3 (comparative antistatic agent (C') -3) were obtained in the same manner as in Production Example 1. The melting point of the obtained pellet of the comparative polymer compound (C')-3 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
〔比較製造例4〕
 セパラブルフラスコに、1,4-ブタンジオール((a1)に該当)を173g(1.9モル)、アジピン酸を66g(0.45モル)、オルトフタル酸ジメチルを204g(1.1モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.48g、テトライソプロピルチタネートを0.55g仕込み、25℃から195℃まで徐々に昇温しながら常圧で9時間重合して、両末端が水酸基の比較ポリエステル-4を得た。得られた比較ポリエステル-4の数平均分子量は3000であった。
[Comparative Manufacturing Example 4]
In a separable flask, 173 g (1.9 mol) of 1,4-butanediol (corresponding to (a1)), 66 g (0.45 mol) of adipic acid, 204 g (1.1 mol) of dimethyl orthophthalate, Antioxidant (tetrakis [3- (3,5-ditritiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) 0.48 g, tetraisopropyl titanate 0. 55 g was charged and polymerized at normal pressure for 9 hours while gradually raising the temperature from 25 ° C. to 195 ° C. to obtain a comparative polyester-4 having hydroxyl groups at both ends. The number average molecular weight of the obtained comparative polyester-4 was 3000.
 次に、得られた比較ポリエステル-4を160g、グリセリン((a3)に該当)0.92g(0.01モル)、ポリエチレングリコールとして、数平均分子量3300、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコール((b)に該当)を98g、酸化防止剤(アデカスタブAO-60)を0.2g、テトライソプロピルチタネートを1.2g仕込み、220℃で15時間、減圧下でエステル交換反応を行い重合した後、製造例1と同様にして、比較高分子化合物(C’)-4(比較帯電防止剤(C’)-4)のペレットを200g得た。得られた比較高分子化合物(C’)-4のペレットを、製造例1と同様にして、融点を測定した。さらに、生産性(カッティング性)と、帯電防止剤の保存安定性を評価した。結果を表1に示す。
 
Next, 160 g of the obtained comparative polyester-4, 0.92 g (0.01 mol) of glycerin (corresponding to (a3)), polyethylene glycol, a number average molecular weight of 3300, and the number of repeating units of ethyleneoxy groups = 75. 98 g of polyethylene glycol (corresponding to (b)), 0.2 g of antioxidant (Adecastab AO-60), and 1.2 g of tetraisopropyl titanate were charged, and a transesterification reaction was carried out at 220 ° C. for 15 hours under reduced pressure. After the polymerization, 200 g of pellets of the comparative polymer compound (C') -4 (comparative antistatic agent (C') -4) were obtained in the same manner as in Production Example 1. The melting point of the obtained pellet of the comparative polymer compound (C') -4 was measured in the same manner as in Production Example 1. Furthermore, the productivity (cutting property) and the storage stability of the antistatic agent were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中、帯電防止剤(C)-1~(C)-20の後の、カッコ内の数値は、高分子化合物(C)の構成モノマー(a2)の、アジピン酸およびテレフタル酸の合計モル数に対するテレフタル酸(テレフタル酸ジメチル等の誘導体を含む)の割合(モル%)を示す。比較帯電防止剤(C’)-1~3についても、同様に、使用しているカルボン酸の合計中のテレフタル酸(テレフタル酸ジメチル等の誘導体を含む)の割合(モル%)を示す。比較帯電防止剤(C’)-4については、テレフタル酸ではなく、オルトフタル酸(オルトフタル酸ジメチル等の誘導体を含む)とアジピン酸の合計モル数に対するオルトフタル酸(オルトフタル酸ジメチル等の誘導体を含む)の割合(モル%)を示す。 In Table 1, the values in parentheses after the antistatic agents (C) -1 to (C) -20 are the total moles of adipic acid and terephthalic acid of the constituent monomer (a2) of the polymer compound (C). The ratio (mol%) of terephthalic acid (including derivatives such as dimethyl terephthalate) to the number is shown. Similarly, for the comparative antistatic agents (C') -1 to 3, the ratio (mol%) of terephthalic acid (including derivatives such as dimethyl terephthalate) in the total carboxylic acid used is shown. For the comparative antistatic agent (C')-4, not terephthalic acid, but orthophthalic acid (including derivatives such as dimethyl orthophthalate) and orthophthalic acid (including derivatives such as dimethyl orthophthalate) with respect to the total number of moles of adipic acid. The ratio (mol%) of is shown.
〔実施例1~53、比較例1~20〕
 下記の表2~11に記載した配合量(質量部)に基づいてブレンドした各樹脂組成物を用いて、下記に示す試験片作製条件に従い、試験片を得た。得られた試験片を用いて、下記に従い、表面抵抗率(SR値)の測定を行い、帯電防止性とその持続性の評価を行った。結果を表2~11に示す。
[Examples 1 to 53, Comparative Examples 1 to 20]
Using each resin composition blended based on the blending amounts (parts by mass) shown in Tables 2 to 11 below, test pieces were obtained according to the test piece preparation conditions shown below. Using the obtained test piece, the surface resistivity (SR value) was measured according to the following, and the antistatic property and its durability were evaluated. The results are shown in Tables 2-11.
<ブロックポリプロピレン樹脂組成物試験片作製条件>
 下記の表2~11中に示す配合量に基づいてブレンドしたブロックポリプロピレン樹脂組成物を、(株)池貝製2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度40℃の加工条件で成形し、試験片(100mm×100mm×3mm)を得た。
<Conditions for preparing block polypropylene resin composition test piece>
The block polypropylene resin composition blended based on the blending amounts shown in Tables 2 to 11 below was subjected to the conditions of 230 ° C. and 6 kg / hour using a twin-screw extruder manufactured by Ikegai Co., Ltd. (containing PCM30 and 60 mesh). Granulated with, and pellets were obtained. The obtained pellets are molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Resin Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 40 ° C., and a test piece (100 mm × 100 mm × 3 mm). Got
<ABS樹脂組成物試験片作製条件>
 下記の表2~11中に示す配合量に基づいてブレンドしたABS樹脂組成物を、(株)池貝製2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用い、樹脂温度230℃、金型温度50℃の加工条件で成形し、試験片(100mm×100mm×3mm)を得た。
<Conditions for preparing test piece of ABS resin composition>
The ABS resin composition blended based on the blending amounts shown in Tables 2 to 11 below was used in a twin-screw extruder manufactured by Ikegai Co., Ltd. (containing PCM30, 60 mesh) at 230 ° C. and 6 kg / hour. Granulation was performed to obtain pellets. The obtained pellets are molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Resin Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 50 ° C., and a test piece (100 mm × 100 mm × 3 mm). Got
<表面抵抗率(SR値)測定方法>
 得られた試験片を、成形加工後直ちに、温度25℃、湿度50%RHの条件下に保存し、成形加工の1日および30日保存後に、同雰囲気下で、アドバンテスト社製のR8340抵抗計を用いて、印加電圧500V、印加時間1分の条件で、表面抵抗率(Ω/□)を測定した。測定は5枚の試験片で1枚あたり5点について行い、その平均値を求めた。 
<Surface resistivity (SR value) measurement method>
Immediately after the molding process, the obtained test piece was stored under the conditions of a temperature of 25 ° C. and a humidity of 50% RH, and after 1 day and 30 days of the molding process, the R8340 resistor meter manufactured by Advantest Co., Ltd. The surface resistivity (Ω / □) was measured under the conditions of an applied voltage of 500 V and an applied time of 1 minute. The measurement was performed on 5 test pieces at 5 points per piece, and the average value was calculated.
Figure JPOXMLDOC01-appb-T000003
*1:NaDBSは、ドデシルベンゼンスルホン酸ナトリウムを表す。
*2:C2mimDBSは、1-エチル-3-メチルイミダゾリウムドデシルベンゼンスルホナートを表す。
*3:bPPは、インパクトコポリマー(メルトフローレート=14)を表す。
*4:ABSは、アクリロニトリル-ブタジエン-スチレン共重合合成樹脂(メルトフローレート=27)を表す。
Figure JPOXMLDOC01-appb-T000003
* 1: NaDBS represents sodium dodecylbenzenesulfonate.
* 2: C2mimDBS represents 1-ethyl-3-methylimidazolium dodecylbenzene sulfonate.
* 3: bPP represents an impact copolymer (melt flow rate = 14).
* 4: ABS represents an acrylonitrile-butadiene-styrene copolymer synthetic resin (melt flow rate = 27).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1~11中に示す結果から、本発明によれば、優れた帯電防止効果とその持続性を有し、保存安定性と生産性(カッティング性)に優れた帯電防止剤を得られることが明らかである。 From the results shown in Tables 1 to 11, according to the present invention, it is possible to obtain an antistatic agent having an excellent antistatic effect and its durability, and having excellent storage stability and productivity (cutting property). it is obvious.

Claims (9)

  1.  ポリエステルセグメント(A)とポリエーテルセグメント(B)とを有し、
     ポリエステルセグメント(A)が、
    (a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方、
    (a2)アジピン酸およびテレフタル酸、および、
    (a3)水酸基を3個以上有する多価アルコール化合物、から得られるポリエステルであり、
     (a2)アジピン酸およびテレフタル酸におけるテレフタル酸の割合が、アジピン酸およびテレフタル酸の合計モル数に対して、40モル%以上100モル%未満であり、
     ポリエーテルセグメント(B)が、(b)ポリエチレングリコールであり、
     ポリエステルセグメント(A)とポリエーテルセグメント(B)とがエステル結合を介して結合した構造を有する高分子化合物(C)の1種以上を含有することを特徴とする帯電防止剤。
    It has a polyester segment (A) and a polyether segment (B).
    The polyester segment (A) is
    (A1) At least one of 1,4-butanediol or ethylene glycol,
    (A2) Adipic acid and terephthalic acid, and
    (A3) A polyester obtained from a polyhydric alcohol compound having three or more hydroxyl groups.
    (A2) The ratio of terephthalic acid to adipic acid and terephthalic acid is 40 mol% or more and less than 100 mol% with respect to the total number of moles of adipic acid and terephthalic acid.
    The polyether segment (B) is (b) polyethylene glycol,
    An antistatic agent comprising one or more of a polymer compound (C) having a structure in which a polyester segment (A) and a polyether segment (B) are bonded via an ester bond.
  2.  高分子化合物(C)の、(a3)水酸基を3個以上有する多価アルコール化合物の割合が、(a1)1,4-ブタンジオールまたはエチレングリコールの少なくとも一方と、(a3)水酸基を3個以上有する多価アルコール化合物と、の合計モル数に対して、0.05~5モル%である請求項1記載の帯電防止剤。 The proportion of the polyhydric alcohol compound having 3 or more hydroxyl groups (a3) in the polymer compound (C) is at least one of (a1) 1,4-butanediol or ethylene glycol and 3 or more hydroxyl groups (a3). The antistatic agent according to claim 1, which is 0.05 to 5 mol% with respect to the total number of moles of the polyhydric alcohol compound.
  3.  高分子化合物(C)の、ポリエステルセグメント(A)と、ポリエーテルセグメント(B)と、の質量比(A)/(B)が、0.1~4.0である請求項1または2記載の帯電防止剤。 The first or second claim, wherein the mass ratio (A) / (B) of the polyester segment (A) and the polyether segment (B) of the polymer compound (C) is 0.1 to 4.0. Antistatic agent.
  4.  高分子化合物(C)が、100℃以上200℃以下の範囲内の融点を有する請求項1~3のうちいずれか一項記載の帯電防止剤。 The antistatic agent according to any one of claims 1 to 3, wherein the polymer compound (C) has a melting point in the range of 100 ° C. or higher and 200 ° C. or lower.
  5.  請求項1~4のうちいずれか一項記載の帯電防止剤に対し、さらに、アルカリ金属の塩およびイオン性液体からなる群から選択される1種以上が配合されていることを特徴とする帯電防止剤組成物。 The antistatic agent according to any one of claims 1 to 4, further comprising one or more selected from the group consisting of alkali metal salts and ionic liquids. Inhibitor composition.
  6.  合成樹脂に対し、請求項1~4のうちいずれか一項記載の帯電防止剤が配合されていることを特徴とする帯電防止性樹脂組成物。 An antistatic resin composition characterized in that the antistatic agent according to any one of claims 1 to 4 is blended with the synthetic resin.
  7.  合成樹脂に対し、請求項5記載の帯電防止剤組成物が配合されていることを特徴とする帯電防止性樹脂組成物。 An antistatic resin composition characterized in that the antistatic agent composition according to claim 5 is blended with a synthetic resin.
  8.  前記合成樹脂が、ポリオレフィン系樹脂またはポリスチレン系樹脂からなる群から選ばれる1種以上である請求項6または7記載の帯電防止性樹脂組成物。 The antistatic resin composition according to claim 6 or 7, wherein the synthetic resin is at least one selected from the group consisting of polyolefin-based resins or polystyrene-based resins.
  9.  請求項6~8のうちいずれか一項記載の帯電防止性樹脂組成物から得られることを特徴とする成形体。 A molded product obtained from the antistatic resin composition according to any one of claims 6 to 8.
PCT/JP2020/036310 2019-09-30 2020-09-25 Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body of said antistatic resin composition WO2021065727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179284 2019-09-30
JP2019-179284 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065727A1 true WO2021065727A1 (en) 2021-04-08

Family

ID=75338266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036310 WO2021065727A1 (en) 2019-09-30 2020-09-25 Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body of said antistatic resin composition

Country Status (2)

Country Link
TW (1) TW202118849A (en)
WO (1) WO2021065727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524922A (en) * 2022-03-02 2022-05-24 浙江海正生物材料股份有限公司 Antistatic modified polylactic acid and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034748A (en) * 2001-07-24 2003-02-07 Takemoto Oil & Fat Co Ltd Antistatic agent composition for thermoplastic resin and antistatic thermoplastic resin composition
JP2007515545A (en) * 2003-12-22 2007-06-14 イーストマン ケミカル カンパニー Polyester composition
WO2016117233A1 (en) * 2015-01-19 2016-07-28 株式会社Adeka Antistatic resin composition, and container and packaging material which use same
JP2017114927A (en) * 2015-12-21 2017-06-29 株式会社Adeka Antistatic resin composition
JP2017128680A (en) * 2016-01-21 2017-07-27 株式会社Adeka Antistatic thermoplastic resin composition and molded body formed by molding the same
JP2017128681A (en) * 2016-01-21 2017-07-27 株式会社Adeka Antistatic thermoplastic resin composition and molded body formed by molding the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034748A (en) * 2001-07-24 2003-02-07 Takemoto Oil & Fat Co Ltd Antistatic agent composition for thermoplastic resin and antistatic thermoplastic resin composition
JP2007515545A (en) * 2003-12-22 2007-06-14 イーストマン ケミカル カンパニー Polyester composition
WO2016117233A1 (en) * 2015-01-19 2016-07-28 株式会社Adeka Antistatic resin composition, and container and packaging material which use same
JP2017114927A (en) * 2015-12-21 2017-06-29 株式会社Adeka Antistatic resin composition
JP2017128680A (en) * 2016-01-21 2017-07-27 株式会社Adeka Antistatic thermoplastic resin composition and molded body formed by molding the same
JP2017128681A (en) * 2016-01-21 2017-07-27 株式会社Adeka Antistatic thermoplastic resin composition and molded body formed by molding the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524922A (en) * 2022-03-02 2022-05-24 浙江海正生物材料股份有限公司 Antistatic modified polylactic acid and preparation method thereof
CN114524922B (en) * 2022-03-02 2024-03-22 浙江海正生物材料股份有限公司 Antistatic modified polylactic acid and preparation method thereof

Also Published As

Publication number Publication date
TW202118849A (en) 2021-05-16

Similar Documents

Publication Publication Date Title
JP6649363B2 (en) Resin additive composition and antistatic thermoplastic resin composition
JP6377437B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
JP6309506B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
JP6453003B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
JP7339331B2 (en) Antistatic agent, antistatic agent composition containing the same, antistatic resin composition containing these, and molding thereof
WO2014115745A1 (en) Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body
JP6452993B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
WO2021065727A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body of said antistatic resin composition
WO2021065728A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said agent and said composition, and article molded therefrom
JP2022165548A (en) Anti-static agent, anti-static agent composition including the same, anti-static resin composition including those and molded body thereof
WO2019021944A1 (en) Polymer compound, composition including same, resin composition including these, and molded body thereof
JP2022021149A (en) Composition, synthetic resin composition containing the same, and its molded body
JP7497180B2 (en) Flowability improver, flowability improver composition containing same, thermoplastic resin composition containing same, and molded article thereof
JP6472669B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
JP7497179B2 (en) Impact modifier, impact modifier composition containing same, synthetic resin composition containing same, and molded article thereof
JP2023059110A (en) Antistatic agent, antistatic composition comprising the same, antistatic resin composition comprising the same, and molding thereof
JP2023045169A (en) Antistatic agent, antistatic composition comprising the same, antistatic resin composition containing them, and molding thereof
JP5543304B2 (en) Antistatic polyolefin resin composition and molded article using the same
WO2020203619A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof
JP2020164711A (en) Antistatic agent, antistatic agent composition containing the same, antistatic resin composition containing these, and molded body thereof
WO2020203618A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof
JP2022070756A (en) Composition, synthetic resin composition comprising the same and molded article thereof
JP2022089622A (en) Composition, synthetic resin composition containing the same, and molding thereof
WO2024048524A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body and film thereof
JP2021102683A (en) Antistatic resin composition, and electric/electronic apparatus cabinet including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP