WO2020203618A1 - Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof - Google Patents

Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof Download PDF

Info

Publication number
WO2020203618A1
WO2020203618A1 PCT/JP2020/013573 JP2020013573W WO2020203618A1 WO 2020203618 A1 WO2020203618 A1 WO 2020203618A1 JP 2020013573 W JP2020013573 W JP 2020013573W WO 2020203618 A1 WO2020203618 A1 WO 2020203618A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
antistatic agent
block
compound
antistatic
Prior art date
Application number
PCT/JP2020/013573
Other languages
French (fr)
Japanese (ja)
Inventor
景佑 清水
直樹 圓城
和清 野村
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2020203618A1 publication Critical patent/WO2020203618A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials

Definitions

  • the present invention relates to an antistatic agent, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing these (hereinafter, also simply referred to as “resin composition”), a molded product thereof, and a film thereof.
  • the present invention relates to an antistatic agent capable of continuously imparting an excellent antistatic effect to a resin, an antistatic agent composition containing the same, an antistatic resin composition containing these, a molded product and a film thereof.
  • thermoplastic resins are indispensable in modern times because they are not only lightweight and easy to process, but also have excellent properties such as the ability to design a base material according to the application. It is an important material. Further, since the thermoplastic resin has a property of being excellent in electrical insulation, it is frequently used for components of electric products and the like. However, since the thermoplastic resin has too high an insulating property, there is a problem that it is easily charged by friction or the like.
  • thermoplastic resin attracts dust and dirt around it, which causes a problem of spoiling the appearance of the resin molded product.
  • precision instruments such as computers may not be able to operate normally due to charging.
  • electric shock When an electric shock is generated from the resin to the human body, it not only causes discomfort to the human body, but also may induce an explosion accident in the presence of flammable gas or dust.
  • synthetic resin films used for packaging materials for electrical and electronic equipment and electrical and electronic parts the generation of static electricity due to charging causes electric shocks and fine dust, which causes damage to the parts and equipment, which is large. It becomes a problem.
  • the synthetic resin has been conventionally treated to prevent charging.
  • the most common antistatic treatment method is to add an antistatic agent to the synthetic resin.
  • antistatic agents include a coating type that is applied to the surface of a resin molded body and a kneading type that is added when the resin is processed and molded, but the coating type is inferior in sustainability.
  • a large amount of organic matter is applied to the surface, there is a problem that those touching the surface are contaminated.
  • Patent Documents 1 and 2 a polyether is used to impart antistatic properties to a polyolefin resin. Esteramides have been proposed. Further, Patent Document 3 proposes a block polymer having a structure in which a block of polyolefin and a block of hydrophilic polymer are repeatedly and alternately bonded. Further, Patent Document 4 proposes a polymer-type antistatic agent having a polyester block.
  • an object of the present invention is an antistatic agent capable of continuously imparting an excellent antistatic effect to a synthetic resin, an antistatic agent composition containing the antistatic agent, and an antistatic resin composition containing these. , The molded article and the film.
  • the present inventors have been able to impart excellent antistatic performance to the synthetic resin by the polymer compound having a predetermined structure, and further to the synthetic resin. It has been found that the transparency of the synthetic resin is not adversely affected because of its excellent compatibility. Based on such findings, the present inventors have further diligently studied and found that the above problems can be solved by using the present invention, and have completed the present invention.
  • the antistatic agent of the present invention has a polyester block (A) composed of a polyester (a) obtained by reacting a diol (a1) and a dicarboxylic acid (a2), and one or more ethyleneoxy groups.
  • a block (B) of a polyester composed of a compound (b) having a hydroxyl group at both ends and an epoxy compound (D) having two or more epoxy groups are bonded via an ester bond or an ether bond.
  • the number average molecular weight of the polyester (a) calculated by the acid value measurement method is 1,600 to 10,000, and the number average molecular weight of the compound (b) calculated by the hydroxyl value measurement method is 1. It is characterized in that it is 000 to 6,000.
  • the polymer compound (E) has the block (A) and the block (B), and has a hydroxyl group or a carboxyl group at the end of the polyester (a), and the above. Bonded via an ester bond or an ether bond formed by the reaction of the hydroxyl group at the end of compound (b) and the epoxy group of the epoxy compound (D) or the hydroxyl group formed by reacting the epoxy group. It is preferable that the polymer compound (E) has a structure in which the block (A) and the block (B) are repeatedly and alternately bonded via an ester bond to both ends.
  • the block polymer (C) having a group and the epoxy compound (D) have a structure in which they are bonded via an ester bond.
  • the block polymer (C) preferably has a number average molecular weight calculated by an acid value measurement method of 8,000 to 50,000.
  • the polyester (a) preferably has a structure having carboxyl groups at both ends.
  • the compound (b) is preferably polyethylene glycol.
  • the ratio of the block (B) to the total mass of the block (A) and the block (B) is in the range of 20 to 50% by mass. preferable.
  • the antistatic agent composition of the present invention is characterized in that the antistatic agent of the present invention is further blended with one or more selected from the group consisting of alkali metal salts and ionic liquids. Is.
  • the antistatic resin composition of the present invention is characterized in that the antistatic agent of the present invention is blended with a synthetic resin. Further, the other antistatic resin composition of the present invention is characterized in that the antistatic agent composition of the present invention is blended with the synthetic resin.
  • the synthetic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof.
  • the molded product of the present invention is characterized by comprising the antistatic resin composition of the present invention.
  • the molded product of the present invention is preferably a film, and preferably, the Haze value at a thickness of 50 ⁇ m is 0% or more and 40.0% or less.
  • an antistatic agent capable of continuously imparting an excellent antistatic effect to a synthetic resin, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing these, and the like thereof. Molds and films can be provided.
  • the film of the present invention has excellent antistatic properties, is less likely to generate static electricity, is less likely to cause surface contamination due to static electricity, and is less likely to lose its commercial value due to adhesion of dust, and is also excellent in transparency.
  • the antistatic agent of the present invention has a polyester block (A) composed of a polyester (a) obtained by reacting a diol (a1) and a dicarboxylic acid (a2), and both ends having one or more ethyleneoxy groups.
  • the ethyleneoxy group is a group represented by the following general formula (1).
  • the number average molecular weight calculated by the acid value measurement method of the polyester (a) is 1,600 to 10,000, and the antistatic property, its durability, and the transparency of the film are considered. Therefore, it is preferably 2,000 to 8,000, and more preferably 3,000 to 8,000.
  • the method for calculating the number average molecular weight of the antistatic agent of the present invention by the acid value measurement method is as follows.
  • one end or both ends of the polyester (a) are hydroxyl groups, treat the hydroxyl groups with maleic anhydride to form a carboxyl group, measure the acid value in the same manner, calculate the number average molecular weight, and then use it for treatment. It may be calculated by making a correction excluding the maleic anhydride.
  • the number average molecular weight of the compound (b) having one or more ethyleneoxy groups and having hydroxyl groups at both ends is 1,000 to 6,000 calculated by the hydroxyl value measurement method. From the viewpoint of antistatic property, its durability, and the transparency of the film, it is preferably 1,500 to 5,000, and more preferably 1,800 to 4,000.
  • the method for calculating the number average molecular weight of the antistatic agent of the present invention by the hydroxyl value measurement method is as follows.
  • ⁇ Calculation method of number average molecular weight by hydroxyl value measurement method> The hydroxyl value was measured by the following method for measuring the hydroxyl value, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
  • Number average molecular weight (56110 ⁇ 2) / hydroxyl value ⁇ method for measuring hydroxyl value> ⁇
  • Reagent A acetylating agent
  • Triethyl phosphate 1560 mL (2) Acetic anhydride 193 mL (3) Perchloric acid (60%) 16g
  • ⁇ Reagent B Pyridine and pure water are mixed in a volume ratio of 3: 1.
  • ⁇ Reagent C Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol and neutralize with 1N-KOH aqueous solution.
  • the polymer compound (E) has both a polyester block (A) composed of the polyester (a) and one or more ethyleneoxy groups from the viewpoint of antistatic property, its durability, and the transparency of the film.
  • the hydroxyl group formed by the reaction of the epoxy group is a hydroxyl group formed by the ring-opening reaction of the epoxy group of the epoxy compound (D) with the hydroxyl group or the carboxyl group.
  • the polyester block (A) and the polyether block (B) are repeatedly alternated via an ester bond in terms of antistatic property, its durability, and film transparency.
  • the block polymer (C) having a carboxyl group at both ends and the epoxy compound (D) having two or more epoxy groups are bonded to each other via an ester bond.
  • the ester bond here is an ester bond formed by the reaction of the carboxyl group of the block polymer (C) and the epoxy group of the epoxy compound (D), and further, an ester bond formed by the reaction of forming the ester bond. Examples thereof include an ester bond formed by reacting a hydroxyl group formed by opening a ring with a carboxyl group.
  • the antistatic agent may be bonded via any of these ester bonds, and the binding via the ester bond between the two is the antistatic property, its durability, and the transparency of the film. More preferable from the point of view.
  • Examples of the diol (a1) used in the polymer compound (E) include an aliphatic diol and an aromatic group-containing diol.
  • the diol may be a mixture of two or more kinds.
  • Examples of the aliphatic diol include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol.
  • 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,12-dodecanediol, and hydrogenated bisphenol A are used in terms of antistatic properties, their durability, and film transparency.
  • 1,4-cyclohexanedimethanol, 1,6-hexanediol and 1,12-dodecanediol are more preferable, and 1,4-cyclohexanedimethanol is even more preferable.
  • the aliphatic diol is preferably hydrophobic from the viewpoint of antistatic property, its durability, and transparency of the film, it is not preferable to use polyethylene glycol having hydrophilicity.
  • aromatic group-containing diol examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, and an ethylene oxide adduct of bisphenol A.
  • aromatic group-containing diol examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, and an ethylene oxide adduct of bisphenol A.
  • examples thereof include a propylene oxide adduct of bisphenol A, a polyhydroxyethyl adduct of a mononuclear divalent phenol compound such as 1,4-bis (2-hydroxyethoxy) benzene, resorcin, and pyrocatechol.
  • diols having an aromatic group ethylene oxide adduct of bisphenol A and 1,4-bis ( ⁇ -hydroxyethoxy) benzene are preferable.
  • the aromatic diol preferably has hydrophobicity from the viewpoint of antistatic property, its durability, and transparency of the film.
  • 1,4-cyclohexanedimethanol, 1,6-hexanediol, and 1,12-dodecanediol are preferable as the diol (a1) from the viewpoints of antistatic property, its durability, and film transparency.
  • examples of the dicarboxylic acid (a2) used in the polymer compound (E) include aliphatic dicarboxylic acids and aromatic dicarboxylic acids.
  • the dicarboxylic acid may be a mixture of two or more kinds.
  • the dicarboxylic acid (a2) used in the polymer compound (E) is a derivative of the dicarboxylic acid (for example, an acid anhydride, an ester such as an alkyl ester, an alkali metal salt, an acid halide, etc.). It may be.
  • the derivative include carboxylic acid anhydride, carboxylic acid ester (for example, carboxylic acid alkyl ester such as carboxylic acid methyl ester), carboxylic acid alkali metal salt (for example, carboxylic acid sodium salt), and carboxylic acid halide (for example, carboxylic acid). Chloride) and the like.
  • the aliphatic dicarboxylic acid preferably includes an aliphatic dicarboxylic acid having 2 to 20 carbon atoms, and examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid and 3-methylglutaric acid.
  • Ethylsuccinic acid isopropylmalonic acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid (1,10-decandicarboxylic acid), tridecanedioic acid, tetradecanedioic acid, hexadecanedi Acid, octadecanedioic acid, eikosandioic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid Examples thereof include acids, 1,4-cyclohexanedioacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediac
  • a dicarboxylic acid having 4 to 16 carbon atoms is preferable, and a dicarboxylic acid having 6 to 12 carbon atoms is more preferable, from the viewpoint of antistatic property, its durability, and transparency of the film.
  • the aromatic dicarboxylic acid preferably includes an aromatic dicarboxylic acid having 8 to 20 carbon atoms, and examples thereof include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid and ⁇ -phenylglutal. Acid, ⁇ -Phenyladiponic acid, ⁇ -phenyladipic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate and 3-sulfoisophthalic acid Examples include potassium.
  • terephthalic acid terephthalic acid, isophthalic acid, and phthalic acid (including phthalic anhydride) are preferable, and phthalic acid (including phthalic anhydride) is preferable from the viewpoint of antistatic property, its durability, and film transparency. ) Is more preferable.
  • phthalic acid including phthalic anhydride
  • the antistatic agent of the present invention as the dicarboxylic acid (a2), adipic acid, sebacic acid, and terephthalic acid are preferable from the viewpoints of antistatic property, its durability, and transparency of the film.
  • the block (B) of the polyether is composed of the compound (b) having one or more ethyleneoxy groups represented by the following general formula (1) and having hydroxyl groups at both ends.
  • a hydrophilic compound is preferable, and the ethyleneoxy group represented by the general formula (1) is used.
  • the possessed polyether is more preferable, polyethylene glycol is even more preferable from the viewpoint of antistatic property and its durability, and the transparency of the film, and polyethylene glycol represented by the following general formula (2) is particularly preferable.
  • m represents a number from 4 to 250.
  • m is preferably 20 to 200, more preferably 40 to 180, from the viewpoint of antistatic property, its durability, and transparency of the film.
  • Examples of the compound (b) include ethylene oxide and other alkylene oxides such as propylene oxide, 1,2-, 1,4-, 2,3-, in addition to polyethylene glycol obtained by addition reaction of ethylene oxide.
  • ethylene oxide and other alkylene oxides such as propylene oxide, 1,2-, 1,4-, 2,3-, in addition to polyethylene glycol obtained by addition reaction of ethylene oxide.
  • a polyether obtained by addition reaction with one or more kinds of 1,3-butylene oxide and the like can be mentioned, and this polyether may be either random or blocked.
  • a compound having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound ethylene oxide and other alkylene oxides, for example, propylene oxide, 1,2-, 1,4-,
  • examples thereof include compounds having a structure in which one or more kinds such as 2,3- or 1,3-butylene oxide are added. These may be either random addition or block addition.
  • Examples of the active hydrogen atom-containing compound include glycols, dihydric phenols, primary monoamines, secondary diamines and dicarboxylic acids.
  • glycol an aliphatic glycol having 2 to 20 carbon atoms, an alicyclic glycol having 5 to 12 carbon atoms, an aromatic glycol having 8 to 26 carbon atoms, and the like can be used.
  • Examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,3-.
  • Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane examples thereof include diols, 1,20-eicosane diols, diethylene glycols, triethylene glycols and thiodiethylene glycols.
  • Examples of the alicyclic glycol include 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1-methyl-3,4-cyclohexanediol. , 2-Hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1'-dihydroxy-1,1'-dicyclohexyl and the like.
  • aromatic glycol examples include dihydroxymethylbenzene, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, and 2-benzyl.
  • -1,3-Propanediol triphenylethylene glycol, tetraphenylethylene glycol, benzopinacol and the like can be mentioned.
  • phenol having 6 to 30 carbon atoms can be used, for example, catechol, resorcinol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, dihydroxydiphenyl thioether, binaphthol and alkyl (carbon atoms) thereof. Numbers 1 to 10) or halogen-substituted products can be mentioned.
  • Examples of the primary monoamine include aliphatic primary monoamines having 1 to 20 carbon atoms.
  • Examples of the secondary diamine include an aliphatic secondary diamine having 4 to 18 carbon atoms, a heterocyclic secondary diamine having 4 to 13 carbon atoms, an alicyclic secondary diamine having 6 to 14 carbon atoms, and a carbon atom number. 8 to 14 aromatic secondary diamines and secondary alkanol diamines having 3 to 22 carbon atoms can be used.
  • Examples of the aliphatic secondary diamine include N, N'-dimethylethylenediamine, N, N'-diethylethylenediamine, N, N'-dibutylethylenediamine, N, N'-dimethylpropylenediamine, N, N'-diethylpropylene.
  • N, N'-dibutylpropylenediamine N, N'-dimethyltetramethylenediamine, N, N'-diethyltetramethylenediamine, N, N'-dibutyltetramethylenediamine, N, N'-dimethylhexamethylenediamine , N, N'-diethylhexamethylenediamine, N, N'-dibutylhexamethylenediamine, N, N'-dimethyldecamethylenediamine, N, N'-diethyldecamethylenediamine and N, N'-dibutyldecamethylenediamine. And so on.
  • heterocyclic secondary diamine examples include piperazine and 1-aminopiperidine.
  • Examples of the alicyclic secondary diamine include N, N'-dimethyl-1,2-cyclobutanediamine, N, N'-diethyl-1,2-cyclobutanediamine, and N, N'-dibutyl-1,2-.
  • aromatic secondary diamine examples include N, N'-dimethyl-phenylenediamine, N, N'-dimethyl-xylylenediamine, N, N'-dimethyl-diphenylmethanediamine, and N, N'-dimethyl-diphenyletherdiamine. , N, N'-dimethyl-benzidine and N, N'-dimethyl-1,4-naphthalenediamine and the like.
  • Examples of the secondary alkanolamine include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, N-methyldipropanolamine and the like.
  • dicarboxylic acid a dicarboxylic acid having 2 to 20 carbon atoms can be used, and for example, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid and the like are used.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid, ⁇ -methylglutaric acid, ethylsuccinic acid, isopropylmalonic acid, adipic acid, pimelic acid, and suberic acid.
  • Examples include azelaic acid, suberic acid, undecandic acid, dodecandic acid, tridecandic acid, tetradecandic acid, hexadecandic acid, octadecandic acid and icosandic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutaric acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid and biphenyl-2. , 2'-Dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate, potassium 3-sulfoisophthalate and the like.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid.
  • Examples thereof include acids, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid and dicyclohexyl-4,4'-dicarboxylic acid.
  • active hydrogen atom-containing compounds can be used alone or in a mixture of two or more.
  • the epoxy compound (D) used in the antistatic agent of the present invention is not particularly limited as long as it has two or more epoxy groups, and is, for example, mononuclear polynuclear such as hydroquinone, resorcin, pyrocatechol, fluoroluxinol, etc.
  • Epoxy compounds with glycidylamino groups vinylcyclohe Xendiepoxide, dicyclopentadiene diepoxyside, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexanecarboxylate, bis (3, Epoxy compounds of cyclic olefin compounds such as 4-epoxy-6-methylcyclohexylmethyl) adipate; epoxidized conjugated diene polymers such as epoxidized polybutadiene and epoxidized styrene-butadiene copolymers, heterocyclic compounds such as triglycidyl isocyanurate.
  • epoxy soybean oil Epoxy soybean oil and the like.
  • these epoxy compounds are internally crosslinked with a prepolymer of terminal isocyanate, or polyvalent active hydrogen compounds (polyhydric phenol, polyamine, carbonyl group-containing compound, polyphosphate ester, etc.) are used to increase the molecular weight. It may be the one that has been used. Two or more kinds of such epoxy compounds (D) may be used.
  • the epoxy compound (D) contains bisphenol F diglycidyl ether, dicyclopentadiene dimethanol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and hexanediol diglycidyl from the viewpoints of antistatic property, its durability, and film transparency. Ether is preferred.
  • the epoxy equivalent of the epoxy compound (D) is preferably 70 to 2000, more preferably 100 to 1000, and particularly preferably 150 to 600, from the viewpoint of antistatic property, its durability, and transparency of the film.
  • the polyester (a) constituting the polyester block (A) according to the polymer compound (E) may be composed of a diol (a1) and a dicarboxylic acid (a2), and has antistatic properties and its durability, and a film. From the viewpoint of transparency, preferably, the residue of the diol (a1) excluding the hydroxyl group and the residue of the dicarboxylic acid (a2) excluding the carboxyl group have a structure in which they are bonded via an ester bond.
  • the polyester (a) preferably has a structure having carboxyl groups at both ends from the viewpoint of antistatic property, its durability, and transparency of the film. Further, the degree of polymerization of the polyester (a) is preferably in the range of 2 to 50 from the viewpoint of antistatic property, its durability, and transparency of the film.
  • the polyester (a) having a carboxyl group at both ends can be obtained by subjecting a diol (a1) and a dicarboxylic acid (a2) to an esterification reaction.
  • the dicarboxylic acid (a2) may be a derivative thereof (for example, an acid anhydride, an ester such as an alkyl ester, an alkali metal salt, an acid halide, etc.), and when the polyester (a) is obtained by using the derivative. Finally, both ends may be treated to form a carboxyl group, and the reaction may proceed as it is to obtain the next block polymer (C) having a structure having a carboxyl group at both ends.
  • a derivative thereof for example, an acid anhydride, an ester such as an alkyl ester, an alkali metal salt, an acid halide, etc.
  • reaction ratio of the dicarboxylic acid (a2) and the diol (a1) it is preferable to use an excess of the dicarboxylic acid (a2) so that both ends become carboxyl groups, and the molar ratio of the dicarboxylic acid (a1) is adjusted to the diol (a1). On the other hand, it is preferable to use an excess of 1 mol.
  • a catalyst that promotes the esterification reaction may be used for the esterification reaction, and conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
  • both ends may be treated as dicarboxylic acids after the reaction between them and diols, and the dicarboxylic acids may be used as they are.
  • the next reaction may proceed to obtain a block polymer (C) having a structure having a carboxyl group at both ends.
  • a suitable polyester (a) composed of a diol (a1) and a dicarboxylic acid (a2) and having a carboxyl group at both ends forms an ester bond by reacting with the compound (b) to form a structure of the block polymer (C).
  • the carboxyl groups at both ends may be protected, modified, or in the form of a precursor.
  • an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress the oxidation of the product during the reaction.
  • the compound (b) having one or more ethyleneoxy groups and having hydroxyl groups at both ends preferably reacts with the polyester (a) to form an ester bond or an ether bond, preferably an ester bond, and the block polymer (C).
  • the hydroxyl groups at both ends may be protected, modified, or in the form of a precursor.
  • the block polymer (C) having a structure having a carboxyl group at both ends of the polymer compound (E) is a block (A) composed of polyester (a) and a block (B) composed of compound (b). These blocks have a structure in which they are repeatedly and alternately bonded via an ester bond formed by a carboxyl group and a hydroxyl group.
  • a block polymer (C) for example, one having a structure represented by the following general formula (3) can be mentioned.
  • (A) represents a block composed of polyester (a) having a carboxyl group at both ends
  • (B) is composed of a compound (b) having hydroxyl groups at both ends.
  • t is the number of repetitions in a repeating unit, and preferably represents a number of 1 to 10 from the viewpoint of antistatic property, its durability, and transparency of the film. t is more preferably a number from 1 to 7, and most preferably a number from 1 to 5.
  • the block polymer (C) having a structure having a carboxyl group at both ends is obtained by subjecting a polyester (a) having a carboxyl group at both ends and a compound (b) having a hydroxyl group at both ends to undergo a polycondensation reaction.
  • the polyester (a) and the compound (b) have a structure equivalent to that having a structure in which the polyester (a) and the compound (b) are repeatedly and alternately bonded via an ester bond formed by a carboxyl group and a hydroxyl group. If so, it is not always necessary to synthesize the polyester (a) and the compound (b).
  • the reaction ratio of the polyester (a) to the compound (b) is a block polymer having carboxyl groups at both ends if the reaction ratio of the compound (b) is adjusted to be X + 1 mol with respect to X mol.
  • (C) can be preferably obtained.
  • the compound (b) may be added to the reaction system and reacted as it is without isolating the polyester (a).
  • a catalyst that promotes the esterification reaction may be used in the polycondensation reaction, and conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used. Further, an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress the oxidation of the product during the reaction.
  • the polymer compound (E) preferably has a block polymer (C) having a structure having carboxyl groups at both ends and two or more epoxy groups from the viewpoints of antistatic property, its durability, and transparency of the film. It has a structure in which the epoxy compound (D) having the above is bonded via an ester bond.
  • the ester bond is formed by an ester bond formed by the reaction of the carboxyl group at the end of the block polymer (C) and the epoxy group of the epoxy compound (D), and further by this reaction (reaction between the carboxyl group and the epoxy group). Any of the ester bonds formed by the reaction of the hydroxyl group and the carboxyl group may be used, and the presence of both ester bonds is preferable from the viewpoint of antistatic property and its durability, storage stability, and transparency of the film. ..
  • polymer compound (E) may further contain an ester bond formed by the carboxyl group of the polyester (a) and the epoxy group of the epoxy compound (D).
  • the polymer compound (E) may contain an ester bond formed by the carboxyl group of the polyester (a) and the hydroxyl group formed by the reaction of the epoxy group of the epoxy compound.
  • the polymer compound (E) may further contain an ether bond formed by the hydroxyl group of the polyester (a) or the hydroxyl group of the compound (b) and the epoxy group of the epoxy compound (D). ..
  • the block polymer (C) and the epoxy compound (D) may be reacted. That is, the carboxyl group of the block polymer (C) may be reacted with the epoxy group of the epoxy compound (D). More preferably, the hydroxyl group formed from the reacted epoxy group may be reacted with the carboxyl group.
  • the number of epoxy groups in the epoxy compound (D) is preferably 0.5 to 5 equivalents, more preferably 0.5 to 1.5 equivalents, of the number of carboxyl groups in the block polymer (C) to be reacted. Further, the above reaction may be carried out in various solvents or in a molten state.
  • the epoxy compound (D) having two or more epoxy groups to be reacted is preferably 0.1 to 2.0 equivalents, preferably 0.2 to 1.5 equivalents, of the number of carboxyl groups of the block polymer (C) to be reacted. More preferred.
  • the epoxy compound (D) may be added to the reaction system and reacted as it is without isolating the block polymer (C).
  • the carboxyl group of the unreacted polyester (a) used excessively when synthesizing the block polymer (C) reacts with a part of the epoxy groups of the epoxy compound (D) to form an ester bond. You may.
  • the preferred polymer compound (E) is a block polymer (C) having a structure having a carboxyl group at both ends and an epoxy compound (D) having two or more epoxy groups, respectively. If it has a structure equivalent to that having a structure bonded via an ester bond formed by a carboxyl group and an epoxy group of the above, it is not always necessary to synthesize from the block polymer (C) and the epoxy compound (D). There is no.
  • the ester bond formed by the carboxyl group and the epoxy group referred to here also includes an ester bond formed by the carboxyl group and the hydroxyl group formed from the epoxy group by reacting with the carboxyl group.
  • the number average molecular weight of the block polymer (C) having a structure having a carboxyl group at both ends calculated by the acid value measurement method is antistatic property and its durability, and the transparency of the film. From the viewpoint of sex, it is preferably 8,000 to 50,000, and more preferably 9,000 to 40,000.
  • the method for calculating the number average molecular weight of the block polymer (C) by the acid value measurement method may be the same as the above-mentioned ⁇ Method for calculating the number average molecular weight by the acid value measurement method>.
  • the polymer compound (E) is a compound obtained by obtaining a polyester (a) from a diol (a1) and a dicarboxylic acid (a2) without isolating the polyester (a). It may react with (b) and / or the epoxy compound (D).
  • the polymer compound (E) is the sum of the polyester block (A) and the polyether block (B) in terms of antistatic property, its durability, and film transparency.
  • the proportion of the block (B) of the polyether is preferably in the range of 20 to 50% by mass, more preferably 24 to 45% by mass, and even more preferably 24 to 40% by mass.
  • the mass of the block (A) and the block (B) may be calculated from the mass of the polyester (a) and the compound (b).
  • the polymer compound (E) in the form of pellets from the viewpoint of handleability.
  • the polymer may be extruded from an extruder and cut into pellets.
  • a machine such as a pelletizer may be used for cutting.
  • the antistatic agent composition of the present invention is obtained by further blending the antistatic agent of the present invention with one or more selected from the group of alkali metal salts and ionic liquids.
  • the antistatic agent of the present invention further contains one or more selected from the group of alkali metal salts and ionic liquids to obtain an antistatic agent composition having excellent antistatic performance and durability thereof. preferable.
  • alkali metal salts include salts of organic acids or inorganic acids, and examples of alkali metals include lithium, sodium, potassium, cesium, rubidium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • An aliphatic dicarboxylic acid having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane.
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid
  • sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid
  • salts of lithium, sodium, and potassium are preferable, and sodium is more preferable, from the viewpoints of friction band voltage, surface resistivity, and safety to living organisms and the environment. Further, from the viewpoint of antistatic property and its durability, a salt of acetic acid, a salt of perchloric acid, a salt of p-toluenesulfonic acid and a salt of dodecylbenzenesulfonic acid are preferable, and a salt of dodecylbenzenesulfonic acid is more preferable. Two or more kinds of alkali metal salts may be used.
  • alkali metal salts include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfate, sodium sulfate, and perchlorine.
  • Examples include potassium.
  • lithium p-toluenesulfonate, sodium p-toluenesulfonate, lithium dodecylbenzenesulfonate, and dodecylbenzenesulfone are preferable from the viewpoints of antistatic property, their sustainability, and safety to living organisms and the environment.
  • the alkali metal salt may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention.
  • the amount of the alkali metal salt to be blended is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention from the viewpoint of antistatic property, its durability, and transparency of the film. 1 to 15 parts by mass is more preferable, and 3.0 to 12 parts by mass is most preferable.
  • ionic liquids have a melting point of 100 ° C. or lower, at least one of the cations or anions constituting the ionic liquid is an organic ion, and has an initial conductivity of 1 to 200 mS / cm, preferably 10 to 10 to.
  • Examples of the cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations.
  • examples of the amidinium cation include the following.
  • Imidazolinium cations examples thereof include those having 5 to 15 carbon atoms, for example, 1,2,3,4-tetramethylimidazolinium, 1,3-dimethylimidazolinium;
  • Imidazole cation examples thereof include those having 5 to 15 carbon atoms, for example, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium;
  • Tetrahydropyrimidinium cation examples thereof include those having 6 to 15 carbon atoms, for example, 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra. Methyl-1,4,5,6-tetrahydropyrimidinium;
  • Dihydropyrimidinium cation examples thereof include those having 6 to 20 carbon atoms, for example, 1,3-dimethyl-1,4-dihydropyrimidinium, 1,3-dimethyl-1,6-dihydropyrimidi. Nium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecagenium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decagenium.
  • Examples of the pyridinium cation include those having 6 to 20 carbon atoms, and examples thereof include 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
  • Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, and examples thereof include 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium.
  • guanidinium cations examples include the following.
  • Guanidinium cation having an imidazolinium skeleton examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium and 2-diethylamino-1,3. , 4-trimethylimidazolinium;
  • Guanidinium cation having an imidazolium skeleton examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolium and 2-diethylamino-1,3,4. -Trimethylimidazolium;
  • Guanidinium cation having a tetrahydropyrimidinium skeleton examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4,5,6-tetrahydro. Pyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4,5,6-tetrahydropyrimidinium;
  • Guanidinium cation having a dihydropyrimidinium skeleton examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4-dihydropyrimidinium.
  • cations may be used alone or in combination of two or more.
  • an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • examples of the organic acid or the inorganic acid constituting the anion include the following.
  • Organic acids include, for example, carboxylic acids, sulfuric acid esters, sulfonic acids and phosphoric acids; inorganic acids include, for example, super-strong acids (eg, borofluoric acid, boron tetrafluoroacid, perchloric acid, phosphorus hexafluoride). Acids, antimonic acid hexafluoride and arsenic hexafluoride), phosphoric acid and boric acid.
  • the organic acid and the inorganic acid may be used alone or in combination of two or more.
  • the ionic liquid is preferable from the viewpoint of antistatic property and its durability, and the transparency of the film, because the Hamettet acidity function (-H0) of the anion constituting the ionic liquid is 12 to 12 to A conjugate base of a superacid, an acid forming an anion other than the conjugate base of a superacid, and a mixture thereof, which is 100.
  • halogen eg, fluorine, chlorine and bromine
  • alkyl (1-12 carbon atoms alkyl (1-12 carbon atoms
  • benzenesulfonic acid eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid.
  • Examples of superacids include protonic acids and those derived from a combination of protonic acids and Lewis acids, and mixtures thereof.
  • borofluoric acid trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imide acid and bis (pentafluoroethylsulfonyl) imide acid are preferable from the viewpoint of ease of synthesis.
  • Protonic acids used in combination with Lewis acid include, for example, hydrogen halides (eg, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, trifluoromethane. Included are sulfonic acids, pentafluoroethane sulfonic acids, nonafluorobutane sulfonic acids, undecafluoropentane sulfonic acids, tridecafluorohexane sulfonic acids and mixtures thereof. Of these, hydrogen fluoride is preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • hydrogen fluoride is preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • Lewis acid examples include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof. Of these, boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • the combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid consisting of these combinations include tetrafluoroboric acid, hexafluorophosphate, tantalic hexafluoride, antimonic hexafluoride, and hexafluoride. Examples thereof include tantalum sulphonic acid, boron tetrafluoride acid, phosphoric acid hexafluoride, boron trifluoride chloride, arsenic hexafluoride and mixtures thereof.
  • a conjugated base of a super strong acid (a super strong acid composed of a protonic acid and a super strong acid composed of a combination of a protonic acid and a Lewis acid) is preferable from the viewpoint of antistatic property of an ionic liquid, and further preferable.
  • an ionic liquid having an amidinium cation is preferable, a ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and an ionic liquid having a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • the ionic liquid may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention.
  • the blending amount of the ionic liquid is preferably 0.01 to 20 parts by mass, preferably 0.1 to 100 parts by mass, based on 100 parts by mass of the antistatic agent of the present invention, from the viewpoint of antistatic property, its durability, and transparency of the film. To 15 parts by mass is more preferable, and 1 to 12 parts by mass is most preferable.
  • an alkali metal salt and an ionic liquid may be used in combination.
  • the antistatic agent of the present invention and one or more selected from the group of alkali metal salts and ionic liquids are further optionally added to any other option.
  • the components may be mixed, and various mixers can be used for mixing. It may be heated at the time of mixing. Examples of mixers that can be used include tumbler mixers, Henschel mixers, ribbon blenders, V-type mixers, W-type mixers, super mixers, Nauter mixers, and the like. Further, one or more selected from the group of alkali metal salts and ionic liquids may be added to the reaction system during the synthesis reaction of the polymer compound (E).
  • the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a salt of a Group 2 element as long as the effect of the present invention is not impaired.
  • the salt of the group 2 element include salts of organic acids or inorganic acids, and examples of the group 2 element include beryllium, magnesium, calcium, strontium, barium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • An aliphatic dicarboxylic acid having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane.
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid
  • sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid
  • the salt of the Group 2 element may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention.
  • the amount of the salt of the Group 2 element is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and 3.0 to 12 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention. Most preferably by mass.
  • the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a surfactant as long as the effects of the present invention are not impaired.
  • a surfactant a nonionic, anionic, cationic or amphoteric surfactant can be used.
  • the nonionic surfactant include polyethylene glycol-type nonionic surfactants such as higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, higher alkylamine ethylene oxide adduct, and polypropylene glycol ethylene oxide adduct; fatty acid ester of polyethylene oxide and glycerin.
  • carboxylates such as alkali metal salts of higher fatty acids
  • sulfate esters such as higher alcohol sulfates and higher alkyl ether sulfates, alkylbenzene sulfonates, alkyl sulfonates, paraffin sulfonates and the like.
  • Sulfates; Phosphates such as higher alcohol phosphates and the like can be mentioned, and examples of the cationic surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts.
  • examples of the amphoteric surfactant include amino acid-type amphoteric surfactants such as higher alkylaminopropionate, betaine-type amphoteric surfactants such as higher alkyldimethylbetaine and higher alkyldihydroxyethyl betaine, and these may be used alone or. Two or more types can be used in combination.
  • anionic surfactants are preferable, and sulfonates such as alkylbenzene sulfonates, alkyl sulfonates and paraffin sulfonates are particularly preferable.
  • the surfactant may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention.
  • the blending amount of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention. ..
  • the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a polymer type antistatic agent as long as the effects of the present invention are not impaired.
  • a polymer type antistatic agent such as a polyether ester amide
  • a known polyether ester amide for example, JP-A-7-10989
  • examples thereof include the polyether ester amide composed of the polyoxyalkylene adduct of bisphenol A described above.
  • a block polymer having a repeating structure in which the bonding unit between the polyolefin block and the hydrophilic polymer block is 2 to 50 can be used, and examples thereof include the block polymer described in US Pat. No. 6,552,131.
  • the polymer-type antistatic agent may be blended with the antistatic agent of the present invention, or may be blended with a synthetic resin together with the antistatic agent of the present invention.
  • the blending amount of the polymer-type antistatic agent is preferably 0 to 50 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention.
  • the antistatic agent of the present invention may be blended with a compatibilizer as long as the effects of the present invention are not impaired to prepare an antistatic agent composition having antistatic properties.
  • a compatibilizer By blending a compatibilizer, the compatibility between the antistatic agent of the present invention and other components or synthetic resins can be improved.
  • a compatibilizer include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group. Examples thereof include the polymer described in Japanese Patent Application Laid-Open No.
  • More preferable compatibilizers include acid anhydride-modified polyolefins such as maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, itaconic anhydride-modified polyethylene, and itaconic anhydride-modified polypropylene.
  • the compatibilizer may be blended with the antistatic agent of the present invention, or may be blended with the antistatic agent of the present invention and used.
  • the blending amount of the compatibilizer is preferably 0.1 to 15 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention.
  • the antistatic agent composition of the present invention may contain other components as arbitrary components in addition to the antistatic agent of the present invention and the above components as long as the effects of the present invention are not impaired. These other components may be directly blended in the composition, or the antistatic agent of the present invention or the antistatic agent composition of the present invention may be blended in a synthetic resin such as a thermoplastic resin to have antistatic properties. When used as a resin composition, it may be blended with a synthetic resin.
  • the antistatic agent and antistatic agent composition of the present invention can be blended with a synthetic resin, particularly preferably a thermoplastic resin, and used as an antistatic resin composition having antistatic properties.
  • the resin composition of the present invention is obtained by blending the antistatic agent of the present invention and the antistatic agent composition of the present invention with a synthetic resin.
  • a synthetic resin a thermoplastic resin is preferable.
  • thermoplastic resins include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, crosslinked polyethylene, ultrahigh-molecular-weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, and the like.
  • Copolymers of acrylic resins, styrene and / or ⁇ -methylstyrene with other monomers eg, maleic anhydride, phenylmaleimide, methyl methacrylate, butadiene, acrylonitrile, etc.
  • monomers eg, maleic anhydride, phenylmaleimide, methyl methacrylate, butadiene, acrylonitrile, etc.
  • AS resin eg.
  • ABS acrylonitrile, etc.
  • butadiene-styrene copolymer butadiene-styrene copolymer
  • ACS resin SBS resin
  • MBS resin heat-resistant ABS resin, etc.
  • Polymethylmethacrylate polyvinyl alcohol, polyvinylformal, polyvinylbutyral
  • Aromatic polyesters such as polyalkylene naphthalate such as polyalkylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and linear polyesters such as polytetramethylene terephthalate; polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succinate , Polylactic acid, polyappleic acid, polyglycolic acid, polydioxane, poly (2-oxetanone) and other degradable aliphatic polyesters; polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonate, polycarbonate / ABS resin , Branched polymer, polyacetal, polyphenylene sulfide, polyurethane, fibrous resin, polyimide Examples thereof include thermoplastic resins such as resins, polysulfones, polyphenylene ethers, polyetherketones, polyetheretherketones, and liquid crystal polymers, and blend
  • the thermoplastic resin includes isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, olefin elastomer, and styrene elastomer. It may be an elastomer such as a polyester-based elastomer, a nitrile-based elastomer, a nylon-based elastomer, a vinyl chloride-based elastomer, a polyamide-based elastomer, or a polyurethane-based elastomer. In the resin composition of the present invention, these thermoplastic resins may be used alone or in combination of two or more. Moreover, the thermoplastic resin may be alloyed.
  • thermoplastic resins have molecular weight, degree of polymerization, density, softening point, ratio of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and compounding ratio of monomer as raw material, type of polymerization catalyst. It can be used regardless of (for example, Ziegler catalyst, metallocene catalyst, etc.).
  • thermoplastic resins at least one selected from the group consisting of polyolefin-based resins, polystyrene-based resins and copolymers thereof is preferable from the viewpoint of antistatic properties.
  • the mass ratio of the synthetic resin to the antistatic agent of the present invention or the antistatic agent composition of the present invention in the resin composition of the present invention is preferably in the range of 99/1 to 40/60.
  • the antistatic agent of the present invention or the antistatic agent composition of the present invention is used for the polyolefin resin to form a film, it is preferable because it is excellent in antistatic property, its durability, and transparency of the film.
  • the polyolefin resin include polypropylene, high-density polyethylene, low-density polyethylene, straight-chain low-density polyethylene, crosslinked polyethylene, ultra-high molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene and the like.
  • polyolefin resins such as ⁇ -olefin polymer or ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-propylene copolymer, and copolymers thereof. These films are suitable for packaging materials for electric / electronic parts, electric / electronic products, precision parts, precision machinery, precision products, and the like.
  • the amount of the antistatic agent of the present invention to be blended with the synthetic resin is preferably 0.9 to 90 parts by mass with respect to 100 parts by mass of the synthetic resin from the viewpoint of antistatic property, its durability, and transparency of the film. .8 to 55 parts by mass is more preferable, and 4.5 to 45 parts by mass is even more preferable.
  • the amount of the antistatic agent composition of the present invention blended with respect to the synthetic resin is such that the antistatic agent composition is added to 100 parts by mass of the synthetic resin from the viewpoint of antistatic property, its durability, and transparency of the film. It is preferably 1.0 to 100 parts by mass, more preferably 2.0 to 60 parts by mass, and even more preferably 5.0 to 50 parts by mass.
  • the method of blending the antistatic agent of the present invention into the synthetic resin is not particularly limited, and any commonly used method can be used, for example, mixing by roll kneading, bumper kneading, extruder, kneader or the like. , Knead and mix.
  • the antistatic agent of the present invention may be added to the synthetic resin as it is, or may be added after impregnating the carrier, if necessary. In order to impregnate the carrier, the mixture may be heated and mixed as it is, or if necessary, the carrier may be impregnated after diluting with an organic solvent, and then the solvent may be removed.
  • a carrier those known as fillers and fillers of synthetic resins, flame retardants and light stabilizers that are solid at room temperature can be used, and for example, calcium silicate powder, silica powder, talc powder, and alumina powder can be used. , Titanium oxide powder, chemically modified surface of these carriers, solid ones among the flame retardant agents and antioxidants listed below.
  • these carriers those in which the surface of the carrier is chemically modified are preferable, and those in which the surface of the silica powder is chemically modified are more preferable.
  • These carriers preferably have an average particle size of 0.1 to 100 ⁇ m, and more preferably 0.5 to 50 ⁇ m.
  • the antistatic agent of the present invention is kneaded with the block polymer (C) and the epoxy compound (D) having two or more epoxy groups at the same time as the synthetic resin.
  • the polymer compound (E) as an agent may be synthesized and blended, and at that time, one or more selected from the group of an alkali metal salt and an ionic liquid may be kneaded at the same time, or may be injected.
  • the antistatic agent of the present invention and a synthetic resin may be mixed at the time of molding such as molding to obtain a molded product, and at that time, the epoxy is further selected from the group of alkali metal salts and ionic liquids.
  • Seeds or more may be blended, and a master batch of the antioxidant of the present invention and the synthetic resin may be manufactured in advance, and this master batch may be blended. At that time, alkali metal salts and ions may be blended. One or more selected from the group of sex liquids may be blended.
  • additives such as phenol-based antioxidants, phosphorus-based antioxidants, thioether-based antioxidants, ultraviolet absorbers, and hindered amine-based light stabilizers are further added to the resin composition of the present invention, if necessary. This allows the resin composition of the present invention to be stabilized.
  • antioxidants such as these antioxidants may be added to the antistatic agent composition of the present invention before being added to the synthetic resin. Further, it may be blended at the time of producing the polymer compound (E) which is the antistatic agent of the present invention.
  • the antioxidant is preferable because it can prevent oxidative deterioration of the polymer compound (E) during production by blending it at the time of producing the polymer compound (E).
  • phenolic antioxidant examples include 2,6-ditertiary butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, and distearyl (3,5-ditertiary butyl-4-4).
  • phosphorus-based antioxidants examples include trisnonylphenyl phosphite and tris [2-tertiary butyl-4- (3-third butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phos.
  • thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid) ester.
  • dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate
  • pentaerythritol tetra ( ⁇ -alkylthiopropionic acid) ester kind.
  • the amount of these thioether-based antioxidants added is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-Hydroxybenzophenones such as 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-ditertiary butylphenyl) -5-chlorobenzo Triazol, 2- (2'-hydroxy-3'-tertiary butyl-5'-methylphenyl) -5-chlorobenzotriazol, 2- (2'-hydroxy-5'-tertiary octyl) Phenyl) benzotriazol, 2- (2'-hydroxy-3', 5'-dicumylphenyl) benzotriazol, 2,2'-methylenebis (4-third octyl-6- (benzotriazolyl) phenol ), 2- (2'-Hydroxyphenyl) benzotriazoles such as 2- (2'-hydroxy-3'-tertiary butyl-5'-carboxyphenyl) benzotriazole; phenylsalicylate, resorcinol mono
  • hindered amine-based photostabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6. , 6-Tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane Tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, bis (2,2,6,6-tetramethyl-4) -Piperidil) bis (
  • a known neutralizing agent is added as necessary to further neutralize the residual catalyst in the polyolefin resin as long as the effects of the present invention are not impaired. It is preferable to do so.
  • the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearoamide), ethylene bis (12-hydroxystearoamide), and stearic acid amide. Compounds are mentioned, and these neutralizing agents may be mixed and used.
  • an aromatic carboxylic acid metal salt an alicyclic alkyl carboxylic acid metal salt, p-th, as long as the effects of the present invention are not impaired.
  • Organic flame retardant aids, fillers, pigments, lubricants, foaming agents and the like may be added.
  • triazine ring-containing compound examples include melamine, ammeline, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylene guanamine, norbornene diguanamine, methylene diguanamine, ethylene dimeramine, and trimethylene di.
  • examples thereof include melamine, tetramethylene dimelamine, hexamethylene dimelamine, and 1,3-hexylene melamine.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
  • Examples of the phosphoric acid ester flame retardant include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyldiphenyl phosphate, and triki.
  • Sirenyl phosphate octyldiphenyl phosphate, xylenyldiphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyldiphenyl phosphate, t-butylphenyldiphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) ) Phosphate, isopropylphenyldiphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate and the like.
  • condensed phosphate ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and the like.
  • Examples of (poly) phosphate-based flame retardants include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate.
  • inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talcite, and montmorillonite, and surface-treated products thereof.
  • inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talcite, and montmorillonite, and surface-treated products thereof.
  • TIPAQUE R-680 Titanium oxide: Ishihara Sangyo Co., Ltd.
  • Kyowa Mag 150 magnesium oxide: Kyowa Chemical Industry Co., Ltd.
  • DHT-4A hydrotalcite: Kyowa Chemical Industry Co., Ltd.
  • Alchemizer 4 zinc-modified hydro
  • Hydrotalcite Various commercially available products such as Kyowa Chemical Industry Co., Ltd. can be used.
  • pentaerythritol can be mentioned.
  • the resin composition of the present invention includes additives usually used for synthetic resins, such as a cross-linking agent, an antifogging agent, and a plate-out inhibitor, as needed, as long as the effects of the present invention are not impaired.
  • additives usually used for synthetic resins such as a cross-linking agent, an antifogging agent, and a plate-out inhibitor, as needed, as long as the effects of the present invention are not impaired.
  • the additive to be blended in the resin composition of the present invention may be added directly to the synthetic resin, and after being blended in the polymer compound (E) which is the antistatic agent of the present invention or the antistatic agent composition, It may be added to the synthetic resin.
  • a resin molded product having antistatic properties By molding the resin composition of the present invention, a resin molded product having antistatic properties can be obtained.
  • the molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotary molding, and the like, and include resin plates, sheets, films, bottles, fibers, and deformed products. It is possible to manufacture molded products having various shapes such as.
  • the molded product obtained by the resin composition of the present invention is excellent in antistatic performance and its durability.
  • the molded product obtained from the resin composition of the present invention is a molded product that does not easily generate static electricity and does not easily cause surface contamination due to static electricity or deterioration of commercial value due to adhesion of dust.
  • the film is particularly preferable because it is excellent in antistatic property, its durability, and the transparency of the film. These films are less likely to generate static electricity, are less likely to cause surface contamination due to static electricity, and are less likely to lose their commercial value due to adhesion of dust, and are also excellent in transparency. Therefore, it is suitable for packaging materials for electric / electronic parts, electric / electronic products, precision parts, precision equipment, and the like.
  • the film obtained by the resin composition of the present invention has excellent transparency.
  • the Haze value (cloudiness) at a thickness of 50 ⁇ m is preferably 0% or more and 40.0% or less, and more preferably 0% or more and 35.0% or less.
  • the Haze value can be measured in accordance with JIS K7136.
  • the resin composition of the present invention and a molded product using the same can be used for electricity / electronics / communication, agriculture, forestry and fisheries, mining, construction, food, textiles, clothing, medical care, coal, petroleum, rubber, leather, automobiles, precision equipment, and wood.
  • the resin composition of the present invention and a molded product thereof include a printer, a personal computer, a word processor, a keyboard, a PDA (small information terminal), a telephone, a copying machine, a facsimile, an ECR (electronic money registration machine), and the like.
  • Office work such as calculators, electronic notebooks, cards, holders, stationery, OA equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, home appliances such as kotatsu, TVs, VTRs, video cameras, radio cassettes , Tape recorder, mini disc, CD player, speaker, AV equipment such as liquid crystal display, connector, relay, condenser, switch, printed board, coil bobbin, semiconductor encapsulation material, LED encapsulation material, electric wire, cable, transformer, deflection yoke , Distribution boards, electrical and electronic parts such as watches and communication equipment, interior and exterior materials for automobiles, plate making films, adhesive films, bottles, food containers, food packaging films, pharmaceutical / pharmaceutical wrap films, product packaging films , Agricultural film, agricultural sheet, greenhouse film, packaging film for electrical and electronic parts, etc.
  • AV equipment such as liquid crystal display, connector, relay, condenser, switch, printed board, coil bobbin, semiconductor encapsulation material, LED encapsulation material, electric
  • the resin composition of the present invention and a molded product thereof are used for seats (filling, outer material, etc.), belts, ceiling coverings, compatible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers, mattress covers.
  • roofing materials deck materials, wall materials, pillar materials, floor boards, wall materials, skeletons and plywood, window and door shapes, moss boards, siding, terraces, balconies, soundproof boards, heat insulating boards, window materials, etc.
  • the polymer compound (E) was produced according to the following production example. Further, in the following production example, the number average molecular weights of the polyester (a) and the block polymer (C) are calculated by the following ⁇ method for calculating the number average molecular weight by the acid value measurement method>, and the number average molecular weight of the compound (b). was calculated by the following ⁇ method for calculating the number average molecular weight by the hydroxyl value measurement method>.
  • Bisphenol F diglycidyl ether (epoxy equivalent) was obtained as an epoxy compound (D) -1 having two or more epoxy groups in 220.0 g of the obtained block polymer (C) -1 having a structure having carboxyl groups at both ends. 170 g / eq) 0.87 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 205.5 g of the polymer compound (E) -1. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -1 was 26% by mass.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -3 was 33% by mass.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -4 was 38% by mass.
  • Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 150.0 g of the obtained block polymer (C) -5 having a structure having carboxyl groups at both ends.
  • 2.1 g of epoxy equivalent (215 g / eq) was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 139.8 g of the polymer compound (E) -5.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -5 was 25% by mass.
  • polyester (a) -5 165.3 g was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups.
  • 199.6 g of block polymer (C) -6 having a structure having a group was obtained.
  • the block polymer (C) -6 having a structure having a carboxyl group at both ends had an acid value of 3.3 and a number average molecular weight of 34,000.
  • Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 160.0 g of the obtained block polymer (C) -6 having a structure having carboxyl groups at both ends. 1.1 g of epoxy equivalent (215 g / eq) was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 143.8 g of the polymer compound (E) -6. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -6 was 29% by mass.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -7 was 18% by mass.
  • polyester (a) -7 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups.
  • 165.2 g of block polymer (C) -8 having a structure having a group was obtained.
  • the block polymer (C) -8 having a structure having a carboxyl group at both ends had an acid value of 5.8 and a number average molecular weight of 19,200.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -8 was 55% by mass.
  • polyester (a) -8 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups.
  • 184.2 g of block polymer (C) -9 having a structure having a group was obtained.
  • the block polymer (C) -9 having a structure having a carboxyl group at both ends had an acid value of 5.2 and a number average molecular weight of 21,700.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -9 was 30% by mass.
  • polyester (a) -9 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups.
  • 66.0 g of polyethylene glycol 75, 0.3 g of antioxidant (Adecastab AO-60), 0.3 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends.
  • 213.2 g of block polymer (C) -10 having a structure having a group was obtained.
  • the block polymer (C) -10 having a structure having a carboxyl group at both ends had an acid value of 8.5 and a number average molecular weight of 13,300.
  • Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -10 having a structure having carboxyl groups at both ends.
  • Epoxy equivalent 215 g / eq) 0.81 g was charged and polymerized at 220 ° C. for 6 hours under reduced pressure to obtain 84.0 g of the polymer compound (E) -10.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -10 was 25% by mass.
  • Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -11 having a structure having carboxyl groups at both ends.
  • Epoxy equivalent 215 g / eq) 0.53 g was charged and polymerized at 220 ° C. for 6 hours under reduced pressure to obtain 82.1 g of the polymer compound (E) -11.
  • the ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -11 was 30% by mass.
  • the ratio of the polyether block (B) to the total of the polyester block (A) and the polyether block (B) of the obtained comparative antistatic agent-1 was 60% by mass.
  • the ratio of the polyether block (B) to the total of the polyester block (A) and the polyether block (B) of the obtained comparative antistatic agent-2 was 12% by mass.
  • the ratio of the polyether block (B) to the total of the polyester block (A) and the polyether block (B) of the obtained comparative antistatic agent-3 was 25% by mass.
  • Examples 1 to 25, Comparative Examples 1 to 9 Using each resin composition blended based on the blending amounts (parts by mass) shown in Tables 1 to 7 below, a test film was obtained according to the test film preparation method shown below. Using the obtained test film, the surface resistivity (SR value) was measured according to the following measurement method, and the antistatic property and its durability were evaluated. Further, the Haze value was measured according to the following measurement method. The results are shown in the table.
  • SR value ⁇ Surface resistivity (SR value) measurement method>
  • the obtained test film is stored under the conditions of a temperature of 25 ° C. and a humidity of 50% RH, and after 1 day and 30 days of the molding process, under the same atmosphere, Mitsubishi Chemical Analytech Co., Ltd.
  • the surface resistivity ( ⁇ / ⁇ ) was measured under the conditions of an applied voltage of 100 V and an applied time of 1 minute using a high rester-UX high rester (MCP-HT800) resistor meter manufactured by Nittoseiko Analytical Co., Ltd. The measurement was performed on 5 test films at 5 points per film, and the average value was calculated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: an antistatic agent which can sustainably impart a superior antistatic effect to a synthetic resin; an antistatic agent composition containing the same; an antistatic resin composition containing the same; and a molded body and a film thereof. This antistatic agent contains at least one polymer compound (E) having a structure made by bonding, via an ester bond or an ether bond, a polyester block (A) composed of a polyester (a) obtained by reacting a diol (a1) and a dicarboxylic acid (a2), a polyester block (B) composed of a compound (b) having hydroxyl groups at both ends and having one or more ethyleneoxy groups, and an epoxy compound (D) having two or more epoxy groups, wherein the number average molecular weight calculated by an acid number measuring method is 1,600-10,000, and the number average molecular weight calculated by a hydroxyl value measuring method is 1,000-6,000.

Description

帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルムAntistatic agent, antistatic agent composition containing the same, antistatic resin composition containing these, molded article and film thereof.
 本発明は、帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物(以下、単に「樹脂組成物」とも称す)、その成形体およびフィルムに関し、詳しくは、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができる帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルムに関する。 The present invention relates to an antistatic agent, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing these (hereinafter, also simply referred to as “resin composition”), a molded product thereof, and a film thereof. The present invention relates to an antistatic agent capable of continuously imparting an excellent antistatic effect to a resin, an antistatic agent composition containing the same, an antistatic resin composition containing these, a molded product and a film thereof.
 熱可塑性樹脂等の合成樹脂は、軽量で加工が容易であるのみならず、用途に応じて基材を設計することができる等の優れた特性を有しているため、現代では欠かすことのできない重要な素材である。また、熱可塑性樹脂は電気絶縁性に優れるという特性を有するため、電気製品のコンポーネント等に頻繁に利用されている。しかしながら、熱可塑性樹脂はあまりにも絶縁性が高いため、摩擦等により帯電しやすいという問題がある。 Synthetic resins such as thermoplastic resins are indispensable in modern times because they are not only lightweight and easy to process, but also have excellent properties such as the ability to design a base material according to the application. It is an important material. Further, since the thermoplastic resin has a property of being excellent in electrical insulation, it is frequently used for components of electric products and the like. However, since the thermoplastic resin has too high an insulating property, there is a problem that it is easily charged by friction or the like.
 帯電した熱可塑性樹脂は周囲の埃や塵を引き付けるため、樹脂成形品の外観を損ねるという問題が生ずる。また、電子製品の中でも、例えば、コンピューター等の精密機器は、帯電により回路が正常に作動することができなくなる場合がある。さらに、電撃による問題も存在する。樹脂から人体に対して電撃が発生すると、人に不快感を与えるだけでなく、可燃性気体や粉塵のあるところでは、爆発事故を誘引する可能性もある。さらにまた、電気電子機器や電気電子部品の包装材等に使用される合成樹脂フィルムにおいても、帯電による静電気の発生は、電撃や微細な埃を引き付けることで、部品や機器の故障を引き起こし、大きな問題となる。 The charged thermoplastic resin attracts dust and dirt around it, which causes a problem of spoiling the appearance of the resin molded product. Further, among electronic products, for example, precision instruments such as computers may not be able to operate normally due to charging. In addition, there are problems with electric shock. When an electric shock is generated from the resin to the human body, it not only causes discomfort to the human body, but also may induce an explosion accident in the presence of flammable gas or dust. Furthermore, even in synthetic resin films used for packaging materials for electrical and electronic equipment and electrical and electronic parts, the generation of static electricity due to charging causes electric shocks and fine dust, which causes damage to the parts and equipment, which is large. It becomes a problem.
 このような問題を解消するために、従来から、合成樹脂に対して帯電を防止する処理がなされている。最も一般的な帯電防止処理方法は、合成樹脂に帯電防止剤を加える方法である。このような帯電防止剤には、樹脂成形体表面に塗布する塗布型のものと、樹脂を加工成形する際に添加する練り込み型のものとがあるが、塗布型のものは持続性に劣ることに加え、表面に大量の有機物が塗布されるために、その表面に触れたものが汚染されるという問題があった。 In order to solve such a problem, the synthetic resin has been conventionally treated to prevent charging. The most common antistatic treatment method is to add an antistatic agent to the synthetic resin. Such antistatic agents include a coating type that is applied to the surface of a resin molded body and a kneading type that is added when the resin is processed and molded, but the coating type is inferior in sustainability. In addition, since a large amount of organic matter is applied to the surface, there is a problem that those touching the surface are contaminated.
 かかる観点から、従来、主として合成樹脂に練り込んで使用する高分子型帯電防止剤が検討されており、例えば、特許文献1、2では、ポリオレフィン系樹脂への帯電防止性付与のためにポリエーテルエステルアミドが提案されている。また、特許文献3では、ポリオレフィンのブロックと親水性ポリマーのブロックとが、繰り返し交互に結合した構造を有するブロックポリマーが提案されている。さらに、特許文献4では、ポリエステルのブロックを有する高分子型帯電防止剤が提案されている。 From this point of view, conventional polymer-type antistatic agents that are mainly used by kneading them into synthetic resins have been studied. For example, in Patent Documents 1 and 2, a polyether is used to impart antistatic properties to a polyolefin resin. Esteramides have been proposed. Further, Patent Document 3 proposes a block polymer having a structure in which a block of polyolefin and a block of hydrophilic polymer are repeatedly and alternately bonded. Further, Patent Document 4 proposes a polymer-type antistatic agent having a polyester block.
特開昭58-118838号公報Japanese Unexamined Patent Publication No. 58-118838 特開平3-290464号公報JP-A-3-290464 特開2001-278985号公報Japanese Unexamined Patent Publication No. 2001-278985 特開2016-23254号公報Japanese Unexamined Patent Publication No. 2016-23254
 しかしながら、これら従来の帯電防止剤は、帯電防止性能において、必ずしも充分とはいえず、さらなる改良が望まれているのが現状である。特に、合成樹脂製のフィルム用途に使用した場合、充分な帯電防止性を発揮できない問題があり、その持続性においても充分ではなかった。さらに、樹脂に多量に添加しなければ充分な性能を得られないため、合成樹脂に対する相溶性が悪いと、フィルムの透明性に悪影響を及ぼすという問題があった。 However, these conventional antistatic agents are not always sufficient in antistatic performance, and further improvement is desired at present. In particular, when it is used for a film made of synthetic resin, there is a problem that sufficient antistatic property cannot be exhibited, and its durability is not sufficient. Further, since sufficient performance cannot be obtained unless a large amount is added to the resin, there is a problem that if the compatibility with the synthetic resin is poor, the transparency of the film is adversely affected.
 そこで、本発明の目的は、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができる帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルムを提供することにある。特に、帯電防止性に優れ、静電気が発生しにくく、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくく、さらに透明性に優れるフィルムを提供することにある。 Therefore, an object of the present invention is an antistatic agent capable of continuously imparting an excellent antistatic effect to a synthetic resin, an antistatic agent composition containing the antistatic agent, and an antistatic resin composition containing these. , The molded article and the film. In particular, it is an object of the present invention to provide a film having excellent antistatic properties, less likely to generate static electricity, less likely to cause a decrease in commercial value due to surface contamination due to static electricity and adhesion of dust, and further excellent in transparency.
 本発明者等は、上記課題を解消するために鋭意検討した結果、所定の構造を有する高分子化合物が、合成樹脂に対して優れた帯電防止性能を付与することができ、さらに、合成樹脂に対する相溶性に優れるため、合成樹脂の透明性に悪影響を及ぼさないことを見出した。かかる知見をもとに、本発明者等は、さらに鋭意検討した結果、これを用いることで、上記課題を解消することができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have been able to impart excellent antistatic performance to the synthetic resin by the polymer compound having a predetermined structure, and further to the synthetic resin. It has been found that the transparency of the synthetic resin is not adversely affected because of its excellent compatibility. Based on such findings, the present inventors have further diligently studied and found that the above problems can be solved by using the present invention, and have completed the present invention.
 すなわち、本発明の帯電防止剤は、ジオール(a1)とジカルボン酸(a2)が反応して得られるポリエステル(a)から構成されるポリエステルのブロック(A)と、エチレンオキシ基を一つ以上有する両末端に水酸基を有する化合物(b)から構成されるポリエーテルのブロック(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合またはエーテル結合を介して結合してなる構造を有する高分子化合物(E)の1種以上を含有する帯電防止剤であって、
 前記ポリエステル(a)の、酸価測定法により算出される数平均分子量が、1,600~10,000であり、前記化合物(b)の水酸基価測定法により算出される数平均分子量が、1,000~6,000であることを特徴とするものである。
That is, the antistatic agent of the present invention has a polyester block (A) composed of a polyester (a) obtained by reacting a diol (a1) and a dicarboxylic acid (a2), and one or more ethyleneoxy groups. A block (B) of a polyester composed of a compound (b) having a hydroxyl group at both ends and an epoxy compound (D) having two or more epoxy groups are bonded via an ester bond or an ether bond. An epoxy agent containing one or more of the polymer compound (E) having a structure.
The number average molecular weight of the polyester (a) calculated by the acid value measurement method is 1,600 to 10,000, and the number average molecular weight of the compound (b) calculated by the hydroxyl value measurement method is 1. It is characterized in that it is 000 to 6,000.
 本発明の帯電防止剤においては、前記高分子化合物(E)が、前記ブロック(A)と前記ブロック(B)とを有し、前記ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、前記化合物(b)の末端に有する水酸基と、前記エポキシ化合物(D)のエポキシ基またはエポキシ基が反応することによって形成された水酸基と、の反応により形成された、エステル結合またはエーテル結合を介して結合してなる構造を有するものが好ましく、前記高分子化合物(E)が、前記ブロック(A)と、前記ブロック(B)と、がエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)と、がエステル結合を介して結合してなる構造を有するものがより好ましい。さらに、本発明の帯電防止剤においては、前記ブロックポリマー(C)の、酸価測定法により算出される数平均分子量は、8,000~50,000であるものが好ましい。さらにまた、本発明の帯電防止剤においては、前記ポリエステル(a)は、両末端にカルボキシル基を有する構造であるものが好ましい。また、本発明の帯電防止剤においては、前記化合物(b)は、ポリエチレングリコールであることが好ましい。さらに、本発明の帯電防止剤においては、前記ブロック(A)と前記ブロック(B)の合計質量に対して、前記ブロック(B)の割合が、20~50質量%の範囲内であるものが好ましい。 In the antistatic agent of the present invention, the polymer compound (E) has the block (A) and the block (B), and has a hydroxyl group or a carboxyl group at the end of the polyester (a), and the above. Bonded via an ester bond or an ether bond formed by the reaction of the hydroxyl group at the end of compound (b) and the epoxy group of the epoxy compound (D) or the hydroxyl group formed by reacting the epoxy group. It is preferable that the polymer compound (E) has a structure in which the block (A) and the block (B) are repeatedly and alternately bonded via an ester bond to both ends. It is more preferable that the block polymer (C) having a group and the epoxy compound (D) have a structure in which they are bonded via an ester bond. Further, in the antistatic agent of the present invention, the block polymer (C) preferably has a number average molecular weight calculated by an acid value measurement method of 8,000 to 50,000. Furthermore, in the antistatic agent of the present invention, the polyester (a) preferably has a structure having carboxyl groups at both ends. Further, in the antistatic agent of the present invention, the compound (b) is preferably polyethylene glycol. Further, in the antistatic agent of the present invention, the ratio of the block (B) to the total mass of the block (A) and the block (B) is in the range of 20 to 50% by mass. preferable.
 本発明の帯電防止剤組成物は、本発明の帯電防止剤に対し、さらに、アルカリ金属の塩およびイオン性液体からなる群から選択される1種以上が配合されてなることを特徴とするものである。 The antistatic agent composition of the present invention is characterized in that the antistatic agent of the present invention is further blended with one or more selected from the group consisting of alkali metal salts and ionic liquids. Is.
 本発明の帯電防止性樹脂組成物は、合成樹脂に対し、本発明の帯電防止剤が配合されてなることを特徴とするものである。また、本発明の他の帯電防止性樹脂組成物は、合成樹脂に対し、本発明の帯電防止剤組成物が配合されてなることを特徴とするものである。 The antistatic resin composition of the present invention is characterized in that the antistatic agent of the present invention is blended with a synthetic resin. Further, the other antistatic resin composition of the present invention is characterized in that the antistatic agent composition of the present invention is blended with the synthetic resin.
 本発明の帯電防止性樹脂組成物においては、前記合成樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上であることが好ましい。 In the antistatic resin composition of the present invention, it is preferable that the synthetic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof.
 本発明の成形体は、本発明の帯電防止性樹脂組成物からなることを特徴とするものである。 The molded product of the present invention is characterized by comprising the antistatic resin composition of the present invention.
 本発明の成形体としては、フィルムであることが好ましく、好適には、厚さ50μmにおけるHaze値が、0%以上40.0%以下である。 The molded product of the present invention is preferably a film, and preferably, the Haze value at a thickness of 50 μm is 0% or more and 40.0% or less.
 本発明によれば、合成樹脂に対して、優れた帯電防止効果を持続的に付与することができる帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルムを提供することができる。本発明のフィルムは、帯電防止性に優れ、静電気が発生しにくく、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくく、さらに透明性に優れている。 According to the present invention, an antistatic agent capable of continuously imparting an excellent antistatic effect to a synthetic resin, an antistatic agent composition containing the antistatic agent, an antistatic resin composition containing these, and the like thereof. Molds and films can be provided. The film of the present invention has excellent antistatic properties, is less likely to generate static electricity, is less likely to cause surface contamination due to static electricity, and is less likely to lose its commercial value due to adhesion of dust, and is also excellent in transparency.
 以下、本発明の実施形態について詳細に説明する。
 本発明の帯電防止剤は、ジオール(a1)とジカルボン酸(a2)が反応して得られるポリエステル(a)から構成されるポリエステルのブロック(A)と、エチレンオキシ基を一つ以上有する両末端に水酸基を有する化合物(b)から構成されるポリエーテルのブロック(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合またはエーテル結合を介して結合してなる構造を有する高分子化合物(E)の1種以上を含有するものである。ここで、エチレンオキシ基とは、下記一般式(1)で示される基である。
Hereinafter, embodiments of the present invention will be described in detail.
The antistatic agent of the present invention has a polyester block (A) composed of a polyester (a) obtained by reacting a diol (a1) and a dicarboxylic acid (a2), and both ends having one or more ethyleneoxy groups. A structure in which a polyester block (B) composed of a compound (b) having a hydroxyl group and an epoxy compound (D) having two or more epoxy groups are bonded via an ester bond or an ether bond. It contains one or more of the polymer compounds (E) having. Here, the ethyleneoxy group is a group represented by the following general formula (1).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 本発明の帯電防止剤においては、ポリエステル(a)の酸価測定法により算出される数平均分子量が1,600~10,000であり、帯電防止性とその持続性、フィルムの透明性の点から、好ましくは2,000~8,000であり、より好ましくは3,000~8,000である。本発明の帯電防止剤における、酸価測定法による数平均分子量の算出方法は以下のとおりである。 In the antistatic agent of the present invention, the number average molecular weight calculated by the acid value measurement method of the polyester (a) is 1,600 to 10,000, and the antistatic property, its durability, and the transparency of the film are considered. Therefore, it is preferably 2,000 to 8,000, and more preferably 3,000 to 8,000. The method for calculating the number average molecular weight of the antistatic agent of the present invention by the acid value measurement method is as follows.
<酸価測定法による数平均分子量の算出方法>
 下記酸価の測定方法で酸価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 Mn=112220/酸価
<酸価の測定方法>
 まず、100mL三角フラスコにサンプルを0.2g量りとり、キシレン/エタノール溶液40mLを加え、溶解させる。0.1N-KOH水溶液で滴定し、下式で計算する。
 酸価[mgKOH/g]=56.11×f×T/S
 f:0.1N-KOH水溶液のfactor
 T:本試験滴定量[mL]
 S:サンプル量[g]
<Calculation method of number average molecular weight by acid value measurement method>
The acid value was measured by the following acid value measuring method, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
Mn = 112220 / acid value <method for measuring acid value>
First, 0.2 g of a sample is weighed in a 100 mL Erlenmeyer flask, and 40 mL of a xylene / ethanol solution is added to dissolve the sample. Titrate with 0.1N-KOH aqueous solution and calculate by the following formula.
Acid value [mgKOH / g] = 56.11 × f × T / S
f: factor of 0.1N-KOH aqueous solution
T: Quantitative test titration [mL]
S: Sample amount [g]
 なお、ポリエステル(a)の片末端、あるいは両末端が水酸基の場合は、水酸基を無水マレイン酸で処理し、カルボキシル基としてから、同様に酸価を測定、数平均分子量を算出後、処理に使用した無水マレイン酸を除く補正をして算出すればよい。 If one end or both ends of the polyester (a) are hydroxyl groups, treat the hydroxyl groups with maleic anhydride to form a carboxyl group, measure the acid value in the same manner, calculate the number average molecular weight, and then use it for treatment. It may be calculated by making a correction excluding the maleic anhydride.
 本発明の帯電防止剤においては、エチレンオキシ基を一つ以上有する両末端に水酸基を有する化合物(b)の水酸基価測定法により算出される数平均分子量は1,000~6,000であり、帯電防止性とその持続性、フィルムの透明性の点から、好ましくは1,500~5,000であり、より好ましくは、1,800~4,000である。本発明の帯電防止剤における、水酸基価測定法による数平均分子量の算出方法は、以下のとおりである。 In the antistatic agent of the present invention, the number average molecular weight of the compound (b) having one or more ethyleneoxy groups and having hydroxyl groups at both ends is 1,000 to 6,000 calculated by the hydroxyl value measurement method. From the viewpoint of antistatic property, its durability, and the transparency of the film, it is preferably 1,500 to 5,000, and more preferably 1,800 to 4,000. The method for calculating the number average molecular weight of the antistatic agent of the present invention by the hydroxyl value measurement method is as follows.
<水酸基価測定法による数平均分子量の算出方法>
 下記水酸基価の測定方法で水酸基価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 数平均分子量=(56110×2)/水酸基価
<水酸基価の測定方法>
・試薬A(アセチル化剤)
 (1)トリエチルホスフェート 1560mL
 (2)無水酢酸 193mL
 (3)過塩素酸(60%) 16g
 これらの試薬を(1)→(2)→(3)の順に混合する。
・試薬B
 ピリジンと純水を体積比率で3:1に混合する。
・試薬C
 500mLのイソプロピルアルコールにフェノールフタレイン液を2~3滴加え、1N-KOH水溶液で中性にする。
<Calculation method of number average molecular weight by hydroxyl value measurement method>
The hydroxyl value was measured by the following method for measuring the hydroxyl value, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
Number average molecular weight = (56110 × 2) / hydroxyl value <method for measuring hydroxyl value>
・ Reagent A (acetylating agent)
(1) Triethyl phosphate 1560 mL
(2) Acetic anhydride 193 mL
(3) Perchloric acid (60%) 16g
These reagents are mixed in the order of (1) → (2) → (3).
・ Reagent B
Pyridine and pure water are mixed in a volume ratio of 3: 1.
・ Reagent C
Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol and neutralize with 1N-KOH aqueous solution.
 まず、200mL三角フラスコにサンプルを2g量りとり、トリエチルホスフェート10mLを加え、加熱溶解させる。試薬A15mLを加え、共栓をして激しく振盪する。試薬B20mLを加え、共栓をして激しく振盪する。試薬C50mLを加える。1N-KOH水溶液で滴定し、下式で計算する。
 水酸基価[mgKOH/g]=56.11×f×(T-B)/S
 f:1N-KOH水溶液のfactor
 B:空試験滴定量[mL]
 T:本試験滴定量[mL]
 S:サンプル量[g]
First, weigh 2 g of a sample into a 200 mL Erlenmeyer flask, add 10 mL of triethyl phosphate, and heat to dissolve. Add 15 mL of Reagent A, plug and shake vigorously. Add 20 mL of Reagent B, plug and shake vigorously. Add 50 mL of Reagent C. Titrate with 1N-KOH aqueous solution and calculate by the following formula.
Hydroxy group value [mgKOH / g] = 56.11 × f × (TB) / S
f: Factor of 1N-KOH aqueous solution
B: Empty test titration [mL]
T: Quantitative test titration [mL]
S: Sample amount [g]
 高分子化合物(E)においては、帯電防止性とその持続性、フィルムの透明性の点から、ポリエステル(a)から構成されるポリエステルのブロック(A)と、エチレンオキシ基を一つ以上有する両末端に水酸基を有する化合物(b)から構成されるポリエーテルのブロック(B)と、を有し、ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、化合物(b)の末端に有する水酸基と、エポキシ基を2個以上有するエポキシ化合物(D)のエポキシ基またはエポキシ基が反応することにより形成された水酸基と、の反応により形成された、エステル結合またはエーテル結合を介して結合してなる構造を有することが好ましい。ここでエポキシ基が反応することによって形成された水酸基とは、エポキシ化合物(D)のエポキシ基が、水酸基またはカルボキシル基と開環反応することで形成される水酸基である。 The polymer compound (E) has both a polyester block (A) composed of the polyester (a) and one or more ethyleneoxy groups from the viewpoint of antistatic property, its durability, and the transparency of the film. A block (B) of a polyether composed of a compound (b) having a hydroxyl group at the terminal, a hydroxyl group or a carboxyl group having a hydroxyl group at the end of the polyester (a), and a hydroxyl group having a hydroxyl group at the end of the compound (b). , A structure formed by the reaction of the epoxy group of the epoxy compound (D) having two or more epoxy groups or the hydroxyl group formed by the reaction of the epoxy group, and the structure formed by bonding via an ester bond or an ether bond. It is preferable to have. Here, the hydroxyl group formed by the reaction of the epoxy group is a hydroxyl group formed by the ring-opening reaction of the epoxy group of the epoxy compound (D) with the hydroxyl group or the carboxyl group.
 高分子化合物(E)においては、帯電防止性とその持続性、フィルムの透明性の点から、ポリエステルのブロック(A)と、ポリエーテルのブロック(B)と、がエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、エポキシ基を2個以上有するエポキシ化合物(D)と、がエステル結合を介して結合してなることが好ましい。ここでのエステル結合は、ブロックポリマー(C)の有するカルボキシル基とエポキシ化合物(D)の有するエポキシ基との反応により形成されるエステル結合と、さらに、このエステル結合を形成する反応で、エポキシ基が開環し形成された水酸基と、カルボキシル基が反応して形成されたエステル結合が挙げられる。本発明の帯電防止剤においては、これらいずれのエステル結合を介して結合していてもよく、両者のエステル結合を介して結合しているのが帯電防止性とその持続性、フィルムの透明性の点からより好ましい。 In the polymer compound (E), the polyester block (A) and the polyether block (B) are repeatedly alternated via an ester bond in terms of antistatic property, its durability, and film transparency. It is preferable that the block polymer (C) having a carboxyl group at both ends and the epoxy compound (D) having two or more epoxy groups are bonded to each other via an ester bond. The ester bond here is an ester bond formed by the reaction of the carboxyl group of the block polymer (C) and the epoxy group of the epoxy compound (D), and further, an ester bond formed by the reaction of forming the ester bond. Examples thereof include an ester bond formed by reacting a hydroxyl group formed by opening a ring with a carboxyl group. In the antistatic agent of the present invention, the antistatic agent may be bonded via any of these ester bonds, and the binding via the ester bond between the two is the antistatic property, its durability, and the transparency of the film. More preferable from the point of view.
 高分子化合物(E)で用いられるジオール(a1)としては、脂肪族ジオールおよび芳香族基含有ジオールが挙げられる。ジオールは、2種以上の混合物でもよい。 Examples of the diol (a1) used in the polymer compound (E) include an aliphatic diol and an aromatic group-containing diol. The diol may be a mixture of two or more kinds.
 脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、水素添加ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール等が挙げられる。 Examples of the aliphatic diol include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol. , 2-Methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl- 1,3-Propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptan), 3-methyl-1,5- Pentandiol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9 -Nonandiol, 1,10-decanediol, 1,12-octadecanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A, 1,2-, 1,3- or 1,4-cyclohexanediol, cyclododecane Examples thereof include diols, dimer diols, hydrogenated dimer diols, diethylene glycols, dipropylene glycols and triethylene glycols.
 これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール、1,12-ドデカンジオール、水素添加ビスフェノールAが、帯電防止性とその持続性、フィルムの透明性の点から好ましく、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール、1,12-ドデカンジオールがより好ましく、1,4-シクロヘキサンジメタノールがさらにより好ましい。なお、脂肪族ジオールは、帯電防止性とその持続性、フィルムの透明性の点から、疎水性を有することが好ましいので、親水性を有するポリエチレングリコールの使用は好ましくない。 Among these aliphatic diols, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,12-dodecanediol, and hydrogenated bisphenol A are used in terms of antistatic properties, their durability, and film transparency. Preferably, 1,4-cyclohexanedimethanol, 1,6-hexanediol and 1,12-dodecanediol are more preferable, and 1,4-cyclohexanedimethanol is even more preferable. Since the aliphatic diol is preferably hydrophobic from the viewpoint of antistatic property, its durability, and transparency of the film, it is not preferable to use polyethylene glycol having hydrophilicity.
 芳香族基含有ジオールとしては、例えば、ビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、レゾルシン、ピロカテコール等の単核2価フェノール化合物のポリヒドロキシエチル付加物等が挙げられる。 Examples of the aromatic group-containing diol include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, and an ethylene oxide adduct of bisphenol A. Examples thereof include a propylene oxide adduct of bisphenol A, a polyhydroxyethyl adduct of a mononuclear divalent phenol compound such as 1,4-bis (2-hydroxyethoxy) benzene, resorcin, and pyrocatechol.
 これら芳香族基を有するジオールの中でも、ビスフェノールAのエチレンオキサイド付加物、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンが好ましい。なお、芳香族ジオールは、帯電防止性とその持続性、フィルムの透明性の点から、疎水性を有することが好ましい。 Among these diols having an aromatic group, ethylene oxide adduct of bisphenol A and 1,4-bis (β-hydroxyethoxy) benzene are preferable. The aromatic diol preferably has hydrophobicity from the viewpoint of antistatic property, its durability, and transparency of the film.
 ジオール(a1)は、帯電防止性とその持続性、フィルムの透明性の点から、これらの中でも、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール、1,12-ドデカンジオールが好ましい。 Among these, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and 1,12-dodecanediol are preferable as the diol (a1) from the viewpoints of antistatic property, its durability, and film transparency.
 本発明の帯電防止剤においては、高分子化合物(E)で用いられるジカルボン酸(a2)としては、脂肪族ジカルボン酸および芳香族ジカルボン酸が挙げられる。ジカルボン酸は2種以上の混合物でもよい。 In the antistatic agent of the present invention, examples of the dicarboxylic acid (a2) used in the polymer compound (E) include aliphatic dicarboxylic acids and aromatic dicarboxylic acids. The dicarboxylic acid may be a mixture of two or more kinds.
 本発明の帯電防止剤においては、高分子化合物(E)で用いられるジカルボン酸(a2)は、ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル等のエステル、アルカリ金属塩、酸ハライド等)であってもよい。誘導体としては、例えば、カルボン酸無水物、カルボン酸エステル(例えば、カルボン酸メチルエステル等のカルボン酸アルキルエステル)、カルボン酸アルカリ金属塩(例えば、カルボン酸ナトリウム塩)、カルボン酸ハライド(例えばカルボン酸クロライド)等が挙げられる。 In the antistatic agent of the present invention, the dicarboxylic acid (a2) used in the polymer compound (E) is a derivative of the dicarboxylic acid (for example, an acid anhydride, an ester such as an alkyl ester, an alkali metal salt, an acid halide, etc.). It may be. Examples of the derivative include carboxylic acid anhydride, carboxylic acid ester (for example, carboxylic acid alkyl ester such as carboxylic acid methyl ester), carboxylic acid alkali metal salt (for example, carboxylic acid sodium salt), and carboxylic acid halide (for example, carboxylic acid). Chloride) and the like.
 脂肪族ジカルボン酸としては、好ましくは炭素原子数2~20の脂肪族ジカルボン酸が挙げられ、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、メチルコハク酸、ジメチルマロン酸、3-メチルグルタル酸、エチルコハク酸、イソプロピルマロン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸(1,10-デカンジカルボン酸)、トリデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、1,3-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサン二酢酸、1,3-シクロヘキサン二酢酸、1,2-シクロヘキサン二酢酸、1,1-シクロヘキサン二酢酸、ダイマー酸、マレイン酸、フマル酸等が挙げられる。これら脂肪族ジカルボン酸の中でも、帯電防止性とその持続性、フィルムの透明性の点から、炭素原子数4~16のジカルボン酸が好ましく、炭素原子数6~12のジカルボン酸がより好ましい。 The aliphatic dicarboxylic acid preferably includes an aliphatic dicarboxylic acid having 2 to 20 carbon atoms, and examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid and 3-methylglutaric acid. , Ethylsuccinic acid, isopropylmalonic acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid (1,10-decandicarboxylic acid), tridecanedioic acid, tetradecanedioic acid, hexadecanedi Acid, octadecanedioic acid, eikosandioic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid Examples thereof include acids, 1,4-cyclohexanedioacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid, 1,1-cyclohexanediacetic acid, dimeric acid, maleic acid, and fumaric acid. Among these aliphatic dicarboxylic acids, a dicarboxylic acid having 4 to 16 carbon atoms is preferable, and a dicarboxylic acid having 6 to 12 carbon atoms is more preferable, from the viewpoint of antistatic property, its durability, and transparency of the film.
 芳香族ジカルボン酸としては、好ましくは炭素原子数8~20の芳香族ジカルボン酸が挙げられ、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。これら芳香族ジカルボン酸の中でも、帯電防止性とその持続性、フィルムの透明性の点から、テレフタル酸、イソフタル酸、フタル酸(無水フタル酸を含む)が好ましく、フタル酸(無水フタル酸を含む)がより好ましい。本発明の帯電防止剤においては、ジカルボン酸(a2)としては、帯電防止性とその持続性、フィルムの透明性の点から、これらの中でも、アジピン酸、セバシン酸、テレフタル酸が好ましい。 The aromatic dicarboxylic acid preferably includes an aromatic dicarboxylic acid having 8 to 20 carbon atoms, and examples thereof include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid and β-phenylglutal. Acid, α-Phenyladiponic acid, β-phenyladipic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate and 3-sulfoisophthalic acid Examples include potassium. Among these aromatic dicarboxylic acids, terephthalic acid, isophthalic acid, and phthalic acid (including phthalic anhydride) are preferable, and phthalic acid (including phthalic anhydride) is preferable from the viewpoint of antistatic property, its durability, and film transparency. ) Is more preferable. In the antistatic agent of the present invention, as the dicarboxylic acid (a2), adipic acid, sebacic acid, and terephthalic acid are preferable from the viewpoints of antistatic property, its durability, and transparency of the film.
 次に、化合物(b)と、高分子化合物(E)のポリエーテルのブロック(B)について説明する。
 ポリエーテルのブロック(B)は、下記一般式(1)で示されるエチレンオキシ基を一つ以上有する両末端に水酸基を有する化合物(b)から構成される。
Next, the compound (b) and the block (B) of the polyether of the polymer compound (E) will be described.
The block (B) of the polyether is composed of the compound (b) having one or more ethyleneoxy groups represented by the following general formula (1) and having hydroxyl groups at both ends.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 一般式(1)で示されるエチレンオキシ基を一つ以上有し両末端に水酸基を有する化合物(b)としては、親水性を有する化合物が好ましく、一般式(1)で示されるエチレンオキシ基を有するポリエーテルがより好ましく、帯電防止性とその持続性、フィルムの透明性の点から、ポリエチレングリコールがさらにより好ましく、下記一般式(2)で表されるポリエチレングリコールが特に好ましい。 As the compound (b) having one or more ethyleneoxy groups represented by the general formula (1) and having hydroxyl groups at both ends, a hydrophilic compound is preferable, and the ethyleneoxy group represented by the general formula (1) is used. The possessed polyether is more preferable, polyethylene glycol is even more preferable from the viewpoint of antistatic property and its durability, and the transparency of the film, and polyethylene glycol represented by the following general formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 ここで、mは4~250の数を表す。mは、帯電防止性とその持続性、フィルムの透明性の点から、20~200が好ましく、40~180がより好ましい。 Here, m represents a number from 4 to 250. m is preferably 20 to 200, more preferably 40 to 180, from the viewpoint of antistatic property, its durability, and transparency of the film.
 化合物(b)としては、エチレンオキサイドを付加反応させて得られるポリエチレングリコール以外に、エチレンオキサイドと、他のアルキレンオキサイド、例えば、プロピレンオキサイド、1,2-、1,4-、2,3-、または1,3-ブチレンオキサイド等の1種以上とを付加反応させたポリエーテルが挙げられ、このポリエーテルはランダムでもブロックでもいずれでもよい。 Examples of the compound (b) include ethylene oxide and other alkylene oxides such as propylene oxide, 1,2-, 1,4-, 2,3-, in addition to polyethylene glycol obtained by addition reaction of ethylene oxide. Alternatively, a polyether obtained by addition reaction with one or more kinds of 1,3-butylene oxide and the like can be mentioned, and this polyether may be either random or blocked.
 化合物(b)の例をさらに挙げると、活性水素原子含有化合物にエチレンオキサイドが付加した構造の化合物や、エチレンオキサイドおよび他のアルキレンオキサイド、例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等の1種以上が付加した構造の化合物が挙げられる。これらはランダム付加およびブロック付加のいずれでもよい。 To further give an example of the compound (b), a compound having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, ethylene oxide and other alkylene oxides, for example, propylene oxide, 1,2-, 1,4-, Examples thereof include compounds having a structure in which one or more kinds such as 2,3- or 1,3-butylene oxide are added. These may be either random addition or block addition.
 活性水素原子含有化合物としては、グリコール、2価フェノール、1級モノアミン、2級ジアミンおよびジカルボン酸等が挙げられる。 Examples of the active hydrogen atom-containing compound include glycols, dihydric phenols, primary monoamines, secondary diamines and dicarboxylic acids.
 グリコールとしては、炭素原子数2~20の脂肪族グリコール、炭素原子数5~12の脂環式グリコールおよび炭素原子数8~26の芳香族グリコール等が使用できる。 As the glycol, an aliphatic glycol having 2 to 20 carbon atoms, an alicyclic glycol having 5 to 12 carbon atoms, an aromatic glycol having 8 to 26 carbon atoms, and the like can be used.
 脂肪族グリコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール、ジエチレングリコール、トリエチレングリコールおよびチオジエチレングリコール等が挙げられる。 Examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,3-. Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane Examples thereof include diols, 1,20-eicosane diols, diethylene glycols, triethylene glycols and thiodiethylene glycols.
 脂環式グリコールとしては、例えば、1-ヒドロキシメチル-1-シクロブタノール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1-メチル-3,4-シクロヘキサンジオール、2-ヒドロキシメチルシクロヘキサノール、4-ヒドロキシメチルシクロヘキサノール、1,4-シクロヘキサンジメタノールおよび1,1’-ジヒドロキシ-1,1’-ジシクロヘキシル等が挙げられる。 Examples of the alicyclic glycol include 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1-methyl-3,4-cyclohexanediol. , 2-Hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1'-dihydroxy-1,1'-dicyclohexyl and the like.
 芳香族グリコールとしては、例えば、ジヒドロキシメチルベンゼン、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、2-フェニル-1,3-プロパンジオール、2-フェニル-1,4-ブタンジオール、2-ベンジル-1,3-プロパンジオール、トリフェニルエチレングリコール、テトラフェニルエチレングリコールおよびベンゾピナコール等が挙げられる。 Examples of the aromatic glycol include dihydroxymethylbenzene, 1,4-bis (β-hydroxyethoxy) benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, and 2-benzyl. -1,3-Propanediol, triphenylethylene glycol, tetraphenylethylene glycol, benzopinacol and the like can be mentioned.
 2価フェノールとしては、炭素原子数6~30のフェノールが使用でき、例えば、カテコール、レゾルシノール、ハイドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルチオエーテル、ビナフトールおよびこれらのアルキル(炭素原子数1~10)またはハロゲン置換体等が挙げられる。 As the divalent phenol, phenol having 6 to 30 carbon atoms can be used, for example, catechol, resorcinol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, dihydroxydiphenyl thioether, binaphthol and alkyl (carbon atoms) thereof. Numbers 1 to 10) or halogen-substituted products can be mentioned.
 1級モノアミンとしては、炭素原子数1~20の脂肪族1級モノアミンが挙げられ、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、イソブチルアミン、n-アミルアミン、イソアミルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、n-オクタデシルアミンおよびn-イコシルアミン等が挙げられる。 Examples of the primary monoamine include aliphatic primary monoamines having 1 to 20 carbon atoms. For example, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- Examples thereof include amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine and n-icosylamine.
 2級ジアミンとしては、炭素原子数4~18の脂肪族2級ジアミン、炭素原子数4~13の複素環式2級ジアミン、炭素原子数6~14の脂環式2級ジアミン、炭素原子数8~14の芳香族2級ジアミンおよび炭素原子数3~22の2級アルカノールジアミン等が使用できる。 Examples of the secondary diamine include an aliphatic secondary diamine having 4 to 18 carbon atoms, a heterocyclic secondary diamine having 4 to 13 carbon atoms, an alicyclic secondary diamine having 6 to 14 carbon atoms, and a carbon atom number. 8 to 14 aromatic secondary diamines and secondary alkanol diamines having 3 to 22 carbon atoms can be used.
 脂肪族2級ジアミンとしては、例えば、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジブチルエチレンジアミン、N,N’-ジメチルプロピレンジアミン、N,N’-ジエチルプロピレンジアミン、N,N’-ジブチルプロピレンジアミン、N,N’-ジメチルテトラメチレンジアミン、N,N’-ジエチルテトラメチレンジアミン、N,N’-ジブチルテトラメチレンジアミン、N,N’-ジメチルヘキサメチレンジアミン、N,N’-ジエチルヘキサメチレンジアミン、N,N’-ジブチルヘキサメチレンジアミン、N,N’-ジメチルデカメチレンジアミン、N,N’-ジエチルデカメチレンジアミンおよびN,N’-ジブチルデカメチレンジアミン等が挙げられる。 Examples of the aliphatic secondary diamine include N, N'-dimethylethylenediamine, N, N'-diethylethylenediamine, N, N'-dibutylethylenediamine, N, N'-dimethylpropylenediamine, N, N'-diethylpropylene. Diamine, N, N'-dibutylpropylenediamine, N, N'-dimethyltetramethylenediamine, N, N'-diethyltetramethylenediamine, N, N'-dibutyltetramethylenediamine, N, N'-dimethylhexamethylenediamine , N, N'-diethylhexamethylenediamine, N, N'-dibutylhexamethylenediamine, N, N'-dimethyldecamethylenediamine, N, N'-diethyldecamethylenediamine and N, N'-dibutyldecamethylenediamine. And so on.
 複素環式2級ジアミンとしては、例えば、ピペラジン、1-アミノピペリジン等が挙げられる。 Examples of the heterocyclic secondary diamine include piperazine and 1-aminopiperidine.
 脂環式2級ジアミンとしては、例えば、N,N’-ジメチル-1,2-シクロブタンジアミン、N,N’-ジエチル-1,2-シクロブタンジアミン、N,N’-ジブチル-1,2-シクロブタンジアミン、N,N’-ジメチル-1,4-シクロヘキサンジアミン、N,N’-ジエチル-1,4-シクロヘキサンジアミン、N,N’-ジブチル-1,4-シクロヘキサンジアミン、N,N’-ジメチル-1,3-シクロヘキサンジアミン、N,N’-ジエチル-1,3-シクロヘキサンジアミン、N,N’-ジブチル-1,3-シクロヘキサンジアミン等が挙げられる。 Examples of the alicyclic secondary diamine include N, N'-dimethyl-1,2-cyclobutanediamine, N, N'-diethyl-1,2-cyclobutanediamine, and N, N'-dibutyl-1,2-. Cyclobutanediamine, N, N'-dimethyl-1,4-cyclohexanediamine, N, N'-diethyl-1,4-cyclohexanediamine, N, N'-dibutyl-1,4-cyclohexanediamine, N, N'- Examples thereof include dimethyl-1,3-cyclohexanediamine, N, N'-diethyl-1,3-cyclohexanediamine, N, N'-dibutyl-1,3-cyclohexanediamine and the like.
 芳香族2級ジアミンとしては、例えば、N,N’-ジメチル-フェニレンジアミン、N,N’-ジメチル-キシリレンジアミン、N,N’-ジメチル-ジフェニルメタンジアミン、N,N’-ジメチル-ジフェニルエーテルジアミン、N,N’-ジメチル-ベンジジンおよびN,N’-ジメチル-1,4-ナフタレンジアミン等が挙げられる。 Examples of the aromatic secondary diamine include N, N'-dimethyl-phenylenediamine, N, N'-dimethyl-xylylenediamine, N, N'-dimethyl-diphenylmethanediamine, and N, N'-dimethyl-diphenyletherdiamine. , N, N'-dimethyl-benzidine and N, N'-dimethyl-1,4-naphthalenediamine and the like.
 2級アルカノールジアミンとしては、例えば、N-メチルジエタノールアミン、N-オクチルジエタノールアミン、N-ステアリルジエタノールアミンおよびN-メチルジプロパノールアミン等が挙げられる。 Examples of the secondary alkanolamine include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, N-methyldipropanolamine and the like.
 ジカルボン酸としては、炭素原子数2~20のジカルボン酸が使用でき、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸および脂環式ジカルボン酸等が用いられる。 As the dicarboxylic acid, a dicarboxylic acid having 2 to 20 carbon atoms can be used, and for example, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid and the like are used.
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、メチルコハク酸、ジメチルマロン酸、β-メチルグルタル酸、エチルコハク酸、イソプロピルマロン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジ酸、ドデカンジ酸、トリデカンジ酸、テトラデカンジ酸、ヘキサデカンジ酸、オクタデカンジ酸およびイコサンジ酸が挙げられる。 Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, methylsuccinic acid, dimethylmalonic acid, β-methylglutaric acid, ethylsuccinic acid, isopropylmalonic acid, adipic acid, pimelic acid, and suberic acid. Examples include azelaic acid, suberic acid, undecandic acid, dodecandic acid, tridecandic acid, tetradecandic acid, hexadecandic acid, octadecandic acid and icosandic acid.
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, β-phenylglutaric acid, α-phenyladipic acid, β-phenyladipic acid and biphenyl-2. , 2'-Dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate, potassium 3-sulfoisophthalate and the like.
 脂環式ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸、1,3-シクロヘキサンジ酢酸、1,2-シクロヘキサンジ酢酸およびジシクロヘキシル-4,4’-ジカルボン酸等が挙げられる。 Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid. Examples thereof include acids, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid and dicyclohexyl-4,4'-dicarboxylic acid.
 これらの活性水素原子含有化合物は、1種でも2種以上の混合物でも使用することができる。 These active hydrogen atom-containing compounds can be used alone or in a mixture of two or more.
 次に、高分子化合物(E)を構成するエポキシ基を2個以上有するエポキシ化合物(D)について説明する。
 本発明の帯電防止剤に用いるエポキシ化合物(D)としては、エポキシ基を2個以上有するものであれば特に制限されず、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物、ジシクロペンタジエンジメタノール等の多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類およびグリシジルメタクリレートの単独重合体または共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物、エポキシ化大豆油等が挙げられる。また、これらのエポキシ化合物は、末端イソシアネートのプレポリマーによって内部架橋されたもの、あるいは多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)を用いて高分子量化したものであってもよい。かかるエポキシ化合物(D)は、2種以上を使用してもよい。
Next, the epoxy compound (D) having two or more epoxy groups constituting the polymer compound (E) will be described.
The epoxy compound (D) used in the antistatic agent of the present invention is not particularly limited as long as it has two or more epoxy groups, and is, for example, mononuclear polynuclear such as hydroquinone, resorcin, pyrocatechol, fluoroluxinol, etc. Polyglycidyl ether compound of valence phenol compound; dihydroxynaphthalene, biphenol, methylenebisphenol (bisphenol F), methylenebis (orthocresol), etilidenbisphenol, isopropyridene bisphenol (bisphenol A), isopropyridenebis (orthocresol), tetrabromobisphenol A , 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2, Of polynuclear polyvalent phenolic compounds such as 2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolac, orthocresol novolac, ethylphenol novolac, butylphenol novolac, octylphenol novolac, resorcin novolac, terpenphenol Polyglycyl ether compounds; ethylene glycol, propylene glycol, butylene glycol, hexanediol, diethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, polyglycol, thiodiglycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, bisphenol A -Polyglycidyl ethers of polyhydric alcohols such as ethylene oxide adducts and dicyclopentadiene dimethanol; maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid , Trimmeric acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylene tetrahydrophthalic acid and other aliphatic, aromatic or alicyclic poly Homopolymers or copolymers of glycidyl esters of basic acids and glycidyl methacrylate; N, N-diglycidylaniline, bis (4- (N-methyl-N-glycidylamino) phenyl) methane, diglycidyl orthotoluidine, etc. Epoxy compounds with glycidylamino groups; vinylcyclohe Xendiepoxide, dicyclopentadiene diepoxyside, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexanecarboxylate, bis (3, Epoxy compounds of cyclic olefin compounds such as 4-epoxy-6-methylcyclohexylmethyl) adipate; epoxidized conjugated diene polymers such as epoxidized polybutadiene and epoxidized styrene-butadiene copolymers, heterocyclic compounds such as triglycidyl isocyanurate. , Epoxy soybean oil and the like. In addition, these epoxy compounds are internally crosslinked with a prepolymer of terminal isocyanate, or polyvalent active hydrogen compounds (polyhydric phenol, polyamine, carbonyl group-containing compound, polyphosphate ester, etc.) are used to increase the molecular weight. It may be the one that has been used. Two or more kinds of such epoxy compounds (D) may be used.
 エポキシ化合物(D)は、帯電防止性とその持続性、フィルムの透明性の点から、ビスフェノールFジグリシジルエーテル、ジシクロペンタジエンジメタノールジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル、ヘキサンジオールジグリシジルエーテルが好ましい。 The epoxy compound (D) contains bisphenol F diglycidyl ether, dicyclopentadiene dimethanol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and hexanediol diglycidyl from the viewpoints of antistatic property, its durability, and film transparency. Ether is preferred.
 エポキシ化合物(D)のエポキシ当量は、帯電防止性とその持続性、フィルムの透明性の点から、70~2000が好ましく、100~1000がより好ましく、150~600が特により好ましい。 The epoxy equivalent of the epoxy compound (D) is preferably 70 to 2000, more preferably 100 to 1000, and particularly preferably 150 to 600, from the viewpoint of antistatic property, its durability, and transparency of the film.
 高分子化合物(E)に係るポリエステルのブロック(A)を構成するポリエステル(a)は、ジオール(a1)とジカルボン酸(a2)からなるものであればよく、帯電防止性とその持続性、フィルムの透明性の点から、好ましくは、ジオール(a1)の水酸基を除いた残基と、ジカルボン酸(a2)のカルボキシル基を除いた残基とが、エステル結合を介して結合する構造を有する。 The polyester (a) constituting the polyester block (A) according to the polymer compound (E) may be composed of a diol (a1) and a dicarboxylic acid (a2), and has antistatic properties and its durability, and a film. From the viewpoint of transparency, preferably, the residue of the diol (a1) excluding the hydroxyl group and the residue of the dicarboxylic acid (a2) excluding the carboxyl group have a structure in which they are bonded via an ester bond.
 また、ポリエステル(a)は、帯電防止性とその持続性、フィルムの透明性の点から、両末端にカルボキシル基を有する構造のものが好ましい。さらに、ポリエステル(a)の重合度は、帯電防止性とその持続性、フィルムの透明性の点から好適には2~50の範囲である。 Further, the polyester (a) preferably has a structure having carboxyl groups at both ends from the viewpoint of antistatic property, its durability, and transparency of the film. Further, the degree of polymerization of the polyester (a) is preferably in the range of 2 to 50 from the viewpoint of antistatic property, its durability, and transparency of the film.
 両末端にカルボキシル基を有するポリエステル(a)は、ジオール(a1)と、ジカルボン酸(a2)とをエステル化反応させることにより得ることができる。 The polyester (a) having a carboxyl group at both ends can be obtained by subjecting a diol (a1) and a dicarboxylic acid (a2) to an esterification reaction.
 ジカルボン酸(a2)は、その誘導体(例えば、酸無水物、アルキルエステル等のエステル、アルカリ金属塩、酸ハライド等)であってもよく、誘導体を使用してポリエステル(a)を得た場合は、最終的に両末端を処理してカルボキシル基にすればよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。 The dicarboxylic acid (a2) may be a derivative thereof (for example, an acid anhydride, an ester such as an alkyl ester, an alkali metal salt, an acid halide, etc.), and when the polyester (a) is obtained by using the derivative. Finally, both ends may be treated to form a carboxyl group, and the reaction may proceed as it is to obtain the next block polymer (C) having a structure having a carboxyl group at both ends.
 ジカルボン酸(a2)と、ジオール(a1)との反応比は、両末端がカルボキシル基となるように、ジカルボン酸(a2)を過剰に使用することが好ましく、モル比で、ジオール(a1)に対して1モル過剰に使用することが好ましい。 As for the reaction ratio of the dicarboxylic acid (a2) and the diol (a1), it is preferable to use an excess of the dicarboxylic acid (a2) so that both ends become carboxyl groups, and the molar ratio of the dicarboxylic acid (a1) is adjusted to the diol (a1). On the other hand, it is preferable to use an excess of 1 mol.
 エステル化反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。 A catalyst that promotes the esterification reaction may be used for the esterification reaction, and conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
 また、ジカルボン酸の代わりに、エステル、アルカリ金属塩、酸ハライド等の誘導体を使用した場合には、それらとジオールとの反応後に、両末端を処理してジカルボン酸としてもよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。 When derivatives such as esters, alkali metal salts, and acid halides are used instead of dicarboxylic acids, both ends may be treated as dicarboxylic acids after the reaction between them and diols, and the dicarboxylic acids may be used as they are. The next reaction may proceed to obtain a block polymer (C) having a structure having a carboxyl group at both ends.
 ジオール(a1)と、ジカルボン酸(a2)からなり両末端にカルボキシル基を有する好適なポリエステル(a)は、化合物(b)と反応することでエステル結合を形成し、ブロックポリマー(C)の構造を形成するものが好ましく、両末端のカルボキシル基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。 A suitable polyester (a) composed of a diol (a1) and a dicarboxylic acid (a2) and having a carboxyl group at both ends forms an ester bond by reacting with the compound (b) to form a structure of the block polymer (C). The carboxyl groups at both ends may be protected, modified, or in the form of a precursor. Further, an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress the oxidation of the product during the reaction.
 エチレンオキシ基を一つ以上有し両末端に水酸基を有する化合物(b)は、好ましくはポリエステル(a)と反応することでエステル結合またはエーテル結合、好ましくはエステル結合を形成しブロックポリマー(C)の構造を形成するものであり、両末端の水酸基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。 The compound (b) having one or more ethyleneoxy groups and having hydroxyl groups at both ends preferably reacts with the polyester (a) to form an ester bond or an ether bond, preferably an ester bond, and the block polymer (C). The hydroxyl groups at both ends may be protected, modified, or in the form of a precursor.
 高分子化合物(E)の両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、ポリエステル(a)から構成されたブロック(A)と、化合物(b)から構成されたブロック(B)とを有し、これらのブロックが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有する。かかるブロックポリマー(C)の一例を挙げると、例えば、下記一般式(3)で表される構造を有するものが挙げられる。 The block polymer (C) having a structure having a carboxyl group at both ends of the polymer compound (E) is a block (A) composed of polyester (a) and a block (B) composed of compound (b). These blocks have a structure in which they are repeatedly and alternately bonded via an ester bond formed by a carboxyl group and a hydroxyl group. As an example of such a block polymer (C), for example, one having a structure represented by the following general formula (3) can be mentioned.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 一般式(3)中、(A)は、両末端にカルボキシル基を有するポリエステル(a)から構成されたブロックを表し、(B)は、両末端に水酸基を有する化合物(b)から構成されたブロックを表し、tは繰り返し単位の繰り返しの数であり、帯電防止性とその持続性、フィルムの透明性の点から好ましくは1~10の数を表す。tは、より好ましくは1~7の数であり、最も好ましくは1~5の数である。 In the general formula (3), (A) represents a block composed of polyester (a) having a carboxyl group at both ends, and (B) is composed of a compound (b) having hydroxyl groups at both ends. Representing a block, t is the number of repetitions in a repeating unit, and preferably represents a number of 1 to 10 from the viewpoint of antistatic property, its durability, and transparency of the film. t is more preferably a number from 1 to 7, and most preferably a number from 1 to 5.
 両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、両末端にカルボキシル基を有するポリエステル(a)と、両末端に水酸基を有する化合物(b)とを、重縮合反応させることによって得ることができるが、ポリエステル(a)と化合物(b)とが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有するものと同等の構造を有するものであれば、必ずしもポリエステル(a)と化合物(b)とから合成する必要はない。 The block polymer (C) having a structure having a carboxyl group at both ends is obtained by subjecting a polyester (a) having a carboxyl group at both ends and a compound (b) having a hydroxyl group at both ends to undergo a polycondensation reaction. However, the polyester (a) and the compound (b) have a structure equivalent to that having a structure in which the polyester (a) and the compound (b) are repeatedly and alternately bonded via an ester bond formed by a carboxyl group and a hydroxyl group. If so, it is not always necessary to synthesize the polyester (a) and the compound (b).
 ポリエステル(a)と化合物(b)との反応比は、化合物(b)がXモルに対して、ポリエステル(a)がX+1モルとなるように調整すれば、両末端にカルボキシル基を有するブロックポリマー(C)を好ましく得ることができる。 The reaction ratio of the polyester (a) to the compound (b) is a block polymer having carboxyl groups at both ends if the reaction ratio of the compound (b) is adjusted to be X + 1 mol with respect to X mol. (C) can be preferably obtained.
 反応に際しては、ポリエステル(a)の合成反応の完結後に、ポリエステル(a)を単離せずに、化合物(b)を反応系に加えて、そのまま反応させてもよい。 In the reaction, after the synthesis reaction of the polyester (a) is completed, the compound (b) may be added to the reaction system and reacted as it is without isolating the polyester (a).
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。 A catalyst that promotes the esterification reaction may be used in the polycondensation reaction, and conventionally known catalysts such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used. Further, an antioxidant such as a phenolic antioxidant may be added to the reaction system in order to suppress the oxidation of the product during the reaction.
 高分子化合物(E)は、帯電防止性とその持続性、フィルムの透明性の点から、好ましくは、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、2個以上のエポキシ基を有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する。エステル結合は、ブロックポリマー(C)の末端のカルボキシル基とエポキシ化合物(D)のエポキシ基との反応により形成されたエステル結合、さらに、この反応(カルボキシル基とエポキシ基との反応)によって形成された水酸基と、カルボキシル基との反応により形成されたエステル結合のいずれでもよく、両方のエステル結合が存在することが、帯電防止性とその持続性、保存安定性、フィルムの透明性の点から好ましい。 The polymer compound (E) preferably has a block polymer (C) having a structure having carboxyl groups at both ends and two or more epoxy groups from the viewpoints of antistatic property, its durability, and transparency of the film. It has a structure in which the epoxy compound (D) having the above is bonded via an ester bond. The ester bond is formed by an ester bond formed by the reaction of the carboxyl group at the end of the block polymer (C) and the epoxy group of the epoxy compound (D), and further by this reaction (reaction between the carboxyl group and the epoxy group). Any of the ester bonds formed by the reaction of the hydroxyl group and the carboxyl group may be used, and the presence of both ester bonds is preferable from the viewpoint of antistatic property and its durability, storage stability, and transparency of the film. ..
 また、かかる高分子化合物(E)は、さらに、ポリエステル(a)のカルボキシル基とエポキシ化合物(D)のエポキシ基とにより形成されたエステル結合を含んでいてもよい。 Further, the polymer compound (E) may further contain an ester bond formed by the carboxyl group of the polyester (a) and the epoxy group of the epoxy compound (D).
 さらに、かかる高分子化合物(E)は、ポリエステル(a)のカルボキシル基と、エポキシ化合物のエポキシ基が反応して形成された水酸基とにより形成されたエステル結合を含んでいてもよい。 Further, the polymer compound (E) may contain an ester bond formed by the carboxyl group of the polyester (a) and the hydroxyl group formed by the reaction of the epoxy group of the epoxy compound.
 さらにまた、かかる高分子化合物(E)は、さらに、ポリエステル(a)の水酸基または化合物(b)の水酸基と、エポキシ化合物(D)のエポキシ基とにより形成されたエーテル結合を含んでいてもよい。 Furthermore, the polymer compound (E) may further contain an ether bond formed by the hydroxyl group of the polyester (a) or the hydroxyl group of the compound (b) and the epoxy group of the epoxy compound (D). ..
 好ましい高分子化合物(E)を得るためには、ブロックポリマー(C)とエポキシ化合物(D)を反応させればよい。すなわち、ブロックポリマー(C)のカルボキシル基を、エポキシ化合物(D)のエポキシ基と反応させればよい。さらに好ましくは、反応したエポキシ基から形成された水酸基と、カルボキシル基を反応させればよい。エポキシ化合物(D)のエポキシ基の数は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.5~5当量が好ましく、0.5~1.5当量がより好ましい。また、上記反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。 In order to obtain a preferable polymer compound (E), the block polymer (C) and the epoxy compound (D) may be reacted. That is, the carboxyl group of the block polymer (C) may be reacted with the epoxy group of the epoxy compound (D). More preferably, the hydroxyl group formed from the reacted epoxy group may be reacted with the carboxyl group. The number of epoxy groups in the epoxy compound (D) is preferably 0.5 to 5 equivalents, more preferably 0.5 to 1.5 equivalents, of the number of carboxyl groups in the block polymer (C) to be reacted. Further, the above reaction may be carried out in various solvents or in a molten state.
 反応させるエポキシ基を2個以上有するエポキシ化合物(D)は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.1~2.0当量が好ましく、0.2~1.5当量がより好ましい。 The epoxy compound (D) having two or more epoxy groups to be reacted is preferably 0.1 to 2.0 equivalents, preferably 0.2 to 1.5 equivalents, of the number of carboxyl groups of the block polymer (C) to be reacted. More preferred.
 反応に際しては、ブロックポリマー(C)の合成反応の完結後に、ブロックポリマー(C)を単離せずに、反応系にエポキシ化合物(D)を加えて、そのまま反応させてもよい。その場合、ブロックポリマー(C)を合成するときに過剰に使用した未反応のポリエステル(a)のカルボキシル基と、エポキシ化合物(D)の一部のエポキシ基とが反応して、エステル結合を形成してもよい。 In the reaction, after the synthesis reaction of the block polymer (C) is completed, the epoxy compound (D) may be added to the reaction system and reacted as it is without isolating the block polymer (C). In that case, the carboxyl group of the unreacted polyester (a) used excessively when synthesizing the block polymer (C) reacts with a part of the epoxy groups of the epoxy compound (D) to form an ester bond. You may.
 本発明の帯電防止剤においては、好ましい高分子化合物(E)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)とエポキシ基を2個以上有するエポキシ化合物(D)とが、それぞれのカルボキシル基とエポキシ基とにより形成されたエステル結合を介して結合した構造を有するものと同等の構造を有するものであれば、必ずしもブロックポリマー(C)とエポキシ化合物(D)とから合成する必要はない。ここでいうカルボキシル基とエポキシ基とにより形成されたエステル結合には、カルボキシル基と、カルボキシル基と反応することによってエポキシ基から形成された水酸基とにより形成されたエステル結合も含まれる。 In the antistatic agent of the present invention, the preferred polymer compound (E) is a block polymer (C) having a structure having a carboxyl group at both ends and an epoxy compound (D) having two or more epoxy groups, respectively. If it has a structure equivalent to that having a structure bonded via an ester bond formed by a carboxyl group and an epoxy group of the above, it is not always necessary to synthesize from the block polymer (C) and the epoxy compound (D). There is no. The ester bond formed by the carboxyl group and the epoxy group referred to here also includes an ester bond formed by the carboxyl group and the hydroxyl group formed from the epoxy group by reacting with the carboxyl group.
 本発明の帯電防止剤においては、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)の、酸価測定法により算出される数平均分子量は、帯電防止性とその持続性、フィルムの透明性の点から、好ましくは8,000~50,000であり、より好ましくは9,000~40,000である。 In the antistatic agent of the present invention, the number average molecular weight of the block polymer (C) having a structure having a carboxyl group at both ends calculated by the acid value measurement method is antistatic property and its durability, and the transparency of the film. From the viewpoint of sex, it is preferably 8,000 to 50,000, and more preferably 9,000 to 40,000.
 本発明の帯電防止剤において、ブロックポリマー(C)の酸価測定法による数平均分子量の算出方法は、上述の<酸価測定法による数平均分子量の算出方法>と同様に行えばよい。 In the antistatic agent of the present invention, the method for calculating the number average molecular weight of the block polymer (C) by the acid value measurement method may be the same as the above-mentioned <Method for calculating the number average molecular weight by the acid value measurement method>.
 なお、本発明の帯電防止剤においては、高分子化合物(E)は、ジオール(a1)とジカルボン酸(a2)からポリエステル(a)を得たのち、ポリエステル(a)を単離せずに、化合物(b)および/またはエポキシ化合物(D)と反応させてもよい。 In the antistatic agent of the present invention, the polymer compound (E) is a compound obtained by obtaining a polyester (a) from a diol (a1) and a dicarboxylic acid (a2) without isolating the polyester (a). It may react with (b) and / or the epoxy compound (D).
 本発明の帯電防止剤においては、高分子化合物(E)は、帯電防止性とその持続性、フィルムの透明性の点から、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対して、ポリエーテルのブロック(B)の割合が20~50質量%の範囲内であることが好ましく、24~45質量%がより好ましく、24~40質量%がさらにより好ましい。なお、ブロック(A)およびブロック(B)の質量は、ポリエステル(a)および化合物(b)の質量から算出すればよい。 In the antistatic agent of the present invention, the polymer compound (E) is the sum of the polyester block (A) and the polyether block (B) in terms of antistatic property, its durability, and film transparency. On the other hand, the proportion of the block (B) of the polyether is preferably in the range of 20 to 50% by mass, more preferably 24 to 45% by mass, and even more preferably 24 to 40% by mass. The mass of the block (A) and the block (B) may be calculated from the mass of the polyester (a) and the compound (b).
 本発明の帯電防止剤においては、高分子化合物(E)は、ペレット状で使用することがハンドリング性から好ましい。ペレット状にするには、重合反応後に、ポリマーを押出機から押し出し、カッティングしてペレット状とすればよい。カッティングにはペレタイザー等の機械を使用してもよい。 In the antistatic agent of the present invention, it is preferable to use the polymer compound (E) in the form of pellets from the viewpoint of handleability. To make pellets, after the polymerization reaction, the polymer may be extruded from an extruder and cut into pellets. A machine such as a pelletizer may be used for cutting.
 次に本発明の帯電防止剤組成物について説明する。
 本発明の帯電防止剤組成物は、本発明の帯電防止剤に対し、さらに、アルカリ金属の塩およびイオン性液体の群から選択される1種以上が配合されてなるものである。本発明の帯電防止剤は、さらに、アルカリ金属の塩およびイオン性液体の群から選択される1種以上を配合することにより、優れた帯電防止性能とその持続性を有する帯電防止剤組成物となり好ましい。
Next, the antistatic agent composition of the present invention will be described.
The antistatic agent composition of the present invention is obtained by further blending the antistatic agent of the present invention with one or more selected from the group of alkali metal salts and ionic liquids. The antistatic agent of the present invention further contains one or more selected from the group of alkali metal salts and ionic liquids to obtain an antistatic agent composition having excellent antistatic performance and durability thereof. preferable.
 以下、まずはアルカリ金属の塩について説明する。
 アルカリ金属の塩としては有機酸または無機酸の塩が挙げられ、アルカリ金属の例としては、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。中でも、摩擦帯電圧と表面抵抗率、生体や環境に対する安全性の点から、リチウム、ナトリウム、カリウムの塩が好ましく、ナトリウムがより好ましい。また、帯電防止性とその持続性の点から、酢酸の塩、過塩素酸の塩、p-トルエンスルホン酸の塩、ドデシルベンゼンスルホン酸の塩が好ましく、ドデシルベンゼンスルホン酸の塩がより好ましい。アルカリ金属の塩は2種以上でもよい。
Hereinafter, the alkali metal salt will be described first.
Examples of alkali metal salts include salts of organic acids or inorganic acids, and examples of alkali metals include lithium, sodium, potassium, cesium, rubidium and the like. Examples of organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc. An aliphatic dicarboxylic acid having 1 to 12 carbon atoms; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane. Examples thereof include sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids. Examples of inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the like. Among them, salts of lithium, sodium, and potassium are preferable, and sodium is more preferable, from the viewpoints of friction band voltage, surface resistivity, and safety to living organisms and the environment. Further, from the viewpoint of antistatic property and its durability, a salt of acetic acid, a salt of perchloric acid, a salt of p-toluenesulfonic acid and a salt of dodecylbenzenesulfonic acid are preferable, and a salt of dodecylbenzenesulfonic acid is more preferable. Two or more kinds of alkali metal salts may be used.
 アルカリ金属の塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、硫酸リチウム、硫酸ナトリウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらの中で、帯電防止性とその持続性、生体や環境に対する安全性の点から、好ましいのは、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム等であり、最も好ましいのはドデシルベンゼンスルホン酸ナトリウムである。 Specific examples of alkali metal salts include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfate, sodium sulfate, and perchlorine. Lithium acid, sodium perchlorate, potassium perchlorate, lithium p-toluenesulfonate, sodium p-toluenesulfonate, potassium p-toluenesulfonate, lithium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, dodecylbenzenesulfonic acid Examples include potassium. Of these, lithium p-toluenesulfonate, sodium p-toluenesulfonate, lithium dodecylbenzenesulfonate, and dodecylbenzenesulfone are preferable from the viewpoints of antistatic property, their sustainability, and safety to living organisms and the environment. Sodium acid and the like, most preferably sodium dodecylbenzenesulfonate.
 アルカリ金属の塩は、本発明の帯電防止剤に配合してもよいし、本発明の帯電防止剤とともに合成樹脂に配合して使用してもよい。アルカリ金属の塩の配合量は、帯電防止性とその持続性、フィルムの透明性の点から、本発明の帯電防止剤100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、3.0~12質量部が最も好ましい。 The alkali metal salt may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention. The amount of the alkali metal salt to be blended is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention from the viewpoint of antistatic property, its durability, and transparency of the film. 1 to 15 parts by mass is more preferable, and 3.0 to 12 parts by mass is most preferable.
 次にイオン性液体について説明する。
 イオン性液体の例としては、100℃以下の融点を有し、イオン性液体を構成するカチオンまたはアニオンのうち少なくとも一つが有機物イオンであり、初期電導度が1~200mS/cm、好ましくは10~200mS/cmである常温溶融塩であって、例えば、国際公開第95/15572号に記載の常温溶融塩が挙げられる。
Next, the ionic liquid will be described.
Examples of ionic liquids have a melting point of 100 ° C. or lower, at least one of the cations or anions constituting the ionic liquid is an organic ion, and has an initial conductivity of 1 to 200 mS / cm, preferably 10 to 10 to. A room temperature molten salt having a temperature of 200 mS / cm, for example, the room temperature molten salt described in International Publication No. 95/15572.
 イオン性液体を構成するカチオンとしては、アミジニウム、ピリジニウム、ピラゾリウムおよびグアニジニウムカチオンからなる群から選ばれるカチオンが挙げられる。このうち、アミジニウムカチオンとしては、下記のものが挙げられる。 Examples of the cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations. Among these, examples of the amidinium cation include the following.
(1)イミダゾリニウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルイミダゾリニウム;
(1) Imidazolinium cations Examples thereof include those having 5 to 15 carbon atoms, for example, 1,2,3,4-tetramethylimidazolinium, 1,3-dimethylimidazolinium;
(2)イミダゾリウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム;
(2) Imidazole cation Examples thereof include those having 5 to 15 carbon atoms, for example, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium;
(3)テトラヒドロピリミジニウムカチオン
 炭素原子数6~15のものが挙げられ、例えば、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム;
(3) Tetrahydropyrimidinium cation Examples thereof include those having 6 to 15 carbon atoms, for example, 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra. Methyl-1,4,5,6-tetrahydropyrimidinium;
(4)ジヒドロピリミジニウムカチオン
 炭素原子数6~20のものが挙げられ、例えば、1,3-ジメチル-1,4-ジヒドロピリミジニウム、1,3-ジメチル-1,6-ジヒドロピリミジニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,9-ウンデカジエニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,10-ウンデカジエニウム。
(4) Dihydropyrimidinium cation Examples thereof include those having 6 to 20 carbon atoms, for example, 1,3-dimethyl-1,4-dihydropyrimidinium, 1,3-dimethyl-1,6-dihydropyrimidi. Nium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecagenium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decagenium.
 ピリジニウムカチオンとしては、炭素原子数6~20のものが挙げられ、例えば、3-メチル-1-プロピルピリジニウム、1-ブチル-3,4-ジメチルピリジニウムが挙げられる。 Examples of the pyridinium cation include those having 6 to 20 carbon atoms, and examples thereof include 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
 ピラゾリウムカチオンとしては、炭素原子数5~15のものが挙げられ、例えば、1、2-ジメチルピラゾリウム、1-n-ブチル-2-メチルピラゾリウムが挙げられる。 Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, and examples thereof include 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium.
 グアニジニウムカチオンとしては、下記のものが挙げられる。 Examples of guanidinium cations include the following.
(1)イミダゾリニウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリニウム;
(1) Guanidinium cation having an imidazolinium skeleton Examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium and 2-diethylamino-1,3. , 4-trimethylimidazolinium;
(2)イミダゾリウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリウム;
(2) Guanidinium cation having an imidazolium skeleton Examples thereof include those having 8 to 15 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethylimidazolium and 2-diethylamino-1,3,4. -Trimethylimidazolium;
(3)テトラヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4,5,6-テトラヒドロピリミジニウム;
(3) Guanidinium cation having a tetrahydropyrimidinium skeleton Examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4,5,6-tetrahydro. Pyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4,5,6-tetrahydropyrimidinium;
(4)ジヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4-ジヒドロピリミジニウム、2-ジメチルアミノ-1,3,4-トリメチル-1,6-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,6-ジヒドロピリミジニウム。
(4) Guanidinium cation having a dihydropyrimidinium skeleton Examples thereof include those having 10 to 20 carbon atoms, for example, 2-dimethylamino-1,3,4-trimethyl-1,4-dihydropyrimidinium. 2-Dimethylamino-1,3,4-trimethyl-1,6-dihydropyrimidinium, 2-diethylamino-1,3-dimethyl-4-ethyl-1,4-dihydropyrimidinium, 2-diethylamino-1 , 3-Dimethyl-4-ethyl-1,6-dihydropyrimidinium.
 これらカチオンは1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。これらのうち、摩擦帯電圧と表面抵抗率の点から、好ましくはアミジニウムカチオン、より好ましくはイミダゾリウムカチオン、特に好ましくは1-エチル-3-メチルイミダゾリウムカチオンである。 These cations may be used alone or in combination of two or more. Of these, from the viewpoint of friction zone voltage and surface resistivity, an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
 イオン性液体において、アニオンを構成する有機酸または無機酸としては、下記のものが挙げられる。有機酸としては、例えば、カルボン酸、硫酸エステル、スルホン酸およびリン酸エステル;無機酸としては、例えば、超強酸(例えば、ホウフッ素酸、四フッ化ホウ素酸、過塩素酸、六フッ化リン酸、六フッ化アンチモン酸および六フッ化ヒ素酸)、リン酸およびホウ酸が挙げられる。有機酸および無機酸は、1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。 In the ionic liquid, examples of the organic acid or the inorganic acid constituting the anion include the following. Organic acids include, for example, carboxylic acids, sulfuric acid esters, sulfonic acids and phosphoric acids; inorganic acids include, for example, super-strong acids (eg, borofluoric acid, boron tetrafluoroacid, perchloric acid, phosphorus hexafluoride). Acids, antimonic acid hexafluoride and arsenic hexafluoride), phosphoric acid and boric acid. The organic acid and the inorganic acid may be used alone or in combination of two or more.
 有機酸および無機酸のうち、イオン性液体の、帯電防止性とその持続性、フィルムの透明性の点から好ましいのは、イオン性液体を構成するアニオンのHamett酸度関数(-H0)が12~100である、超強酸の共役塩基、超強酸の共役塩基以外のアニオンを形成する酸およびこれらの混合物である。 Of the organic acids and inorganic acids, the ionic liquid is preferable from the viewpoint of antistatic property and its durability, and the transparency of the film, because the Hamettet acidity function (-H0) of the anion constituting the ionic liquid is 12 to 12 to A conjugate base of a superacid, an acid forming an anion other than the conjugate base of a superacid, and a mixture thereof, which is 100.
 超強酸の共役塩基以外のアニオンとしては、例えば、ハロゲン(例えば、フッ素、塩素および臭素)イオン、アルキル(炭素原子数1~12)ベンゼンスルホン酸(例えば、p-トルエンスルホン酸およびドデシルベンゼンスルホン酸)イオンおよびポリ(n=1~25)フルオロアルカンスルホン酸(例えば、ウンデカフルオロペンタンスルホン酸)イオンが挙げられる。 Examples of anions other than the conjugate base of the superacid include halogen (eg, fluorine, chlorine and bromine) ions, alkyl (1-12 carbon atoms) benzenesulfonic acid (eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid). ) Ions and poly (n = 1-25) fluoroalkanesulfonic acid (eg, undecafluoropentanesulfonic acid) ions.
 また、超強酸としては、プロトン酸およびプロトン酸とルイス酸との組み合わせから誘導されるもの、およびこれらの混合物が挙げられる。超強酸としてのプロトン酸としては、例えば、ビス(トリフルオロメチルスルホニル)イミド酸、ビス(ペンタフルオロエチルスルホニル)イミド酸、トリス(トリフルオロメチルスルホニル)メタン、過塩素酸、フルオロスルホン酸、アルカン(炭素原子数1~30)スルホン酸(例えば、メタンスルホン酸、ドデカンスルホン酸等)、ポリ(n=1~30)フルオロアルカン(炭素原子数1~30)スルホン酸(例えば、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸およびトリデカフルオロヘキサンスルホン酸)、ホウフッ素酸および四フッ化ホウ素酸が挙げられる。これらのうち、合成の容易さの観点から好ましいのはホウフッ素酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド酸およびビス(ペンタフルオロエチルスルホニル)イミド酸である。 Examples of superacids include protonic acids and those derived from a combination of protonic acids and Lewis acids, and mixtures thereof. Examples of the protonic acid as a super strong acid include bis (trifluoromethylsulfonyl) imide acid, bis (pentafluoroethylsulfonyl) imide acid, tris (trifluoromethylsulfonyl) methane, perchloric acid, fluorosulfonic acid, and alkane ( 1 to 30 carbon atoms) sulfonic acid (eg, methane sulfonic acid, dodecane sulfonic acid, etc.), poly (n = 1 to 30) fluoroalkane (1 to 30 carbon atoms) sulfonic acid (eg, trifluoromethane sulfonic acid, etc.) Pentafluoroethane sulfonic acid, heptafluoropropane sulfonic acid, nonafluorobutane sulfonic acid, undecafluoropentane sulfonic acid and tridecafluorohexane sulfonic acid), borofluoric acid and boron tetrafluorofluoric acid. Of these, borofluoric acid, trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imide acid and bis (pentafluoroethylsulfonyl) imide acid are preferable from the viewpoint of ease of synthesis.
 ルイス酸と組合せて用いられるプロトン酸としては、例えば、ハロゲン化水素(例えば、フッ化水素、塩化水素、臭化水素およびヨウ化水素)、過塩素酸、フルオロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸およびこれらの混合物が挙げられる。これらのうち、イオン性液体の初期電導度の観点から好ましいのはフッ化水素である。 Protonic acids used in combination with Lewis acid include, for example, hydrogen halides (eg, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, trifluoromethane. Included are sulfonic acids, pentafluoroethane sulfonic acids, nonafluorobutane sulfonic acids, undecafluoropentane sulfonic acids, tridecafluorohexane sulfonic acids and mixtures thereof. Of these, hydrogen fluoride is preferable from the viewpoint of the initial conductivity of the ionic liquid.
 ルイス酸としては、例えば、三フッ化ホウ素、五フッ化リン、五フッ化アンチモン、五フッ化ヒ素、五フッ化タンタルおよびこれらの混合物が挙げられる。これらのうちでも、イオン性液体の初期電導度の観点から好ましいのは三フッ化ホウ素および五フッ化リンである。 Examples of Lewis acid include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof. Of these, boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
 プロトン酸とルイス酸との組み合わせは任意であるが、これらの組み合わせからなる超強酸としては、例えば、テトラフルオロホウ酸、ヘキサフルオロリン酸、六フッ化タンタル酸、六フッ化アンチモン酸、六フッ化タンタルスルホン酸、四フッ化ホウ素酸、六フッ化リン酸、塩化三フッ化ホウ素酸、六フッ化ヒ素酸およびこれらの混合物が挙げられる。 The combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid consisting of these combinations include tetrafluoroboric acid, hexafluorophosphate, tantalic hexafluoride, antimonic hexafluoride, and hexafluoride. Examples thereof include tantalum sulphonic acid, boron tetrafluoride acid, phosphoric acid hexafluoride, boron trifluoride chloride, arsenic hexafluoride and mixtures thereof.
 これらのアニオンのうち、イオン性液体の帯電防止性の観点から好ましいのは超強酸の共役塩基(プロトン酸からなる超強酸およびプロトン酸とルイス酸との組合せからなる超強酸)であり、さらに好ましいのはプロトン酸からなる超強酸およびプロトン酸と、三フッ化ホウ素および/または五フッ化リンとからなる超強酸の共役塩基である。 Among these anions, a conjugated base of a super strong acid (a super strong acid composed of a protonic acid and a super strong acid composed of a combination of a protonic acid and a Lewis acid) is preferable from the viewpoint of antistatic property of an ionic liquid, and further preferable. Is a conjugate base of a superacid consisting of a protonic acid and a superacid consisting of a boron trifluoride and / or a phosphorus pentafluoride.
 イオン性液体のうち、帯電防止性の観点から好ましいのは、アミジニウムカチオンを有するイオン性液体、より好ましいのは1-エチル-3-メチルイミダゾリウムカチオンを有するイオン性液体、特に好ましいのは1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。 Among the ionic liquids, from the viewpoint of antistatic properties, an ionic liquid having an amidinium cation is preferable, a ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and an ionic liquid having a 1-ethyl-3-methylimidazolium cation is particularly preferable. It is 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.
 イオン性液体は、本発明の帯電防止剤に配合してもよいし本発明の帯電防止剤とともに合成樹脂に配合して使用してもよい。イオン性液体の配合量は、帯電防止性とその持続性、フィルムの透明性の点から、本発明の帯電防止剤100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~12質量部が最も好ましい。 The ionic liquid may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention. The blending amount of the ionic liquid is preferably 0.01 to 20 parts by mass, preferably 0.1 to 100 parts by mass, based on 100 parts by mass of the antistatic agent of the present invention, from the viewpoint of antistatic property, its durability, and transparency of the film. To 15 parts by mass is more preferable, and 1 to 12 parts by mass is most preferable.
 本発明の帯電防止剤組成物においては、アルカリ金属の塩とイオン性液体は併用してもよい。本発明の帯電防止剤組成物を得るためには、本発明の帯電防止剤と、アルカリ金属の塩およびイオン性液体の群から選択される1種以上とを、さらに必要に応じて他の任意成分を混合すればよく、混合には各種混合機を用いることができる。混合時には加熱してもよい。使用できる混合機の例を挙げると、タンブラーミキサー、ヘンシェルミキサー、リボンブレンダー、V型混合機、W型混合機、スーパーミキサー、ナウターミキサー等が挙げられる。また、高分子化合物(E)の合成反応中に、反応系にアルカリ金属の塩およびイオン性液体の群から選択される1種以上を添加したものでもよい。 In the antistatic agent composition of the present invention, an alkali metal salt and an ionic liquid may be used in combination. In order to obtain the antistatic agent composition of the present invention, the antistatic agent of the present invention and one or more selected from the group of alkali metal salts and ionic liquids are further optionally added to any other option. The components may be mixed, and various mixers can be used for mixing. It may be heated at the time of mixing. Examples of mixers that can be used include tumbler mixers, Henschel mixers, ribbon blenders, V-type mixers, W-type mixers, super mixers, Nauter mixers, and the like. Further, one or more selected from the group of alkali metal salts and ionic liquids may be added to the reaction system during the synthesis reaction of the polymer compound (E).
 また、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、第2族元素の塩を配合して、帯電防止性を有する帯電防止剤組成物として使用してもよい。第2族元素の塩としては、有機酸または無機酸の塩が挙げられ、第2族元素の例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。 Further, the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a salt of a Group 2 element as long as the effect of the present invention is not impaired. Examples of the salt of the group 2 element include salts of organic acids or inorganic acids, and examples of the group 2 element include beryllium, magnesium, calcium, strontium, barium and the like. Examples of organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, and lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc. An aliphatic dicarboxylic acid having 1 to 12 carbon atoms; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and trifluoromethane. Examples thereof include sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids. Examples of inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the like.
 第2族元素の塩は、本発明の帯電防止剤に配合してもよく、本発明の帯電防止剤とともに合成樹脂に配合して使用してもよい。第2族元素の塩の配合量は、本発明の帯電防止剤100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、3.0~12質量部が最も好ましい。 The salt of the Group 2 element may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention. The amount of the salt of the Group 2 element is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and 3.0 to 12 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention. Most preferably by mass.
 また、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、界面活性剤を配合して、帯電防止性を有する帯電防止剤組成物として使用してもよい。界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を使用することができる。非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤;ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビット若しくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン界面活性剤等が挙げられ、アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等のカルボン酸塩;高級アルコール硫酸エステル塩、高級アルキルエーテル硫酸エステル塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩;高級アルコールリン酸エステル塩等のリン酸エステル塩等が挙げられ、カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩等が挙げられる。両性界面活性剤としては、高級アルキルアミノプロピオン酸塩等のアミノ酸型両性界面活性剤、高級アルキルジメチルベタイン、高級アルキルジヒドロキシエチルベタイン等のベタイン型両性界面活性剤等が挙げられ、これらは単独でまたは2種以上組み合わせて使用することができる。本発明の帯電防止剤組成物においては、上記界面活性剤の中でも、アニオン性界面活性剤が好ましく、特に、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩が好ましい。 Further, the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a surfactant as long as the effects of the present invention are not impaired. As the surfactant, a nonionic, anionic, cationic or amphoteric surfactant can be used. Examples of the nonionic surfactant include polyethylene glycol-type nonionic surfactants such as higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, higher alkylamine ethylene oxide adduct, and polypropylene glycol ethylene oxide adduct; fatty acid ester of polyethylene oxide and glycerin. , Pentaerislit fatty acid ester, sorbit or sorbitan fatty acid ester, polyhydric alcohol alkyl ether, polyhydric alcohol type nonionic surfactant such as alkanolamine aliphatic amide, etc., and examples thereof include anionic surfactants. For example, carboxylates such as alkali metal salts of higher fatty acids; sulfate esters such as higher alcohol sulfates and higher alkyl ether sulfates, alkylbenzene sulfonates, alkyl sulfonates, paraffin sulfonates and the like. Sulfates; Phosphates such as higher alcohol phosphates and the like can be mentioned, and examples of the cationic surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts. Examples of the amphoteric surfactant include amino acid-type amphoteric surfactants such as higher alkylaminopropionate, betaine-type amphoteric surfactants such as higher alkyldimethylbetaine and higher alkyldihydroxyethyl betaine, and these may be used alone or. Two or more types can be used in combination. In the antistatic agent composition of the present invention, among the above-mentioned surfactants, anionic surfactants are preferable, and sulfonates such as alkylbenzene sulfonates, alkyl sulfonates and paraffin sulfonates are particularly preferable.
 界面活性剤は、本発明の帯電防止剤に配合してもよく、本発明の帯電防止剤とともに合成樹脂に配合して使用してもよい。界面活性剤の配合量は、本発明の帯電防止剤100質量部に対して、0.01~20質量部が好ましく、0.1~15質量部がより好ましく、1~10質量部が最も好ましい。 The surfactant may be blended with the antistatic agent of the present invention, or may be blended with the synthetic resin together with the antistatic agent of the present invention. The blending amount of the surfactant is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and most preferably 1 to 10 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention. ..
 さらに、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、高分子型帯電防止剤を配合して、帯電防止性を有する帯電防止剤組成物として使用してもよい。高分子帯電防止剤としては、例えば、公知のポリエーテルエステルアミド等の高分子型帯電防止剤を使用することができ、公知のポリエーテルエステルアミドとしては、例えば、特開平7-10989号公報に記載のビスフェノールAのポリオキシアルキレン付加物からなるポリエーテルエステルアミドが挙げられる。また、ポリオレフィンブロックと親水性ポリマーブロックとの結合単位が2~50の繰り返し構造を有するブロックポリマーを使用することができ、例えば、米国特許第6552131号明細書記載のブロックポリマーを挙げることができる。 Further, the antistatic agent of the present invention may be used as an antistatic agent composition having antistatic properties by blending a polymer type antistatic agent as long as the effects of the present invention are not impaired. As the polymer antistatic agent, for example, a known polymer type antistatic agent such as a polyether ester amide can be used, and as a known polyether ester amide, for example, JP-A-7-10989 can be used. Examples thereof include the polyether ester amide composed of the polyoxyalkylene adduct of bisphenol A described above. Further, a block polymer having a repeating structure in which the bonding unit between the polyolefin block and the hydrophilic polymer block is 2 to 50 can be used, and examples thereof include the block polymer described in US Pat. No. 6,552,131.
 高分子型帯電防止剤は、本発明の帯電防止剤に配合してもよく、本発明の帯電防止剤とともに、合成樹脂に配合して使用してもよい。高分子型帯電防止剤の配合量は、本発明の帯電防止剤100質量部に対して、0~50質量部が好ましく、5~20質量部がより好ましい。 The polymer-type antistatic agent may be blended with the antistatic agent of the present invention, or may be blended with a synthetic resin together with the antistatic agent of the present invention. The blending amount of the polymer-type antistatic agent is preferably 0 to 50 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention.
 さらにまた、本発明の帯電防止剤は、本発明の効果を損なわない範囲で、相溶化剤を配合して、帯電防止性を有する帯電防止剤組成物としてもよい。相溶化剤を配合することで、本発明の帯電防止剤と他成分や合成樹脂との相溶性を向上させることができる。かかる相溶化剤としては、カルボキシル基、エポキシ基、アミノ基、ヒドロキシル基およびポリオキシアルキレン基からなる群から選ばれる少なくとも1種の官能基(極性基)を有する変性ビニル重合体、例えば、特開平3-258850号公報に記載の重合体や、特開平6-345927号公報に記載のスルホニル基を有する変性ビニル重合体、あるいはポリオレフィン部分と芳香族ビニル重合体部分とを有するブロック重合体等が挙げられる。さらに好ましい相溶化剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水イタコン酸変性ポリエチレン、無水イタコン酸変性ポリプロピレン等の酸無水物変性ポリオレフィンが挙げられる。 Furthermore, the antistatic agent of the present invention may be blended with a compatibilizer as long as the effects of the present invention are not impaired to prepare an antistatic agent composition having antistatic properties. By blending a compatibilizer, the compatibility between the antistatic agent of the present invention and other components or synthetic resins can be improved. Examples of such a compatibilizer include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group. Examples thereof include the polymer described in Japanese Patent Application Laid-Open No. 3-258850, the modified vinyl polymer having a sulfonyl group described in JP-A-6-345927, and the block polymer having a polyolefin moiety and an aromatic vinyl polymer moiety. Be done. More preferable compatibilizers include acid anhydride-modified polyolefins such as maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, itaconic anhydride-modified polyethylene, and itaconic anhydride-modified polypropylene.
 相溶化剤は、本発明の帯電防止剤に配合してもよく、本発明の帯電防止剤とともに合成樹脂に配合して使用してもよい。相溶化剤の配合量は、本発明の帯電防止剤100質量部に対して、0.1~15質量部が好ましく、1~10質量部がより好ましい。 The compatibilizer may be blended with the antistatic agent of the present invention, or may be blended with the antistatic agent of the present invention and used. The blending amount of the compatibilizer is preferably 0.1 to 15 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the antistatic agent of the present invention.
 本発明の帯電防止剤組成物には、本発明の効果を損なわない範囲で、本発明の帯電防止剤と上記の成分以外にも、任意の成分として他の成分を配合してもよい。これら他の成分は、組成物に直接配合してもよいし、本発明の帯電防止剤や本発明の帯電防止剤組成物を熱可塑性樹脂等の合成樹脂に配合して、帯電防止性を有する樹脂組成物として使用する場合に、合成樹脂に配合してもよい。 The antistatic agent composition of the present invention may contain other components as arbitrary components in addition to the antistatic agent of the present invention and the above components as long as the effects of the present invention are not impaired. These other components may be directly blended in the composition, or the antistatic agent of the present invention or the antistatic agent composition of the present invention may be blended in a synthetic resin such as a thermoplastic resin to have antistatic properties. When used as a resin composition, it may be blended with a synthetic resin.
 本発明の帯電防止剤および帯電防止剤組成物は、合成樹脂、特に好ましくは、熱可塑性樹脂に配合して、帯電防止性を有する帯電防止性樹脂組成物として使用できる。 The antistatic agent and antistatic agent composition of the present invention can be blended with a synthetic resin, particularly preferably a thermoplastic resin, and used as an antistatic resin composition having antistatic properties.
 次に、本発明の帯電防止性樹脂組成物について説明する。
 本発明の樹脂組成物は、合成樹脂に対し、本発明の帯電防止剤、また、本発明の帯電防止剤組成物が配合されてなるものである。合成樹脂としては、熱可塑性樹脂が好ましい。
Next, the antistatic resin composition of the present invention will be described.
The resin composition of the present invention is obtained by blending the antistatic agent of the present invention and the antistatic agent composition of the present invention with a synthetic resin. As the synthetic resin, a thermoplastic resin is preferable.
 熱可塑性樹脂の例としては、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS(アクリロニトリルブタジエンスチレン共重合体)樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。 Examples of thermoplastic resins include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, crosslinked polyethylene, ultrahigh-molecular-weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, and the like. Α-olefin polymer or ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer and other polyolefin-based resins and their copolymers; polyvinyl chloride, polyvinylidene chloride, chlorine Polyethylene chloride, chlorinated polypropylene, polyvinylidene chloride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate ternary Halogen-containing resins such as copolymers, vinyl chloride-acrylic acid ester copolymers, vinyl chloride-maleic acid ester copolymers, vinyl chloride-cyclohexylmaleimide copolymers; petroleum resin, kumaron resin, polystyrene, polyvinyl acetate, etc. Copolymers of acrylic resins, styrene and / or α-methylstyrene with other monomers (eg, maleic anhydride, phenylmaleimide, methyl methacrylate, butadiene, acrylonitrile, etc.) (eg, AS resin, ABS (acrylonitrile, etc.) (Butadiene-styrene copolymer) resin, ACS resin, SBS resin, MBS resin, heat-resistant ABS resin, etc.); Polymethylmethacrylate, polyvinyl alcohol, polyvinylformal, polyvinylbutyral; polyethylene terephthalate, polybutylene terephthalate, polycyclohexanedimethylene terephthalate, etc. Aromatic polyesters such as polyalkylene naphthalate such as polyalkylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and linear polyesters such as polytetramethylene terephthalate; polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succinate , Polylactic acid, polyappleic acid, polyglycolic acid, polydioxane, poly (2-oxetanone) and other degradable aliphatic polyesters; polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonate, polycarbonate / ABS resin , Branched polymer, polyacetal, polyphenylene sulfide, polyurethane, fibrous resin, polyimide Examples thereof include thermoplastic resins such as resins, polysulfones, polyphenylene ethers, polyetherketones, polyetheretherketones, and liquid crystal polymers, and blends thereof.
 また、本発明の樹脂組成物においては、熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーであってもよい。本発明の樹脂組成物において、これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、熱可塑性樹脂はアロイ化されていてもよい。 Further, in the resin composition of the present invention, the thermoplastic resin includes isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, olefin elastomer, and styrene elastomer. It may be an elastomer such as a polyester-based elastomer, a nitrile-based elastomer, a nylon-based elastomer, a vinyl chloride-based elastomer, a polyamide-based elastomer, or a polyurethane-based elastomer. In the resin composition of the present invention, these thermoplastic resins may be used alone or in combination of two or more. Moreover, the thermoplastic resin may be alloyed.
 これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。これらの熱可塑性樹脂の中でも、帯電防止性の点から、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上が好ましい。 These thermoplastic resins have molecular weight, degree of polymerization, density, softening point, ratio of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residue, type and compounding ratio of monomer as raw material, type of polymerization catalyst. It can be used regardless of (for example, Ziegler catalyst, metallocene catalyst, etc.). Among these thermoplastic resins, at least one selected from the group consisting of polyolefin-based resins, polystyrene-based resins and copolymers thereof is preferable from the viewpoint of antistatic properties.
 本発明の樹脂組成物中の、合成樹脂と、本発明の帯電防止剤または本発明の帯電防止剤組成物との質量比は、99/1~40/60の範囲が好ましい。 The mass ratio of the synthetic resin to the antistatic agent of the present invention or the antistatic agent composition of the present invention in the resin composition of the present invention is preferably in the range of 99/1 to 40/60.
 また、ポリオレフィン系樹脂に本発明の帯電防止剤、または本発明の帯電防止剤組成物を使用し、フィルムとした場合、帯電防止性とその持続性、フィルムの透明性に優れるため好ましい。ポリオレフィン系樹脂としては、例えば、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン等のα-オレフィン重合体またはエチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体等のポリオレフィン系樹脂およびこれらの共重合体が挙げられる。これらフィルムは、電気・電子部品、電気・電子製品、精密部品、精密機械、精密製品等の包装材等に好適である。 Further, when the antistatic agent of the present invention or the antistatic agent composition of the present invention is used for the polyolefin resin to form a film, it is preferable because it is excellent in antistatic property, its durability, and transparency of the film. Examples of the polyolefin resin include polypropylene, high-density polyethylene, low-density polyethylene, straight-chain low-density polyethylene, crosslinked polyethylene, ultra-high molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene and the like. Examples thereof include polyolefin resins such as α-olefin polymer or ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-propylene copolymer, and copolymers thereof. These films are suitable for packaging materials for electric / electronic parts, electric / electronic products, precision parts, precision machinery, precision products, and the like.
 合成樹脂に対する本発明の帯電防止剤の配合量は、帯電防止性とその持続性、フィルムの透明性の点から、合成樹脂100質量部に対して、0.9~90質量部が好ましく、1.8~55質量部がより好ましく、4.5~45質量部がさらにより好ましい。 The amount of the antistatic agent of the present invention to be blended with the synthetic resin is preferably 0.9 to 90 parts by mass with respect to 100 parts by mass of the synthetic resin from the viewpoint of antistatic property, its durability, and transparency of the film. .8 to 55 parts by mass is more preferable, and 4.5 to 45 parts by mass is even more preferable.
 また、合成樹脂に対する本発明の帯電防止剤組成物の配合量は、帯電防止性とその持続性、フィルムの透明性の点から、合成樹脂100質量部に対して、帯電防止剤組成物が、1.0~100質量部が好ましく、2.0~60質量部がより好ましく、5.0~50質量部がさらにより好ましい。 Further, the amount of the antistatic agent composition of the present invention blended with respect to the synthetic resin is such that the antistatic agent composition is added to 100 parts by mass of the synthetic resin from the viewpoint of antistatic property, its durability, and transparency of the film. It is preferably 1.0 to 100 parts by mass, more preferably 2.0 to 60 parts by mass, and even more preferably 5.0 to 50 parts by mass.
 本発明の帯電防止剤の合成樹脂への配合方法は特に限定されず、通常使用されている任意の方法を用いることができ、例えば、ロール混練り、バンパー混練り、押し出し機、ニーダー等により混合、練り込みして配合すればよい。また、本発明の帯電防止剤は、そのまま合成樹脂に添加してもよいが、必要に応じて、担体に含浸させてから添加してもよい。担体に含浸させるには、そのまま加熱混合してもよいし、必要に応じて、有機溶媒で希釈してから担体に含浸させ、その後に溶媒を除去する方法でもよい。こうした担体としては、合成樹脂のフィラーや充填剤として知られているもの、または、常温で固体の難燃剤や光安定剤が使用でき、例えば、ケイ酸カルシウム粉末、シリカ粉末、タルク粉末、アルミナ粉末、酸化チタン粉末、または、これら担体の表面を化学修飾したもの、下記に挙げる難燃剤や酸化防止剤の中で固体のもの等が挙げられる。これらの担体の中でも担体の表面を化学修飾したものが好ましく、シリカ粉末の表面を化学修飾したものがより好ましい。これらの担体は、平均粒径が0.1~100μmのものが好ましく、0.5~50μmのものがより好ましい。 The method of blending the antistatic agent of the present invention into the synthetic resin is not particularly limited, and any commonly used method can be used, for example, mixing by roll kneading, bumper kneading, extruder, kneader or the like. , Knead and mix. Further, the antistatic agent of the present invention may be added to the synthetic resin as it is, or may be added after impregnating the carrier, if necessary. In order to impregnate the carrier, the mixture may be heated and mixed as it is, or if necessary, the carrier may be impregnated after diluting with an organic solvent, and then the solvent may be removed. As such a carrier, those known as fillers and fillers of synthetic resins, flame retardants and light stabilizers that are solid at room temperature can be used, and for example, calcium silicate powder, silica powder, talc powder, and alumina powder can be used. , Titanium oxide powder, chemically modified surface of these carriers, solid ones among the flame retardant agents and antioxidants listed below. Among these carriers, those in which the surface of the carrier is chemically modified are preferable, and those in which the surface of the silica powder is chemically modified are more preferable. These carriers preferably have an average particle size of 0.1 to 100 μm, and more preferably 0.5 to 50 μm.
 本発明の帯電防止剤の合成樹脂への配合方法としては、ブロックポリマー(C)と、エポキシ基を2個以上有するエポキシ化合物(D)とを合成樹脂と同時に練り込みながら、本発明の帯電防止剤である高分子化合物(E)を合成して配合してもよく、そのときにさらにアルカリ金属の塩およびイオン性液体の群から選択される1種以上を同時に練り込んでもよく、また、射出成形等の成形時に本発明の帯電防止剤と合成樹脂とを混合して成形品を得る方法で配合してもよく、そのときにさらにアルカリ金属の塩およびイオン性液体の群から選択される1種以上を配合してもよく、さらに、あらかじめ本発明の帯電防止剤と合成樹脂とのマスターバッチを製造しておき、このマスターバッチを配合してもよく、そのときにアルカリ金属の塩およびイオン性液体の群から選択される1種以上を配合してもよい。 As a method of blending the antistatic agent of the present invention into the synthetic resin, the antistatic agent of the present invention is kneaded with the block polymer (C) and the epoxy compound (D) having two or more epoxy groups at the same time as the synthetic resin. The polymer compound (E) as an agent may be synthesized and blended, and at that time, one or more selected from the group of an alkali metal salt and an ionic liquid may be kneaded at the same time, or may be injected. The antistatic agent of the present invention and a synthetic resin may be mixed at the time of molding such as molding to obtain a molded product, and at that time, the epoxy is further selected from the group of alkali metal salts and ionic liquids. Seeds or more may be blended, and a master batch of the antioxidant of the present invention and the synthetic resin may be manufactured in advance, and this master batch may be blended. At that time, alkali metal salts and ions may be blended. One or more selected from the group of sex liquids may be blended.
 本発明の樹脂組成物には、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の各種添加剤をさらに添加することができ、これにより、本発明の樹脂組成物を安定化させることができる。 Various additives such as phenol-based antioxidants, phosphorus-based antioxidants, thioether-based antioxidants, ultraviolet absorbers, and hindered amine-based light stabilizers are further added to the resin composition of the present invention, if necessary. This allows the resin composition of the present invention to be stabilized.
 これら酸化防止剤等の各種添加剤は、合成樹脂に配合するまえに、本発明の帯電防止剤組成物中に配合しておいてもよい。さらには本発明の帯電防止剤である高分子化合物(E)の製造時に配合しておいてもよい。特に酸化防止剤は、高分子化合物(E)の製造時に配合することで、製造中の高分子化合物(E)の酸化劣化も防ぐことができるので好ましい。 Various additives such as these antioxidants may be added to the antistatic agent composition of the present invention before being added to the synthetic resin. Further, it may be blended at the time of producing the polymer compound (E) which is the antistatic agent of the present invention. In particular, the antioxidant is preferable because it can prevent oxidative deterioration of the polymer compound (E) during production by blending it at the time of producing the polymer compound (E).
 フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の添加量は、合成樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of the phenolic antioxidant include 2,6-ditertiary butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, and distearyl (3,5-ditertiary butyl-4-4). Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-dithiary butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tertiary butyl-m-cresol) , 2,2'-Methylenebis (4-methyl-6-tertiary butylphenol), 2,2'-methylenebis (4-ethyl-6-third butylphenol), 4,4'-butylidenebis (6-tertiary butyl-) m-cresol), 2,2'-ethylidenebis (4,6-di-tertiary butylphenol), 2,2'-etiridenbis (4-second butyl-6-third butylphenol), 1,1,3- Tris (2-methyl-4-hydroxy-5-3 butylphenyl) butane, 1,3,5-tris (2,6-dimethyl-3-hydroxy-4-3 butylbenzyl) isocyanurate, 1,3 , 5-Tris (3,5-di-tertiary butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-Tris (3,5-di-tertiary butyl-4-hydroxybenzyl) -2,4,5 -Trimethylbenzene, 2-third butyl-4-methyl-6- (2-acryloyloxy-3-third butyl-5-methylbenzyl) phenol, stearyl (3,5-ditriary butyl-4-hydroxyphenyl) ) Propionate, tetrakis [3- (3,5-ditriary butyl-4-hydroxyphenyl) methyl propionate] methane, thiodiethylene glycol bis [(3,5-ditritiary butyl-4-hydroxyphenyl) propionate], 1,6-Hexamethylenebis [(3,5-ditertiary butyl-4-hydroxyphenyl) propionate], bis [3,3-bis (4-hydroxy-3-third butylphenyl) butyric acid] glycol Estel, bis [2-tertiary butyl-4-methyl-6- (2-hydroxy-3-third butyl-5-methylbenzyl) phenyl] terephthalate, 1,3,5-tris [(3,5-di) Tertiary Butyl-4-Hydroxyphenyl) Propionyloxyethyl] Isocyanurate, 3,9-Bis [1,1-Dimethyl-2-{(3-Triary Butyl-4-Hydroxy-5-Methylphenyl) Propionyloxy} Ethyl] -2,4,8,10-tetraoxaspiro [5,5] un Examples thereof include decane and triethylene glycol bis [(3-tertiary butyl-4-hydroxy-5-methylphenyl) propionate]. The amount of these phenolic antioxidants added is preferably 0.001 to 10 parts by mass and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
 リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、合成樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of phosphorus-based antioxidants include trisnonylphenyl phosphite and tris [2-tertiary butyl-4- (3-third butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phos. Fight, tridecylphosphite, octyldiphenylphosphite, di (decyl) monophenylphosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-dith) Tributylphenyl) pentaerythritol diphosphite, bis (2,6-ditetrabutyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritrith butylphenyl) pentaerythritol diphos Fight, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, tetra (tridecyl) isopropyridene diphenol diphosphite, tetra (tridecyl) -4,4'-n-butylidenebis (2-third butyl-) 5-Methylphenol) diphosphite, hexa (tridecyl) -1,1,3-tris (2-methyl-4-hydroxy-5-3 butylphenyl) butanetriphosphite, tetrakis (2,4-ditertiary butylphenyl) ) Biphenylenediphosphonite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 2,2'-methylenebis (4,6-teriary butylphenyl) -2-ethylhexylphosphite , 2,2'-Methylenebis (4,6-3rd Butylphenyl) -Octadecylphosphite, 2,2'-Echilidenebis (4,6-di3rd Butylphenyl) Fluorophosphite, Tris (2-[( 2,4,8,10-Tetraxyl butyldibenzo [d, f] [1,3,2] dioxaphosfepin-6-yl) oxy] ethyl) amine, 2-ethyl-2-butylpropylene glycol And 2,4,6-tritrith butylphenol phosphite and the like. The amount of these phosphorus-based antioxidants added is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
 チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸)エステル類が挙げられる。これらのチオエーテル系酸化防止剤の添加量は、合成樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of the thioether-based antioxidant include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra (β-alkylthiopropionic acid) ester. Kind. The amount of these thioether-based antioxidants added is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the synthetic resin.
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の添加量は、合成樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5'-methylenebis (2-hydroxy-4-methoxybenzophenone). 2-Hydroxybenzophenones such as 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-ditertiary butylphenyl) -5-chlorobenzo Triazol, 2- (2'-hydroxy-3'-tertiary butyl-5'-methylphenyl) -5-chlorobenzotriazol, 2- (2'-hydroxy-5'-tertiary octyl) Phenyl) benzotriazol, 2- (2'-hydroxy-3', 5'-dicumylphenyl) benzotriazol, 2,2'-methylenebis (4-third octyl-6- (benzotriazolyl) phenol ), 2- (2'-Hydroxyphenyl) benzotriazoles such as 2- (2'-hydroxy-3'-tertiary butyl-5'-carboxyphenyl) benzotriazole; phenylsalicylate, resorcinol monobenzoate, 2,4 -Di-tertiary butylphenyl-3,5-di-tertiary butyl-4-hydroxybenzoate, 2,4-di-tertiary amylphenyl-3,5-di-tertiary butyl-4-hydroxybenzoate, hexadecyl-3.5 -Benzoates such as di-tertiary butyl-4-hydroxybenzoate; substituted oxanilides such as 2-ethyl-2'-ethoxyoxanilide and 2-ethoxy-4'-dodecyloxanilide; ethyl-α-cyano- Cyanoacrylates such as β, β-diphenyl acrylate, methyl-2-cyano-3-methyl-3- (p-methoxyphenyl) acrylate; 2- (2-hydroxy-4-octoxyphenyl) -4,6- Bis (2,4-ditertiary butylphenyl) -s-triazine, 2- (2-hydroxy-4-methoxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy) Examples thereof include triaryltriazines such as -5-methylphenyl) -4,6-bis (2,4-ditetrabutylphenyl) -s-triazine. The amount of these ultraviolet absorbers added is preferably 0.001 to 30 parts by mass, and more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the synthetic resin.
 ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、1,2,3,4-ブタンカルボン酸/2,2-ビス(ヒドロキシメチル)-1,3-プロパンジオール/3-ヒドロキシ-2,2-ジメチルプロパナール/1,2,2,6,6-ペンタメチル-4-ピペリジニルエステル重縮合物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=デカンジオアート/メチル=1,2,2,6,6-ペンタメチル-4-ピペリジル=セバカート混合物、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8,12-テトラアザドデカン、1,6,11-トリス[2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ]ウンデカン、1,6,11-トリス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ]ウンデカン、3,9-ビス〔1,1-ジメチル-2-{トリス(2,2,6,6-テトラメチル-4-ピペリジルオキシカルボニル)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、3,9-ビス〔1,1-ジメチル-2-{トリス(1,2,2,6,6-ペンタメチル-4-ピペリジルオキシカルボニル)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、ビス(1-ウンデシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6-テトラメチル-4-ピペリジルヘキサデカノエート、2,2,6,6-テトラメチル-4-ピペリジルオクタデカノエート等のヒンダードアミン化合物が挙げられる。これらのヒンダードアミン系光安定剤の添加量は、合成樹脂100質量部に対して0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 Examples of the hindered amine-based photostabilizer include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6. , 6-Tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane Tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, bis (2,2,6,6-tetramethyl-4) -Piperidil) bis (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) bis (tridecyl) -1,2, 3,4-Butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2-butyl-2- (3,5-ditertiary butyl-4-hydroxybenzyl) malonate , 1,2,2,6,6-pentamethyl-4-piperidylmethacrylate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4- Diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], 1,2,3 4-Butancarboxylic acid / 2,2-bis (hydroxymethyl) -1,3-propanediol / 3-hydroxy-2,2-dimethylpropanal / 1,2,2,6,6-pentamethyl-4-pipe Ridinyl ester polycondensate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) = decandioate / methyl = 1,2,2,6,6-pentamethyl-4-piperidyl = sebacato mixture, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 1- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol / diethyl succinate polycondensate, 1,6 -Bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / dibromoethane polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4- Piperidineamino) hexane / 2,4-dichloro-6-morpholino-s-triazine polycondensate, 1,6-bis (2,2,6,6-tetramethyl-4-piperidylamino) hexane / 2,4- Dichloro-6-3 octylamino-s-triazine polycondensate, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (2,2,6,6-tetramethyl-) 4-Piperidyl) amino) -s-triazine-6-yl] -1,5,8,12-tetraazadodecane, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N-) (1,2,2,6,6-pentamethyl-4-piperidyl) amino) -s-triazine-6-yl] -1,5,8,12-tetraazadodecane, 1,6,11-tris [2 , 4-bis (N-butyl-N- (2,2,6,6-tetramethyl-4-piperidyl) amino) -s-triazine-6-ylamino] undecane, 1,6,11-tris [2, 4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino) -s-triazine-6-ylamino] undecane, 3,9-bis [1,1-bis] Dimethyl-2- {tris (2,2,6,6-tetramethyl-4-piperidyloxycarbonyl) butylcarbonyloxy} ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 3 , 9-bis [1,1-dimethyl-2- {tris (1,2,2,6,6-pentamethyl-4-piperidyloxycarbonyl) butylcarbonyloxy} ethyl] -2,4,8,10-tetra Oxaspiro [5.5] undecane, bis (1-undecyloxy-2,2,6,6-tetramethylpiperidine-4-yl) carbonate, 2,2,6,6-tetramethyl-4-piperidylhexa Examples thereof include hindered amine compounds such as decanoate and 2,2,6,6-tetramethyl-4-piperidyl octadecanoate. The amount of these hindered amine-based light stabilizers added is preferably 0.001 to 30 parts by mass, and more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the synthetic resin.
 また、合成樹脂としてポリオレフィン系樹脂を使用する場合は、本発明の効果を損なわない範囲で、必要に応じてさらに、ポリオレフィン樹脂中の残渣触媒を中和するために、公知の中和剤を添加することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられ、これら中和剤は混合して用いてもよい。 When a polyolefin resin is used as the synthetic resin, a known neutralizing agent is added as necessary to further neutralize the residual catalyst in the polyolefin resin as long as the effects of the present invention are not impaired. It is preferable to do so. Examples of the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearoamide), ethylene bis (12-hydroxystearoamide), and stearic acid amide. Compounds are mentioned, and these neutralizing agents may be mixed and used.
 本発明の樹脂組成物には、その他の添加剤として、必要に応じてさらに、本発明の効果を損なわない範囲で、芳香族カルボン酸金属塩、脂環式アルキルカルボン酸金属塩、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、三酸化アンチモン等の酸化アンチモン、その他の無機系難燃助剤、その他の有機系難燃助剤、充填剤、顔料、滑剤、発泡剤等を添加してもよい。 In the resin composition of the present invention, as other additives, if necessary, an aromatic carboxylic acid metal salt, an alicyclic alkyl carboxylic acid metal salt, p-th, as long as the effects of the present invention are not impaired. Tributylaluminum benzoate, aromatic phosphate metal salts, nucleating agents such as dibenzylidene sorbitols, metal soaps, hydrotalcites, triazine ring-containing compounds, metal hydroxides, phosphoric acid ester flame retardants, condensed phosphorus Acid ester flame retardants, inorganic phosphorus flame retardants, (poly) phosphate flame retardants, halogen flame retardants, silicon flame retardants, antioxidants such as antimon trioxide, other inorganic flame retardants, etc. Organic flame retardant aids, fillers, pigments, lubricants, foaming agents and the like may be added.
 トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。 Examples of the triazine ring-containing compound include melamine, ammeline, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylene guanamine, norbornene diguanamine, methylene diguanamine, ethylene dimeramine, and trimethylene di. Examples thereof include melamine, tetramethylene dimelamine, hexamethylene dimelamine, and 1,3-hexylene melamine.
 金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。 Examples of the metal hydroxide include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
 リン酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリスイソプロピルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等が挙げられる。 Examples of the phosphoric acid ester flame retardant include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyldiphenyl phosphate, and triki. Sirenyl phosphate, octyldiphenyl phosphate, xylenyldiphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyldiphenyl phosphate, t-butylphenyldiphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) ) Phosphate, isopropylphenyldiphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate and the like.
 縮合リン酸エステル系難燃剤の例としては、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。 Examples of the condensed phosphate ester flame retardant include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate) and the like.
 (ポリ)リン酸塩系難燃剤の例としては、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン等の(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。 Examples of (poly) phosphate-based flame retardants include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate.
 その他の無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、タルク、モンモリロナイト等の無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)等の種々の市販品を用いることができる。また、その他の有機系難燃助剤としては、例えば、ペンタエリスリトールが挙げられる。 Examples of other inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talcite, and montmorillonite, and surface-treated products thereof. For example, TIPAQUE R-680 ( Titanium oxide: Ishihara Sangyo Co., Ltd., Kyowa Mag 150 (magnesium oxide: Kyowa Chemical Industry Co., Ltd.), DHT-4A (hydrotalcite: Kyowa Chemical Industry Co., Ltd.), Alchemizer 4 (zinc-modified hydro) Hydrotalcite: Various commercially available products such as Kyowa Chemical Industry Co., Ltd. can be used. Further, as another organic flame retardant, for example, pentaerythritol can be mentioned.
 その他、本発明の樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、通常合成樹脂に使用される添加剤、例えば、架橋剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、加工助剤、酸化防止剤、光安定剤等を、本発明の効果を損なわない範囲で配合することができる。 In addition, the resin composition of the present invention includes additives usually used for synthetic resins, such as a cross-linking agent, an antifogging agent, and a plate-out inhibitor, as needed, as long as the effects of the present invention are not impaired. Surface treatment agents, plasticizers, lubricants, flame retardants, fluorescent agents, fungicides, bactericides, foaming agents, metal deactivators, mold release agents, pigments, processing aids, antioxidants, light stabilizers, etc. It can be blended within a range that does not impair the effects of the present invention.
 本発明の樹脂組成物に配合される添加剤は、合成樹脂に直接添加してもよく、本発明の帯電防止剤である高分子化合物(E)または帯電防止剤組成物に配合してから、合成樹脂に添加してもよい。 The additive to be blended in the resin composition of the present invention may be added directly to the synthetic resin, and after being blended in the polymer compound (E) which is the antistatic agent of the present invention or the antistatic agent composition, It may be added to the synthetic resin.
 本発明の樹脂組成物を成形することにより、帯電防止性を有する樹脂成形体を得ることができる。成形方法としては、特に限定されるものではなく、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形品が製造できる。 By molding the resin composition of the present invention, a resin molded product having antistatic properties can be obtained. The molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotary molding, and the like, and include resin plates, sheets, films, bottles, fibers, and deformed products. It is possible to manufacture molded products having various shapes such as.
 本発明の樹脂組成物により得られる成形体は、帯電防止性能およびその持続性に優れるものである。本発明の樹脂組成物により得られる成形体は、静電気が発生しにくく、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくい成形体である。 The molded product obtained by the resin composition of the present invention is excellent in antistatic performance and its durability. The molded product obtained from the resin composition of the present invention is a molded product that does not easily generate static electricity and does not easily cause surface contamination due to static electricity or deterioration of commercial value due to adhesion of dust.
 本発明の樹脂組成物により得られる成形体の中でも、特にフィルムは、帯電防止性とその持続性、フィルムの透明性に優れるため好ましい。これらフィルムは、静電気が発生しにくく、静電気による表面の汚染や埃の付着による商品価値の下落を生じにくく、さらに透明性に優れたフィルムである。そのため、電気・電子部品、電気・電子製品、精密部品、精密機器等の包装材等に好適である。 Among the molded products obtained by the resin composition of the present invention, the film is particularly preferable because it is excellent in antistatic property, its durability, and the transparency of the film. These films are less likely to generate static electricity, are less likely to cause surface contamination due to static electricity, and are less likely to lose their commercial value due to adhesion of dust, and are also excellent in transparency. Therefore, it is suitable for packaging materials for electric / electronic parts, electric / electronic products, precision parts, precision equipment, and the like.
 本発明の樹脂組成物により得られるフィルムは透明性に優れる。フィルムの透明性としては、厚さ50μmにおけるHaze値(曇り度)が、0%以上40.0%以下であるものが好ましく、0%以上35.0%以下であるものがより好ましい。なお、Haze値の測定は、JIS K 7136に準拠して測定することができる。 The film obtained by the resin composition of the present invention has excellent transparency. As the transparency of the film, the Haze value (cloudiness) at a thickness of 50 μm is preferably 0% or more and 40.0% or less, and more preferably 0% or more and 35.0% or less. The Haze value can be measured in accordance with JIS K7136.
 本発明の樹脂組成物およびこれを用いた成形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用できる。 The resin composition of the present invention and a molded product using the same can be used for electricity / electronics / communication, agriculture, forestry and fisheries, mining, construction, food, textiles, clothing, medical care, coal, petroleum, rubber, leather, automobiles, precision equipment, and wood. Can be used in a wide range of industrial fields such as building materials, civil engineering, furniture, printing, and musical instruments.
 より具体的には、本発明の樹脂組成物およびその成形体は、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器、自動車用内外装材、製版用フィルム、粘着フィルム、ボトル、食品用容器、食品包装用フィルム、製薬・医薬用ラップフィルム、製品包装フィルム、農業用フィルム、農業用シート、温室用フィルム、電気・電子部品用包装フィルム等の用途に用いられる。 More specifically, the resin composition of the present invention and a molded product thereof include a printer, a personal computer, a word processor, a keyboard, a PDA (small information terminal), a telephone, a copying machine, a facsimile, an ECR (electronic money registration machine), and the like. Office work such as calculators, electronic notebooks, cards, holders, stationery, OA equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, home appliances such as kotatsu, TVs, VTRs, video cameras, radio cassettes , Tape recorder, mini disc, CD player, speaker, AV equipment such as liquid crystal display, connector, relay, condenser, switch, printed board, coil bobbin, semiconductor encapsulation material, LED encapsulation material, electric wire, cable, transformer, deflection yoke , Distribution boards, electrical and electronic parts such as watches and communication equipment, interior and exterior materials for automobiles, plate making films, adhesive films, bottles, food containers, food packaging films, pharmaceutical / pharmaceutical wrap films, product packaging films , Agricultural film, agricultural sheet, greenhouse film, packaging film for electrical and electronic parts, etc.
 さらに、本発明の樹脂組成物およびその成形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の自動車、車両、船舶、航空機、建物、住宅および建築用材料や土木材料、衣料、カーテン、シーツ、不織布、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品等の各種用途に使用することができる。 Further, the resin composition of the present invention and a molded product thereof are used for seats (filling, outer material, etc.), belts, ceiling coverings, compatible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers, mattress covers. , Airbags, Insulations, Hanging Hands, Hanging Bands, Wire Coatings, Electrical Insulations, Paints, Coatings, Upholstery, Flooring, Corner Walls, Carpets, Wallpapers, Wall Covers, Exteriors, Interior Materials , Roofing materials, deck materials, wall materials, pillar materials, floor boards, wall materials, skeletons and plywood, window and door shapes, moss boards, siding, terraces, balconies, soundproof boards, heat insulating boards, window materials, etc. Automobiles, vehicles, ships, aircraft, buildings, housing and building materials and civil engineering materials, clothing, curtains, sheets, non-woven fabrics, plywood, synthetic fiber boards, rugs, entrance mats, sheets, buckets, hoses, containers, glasses, bags, cases , Goggles, ski boards, rackets, tents, daily necessities such as musical instruments, sporting goods, etc.
 以下、本発明を、実施例を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 下記の製造例に従い、高分子化合物(E)を製造した。また、下記の製造例において、ポリエステル(a)およびブロックポリマー(C)の数平均分子量は、下記<酸価測定法による数平均分子量の算出方法>で算出し、化合物(b)の数平均分子量は、下記<水酸基価測定法による数平均分子量の算出方法>で算出した。 The polymer compound (E) was produced according to the following production example. Further, in the following production example, the number average molecular weights of the polyester (a) and the block polymer (C) are calculated by the following <method for calculating the number average molecular weight by the acid value measurement method>, and the number average molecular weight of the compound (b). Was calculated by the following <method for calculating the number average molecular weight by the hydroxyl value measurement method>.
<酸価測定法による数平均分子量の算出方法>
 下記酸価の測定方法で酸価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 Mn=112220/酸価
<Calculation method of number average molecular weight by acid value measurement method>
The acid value was measured by the following acid value measuring method, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
Mn = 112220 / acid value
<酸価の測定方法>
 まず、100mL三角フラスコにサンプルを0.2g量りとり、キシレン/エタノール溶液40mLを加え、溶解させる。0.1N-KOH水溶液で滴定し、下式で計算する。
 酸価[mgKOH/g]=56.11×f×T/S
 f:0.1N-KOH水溶液のfactor
 T:本試験滴定量[mL]
 S:サンプル量[g]
<Measurement method of acid value>
First, 0.2 g of a sample is weighed in a 100 mL Erlenmeyer flask, and 40 mL of a xylene / ethanol solution is added to dissolve the sample. Titrate with 0.1N-KOH aqueous solution and calculate by the following formula.
Acid value [mgKOH / g] = 56.11 × f × T / S
f: factor of 0.1N-KOH aqueous solution
T: Quantitative test titration [mL]
S: Sample amount [g]
<水酸基価測定法による数平均分子量の算出方法>
 下記水酸基価の測定方法で水酸基価を測定し、下記式で数平均分子量(以下「Mn」とも称する)を決定した。
 数平均分子量=(56110×2)/水酸基価
<Calculation method of number average molecular weight by hydroxyl value measurement method>
The hydroxyl value was measured by the following method for measuring the hydroxyl value, and the number average molecular weight (hereinafter, also referred to as “Mn”) was determined by the following formula.
Number average molecular weight = (56110 × 2) / hydroxyl value
<水酸基価の測定方法>
・試薬A(アセチル化剤)
(1)トリエチルホスフェート 1560mL
(2)無水酢酸 193mL
(3)過塩素酸(60%) 16g
 上記試薬を(1)→(2)→(3)の順に混合する。
・試薬B
 ピリジンと純水を体積比率で3:1に混合する。
・試薬C
 500mLのイソプロピルアルコールにフェノールフタレイン液を2~3滴加え、1N-KOH水溶液で中性にする。
<Measurement method of hydroxyl value>
・ Reagent A (acetylating agent)
(1) Triethyl phosphate 1560 mL
(2) Acetic anhydride 193 mL
(3) Perchloric acid (60%) 16g
The above reagents are mixed in the order of (1) → (2) → (3).
・ Reagent B
Pyridine and pure water are mixed in a volume ratio of 3: 1.
・ Reagent C
Add 2-3 drops of phenolphthalein solution to 500 mL of isopropyl alcohol and neutralize with 1N-KOH aqueous solution.
 まず、200mL三角フラスコにサンプルを2g量りとり、トリエチルホスフェート10mLを加え、加熱溶解させる。試薬A15mLを加え、共栓をして激しく振盪する。試薬B20mLを加え、共栓をして激しく振盪する。試薬C50mLを加える。1N-KOH水溶液で滴定し、下式で計算する。
 水酸基価[mgKOH/g]=56.11×f×(T-B)/S
 f:1N-KOH水溶液のfactor
 B:空試験滴定量[mL]
 T:本試験滴定量[mL]
 S:サンプル量[g]
First, weigh 2 g of a sample into a 200 mL Erlenmeyer flask, add 10 mL of triethyl phosphate, and heat to dissolve. Add 15 mL of Reagent A, plug and shake vigorously. Add 20 mL of Reagent B, plug and shake vigorously. Add 50 mL of Reagent C. Titrate with 1N-KOH aqueous solution and calculate by the following formula.
Hydroxy group value [mgKOH / g] = 56.11 × f × (TB) / S
f: Factor of 1N-KOH aqueous solution
B: Empty test titration [mL]
T: Quantitative test titration [mL]
S: Sample amount [g]
〔製造例1〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを87.3g(0.61モル)、セバシン酸を127.9g(0.63モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-1を得た。得られたポリエステル(a)-1の酸価は16、数平均分子量は7,000であった。
[Manufacturing Example 1]
In a separable flask, 87.3 g (0.61 mol) of 1,4-cyclohexanedimethanol, 127.9 g (0.63 mol) of sebacic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually raising the temperature from 140 ° C to 190 ° C. To obtain polyester (a) -1. The obtained polyester (a) -1 had an acid value of 16 and a number average molecular weight of 7,000.
 次に、得られたポリエステル(a)-1を193.4g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを68.1g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1を238.3g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1の酸価は2.9、数平均分子量は38,000であった。 Next, 193.4 g of the obtained polyester (a) -1 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. 68.1 g of polyethylene glycol of = 75, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, and polymerized at 200 ° C. for 3 hours under reduced pressure to carboxyl to both ends. 238.3 g of block polymer (C) -1 having a structure having a group was obtained. The acid value of the block polymer (C) -1 having a structure having a carboxyl group at both ends was 2.9, and the number average molecular weight was 38,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1の220.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)0.87gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-1を205.5g得た。得られた高分子化合物(E)-1の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は26質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) was obtained as an epoxy compound (D) -1 having two or more epoxy groups in 220.0 g of the obtained block polymer (C) -1 having a structure having carboxyl groups at both ends. 170 g / eq) 0.87 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 205.5 g of the polymer compound (E) -1. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -1 was 26% by mass.
〔製造例2〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを97.4g(0.68モル)、セバシン酸を147.5g(0.73モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-2を得た。得られたポリエステル(a)-2の酸価は28、数平均分子量は4,000であった。
[Manufacturing Example 2]
In a separable flask, 97.4 g (0.68 mol) of 1,4-cyclohexanedimethanol, 147.5 g (0.73 mol) of sebacic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually raising the temperature from 140 ° C to 190 ° C. Obtained polyester (a) -2. The obtained polyester (a) -2 had an acid value of 28 and a number average molecular weight of 4,000.
 次に、得られたポリエステル(a)-2を220.6g、両末端に水酸基を有する化合物(b)-2として数平均分子量3,100(水酸基価36)、エチレンオキシ基の繰り返し単位の数=70のポリエチレングリコールを85.3g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2を278.3g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2の酸価は10、数平均分子量は10,000であった。 Next, 220.6 g of the obtained polyester (a) -2 was used as compound (b) -2 having hydroxyl groups at both ends, the number average molecular weight was 3,100 (hydroxyl value 36), and the number of repeating units of ethyleneoxy groups. 85.3 g of polyethylene glycol of = 70, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, and polymerized at 200 ° C. for 3 hours under reduced pressure to carboxyl to both ends. 278.3 g of block polymer (C) -2 having a structure having a group was obtained. The acid value of the block polymer (C) -2 having a structure having a carboxyl group at both ends was 10, and the number average molecular weight was 10,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2の260.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-2として、ジシクロペンタジエンジメタノールジグリシジルエーテル(エポキシ当量170g/eq)3.47gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-2を248.6g得た。得られた高分子化合物(E)-2の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は28質量%であった。 Dicyclopentadiene dimethanol diglycidyl ether as an epoxy compound (D) -2 having two or more epoxy groups in 260.0 g of the obtained block polymer (C) -2 having a structure having carboxyl groups at both ends. 3.47 g (epoxy equivalent 170 g / eq) was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 248.6 g of polymer compound (E) -2. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -2 was 28% by mass.
〔製造例3〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを55.5g(0.38モル)、アジピン酸を59.2g(0.41モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-3を得た。得られたポリエステル(a)-3の酸価は22、数平均分子量は5,000であった。
[Manufacturing Example 3]
In a separable flask, 55.5 g (0.38 mol) of 1,4-cyclohexanedimethanol, 59.2 g (0.41 mol) of adipic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually raising the temperature from 140 ° C to 190 ° C. To obtain polyester (a) -3. The obtained polyester (a) -3 had an acid value of 22 and a number average molecular weight of 5,000.
 次に、得られたポリエステル(a)-3を100.8g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを49.5g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3を118.2g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3の酸価は3.8、数平均分子量は29,500であった。 Next, 100.8 g of the obtained polyester (a) -3 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. = 75 g of polyethylene glycol, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 118.2 g of block polymer (C) -3 having a structure having a group was obtained. The acid value of the block polymer (C) -3 having a structure having a carboxyl group at both ends was 3.8, and the number average molecular weight was 29,500.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3の100.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)0.63gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-3を93.2g得た。得られた高分子化合物(E)-3の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は33質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -3 having a structure having carboxyl groups at both ends. 170 g / eq) 0.63 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 93.2 g of the polymer compound (E) -3. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -3 was 33% by mass.
〔製造例4〕
 セパラブルフラスコに、1,6-ヘキサンジオールを56.7g(0.48モル)、セバシン酸を105.1g(0.52モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-4を得た。得られたポリエステル(a)-4の酸価は31、数平均分子量は3,600であった。
[Manufacturing Example 4]
In a separable flask, 56.7 g (0.48 mol) of 1,6-hexanediol, 105.1 g (0.52 mol) of sebacic acid, and an antioxidant (tetrakis [3- (3,5-dith)). Tributyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually increasing the temperature from 140 ° C to 190 ° C. , Polyester (a) -4 was obtained. The obtained polyester (a) -4 had an acid value of 31 and a number average molecular weight of 3,600.
 次に、得られたポリエステル(a)-4を144.5g、両末端に水酸基を有する化合物(b)-2として数平均分子量3,100(水酸基価36)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを88.0g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-4を202.3g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-4の酸価は6.5、数平均分子量は17,400であった。 Next, 144.5 g of the obtained polyester (a) -4 was used as compound (b) -2 having hydroxyl groups at both ends, the number average molecular weight was 3,100 (hydroxyl value 36), and the number of repeating units of ethyleneoxy groups. 88.0 g of polyethylene glycol of = 75, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, and polymerized at 200 ° C. for 3 hours under reduced pressure to carboxyl to both ends. 202.3 g of block polymer (C) -4 having a structure having a group was obtained. The acid value of the block polymer (C) -4 having a structure having a carboxyl group at both ends was 6.5, and the number average molecular weight was 17,400.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-4の150.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)1.68gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-4を128.2g得た。得られた高分子化合物(E)-4の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は38質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 150.0 g of the obtained block polymer (C) -4 having a structure having carboxyl groups at both ends. 170 g / eq) 1.68 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 128.2 g of the polymer compound (E) -4. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -4 was 38% by mass.
〔製造例5〕
 製造例4と同様にして得られたポリエステル(a)-4(酸価は31、数平均分子量は3,600)を160.5g、両末端に水酸基を有する化合物(b)-3として数平均分子量2,000(水酸基価56)、エチレンオキシ基の繰り返し単位の数=45のポリエチレングリコールを53.3g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-5を179.3g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-5の酸価は7.0、数平均分子量は16,000であった。
[Manufacturing Example 5]
160.5 g of polyester (a) -4 (acid value 31, number average molecular weight is 3,600) obtained in the same manner as in Production Example 4 is numerically averaged as compound (b) -3 having hydroxyl groups at both ends. 53.3 g of polyethylene glycol having a molecular weight of 2,000 (hydroxyl value 56) and 45 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), and 0.4 g of zirconium octylate were charged. , Polymerized at 200 ° C. for 3 hours under reduced pressure to obtain 179.3 g of block polymer (C) -5 having a structure having a carboxyl group at both ends. The block polymer (C) -5 having a structure having a carboxyl group at both ends had an acid value of 7.0 and a number average molecular weight of 16,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-5の150.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-3として、水素添加ビスフェノールAジグリシジルエーテル(エポキシ当量215g/eq)2.1gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-5を139.8g得た。得られた高分子化合物(E)-5の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は25質量%であった。 Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 150.0 g of the obtained block polymer (C) -5 having a structure having carboxyl groups at both ends. 2.1 g of epoxy equivalent (215 g / eq) was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 139.8 g of the polymer compound (E) -5. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -5 was 25% by mass.
〔製造例6〕
 セパラブルフラスコに、1,12-ドデカンジオールを97.8g(0.48モル)、テレフタル酸を84.9g(0.51モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-5を得た。得られたポリエステル(a)-5の酸価は18、数平均分子量は6,000であった。
[Manufacturing Example 6]
In a separable flask, 97.8 g (0.48 mol) of 1,12-dodecanediol, 84.9 g (0.51 mol) of terephthalic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tributyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually increasing the temperature from 140 ° C to 190 ° C. , Polyester (a) -5 was obtained. The obtained polyester (a) -5 had an acid value of 18 and a number average molecular weight of 6,000.
 次に、得られたポリエステル(a)-5を165.3g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを68.1g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-6を199.6g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-6の酸価は3.3、数平均分子量は34,000であった。 Next, 165.3 g of the obtained polyester (a) -5 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. 68.1 g of polyethylene glycol of = 75, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, and polymerized at 200 ° C. for 3 hours under reduced pressure to carboxyl to both ends. 199.6 g of block polymer (C) -6 having a structure having a group was obtained. The block polymer (C) -6 having a structure having a carboxyl group at both ends had an acid value of 3.3 and a number average molecular weight of 34,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-6の160.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-3として、水素添加ビスフェノールAジグリシジルエーテル(エポキシ当量215g/eq)1.1gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-6を143.8g得た。得られた高分子化合物(E)-6の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は29質量%であった。 Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 160.0 g of the obtained block polymer (C) -6 having a structure having carboxyl groups at both ends. 1.1 g of epoxy equivalent (215 g / eq) was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 143.8 g of the polymer compound (E) -6. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -6 was 29% by mass.
〔製造例7〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを91.2g(0.63モル)、アジピン酸を96.5g(0.66モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-6を得た。得られたポリエステル(a)-6の酸価は18、数平均分子量は6,000であった。
[Manufacturing Example 7]
In a separable flask, 91.2 g (0.63 mol) of 1,4-cyclohexanedimethanol, 96.5 g (0.66 mol) of adipic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually raising the temperature from 140 ° C to 190 ° C. To obtain polyester (a) -6. The obtained polyester (a) -6 had an acid value of 18 and a number average molecular weight of 6,000.
 次に、得られたポリエステル(a)-6を164.9g、両末端に水酸基を有する化合物(b)-3として数平均分子量2,000(水酸基価56)、エチレンオキシ基の繰り返し単位の数=45のポリエチレングリコールを36.7g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-7を191.9g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-7の酸価は5.2、数平均分子量は22,000であった。 Next, 164.9 g of the obtained polyester (a) -6 was used as compound (b) -3 having hydroxyl groups at both ends, the number average molecular weight was 2,000 (hydroxyl value 56), and the number of repeating units of ethyleneoxy groups. 36.7 g of polyethylene glycol of = 45, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 191.9 g of block polymer (C) -7 having a structure having a group was obtained. The block polymer (C) -7 having a structure having a carboxyl group at both ends had an acid value of 5.2 and a number average molecular weight of 22,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-7の100.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)0.55gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-7を87.5g得た。得られた高分子化合物(E)-7の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は18質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -7 having a structure having carboxyl groups at both ends. 170 g / eq) 0.55 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 87.5 g of the polymer compound (E) -7. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -7 was 18% by mass.
〔製造例8〕
 セパラブルフラスコに、1,6-ヘキサンジオール30.3g(0.26モル)、セバシン酸を59.9g(0.30モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-7を得た。得られたポリエステル(a)-7の酸価は55、数平均分子量は2,000であった。
[Manufacturing Example 8]
In a separable flask, 30.3 g (0.26 mol) of 1,6-hexanediol, 59.9 g (0.30 mol) of sebacic acid, and an antioxidant (tetrakis [3- (3,5-dith)) Butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually increasing the temperature from 140 ° C to 190 ° C. Polyester (a) -7 was obtained. The obtained polyester (a) -7 had an acid value of 55 and a number average molecular weight of 2,000.
 次に、得られたポリエステル(a)-7を80.9g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを99.0g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-8を165.2g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-8の酸価は5.8、数平均分子量は19,200であった。 Next, 80.9 g of the obtained polyester (a) -7 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. 99.0 g of polyethylene glycol = 75, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 165.2 g of block polymer (C) -8 having a structure having a group was obtained. The block polymer (C) -8 having a structure having a carboxyl group at both ends had an acid value of 5.8 and a number average molecular weight of 19,200.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-8の100.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)0.70gを仕込み、220℃で5時間、減圧下で重合して、高分子化合物(E)-8を89.0g得た。得られた高分子化合物(E)-8の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は55質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -8 having a structure having carboxyl groups at both ends. 170 g / eq) 0.70 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 89.0 g of the polymer compound (E) -8. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -8 was 55% by mass.
〔製造例9〕
 セパラブルフラスコに、水素添加ビスフェノールAを201.6g(0.84モル)、アジピン酸を130.9g(0.90モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.4g仕込み、140℃から200℃まで徐々に昇温しながら常圧で3時間、減圧下で3時間重合して、ポリエステル(a)-8を得た。得られたポリエステル(a)-8の酸価は22、数平均分子量は5,000であった。
[Manufacturing Example 9]
In a separable flask, 201.6 g (0.84 mol) of hydrogenated bisphenol A, 130.9 g (0.90 mol) of adipic acid, and an antioxidant (tetrakis [3- (3,5-ditriary butyl)] -4-Hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation), charged 0.4 g, gradually increasing the temperature from 140 ° C to 200 ° C for 3 hours at normal pressure and 3 under reduced pressure. Time polymerization was carried out to obtain polyester (a) -8. The obtained polyester (a) -8 had an acid value of 22 and a number average molecular weight of 5,000.
 次に、得られたポリエステル(a)-8を201.8g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを99.0g、酸化防止剤(アデカスタブAO-60)を0.3g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-9を184.2g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-9の酸価は5.2、数平均分子量は21,700であった。 Next, 201.8 g of the obtained polyester (a) -8 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. 99.0 g of polyethylene glycol = 75, 0.3 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, and polymerized at 200 ° C. for 3 hours under reduced pressure to carboxyl to both ends. 184.2 g of block polymer (C) -9 having a structure having a group was obtained. The block polymer (C) -9 having a structure having a carboxyl group at both ends had an acid value of 5.2 and a number average molecular weight of 21,700.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-9の100.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)0.52gを仕込み、220℃で6時間、減圧下で重合して、高分子化合物(E)-9を88.1g得た。得られた高分子化合物(E)-9の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は30質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -9 having a structure having carboxyl groups at both ends. 170 g / eq) 0.52 g was charged and polymerized at 220 ° C. for 6 hours under reduced pressure to obtain 88.1 g of the polymer compound (E) -9. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -9 was 30% by mass.
〔製造例10〕
 セパラブルフラスコに、水素添加ビスフェノールAを165.9g(0.69モル)、アジピン酸を86.5g(0.59モル)、テレフタル酸を24.6g(0.15モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.3g仕込み、140℃から200℃まで徐々に昇温しながら常圧で3時間、減圧下で3時間重合して、ポリエステル(a)-9を得た。得られたポリエステル(a)-9の酸価は22、数平均分子量は5,000であった。
[Manufacturing Example 10]
In a separable flask, 165.9 g (0.69 mol) of hydrogenated bisphenol A, 86.5 g (0.59 mol) of adipic acid, 24.6 g (0.15 mol) of terephthalic acid, and an antioxidant (antioxidant (0.15 mol). Add 0.3 g of tetrakis [3- (3,5-ditertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) and gradually raise from 140 ° C to 200 ° C. Polyester (a) -9 was obtained by polymerization under normal pressure for 3 hours and under reduced pressure for 3 hours while warming. The obtained polyester (a) -9 had an acid value of 22 and a number average molecular weight of 5,000.
 次に、得られたポリエステル(a)-9を201.7g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを66.0g、酸化防止剤(アデカスタブAO-60)を0.3g、オクチル酸ジルコニウムを0.3g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-10を213.2g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-10の酸価は8.5、数平均分子量は13,300であった。 Next, 201.7 g of the obtained polyester (a) -9 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. 66.0 g of polyethylene glycol = 75, 0.3 g of antioxidant (Adecastab AO-60), 0.3 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 213.2 g of block polymer (C) -10 having a structure having a group was obtained. The block polymer (C) -10 having a structure having a carboxyl group at both ends had an acid value of 8.5 and a number average molecular weight of 13,300.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-10の100.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-3として、水素添加ビスフェノールAジグリシジルエーテル(エポキシ当量215g/eq)0.81gを仕込み、220℃で6時間、減圧下で重合して、高分子化合物(E)-10を84.0g得た。得られた高分子化合物(E)-10の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は25質量%であった。 Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -10 having a structure having carboxyl groups at both ends. Epoxy equivalent 215 g / eq) 0.81 g was charged and polymerized at 220 ° C. for 6 hours under reduced pressure to obtain 84.0 g of the polymer compound (E) -10. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -10 was 25% by mass.
〔製造例11〕
 セパラブルフラスコに、1,12-ドデカンジオールを90.7g(0.45モル)、2,2-ジメチル-1,3-プロパンジオールを11.7g(0.11モル)、テレフタル酸を99.7g(0.60モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.3g仕込み、140℃から200℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-10を得た。得られたポリエステル(a)-10の酸価は25、数平均分子量は4,500であった。
[Manufacturing Example 11]
In a separable flask, 90.7 g (0.45 mol) of 1,12-dodecanediol, 11.7 g (0.11 mol) of 2,2-dimethyl-1,3-propanediol, and 99. of terephthalic acid. 7 g (0.60 mol), antioxidant (tetrakis [3- (3,5-ditrital butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 manufactured by ADEKA Corporation) was added to 0. 3 g was charged and polymerized at normal pressure for 3 hours while gradually raising the temperature from 140 ° C. to 200 ° C. to obtain polyester (a) -10. The obtained polyester (a) -10 had an acid value of 25 and a number average molecular weight of 4,500.
 次に、得られたポリエステル(a)-10を136.4g、両末端に水酸基を有する化合物(b)-1として数平均分子量3,300(水酸基価34)、エチレンオキシ基の繰り返し単位の数=75のポリエチレングリコールを74.3g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.3g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-11を185.3g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-11の酸価は4.0、数平均分子量は28,000であった。 Next, 136.4 g of the obtained polyester (a) -10 was used as compound (b) -1 having hydroxyl groups at both ends, the number average molecular weight was 3,300 (hydroxyl value 34), and the number of repeating units of ethyleneoxy groups. 74.3 g of polyethylene glycol of = 75, 0.2 g of antioxidant (Adecastab AO-60), 0.3 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 185.3 g of block polymer (C) -11 having a structure having a group was obtained. The block polymer (C) -11 having a structure having a carboxyl group at both ends had an acid value of 4.0 and a number average molecular weight of 28,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-11の100.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-3として、水素添加ビスフェノールAジグリシジルエーテル(エポキシ当量215g/eq)0.53gを仕込み、220℃で6時間、減圧下で重合して、高分子化合物(E)-11を82.1g得た。得られた高分子化合物(E)-11の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は30質量%であった。 Hydrogenated bisphenol A diglycidyl ether (as an epoxy compound (D) -3 having two or more epoxy groups in 100.0 g of the obtained block polymer (C) -11 having a structure having carboxyl groups at both ends. Epoxy equivalent 215 g / eq) 0.53 g was charged and polymerized at 220 ° C. for 6 hours under reduced pressure to obtain 82.1 g of the polymer compound (E) -11. The ratio of the block (B) of the polyether to the total of the block (A) of the polyester and the block (B) of the polyether of the obtained polymer compound (E) -11 was 30% by mass.
〔比較製造例1〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを50.6g(0.35モル)、セバシン酸を89.2g(0.44モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-11を得た。得られたポリエステル(a)-11の酸価は80、数平均分子量は1,400であった。
[Comparative Manufacturing Example 1]
In a separable flask, 50.6 g (0.35 mol) of 1,4-cyclohexanedimethanol, 89.2 g (0.44 mol) of sebacic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tertiary butyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually raising the temperature from 140 ° C to 190 ° C. To obtain polyester (a) -11. The obtained polyester (a) -11 had an acid value of 80 and a number average molecular weight of 1,400.
 次に、得られたポリエステル(a)-11を127.2g、両末端に水酸基を有する化合物(b)-2として数平均分子量3,100(水酸基価36)、エチレンオキシ基の繰り返し単位の数=70のポリエチレングリコールを186.0g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-12を311.0g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-12の酸価は16、数平均分子量は10,000であった。 Next, 127.2 g of the obtained polyester (a) -11 was used as compound (b) -2 having hydroxyl groups at both ends, the number average molecular weight was 3,100 (hydroxyl value 36), and the number of repeating units of ethyleneoxy groups. 186.0 g of polyethylene glycol = 70, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate were charged, polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 311.0 g of block polymer (C) -12 having a structure having a group was obtained. The block polymer (C) -12 having a structure having a carboxyl group at both ends had an acid value of 16 and a number average molecular weight of 10,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-12の200.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)3.8gを仕込み、220℃で5時間、減圧下で重合して、比較帯電防止剤-1を181.7g得た。得られた比較帯電防止剤-1の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は60質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 200.0 g of the obtained block polymer (C) -12 having a structure having carboxyl groups at both ends. 170 g / eq) 3.8 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to give 181.7 g of Comparative Antistatic Agent-1. The ratio of the polyether block (B) to the total of the polyester block (A) and the polyether block (B) of the obtained comparative antistatic agent-1 was 60% by mass.
〔比較製造例2〕
 製造例4と同様にして得られたポリエステル(a)-4(酸価は31、数平均分子量は3,600)を202.1g、両末端に水酸基を有する化合物(b)-4として数平均分子量800(水酸基価140)、エチレンオキシ基の繰り返し単位の数=18のポリエチレングリコールを26.7g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-13を214.3g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-13の酸価は8.5、数平均分子量は13,500であった。
[Comparative Manufacturing Example 2]
202.1 g of polyester (a) -4 (acid value 31, number average molecular weight is 3,600) obtained in the same manner as in Production Example 4 is numerically averaged as compound (b) -4 having hydroxyl groups at both ends. 26.7 g of polyethylene glycol having a molecular weight of 800 (hydroxyl value 140) and 18 repeating units of ethyleneoxy groups, 0.2 g of antioxidant (Adecastab AO-60), 0.4 g of zirconium octylate, 200 Polymerization at ° C. for 3 hours under reduced pressure gave 214.3 g of block polymer (C) -13 having a structure having carboxyl groups at both ends. The acid value of the block polymer (C) -13 having a structure having a carboxyl group at both ends was 8.5, and the number average molecular weight was 13,500.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-13の200.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)2.1gを仕込み、220℃で5時間、減圧下で重合して、比較帯電防止剤-2を178.2g得た。得られた比較帯電防止剤-2の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は12質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 200.0 g of the obtained block polymer (C) -13 having a structure having carboxyl groups at both ends. 170 g / eq) 2.1 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to give 178.2 g of Comparative Antistatic Agent-2. The ratio of the polyether block (B) to the total of the polyester block (A) and the polyether block (B) of the obtained comparative antistatic agent-2 was 12% by mass.
〔比較製造例3〕
 セパラブルフラスコに、1,12-ドデカンジオールを72.2g(0.36モル)、テレフタル酸を61.0g(0.37モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.2g仕込み、140℃から190℃まで徐々に昇温しながら常圧で3時間重合して、ポリエステル(a)-12を得た。得られたポリエステル(a)-12の酸価は9、数平均分子量は12,000であった。
[Comparative Manufacturing Example 3]
In a separable flask, 72.2 g (0.36 mol) of 1,12-dodecanediol, 61.0 g (0.37 mol) of terephthalic acid, and an antioxidant (tetrakis [3- (3,5-di)). Tributyl-4-hydroxyphenyl) propionyloxymethyl] methane, ADEKA STAB AO-60 (manufactured by ADEKA Corporation) was charged in 0.2 g, and polymerized at normal pressure for 3 hours while gradually increasing the temperature from 140 ° C to 190 ° C. , Polyester (a) -12 was obtained. The obtained polyester (a) -12 had an acid value of 9 and a number average molecular weight of 12,000.
 次に、得られたポリエステル(a)-12を120.3g、両末端に水酸基を有する化合物(b)-5として数平均分子量7,900(水酸基価14)、エチレンオキシ基の繰り返し単位の数=180のポリエチレングリコールを39.5g、酸化防止剤(アデカスタブAO-60)を0.2g、オクチル酸ジルコニウムを0.4g仕込み、200℃で3時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-14を135.0g得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-14の酸価は3.5、数平均分子量は32,000であった。 Next, 120.3 g of the obtained polyester (a) -12 was used as compound (b) -5 having hydroxyl groups at both ends, the number average molecular weight was 7,900 (hydroxyl value 14), and the number of repeating units of ethyleneoxy groups. = 180 polyethylene glycol (39.5 g), antioxidant (Adecastab AO-60) (0.2 g), zirconium octylate (0.4 g), polymerized at 200 ° C. for 3 hours under reduced pressure, and carboxyl at both ends. 135.0 g of block polymer (C) -14 having a structure having a group was obtained. The block polymer (C) -14 having a structure having a carboxyl group at both ends had an acid value of 3.5 and a number average molecular weight of 32,000.
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-14の120.0gに、エポキシ基を2個以上有するエポキシ化合物(D)-1として、ビスフェノールFジグリシジルエーテル(エポキシ当量170g/eq)0.63gを仕込み、220℃で5時間、減圧下で重合して、比較帯電防止剤-3を98.3g得た。得られた比較帯電防止剤-3の、ポリエステルのブロック(A)とポリエーテルのブロック(B)の合計に対する、ポリエーテルのブロック(B)の割合は25質量%であった。 Bisphenol F diglycidyl ether (epoxy equivalent) as the epoxy compound (D) -1 having two or more epoxy groups in 120.0 g of the obtained block polymer (C) -14 having a structure having carboxyl groups at both ends. 170 g / eq) 0.63 g was charged and polymerized at 220 ° C. for 5 hours under reduced pressure to obtain 98.3 g of Comparative Antistatic Agent-3. The ratio of the polyether block (B) to the total of the polyester block (A) and the polyether block (B) of the obtained comparative antistatic agent-3 was 25% by mass.
〔実施例1~25、比較例1~9〕
 下記の表1~7に記載した配合量(質量部)に基づいてブレンドした各樹脂組成物を用いて、下記に示す試験フィルム作製方法に従い、試験フィルムを得た。得られた試験フィルムを用いて、下記測定方法に従い、表面抵抗率(SR値)の測定を行い、帯電防止性とその持続性の評価を行った。さらに、下記測定方法に従い、Haze値を測定した。結果を同表に示す。
[Examples 1 to 25, Comparative Examples 1 to 9]
Using each resin composition blended based on the blending amounts (parts by mass) shown in Tables 1 to 7 below, a test film was obtained according to the test film preparation method shown below. Using the obtained test film, the surface resistivity (SR value) was measured according to the following measurement method, and the antistatic property and its durability were evaluated. Further, the Haze value was measured according to the following measurement method. The results are shown in the table.
<直鎖状低密度ポリエチレン樹脂組成物試験フィルム作製方法>
 各樹脂組成物を、(株)東洋精機製作所製のT型ダイを備えた押出成形機を用いて、180℃により溶融押出し、40℃の冷却ロールで急冷することにより試験フィルム(100cm×5cm×50μm)を得た。
<Method for producing linear low-density polyethylene resin composition test film>
Each resin composition is melt-extruded at 180 ° C. using an extrusion molding machine equipped with a T-type die manufactured by Toyo Seiki Seisakusho Co., Ltd., and rapidly cooled with a cooling roll at 40 ° C. to obtain a test film (100 cm × 5 cm ×). 50 μm) was obtained.
<表面抵抗率(SR値)測定方法>
 得られた試験フィルムを、成形加工後直ちに、温度25℃、湿度50%RHの条件下に保存し、成形加工の1日および30日保存後に、同雰囲気下で、(株)三菱化学アナリテック製のハイレスタ-UXハイレスタ(MCP-HT800)抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面抵抗率(Ω/□)を測定した。測定は5枚の試験フィルムで1枚あたり5点について行い、その平均値を求めた。
<Surface resistivity (SR value) measurement method>
Immediately after the molding process, the obtained test film is stored under the conditions of a temperature of 25 ° C. and a humidity of 50% RH, and after 1 day and 30 days of the molding process, under the same atmosphere, Mitsubishi Chemical Analytech Co., Ltd. The surface resistivity (Ω / □) was measured under the conditions of an applied voltage of 100 V and an applied time of 1 minute using a high rester-UX high rester (MCP-HT800) resistor meter manufactured by Nittoseiko Analytical Co., Ltd. The measurement was performed on 5 test films at 5 points per film, and the average value was calculated.
 表面抵抗率(Ω/□)が、>1×1016 Ω/□の場合、測定不可でありOver Range(OR)とする。 When the surface resistivity (Ω / □) is> 1 × 10 16 Ω / □, it cannot be measured and is set to Over Range (OR).
<Haze値の測定方法>
ISO14782に準拠して測定した。
<Measurement method of Haze value>
Measured according to ISO14782.
Figure JPOXMLDOC01-appb-T000005
*1:NaDBS:ドデシルベンゼンスルホン酸ナトリウム
*2:IBTFS:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
*3:LLDPE:C6-LLDPE(直鎖状低密度ポリエチレン、メルトフローレート=2.0)
*4:(B)/[(A)+(B)]:ブロック(A)とブロック(B)との合計に対する、ブロック(B)の割合 
Figure JPOXMLDOC01-appb-T000005
* 1: NaDBS: Sodium dodecylbenzenesulfonate * 2: IBTFS: 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide * 3: LLDPE: C6-LLDPE (linear low density polyethylene, melt flow rate) = 2.0)
* 4: (B) / [(A) + (B)]: Ratio of block (B) to the total of block (A) and block (B)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1~7中に示す結果から、本発明によれば、優れた帯電防止効果とその持続性を有し、フィルムの透明性に優れた帯電防止剤を得られることが明らかである。
 
From the results shown in Tables 1 to 7, it is clear that according to the present invention, an antistatic agent having an excellent antistatic effect and its durability and excellent transparency of the film can be obtained.

Claims (14)

  1.  ジオール(a1)とジカルボン酸(a2)が反応して得られるポリエステル(a)から構成されるポリエステルのブロック(A)と、エチレンオキシ基を一つ以上有する両末端に水酸基を有する化合物(b)から構成されるポリエーテルのブロック(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合またはエーテル結合を介して結合してなる構造を有する高分子化合物(E)の1種以上を含有する帯電防止剤であって、
     前記ポリエステル(a)の、酸価測定法により算出される数平均分子量が、1,600~10,000であり、前記化合物(b)の水酸基価測定法により算出される数平均分子量が、1,000~6,000であることを特徴とする帯電防止剤。
    A polyester block (A) composed of a polyester (a) obtained by reacting a diol (a1) and a dicarboxylic acid (a2), and a compound (b) having one or more ethyleneoxy groups and having hydroxyl groups at both ends. A polymer compound (E) having a structure in which a block (B) of a polyester composed of the above and an epoxy compound (D) having two or more epoxy groups are bonded via an ester bond or an ether bond. An epoxy agent containing at least one type.
    The number average molecular weight of the polyester (a) calculated by the acid value measurement method is 1,600 to 10,000, and the number average molecular weight of the compound (b) calculated by the hydroxyl value measurement method is 1. An antistatic agent characterized by being 000 to 6,000.
  2.  前記高分子化合物(E)が、前記ブロック(A)と前記ブロック(B)とを有し、前記ポリエステル(a)の末端に有する水酸基またはカルボキシル基と、前記化合物(b)の末端に有する水酸基と、前記エポキシ化合物(D)のエポキシ基またはエポキシ基が反応することによって形成された水酸基と、の反応により形成された、エステル結合またはエーテル結合を介して結合してなる構造を有する請求項1記載の帯電防止剤。 The polymer compound (E) has the block (A) and the block (B), and has a hydroxyl group or a carboxyl group at the end of the polyester (a) and a hydroxyl group at the end of the compound (b). 1. A structure having a structure formed by a reaction between an epoxy group of the epoxy compound (D) and a hydroxyl group formed by the reaction of the epoxy group, and a hydroxyl group formed by the reaction of the epoxy compound (D) with an ester bond or an ether bond. The antistatic agent described.
  3.  前記高分子化合物(E)が、前記ブロック(A)と、前記ブロック(B)と、がエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)と、がエステル結合を介して結合してなる構造を有する請求項1または2記載の帯電防止剤。 The polymer compound (E) is a block polymer (C) having a carboxyl group at both ends, in which the block (A) and the block (B) are repeatedly and alternately bonded via an ester bond. The antistatic agent according to claim 1 or 2, which has a structure in which the epoxy compound (D) is bonded to the epoxy compound (D) via an ester bond.
  4.  前記ブロックポリマー(C)の、酸価測定法により算出される数平均分子量が、8,000~50,000である請求項3記載の帯電防止剤。 The antistatic agent according to claim 3, wherein the number average molecular weight of the block polymer (C) calculated by the acid value measurement method is 8,000 to 50,000.
  5.  前記ポリエステル(a)が、両末端にカルボキシル基を有する構造である請求項1~4のうちいずれか一項記載の帯電防止剤。 The antistatic agent according to any one of claims 1 to 4, wherein the polyester (a) has a structure having carboxyl groups at both ends.
  6.  前記化合物(b)が、ポリエチレングリコールである請求項1~5のうちいずれか一項記載の帯電防止剤。 The antistatic agent according to any one of claims 1 to 5, wherein the compound (b) is polyethylene glycol.
  7.  前記ブロック(A)と前記ブロック(B)の合計質量に対して、前記ブロック(B)の割合が20~50質量%の範囲内である請求項1~6のうちいずれか一項記載の帯電防止剤。 The charge according to any one of claims 1 to 6, wherein the ratio of the block (B) to the total mass of the block (A) and the block (B) is in the range of 20 to 50% by mass. Inhibitor.
  8.  請求項1~7のうちいずれか一項記載の帯電防止剤に対し、さらに、アルカリ金属の塩およびイオン性液体からなる群から選択される1種以上が配合されてなることを特徴とする帯電防止剤組成物。 The antistatic agent according to any one of claims 1 to 7, further comprising one or more selected from the group consisting of alkali metal salts and ionic liquids. Inhibitor composition.
  9.  合成樹脂に対し、請求項1~7のうちいずれか一項記載の帯電防止剤が配合されてなることを特徴とする帯電防止性樹脂組成物。 An antistatic resin composition comprising a synthetic resin mixed with the antistatic agent according to any one of claims 1 to 7.
  10.  合成樹脂に対し、請求項8記載の帯電防止剤組成物が配合されてなることを特徴とする帯電防止性樹脂組成物。 An antistatic resin composition characterized in that the antistatic agent composition according to claim 8 is blended with a synthetic resin.
  11.  前記合成樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上である請求項9または10記載の帯電防止性樹脂組成物。 The antistatic resin composition according to claim 9 or 10, wherein the synthetic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins and copolymers thereof.
  12.  請求項9~11のうちいずれか一項記載の帯電防止性樹脂組成物から得られることを特徴とする成形体。 A molded product obtained from the antistatic resin composition according to any one of claims 9 to 11.
  13.  フィルムである請求項12記載の成形体。 The molded product according to claim 12, which is a film.
  14.  厚さ50μmにおけるHaze値が、0%以上40.0%以下である請求項13記載の成形体。 The molded product according to claim 13, wherein the Haze value at a thickness of 50 μm is 0% or more and 40.0% or less.
PCT/JP2020/013573 2019-03-29 2020-03-26 Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof WO2020203618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068421 2019-03-29
JP2019068421 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203618A1 true WO2020203618A1 (en) 2020-10-08

Family

ID=72668440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013573 WO2020203618A1 (en) 2019-03-29 2020-03-26 Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof

Country Status (2)

Country Link
TW (1) TW202104526A (en)
WO (1) WO2020203618A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117233A1 (en) * 2015-01-19 2016-07-28 株式会社Adeka Antistatic resin composition, and container and packaging material which use same
WO2016158224A1 (en) * 2015-03-30 2016-10-06 株式会社Adeka Antistatic resin composition and polyolefin antistatic fiber for container and pipe for organic solvent
WO2019021944A1 (en) * 2017-07-24 2019-01-31 株式会社Adeka Polymer compound, composition including same, resin composition including these, and molded body thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117233A1 (en) * 2015-01-19 2016-07-28 株式会社Adeka Antistatic resin composition, and container and packaging material which use same
WO2016158224A1 (en) * 2015-03-30 2016-10-06 株式会社Adeka Antistatic resin composition and polyolefin antistatic fiber for container and pipe for organic solvent
WO2019021944A1 (en) * 2017-07-24 2019-01-31 株式会社Adeka Polymer compound, composition including same, resin composition including these, and molded body thereof

Also Published As

Publication number Publication date
TW202104526A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6377437B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
EP2949721B1 (en) Antistatic agent, antistatic agent composition, antistatic resin composition, and molded body
JP6453003B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
JP6452993B2 (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molded article
JP7339331B2 (en) Antistatic agent, antistatic agent composition containing the same, antistatic resin composition containing these, and molding thereof
WO2014148454A1 (en) Antistatic agent, antistatic agent composition, antistatic resin composition, and molded article
WO2019021944A1 (en) Polymer compound, composition including same, resin composition including these, and molded body thereof
JP7329934B2 (en) Composition, resin composition containing same, and molding thereof
JP2022021149A (en) Composition, synthetic resin composition containing the same, and its molded body
JP2021102684A (en) Antistatic resin composition and container and packaging material including the same
WO2020203618A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof
WO2020203619A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing same, molded body and film thereof
JP7497180B2 (en) Flowability improver, flowability improver composition containing same, thermoplastic resin composition containing same, and molded article thereof
JP2020164711A (en) Antistatic agent, antistatic agent composition containing the same, antistatic resin composition containing these, and molded body thereof
JP2021102683A (en) Antistatic resin composition, and electric/electronic apparatus cabinet including the same
JP2021102686A (en) Polyolefin resin composition, and automobile interior material including the same
JP2022070756A (en) Composition, synthetic resin composition comprising the same and molded article thereof
JP2022089622A (en) Composition, synthetic resin composition containing the same, and molding thereof
JP2022044863A (en) Antistatic agent, antistatic agent composition, antistatic resin composition and molding thereof
JP2022086164A (en) Antistatic polycarbonate resin composition, and molded body of the same
WO2024048524A1 (en) Antistatic agent, antistatic agent composition containing same, antistatic resin composition containing said antistatic agent or said antistatic agent composition, and molded body and film thereof
JP2015166448A (en) Antistatic agent, antistatic agent composition, antistatic resin composition, and molding
JP2021102685A (en) Antistatic resin composition and molding thereof
WO2019021943A1 (en) Composition, resin composition including same, and molded body thereof
JP2019006950A (en) Polymer compound, composition containing same, resin composition containing those and molded article thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP