WO2021065726A1 - Brake device - Google Patents

Brake device Download PDF

Info

Publication number
WO2021065726A1
WO2021065726A1 PCT/JP2020/036307 JP2020036307W WO2021065726A1 WO 2021065726 A1 WO2021065726 A1 WO 2021065726A1 JP 2020036307 W JP2020036307 W JP 2020036307W WO 2021065726 A1 WO2021065726 A1 WO 2021065726A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
elastic member
flange
state
male screw
Prior art date
Application number
PCT/JP2020/036307
Other languages
French (fr)
Japanese (ja)
Inventor
将太郎 國立
貴之 清水
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2021065726A1 publication Critical patent/WO2021065726A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake

Definitions

  • This disclosure relates to a braking device.
  • a rotating member that rotates in conjunction with the output shaft of the motor and a linear moving member that moves linearly in response to the rotation of the rotating member are provided, and the brake shoe is moved by pulling a cable by the linear moving member.
  • a braking device for braking is known (for example, Patent Document 1).
  • the disc spring may be displaced in the radial direction, and the disc spring may come into contact with the inner peripheral surface of the recess for accommodating the disc spring, that is, the inner peripheral surface of the peripheral wall of the rotating member.
  • the posture of the disc spring may not be stable, and it may be difficult to obtain the desired compression reaction force.
  • One of the problems of the present disclosure is, for example, to obtain a brake device having a new configuration with less inconvenience, which can prevent the screw mechanism from being tightened too strongly.
  • the braking device of the present disclosure includes, for example, an operating member that moves the braking member between a braking position in which the braking member is in a braking state and a non-braking position in which the braking member is in a non-braking state, and a male screw and a female screw that mesh with each other. It has a shaft provided with one of the screws, a flange protruding radially outward from the shaft, and a peripheral wall protruding from the peripheral edge of the flange in the first direction along the axial direction of the shaft.
  • a bottomed recess surrounded by a flange and the peripheral wall and opened in the first direction is provided, and a rotating member that rotates in conjunction with the rotor of the motor and the other screw of the male and female threads are provided. It moves linearly in the first direction according to the forward rotation of the above, and also linearly moves in the second direction opposite to the first direction according to the inversion of the rotating member, and causes the operating member to move to the braking position and the braking position.
  • a linear motion member that can move between the non-braking position separated from the second direction and a bottomed recess that extends along the circumferential direction of the male screw and has an outer peripheral surface and a surface of the male screw.
  • It has an inner peripheral portion that extends along the circumferential direction and faces the inner peripheral surface of the peripheral wall and is separated from the inner peripheral surface in a state of maximum axial deviation in the radial direction with respect to the male screw. It is configured in an annular shape, and includes an elastic member that can be sandwiched between the flange and the linear motion member as the linear motion member moves in the second direction.
  • the brake device for example, a change in the posture of the elastic member due to contact between the outer peripheral portion of the elastic member and the inner peripheral surface of the peripheral wall can be prevented. Further, it is unlikely that variations in compression reaction force related to changes in the posture of the elastic member will occur. Therefore, according to such a configuration, for example, the desired compressive reaction force of the elastic member can be easily obtained. Then, it is possible to reliably prevent one screw of the rotating member and the other screw of the linear motion member from being too tightly fastened.
  • FIG. 1 is an exemplary and schematic rear view of the brake device of the embodiment as viewed from the rear of the vehicle.
  • FIG. 2 is an exemplary and schematic cross-sectional view of the electric actuator of the braking device of the embodiment, and is a view in a non-braking state.
  • FIG. 3 is an enlarged view of the rotary linear motion conversion mechanism of FIG.
  • FIG. 4 is an enlarged view of the rotary linear motion conversion mechanism of FIG. 2, which is a state in which the linear motion member is in contact with the elastic member.
  • FIG. 1 is a rear view of the brake device 2 for a vehicle from the rear of the vehicle.
  • the arrow Y in FIG. 1 indicates the outside in the vehicle width direction.
  • the arrow Z indicates the upper part of the vehicle.
  • the brake device 2 is housed inside the peripheral wall 1a of the cylindrical wheel 1.
  • the brake device 2 is a so-called drum brake.
  • the brake device 2 includes two brake shoes 3 which are separated from each other in the front-rear direction.
  • the two brake shoes 3 extend in an arc shape along the inner peripheral surface of a cylindrical drum rotor (not shown).
  • the drum rotor rotates integrally with the wheel 1 around the center of rotation C along the vehicle width direction, the direction Y in FIG.
  • the brake device 2 moves the two brake shoes 3 so as to come into contact with the inner peripheral surface of the cylindrical drum rotor.
  • the brake shoe 3 is an example of a braking member.
  • the brake device 2 includes a wheel cylinder (not shown) that operates by hydraulic pressure and a motor 120 that operates by energization. These are actuators that move the brake shoe 3.
  • the wheel cylinder and the motor 120 can each move two brake shoes 3.
  • the wheel cylinder is used, for example, for braking during traveling.
  • the motor 120 is used, for example, for braking during parking.
  • the brake device 2 is an example of an electric parking brake.
  • the motor 120 may be used for braking during traveling.
  • the brake device 2 is provided with a disk-shaped backing plate 4.
  • the backing plate 4 is provided in a posture intersecting the rotation center C of the wheel 1. That is, the backing plate 4 spreads substantially along the direction intersecting the rotation center C, specifically, substantially along the direction orthogonal to the rotation center C.
  • the components of the brake device 2 are provided on both the outside and the inside of the backing plate 4 in the vehicle width direction.
  • the backing plate 4 directly or indirectly supports each component of the braking device 2. Further, the backing plate 4 is connected to a connecting member (not shown) with the vehicle body.
  • the connecting member is, for example, part of the suspension.
  • a part of the suspension is an arm, a link, a mounting member, and the like.
  • the brake device 2 can be used for both driving wheels and non-driving wheels.
  • the electric actuator 100 is fixed to the backing plate 4 in a state of protruding from the inner surface 4a of the backing plate 4 in the vehicle width direction to the side opposite to the brake shoe 3.
  • the electric actuator 100 includes, for example, a housing 110, a motor 120, a speed reduction mechanism 130, a rotation linear motion conversion mechanism 140, a cable 150, a control device (not shown), and the like.
  • FIG. 2 is a cross-sectional view of the electric actuator 100 in a non-braking state.
  • the direction D1 of the arrow is the axial direction of the rotation center Ax1 of the rotating member 141, and is the direction in which the end portion 150a of the cable 150 approaches the brake shoe 3.
  • the direction D2 of the arrow is the axial direction of the rotation center Ax1 and is the direction in which the end portion 150a of the cable 150 is separated from the brake shoe 3.
  • Direction D2 is an example of the first direction.
  • Direction D1 is an example of the second direction.
  • the axial direction of the rotation center Ax1 is referred to as an axial direction.
  • the radial direction of the rotation center Ax1 is called the radial direction.
  • the circumferential direction of the rotation center Ax1 is called the circumferential direction.
  • the electric actuator 100 pulls the brake shoe 3 in the direction D2 via the cable 150. As a result, the brake shoe 3 moves from the non-braking state to the braking state.
  • the cable 150 penetrates a through hole (not shown) provided in the backing plate 4.
  • the cable 150 is an example of an operating member.
  • the cable 150 is provided so as to be movable between the non-braking position Pr and the braking position Pb.
  • the non-braking position Pr may also be referred to as the release position.
  • the non-braking position Pr is separated from the braking position Pb in the direction D1, that is, downward in FIG.
  • the braking position Pb is separated from the non-braking position Pr in the direction D2, that is, upward in FIG.
  • the cable 150, the cable end 151, and the linear motion member 142 move in the direction D1.
  • the cable 150, the cable end 151, and the linear motion member 142 move in the direction D2.
  • the housing 110 houses a motor 120, a deceleration mechanism 130, a rotation linear motion conversion mechanism 140, an elastic member 170 described later, and the like.
  • the housing 110 is configured, for example, by integrating a plurality of parts.
  • the plurality of parts include a cover 111, a base 112, and the like.
  • the housing 110 can be made of a metal material such as iron or aluminum alloy, or a synthetic resin material such as plastic.
  • the motor 120 has a case 121 and accommodating parts housed in the case 121.
  • the accommodating parts include, for example, a stator (not shown), a rotor (not shown), a coil (not shown), a magnet, and the like (not shown) in addition to the output shaft 122.
  • the output shaft 122 is a part of the rotor.
  • the output shaft 122 projects from the case 121 in the direction D1.
  • the motor 120 is controlled by a control device to rotate the rotor and the output shaft 122.
  • the motor 120 may also be referred to as an actuator or a rotation source.
  • the reduction mechanism 130 includes a plurality of gears rotatably supported by the housing 110.
  • the plurality of gears are, for example, the first gear 131, the second gear 132, and the third gear 133.
  • the first gear 131, the second gear 132, and the third gear 133 rotate in conjunction with the output shaft 122.
  • the speed reduction mechanism 130 may also be referred to as a rotation transmission mechanism or the like.
  • the first gear 131 rotates integrally with the output shaft 122 of the motor 120 around the rotation center Ax3.
  • the center of rotation Ax3 is parallel to the center of rotation Ax1.
  • the first gear 131 may be referred to as a drive gear.
  • the first gear 131, the second gear 132, and the third gear 133 can be made of, for example, a metal material such as iron or an aluminum alloy, or a synthetic resin material such as plastic.
  • Each gear 131 to 133 may include a portion of a metal material and a portion of a synthetic resin material.
  • the second gear 132 rotates around the rotation center Ax2 parallel to the rotation centers Ax1 and Ax3.
  • the second gear 132 includes an input gear 132a and an output gear 132b.
  • the input gear 132a meshes with the first gear 131.
  • the number of teeth of the input gear 132a is larger than the number of teeth of the first gear 131. Therefore, the second gear 132 is decelerated to a rotation speed lower than that of the first gear 131.
  • the output gear 132b is positioned so as to deviate from the input gear 132a in the direction D1.
  • the second gear 132 may be referred to as an idler gear.
  • the third gear 133 meshes with the output gear 132b of the second gear 132.
  • the third gear 133 rotates around the center of rotation Ax1.
  • the number of teeth of the third gear 133 is larger than the number of teeth of the output gear 132b. Therefore, the deceleration by the third gear 133 has a lower rotation speed than the deceleration by the second gear 132.
  • the third gear 133 may be referred to as a driven gear.
  • the configuration of the reduction mechanism 130 is not limited to this example.
  • the speed reduction mechanism 130 may be, for example, a rotation transmission mechanism other than a gear mechanism using a belt, a pulley, or the like.
  • FIG. 3 is an enlarged view of the rotary linear motion conversion mechanism 140 shown in FIG. As shown in FIGS. 2 and 3, the rotary linear motion conversion mechanism 140 includes a rotary member 141, a linear motion member 142, and a rotation stop member 143.
  • the rotating member 141 has, for example, a shaft 141a, a flange 141b, and a peripheral wall 141e.
  • the shape of the shaft 141a is a cylinder centered on the rotation center Ax1. Inside the shaft 141a, a through hole 141c along the axial direction is provided.
  • the rotation center Ax1 is an example of the central axis.
  • the shape of the flange 141b is annular and plate-like.
  • the flange 141b projects radially outward from the shaft 141a.
  • a peripheral wall 141e is provided on the peripheral edge of the flange 141b.
  • the shape of the peripheral wall 141e is a cylinder centered on the rotation center Ax1.
  • the peripheral wall 141e projects from the flange 141b in the direction D2.
  • the third gear 133 described above is provided on the outer peripheral surface 141e1 of the peripheral wall 141e.
  • the rotation of the rotor of the motor 120 and the output shaft 122 is transmitted to the rotating member 141 via the speed reduction mechanism 130.
  • the rotating member 141 rotates in conjunction with the rotor of the motor 120.
  • the rotating member 141 is provided with a bottomed recess 141f surrounded by a flange 141b and a peripheral wall 141e and opened in the direction D2.
  • the end surface 141b2 in the direction D2 of the flange 141b has a circular shape and a flat shape, and constitutes the bottom surface of the bottomed recess 141f.
  • the inner peripheral surface 141e2 of the peripheral wall 141e has a cylindrical surface shape, and constitutes the inner peripheral surface of the bottomed recess 141f.
  • An elastic member 170 which will be described later, is housed in the bottomed recess 141f.
  • the shaft 141a has a first extension portion 141a1 extending from the flange 141b in the direction D2 and a second extension portion 141a2 extending from the flange 141b in the direction D1.
  • the length of the first extension portion 141a1 is longer than the length of the second extension portion 141a2.
  • a male screw 141d is provided on the outer peripheral surface 141a3 of the first extension portion 141a1.
  • the center of the male screw 141d is the rotation center Ax1.
  • the center of rotation Ax1 may also be referred to as the axis.
  • a radial bearing 161 such as a slide bush or a roller bearing is provided between the outer circumference of the second extension portion 141a2 and the inner circumference of the through hole 112a of the base 112 shown in FIG.
  • a thrust bearing 162 such as a roller bearing is provided between the end surface 141b1 in the direction D1 of the flange 141b and the end surface 112b in the direction D2 of the base 112.
  • the rotating member 141 is rotatably supported by the base 112 around the center of rotation Ax1 via these radial bearings 161 and thrust bearings 162.
  • the rotating member 141 is rotationally driven by the second gear 132 by meshing the second gear 132 and the third gear 133 of the reduction gear mechanism 130.
  • the third gear 133 is made integrally with the rotating member 141 by, for example, a metal material such as iron or an aluminum alloy.
  • the third gear 133 is not limited to this example, and may be made of, for example, a synthetic resin material such as plastic. In this case, the third gear 133 can be integrated with the rotating member 141 made of a metal material by insert molding or the like.
  • the linear motion member 142 has, for example, a side wall 142a and a flange 142b.
  • the side wall 142a is arranged radially outward with respect to the rotating member 141 and extends in the axial direction.
  • the side wall 142a surrounds the rotation center Ax1 and the rotation member 141.
  • the shape of the side wall 142a is a cylinder centered on the rotation center Ax1.
  • the side wall 142a may also be referred to as a peripheral wall.
  • a through hole 142c is provided along the axial direction. The rotating member 141 penetrates through the through hole 142c in the axial direction.
  • the shape of the flange 142b is polygonal and plate-like.
  • the flange 142b projects radially outward from the side wall 142a.
  • the side wall 142a has a first extension 142a1 extending from the flange 142b in the direction D2 and a second extension 142a2 extending from the flange 142b in the direction D1.
  • the first extension 142a1 is longer than the second extension 142a2.
  • a female screw 142d that meshes with the male screw 141d of the rotating member 141 is provided.
  • the female screw 142d is provided adjacent to the end of the through hole 142c in the direction D1.
  • the female screw 142d is provided in a section from the end of the through hole 142c in the direction D1 to a position where it is aligned radially with the flange 142b.
  • the female screw 142d is not provided at the end of the through hole 142c in the direction D2. Further, the flange 142b is surrounded by the detent member 143 shown in FIG.
  • the detent member 143 has a side wall 143a.
  • the side wall 143a is arranged radially outward with respect to the flange 142b described above, and extends in the axial direction.
  • the side wall 143a surrounds the rotation center Ax1 and the linear motion member 142, and the shape of the side wall 143a is tubular.
  • the side wall 143a may also be referred to as a peripheral wall.
  • the detent member 143 is fixed to the housing 110. Specifically, the detent member 143 has a flange 143c provided with an opening (not shown). The flange 143c is connected to the base 112 by fixing a bolt penetrating the opening to the base 112 in a state of being in contact with the end surface (not shown) of the base 112.
  • a minute gap is provided between the inner surface 143a1 of the side wall 143a and the outer surface 142b1 of the flange 142b in a parallel state, and both the outer surface 142b1 and the inner surface 143a1 extend in a direction intersecting the circumferential direction.
  • the rotation of the outer surface 142b1 around the rotation center Ax1 is restricted by the inner surface 143a1.
  • the rotation of the linear motion member 142 is restricted by the detent member 143. Since both the outer surface 142b1 and the inner surface 143a1 extend in the axial direction, the inner surface 143a1 allows the outer surface 142b1 to move in the axial direction. That is, the detent member 143 can guide the linear motion member 142 along the axial direction, that is, the linear motion direction, while prohibiting the rotation of the linear motion member 142 around the rotation center Ax1.
  • the inner surface 143a1 may also be referred to as a guide portion.
  • a bottom wall 143b is provided at the end of the direction D2 of the detent member 143.
  • the bottom wall 143b projects radially inward from the side wall 143a.
  • the bottom wall 143b is provided with a through hole 143b1 that penetrates in the axial direction.
  • the bottom wall 143b has an annular and plate-like shape, and may also be referred to as an inward flange.
  • the inner edge of the through hole 143b1 is arranged radially outside the side wall 142a of the linear motion member 142.
  • the cable 150 penetrates the through hole 141c of the rotating member 141 and extends in the axial direction.
  • One end in the axial direction (not shown) is coupled to a movable member that operates the brake shoe 3.
  • a cable end 151 is coupled to an end portion 150a (upper end in FIG. 2) which is the other end in the axial direction.
  • the cable 150 and cable end 151 can be made of, for example, a metallic material.
  • the cable end 151 has a tubular portion 151a and a flange 151b.
  • the cable end 151 is fixed to the cable 150 by crimping the tubular portion 151a from the outside.
  • the flange 151b projects radially outward from the side wall 142a of the linear motion member 142 and the through hole 143b1 of the detent member 143.
  • the cable end 151, along with the cable 150, is an example of an actuating member.
  • the cable end 151 is an example of a fixing member.
  • the cable end 151 and the linear motion member 142 are not integrated and are configured to be separable in the axial direction.
  • the cable 150 is pulled in the direction D1 (downward in FIG. 2) in which the brake shoe 3 is in the non-braking state by a return member (eg, an urging member, an elastic member) such as a spring (not shown).
  • the electric actuator 100 is configured so that the urging force of the return member always acts on the cable 150 in the movement range of the cable 150, that is, the range of use of the brake.
  • the urging force of the return member decreases as it approaches the non-braking state from the braking state. Further, in the braking state, tension is generated in the cable 150 according to the rigidity of the drum brake. In such a configuration, a force is transmitted between the linear motion member 142 and the cable 150 via the cable end 151. Therefore, the cable end 151 can also be referred to as a transmission member.
  • the control device that controls the motor 120 is, for example, an electronic control unit (ECU).
  • ECU electronice control unit
  • a part of the control device may be composed of hardware such as a central processing unit (CPU) that executes software and a controller.
  • CPU central processing unit
  • the control device may be composed entirely of hardware.
  • the control device may also be referred to as a control unit.
  • the rotation of the output shaft 122 of the motor 120 is transmitted to the rotating member 141 via the reduction mechanism 130.
  • the rotating member 141 rotates, it meshes with the male screw 141d of the rotating member 141 and the female screw 142d of the linear motion member 142.
  • the linear motion member 142 moves in the axial direction.
  • This axial movement is due to the limitation of rotation of the outer surface 142b1 of the linear motion member 142 by the inner surface 143a1 of the detent member 143. Therefore, the cable 150 moves between the braking position Pb and the non-braking position Pr along the axial direction as the linear motion member 142 moves.
  • the output shaft 122 of the motor 120 controlled by the control device rotates in one direction.
  • the cable 150 moves in the direction D2, and the brake shoe 3 is in the braking state.
  • the tension of the cable 150 increases.
  • the rotational load of the motor 120 increases, which in turn increases the drive current of the motor 120.
  • one direction is referred to as a braking rotation direction.
  • the control device detects that the cable 150 has reached the braking position Pb, for example, because the drive current of the motor 120 exceeds the threshold value. Then, at that time, the supply of the drive current to the motor 120 is stopped. As a result, the rotation of the output shaft 122 is stopped, and the cable 150 is located at the braking position Pb.
  • the output shaft 122 of the motor 120 controlled by the control device rotates in the other direction. Due to this rotation, the cable 150 moves from the braking position Pb to the direction D1 and moves to the non-braking position Pr. At the non-braking position P, the cable end 151 comes into contact with the bottom wall 143b of the detent member 143. In this state, the brake shoe 3 is separated from the drum rotor, and the electric braking state by the electric actuator 100 is released.
  • the other is referred to as a release rotation direction.
  • the bottom wall 143b restricts the cable end 151 from moving beyond the bottom wall 143b in the direction opposite to the braking position Pb from the non-braking position Pr, that is, in the direction D1.
  • the detent member 143 is an example of a stopper.
  • the bottom wall 143b can also be referred to as a positioning portion that positions the cable 150 at the non-braking position Pr.
  • the detent member 143 may also be referred to as a movement restricting member.
  • the cable end 151 and the linear motion member 142 are not integrated and can be separated in the axial direction. Therefore, when the output shaft 122 further rotates in the release rotation direction from the state where the cable 150 is arranged at the non-braking position Pr, the linear motion member 142 is separated from the cable end 151 in the direction D1. This is due to the meshing of the male screw 141d and the female screw 142d and the detent of the linear motion member 142 by the detent member 143. That is, in a state where the cable 150 is arranged at the non-braking position Pr and the operation of the motor 120 is stopped, there is an axial gap between the linear motion member 142 and the cable end 151.
  • the control device measures the time during which the motor 120 is rotated from the state where the cable 150 is at the braking position Pb, that is, the rotation time, and the number of rotations of the output shaft 122. Utilizing these measurement results, the operation of the motor 120 is stopped at a position where the linear motion member 142 is separated from the cable end 151 in the direction D1. At this time, the rotation time and the number of rotations are set so that there is a more reliable gap between the stopped linear motion member 142 and the flange 141b of the rotary member 141 separated from the linear motion member 142 in the direction D1, in other words, the flange 141b. It is set so that it does not touch or interfere.
  • the electric actuator 100 has a rotating member 141 and a guide member 113 adjacent to the direction D1.
  • the guide member 113 has an annular shape and guides the cable 150 inside the through hole 112a of the base 112.
  • the guide member 113 is made of, for example, an elastomer or a synthetic resin material.
  • the rotary linear motion conversion mechanism 140 has a screw mechanism including a male screw 141d and a female screw 142d.
  • the linear motion of the linear motion member 142 may be restricted for some reason.
  • the male screw 141d and the female screw 142d may be in the fastened state.
  • the linear motion member 142 may move in the direction D1 beyond the normal movable range in FIGS. 2 and 3 due to a malfunction of the control device or the like, and may come into contact with the flange 141b of the rotary member 141.
  • the fastened state can be eliminated by rotating the rotor of the motor 120 in the direction of rotation opposite to the rotation direction before the fastened state.
  • the stronger the tightening the more the torque of the motor 120 required to release the fastened state needs to be increased. That is, the power consumption of the motor 120 increases.
  • the size of the motor 120 which is premised on the release of such a fastening state, tends to increase, which in turn contributes to the increase in size of the brake device 2.
  • a fail-safe structure in which the elastic member 170 is arranged between the flange 141b of the rotating member 141 and the end portion 142f of the linear motion member 142 in the direction D1. Then, when the linear motion member 142 is returned too much in the direction D1, the elastic member 170 is sandwiched between the end portion 142f and the flange 141b, thereby reducing the fastening torque between the male screw 141d and the female screw 142d. ..
  • the end portion 142f is an example of the first end portion.
  • the fail-safe structure can also be referred to as a buffer structure.
  • FIG. 4 is an enlarged view of the rotary linear motion conversion mechanism 140 of FIG. FIG. 4 shows a state in which the linear motion member 142 is in contact with the elastic member 170.
  • the elastic member 170 has, for example, an annular and plate-like shape centered on the rotation center Ax1.
  • the elastic member 170 is made of a thermoplastic elastomer such as a polyester elastomer.
  • the shape of the elastic member 170 in the free state is a flat plate.
  • the elastic member 170 is not limited to this example, and may have a C-shaped shape when viewed in the axial direction, for example. Further, it may be in a plate shape that is not a flat plate in a free state, or may not be in a plate shape. Further, for example, the cross-sectional shape on the virtual plane extending in the axial direction is not limited to the rectangle as in the above embodiment in the free state, and for example, a polygon other than a square or a quadrangle, a circle, an ellipse, or the like is adopted. You may.
  • the elastic member 170 has an inner peripheral portion 170a, an outer peripheral portion 170b, and two end faces 170c and 170d.
  • the inner peripheral portion 170a and the outer peripheral portion 170b have a cylindrical surface shape.
  • the end faces 170c and 170d have an annular and planar shape.
  • the end face 170c extends between the ends of the inner peripheral portion 170a and the outer peripheral portion 170b in the direction D2.
  • the end face 170d extends between the ends of the inner peripheral portion 170a and the outer peripheral portion 170b in the direction D1.
  • the elastic member 170 is housed in the bottomed recess 141f of the rotating member 141.
  • the outer peripheral portion 170b faces the inner peripheral surface 141e2 of the peripheral wall 141e.
  • the inner peripheral portion 170a faces the outer peripheral surface 141a3 of the male screw 141d.
  • the diameter d1 of the outer peripheral portion 170b is set smaller than the diameter d3 of the inner peripheral surface 141e2.
  • the diameter d2 of the inner peripheral portion 170a is set to be larger than the diameter d4 of the male screw 141d (shaft 141a).
  • the state P1 is a state in which the elastic member 170 is arranged concentrically with respect to the male screw 141d (see FIG. 4).
  • the state P2 is a state in which the elastic member 170 is radially deviated from the male screw 141d and the inner peripheral portion 170a is in contact with the male screw 141d.
  • the outer peripheral portion 170b is set to a size that does not come into contact with the inner peripheral surface 141e2 in the range between the states P1 and the state P2.
  • such a configuration can prevent a change in posture, inclination, or wear of the elastic member 170 due to contact between the outer peripheral portion 170b and the inner peripheral surface 142e. Further, it is unlikely that variations in compression reaction force will occur.
  • the state P1 is an example of the minimum axis deviation state.
  • the state P2 is an example of the maximum axis deviation state. Further, the state between the states P1 and the state P2 is an example of the intermediate axis deviation state.
  • the shaft 141a is provided with an incompletely threaded portion 141ac facing the inner peripheral portion 170a.
  • the incompletely threaded portion 141ac is provided in a diameter-expanded portion located at the end of the direction D1 of the male screw 141d.
  • the incompletely threaded portion 141ac is located between the root portion 141ab of the shaft 141a adjacent to the direction D2 with respect to the flange 141b and the fully threaded portion of the male screw 141d.
  • the incompletely threaded portion 141ac is inclined so as to spread outward in the radial direction from the root portion 141ab toward the male screw 141d. That is, the diameter d4 of the male screw 141d is larger than the diameter of the root portion 141ab.
  • the shaft 141a is provided with a flange 141b and a recess 141ad adjacent to the direction D2 by the root portion 141ab and the incompletely threaded portion 141ac.
  • the axial length of the recess 141ad composed of the root portion 141ab and the incompletely threaded portion 141ac is set to be larger than the axial thickness W1 (see FIG. 3) of the elastic member 170.
  • the inner peripheral portion 170a has entered the inside of the recess 141ad (for example, the above-mentioned state P2)
  • the movement of the elastic member 170 in the direction D2 is prevented by being caught by the incompletely threaded portion 141ac.
  • the incompletely threaded portion 141ac is an example of a hooking portion.
  • the axial thickness W1 of the elastic member 170 is set to be larger than one pitch of the male screw 141d.
  • the elastic member 170 enters the spiral groove portion of the male screw 141d.
  • the elastic member 170 is suppressed from being held in an inclined posture.
  • the incompletely threaded portion 141ac is also referred to as the end of the fully threaded portion of the male thread 141d.
  • the root portion 141ab is also referred to as a constricted portion.
  • end portion 142f of the linear motion member 142 is provided with an end surface 142f1 and an inclined surface 142f2.
  • the end face 142f1 has a planar and annular shape orthogonal to the axial direction.
  • the end face 142f1 faces the end face 170c of the elastic member 170.
  • the entire surface of the end face 142f1 is configured to be able to come into contact with the end face 170c of the elastic member 170. This prevents the elastic member 170 from having a region that does not come into contact with the end face 142f1 and causing variations in the compression reaction force in the axial direction.
  • the inclined surface 142f2 is configured by, for example, chamfering a corner portion of the end surface 142f1.
  • the inclined surface 142f2 is inclined so as to spread outward in the radial direction toward the direction D2.
  • wear of the end surface 170c of the elastic member 170 can be prevented by eliminating the corner portion of the end surface 142f1 by the inclined surface 142f2.
  • the inclined surface 142f2 is also referred to as a C surface, a tapered surface, or the like.
  • the area or width of the end surface 142f1 is made relatively small by the above-mentioned inclined surface 142f2.
  • the facing area and the contact area between the end face 142f1 and the end face 170c of the elastic member 170 are reduced, and the linear motion member 142 is separated from the end face 170c in the contacted state or the contacted state in the direction D2. Can be prevented.
  • the end face 170c and the end face 170d of the elastic member 170 may be surface-treated.
  • the brake device 2 is housed in the bottomed recess 141f of the rotating member 141.
  • the inner peripheral portion 170a extends along the circumferential direction of the shaft 141a (male screw 141d) and faces the outer peripheral surface 141a3 of the male screw 141d.
  • the outer peripheral portion 170b extends along the circumferential direction of the shaft 141a. Further, the outer peripheral portion 170b faces the inner peripheral surface 141e2 of the peripheral wall 141e. In addition, the outer peripheral portion 170b is separated from the inner peripheral surface 141e2 in the state P2 with respect to the male screw 141d, that is, the maximum axis deviation state.
  • the brake device 2 is configured in an annular shape having an inner peripheral portion 170a and an outer peripheral portion 170b.
  • the brake device 2 includes an elastic member 170 that can be sandwiched between the flange 141b and the linear motion member 142 as the linear motion member 142 moves in the direction D1, that is, the second direction.
  • the posture change or inclination of the elastic member 170 due to the contact between the outer peripheral portion 170b and the inner peripheral surface 142e can be prevented. Therefore, it is unlikely that the compression reaction force will vary due to the change in the posture of the elastic member 170. According to such a configuration, for example, the desired compression reaction force of the elastic member 170 can be easily obtained. As a result, it is possible to more reliably prevent the male screw 141d of the rotating member 141 and the female screw 142d of the linear motion member 142 from being too tightly fastened.
  • the elastic member 170 is composed of a thermoplastic elastomer. According to such a configuration, durability and moldability are improved as compared with the case where the elastic member 170 is made of crosslinked rubber, vulcanized rubber, or the like, for example. Then, it is possible to further prevent the male screw 141d and the female screw 142d from being fastened together.
  • the elastic member 170 has a flat plate shape in a free state. According to such a configuration, for example, as compared with the case where the elastic member 170 is composed of a disc spring, it is easy to obtain miniaturization in the axial direction, weight reduction, noise suppression effect, and the like. Further, as in the present embodiment, a non-coiled elastic member 170 can be used. As a result, for example, it becomes easy to reduce the arrangement space of the elastic member 170 in the free state in the axial direction.
  • the thickness W1 of the elastic member 170 along the axial direction is larger than one pitch of the male screw 141d. According to such a configuration, for example, the elastic member 170 is prevented from entering the spiral groove portion of the male screw 141d and being held in an inclined posture. Further, it is easier to prevent variations in the compression reaction force due to changes in the posture of the elastic member 170.
  • the rotating member 141 is provided on the outer peripheral surface 141e1 of the peripheral wall 141e, and has a third gear 133 to which a driving force is transmitted from the rotor of the motor 120.
  • a configuration enables simplification of the manufacturing process, cost reduction, and miniaturization of the rotating member 141 as compared with a configuration in which the peripheral wall 141e is provided separately from the peripheral wall 141e constituting the third gear 133, for example. Become.
  • the linear motion member 142 has an end surface 142f1 facing the elastic member 170 and orthogonal to the axial direction.
  • the linear motion member 142 may be in a state P1 with respect to the male screw 141d of the elastic member 170, that is, a minimum axis deviation state, a state P2, and a state between the state P2 and the state P1, that is, an intermediate axis deviation state.
  • the entire surface of the end face 142f1 is configured to be in contact with the elastic member 170. According to such a configuration, for example, it is possible to prevent the elastic member 170 from having a region that does not come into contact with the end face 142f1 and causing variation in the compression reaction force in the axial direction. Then, it is possible to further prevent the male screw 141d and the female screw 142d from being fastened together.
  • the shaft 141a has a root portion 141ab adjacent to the direction D2, that is, the first direction with respect to the flange 141b, and an elastic member 170 projecting radially outward on the side opposite to the flange 141b of the root portion 141ab. It has an incomplete threaded portion 141ac, that is, a hooking portion, which suppresses the movement of the bottomed recess 141f in the direction D2. According to such a configuration, for example, the elastic member 170 tends to stay in the bottomed recess 141f due to the incompletely threaded portion 141ac.
  • the above embodiment is an example and is not intended to limit the scope of the invention.
  • the above embodiment can be implemented in various other forms.
  • various omissions, replacements, combinations, and changes can be made without departing from the gist of the invention.
  • specifications such as each configuration and shape (structure, type, direction, shape, size, length, width, thickness, height, number, arrangement, position, material, etc.) are changed as appropriate. Can be carried out.
  • the rotating member may be provided with a female screw, and the linear motion member may be provided with a male screw.
  • a plurality of elastic members may be laminated in the bottomed recess.
  • the linear motion member may be provided with a bottomed recess.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)
  • Transmission Devices (AREA)

Abstract

A brake device according to the present disclosure is provided with an elastic member which is configured in, for example, an annular shape and can be sandwiched between a flange and a linear motion member according to the movement of the linear motion member in a second direction, the elastic member having: an inner circumferential part that is accommodated in a bottomed recess section of a rotary member, extends in the circumferential direction of a male screw, and faces the outer circumferential surface of the male screw; and an outer circumferential part that extends in the circumferential direction, faces the inner circumferential surface of a circumferential wall, and is spaced apart from the inner circumferential surface in a maximal axial offset state in the radial direction with respect to the male screw.

Description

ブレーキ装置Brake device
 本開示は、ブレーキ装置に関する。 This disclosure relates to a braking device.
 従来、モータの出力シャフトと連動して回転する回転部材と、当該回転部材の回転に応じて直動する直動部材と、を備え、当該直動部材によってケーブルを引くことによりブレーキシューを動かして制動するブレーキ装置が知られている(例えば、特許文献1)。 Conventionally, a rotating member that rotates in conjunction with the output shaft of the motor and a linear moving member that moves linearly in response to the rotation of the rotating member are provided, and the brake shoe is moved by pulling a cable by the linear moving member. A braking device for braking is known (for example, Patent Document 1).
 特開2019-006223号公報では、直動部材と回転部材との間で皿ばねが圧縮されることにより、直動部材の制動位置から非制動位置へ向かう、つまり回転部材へ向かう、戻し作動時にモータに負荷が与えられるようになっている。これにより、例えば、戻し作動時における直動部材と回転部材との互いの干渉が防止される。そして、直動部材および回転部材のねじ機構が強く締結されすぎることで、戻り難くなるのを抑制することができる。 According to Japanese Patent Application Laid-Open No. 2019-006223, when the disc spring is compressed between the linear motion member and the rotary member, the disc spring is compressed from the braking position of the linear motion member to the non-braking position, that is, toward the rotary member, during the return operation. A load is applied to the motor. This prevents, for example, mutual interference between the linear motion member and the rotating member during the return operation. Then, it is possible to suppress the difficulty of returning due to the screw mechanisms of the linear motion member and the rotating member being fastened too strongly.
 上記従来技術では、皿ばねが径方向に軸ずれし、皿ばねがこれを収容する凹部の内周面、つまり回転部材の周壁の内周面、と当接する場合がある。これによって皿ばねの姿勢が安定せず、そして所期の圧縮反力が得難くなってしまう虞があった。 In the above-mentioned conventional technique, the disc spring may be displaced in the radial direction, and the disc spring may come into contact with the inner peripheral surface of the recess for accommodating the disc spring, that is, the inner peripheral surface of the peripheral wall of the rotating member. As a result, the posture of the disc spring may not be stable, and it may be difficult to obtain the desired compression reaction force.
 本開示の課題の一つは、例えば、ねじ機構が強く締結されすぎるのを防止することが可能な、より不都合の少ない新規な構成のブレーキ装置を得ることである。 One of the problems of the present disclosure is, for example, to obtain a brake device having a new configuration with less inconvenience, which can prevent the screw mechanism from being tightened too strongly.
 本開示のブレーキ装置は、例えば、制動部材を制動状態である制動位置と上記制動部材を非制動状態である非制動位置との間で上記制動部材を動かす作動部材と、互いに噛み合う雄ねじおよび雌ねじのうち一方のねじが設けられたシャフトと、上記シャフトから径方向外側に張り出したフランジと、上記フランジの周縁部から上記シャフトの軸方向に沿う第一方向に突出した周壁と、を有し、上記フランジおよび上記周壁によって囲まれ上記第一方向に開口した有底凹部が設けられ、モータのロータと連動して回転する回転部材と、上記雄ねじおよび雌ねじのうち他方のねじが設けられ、上記回転部材の正転に応じて上記第一方向に直動するとともに上記回転部材の反転に応じて上記第一方向とは反対の第二方向へ直動し、上記作動部材を上記制動位置と当該制動位置から上記第二方向へ向かって離間した非制動位置との間で移動可能な直動部材と、上記有底凹部に収容され、上記雄ねじの周方向に沿って延びるとともに前記雄ねじの外周面と面した内周部と、上記周方向に沿って延びるとともに上記周壁の内周面と面しかつ上記雄ねじに対する上記径方向への最大軸ずれ状態で上記内周面と離間する外周部と、を有した環状に構成され、上記直動部材の上記第二方向への移動に伴って上記フランジと上記直動部材との間に挟まれうる弾性部材と、を備える。 The braking device of the present disclosure includes, for example, an operating member that moves the braking member between a braking position in which the braking member is in a braking state and a non-braking position in which the braking member is in a non-braking state, and a male screw and a female screw that mesh with each other. It has a shaft provided with one of the screws, a flange protruding radially outward from the shaft, and a peripheral wall protruding from the peripheral edge of the flange in the first direction along the axial direction of the shaft. A bottomed recess surrounded by a flange and the peripheral wall and opened in the first direction is provided, and a rotating member that rotates in conjunction with the rotor of the motor and the other screw of the male and female threads are provided. It moves linearly in the first direction according to the forward rotation of the above, and also linearly moves in the second direction opposite to the first direction according to the inversion of the rotating member, and causes the operating member to move to the braking position and the braking position. A linear motion member that can move between the non-braking position separated from the second direction and a bottomed recess that extends along the circumferential direction of the male screw and has an outer peripheral surface and a surface of the male screw. It has an inner peripheral portion that extends along the circumferential direction and faces the inner peripheral surface of the peripheral wall and is separated from the inner peripheral surface in a state of maximum axial deviation in the radial direction with respect to the male screw. It is configured in an annular shape, and includes an elastic member that can be sandwiched between the flange and the linear motion member as the linear motion member moves in the second direction.
 上記ブレーキ装置によれば、例えば、弾性部材の外周部と周壁の内周面との当接による弾性部材の姿勢の変化が防止され得る。そして、弾性部材の姿勢の変化に関連する圧縮反力のばらつき等が生じ難い。よって、このような構成によれば、例えば、弾性部材の所期の圧縮反力が得られやすい。そして、回転部材の一方のねじと直動部材の他方のねじとが強く締結されすぎるのを確実に防止することができる。 According to the brake device, for example, a change in the posture of the elastic member due to contact between the outer peripheral portion of the elastic member and the inner peripheral surface of the peripheral wall can be prevented. Further, it is unlikely that variations in compression reaction force related to changes in the posture of the elastic member will occur. Therefore, according to such a configuration, for example, the desired compressive reaction force of the elastic member can be easily obtained. Then, it is possible to reliably prevent one screw of the rotating member and the other screw of the linear motion member from being too tightly fastened.
図1は、実施形態のブレーキ装置の車両後方から見た例示的かつ模式的な背面図である。FIG. 1 is an exemplary and schematic rear view of the brake device of the embodiment as viewed from the rear of the vehicle. 図2は、実施形態のブレーキ装置の電動アクチュエータの例示的かつ模式的な断面図であって、非制動状態での図である。FIG. 2 is an exemplary and schematic cross-sectional view of the electric actuator of the braking device of the embodiment, and is a view in a non-braking state. 図3は、図2の回転直動変換機構の拡大図である。FIG. 3 is an enlarged view of the rotary linear motion conversion mechanism of FIG. 図4は、図2の回転直動変換機構の拡大図であって、直動部材が弾性部材と当接した状態の図である。FIG. 4 is an enlarged view of the rotary linear motion conversion mechanism of FIG. 2, which is a state in which the linear motion member is in contact with the elastic member.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および効果は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 Hereinafter, exemplary embodiments of the present invention will be disclosed. The configurations of the embodiments shown below, as well as the actions and effects produced by the configurations, are examples. The present invention can also be realized by configurations other than those disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the configuration.
 なお、本明細書では、序数は、部品や、部材、部位、位置、方向等を区別するためだけに用いられている。この序数は、順番や優先度を示すものではない。図面は全て、模式的かつ例示的なものである。 In this specification, the ordinal number is used only for distinguishing parts, members, parts, positions, directions, and the like. This ordinal does not indicate the order or priority. All drawings are schematic and exemplary.
[実施形態]
 図1は、車両用のブレーキ装置2の車両後方からの背面図である。なお、図1中の矢印Yは、車幅方向外方を示す。矢印Zは、車両上方を示している。
[Embodiment]
FIG. 1 is a rear view of the brake device 2 for a vehicle from the rear of the vehicle. The arrow Y in FIG. 1 indicates the outside in the vehicle width direction. The arrow Z indicates the upper part of the vehicle.
 図1に示されるように、ブレーキ装置2は、円筒状のホイール1の周壁1aの内側に収容されている。ブレーキ装置2は、所謂ドラムブレーキである。ブレーキ装置2は、前後に離間した二つのブレーキシュー3を備えている。二つのブレーキシュー3は、円筒状のドラムロータ(不図示)の内周面に沿って円弧状に伸びている。 As shown in FIG. 1, the brake device 2 is housed inside the peripheral wall 1a of the cylindrical wheel 1. The brake device 2 is a so-called drum brake. The brake device 2 includes two brake shoes 3 which are separated from each other in the front-rear direction. The two brake shoes 3 extend in an arc shape along the inner peripheral surface of a cylindrical drum rotor (not shown).
 ドラムロータは、車幅方向、図2における方向Y、に沿う回転中心C回りに、ホイール1と一体に回転する。ブレーキ装置2は、二つのブレーキシュー3を、円筒状のドラムロータの内周面に接触するよう移動させる。これにより、ブレーキシュー3とドラムロータとの摩擦によって、ドラムロータひいてはホイール1が制動される。ブレーキシュー3は、制動部材の一例である。 The drum rotor rotates integrally with the wheel 1 around the center of rotation C along the vehicle width direction, the direction Y in FIG. The brake device 2 moves the two brake shoes 3 so as to come into contact with the inner peripheral surface of the cylindrical drum rotor. As a result, the friction between the brake shoe 3 and the drum rotor brakes the drum rotor and thus the wheel 1. The brake shoe 3 is an example of a braking member.
 ブレーキ装置2は、液圧によって動作する不図示のホイールシリンダと、通電によって作動するモータ120と、を備えている。これらは、ブレーキシュー3を動かすアクチュエータである。ホイールシリンダおよびモータ120は、それぞれ、二つのブレーキシュー3を動かすことができる。ホイールシリンダは、例えば、走行中の制動に用いられる。モータ120は、例えば、駐車時の制動に用いられる。ブレーキ装置2は、電動パーキングブレーキの一例である。なお、モータ120は、走行中の制動に用いられてもよい。 The brake device 2 includes a wheel cylinder (not shown) that operates by hydraulic pressure and a motor 120 that operates by energization. These are actuators that move the brake shoe 3. The wheel cylinder and the motor 120 can each move two brake shoes 3. The wheel cylinder is used, for example, for braking during traveling. The motor 120 is used, for example, for braking during parking. The brake device 2 is an example of an electric parking brake. The motor 120 may be used for braking during traveling.
 ブレーキ装置2は、円盤状のバッキングプレート4を備えている。バッキングプレート4は、ホイール1の回転中心Cと交差した姿勢で設けられる。すなわち、バッキングプレート4は、回転中心Cと交差する方向に略沿って、具体的には回転中心Cと直交する方向に略沿って、広がっている。 The brake device 2 is provided with a disk-shaped backing plate 4. The backing plate 4 is provided in a posture intersecting the rotation center C of the wheel 1. That is, the backing plate 4 spreads substantially along the direction intersecting the rotation center C, specifically, substantially along the direction orthogonal to the rotation center C.
 ブレーキ装置2の構成部品は、バッキングプレート4の車幅方向の外側および内側の双方に設けられている。バッキングプレート4は、ブレーキ装置2の各構成部品を直接的または間接的に支持する。また、バッキングプレート4は、車体との不図示の接続部材と接続される。接続部材は、例えば、サスペンションの一部である。サスペンションの一部は、アーム、リンク、取付部材等である。ブレーキ装置2は、駆動輪および非駆動輪のいずれにも用いることができる。 The components of the brake device 2 are provided on both the outside and the inside of the backing plate 4 in the vehicle width direction. The backing plate 4 directly or indirectly supports each component of the braking device 2. Further, the backing plate 4 is connected to a connecting member (not shown) with the vehicle body. The connecting member is, for example, part of the suspension. A part of the suspension is an arm, a link, a mounting member, and the like. The brake device 2 can be used for both driving wheels and non-driving wheels.
 電動アクチュエータ100は、バッキングプレート4の車幅方向の内側の面4aからブレーキシュー3とは反対側に突出した状態で、当該バッキングプレート4に固定されている。電動アクチュエータ100は、例えば、ハウジング110や、モータ120、減速機構130、回転直動変換機構140、ケーブル150、および不図示の制御装置等を備えている。 The electric actuator 100 is fixed to the backing plate 4 in a state of protruding from the inner surface 4a of the backing plate 4 in the vehicle width direction to the side opposite to the brake shoe 3. The electric actuator 100 includes, for example, a housing 110, a motor 120, a speed reduction mechanism 130, a rotation linear motion conversion mechanism 140, a cable 150, a control device (not shown), and the like.
 図2は、電動アクチュエータ100の非制動状態での断面図である。なお、以下の各図では、矢印の方向D1は、回転部材141の回転中心Ax1の軸方向であってケーブル150の端部150aがブレーキシュー3に近付く方向である。矢印の方向D2は、回転中心Ax1の軸方向であってケーブル150の端部150aがブレーキシュー3から離れる方向である。 FIG. 2 is a cross-sectional view of the electric actuator 100 in a non-braking state. In each of the following figures, the direction D1 of the arrow is the axial direction of the rotation center Ax1 of the rotating member 141, and is the direction in which the end portion 150a of the cable 150 approaches the brake shoe 3. The direction D2 of the arrow is the axial direction of the rotation center Ax1 and is the direction in which the end portion 150a of the cable 150 is separated from the brake shoe 3.
 方向D2は、第一方向の一例である。方向D1は、第二方向の一例である。また、以下の説明では、特に言い換えない限り、回転中心Ax1の軸方向は、軸方向と称される。回転中心Ax1の径方向を径方向と称される。回転中心Ax1の周方向を周方向と称される。 Direction D2 is an example of the first direction. Direction D1 is an example of the second direction. Further, in the following description, unless otherwise specified, the axial direction of the rotation center Ax1 is referred to as an axial direction. The radial direction of the rotation center Ax1 is called the radial direction. The circumferential direction of the rotation center Ax1 is called the circumferential direction.
 電動アクチュエータ100は、ケーブル150を介して、ブレーキシュー3を方向D2に引く。これによって、ブレーキシュー3が非制動状態から制動状態に移動する。ケーブル150は、バッキングプレート4に設けられた不図示の貫通孔を貫通している。ケーブル150は、作動部材の一例である。 The electric actuator 100 pulls the brake shoe 3 in the direction D2 via the cable 150. As a result, the brake shoe 3 moves from the non-braking state to the braking state. The cable 150 penetrates a through hole (not shown) provided in the backing plate 4. The cable 150 is an example of an operating member.
 図2に示されるように、ケーブル150は、非制動位置Prと制動位置Pbとの間で移動可能に設けられている。非制動位置Prは、リリース位置とも称されうる。非制動位置Prは、制動位置Pbから方向D1、つまり図2の下方、へ離間している。制動位置Pbは、非制動位置Prから方向D2、つまり図2の上方、へ離間している。ケーブル150、ケーブルエンド151、および直動部材142は、方向D1に移動する。ケーブル150、ケーブルエンド151、および直動部材142は、方向D2に移動する。 As shown in FIG. 2, the cable 150 is provided so as to be movable between the non-braking position Pr and the braking position Pb. The non-braking position Pr may also be referred to as the release position. The non-braking position Pr is separated from the braking position Pb in the direction D1, that is, downward in FIG. The braking position Pb is separated from the non-braking position Pr in the direction D2, that is, upward in FIG. The cable 150, the cable end 151, and the linear motion member 142 move in the direction D1. The cable 150, the cable end 151, and the linear motion member 142 move in the direction D2.
 ハウジング110には、モータ120、減速機構130、回転直動変換機構140、および後述する弾性部材170等が収容されている。ハウジング110は、例えば、複数の部品が一体化されることにより構成されている。その複数の部品には、カバー111やベース112等が含まれる。ハウジング110は、鉄やアルミニウム合金のような金属材料や、プラスチックのような合成樹脂材料によって作られうる。 The housing 110 houses a motor 120, a deceleration mechanism 130, a rotation linear motion conversion mechanism 140, an elastic member 170 described later, and the like. The housing 110 is configured, for example, by integrating a plurality of parts. The plurality of parts include a cover 111, a base 112, and the like. The housing 110 can be made of a metal material such as iron or aluminum alloy, or a synthetic resin material such as plastic.
 モータ120は、ケース121と、当該ケース121内に収容された収容部品と、を有している。収容部品には、例えば、出力シャフト122の他、ステータ(不図示)や、ロータ(不図示)、コイル(不図示)、磁石等(不図示)が含まれる。出力シャフト122は、ロータの一部である。出力シャフト122は、、ケース121から方向D1に突出している。モータ120は、制御装置によって制御されることで、ロータおよび出力シャフト122を回転させる。モータ120は、アクチュエータや回転源とも称されうる。 The motor 120 has a case 121 and accommodating parts housed in the case 121. The accommodating parts include, for example, a stator (not shown), a rotor (not shown), a coil (not shown), a magnet, and the like (not shown) in addition to the output shaft 122. The output shaft 122 is a part of the rotor. The output shaft 122 projects from the case 121 in the direction D1. The motor 120 is controlled by a control device to rotate the rotor and the output shaft 122. The motor 120 may also be referred to as an actuator or a rotation source.
 減速機構130は、ハウジング110に回転可能に支持された複数のギヤを含む。複数のギヤは、例えば、第一ギヤ131、第二ギヤ132、および第三ギヤ133である。第一ギヤ131、第二ギヤ132、および第三ギヤ133は、出力シャフト122と連動して回転する。減速機構130は、回転伝達機構等とも称されうる。 The reduction mechanism 130 includes a plurality of gears rotatably supported by the housing 110. The plurality of gears are, for example, the first gear 131, the second gear 132, and the third gear 133. The first gear 131, the second gear 132, and the third gear 133 rotate in conjunction with the output shaft 122. The speed reduction mechanism 130 may also be referred to as a rotation transmission mechanism or the like.
 第一ギヤ131は、モータ120の出力シャフト122と一体に回転中心Ax3回りに回転する。回転中心Ax3は、回転中心Ax1と平行である。第一ギヤ131は、ドライブギヤと称されうる。第一ギヤ131、第二ギヤ132、および第三ギヤ133は、例えば、鉄やアルミニウム合金といった金属材料や、プラスチックといった合成樹脂材料によって作られうる。なお、各ギヤ131~133は、金属材料の部位と合成樹脂材料の部位とを含んでもよい。 The first gear 131 rotates integrally with the output shaft 122 of the motor 120 around the rotation center Ax3. The center of rotation Ax3 is parallel to the center of rotation Ax1. The first gear 131 may be referred to as a drive gear. The first gear 131, the second gear 132, and the third gear 133 can be made of, for example, a metal material such as iron or an aluminum alloy, or a synthetic resin material such as plastic. Each gear 131 to 133 may include a portion of a metal material and a portion of a synthetic resin material.
 第二ギヤ132は、回転中心Ax1,Ax3と平行な回転中心Ax2回りに回転する。第二ギヤ132は、入力ギヤ132aと出力ギヤ132bとを含む。入力ギヤ132aは、第一ギヤ131と噛み合っている。入力ギヤ132aの歯数は、第一ギヤ131の歯数よりも多い。よって、第二ギヤ132は、第一ギヤ131よりも低い回転速度に減速される。出力ギヤ132bは、入力ギヤ132aに対して方向D1にずれて位置されている。第二ギヤ132は、アイドラギヤと称されうる。 The second gear 132 rotates around the rotation center Ax2 parallel to the rotation centers Ax1 and Ax3. The second gear 132 includes an input gear 132a and an output gear 132b. The input gear 132a meshes with the first gear 131. The number of teeth of the input gear 132a is larger than the number of teeth of the first gear 131. Therefore, the second gear 132 is decelerated to a rotation speed lower than that of the first gear 131. The output gear 132b is positioned so as to deviate from the input gear 132a in the direction D1. The second gear 132 may be referred to as an idler gear.
 第三ギヤ133は、第二ギヤ132の出力ギヤ132bと噛み合う。第三ギヤ133は、回転中心Ax1回りに回転する。第三ギヤ133の歯数は、出力ギヤ132bの歯数よりも多い。よって、第三ギヤ133による減速は、第二ギヤ132による減速よりも低い回転速度である。第三ギヤ133は、ドリブンギヤと称されうる。なお、減速機構130の構成は、この例には限定されない。減速機構130は、例えば、ベルトやプーリ等を用いたギヤ機構以外の回転伝達機構であってもよい。 The third gear 133 meshes with the output gear 132b of the second gear 132. The third gear 133 rotates around the center of rotation Ax1. The number of teeth of the third gear 133 is larger than the number of teeth of the output gear 132b. Therefore, the deceleration by the third gear 133 has a lower rotation speed than the deceleration by the second gear 132. The third gear 133 may be referred to as a driven gear. The configuration of the reduction mechanism 130 is not limited to this example. The speed reduction mechanism 130 may be, for example, a rotation transmission mechanism other than a gear mechanism using a belt, a pulley, or the like.
 図3は、図2に示した回転直動変換機構140の拡大図である。図2,3に示されるように、回転直動変換機構140は、回転部材141と、直動部材142と、回り止め部材143と、を有している。 FIG. 3 is an enlarged view of the rotary linear motion conversion mechanism 140 shown in FIG. As shown in FIGS. 2 and 3, the rotary linear motion conversion mechanism 140 includes a rotary member 141, a linear motion member 142, and a rotation stop member 143.
 回転部材141は、例えば、シャフト141aと、フランジ141bと、周壁141eと、を有している。シャフト141aの形状は、回転中心Ax1を中心とした円筒状である。シャフト141aの内側には、軸方向に沿った貫通穴141cが設けられている。回転中心Ax1は、中心軸の一例である。 The rotating member 141 has, for example, a shaft 141a, a flange 141b, and a peripheral wall 141e. The shape of the shaft 141a is a cylinder centered on the rotation center Ax1. Inside the shaft 141a, a through hole 141c along the axial direction is provided. The rotation center Ax1 is an example of the central axis.
 フランジ141bの形状は、円環状かつ板状である。フランジ141bは、シャフト141aから径方向外側に張り出している。フランジ141bの周縁部には、周壁141eが設けられている。 The shape of the flange 141b is annular and plate-like. The flange 141b projects radially outward from the shaft 141a. A peripheral wall 141e is provided on the peripheral edge of the flange 141b.
 周壁141eの形状は、回転中心Ax1を中心とした円筒状である。周壁141eは、フランジ141bから方向D2に突出している。周壁141eの外周面141e1には、上述した第三ギヤ133が設けられている。モータ120のロータおよび出力シャフト122の回転は、減速機構130を介して、回転部材141に伝達される。回転部材141は、モータ120のロータと連動して回転する。 The shape of the peripheral wall 141e is a cylinder centered on the rotation center Ax1. The peripheral wall 141e projects from the flange 141b in the direction D2. The third gear 133 described above is provided on the outer peripheral surface 141e1 of the peripheral wall 141e. The rotation of the rotor of the motor 120 and the output shaft 122 is transmitted to the rotating member 141 via the speed reduction mechanism 130. The rotating member 141 rotates in conjunction with the rotor of the motor 120.
 また、回転部材141には、フランジ141bおよび周壁141eによって囲まれ方向D2に開口した有底凹部141fが設けられている。フランジ141bの方向D2の端面141b2は、円形状かつ平面状の形状を有し、有底凹部141fの底面を構成している。周壁141eの内周面141e2は、円筒面状の形状を有し、有底凹部141fの内周面を構成している。有底凹部141fには、後述する弾性部材170が収容されている。 Further, the rotating member 141 is provided with a bottomed recess 141f surrounded by a flange 141b and a peripheral wall 141e and opened in the direction D2. The end surface 141b2 in the direction D2 of the flange 141b has a circular shape and a flat shape, and constitutes the bottom surface of the bottomed recess 141f. The inner peripheral surface 141e2 of the peripheral wall 141e has a cylindrical surface shape, and constitutes the inner peripheral surface of the bottomed recess 141f. An elastic member 170, which will be described later, is housed in the bottomed recess 141f.
 シャフト141aは、フランジ141bから方向D2に延びる第一延部141a1と、フランジ141bから方向D1に延びる第二延部141a2と、を有している。第一延部141a1の長さは、第二延部141a2の長さよりも長い。 The shaft 141a has a first extension portion 141a1 extending from the flange 141b in the direction D2 and a second extension portion 141a2 extending from the flange 141b in the direction D1. The length of the first extension portion 141a1 is longer than the length of the second extension portion 141a2.
 第一延部141a1の外周面141a3には、雄ねじ141dが設けられている。雄ねじ141dの中心は、回転中心Ax1である。回転中心Ax1は、軸心とも称されうる。 A male screw 141d is provided on the outer peripheral surface 141a3 of the first extension portion 141a1. The center of the male screw 141d is the rotation center Ax1. The center of rotation Ax1 may also be referred to as the axis.
 第二延部141a2の外周と、図2に示されるベース112の貫通孔112aの内周との間には、例えばスライドブッシュやころ軸受けのようなラジアルベアリング161が設けられている。また、フランジ141bの方向D1の端面141b1とベース112の方向D2の端面112bとの間には、例えばころ軸受けのようなスラストベアリング162が設けられている。 A radial bearing 161 such as a slide bush or a roller bearing is provided between the outer circumference of the second extension portion 141a2 and the inner circumference of the through hole 112a of the base 112 shown in FIG. Further, a thrust bearing 162 such as a roller bearing is provided between the end surface 141b1 in the direction D1 of the flange 141b and the end surface 112b in the direction D2 of the base 112.
 回転部材141は、これらラジアルベアリング161およびスラストベアリング162を介して、ベース112に、回転中心Ax1回りに回転可能に支持されている。回転部材141は、減速機構130の第二ギヤ132と第三ギヤ133との噛み合いにより、第二ギヤ132によって回転駆動される。 The rotating member 141 is rotatably supported by the base 112 around the center of rotation Ax1 via these radial bearings 161 and thrust bearings 162. The rotating member 141 is rotationally driven by the second gear 132 by meshing the second gear 132 and the third gear 133 of the reduction gear mechanism 130.
 第三ギヤ133は、例えば、鉄やアルミニウム合金のような金属材料によって回転部材141と一体に作られている。なお、第三ギヤ133は、この例には限定されず、例えば、プラスチックのような合成樹脂材料で作られてもよい。この場合、第三ギヤ133は、インサート成形等によって金属材料で構成された回転部材141と一体化されうる。 The third gear 133 is made integrally with the rotating member 141 by, for example, a metal material such as iron or an aluminum alloy. The third gear 133 is not limited to this example, and may be made of, for example, a synthetic resin material such as plastic. In this case, the third gear 133 can be integrated with the rotating member 141 made of a metal material by insert molding or the like.
 図3に示されるように、直動部材142は、例えば、側壁142aと、フランジ142bと、を有している。側壁142aは、回転部材141に対して径方向外方に配置され、軸方向に延びている。側壁142aは、回転中心Ax1および回転部材141を取り囲んでいる。 As shown in FIG. 3, the linear motion member 142 has, for example, a side wall 142a and a flange 142b. The side wall 142a is arranged radially outward with respect to the rotating member 141 and extends in the axial direction. The side wall 142a surrounds the rotation center Ax1 and the rotation member 141.
 側壁142aの形状は、回転中心Ax1を中心とした円筒状である。側壁142aは、周壁とも称されうる。側壁142aの内部には、軸方向に沿った貫通孔142cが設けられている。回転部材141は、貫通孔142c内を軸方向に貫通している。 The shape of the side wall 142a is a cylinder centered on the rotation center Ax1. The side wall 142a may also be referred to as a peripheral wall. Inside the side wall 142a, a through hole 142c is provided along the axial direction. The rotating member 141 penetrates through the through hole 142c in the axial direction.
 フランジ142bの形状は、多角形状かつ板状である。フランジ142bは、側壁142aから径方向外側に張り出している。 The shape of the flange 142b is polygonal and plate-like. The flange 142b projects radially outward from the side wall 142a.
 側壁142aは、フランジ142bから方向D2に延びる第一延部142a1と、フランジ142bから方向D1に延びる第二延部142a2と、を有している。第一延部142a1は、第二延部142a2よりも長い。 The side wall 142a has a first extension 142a1 extending from the flange 142b in the direction D2 and a second extension 142a2 extending from the flange 142b in the direction D1. The first extension 142a1 is longer than the second extension 142a2.
 貫通孔142cの内面には、回転部材141の雄ねじ141dと噛み合う雌ねじ142dが設けられている。雌ねじ142dは、貫通孔142cの方向D1の端部に隣接して設けられている。雌ねじ142dは、貫通孔142cの方向D1の端部からフランジ142bと径方向に並ぶ位置に至るまでの区間に設けられている。雌ねじ142dは、貫通孔142cの方向D2の端部には設けられていない。また、フランジ142bは、図2に示される回り止め部材143によって囲まれている。 On the inner surface of the through hole 142c, a female screw 142d that meshes with the male screw 141d of the rotating member 141 is provided. The female screw 142d is provided adjacent to the end of the through hole 142c in the direction D1. The female screw 142d is provided in a section from the end of the through hole 142c in the direction D1 to a position where it is aligned radially with the flange 142b. The female screw 142d is not provided at the end of the through hole 142c in the direction D2. Further, the flange 142b is surrounded by the detent member 143 shown in FIG.
 回り止め部材143は、側壁143aを有している。側壁143aは、上述したフランジ142bに対して径方向外側に配置され、軸方向に延びている。側壁143aは、回転中心Ax1および直動部材142の周囲を取り囲んでおり、側壁143aの形状は、管状である。側壁143aは、周壁とも称されうる。 The detent member 143 has a side wall 143a. The side wall 143a is arranged radially outward with respect to the flange 142b described above, and extends in the axial direction. The side wall 143a surrounds the rotation center Ax1 and the linear motion member 142, and the shape of the side wall 143a is tubular. The side wall 143a may also be referred to as a peripheral wall.
 回り止め部材143は、ハウジング110に固定されている。具体的に、回り止め部材143は、開口(不図示)が設けられたフランジ143cを有している。フランジ143cは、ベース112の端面(不図示)に接した状態で、当該開口を貫通したボルトがベース112に固定されることにより、当該ベース112と接続されている。 The detent member 143 is fixed to the housing 110. Specifically, the detent member 143 has a flange 143c provided with an opening (not shown). The flange 143c is connected to the base 112 by fixing a bolt penetrating the opening to the base 112 in a state of being in contact with the end surface (not shown) of the base 112.
 側壁143aの内面143a1とフランジ142bの外面142b1との間には、平行な状態において微小な隙間が設けられており、外面142b1および内面143a1ともに、周方向と交差した方向に延びている。 A minute gap is provided between the inner surface 143a1 of the side wall 143a and the outer surface 142b1 of the flange 142b in a parallel state, and both the outer surface 142b1 and the inner surface 143a1 extend in a direction intersecting the circumferential direction.
 この構造により、外面142b1の回転中心Ax1回りの回転が内面143a1によって制限される。これにより、直動部材142の回転が回り止め部材143によって制限される。外面142b1および内面143a1ともに、軸方向に延びているため、内面143a1は外面142b1の軸方向への移動を許容する。すなわち、回り止め部材143は、直動部材142の回転中心Ax1回りの回転を禁止しながら、直動部材142を軸方向、つまり直動方向、に沿って案内することができる。内面143a1は、ガイド部とも称されうる。 Due to this structure, the rotation of the outer surface 142b1 around the rotation center Ax1 is restricted by the inner surface 143a1. As a result, the rotation of the linear motion member 142 is restricted by the detent member 143. Since both the outer surface 142b1 and the inner surface 143a1 extend in the axial direction, the inner surface 143a1 allows the outer surface 142b1 to move in the axial direction. That is, the detent member 143 can guide the linear motion member 142 along the axial direction, that is, the linear motion direction, while prohibiting the rotation of the linear motion member 142 around the rotation center Ax1. The inner surface 143a1 may also be referred to as a guide portion.
 回り止め部材143の方向D2の端部には、底壁143bが設けられている。底壁143bは、側壁143aから径方向内方に突出している。底壁143bには、軸方向に貫通する貫通孔143b1が設けられている。底壁143bは、円環状かつ板状の形状を有しており、内向きフランジとも称されうる。貫通孔143b1の内縁は、直動部材142の側壁142aよりも、径方向外側に配置されている。 A bottom wall 143b is provided at the end of the direction D2 of the detent member 143. The bottom wall 143b projects radially inward from the side wall 143a. The bottom wall 143b is provided with a through hole 143b1 that penetrates in the axial direction. The bottom wall 143b has an annular and plate-like shape, and may also be referred to as an inward flange. The inner edge of the through hole 143b1 is arranged radially outside the side wall 142a of the linear motion member 142.
 ケーブル150は、回転部材141の貫通穴141cを貫通し、軸方向に延びている。軸方向の一端(不図示)は、ブレーキシュー3を作動させる可動部材と結合されている。また、軸方向の他端である端部150a(図2では上端)には、ケーブルエンド151が結合されている。ケーブル150およびケーブルエンド151は、例えば金属材料により作られうる。 The cable 150 penetrates the through hole 141c of the rotating member 141 and extends in the axial direction. One end in the axial direction (not shown) is coupled to a movable member that operates the brake shoe 3. Further, a cable end 151 is coupled to an end portion 150a (upper end in FIG. 2) which is the other end in the axial direction. The cable 150 and cable end 151 can be made of, for example, a metallic material.
 ケーブルエンド151は、筒状部151aと、フランジ151bと、を有している。筒状部151aが外側から加締められることにより、ケーブルエンド151はケーブル150に固定されている。フランジ151bは、直動部材142の側壁142aおよび回り止め部材143の貫通孔143b1よりも、径方向外側に張り出している。ケーブルエンド151は、ケーブル150とともに、作動部材の一例である。また、ケーブルエンド151は、固定部材の一例である。 The cable end 151 has a tubular portion 151a and a flange 151b. The cable end 151 is fixed to the cable 150 by crimping the tubular portion 151a from the outside. The flange 151b projects radially outward from the side wall 142a of the linear motion member 142 and the through hole 143b1 of the detent member 143. The cable end 151, along with the cable 150, is an example of an actuating member. The cable end 151 is an example of a fixing member.
 ケーブルエンド151と直動部材142とは、一体化されておらず、軸方向に離間可能に構成されている。ここで、ケーブル150は、不図示のばね等の復帰部材(例:付勢部材、弾性部材)によって、ブレーキシュー3が非制動状態となる方向D1(図2では下方)に引かれている。電動アクチュエータ100は、ケーブル150の移動範囲、つまりブレーキの使用範囲、において、復帰部材による付勢力がケーブル150に常時作用するよう、構成されている。 The cable end 151 and the linear motion member 142 are not integrated and are configured to be separable in the axial direction. Here, the cable 150 is pulled in the direction D1 (downward in FIG. 2) in which the brake shoe 3 is in the non-braking state by a return member (eg, an urging member, an elastic member) such as a spring (not shown). The electric actuator 100 is configured so that the urging force of the return member always acts on the cable 150 in the movement range of the cable 150, that is, the range of use of the brake.
 復帰部材による付勢力は、制動状態から非制動状態に近付くにつれて小さくなる。また、制動状態では、ケーブル150には、ドラムブレーキの剛性に応じた張力が生じる。このような構成において、直動部材142とケーブル150との間では、ケーブルエンド151を介して力が伝達される。よって、ケーブルエンド151は、伝達部材とも称されうる。 The urging force of the return member decreases as it approaches the non-braking state from the braking state. Further, in the braking state, tension is generated in the cable 150 according to the rigidity of the drum brake. In such a configuration, a force is transmitted between the linear motion member 142 and the cable 150 via the cable end 151. Therefore, the cable end 151 can also be referred to as a transmission member.
 モータ120を制御する制御装置は、例えばelectronic control unit(ECU)である。制御装置の一部は、ソフトウエアを実行するcentral processing unit(CPU)やコントローラのようなハードウエアによって構成されてもよい。制御装置は、全体的にハードウエアによって構成されてもよい。制御装置は、制御部とも称されうる。 The control device that controls the motor 120 is, for example, an electronic control unit (ECU). A part of the control device may be composed of hardware such as a central processing unit (CPU) that executes software and a controller. The control device may be composed entirely of hardware. The control device may also be referred to as a control unit.
 このような構成において、モータ120の出力シャフト122の回転が、減速機構130を介して回転部材141に伝達される。回転部材141が回転すると、回転部材141の雄ねじ141dと直動部材142の雌ねじ142dと噛み合う。そして、直動部材142が軸方向に移動する。この軸方向の移動は、回り止め部材143の内面143a1による直動部材142の外面142b1の回転の制限による。よって、ケーブル150は、直動部材142の移動に伴い、軸方向に沿って制動位置Pbと非制動位置Prとの間で移動する。 In such a configuration, the rotation of the output shaft 122 of the motor 120 is transmitted to the rotating member 141 via the reduction mechanism 130. When the rotating member 141 rotates, it meshes with the male screw 141d of the rotating member 141 and the female screw 142d of the linear motion member 142. Then, the linear motion member 142 moves in the axial direction. This axial movement is due to the limitation of rotation of the outer surface 142b1 of the linear motion member 142 by the inner surface 143a1 of the detent member 143. Therefore, the cable 150 moves between the braking position Pb and the non-braking position Pr along the axial direction as the linear motion member 142 moves.
 制御装置によって制御されたモータ120の出力シャフト122は、一方向へ回転する。この回転により、ケーブル150は方向D2へ移動し、ブレーキシュー3が制動状態となる。この制動状態では、ケーブル150の張力が増大する。これにより、モータ120の回転負荷が増大し、ひいては、モータ120の駆動電流が増大する。以下、一方向を制動回転方向と称する。 The output shaft 122 of the motor 120 controlled by the control device rotates in one direction. By this rotation, the cable 150 moves in the direction D2, and the brake shoe 3 is in the braking state. In this braking state, the tension of the cable 150 increases. As a result, the rotational load of the motor 120 increases, which in turn increases the drive current of the motor 120. Hereinafter, one direction is referred to as a braking rotation direction.
 制御装置は、例えば、モータ120の駆動電流が閾値を超えたことにより、ケーブル150が制動位置Pbに到達したことを検出する。そして、その時点で駆動電流のモータ120への供給を停止する。これにより、出力シャフト122の回転が停止し、ケーブル150は制動位置Pbに位置する。 The control device detects that the cable 150 has reached the braking position Pb, for example, because the drive current of the motor 120 exceeds the threshold value. Then, at that time, the supply of the drive current to the motor 120 is stopped. As a result, the rotation of the output shaft 122 is stopped, and the cable 150 is located at the braking position Pb.
 制御装置によって制御されたモータ120の出力シャフト122は、他方向へ回転する。この回転により、ケーブル150は制動位置Pbから方向D1へ移動し、非制動位置Prまで移動する。非制動位置Pでrは、ケーブルエンド151が回り止め部材143の底壁143bと当接する。この状態では、ブレーキシュー3は、ドラムロータから離間し、電動アクチュエータ100による電気的な制動状態は解除されている。以下、他方をリリース回転方向と称する。 The output shaft 122 of the motor 120 controlled by the control device rotates in the other direction. Due to this rotation, the cable 150 moves from the braking position Pb to the direction D1 and moves to the non-braking position Pr. At the non-braking position P, the cable end 151 comes into contact with the bottom wall 143b of the detent member 143. In this state, the brake shoe 3 is separated from the drum rotor, and the electric braking state by the electric actuator 100 is released. Hereinafter, the other is referred to as a release rotation direction.
 底壁143bは、ケーブルエンド151が底壁143bを超えて、非制動位置Prよりも制動位置Pbとは反対方向へ、すなわち方向D1、へ移動するのを制限する。回り止め部材143は、ストッパの一例である。底壁143bは、ケーブル150を非制動位置Prに位置決めする位置決め部とも称されうる。回り止め部材143は、移動制限部材とも称されうる。 The bottom wall 143b restricts the cable end 151 from moving beyond the bottom wall 143b in the direction opposite to the braking position Pb from the non-braking position Pr, that is, in the direction D1. The detent member 143 is an example of a stopper. The bottom wall 143b can also be referred to as a positioning portion that positions the cable 150 at the non-braking position Pr. The detent member 143 may also be referred to as a movement restricting member.
 また、上述したように、本実施形態では、ケーブルエンド151と直動部材142とは一体化されておらず、軸方向に離間可能である。このため、ケーブル150が非制動位置Prに配置された状態から出力シャフト122がリリース回転方向へさらに回転すると、直動部材142はケーブルエンド151から方向D1へ離間する。これは、雄ねじ141dと雌ねじ142dとの噛み合いおよび回り止め部材143による直動部材142の回り止めに起因される。すなわち、ケーブル150が非制動位置Prに配置され、モータ120の作動が停止した状態で、直動部材142とケーブルエンド151との間には、軸方向に隙間ある。 Further, as described above, in the present embodiment, the cable end 151 and the linear motion member 142 are not integrated and can be separated in the axial direction. Therefore, when the output shaft 122 further rotates in the release rotation direction from the state where the cable 150 is arranged at the non-braking position Pr, the linear motion member 142 is separated from the cable end 151 in the direction D1. This is due to the meshing of the male screw 141d and the female screw 142d and the detent of the linear motion member 142 by the detent member 143. That is, in a state where the cable 150 is arranged at the non-braking position Pr and the operation of the motor 120 is stopped, there is an axial gap between the linear motion member 142 and the cable end 151.
 制御装置は、ケーブル150が制動位置Pbにある状態からモータ120を回転させた時間、つまり回転時間、や、出力シャフト122の回転回数を計測する。これらの計測結果を利用して、直動部材142がケーブルエンド151から方向D1に離間した状態となる位置でモータ120の作動を停止する。この際、回転時間や回転回数は、停止した直動部材142と当該直動部材142から方向D1に離れた回転部材141のフランジ141bとの間により確実に隙間があくよう、言い換えるとフランジ141bと接触したり干渉したりしないよう、設定される。 The control device measures the time during which the motor 120 is rotated from the state where the cable 150 is at the braking position Pb, that is, the rotation time, and the number of rotations of the output shaft 122. Utilizing these measurement results, the operation of the motor 120 is stopped at a position where the linear motion member 142 is separated from the cable end 151 in the direction D1. At this time, the rotation time and the number of rotations are set so that there is a more reliable gap between the stopped linear motion member 142 and the flange 141b of the rotary member 141 separated from the linear motion member 142 in the direction D1, in other words, the flange 141b. It is set so that it does not touch or interfere.
 また、電動アクチュエータ100は、回転部材141と方向D1に隣接したガイド部材113を有している。ガイド部材113は、環状の形状を有し、ベース112の貫通孔112aの内側でケーブル150をガイドする。ガイド部材113は、例えば、エラストマや合成樹脂材料によって作られる。 Further, the electric actuator 100 has a rotating member 141 and a guide member 113 adjacent to the direction D1. The guide member 113 has an annular shape and guides the cable 150 inside the through hole 112a of the base 112. The guide member 113 is made of, for example, an elastomer or a synthetic resin material.
 上述したように、回転直動変換機構140は、雄ねじ141dと雌ねじ142dとを含むねじ機構を有している。ねじ機構を有した回転直動変換機構140では、例えば、何らかの原因により直動部材142の直動が制限され得る。この場合、雄ねじ141dと雌ねじ142dとが締結状態となる虞がある。一例としては、制御装置の不調等によって直動部材142が図2,3において通常可動範囲を超えて方向D1へ移動し、回転部材141のフランジ141bと当接する場合がある。 As described above, the rotary linear motion conversion mechanism 140 has a screw mechanism including a male screw 141d and a female screw 142d. In the rotary linear motion conversion mechanism 140 having a screw mechanism, for example, the linear motion of the linear motion member 142 may be restricted for some reason. In this case, the male screw 141d and the female screw 142d may be in the fastened state. As an example, the linear motion member 142 may move in the direction D1 beyond the normal movable range in FIGS. 2 and 3 due to a malfunction of the control device or the like, and may come into contact with the flange 141b of the rotary member 141.
 この場合、モータ120のロータを、締結状態となる前の回転方向とは逆の回転方向に回転させることにより、当該締結状態は解消されうる。しかしながら、強く締め付けられるほど、締結状態を解消するために必要なモータ120のトルクが増大する必要が生じる。つまり、モータ120の消費電力が増大してしまう。また、そのような締結状態の解除を前提としたモータ120は、そのサイズは大きくなりやすく、ひいてはブレーキ装置2の大型化の一因となる。 In this case, the fastened state can be eliminated by rotating the rotor of the motor 120 in the direction of rotation opposite to the rotation direction before the fastened state. However, the stronger the tightening, the more the torque of the motor 120 required to release the fastened state needs to be increased. That is, the power consumption of the motor 120 increases. Further, the size of the motor 120, which is premised on the release of such a fastening state, tends to increase, which in turn contributes to the increase in size of the brake device 2.
 そこで、本実施形態では、回転部材141のフランジ141bと直動部材142の方向D1の端部142fとの間に弾性部材170を配置したフェールセーフ構造が設けられている。そして、直動部材142の方向D1への戻し過ぎが生じた場合に、弾性部材170が端部142fとフランジ141bとの間に挟まれることにより、雄ねじ141dと雌ねじ142dとの締結トルクを軽減する。端部142fは、第一端部の一例である。フェールセーフ構造は、緩衝構造とも称されうる。 Therefore, in the present embodiment, a fail-safe structure is provided in which the elastic member 170 is arranged between the flange 141b of the rotating member 141 and the end portion 142f of the linear motion member 142 in the direction D1. Then, when the linear motion member 142 is returned too much in the direction D1, the elastic member 170 is sandwiched between the end portion 142f and the flange 141b, thereby reducing the fastening torque between the male screw 141d and the female screw 142d. .. The end portion 142f is an example of the first end portion. The fail-safe structure can also be referred to as a buffer structure.
 図4は、図2の回転直動変換機構140の拡大図である。図4は、直動部材142が弾性部材170と当接した状態を示している。図3,4に示されるように、弾性部材170は、例えば、回転中心Ax1を中心とした円環状かつ板状の形状を有している。弾性部材170は、ポリエステルエラストマのような熱可塑性エラストマによって作られる。自由状態における弾性部材170の形状は、平板状である。 FIG. 4 is an enlarged view of the rotary linear motion conversion mechanism 140 of FIG. FIG. 4 shows a state in which the linear motion member 142 is in contact with the elastic member 170. As shown in FIGS. 3 and 4, the elastic member 170 has, for example, an annular and plate-like shape centered on the rotation center Ax1. The elastic member 170 is made of a thermoplastic elastomer such as a polyester elastomer. The shape of the elastic member 170 in the free state is a flat plate.
 弾性部材170は、この例には限定されず、例えば、軸方向に見た場合にC字状の形状を有してもよい。また、自由状態で平板でない板状でもよいし、板状でなくてもよい。また、例えば、軸方向に延びる仮想平面上の断面形状は、自由状態において上記実施形態のような長方形に限らず、例えば、正方形、あるいは4角形以外の多角形、円形、楕円形などを採用してもよい。 The elastic member 170 is not limited to this example, and may have a C-shaped shape when viewed in the axial direction, for example. Further, it may be in a plate shape that is not a flat plate in a free state, or may not be in a plate shape. Further, for example, the cross-sectional shape on the virtual plane extending in the axial direction is not limited to the rectangle as in the above embodiment in the free state, and for example, a polygon other than a square or a quadrangle, a circle, an ellipse, or the like is adopted. You may.
 弾性部材170は、内周部170aと、外周部170bと、二つの端面170c,170dと、を有している。内周部170aおよび外周部170bは、円筒面状の形状を有している。端面170c,170dは、円環状かつ平面状の形状を有している。端面170cは、内周部170aおよび外周部170bの方向D2の端部の間に亘っている。端面170dは、内周部170aおよび外周部170bの方向D1の端部の間に亘っている。 The elastic member 170 has an inner peripheral portion 170a, an outer peripheral portion 170b, and two end faces 170c and 170d. The inner peripheral portion 170a and the outer peripheral portion 170b have a cylindrical surface shape. The end faces 170c and 170d have an annular and planar shape. The end face 170c extends between the ends of the inner peripheral portion 170a and the outer peripheral portion 170b in the direction D2. The end face 170d extends between the ends of the inner peripheral portion 170a and the outer peripheral portion 170b in the direction D1.
 弾性部材170は、回転部材141の有底凹部141fに収容されている。外周部170bは、周壁141eの内周面141e2と面している。内周部170aは、雄ねじ141dの外周面141a3と面している。本実施形態では、外周部170bの直径d1は、内周面141e2の直径d3よりも小さく設定されている。内周部170aの直径d2は、雄ねじ141d(シャフト141a)の直径d4よりも大きく設定されている。 The elastic member 170 is housed in the bottomed recess 141f of the rotating member 141. The outer peripheral portion 170b faces the inner peripheral surface 141e2 of the peripheral wall 141e. The inner peripheral portion 170a faces the outer peripheral surface 141a3 of the male screw 141d. In the present embodiment, the diameter d1 of the outer peripheral portion 170b is set smaller than the diameter d3 of the inner peripheral surface 141e2. The diameter d2 of the inner peripheral portion 170a is set to be larger than the diameter d4 of the male screw 141d (shaft 141a).
 状態P1は、弾性部材170が雄ねじ141dに対して同心円状に配置された状態である(図4参照)。状態P2は、弾性部材170が雄ねじ141dに対して径方向に軸ずれして内周部170aが雄ねじ141dと当接した状態である。外周部170bは、具体的には、状態P1と状態P2の間の範囲において、内周面141e2と当接しない寸法に設定されている。 The state P1 is a state in which the elastic member 170 is arranged concentrically with respect to the male screw 141d (see FIG. 4). The state P2 is a state in which the elastic member 170 is radially deviated from the male screw 141d and the inner peripheral portion 170a is in contact with the male screw 141d. Specifically, the outer peripheral portion 170b is set to a size that does not come into contact with the inner peripheral surface 141e2 in the range between the states P1 and the state P2.
 本実施形態では、このような構成によって、外周部170bと内周面142eとの当接による弾性部材170の姿勢の変化または傾きや摩耗が防止され得る。そして、圧縮反力のばらつき等が生じ難い。状態P1は、最小軸ずれ状態の一例である。状態P2は、最大軸ずれ状態の一例である。また、状態P1と状態P2との間の状態は、中間軸ずれ状態の一例である。 In the present embodiment, such a configuration can prevent a change in posture, inclination, or wear of the elastic member 170 due to contact between the outer peripheral portion 170b and the inner peripheral surface 142e. Further, it is unlikely that variations in compression reaction force will occur. The state P1 is an example of the minimum axis deviation state. The state P2 is an example of the maximum axis deviation state. Further, the state between the states P1 and the state P2 is an example of the intermediate axis deviation state.
 シャフト141aには、内周部170aと面した不完全ねじ部141acが設けられている。不完全ねじ部141acは、雄ねじ141dの方向D1の端部に位置された拡径部に設けられいる。そして、不完全ねじ部141acは、フランジ141bに対して方向D2に隣接したシャフト141aの根元部141abと雄ねじ141dの完全ねじ部との間に位置されている。 The shaft 141a is provided with an incompletely threaded portion 141ac facing the inner peripheral portion 170a. The incompletely threaded portion 141ac is provided in a diameter-expanded portion located at the end of the direction D1 of the male screw 141d. The incompletely threaded portion 141ac is located between the root portion 141ab of the shaft 141a adjacent to the direction D2 with respect to the flange 141b and the fully threaded portion of the male screw 141d.
 不完全ねじ部141acは、根元部141abから雄ねじ141dに向かうにつれて径方向外側に広がるように傾斜している。すなわち、雄ねじ141dの直径d4は、根元部141abの直径よりも大きい。根元部141abと不完全ねじ部141acとにより、シャフト141aには、フランジ141bと方向D2に隣接した凹部141adが設けられている。 The incompletely threaded portion 141ac is inclined so as to spread outward in the radial direction from the root portion 141ab toward the male screw 141d. That is, the diameter d4 of the male screw 141d is larger than the diameter of the root portion 141ab. The shaft 141a is provided with a flange 141b and a recess 141ad adjacent to the direction D2 by the root portion 141ab and the incompletely threaded portion 141ac.
 また、本実施形態では、根元部141abと不完全ねじ部141acとによって構成された凹部141adの軸方向の長さは、弾性部材170の軸方向の厚さW1(図3参照)よりも大きく設定されている。したがって、内周部170aが凹部141adの内側に入り込んだ状態(例えば、上述した状態P2)において、弾性部材170の方向D2へ移動は、不完全ねじ部141acに引っ掛かることで防止される。これにより、弾性部材170の有底凹部141fに対する方向D2への移動が抑制される。不完全ねじ部141acは、引掛部の一例である。 Further, in the present embodiment, the axial length of the recess 141ad composed of the root portion 141ab and the incompletely threaded portion 141ac is set to be larger than the axial thickness W1 (see FIG. 3) of the elastic member 170. Has been done. Therefore, in a state where the inner peripheral portion 170a has entered the inside of the recess 141ad (for example, the above-mentioned state P2), the movement of the elastic member 170 in the direction D2 is prevented by being caught by the incompletely threaded portion 141ac. As a result, the movement of the elastic member 170 with respect to the bottomed recess 141f in the direction D2 is suppressed. The incompletely threaded portion 141ac is an example of a hooking portion.
 なお、本実施形態では、弾性部材170の軸方向の厚さW1は、雄ねじ141dの1ピッチよりも大きく設定されている。これにより、弾性部材170が雄ねじ141dの螺旋状の溝部内に入る。これにより、弾性部材170が傾斜した姿勢で保持されるのが抑制されている。不完全ねじ部141acは、雄ねじ141dの完全ねじ部の端部とも称される。根元部141abは、括れ部とも称される。 In the present embodiment, the axial thickness W1 of the elastic member 170 is set to be larger than one pitch of the male screw 141d. As a result, the elastic member 170 enters the spiral groove portion of the male screw 141d. As a result, the elastic member 170 is suppressed from being held in an inclined posture. The incompletely threaded portion 141ac is also referred to as the end of the fully threaded portion of the male thread 141d. The root portion 141ab is also referred to as a constricted portion.
 また、直動部材142の端部142fには、端面142f1と、傾斜面142f2と、が設けられている。端面142f1は、軸方向と直交した平面状かつ円環状の形状を有する。端面142f1は、弾性部材170の端面170cと面している。 Further, the end portion 142f of the linear motion member 142 is provided with an end surface 142f1 and an inclined surface 142f2. The end face 142f1 has a planar and annular shape orthogonal to the axial direction. The end face 142f1 faces the end face 170c of the elastic member 170.
 本実施形態では、上述した弾性部材170の状態P1、状態P2、および状態P1と状態P2との間の状態がある。そして、本実施形態では、これらすべての状態において、端面142f1の全面が弾性部材170の端面170cと当接可能に構成されている。これにより、弾性部材170に端面142f1と当接しない領域が生じて軸方向の圧縮反力にばらつきが生じるのが防止されている。 In the present embodiment, there are a state P1, a state P2, and a state between the state P1 and the state P2 of the elastic member 170 described above. Then, in the present embodiment, in all of these states, the entire surface of the end face 142f1 is configured to be able to come into contact with the end face 170c of the elastic member 170. This prevents the elastic member 170 from having a region that does not come into contact with the end face 142f1 and causing variations in the compression reaction force in the axial direction.
 傾斜面142f2は、例えば、端面142f1における角部を面取りすることによって構成されている。傾斜面142f2は、方向D2に向かうにつれて、径方向外側に広がるように傾斜している。本実施形態では、傾斜面142f2によって端面142f1の角部を無くすことにより、弾性部材170の端面170cの摩耗が防止されうる。傾斜面142f2は、C面や、テーパ面等とも称される。 The inclined surface 142f2 is configured by, for example, chamfering a corner portion of the end surface 142f1. The inclined surface 142f2 is inclined so as to spread outward in the radial direction toward the direction D2. In the present embodiment, wear of the end surface 170c of the elastic member 170 can be prevented by eliminating the corner portion of the end surface 142f1 by the inclined surface 142f2. The inclined surface 142f2 is also referred to as a C surface, a tapered surface, or the like.
 また、本実施形態では、上述した傾斜面142f2によって端面142f1の面積または幅を比較的小さくしている。これにより、端面142f1と弾性部材170の端面170cとの対向面積、当接面積でもある、が減少し、ひいては直動部材142が端面170cと当接した状態、または引っ付いた状態で方向D2に離れるのが防止されうる。なお、弾性部材170の端面170cおよび端面170dには、表面処理が施されてもよい。 Further, in the present embodiment, the area or width of the end surface 142f1 is made relatively small by the above-mentioned inclined surface 142f2. As a result, the facing area and the contact area between the end face 142f1 and the end face 170c of the elastic member 170 are reduced, and the linear motion member 142 is separated from the end face 170c in the contacted state or the contacted state in the direction D2. Can be prevented. The end face 170c and the end face 170d of the elastic member 170 may be surface-treated.
 以上のように、本実施形態では、ブレーキ装置2は、回転部材141の有底凹部141fに収容される。内周部170aは、シャフト141a(雄ねじ141d)の周方向に沿って延びるとともに雄ねじ141dの外周面141a3と面する。外周部170bは、シャフト141aの周方向に沿って延びる。さらに外周部170bは、周壁141eの内周面141e2と面する。加えて、外周部170bは、雄ねじ141dに対する状態P2、つまり最大軸ずれ状態、で内周面141e2と離間する。ブレーキ装置2は、内周部170aと外周部170bを有した環状に構成される。そして、ブレーキ装置2は、、直動部材142の方向D1、つまり第二方向、への移動に伴ってフランジ141bと直動部材142との間に挟まれうる弾性部材170を備えている。 As described above, in the present embodiment, the brake device 2 is housed in the bottomed recess 141f of the rotating member 141. The inner peripheral portion 170a extends along the circumferential direction of the shaft 141a (male screw 141d) and faces the outer peripheral surface 141a3 of the male screw 141d. The outer peripheral portion 170b extends along the circumferential direction of the shaft 141a. Further, the outer peripheral portion 170b faces the inner peripheral surface 141e2 of the peripheral wall 141e. In addition, the outer peripheral portion 170b is separated from the inner peripheral surface 141e2 in the state P2 with respect to the male screw 141d, that is, the maximum axis deviation state. The brake device 2 is configured in an annular shape having an inner peripheral portion 170a and an outer peripheral portion 170b. The brake device 2 includes an elastic member 170 that can be sandwiched between the flange 141b and the linear motion member 142 as the linear motion member 142 moves in the direction D1, that is, the second direction.
 上記ブレーキ装置2によれば、例えば、外周部170bと内周面142eとの当接による弾性部材170の姿勢の変化、または傾きが防止されうる。そのため、弾性部材170の姿勢の変化に基づく圧縮反力のばらつき等が生じ難い。このような構成によれば、例えば、弾性部材170の所期の圧縮反力が得られやすい。、ひいては回転部材141の雄ねじ141dと直動部材142の雌ねじ142dとが強く締結されすぎる締結状態が生じるのをより確実に防止することができる。 According to the brake device 2, for example, the posture change or inclination of the elastic member 170 due to the contact between the outer peripheral portion 170b and the inner peripheral surface 142e can be prevented. Therefore, it is unlikely that the compression reaction force will vary due to the change in the posture of the elastic member 170. According to such a configuration, for example, the desired compression reaction force of the elastic member 170 can be easily obtained. As a result, it is possible to more reliably prevent the male screw 141d of the rotating member 141 and the female screw 142d of the linear motion member 142 from being too tightly fastened.
 本実施形態では、弾性部材170は、熱可塑性エラストマによって構成されている。このような構成によれば、例えば、弾性部材170が架橋型ゴムや加硫型ゴム等によって構成された場合と比べて、耐久性や成形性が向上する。そして、雄ねじ141dと雌ねじ142dとの締結状態が生じるのをより防止することができる。 In this embodiment, the elastic member 170 is composed of a thermoplastic elastomer. According to such a configuration, durability and moldability are improved as compared with the case where the elastic member 170 is made of crosslinked rubber, vulcanized rubber, or the like, for example. Then, it is possible to further prevent the male screw 141d and the female screw 142d from being fastened together.
 本実施形態では、弾性部材170は、自由状態で平板状の形状を有している。このような構成によれば、例えば、弾性部材170が皿ばねによって構成された場合と比べて、軸方向の小型化や、軽量化、異音抑制効果等が得られやすい。また、本実施形態のように、コイル状でない弾性部材170を用いることができる。これにより、例えば自由状態にある弾性部材170の配置スペースを軸方向に小さくすることが容易となる。 In the present embodiment, the elastic member 170 has a flat plate shape in a free state. According to such a configuration, for example, as compared with the case where the elastic member 170 is composed of a disc spring, it is easy to obtain miniaturization in the axial direction, weight reduction, noise suppression effect, and the like. Further, as in the present embodiment, a non-coiled elastic member 170 can be used. As a result, for example, it becomes easy to reduce the arrangement space of the elastic member 170 in the free state in the axial direction.
 本実施形態では、弾性部材170の軸方向に沿った厚さW1は、雄ねじ141dの1ピッチよりも大きい。このような構成によれば、例えば、弾性部材170が雄ねじ141dの螺旋状の溝部内に入り傾斜した姿勢で保持されるのが抑制される。そして、弾性部材170の姿勢の変化に基づく圧縮反力のばらつき等がより防止されやすい。 In the present embodiment, the thickness W1 of the elastic member 170 along the axial direction is larger than one pitch of the male screw 141d. According to such a configuration, for example, the elastic member 170 is prevented from entering the spiral groove portion of the male screw 141d and being held in an inclined posture. Further, it is easier to prevent variations in the compression reaction force due to changes in the posture of the elastic member 170.
 本実施形態では、回転部材141は、周壁141eの外周面141e1に設けられ、モータ120のロータから駆動力が伝達される第三ギヤ133を有している。このような構成は、例えば、第三ギヤ133を構成する周壁141eとは別に周壁141eが設けられた構成と比べて、製造工程の簡略化、コストの低減、回転部材141を小型化が可能になる。 In the present embodiment, the rotating member 141 is provided on the outer peripheral surface 141e1 of the peripheral wall 141e, and has a third gear 133 to which a driving force is transmitted from the rotor of the motor 120. Such a configuration enables simplification of the manufacturing process, cost reduction, and miniaturization of the rotating member 141 as compared with a configuration in which the peripheral wall 141e is provided separately from the peripheral wall 141e constituting the third gear 133, for example. Become.
 本実施形態では、直動部材142は、弾性部材170と面し軸方向と直交した端面142f1を有する。直動部材142は、弾性部材170の雄ねじ141dに対する状態P1、つまり最小軸ずれ状態、状態P2、および状態P2と状態P1との間の状態、つまり中間軸ずれ状態となりうる。これらすべての状態において、端面142f1の全面が弾性部材170と当接可能に構成されている。このような構成によれば、例えば、弾性部材170に端面142f1と当接しない領域が生じて軸方向の圧縮反力にばらつきが生じるのが防止される。そして、雄ねじ141dと雌ねじ142dとの締結状態が生じるのをより防止することができる。 In the present embodiment, the linear motion member 142 has an end surface 142f1 facing the elastic member 170 and orthogonal to the axial direction. The linear motion member 142 may be in a state P1 with respect to the male screw 141d of the elastic member 170, that is, a minimum axis deviation state, a state P2, and a state between the state P2 and the state P1, that is, an intermediate axis deviation state. In all of these states, the entire surface of the end face 142f1 is configured to be in contact with the elastic member 170. According to such a configuration, for example, it is possible to prevent the elastic member 170 from having a region that does not come into contact with the end face 142f1 and causing variation in the compression reaction force in the axial direction. Then, it is possible to further prevent the male screw 141d and the female screw 142d from being fastened together.
 本実施形態では、シャフト141aは、フランジ141bに対して方向D2、つまり第一方向、に隣接した根元部141abと、当該根元部141abのフランジ141bとは反対側で径方向外側に突出し弾性部材170の有底凹部141fに対する方向D2への移動を抑制する不完全ねじ部141ac、つまり引掛部、と、を有している。このような構成によれば、例えば、不完全ねじ部141acによって弾性部材170が有底凹部141f内に留まりやすい。 In the present embodiment, the shaft 141a has a root portion 141ab adjacent to the direction D2, that is, the first direction with respect to the flange 141b, and an elastic member 170 projecting radially outward on the side opposite to the flange 141b of the root portion 141ab. It has an incomplete threaded portion 141ac, that is, a hooking portion, which suppresses the movement of the bottomed recess 141f in the direction D2. According to such a configuration, for example, the elastic member 170 tends to stay in the bottomed recess 141f due to the incompletely threaded portion 141ac.
 本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能である。上記実施形態は、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。 Although the embodiment of the present invention has been exemplified, the above embodiment is an example and is not intended to limit the scope of the invention. The above embodiment can be implemented in various other forms. In the above embodiment, various omissions, replacements, combinations, and changes can be made without departing from the gist of the invention. In addition, specifications such as each configuration and shape (structure, type, direction, shape, size, length, width, thickness, height, number, arrangement, position, material, etc.) are changed as appropriate. Can be carried out.
 例えば、回転部材に雌ねじが設けられ、直動部材に雄ねじが設けられてもよい。また、例えば、有底凹部に複数の弾性部材が積層されてもよい。また、例えば、直動部材に有底凹部が設けられてもよい。 For example, the rotating member may be provided with a female screw, and the linear motion member may be provided with a male screw. Further, for example, a plurality of elastic members may be laminated in the bottomed recess. Further, for example, the linear motion member may be provided with a bottomed recess.

Claims (7)

  1.  制動部材が制動状態である制動位置と前記制動部材が非制動状態である非制動位置との間で前記制動部材を動かす作動部材と、
     互いに噛み合う雄ねじおよび雌ねじのうち一方のねじが設けられたシャフトと、前記シャフトから径方向外側に張り出したフランジと、前記フランジの周縁部から前記シャフトの軸方向に沿う第一方向に突出した周壁と、を有し、前記フランジおよび前記周壁によって囲まれ前記第一方向に開口した有底凹部が設けられ、モータのロータと連動して回転する回転部材と、
     前記雄ねじおよび雌ねじのうち他方のねじが設けられ、前記回転部材の正転に応じて前記第一方向に直動するとともに前記回転部材の反転に応じて前記第一方向とは反対の第二方向へ直動し、前記作動部材を前記制動位置と当該制動位置から前記第二方向へ向かって離間した非制動位置との間で移動可能な直動部材と、
     前記有底凹部に収容され、前記雄ねじの周方向に沿って延びるとともに前記雄ねじの外周面と面した内周部と、前記周方向に沿って延びるとともに前記周壁の内周面と面しかつ前記雄ねじに対する前記径方向への最大軸ずれ状態で前記内周面と離間する外周部と、を有した環状に構成され、前記直動部材の前記第二方向への移動に伴って前記フランジと前記直動部材との間に挟まれうる弾性部材と、
     を備えた、ブレーキ装置。
    An actuating member that moves the braking member between a braking position in which the braking member is in the braking state and a non-braking position in which the braking member is in the non-braking state.
    A shaft provided with one of a male screw and a female screw that mesh with each other, a flange protruding radially outward from the shaft, and a peripheral wall protruding from the peripheral edge of the flange in the first direction along the axial direction of the shaft. A rotating member that has a, and is surrounded by the flange and the peripheral wall and is provided with a bottomed recess that opens in the first direction and rotates in conjunction with the rotor of the motor.
    The other screw of the male screw and the female screw is provided, and linearly moves in the first direction according to the forward rotation of the rotating member and in the second direction opposite to the first direction according to the reversal of the rotating member. A linearly moving member that moves linearly to and can move the operating member between the braking position and a non-braking position that is separated from the braking position in the second direction.
    It is housed in the bottomed recess and extends along the circumferential direction of the male screw and faces the outer peripheral surface of the male screw, and extends along the circumferential direction and faces the inner peripheral surface of the peripheral wall. It is formed in an annular shape having an outer peripheral portion separated from the inner peripheral surface in a state of maximum axial deviation in the radial direction with respect to the male screw, and the flange and the flange are formed as the linear motion member moves in the second direction. An elastic member that can be sandwiched between the linear motion member and
    With a braking device.
  2.  前記弾性部材は、熱可塑性エラストマによって構成された、請求項1に記載のブレーキ装置。 The brake device according to claim 1, wherein the elastic member is composed of a thermoplastic elastomer.
  3.  前記弾性部材は、自由状態で平板状の形状を有した、請求項1または2に記載のブレーキ装置。 The brake device according to claim 1 or 2, wherein the elastic member has a flat plate shape in a free state.
  4.  前記弾性部材の前記軸方向に沿った厚さは、前記一方のねじの1ピッチよりも大きい、請求項1~3のうちいずれか一つに記載のブレーキ装置。 The brake device according to any one of claims 1 to 3, wherein the thickness of the elastic member along the axial direction is larger than one pitch of one of the screws.
  5.  前記回転部材は、前記周壁の外周面に設けられ、前記ロータから駆動力が伝達されるギヤを有した、請求項1~4のうちいずれか一つに記載のブレーキ装置。 The brake device according to any one of claims 1 to 4, wherein the rotating member is provided on an outer peripheral surface of the peripheral wall and has a gear to which a driving force is transmitted from the rotor.
  6.  前記直動部材は、前記弾性部材と面し前記軸方向と直交した端面を有し、
     前記弾性部材の前記雄ねじに対する前記径方向への最小軸ずれ状態、前記最大軸ずれ状態、および前記最大軸ずれ状態と前記最小軸ずれ状態との間の中間軸ずれ状態において、前記端面の全面が前記弾性部材と当接可能に構成された、請求項1~5のうちいずれか一つに記載のブレーキ装置。
    The linear motion member has an end face facing the elastic member and orthogonal to the axial direction.
    In the radial minimum axis deviation state, the maximum axis deviation state, and the intermediate axis deviation state between the maximum axis deviation state and the minimum axis deviation state with respect to the male screw of the elastic member, the entire surface of the end face is covered. The brake device according to any one of claims 1 to 5, which is configured to be in contact with the elastic member.
  7.  前記回転部材の前記シャフトには前記雄ねじが設けられ、当該シャフトは、前記フランジに対して前記第一方向に隣接した根元部と、当該根元部の前記フランジとは反対側で前記径方向外側に突出し前記弾性部材の前記有底凹部に対する前記第一方向への移動を抑制する引掛部と、を有した、請求項1~6のうちいずれか一つに記載のブレーキ装置。 The shaft of the rotating member is provided with the male screw, and the shaft has a root portion adjacent to the flange in the first direction and a root portion of the root portion opposite to the flange and outward in the radial direction. The braking device according to any one of claims 1 to 6, further comprising a hooking portion that projects and suppresses the movement of the elastic member with respect to the bottomed recess in the first direction.
PCT/JP2020/036307 2019-09-30 2020-09-25 Brake device WO2021065726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019180495A JP7347086B2 (en) 2019-09-30 2019-09-30 brake device
JP2019-180495 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065726A1 true WO2021065726A1 (en) 2021-04-08

Family

ID=75272104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036307 WO2021065726A1 (en) 2019-09-30 2020-09-25 Brake device

Country Status (2)

Country Link
JP (1) JP7347086B2 (en)
WO (1) WO2021065726A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016115A (en) * 2016-07-25 2018-02-01 株式会社アドヴィックス Brake for vehicle
JP2018141544A (en) * 2017-02-28 2018-09-13 株式会社アドヴィックス Vehicular brake

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016115A (en) * 2016-07-25 2018-02-01 株式会社アドヴィックス Brake for vehicle
JP2018141544A (en) * 2017-02-28 2018-09-13 株式会社アドヴィックス Vehicular brake

Also Published As

Publication number Publication date
JP7347086B2 (en) 2023-09-20
JP2021054314A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US9568058B2 (en) Disc brake
JP5093476B2 (en) Electric disc brake
JP5888273B2 (en) Electric parking brake drive device
KR20210077001A (en) Electromechanical actuator package for driving the brake assembly
WO2017069234A1 (en) Brake for vehicles
US11174919B2 (en) Speed reduction device and brake actuator including ihe same
WO2021065726A1 (en) Brake device
WO2019131153A1 (en) Brake device
WO2020067230A1 (en) Electric actuator and electric brake device
JP2008157378A (en) Motor-driven disc brake
JP2020085097A (en) Rotation/linear motion conversion mechanism and brake device
JP2008115880A (en) Electric disc-brake
JP7363309B2 (en) connection structure
JP6483567B2 (en) Electric parking brake
JP2019058032A (en) Electric actuator
JP7095535B2 (en) Brake device
JP7234561B2 (en) Electric actuator and electric brake device
JP2014101973A (en) Electric parking brake device
JP2020026854A (en) Brake device
CN111902651B (en) Brake device
JP2010084907A (en) Gear device
CN109756069B (en) Actuator and transmission mechanism thereof
JP4022731B2 (en) Linear actuator
JP2001204154A (en) Actuator
JP5673518B2 (en) Wheel drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870704

Country of ref document: EP

Kind code of ref document: A1