WO2021065561A1 - 固体撮像素子および電子機器 - Google Patents

固体撮像素子および電子機器 Download PDF

Info

Publication number
WO2021065561A1
WO2021065561A1 PCT/JP2020/035401 JP2020035401W WO2021065561A1 WO 2021065561 A1 WO2021065561 A1 WO 2021065561A1 JP 2020035401 W JP2020035401 W JP 2020035401W WO 2021065561 A1 WO2021065561 A1 WO 2021065561A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
image sensor
global
drive circuit
solid
Prior art date
Application number
PCT/JP2020/035401
Other languages
English (en)
French (fr)
Inventor
友策 杉森
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP20871502.9A priority Critical patent/EP4040778A4/en
Priority to JP2021550621A priority patent/JPWO2021065561A1/ja
Priority to US17/763,783 priority patent/US11910117B2/en
Priority to CN202080063384.5A priority patent/CN114391249A/zh
Publication of WO2021065561A1 publication Critical patent/WO2021065561A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/533Control of the integration time by using differing integration times for different sensor regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion

Definitions

  • the present disclosure relates to a solid-state image sensor and an electronic device, and more particularly to a solid-state image sensor and an electronic device capable of achieving higher image quality.
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 1 discloses a CMOS image sensor capable of performing a global shutter operation in which charge transfer from a photodiode to a memory is performed at the same timing in all lines.
  • the drive circuit that performs the global shutter operation is provided on one side of the pixel array area or on two opposite sides of the pixel array area. Therefore, the exposure time may be uneven due to the influence of the waveform becoming dull due to IR drop due to the instantaneous current, wiring delay, and the like. In particular, during high-speed operation, the unevenness of the exposure time becomes conspicuous enough to adversely affect the image quality. Therefore, it is required to reduce such unevenness of the exposure time and enable the imaging of a higher quality image.
  • This disclosure was made in view of such a situation, and is intended to enable higher image quality.
  • a pixel having a global drive portion driven at the same timing in all rows and a rolling drive portion driven at a row unit timing, and a plurality of the pixels are arranged in an array.
  • a global drive circuit that supplies a drive signal to the global drive portion, and a rolling drive circuit that supplies a drive signal to the rolling drive portion are provided, and the global drive circuit covers the pixel array region. It is arranged on at least three of the four surrounding sides.
  • a pixel having a global drive portion driven at the same timing in all rows and a rolling drive portion driven at a row unit timing, and a plurality of the pixels are arranged in an array. It has a pixel array region, a global drive circuit that supplies a drive signal to the global drive portion, and a rolling drive circuit that supplies a drive signal to the rolling drive portion, and the global drive circuit provides the pixel array region.
  • a solid-state image sensor is provided so as to be arranged on at least three or more of the four surrounding sides.
  • the solid-state image sensor has a pixel having a global drive portion driven at the same timing in all rows and a rolling drive portion driven at a row unit timing, and a plurality of pixels in an array.
  • a pixel array region arranged in, a global drive circuit that supplies a drive signal to the global drive portion, and a rolling drive circuit that supplies a drive signal to the rolling drive portion are provided.
  • the global drive circuit is arranged on at least three sides or more of the four sides surrounding the pixel array area.
  • FIG. 1 It is a figure is an example of the circuit structure of the image sensor of FIG. It is a figure which shows the cross-sectional configuration example of the image sensor of the two-layer laminated structure. It is a figure which shows the cross-sectional configuration example of the image sensor of the three-layer laminated structure. It is a block diagram which shows the structural example of the image pickup apparatus. It is a figure which shows the use example using an image sensor.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of an image pickup device to which the present technology is applied.
  • the image sensor 11 shown in FIG. 1 is, for example, a stacked CMOS image sensor in which a plurality of chips 12 are stacked.
  • the image sensor 11 has a two-layer laminated structure in which the upper chip 12a and the lower chip 12b are laminated.
  • a plurality of pixels 31 are arranged in an array.
  • the pixel 31 has a structure straddling the upper chip 12a and the lower chip 12b.
  • a part of the pixel 31 provided on the upper chip 12a is referred to as an upper pixel 31a
  • a part of the pixel 31 provided on the lower chip 12b is a lower pixel. It is called 31b.
  • the upper pixel 31a is configured to include a portion that is driven at the same timing in all rows (hereinafter, referred to as a global drive portion) and a portion that is driven at a timing of each row (hereinafter, referred to as a rolling drive portion).
  • the lower pixel 31b has a rolling drive portion and is configured without a global drive portion.
  • the pixel array region 21a, the global drive circuits 22-1 to 22-4, and the wiring 23 are arranged on the upper chip 12a.
  • the lower chip 12b includes a pixel array area 21b, power supply pads 24-1 to 24-4, rolling drive circuits 25-1 and 25-2, a load MOS area 26, an AD conversion unit 27, and a horizontal transfer circuit 28. Is placed.
  • the upper pixels 31a are arranged in an array in the pixel array area 21a, and the lower pixels 31b are arranged in an array in the pixel array area 21b.
  • the global drive circuits 22-1 to 22-4 are arranged along the four sides of the pixel array region 21a, and each outputs a signal for driving the global drive portion of the upper pixel 31a.
  • the global drive circuit 22-1 is arranged along the left side of the pixel array area 21a
  • the global drive circuit 22-2 is arranged along the right side of the pixel array area 21a
  • the global drive circuit 22-3 is arranged.
  • the global drive circuit 22-4 is arranged along the upper side of the pixel array area 21a
  • the global drive circuit 22-4 is arranged along the lower side of the pixel array area 21a.
  • the wiring 23 is a power supply line and a ground line for supplying the power required for driving the global drive circuits 22-1 to 22-4.
  • the wiring 23 is arranged so as to surround the outer periphery (left side, right side, upper side, and lower side) of the upper chip 12a so as to be connected to each of the global drive circuits 22-1 to 22-4.
  • the power pads 24-1 to 24-4 are buds that are electrically and mechanically connected to the upper chip 12a, and are arranged at the four corners of the lower chip 12b, respectively.
  • the power supply pads 24-1 to 24-4 are connected to the wiring 23, respectively, and the electric power supplied from the outside is supplied to the global drive circuits 22-1 to 22-4 via the wiring 23.
  • the rolling drive circuits 25-1 and 25-2 are arranged along the left and right two sides of the pixel array region 21b, respectively, and each signal for driving the rolling drive portion of the upper pixel 31a and the lower pixel 31b. Is output.
  • the load MOS region 26 for example, a plurality of MOS transistors used as load elements for reading a pixel signal from the pixel 31 are arranged.
  • the AD conversion unit 27 has, for example, a comparator and a counter, and AD-converts and outputs the pixel signal read from the pixel 31.
  • the horizontal transfer circuit 28 for example, transfers the pixel signal output from the AD conversion unit 27 for each row of pixels 31 in the horizontal direction, and outputs the pixel signal to the signal processing unit in the subsequent stage of the image sensor 11.
  • FIG. 2 is a diagram illustrating a circuit configuration of the image sensor 11.
  • the image sensor 11 has a configuration divided by an upper chip 12a and a lower chip 12b.
  • FIG. 2 shows the circuit configurations of the upper pixel 31a and the global drive circuit 22 of the upper chip 12a, and the lower pixel 31b and the rolling drive circuit 25 of the lower chip 12b.
  • the upper pixel 31a includes a photodiode 51, an emission transistor 52, a transfer transistor 53, a memory 54, a read transistor 55, and an FD unit 56.
  • the lower pixel 31b includes an amplification transistor 57, a selection transistor 58, and a reset transistor 59.
  • the photodiode 51 generates and accumulates electric charges by photoelectric conversion.
  • the discharge transistor 52 is driven according to the discharge signal OFG, and discharges the electric charge accumulated in the photodiode 51 to the drain OFD at the timing when the exposure of the pixel 31 is started, for example. Further, the discharge transistor 52 also has a function of overflowing the electric charge generated in excess of the capacitance of the photodiode 51.
  • the transfer transistor 53 is driven according to the transfer signal TRX, and transfers the electric charge generated by the photodiode 51 during the exposure of the pixel 31 to the memory 54.
  • the memory 54 temporarily holds the electric charge transferred via the transfer transistor 53 until it is time to read each row of the pixel 31.
  • the read transistor 55 is driven according to the read signal TRG, and reads the electric charge held in the memory 54 to the FD unit 56.
  • the FD unit 56 holds the electric charge read out through the reading transistor 55, and applies a potential corresponding to the level of the electric charge to the gate electrode of the amplification transistor 57.
  • the amplification transistor 57 amplifies the electric charge stored in the FD unit 56, and outputs a pixel signal corresponding to the electric charge level to the vertical signal line VSL.
  • the selection transistor 58 is driven according to the selection signal SEL, and the amplification transistor 57 is connected to the constant current source 61 via the vertical signal line VSL.
  • the reset transistor 59 is driven according to the reset signal RST, discharges the electric charge stored in the memory 54 and the FD unit 56, and resets the pixel 31.
  • the global drive circuit 22 is composed of a plurality of amplifiers 41, and has an amplifier 41-1 that supplies a transfer signal TRX to a transfer transistor 53 and an amplifier 41-2 that supplies an emission signal OFG to an emission transistor 52.
  • the transfer signal TRX and the discharge signal OFG output from the global drive circuit 22 are also referred to as global drive signals as appropriate.
  • the rolling drive circuit 25 is composed of a plurality of amplifiers 42, and has an amplifier 42-1 that supplies a read signal TRG to a read transistor 55 and an amplifier 42-2 that supplies a selection signal SEL to a selection transistor 58.
  • the photodiode 51, the emission transistor 52, and the transfer transistor 53 surrounded by the alternate long and short dash line in FIG. 2 serve as the global drive portion of the pixel 31.
  • the readout transistor 55 and the selection transistor 58 surrounded by the alternate long and short dash line in FIG. 2 serve as the rolling drive portion of the pixel 31.
  • the image sensor 11 is configured as described above, and the global drive circuits 22-1 to 22-4 are configured to supply a global drive signal to the global drive portion of the pixel 31 from the four directions of the pixel array region 21a. Has been done. As a result, the image sensor 11 has a configuration in which the number of global drive circuits 22 that supply the global drive signal per pixel 31 is increased as compared with the conventional case, and as a result, the dullness that occurs in the waveform of the global drive signal is alleviated. be able to.
  • the waveform of the global drive signal output from the global drive circuit 22 is substantially pulsed at both ends. It is vertical (changes in rising and falling are steep). Then, as the distance from the global drive circuit 22 toward the center of the pixel array region 21a increases, the waveform of the global drive signal becomes dull.
  • the conventional image sensor has a configuration in which a global drive circuit is provided on one or two sides of the pixel array region. Therefore, as shown in FIG. 3B, in the central portion of the pixel array region, the waveform of the global drive signal has a large bluntness (the change of rising and falling is gradual) as compared with the end portion. ..
  • the image sensor 11 reduces the dullness of the waveform of the global drive signal in the central portion of the pixel array region 21a as compared with the conventional image sensor, that is, the waveform. It is possible to suppress the dullness of.
  • the image sensor 11 can suppress the occurrence of dullness in the shape of the waveform of the global drive signal in the central portion of the pixel array region 21a, and the timing for driving the pixels 31 over the entire area of the pixel array region 21a can be suppressed. Identity can be ensured. Further, the image sensor 11 is configured to disperse the path of the instantaneous current. As a result, the image sensor 11 can reduce the occurrence of uneven exposure time, that is, all the pixels 31 can be exposed at the same exposure time, and during high-speed operation (short shutter time). Also, it is possible to capture a higher image quality image.
  • the image sensor 11 has an efficient layout in which the global drive circuit 22 is arranged on the upper chip 12a and the rolling drive circuit 25 is arranged on the lower chip 12b, so that the drive circuits are arranged on one chip.
  • the chip size can be reduced as compared with the above.
  • FIG. 4 is a diagram showing a configuration example of a second embodiment of an image pickup device to which the present technology is applied.
  • the same reference numerals are given to the configurations common to the image pickup device 11 of FIG. 1, and detailed description thereof will be omitted.
  • the image sensor 11A is configured by laminating the upper chip 12a and the lower chip 12b, similarly to the image sensor 11 in FIG.
  • the image sensor 11A has a pixel array region 21a and wiring 23 arranged on the upper chip 12a, and the pixel array region 21b, power pads 24-1 to 24-4, and rolling drive circuit 25-1 on the lower chip 12b.
  • 25-2, the load MOS region 26, the AD conversion unit 27, and the horizontal transfer circuit 28 are arranged, which is the same configuration as the image sensor 11 of FIG.
  • the image pickup device 11A has a configuration different from that of the image pickup device 11 of FIG. 1 in that three global drive circuits 22-1 to 22-3 are arranged on the upper chip 12a.
  • the global drive signals 22 that supply global drive signals per pixel 31 can be alleviated. That is, it is not necessary to have the configuration in which the four global drive circuits 22-1 to 22-4 are provided as in the image sensor 11 of FIG. 1, but the configuration may be such that at least three or more global drive circuits 22 are provided. ..
  • the arrangement of the three global drive circuits 22-1 to 22-3 is not limited to the left side, the right side, and the upper side as shown in FIG. That is, even if the image sensor 11A adopts a configuration in which the global drive circuits 22-1 to 22-3 are arranged on the left side, the right side, and the lower side, the left side, the upper side, and the lower side, the right side, the upper side, and the lower side. Good.
  • the circuit configuration of the image sensor 11A is the same as the circuit configuration of the image sensor 11 shown in FIG.
  • the image sensor 11A configured in this way can reduce the occurrence of uneven exposure time by suppressing the dullness that occurs in the waveform of the global drive signal as compared with the conventional image sensor, and can reduce the occurrence of uneven exposure time, resulting in a higher image quality image. Can be imaged.
  • FIG. 5 is a diagram showing a configuration example of a third embodiment of an image pickup device to which the present technology is applied.
  • the same reference numerals are given to the configurations common to the image pickup device 11 of FIG. 1, and detailed description thereof will be omitted.
  • the image sensor 11B is configured by laminating the upper chip 12a and the lower chip 12b, similarly to the image sensor 11 in FIG.
  • the image sensor 11B has a pixel array region 21a arranged on the upper chip 12a, and a pixel array region 21b, power pads 24-1 to 24-4, a load MOS region 26, and an AD conversion unit 27 on the lower chip 12b. It has the same configuration as the image pickup device 11 of FIG. 1 in that the horizontal transfer circuit 28 is arranged.
  • the rolling drive circuits 25-1 and 25-2 are arranged on the upper chip 12a, and the global drive circuits 22-1 to 22-4 are arranged on the lower chip 12b.
  • the configuration is different from that of the image sensor 11.
  • the image sensor 11B is provided with the global drive circuits 22-1 to 22-4 on the lower chip 12b to drive the global drive portion of the upper pixel 31a arranged in the pixel array region 21a of the upper chip 12a. Even with the configuration, the dullness that occurs in the waveform of the global drive signal can be alleviated.
  • the image sensor 11B is configured such that the global drive circuits 22-1 to 22-4 are arranged in the vicinity of the power supply pads 24-1 to 24-4, so that more power can be supplied to the global drive circuits 22-. It can be supplied to 1 to 22-4. As a result, the image sensor 11B can further alleviate the dullness that occurs in the waveform of the global drive signal.
  • the circuit configuration of the image sensor 11B is the same as the circuit configuration of the image sensor 11 shown in FIG.
  • the image sensor 11B configured in this way can reduce the occurrence of uneven exposure time by suppressing the dullness that occurs in the waveform of the global drive signal as compared with the conventional image sensor, and can reduce the occurrence of uneven exposure time, resulting in a higher image quality image. Can be imaged.
  • FIG. 6 is a diagram showing a configuration example of a fourth embodiment of an image pickup device to which the present technology is applied.
  • the same reference numerals are given to the configurations common to the image pickup device 11 of FIG. 1, and detailed description thereof will be omitted.
  • the image sensor 11C is configured by laminating the upper chip 12a and the lower chip 12b, similarly to the image sensor 11 in FIG.
  • the image sensor 11C has a pixel array region 21a and wiring 23 arranged on the upper chip 12a, and the pixel array region 21b, power pads 24-1 to 24-4, and rolling drive circuit 25-1 on the lower chip 12b.
  • 25-2, the load MOS region 26, the AD conversion unit 27, and the horizontal transfer circuit 28 are arranged, which is the same configuration as the image sensor 11 of FIG.
  • the global drive circuits 22-1a to 22-4a are arranged on the upper chip 12a, and the global drive circuits 22-1b to 22-4b are arranged on the lower chip 12b.
  • the configuration is different from that of the image sensor 11. That is, in the image sensor 11C, the global drive circuit 22 is formed by the global drive circuits 22a and 22b so as to have a structure straddling the upper chip 12a and the lower chip 12b.
  • the structure of the global drive circuit 22 of the image sensor 11C will be described with reference to FIG. 7.
  • the amplifiers 41-1 and 41-2 are configured in the same manner, and are simply referred to as amplifiers 41 below.
  • the amplifier 41 of the global drive circuit 22 is composed of an N-type transistor 71a and a P-type transistor 71b.
  • the image sensor 11C has a layout in which the N-type transistor 71a is arranged in the global drive circuit 22a of the upper chip 12a, and the P-type transistor 71b is arranged in the global drive circuit 22b of the lower chip 12b.
  • the upper chip 12a can be manufactured only by using the NMOS process.
  • the dullness that occurs in the waveform of the global drive signal can be alleviated only at the falling edge (high level to low level) of the global drive signal. Therefore, the image sensor 11C can also reduce the occurrence of uneven exposure time, and can capture an image with higher image quality than the conventional image sensor.
  • FIG. 8 is a diagram showing a configuration example of a fifth embodiment of an image pickup device to which the present technology is applied.
  • the same reference numerals are given to the configurations common to the image pickup device 11 of FIG. 1, and detailed description thereof will be omitted.
  • the image sensor 11D is configured by laminating the upper chip 12a and the lower chip 12b, similarly to the image sensor 11 in FIG.
  • the image sensor 11D has a pixel array region 21a, global drive circuits 22-1 to 22-4, and wiring 23 arranged on the upper chip 12a, and a pixel array region 21b and a power supply pad 24-1 on the lower chip 12b.
  • the rolling drive circuits 25-1 and 25-2, and the horizontal transfer circuit 28 are arranged, which is the same configuration as the image pickup device 11 of FIG.
  • the image sensor 11D is different from the image sensor 11 in FIG. 1 in that the image sensor 11D is configured to AD-convert an analog pixel signal inside the pixel 31 and output a digital pixel signal.
  • the pixel 31 includes a photodiode 51, an emission transistor 52, a transfer transistor 53, an FD unit 56, a comparator 81, a counter 82, and a latch 83. Further, the pixel 31 has a structure in which the comparator 81 straddles the upper chip 12a and the lower chip 12b, and the electric charge accumulated in the FD unit 56 is AD-converted by the comparator 81 and the counter 82.
  • the image sensor 11D is configured to supply a latch data read control signal from the rolling drive circuit 25 to the latch 83, and when reading a digital pixel signal line by line, the latch 83 is regarded as a rolling drive portion of the pixel 31. be able to. That is, the rolling drive portion of the pixel 31 is configured to handle a digital signal instead of an analog signal.
  • the image sensor 11D configured in this way can reduce the occurrence of uneven exposure time by suppressing the dullness that occurs in the waveform of the global drive signal as compared with the conventional image sensor, and can reduce the occurrence of uneven exposure time, resulting in a higher image quality image. Can be imaged.
  • FIG. 10 shows a cross-sectional configuration example of the image sensor 11 having a two-layer laminated structure as described above.
  • the upper chip 12a has a cross-sectional structure in which an insulating layer 102, a filter layer 103, and an on-chip lens layer 104 are laminated on the back surface side of the semiconductor layer 101, and a wiring layer 105 is laminated on the front surface side of the semiconductor layer 101. It has become.
  • the semiconductor layer 101 is formed with a photodiode 51, a memory 54, and the like for each pixel 31, so that the memory 54 is shielded from light.
  • the lower chip 12b has a cross-sectional structure in which the wiring layer 112 is laminated on the semiconductor layer 111.
  • connection pad formed so as to be exposed to the wiring layer 105 of the upper chip 12a and the connection pad formed so as to be exposed to the wiring layer 112 of the lower chip 12b are electrically and electrically connected to each other. It is mechanically connected.
  • the image sensor 11 having such a laminated structure has, for example, a configuration in which a logic circuit or the like is provided in a peripheral region outside the pixel array region 21b of the lower chip 12b. Therefore, when the chip sizes of the upper chip 12a and the lower chip 12b are the same, the layout is such that no element or the like is formed in the peripheral region outside the pixel array region 21a of the upper chip 12a. Therefore, in the image sensor 11, the mounting density can be improved more effectively by arranging the layout in which the global drive circuits 22-1 to 22-4 are provided in the peripheral region of the upper chip 12a.
  • FIG. 11 shows a cross-sectional configuration example of the three-layer structure image sensor 11E.
  • the image sensor 11E has a configuration in which the upper chip 12a, the lower chip 12b, and the logic chip 12c are laminated.
  • the upper chip 12a has the same cross-sectional structure as the upper chip 12a in FIG. 10, and the lower chip 12b has a cross-sectional structure in which a wiring layer 113 for laminating with the logic chip 12c is added.
  • the logic chip 12c has a cross-sectional structure in which the wiring layer 122 is laminated on the semiconductor layer 121.
  • the image sensor 11E adopts a layout in which the global drive circuits 22-1 to 22-4 are provided in the peripheral region of the upper chip 12a and the rolling drive circuits 25-1 and 25-2 are provided in the peripheral region of the lower chip 12b. be able to.
  • the image sensor 11E having such a laminated structure can be further miniaturized as compared with a configuration in which a logic circuit or the like is provided in the peripheral region of the lower chip 12b like the image sensor 11 having a two-layer laminated structure.
  • the image sensor 11 as described above is applied to various electronic devices such as an image pickup system such as a digital still camera or a digital video camera, a mobile phone having an image pickup function, or another device having an image pickup function. Can be done.
  • an image pickup system such as a digital still camera or a digital video camera
  • a mobile phone having an image pickup function or another device having an image pickup function. Can be done.
  • FIG. 12 is a block diagram showing a configuration example of an imaging device mounted on an electronic device.
  • the image pickup device 201 includes an optical system 202, an image pickup element 203, a signal processing circuit 204, a monitor 205, and a memory 206, and can capture still images and moving images.
  • the optical system 202 is configured to have one or a plurality of lenses, guides the image light (incident light) from the subject to the image pickup element 203, and forms an image on the light receiving surface (sensor unit) of the image pickup element 203.
  • the above-mentioned image sensor 11 is applied. Electrons are accumulated in the image sensor 203 for a certain period of time according to the image formed on the light receiving surface via the optical system 202. Then, a signal corresponding to the electrons stored in the image sensor 203 is supplied to the signal processing circuit 204.
  • the signal processing circuit 204 performs various signal processing on the pixel signal output from the image sensor 203.
  • the image (image data) obtained by the signal processing circuit 204 performing signal processing is supplied to the monitor 205 for display, or supplied to the memory 206 for storage (recording).
  • the image pickup device 201 configured in this way, for example, a higher image quality image can be captured by applying the image pickup device 11 described above.
  • FIG. 13 is a diagram showing a usage example using the above-mentioned image sensor (image sensor).
  • the above-mentioned image sensor can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray, as shown below.
  • Devices that take images for viewing such as digital cameras and portable devices with camera functions.
  • Devices used for traffic such as in-vehicle sensors that photograph the rear, surroundings, and interior of vehicles, surveillance cameras that monitor traveling vehicles and roads, and distance measurement sensors that measure distance between vehicles, etc.
  • Devices used in home appliances such as TVs, refrigerators, and air conditioners to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, devices that perform angiography by receiving infrared light, etc.
  • Equipment used for medical and healthcare ⁇ Equipment used for security such as surveillance cameras for crime prevention and cameras for person authentication ⁇ Skin measuring instruments for taking pictures of the skin and taking pictures of the scalp Equipment used for beauty such as microscopes ⁇ Equipment used for sports such as action cameras and wearable cameras for sports applications ⁇ Camera etc. for monitoring the condition of fields and crops , Equipment used for agriculture
  • the present technology can also have the following configurations.
  • the global drive portion has a photodiode, an emission transistor, and a transfer transistor constituting the pixel.
  • the pixel has a comparator and a counter for AD-converting an analog pixel signal and outputting a digital pixel signal inside the pixel.
  • the global drive portion has a photodiode, an emission transistor, and a transfer transistor constituting the pixel.
  • the solid-state image sensor according to any one of (1) to (9) above, wherein the rolling drive portion has a latch constituting the pixel.
  • Imaging element 12 chip, 12a upper chip, 12b lower chip, 21a and 21b pixel array area, 22 global drive circuit, 23 wiring, 24 power pad, 25 rolling drive circuit, 26 load MOS area, 27 AD converter, 28 Horizontal transfer circuit, 31 pixels, 31a upper pixel, 31b lower pixel, 41 and 42 amplifier, 51 photodiode, 52 emission transistor, 53 transfer transistor, 54 memory, 55 read transistor, 56 FD section, 57 amplification transistor, 58 selection transistor , 59 reset transistor, 61 constant current source, 71a N-type transistor, 71b P-type transistor, 81 comparator, 82 counter, 83 latch

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示は、より高画質化を図ることができるようにする固体撮像素子および電子機器に関する。 撮像素子は、全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、複数の画素がアレイ状に配置された画素アレイ領域と、グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、ローリング駆動部分に対する駆動信号を供給するローリング駆動回路とを備える。そして、グローバル駆動回路が、画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される。本技術は、例えば、積層型のCMOSイメージセンサに適用できる。

Description

固体撮像素子および電子機器
 本開示は、固体撮像素子および電子機器に関し、特に、より高画質化を図ることができるようにした固体撮像素子および電子機器に関する。
 従来、デジタルスチルカメラやデジタルビデオカメラなどの撮像機能を備えた電子機器においては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子が使用されている。例えば、CMOSイメージセンサでは、フォトダイオードにおいて光電変換された電荷がFD(Floating Diffusion)部に転送され、その電荷量に応じて増幅トランジスタを介して出力される画素信号が、AD(Analog to Digital)変換される。
 例えば、特許文献1には、フォトダイオードからメモリへの電荷の転送が全行で同一のタイミングで行われるグローバルシャッタ動作を行うことができるCMOSイメージセンサが開示されている。
特開2014-72788号公報
 ところで、従来のCMOSイメージセンサは、グローバルシャッタ動作を行う駆動回路は、画素アレイ領域の1辺、または、画素アレイ領域の対向する2辺に設けられた構成となっていた。そのため、瞬時電流によるIRドロップや配線遅延などによって波形に鈍りが生じる影響により、露光時間のムラが発生することがあった。特に、高速動作時においては、画質に悪影響を与えるほどに露光時間のムラが目立つことになる。このため、このような露光時間のムラを低減して、より高画質な画像の撮像を可能とすることが求められている。
 本開示は、このような状況に鑑みてなされたものであり、より高画質化を図ることができるようにするものである。
 本開示の一側面の固体撮像素子は、全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、複数の前記画素がアレイ状に配置された画素アレイ領域と、前記グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、前記ローリング駆動部分に対する駆動信号を供給するローリング駆動回路とを備え、前記グローバル駆動回路が、前記画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される。
 本開示の一側面の電子機器は、全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、複数の前記画素がアレイ状に配置された画素アレイ領域と、前記グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、前記ローリング駆動部分に対する駆動信号を供給するローリング駆動回路とを有し、前記グローバル駆動回路が、前記画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される固体撮像素子を備える。
 本開示の一側面においては、固体撮像素子には、全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、複数の画素がアレイ状に配置された画素アレイ領域と、グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、ローリング駆動部分に対する駆動信号を供給するローリング駆動回路が備えられる。そして、グローバル駆動回路が、画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される。
本技術を適用した撮像素子の第1の実施の形態の構成例を示す図である。 図1の撮像素子の回路構成の一例を図である。 グローバル駆動信号の転送電圧の一例を示す図である。 撮像素子の第2の実施の形態の構成例を示す図である。 撮像素子の第3の実施の形態の構成例を示す図である。 撮像素子の第4の実施の形態の構成例を示す図である。 図6の撮像素子の回路構成の一例を図である。 撮像素子の第5の実施の形態の構成例を示す図である。 図8の撮像素子の回路構成の一例を図である。 2層の積層構造の撮像素子の断面的な構成例を示す図である。 3層の積層構造の撮像素子の断面的な構成例を示す図である。 撮像装置の構成例を示すブロック図である。 イメージセンサを使用する使用例を示す図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 <撮像素子の第1の構成例>
 図1は、本技術を適用した撮像素子の第1の実施の形態の構成例を示す図である。
 図1に示す撮像素子11は、例えば、複数枚のチップ12が積層されて構成された積層型のCMOSイメージセンサである。図1に示す構成例では、撮像素子11は、上チップ12aおよび下チップ12bが積層された2層の積層構造となっている。
 また、撮像素子11では、複数の画素31がアレイ状に配置されている。画素31は、上チップ12aおよび下チップ12bに跨った構造となっており、上チップ12aに設けられる画素31の一部分を上画素31aと称し、下チップ12bに設けられる画素31の一部分を下画素31bと称する。上画素31aは、全行で同一のタイミングで駆動する部分(以下、グローバル駆動部分と称する)と、行単位のタイミングで駆動する部分(以下、ローリング駆動部分と称する)とを有して構成される。また、下画素31bは、ローリング駆動部分を有し、グローバル駆動部分を有さずに構成される。
 図1に示すように、上チップ12aには、画素アレイ領域21a、グローバル駆動回路22-1乃至22-4、および配線23が配置されている。また、下チップ12bには、画素アレイ領域21b、電源パッド24-1乃至24-4、ローリング駆動回路25-1および25-2、負荷MOS領域26、AD変換部27、並びに、水平転送回路28が配置されている。
 画素アレイ領域21aには、上画素31aがアレイ状に配置されており、画素アレイ領域21bには、下画素31bがアレイ状に配置されている。
 グローバル駆動回路22-1乃至22-4は、それぞれ画素アレイ領域21aの4辺に沿って配置されており、各々が、上画素31aのグローバル駆動部分を駆動するための信号を出力する。例えば、グローバル駆動回路22-1は、画素アレイ領域21aの左辺に沿って配置され、グローバル駆動回路22-2は、画素アレイ領域21aの右辺に沿って配置され、グローバル駆動回路22-3は、画素アレイ領域21aの上辺に沿って配置され、グローバル駆動回路22-4は、画素アレイ領域21aの下辺に沿って配置される。
 配線23は、グローバル駆動回路22-1乃至22-4が駆動するために必要となる電力を供給するための電源線およびグランド線である。配線23は、グローバル駆動回路22-1乃至22-4それぞれに接続されるように、上チップ12aの外周(左辺、右辺、上辺、および下辺)を囲うように配置される。
 電源パッド24-1乃至24-4は、上チップ12aと電気的および機械的に接続されるバッドであり、それぞれ下チップ12bの四隅に配置されている。例えば、電源パッド24-1乃至24-4は、それぞれ配線23に接続されており、外部から供給される電力を、配線23を介してグローバル駆動回路22-1乃至22-4に供給する。
 ローリング駆動回路25-1および25-2は、それぞれ画素アレイ領域21bの左右の2辺に沿って配置されており、各々が、上画素31aおよび下画素31bのローリング駆動部分を駆動するための信号を出力する。
 負荷MOS領域26には、例えば、画素31から画素信号を読み出すための負荷素子として用いられる複数のMOSトランジスタが配置される。
 AD変換部27は、例えば、コンパレータおよびカウンタを有しており、画素31から読み出される画素信号をAD変換して出力する。
 水平転送回路28は、例えば、画素31の列ごとにAD変換部27から出力される画素信号を水平方向に転送し、撮像素子11の後段の信号処理部に出力する。
 図2は、撮像素子11の回路構成を説明する図である。
 図2に示す破線で表されるように、撮像素子11は、上チップ12aおよび下チップ12bで分割された構成となっている。そして、図2には、上チップ12aの上画素31aおよびグローバル駆動回路22、並びに、下チップ12bの下画素31bおよびローリング駆動回路25の回路構成が示されている。
 上画素31aは、フォトダイオード51、排出トランジスタ52、転送トランジスタ53、メモリ54、読み出しトランジスタ55、およびFD部56を備えて構成される。下画素31bは、増幅トランジスタ57、選択トランジスタ58、およびリセットトランジスタ59を備えて構成される。
 フォトダイオード51は、光電変換により電荷を発生して蓄積する。
 排出トランジスタ52は、排出信号OFGに従って駆動し、例えば、画素31の露光が開始されるタイミングで、フォトダイオード51に蓄積されている電荷をドレインOFDに排出する。また、排出トランジスタ52は、フォトダイオード51の容量以上に発生した電荷をオーバーフローさせる機能も備えている。
 転送トランジスタ53は、転送信号TRXに従って駆動し、画素31の露光中にフォトダイオード51で発生した電荷をメモリ54に転送する。
 メモリ54は、転送トランジスタ53を介して転送されてきた電荷を、画素31の行ごとに読み出すタイミングとなるまで、一時的に保持する。
 読み出しトランジスタ55は、読み出し信号TRGに従って駆動し、メモリ54に保持されている電荷をFD部56に読み出す。
 FD部56は、読み出しトランジスタ55を介して読み出された電荷を保持し、その電荷のレベルに応じた電位を増幅トランジスタ57のゲート電極に印加する。
 増幅トランジスタ57は、FD部56に蓄積されている電荷を増幅し、その電荷のレベルに応じた画素信号を垂直信号線VSLに出力する。
 選択トランジスタ58は、選択信号SELに従って駆動し、垂直信号線VSLを介して増幅トランジスタ57を定電流源61に接続する。
 リセットトランジスタ59は、リセット信号RSTに従って駆動し、メモリ54およびFD部56に蓄積されている電荷を排出して、画素31をリセットする。
 グローバル駆動回路22は、複数のアンプ41により構成され、転送トランジスタ53に転送信号TRXを供給するアンプ41-1、および、排出トランジスタ52に排出信号OFGを供給するアンプ41-2を有する。なお、以下適宜、グローバル駆動回路22から出力される転送信号TRXおよび排出信号OFGを、グローバル駆動信号とも称する。
 ローリング駆動回路25は、複数のアンプ42により構成され、読み出しトランジスタ55に読み出し信号TRGを供給するアンプ42-1、および、選択トランジスタ58に選択信号SELを供給するアンプ42-2を有する。
 従って、図2において一点鎖線で囲われているフォトダイオード51、排出トランジスタ52、および転送トランジスタ53が、画素31のグローバル駆動部分となる。同様に、図2において二点鎖線で囲われている読み出しトランジスタ55、および選択トランジスタ58が、画素31のローリング駆動部分となる。
 以上のように撮像素子11は構成されており、グローバル駆動回路22-1乃至22-4が、画素アレイ領域21aの4方向から、画素31のグローバル駆動部分にグローバル駆動信号を供給するように構成されている。これにより、撮像素子11は、1つの画素31あたりにグローバル駆動信号を供給するグローバル駆動回路22の個数を、従来よりも増加させた構成となる結果、グローバル駆動信号の波形に生じる鈍りを緩和することができる。
 ここで、図3を参照して、グローバル駆動回路22から出力されるグローバル駆動信号の波形について説明する。
 例えば、図3のAに示すように、画素アレイ領域21aの端部はグローバル駆動回路22の近傍にあるため、グローバル駆動回路22から出力されるグローバル駆動信号の波形は、パルス状に両端が略垂直(立ち上がりおよび立ち下がりの変化が急峻)となっている。そして、画素アレイ領域21aの中央部に向かってグローバル駆動回路22から離れるのに応じて、グローバル駆動信号の波形に鈍りが生じることになる。
 例えば、従来の撮像素子は、画素アレイ領域の1辺または2辺にグローバル駆動回路が設けられるような構成となっていた。このため、図3のBに示すように、画素アレイ領域の中央部では、端部と比較して、グローバル駆動信号の波形には大きな鈍り(立ち上がりおよび立ち下がりの変化が緩やか)が生じていた。
 これに対し、撮像素子11は、図3のCに示すように、画素アレイ領域21aの中央部において、従来の撮像素子よりも、グローバル駆動信号の波形に生じる鈍りを小さくすること、即ち、波形の鈍りを抑制することができる。
 このように、撮像素子11は、画素アレイ領域21aの中央部におけるグローバル駆動信号の波形の形状に鈍りが生じることを抑制することができ、画素アレイ領域21aの全域にわたって画素31を駆動させるタイミングの同一性を確保することができる。また、撮像素子11は、瞬時電流のパスを分散する構成となっている。これにより、撮像素子11は、露光時間のムラの発生を低減することができ、即ち、同一のタイミングとなる露光時間で全ての画素31を露光することができ、高速動作時(短いシャッタ時間)においても、より高画質な画像を撮像することができる。
 さらに、撮像素子11は、グローバル駆動回路22を上チップ12aに配置し、ローリング駆動回路25を下チップ12bに配置する効率的なレイアウトとすることで、それらの駆動回路を1チップに配置するレイアウトと比較して、チップサイズの小型化を図ることができる。
 <撮像素子の第2の構成例>
 図4は、本技術を適用した撮像素子の第2の実施の形態の構成例を示す図である。なお、図4に示す撮像素子11Aにおいて、図1の撮像素子11と共通する構成については同一の符号を付し、その詳細な説明は省略する。
 即ち、撮像素子11Aは、図1の撮像素子11と同様に、上チップ12aおよび下チップ12bが積層されて構成されている。そして、撮像素子11Aは、上チップ12aに、画素アレイ領域21a、および配線23が配置され、下チップ12bに、画素アレイ領域21b、電源パッド24-1乃至24-4、ローリング駆動回路25-1および25-2、負荷MOS領域26、AD変換部27、並びに、水平転送回路28が配置される点で、図1の撮像素子11と共通する構成となっている。
 そして、撮像素子11Aは、上チップ12aに、3つのグローバル駆動回路22-1乃至22-3が配置される点で、図1の撮像素子11と異なる構成となっている。
 例えば、1つの画素31あたりにグローバル駆動信号を供給するグローバル駆動回路22の個数を、従来よりも増加させた構成となっていれば、図3を参照して上述したように、グローバル駆動信号の波形に生じる鈍りを緩和することができる。即ち、図1の撮像素子11のように、4つのグローバル駆動回路22-1乃至22-4が設けられる構成でなくても、少なくとも3つ以上のグローバル駆動回路22が設けられる構成であればよい。
 なお、3つのグローバル駆動回路22-1乃至22-3の配置は、図4に示すように、左辺、右辺、および上辺に限られることはない。即ち、撮像素子11Aは、左辺、右辺、および下辺や、左辺、上辺、および下辺、右辺、上辺、および下辺などに、グローバル駆動回路22-1乃至22-3を配置した構成を採用してもよい。
 また、撮像素子11Aの回路構成は、図2に示した撮像素子11の回路構成と同様である。
 このように構成される撮像素子11Aは、従来の撮像素子よりも、グローバル駆動信号の波形に生じる鈍りを抑制することで、露光時間のムラの発生を低減することができ、より高画質な画像を撮像することができる。
 <撮像素子の第3の構成例>
 図5は、本技術を適用した撮像素子の第3の実施の形態の構成例を示す図である。なお、図5に示す撮像素子11Bにおいて、図1の撮像素子11と共通する構成については同一の符号を付し、その詳細な説明は省略する。
 即ち、撮像素子11Bは、図1の撮像素子11と同様に、上チップ12aおよび下チップ12bが積層されて構成されている。そして、撮像素子11Bは、上チップ12aに、画素アレイ領域21aが配置され、下チップ12bに、画素アレイ領域21b、電源パッド24-1乃至24-4、負荷MOS領域26、AD変換部27、および、水平転送回路28が配置される点で、図1の撮像素子11と共通する構成となっている。
 そして、撮像素子11Aは、上チップ12aに、ローリング駆動回路25-1および25-2が配置され、下チップ12bに、グローバル駆動回路22-1乃至22-4が配置される点で、図1の撮像素子11と異なる構成となっている。
 このように、撮像素子11Bは、下チップ12bにグローバル駆動回路22-1乃至22-4を設け、上チップ12aの画素アレイ領域21aに配置される上画素31aのグローバル駆動部分を駆動するような構成であっても、グローバル駆動信号の波形に生じる鈍りを緩和することができる。特に、撮像素子11Bは、グローバル駆動回路22-1乃至22-4を電源パッド24-1乃至24-4の近傍に配置するような構成とすることで、より多くの電力をグローバル駆動回路22-1乃至22-4に供給することができる。これにより、撮像素子11Bは、グローバル駆動信号の波形に生じる鈍りをさらに緩和することができる。
 また、撮像素子11Bの回路構成は、図2に示した撮像素子11の回路構成と同様である。
 このように構成される撮像素子11Bは、従来の撮像素子よりも、グローバル駆動信号の波形に生じる鈍りを抑制することで、露光時間のムラの発生を低減することができ、より高画質な画像を撮像することができる。
 <撮像素子の第4の構成例>
 図6は、本技術を適用した撮像素子の第4の実施の形態の構成例を示す図である。なお、図6に示す撮像素子11Cにおいて、図1の撮像素子11と共通する構成については同一の符号を付し、その詳細な説明は省略する。
 即ち、撮像素子11Cは、図1の撮像素子11と同様に、上チップ12aおよび下チップ12bが積層されて構成されている。そして、撮像素子11Cは、上チップ12aに、画素アレイ領域21a、および配線23が配置され、下チップ12bに、画素アレイ領域21b、電源パッド24-1乃至24-4、ローリング駆動回路25-1および25-2、負荷MOS領域26、AD変換部27、並びに、水平転送回路28が配置される点で、図1の撮像素子11と共通する構成となっている。
 そして、撮像素子11Cは、上チップ12aに、グローバル駆動回路22-1a乃至22-4aが配置され、下チップ12bに、グローバル駆動回路22-1b乃至22-4bが配置される点で、図1の撮像素子11と異なる構成となっている。即ち、撮像素子11Cでは、上チップ12aおよび下チップ12bを跨った構造となるように、グローバル駆動回路22がグローバル駆動回路22aおよび22bによって形成されている。
 図7を参照して、撮像素子11Cのグローバル駆動回路22の構造について説明する。なお、アンプ41-1および41-2は同様に構成されており、以下では、単に、アンプ41と称する。
 図7に示すように、撮像素子11Cでは、グローバル駆動回路22のアンプ41は、N型トランジスタ71aおよびP型トランジスタ71bによって構成される。そして、撮像素子11Cでは、N型トランジスタ71aが上チップ12aのグローバル駆動回路22aに配置され、P型トランジスタ71bが下チップ12bのグローバル駆動回路22bに配置されるレイアウトとなっている。
 このような構成の撮像素子11Cは、例えば、上画素31aがN型トランジスタだけで構成される場合には、NMOSプロセスを用いるだけで上チップ12aを作製することができる。
 また、撮像素子11Cでは、グローバル駆動信号の立下り(ハイレベルからローレベル)においてのみ、グローバル駆動信号の波形に生じる鈍りを緩和することができる。従って、撮像素子11Cにおいても、露光時間のムラの発生を低減することができ、従来の撮像素子よりも、より高画質な画像を撮像することができる。
 <撮像素子の第5の構成例>
 図8は、本技術を適用した撮像素子の第5の実施の形態の構成例を示す図である。なお、図8に示す撮像素子11Dにおいて、図1の撮像素子11と共通する構成については同一の符号を付し、その詳細な説明は省略する。
 即ち、撮像素子11Dは、図1の撮像素子11と同様に、上チップ12aおよび下チップ12bが積層されて構成されている。そして、撮像素子11Dは、上チップ12aに、画素アレイ領域21a、グローバル駆動回路22-1乃至22-4、および配線23が配置され、下チップ12bに、画素アレイ領域21b、電源パッド24-1乃至24-4、ローリング駆動回路25-1および25-2、並びに、水平転送回路28が配置される点で、図1の撮像素子11と共通する構成となっている。
 そして、撮像素子11Dは、画素31の内部においてアナログの画素信号をAD変換してデジタルの画素信号を出力するように構成される点で、図1の撮像素子11と異なる構成となっている。
 図9を参照して、撮像素子11Dの画素31の構成について説明する。
 図9に示すように、画素31は、フォトダイオード51、排出トランジスタ52、転送トランジスタ53、FD部56、コンパレータ81、カウンタ82、およびラッチ83を備えて構成される。また、画素31は、コンパレータ81が上チップ12aおよび下チップ12bを跨った構造となっており、FD部56に蓄積されている電荷を、コンパレータ81およびカウンタ82でAD変換する。
 そして、撮像素子11Dは、ローリング駆動回路25からラッチ83にラッチデータ読み出し制御信号を供給するように構成され、デジタルの画素信号を行ごとに読み出す場合、ラッチ83を画素31のローリング駆動部分とみなすことができる。即ち、画素31のローリング駆動部分が、アナログ信号ではなくデジタル信号を扱う構成となっている。
 このように構成される撮像素子11Dは、従来の撮像素子よりも、グローバル駆動信号の波形に生じる鈍りを抑制することで、露光時間のムラの発生を低減することができ、より高画質な画像を撮像することができる。
 <撮像素子の積層構成>
 図10および図11を参照して、撮像素子11の積層構成について説明する。
 図10には、上述したような2層の積層構造の撮像素子11の断面的な構成例が示されている。
 上チップ12aは、半導体層101の裏面側に、絶縁層102、フィルタ層103、およびオンチップレンズ層104が積層されおり、半導体層101の表面側に、配線層105が積層された断面構成となっている。例えば、半導体層101には、画素31ごとに、フォトダイオード51やメモリ54などが形成されており、メモリ54が遮光された構成となっている。
 下チップ12bは、半導体層111に配線層112が積層された断面構成となっている。
 そして、撮像素子11では、上チップ12aの配線層105に露出するように形成される接続パッドと、下チップ12bの配線層112に露出するように形成される接続パッドとが、互いに電気的および機械的に接続される。
 このような積層構造の撮像素子11は、例えば、下チップ12bの画素アレイ領域21bよりも外側の周辺領域に、ロジック回路などが設けられる構成となっている。従って、上チップ12aおよび下チップ12bのチップサイズが同一である場合、上チップ12aの画素アレイ領域21aよりも外側の周辺領域には、素子などが形成されない余裕のあるレイアウトとなる。そこで、撮像素子11では、上チップ12aの周辺領域にグローバル駆動回路22-1乃至22-4を設けるレイアウトとすることで、より効果的に実装密度の向上を図ることができる。
 図11には、3層構造の撮像素子11Eの断面的な構成例が示されている。
 即ち、撮像素子11Eは、上チップ12a、下チップ12b、およびロジックチップ12cが積層された構成となっている。
 上チップ12aは、図10の上チップ12aと同様の断面構成となっており、下チップ12bは、ロジックチップ12cに対して積層するための配線層113が追加された断面構成となっている。ロジックチップ12cは、半導体層121に配線層122が積層された断面構成となっている。
 そして、撮像素子11Eでは、ロジック回路がロジックチップ12cに形成されるとともに、負荷MOS領域26、AD変換部27、および水平転送回路28も、ロジックチップ12cに形成することができる。従って、撮像素子11Eでは、上チップ12aの周辺領域にグローバル駆動回路22-1乃至22-4を設け、下チップ12bの周辺領域にローリング駆動回路25-1および25-2を設けるレイアウトを採用することができる。
 このような積層構造の撮像素子11Eは、2層の積層構造の撮像素子11のように下チップ12bの周辺領域にロジック回路などを設ける構成と比較して、さらなる小型化を図ることができる。
 <電子機器の構成例>
 上述したような撮像素子11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
 図12は、電子機器に搭載される撮像装置の構成例を示すブロック図である。
 図12に示すように、撮像装置201は、光学系202、撮像素子203、信号処理回路204、モニタ205、およびメモリ206を備えて構成され、静止画像および動画像を撮像可能である。
 光学系202は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を撮像素子203に導き、撮像素子203の受光面(センサ部)に結像させる。
 撮像素子203としては、上述した撮像素子11が適用される。撮像素子203には、光学系202を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、撮像素子203に蓄積された電子に応じた信号が信号処理回路204に供給される。
 信号処理回路204は、撮像素子203から出力された画素信号に対して各種の信号処理を施す。信号処理回路204が信号処理を施すことにより得られた画像(画像データ)は、モニタ205に供給されて表示されたり、メモリ206に供給されて記憶(記録)されたりする。
 このように構成されている撮像装置201では、上述した撮像素子11を適用することで、例えば、より高画質な画像を撮像することができる。
 <イメージセンサの使用例>
 図13は、上述のイメージセンサ(撮像素子)を使用する使用例を示す図である。
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、
 複数の前記画素がアレイ状に配置された画素アレイ領域と、
 前記グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、
 前記ローリング駆動部分に対する駆動信号を供給するローリング駆動回路と
 を備え、
 前記グローバル駆動回路が、前記画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される
 固体撮像素子。
(2)
 4つの前記グローバル駆動回路が、前記画素アレイ領域に対する左辺および右辺並びに上辺および下辺に沿って配置される
 上記(1)に記載の固体撮像素子。
(3)
 少なくとも2枚のチップが積層された積層構造である
 上記(1)または(2)に記載の固体撮像素子。
(4)
 前記画素は、前記グローバル駆動部分および前記ローリング駆動回路が設けられる上チップと、前記ローリング駆動回路が設けられる下チップとに跨って構成される
 上記(3)に記載の固体撮像素子。
(5)
 前記上チップにおける前記画素アレイ領域に対する周辺領域に前記グローバル駆動回路が配置されるとともに、前記下チップにおける前記画素アレイ領域に対する周辺領域に前記ローリング駆動回路が配置される
 上記(4)に記載の固体撮像素子。
(6)
 前記上チップにおける前記画素アレイ領域に対する周辺領域に前記ローリング駆動回路が配置されるとともに、前記下チップにおける前記画素アレイ領域に対する周辺領域に前記グローバル駆動回路が配置される
 上記(4)に記載の固体撮像素子。
(7)
 前記グローバル駆動回路が、前記上チップおよび前記下チップに跨って構成される
 上記(4)から(6)までのいずれかに記載の固体撮像素子。
(8)
 前記グローバル駆動回路を構成するN型トランジスタが前記上チップに配置され、
 前記グローバル駆動回路を構成するP型トランジスタが前記下チップに配置される
 上記(7)に記載の固体撮像素子。
(9)
 前記グローバル駆動部分は、前記画素を構成するフォトダイオード、排出トランジスタ、および転送トランジスタを有し、
 前記ローリング駆動部分は、前記画素を構成する読み出しトランジスタ、および選択トランジスタを有する
 上記(1)から(8)までのいずれかに記載の固体撮像素子。
(10)
 前記画素は、その内部でアナログの画素信号をAD変換してデジタルの画素信号を出力するためのコンパレータおよびカウンタを有しており、
 前記グローバル駆動部分は、前記画素を構成するフォトダイオード、排出トランジスタ、および転送トランジスタを有し、
 前記ローリング駆動部分は、前記画素を構成するラッチを有する
 上記(1)から(9)までのいずれかに記載の固体撮像素子。
(11)
 全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、
 複数の前記画素がアレイ状に配置された画素アレイ領域と、
 前記グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、
 前記ローリング駆動部分に対する駆動信号を供給するローリング駆動回路と
 を有し、
 前記グローバル駆動回路が、前記画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される
 固体撮像素子を備える電子機器。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 11 撮像素子, 12 チップ, 12a 上チップ, 12b 下チップ, 21aおよび21b 画素アレイ領域, 22 グローバル駆動回路, 23 配線, 24 電源パッド, 25 ローリング駆動回路, 26 負荷MOS領域, 27 AD変換部, 28 水平転送回路, 31 画素, 31a 上画素, 31b 下画素, 41および42 アンプ, 51 フォトダイオード, 52 排出トランジスタ, 53 転送トランジスタ, 54 メモリ, 55 読み出しトランジスタ, 56 FD部, 57 増幅トランジスタ, 58 選択トランジスタ, 59 リセットトランジスタ, 61 定電流源, 71a N型トランジスタ, 71b P型トランジスタ, 81 コンパレータ, 82 カウンタ, 83 ラッチ

Claims (11)

  1.  全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、
     複数の前記画素がアレイ状に配置された画素アレイ領域と、
     前記グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、
     前記ローリング駆動部分に対する駆動信号を供給するローリング駆動回路と
     を備え、
     前記グローバル駆動回路が、前記画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される
     固体撮像素子。
  2.  4つの前記グローバル駆動回路が、前記画素アレイ領域に対する左辺および右辺並びに上辺および下辺に沿って配置される
     請求項1に記載の固体撮像素子。
  3.  少なくとも2枚のチップが積層された積層構造である
     請求項1に記載の固体撮像素子。
  4.  前記画素は、前記グローバル駆動部分および前記ローリング駆動回路が設けられる上チップと、前記ローリング駆動回路が設けられる下チップとに跨って構成される
     請求項3に記載の固体撮像素子。
  5.  前記上チップにおける前記画素アレイ領域に対する周辺領域に前記グローバル駆動回路が配置されるとともに、前記下チップにおける前記画素アレイ領域に対する周辺領域に前記ローリング駆動回路が配置される
     請求項4に記載の固体撮像素子。
  6.  前記上チップにおける前記画素アレイ領域に対する周辺領域に前記ローリング駆動回路が配置されるとともに、前記下チップにおける前記画素アレイ領域に対する周辺領域に前記グローバル駆動回路が配置される
     請求項4に記載の固体撮像素子。
  7.  前記グローバル駆動回路が、前記上チップおよび前記下チップに跨って構成される
     請求項4に記載の固体撮像素子。
  8.  前記グローバル駆動回路を構成するN型トランジスタが前記上チップに配置され、
     前記グローバル駆動回路を構成するP型トランジスタが前記下チップに配置される
     請求項7に記載の固体撮像素子。
  9.  前記グローバル駆動部分は、前記画素を構成するフォトダイオード、排出トランジスタ、および転送トランジスタを有し、
     前記ローリング駆動部分は、前記画素を構成する読み出しトランジスタ、および選択トランジスタを有する
     請求項1に記載の固体撮像素子。
  10.  前記画素は、その内部でアナログの画素信号をAD変換してデジタルの画素信号を出力するためのコンパレータおよびカウンタを有しており、
     前記グローバル駆動部分は、前記画素を構成するフォトダイオード、排出トランジスタ、および転送トランジスタを有し、
     前記ローリング駆動部分は、前記画素を構成するラッチを有する
     請求項1に記載の固体撮像素子。
  11.  全行で同一のタイミングで駆動するグローバル駆動部分、および、行単位のタイミングで駆動するローリング駆動部分を有する画素と、
     複数の前記画素がアレイ状に配置された画素アレイ領域と、
     前記グローバル駆動部分に対する駆動信号を供給するグローバル駆動回路と、
     前記ローリング駆動部分に対する駆動信号を供給するローリング駆動回路と
     を有し、
     前記グローバル駆動回路が、前記画素アレイ領域を囲う4辺のうちの少なくとも3辺以上に配置される
     固体撮像素子を備える電子機器。
PCT/JP2020/035401 2019-10-04 2020-09-18 固体撮像素子および電子機器 WO2021065561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20871502.9A EP4040778A4 (en) 2019-10-04 2020-09-18 SOLID STATE IMAGING ELEMENT AND ELECTRONIC APPARATUS
JP2021550621A JPWO2021065561A1 (ja) 2019-10-04 2020-09-18
US17/763,783 US11910117B2 (en) 2019-10-04 2020-09-18 Solid-state imaging element and electronic apparatus
CN202080063384.5A CN114391249A (zh) 2019-10-04 2020-09-18 固态成像元件和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183423 2019-10-04
JP2019-183423 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021065561A1 true WO2021065561A1 (ja) 2021-04-08

Family

ID=75336438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035401 WO2021065561A1 (ja) 2019-10-04 2020-09-18 固体撮像素子および電子機器

Country Status (6)

Country Link
US (1) US11910117B2 (ja)
EP (1) EP4040778A4 (ja)
JP (1) JPWO2021065561A1 (ja)
CN (1) CN114391249A (ja)
TW (1) TWI831995B (ja)
WO (1) WO2021065561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027018A1 (ja) * 2021-08-25 2023-03-02 株式会社ニコン 撮像素子および撮像装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187607A (ja) * 2012-03-06 2013-09-19 Sony Corp 固体撮像装置および駆動方法、並びに、電子機器
JP2014072788A (ja) 2012-09-28 2014-04-21 Sony Corp 固体撮像装置および駆動方法、並びに電子機器
WO2016170833A1 (ja) * 2015-04-24 2016-10-27 ソニー株式会社 固体撮像素子、半導体装置、及び、電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908067B2 (ja) * 2006-06-01 2012-04-04 オリンパス株式会社 固体撮像装置及びそれを用いた撮像装置システム
US8525287B2 (en) * 2007-04-18 2013-09-03 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
KR20110005788A (ko) * 2008-02-19 2011-01-19 램버스 인코포레이티드 할당 가능 자원을 갖는 멀티-뱅크 플래시 메모리 구조
US8637800B2 (en) 2011-04-19 2014-01-28 Altasens, Inc. Image sensor with hybrid heterostructure
TWI656631B (zh) * 2014-03-28 2019-04-11 日商半導體能源研究所股份有限公司 攝像裝置
US9736405B2 (en) 2015-01-29 2017-08-15 Altasens, Inc. Global shutter image sensor having extremely fine pitch
US9865632B2 (en) * 2015-03-23 2018-01-09 Tower Semiconductor Ltd. Image sensor pixel with memory node having buried channel and diode portions formed on N-type substrate
CN113923389A (zh) 2016-03-29 2022-01-11 株式会社尼康 摄像元件
US10418405B2 (en) * 2017-09-05 2019-09-17 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
CN110249237B (zh) * 2017-12-22 2024-08-16 索尼半导体解决方案公司 传感器芯片、电子设备和装置
EP3748956B1 (en) 2018-02-01 2023-09-27 Sony Semiconductor Solutions Corporation Solid-state imaging device and method for manufacturing same, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187607A (ja) * 2012-03-06 2013-09-19 Sony Corp 固体撮像装置および駆動方法、並びに、電子機器
JP2014072788A (ja) 2012-09-28 2014-04-21 Sony Corp 固体撮像装置および駆動方法、並びに電子機器
WO2016170833A1 (ja) * 2015-04-24 2016-10-27 ソニー株式会社 固体撮像素子、半導体装置、及び、電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040778A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027018A1 (ja) * 2021-08-25 2023-03-02 株式会社ニコン 撮像素子および撮像装置

Also Published As

Publication number Publication date
US20220345654A1 (en) 2022-10-27
TW202116060A (zh) 2021-04-16
US11910117B2 (en) 2024-02-20
TWI831995B (zh) 2024-02-11
CN114391249A (zh) 2022-04-22
EP4040778A1 (en) 2022-08-10
EP4040778A4 (en) 2022-12-07
JPWO2021065561A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US10741605B2 (en) Solid-state image sensor, imaging device, and electronic equipment
CN108140661B (zh) 成像器件和电子装置
JP6957112B2 (ja) 固体撮像装置及び電子機器
JP2023014076A (ja) 撮像装置
WO2017183477A1 (ja) 固体撮像素子および駆動方法、並びに電子機器
US20210233946A1 (en) Semiconductor device, solid-state image pickup element, imaging device, and electronic apparatus
WO2021065561A1 (ja) 固体撮像素子および電子機器
US20230353905A1 (en) Solid-state imaging element and electronic device including a shared structure for pixels for sharing an ad converter
US10892293B2 (en) Solid-state imaging element, imaging device, and electronic device
JP6910814B2 (ja) 固体撮像装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871502

Country of ref document: EP

Effective date: 20220504