WO2021065436A1 - Light emitting device and light receiving device - Google Patents

Light emitting device and light receiving device Download PDF

Info

Publication number
WO2021065436A1
WO2021065436A1 PCT/JP2020/034658 JP2020034658W WO2021065436A1 WO 2021065436 A1 WO2021065436 A1 WO 2021065436A1 JP 2020034658 W JP2020034658 W JP 2020034658W WO 2021065436 A1 WO2021065436 A1 WO 2021065436A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
light receiving
substrate
support surface
Prior art date
Application number
PCT/JP2020/034658
Other languages
French (fr)
Japanese (ja)
Inventor
宙 井上
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021550549A priority Critical patent/JPWO2021065436A1/ja
Publication of WO2021065436A1 publication Critical patent/WO2021065436A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • This disclosure relates to a light emitting device and a light receiving device.
  • Patent Document 1 discloses a LiDAR (Light Detecting and Ringing) device mounted on a vehicle.
  • the LiDAR device includes a light emitting element and a light receiving element.
  • the light emitting element emits the detected light in a predetermined direction outside the vehicle.
  • the light receiving element detects the return light generated by the reflection of the detection light on an object located in the direction, and outputs a detection signal corresponding to the amount of the return light.
  • the LiDAR apparatus can calculate the distance to the object that generated the return light based on the time from the emission of the detection light to the detection of the return light.
  • the light emitting element and the light receiving element are supported by the support surface of the substrate.
  • the detection light emitted from the light emitting element travels along the normal direction of the support surface.
  • the return light travels along the normal direction of the support surface and is incident on the light receiving element.
  • a light emitting device having a light emitting surface and A substrate having a support surface for supporting the light emitting element and Is equipped with The light emitting element is supported by the substrate so that the light emitting surface extends along the support surface.
  • the substrate is formed with a deflection surface that directs the traveling direction of the light emitted from the light emitting surface toward the direction along the support surface.
  • the traveling direction of the light emitted from the light emitting element can be determined while suppressing the increase in size of the light emitting device. It is possible to meet the desire to follow the support side of. Further, since the light emitting surface of the light emitting element extends along the supporting surface of the substrate, a general surface mounter for mounting components on the main surface of the circuit board when mounting the light emitting element on the substrate is used. Can be used. Therefore, it is possible to automate the highly accurate alignment of the light emitting surface and the deflection surface.
  • a light receiving device having a light receiving surface and A substrate having a support surface for supporting the light receiving element and Is equipped with The light receiving element is supported by the substrate so that the light receiving surface extends along the support surface.
  • a deflection surface that directs the traveling direction of light incident along the support surface toward the light receiving surface is formed on the substrate.
  • the traveling direction of the light incident on the light receiving element can be set in the substrate while suppressing the increase in size of the light receiving device. It can meet the desire to follow the support side. Further, since the light receiving surface of the light receiving element extends along the support surface of the substrate, a general surface mounter for mounting components on the main surface of the circuit board when mounting the light receiving element on the substrate is used. Can be used. Therefore, highly accurate alignment of the light receiving surface and the deflection surface can be automated.
  • direction along the support surface of the substrate means to include all directions closer to the direction parallel to the support surface than the normal direction of the support surface of the substrate.
  • the term “light” means an electromagnetic wave having an arbitrary wavelength capable of detecting desired information.
  • “light” is a concept that includes not only visible light but also ultraviolet light, infrared light, millimeter wave, and microwave.
  • the light emitting device is illustrated. A part of the light emitting device of FIG. 1 is illustrated. The cross section seen from the direction of the arrow along the lines III-III in FIG. 2 is illustrated. The light receiving device according to one embodiment is illustrated. A part of the light receiving device of FIG. 4 is illustrated. The cross section seen from the direction of the arrow along the line VI-VI in FIG. 5 is illustrated. The light receiving device according to another embodiment is illustrated.
  • FIG. 1 illustrates the light emitting device 1 according to the embodiment.
  • FIG. 2 is an enlarged example of a part of the light emitting device 1.
  • FIG. 3 illustrates a cross section seen from the direction of the arrow along lines III-III in FIG.
  • the light emitting device 1 includes a light emitting element 11. As illustrated in FIGS. 2 and 3, the light emitting element 11 has a light emitting surface 11a that emits light L1. Examples of the light emitting element 11 include semiconductor elements such as a light emitting diode, a laser diode, and an EL element.
  • the light emitting device 1 includes a substrate 12.
  • the substrate 12 has a support surface 12a.
  • the light emitting element 11 is supported by the substrate 12 so that the light emitting surface 11a extends along the support surface 12a.
  • the light emitting element 11 is mounted on the substrate 12 so that the light emitting surface 11a faces the support surface 12a.
  • the arrow P indicates the direction parallel to the support surface 12a.
  • the arrow N represents the normal direction of the support surface 12a.
  • a deflection surface 12b is formed on the substrate 12.
  • the shape and arrangement of the deflection surface 12b are defined so that the traveling direction of the light L1 emitted from the light emitting surface 11a of the light emitting element 11 is directed toward the direction along the support surface 12a.
  • the substrate 12 itself that supports the light emitting element 11 has a function as an optical system, the light L1 emitted from the light emitting element 11 is suppressed while suppressing the increase in size of the light emitting device 1. It is possible to meet the desire to make the traveling direction of the substrate 12 along the support surface 12a of the substrate 12. Further, since the light emitting surface 11a of the light emitting element 11 extends along the support surface 12a of the substrate 12, it is common for mounting components on the main surface of the circuit board when the light emitting element 11 is attached to the substrate 12. Surface mounter can be used. Therefore, highly accurate alignment of the light emitting surface 11a and the deflection surface 12b can be automated.
  • the substrate 12 can be formed of a semiconductor material such as silicon.
  • the deflection surface 12b can be formed by a semiconductor process. Examples of semiconductor processes include etching (at least one of isotropic and anisotropic), CVD method, PVD method and the like. By appropriately combining these well-known methods, a deflection surface 12b having a desired shape can be formed at a desired position on the substrate 12.
  • the deflection surface 12b having a fine and complicated shape can be accurately formed. Further, particularly when the light emitting element 11 is a semiconductor element manufactured by a semiconductor process, it is easy to integrate the forming process of the deflection surface 12b during the manufacturing process.
  • the surface of the deflection surface 12b can be mirror-finished or metal-plated.
  • the support surface 12a of the substrate 12 can support the circuit 13.
  • the circuit 13 may include a circuit that drives the light emitting element 11.
  • the deflection surface 12b is formed on a part of the circuit board on which the light emitting element 11 is mounted. As a result, the increase in size of the light emitting device 1 can be further suppressed.
  • FIG. 4 illustrates the light receiving device 2 according to the embodiment.
  • FIG. 5 shows an enlarged example of a part of the light receiving device 2.
  • FIG. 6 illustrates a cross section seen from the direction of the arrow along the line VI-VI in FIG.
  • the light receiving device 2 includes a light receiving element 21. As illustrated in FIGS. 5 and 6, the light receiving element 21 has a light receiving surface 21a on which the light L2 is incident. The light receiving element 21 is configured to output a signal corresponding to the amount of light L2 incident on the light receiving surface 21a. Examples of the light receiving element 21 include semiconductor elements such as photodiodes, phototransistors, and photoresistors.
  • the light receiving device 2 includes a substrate 22.
  • the substrate 22 has a support surface 22a.
  • the light receiving element 21 is supported by the substrate 22 so that the light receiving surface 21a extends along the support surface 22a.
  • the light receiving element 21 is mounted on the substrate 22 so that the light receiving surface 21a faces the support surface 22a.
  • the arrow P indicates the direction parallel to the support surface 22a.
  • the arrow N represents the normal direction of the support surface 22a.
  • a deflection surface 22b is formed on the substrate 22.
  • the shape and arrangement of the deflection surface 22b are defined so that the traveling direction of the light L2 incident along the support surface 22a of the substrate 22 is directed toward the light receiving surface 21a of the light receiving element 21.
  • the substrate 22 itself that supports the light receiving element 21 has a function as an optical system, the light L2 incident on the light receiving element 21 is suppressed while suppressing the increase in size of the light receiving device 2. It is possible to meet the desire to make the traveling direction along the support surface 22a of the substrate 22. Further, since the light receiving surface 21a of the light receiving element 21 extends along the support surface 22a of the substrate 22, it is common for mounting components on the main surface of the circuit board when the light receiving element 21 is attached to the substrate 22. Surface mounter can be used. Therefore, highly accurate alignment of the light receiving surface 21a and the deflection surface 22b can be automated.
  • the substrate 22 can be formed of a semiconductor material such as silicon.
  • the deflection surface 22b can be formed by a semiconductor process. Examples of semiconductor processes include etching (at least one of isotropic and anisotropic), CVD method, PVD method and the like. By appropriately combining these well-known methods, a deflection surface 22b having a desired shape can be formed at a desired position on the substrate 22.
  • the deflection surface 22b having a fine and complicated shape can be accurately formed. Further, particularly when the light receiving element 21 is a semiconductor element manufactured by a semiconductor process, it is easy to integrate the process of forming the deflection surface 22b during the manufacturing process.
  • the surface of the deflection surface 22b can be mirror-finished or metal-plated.
  • the support surface 22a of the substrate 22 can support the circuit 23.
  • the circuit 23 may include a circuit that processes the signal output from the light receiving element 21.
  • the deflection surface 22b is formed on a part of the circuit board on which the light receiving element 21 is mounted. As a result, the increase in size of the light receiving device 2 can be further suppressed.
  • FIG. 7 shows another example of the configuration of the light receiving device 2.
  • the light receiving element 21 is mounted on the substrate 22 so that the light receiving surface 21a does not face the support surface 22a.
  • the recess 21c is formed on the surface of the light receiving element 21 facing the support surface 22a of the substrate 22.
  • the recess 21c may be formed by mechanical processing or may be formed by chemical processing such as etching.
  • the depth of the recess 21c is set so that the light L2 incident on the bottom of the recess 21c can be detected. According to such a configuration, it is possible to divert a light receiving element having a general configuration in which the light receiving surface is mounted so as not to face the support surface of the substrate.
  • the light emitting device 1 and the light receiving device 2 can form a part of an optical sensor.
  • An optical sensor is a device for detecting desired information using light.
  • the optical sensor can be mounted on a moving body, for example, and used to detect information outside the moving body. Examples of moving bodies include vehicles, railroads, flying bodies, aircraft, ships and the like.
  • the moving body on which the optical sensor is mounted does not have to require a driver.
  • the optical sensor can form, for example, a part of a LiDAR sensor.
  • infrared light having a diameter of 905 nm can be used as the light L1 emitted from the light emitting device 1.
  • the light that the light L1 is reflected by the object and returns is detected by the light receiving device 2 as the light L2.
  • the LiDAR sensor can acquire the distance to the object associated with the light L2, for example, based on the time from emitting the light L1 in a certain direction to detecting the light L2. Further, by accumulating such distance data in association with the detection direction, it is possible to acquire information relating to the shape of the object associated with the light L2. In addition to or instead of this, it is possible to acquire information related to attributes such as the material of the object associated with the light L2 based on the difference in the waveforms of the light L1 and the light L2.
  • the optical sensor can form, for example, a part of a millimeter wave radar.
  • the light L1 for example, a millimeter wave of 24 GHz, 26 GHz, 76 GHz, or 79 GHz can be used.
  • the millimeter wave radar can acquire the distance to the object associated with the light L2 based on the time from the emission of the light L1 in a certain direction to the detection of the light L2 (reflected wave), for example. Further, by accumulating such distance data in association with the detection position, it is possible to acquire information related to the movement of the object associated with the light L2.
  • the above embodiment is merely an example for facilitating the understanding of the present disclosure.
  • the configuration according to the above embodiment may be appropriately changed or improved without departing from the gist of the present disclosure.
  • a single light emitting element 11 is supported on a single substrate 12.
  • a plurality of light emitting elements 11 may be supported on a single substrate 12.
  • a deflection surface 12b is formed for each light emitting element 11.
  • a single light receiving element 21 is supported on a single substrate 22.
  • a plurality of light receiving elements 21 may be supported on a single substrate 22.
  • a deflection surface 22b is formed for each light receiving element 21.
  • the light emitting element 11 and the light receiving element 21 may be supported on a common substrate.
  • the deflection surface 12b and the deflection surface 22b are formed on the common substrate.

Abstract

A light emitting element (11) has a light emitting surface (11a). A substrate (12) has a support surface (12a) supporting the light emitting element (11). The light emitting element (11) is supported by the substrate (12) with the light emitting surface (11a) extending along the support surface (12a). A polarization surface (12b), which directs the traveling direction of light (L1) emitted from the light emitting surface (11a) to a direction that goes along the support surface (12a), is formed on the substrate (12).

Description

発光装置、および受光装置Light emitting device and light receiving device
 本開示は、発光装置、および受光装置に関連する。 This disclosure relates to a light emitting device and a light receiving device.
 特許文献1は、車両に搭載されるLiDAR(Light Detecting and Ranging)装置を開示している。LiDAR装置は、発光素子と受光素子を備えている。発光素子は、車両の外部における所定の方向へ検出光を出射する。受光素子は、当該方向に位置する物体に当該検出光が反射されることにより生じる戻り光を検出し、戻り光の光量に対応する検出信号を出力する。LiDAR装置は、検出光が出射されてから戻り光が検出されるまでの時間に基づいて、当該戻り光を生じた物体までの距離を算出できる。 Patent Document 1 discloses a LiDAR (Light Detecting and Ringing) device mounted on a vehicle. The LiDAR device includes a light emitting element and a light receiving element. The light emitting element emits the detected light in a predetermined direction outside the vehicle. The light receiving element detects the return light generated by the reflection of the detection light on an object located in the direction, and outputs a detection signal corresponding to the amount of the return light. The LiDAR apparatus can calculate the distance to the object that generated the return light based on the time from the emission of the detection light to the detection of the return light.
 発光素子と受光素子は、基板の支持面に支持されている。発光素子から出射された検出光は、支持面の法線方向に沿って進行する。戻り光は、支持面の法線方向に沿って進行し、受光素子に入射する。 The light emitting element and the light receiving element are supported by the support surface of the substrate. The detection light emitted from the light emitting element travels along the normal direction of the support surface. The return light travels along the normal direction of the support surface and is incident on the light receiving element.
日本国特許出願公開2019-128231号公報Japanese Patent Application Publication No. 2019-128231
 装置の大型化を抑制しつつ、発光素子から出射された光の進行方向を、当該発光素子を支持する基板の支持面に沿わせたいという要望がある(第一の要望)。 There is a request that the traveling direction of the light emitted from the light emitting element should be along the support surface of the substrate that supports the light emitting element while suppressing the increase in size of the device (first request).
 装置の大型化を抑制しつつ、受光素子に入射させる光の進行方向を、当該受光素子を支持する基板の支持面に沿わせたいという要望がある(第二の要望)。 There is a request that the traveling direction of the light incident on the light receiving element should be along the support surface of the substrate that supports the light receiving element while suppressing the increase in size of the device (second request).
 上記の第一の要望に応えるための一態様は、発光装置であって、
 発光面を有している発光素子と、
 前記発光素子を支持する支持面を有している基板と、
を備えており、
 前記発光素子は、前記発光面が前記支持面に沿って延びるように前記基板に支持されており、
 前記発光面から出射された光の進行方向を前記支持面に沿う方向へ向ける偏向面が、前記基板に形成されている。
One aspect for meeting the above first request is a light emitting device.
A light emitting element having a light emitting surface and
A substrate having a support surface for supporting the light emitting element and
Is equipped with
The light emitting element is supported by the substrate so that the light emitting surface extends along the support surface.
The substrate is formed with a deflection surface that directs the traveling direction of the light emitted from the light emitting surface toward the direction along the support surface.
 このような構成によれば、発光素子を支持する基板自体に光学系としての機能を持たせているので、発光装置の大型化を抑制しつつ、発光素子から出射された光の進行方向を基板の支持面に沿わせたいという要望に応えうる。また、発光素子の発光面は、基板の支持面に沿うように延びているので、発光素子を基板に取り付ける際に、回路基板の主面に部品を実装するための一般的な表面実装機を使用できる。したがって、発光面と偏向面の高精度な位置合わせを自動化できる。 According to such a configuration, since the substrate itself that supports the light emitting element has a function as an optical system, the traveling direction of the light emitted from the light emitting element can be determined while suppressing the increase in size of the light emitting device. It is possible to meet the desire to follow the support side of. Further, since the light emitting surface of the light emitting element extends along the supporting surface of the substrate, a general surface mounter for mounting components on the main surface of the circuit board when mounting the light emitting element on the substrate is used. Can be used. Therefore, it is possible to automate the highly accurate alignment of the light emitting surface and the deflection surface.
 上記の第二の目要望に応えるための一態様は、受光装置であって、
 受光面を有している受光素子と、
 前記受光素子を支持する支持面を有している基板と、
を備えており、
 前記受光素子は、前記受光面が前記支持面に沿って延びるように前記基板に支持されており、
 前記支持面に沿って入射した光の進行方向を前記受光面へ向ける偏向面が、前記基板に形成されている。
One aspect for responding to the above-mentioned second eye request is a light receiving device.
A light receiving element having a light receiving surface and
A substrate having a support surface for supporting the light receiving element and
Is equipped with
The light receiving element is supported by the substrate so that the light receiving surface extends along the support surface.
A deflection surface that directs the traveling direction of light incident along the support surface toward the light receiving surface is formed on the substrate.
 このような構成によれば、受光素子を支持する基板自体に光学系としての機能を持たせているので、受光装置の大型化を抑制しつつ、受光素子に入射させる光の進行方向を基板の支持面に沿わせたいという要望に応えうる。また、受光素子の受光面は、基板の支持面に沿うように延びているので、受光素子を基板に取り付ける際に、回路基板の主面に部品を実装するための一般的な表面実装機を使用できる。したがって、受光面と偏向面の高精度な位置合わせを自動化できる。 According to such a configuration, since the substrate itself that supports the light receiving element has a function as an optical system, the traveling direction of the light incident on the light receiving element can be set in the substrate while suppressing the increase in size of the light receiving device. It can meet the desire to follow the support side. Further, since the light receiving surface of the light receiving element extends along the support surface of the substrate, a general surface mounter for mounting components on the main surface of the circuit board when mounting the light receiving element on the substrate is used. Can be used. Therefore, highly accurate alignment of the light receiving surface and the deflection surface can be automated.
 本明細書で用いられる「基板の支持面に沿う方向」という表現は、基板の支持面の法線方向よりも当該支持面に平行な方向に近い全ての方向を含む意味である。 The expression "direction along the support surface of the substrate" used in the present specification means to include all directions closer to the direction parallel to the support surface than the normal direction of the support surface of the substrate.
 本明細書において用いられる「光」という語は、所望の情報を検出可能な任意の波長を有する電磁波を意味する。例えば「光」は、可視光のみならず、紫外光や赤外光、ミリ波やマイクロ波を含む概念である。 As used herein, the term "light" means an electromagnetic wave having an arbitrary wavelength capable of detecting desired information. For example, "light" is a concept that includes not only visible light but also ultraviolet light, infrared light, millimeter wave, and microwave.
一実施形態に係る発光装置を例示している。The light emitting device according to one embodiment is illustrated. 図1の発光装置の一部を例示している。A part of the light emitting device of FIG. 1 is illustrated. 図2における線III-IIIに沿って矢印方向から見た断面を例示している。The cross section seen from the direction of the arrow along the lines III-III in FIG. 2 is illustrated. 一実施形態に係る受光装置を例示している。The light receiving device according to one embodiment is illustrated. 図4の受光装置の一部を例示している。A part of the light receiving device of FIG. 4 is illustrated. 図5における線VI-VIに沿って矢印方向から見た断面を例示している。The cross section seen from the direction of the arrow along the line VI-VI in FIG. 5 is illustrated. 別実施形態に係る受光装置を例示している。The light receiving device according to another embodiment is illustrated.
 添付の図面を参照しつつ、実施形態の例について以下詳細に説明する。以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。 An example of the embodiment will be described in detail below with reference to the attached drawings. In each drawing used in the following description, the scale is appropriately changed in order to make each member a recognizable size.
 図1は、一実施形態に係る発光装置1を例示している。図2は、発光装置1の一部を拡大して例示している。図3は、図2における線III-IIIに沿って矢印方向から見た断面を例示している。 FIG. 1 illustrates the light emitting device 1 according to the embodiment. FIG. 2 is an enlarged example of a part of the light emitting device 1. FIG. 3 illustrates a cross section seen from the direction of the arrow along lines III-III in FIG.
 発光装置1は、発光素子11を備えている。図2と図3に例示されるように、発光素子11は、光L1を出射する発光面11aを有している。発光素子11の例としては、発光ダイオード、レーザダイオード、EL素子などの半導体素子が挙げられる。 The light emitting device 1 includes a light emitting element 11. As illustrated in FIGS. 2 and 3, the light emitting element 11 has a light emitting surface 11a that emits light L1. Examples of the light emitting element 11 include semiconductor elements such as a light emitting diode, a laser diode, and an EL element.
 発光装置1は、基板12を備えている。基板12は、支持面12aを有している。発光素子11は、発光面11aが支持面12aに沿って延びるように、基板12に支持されている。本例においては、発光面11aが支持面12aに対向する姿勢をとるように、発光素子11が基板12に搭載されている。 The light emitting device 1 includes a substrate 12. The substrate 12 has a support surface 12a. The light emitting element 11 is supported by the substrate 12 so that the light emitting surface 11a extends along the support surface 12a. In this example, the light emitting element 11 is mounted on the substrate 12 so that the light emitting surface 11a faces the support surface 12a.
 図1と図3において、矢印Pは、支持面12aに平行な向きを表している。矢印Nは、支持面12aの法線方向を表している。 In FIGS. 1 and 3, the arrow P indicates the direction parallel to the support surface 12a. The arrow N represents the normal direction of the support surface 12a.
 図2と図3に例示されるように、基板12には、偏向面12bが形成されている。偏向面12bの形状と配置は、発光素子11の発光面11aから出射された光L1の進行方向を、支持面12aに沿う方向へ向けるように定められている。 As illustrated in FIGS. 2 and 3, a deflection surface 12b is formed on the substrate 12. The shape and arrangement of the deflection surface 12b are defined so that the traveling direction of the light L1 emitted from the light emitting surface 11a of the light emitting element 11 is directed toward the direction along the support surface 12a.
 このような構成によれば、発光素子11を支持する基板12自体に光学系としての機能を持たせているので、発光装置1の大型化を抑制しつつ、発光素子11から出射された光L1の進行方向を基板12の支持面12aに沿わせたいという要望に応えうる。また、発光素子11の発光面11aは、基板12の支持面12aに沿うように延びているので、発光素子11を基板12に取り付ける際に、回路基板の主面に部品を実装するための一般的な表面実装機を使用できる。したがって、発光面11aと偏向面12bの高精度な位置合わせを自動化できる。 According to such a configuration, since the substrate 12 itself that supports the light emitting element 11 has a function as an optical system, the light L1 emitted from the light emitting element 11 is suppressed while suppressing the increase in size of the light emitting device 1. It is possible to meet the desire to make the traveling direction of the substrate 12 along the support surface 12a of the substrate 12. Further, since the light emitting surface 11a of the light emitting element 11 extends along the support surface 12a of the substrate 12, it is common for mounting components on the main surface of the circuit board when the light emitting element 11 is attached to the substrate 12. Surface mounter can be used. Therefore, highly accurate alignment of the light emitting surface 11a and the deflection surface 12b can be automated.
 基板12は、シリコンなどの半導体材料により形成されうる。この場合、偏向面12bは、半導体プロセスにより形成されうる。半導体プロセスの例としては、エッチング(等方性と異方性の少なくとも一方)、CVD法、PVD法などが挙げられる。これらの周知の手法を適宜に組み合わせることにより、所望の形状を有する偏向面12bが基板12における所望の位置に形成されうる。 The substrate 12 can be formed of a semiconductor material such as silicon. In this case, the deflection surface 12b can be formed by a semiconductor process. Examples of semiconductor processes include etching (at least one of isotropic and anisotropic), CVD method, PVD method and the like. By appropriately combining these well-known methods, a deflection surface 12b having a desired shape can be formed at a desired position on the substrate 12.
 このような構成によれば、微細かつ複雑な形状を有する偏向面12bを、正確に形成できる。また、特に発光素子11が半導体プロセスにより製造される半導体素子である場合、その製造工程中に偏向面12bの形成プロセスを統合しやすい。 According to such a configuration, the deflection surface 12b having a fine and complicated shape can be accurately formed. Further, particularly when the light emitting element 11 is a semiconductor element manufactured by a semiconductor process, it is easy to integrate the forming process of the deflection surface 12b during the manufacturing process.
 これに加えてあるいは代えて、偏向面12bの表面には、鏡面加工または金属めっき加工が施されうる。 In addition to or instead of this, the surface of the deflection surface 12b can be mirror-finished or metal-plated.
 この場合、偏向面12bを経由することにより発光素子11から出射された光L1の光量が低下することを抑制できる。 In this case, it is possible to suppress a decrease in the amount of light L1 emitted from the light emitting element 11 by passing through the deflection surface 12b.
 図1に例示されるように、基板12の支持面12aは、回路13を支持しうる。回路13は、発光素子11を駆動する回路を含みうる。 As illustrated in FIG. 1, the support surface 12a of the substrate 12 can support the circuit 13. The circuit 13 may include a circuit that drives the light emitting element 11.
 この場合、発光素子11が実装される回路基板の一部に偏向面12bが形成される。これにより、発光装置1の大型化がさらに抑制されうる。 In this case, the deflection surface 12b is formed on a part of the circuit board on which the light emitting element 11 is mounted. As a result, the increase in size of the light emitting device 1 can be further suppressed.
 図4は、一実施形態に係る受光装置2を例示している。図5は、受光装置2の一部を拡大して例示している。図6は、図5における線VI-VIに沿って矢印方向から見た断面を例示している。 FIG. 4 illustrates the light receiving device 2 according to the embodiment. FIG. 5 shows an enlarged example of a part of the light receiving device 2. FIG. 6 illustrates a cross section seen from the direction of the arrow along the line VI-VI in FIG.
 受光装置2は、受光素子21を備えている。図5と図6に例示されるように、受光素子21は、光L2が入射する受光面21aを有している。受光素子21は、受光面21aに入射した光L2の光量に対応する信号を出力するように構成されている。受光素子21の例としては、フォトダイオード、フォトトランジスタ、フォトレジスタなどの半導体素子が挙げられる。 The light receiving device 2 includes a light receiving element 21. As illustrated in FIGS. 5 and 6, the light receiving element 21 has a light receiving surface 21a on which the light L2 is incident. The light receiving element 21 is configured to output a signal corresponding to the amount of light L2 incident on the light receiving surface 21a. Examples of the light receiving element 21 include semiconductor elements such as photodiodes, phototransistors, and photoresistors.
 受光装置2は、基板22を備えている。基板22は、支持面22aを有している。受光素子21は、受光面21aが支持面22aに沿って延びるように、基板22に支持されている。本例においては、受光面21aが支持面22aに対向する姿勢をとるように、受光素子21が基板22に搭載されている。 The light receiving device 2 includes a substrate 22. The substrate 22 has a support surface 22a. The light receiving element 21 is supported by the substrate 22 so that the light receiving surface 21a extends along the support surface 22a. In this example, the light receiving element 21 is mounted on the substrate 22 so that the light receiving surface 21a faces the support surface 22a.
 図4と図6において、矢印Pは、支持面22aに平行な向きを表している。矢印Nは、支持面22aの法線方向を表している。 In FIGS. 4 and 6, the arrow P indicates the direction parallel to the support surface 22a. The arrow N represents the normal direction of the support surface 22a.
 図5と図6に例示されるように、基板22には、偏向面22bが形成されている。偏向面22bの形状と配置は、基板22の支持面22aに沿って入射した光L2の進行方向を、受光素子21の受光面21aへ向けるように定められている。 As illustrated in FIGS. 5 and 6, a deflection surface 22b is formed on the substrate 22. The shape and arrangement of the deflection surface 22b are defined so that the traveling direction of the light L2 incident along the support surface 22a of the substrate 22 is directed toward the light receiving surface 21a of the light receiving element 21.
 このような構成によれば、受光素子21を支持する基板22自体に光学系としての機能を持たせているので、受光装置2の大型化を抑制しつつ、受光素子21に入射させる光L2の進行方向を基板22の支持面22aに沿わせたいという要望に応えうる。また、受光素子21の受光面21aは、基板22の支持面22aに沿うように延びているので、受光素子21を基板22に取り付ける際に、回路基板の主面に部品を実装するための一般的な表面実装機を使用できる。したがって、受光面21aと偏向面22bの高精度な位置合わせを自動化できる。 According to such a configuration, since the substrate 22 itself that supports the light receiving element 21 has a function as an optical system, the light L2 incident on the light receiving element 21 is suppressed while suppressing the increase in size of the light receiving device 2. It is possible to meet the desire to make the traveling direction along the support surface 22a of the substrate 22. Further, since the light receiving surface 21a of the light receiving element 21 extends along the support surface 22a of the substrate 22, it is common for mounting components on the main surface of the circuit board when the light receiving element 21 is attached to the substrate 22. Surface mounter can be used. Therefore, highly accurate alignment of the light receiving surface 21a and the deflection surface 22b can be automated.
 基板22は、シリコンなどの半導体材料により形成されうる。この場合、偏向面22bは、半導体プロセスにより形成されうる。半導体プロセスの例としては、エッチング(等方性と異方性の少なくとも一方)、CVD法、PVD法などが挙げられる。これらの周知の手法を適宜に組み合わせることにより、所望の形状を有する偏向面22bが基板22における所望の位置に形成されうる。 The substrate 22 can be formed of a semiconductor material such as silicon. In this case, the deflection surface 22b can be formed by a semiconductor process. Examples of semiconductor processes include etching (at least one of isotropic and anisotropic), CVD method, PVD method and the like. By appropriately combining these well-known methods, a deflection surface 22b having a desired shape can be formed at a desired position on the substrate 22.
 このような構成によれば、微細かつ複雑な形状を有する偏向面22bを、正確に形成できる。また、特に受光素子21が半導体プロセスにより製造される半導体素子である場合、その製造工程中に偏向面22bの形成プロセスを統合しやすい。 According to such a configuration, the deflection surface 22b having a fine and complicated shape can be accurately formed. Further, particularly when the light receiving element 21 is a semiconductor element manufactured by a semiconductor process, it is easy to integrate the process of forming the deflection surface 22b during the manufacturing process.
 これに加えてあるいは代えて、偏向面22bの表面には、鏡面加工または金属めっき加工が施されうる。 In addition to or instead of this, the surface of the deflection surface 22b can be mirror-finished or metal-plated.
 この場合、偏向面22bを経由することにより受光素子21に入射させる光L2の光量が低下することを抑制できる。 In this case, it is possible to suppress a decrease in the amount of light L2 incident on the light receiving element 21 by passing through the deflection surface 22b.
 図4に例示されるように、基板22の支持面22aは、回路23を支持しうる。回路23は、受光素子21から出力された信号を処理する回路を含みうる。 As illustrated in FIG. 4, the support surface 22a of the substrate 22 can support the circuit 23. The circuit 23 may include a circuit that processes the signal output from the light receiving element 21.
 この場合、受光素子21が実装される回路基板の一部に偏向面22bが形成される。これにより、受光装置2の大型化がさらに抑制されうる。 In this case, the deflection surface 22b is formed on a part of the circuit board on which the light receiving element 21 is mounted. As a result, the increase in size of the light receiving device 2 can be further suppressed.
 図7は、受光装置2の構成の別例を示している。本例においては、受光面21aが支持面22aに対向しない姿勢をとるように、受光素子21が基板22に搭載されている。この場合、受光素子21における基板22の支持面22aと対向する面に凹部21cが形成される。凹部21cは、機械的加工により形成されてもよいし、エッチングなどの化学的加工により形成されてもよい。凹部21cの深さは、凹部21cの底に入射する光L2が検出されうる程度に定められる。このような構成によれば、受光面が基板の支持面に対向しない姿勢で実装される一般的な構成の受光素子を転用できる。 FIG. 7 shows another example of the configuration of the light receiving device 2. In this example, the light receiving element 21 is mounted on the substrate 22 so that the light receiving surface 21a does not face the support surface 22a. In this case, the recess 21c is formed on the surface of the light receiving element 21 facing the support surface 22a of the substrate 22. The recess 21c may be formed by mechanical processing or may be formed by chemical processing such as etching. The depth of the recess 21c is set so that the light L2 incident on the bottom of the recess 21c can be detected. According to such a configuration, it is possible to divert a light receiving element having a general configuration in which the light receiving surface is mounted so as not to face the support surface of the substrate.
 発光装置1と受光装置2は、光センサの一部を構成しうる。光センサは、光を利用して所望の情報を検出するための装置である。光センサは、例えば移動体に搭載されて当該移動体の外部の情報を検出するために使用されうる。移動体の例としては、車両、鉄道、飛行体、航空機、船舶などが挙げられる。光センサが搭載される移動体は、運転者を必要としなくてもよい。 The light emitting device 1 and the light receiving device 2 can form a part of an optical sensor. An optical sensor is a device for detecting desired information using light. The optical sensor can be mounted on a moving body, for example, and used to detect information outside the moving body. Examples of moving bodies include vehicles, railroads, flying bodies, aircraft, ships and the like. The moving body on which the optical sensor is mounted does not have to require a driver.
 光センサは、例えばLiDARセンサの一部を構成しうる。この場合、発光装置1から出射される光L1として、例えば905nmの赤外光が使用されうる。光L1が物体に反射されて戻ってくる光は、光L2として受光装置2に検出される。LiDARセンサは、例えば、ある方向へ光L1を出射してから光L2を検出するまでの時間に基づいて、光L2に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出方向と関連付けて集積することにより、光L2に関連付けられた物体の形状に係る情報を取得できる。これに加えてあるいは代えて、光L1と光L2の波形の相違に基づいて、光L2に関連付けられた物体の材質などの属性に係る情報を取得できる。 The optical sensor can form, for example, a part of a LiDAR sensor. In this case, for example, infrared light having a diameter of 905 nm can be used as the light L1 emitted from the light emitting device 1. The light that the light L1 is reflected by the object and returns is detected by the light receiving device 2 as the light L2. The LiDAR sensor can acquire the distance to the object associated with the light L2, for example, based on the time from emitting the light L1 in a certain direction to detecting the light L2. Further, by accumulating such distance data in association with the detection direction, it is possible to acquire information relating to the shape of the object associated with the light L2. In addition to or instead of this, it is possible to acquire information related to attributes such as the material of the object associated with the light L2 based on the difference in the waveforms of the light L1 and the light L2.
 光センサは、例えばミリ波レーダの一部を構成しうる。この場合、光L1として、例えば24GHz、26GHz、76GHz、または79GHzのミリ波が使用されうる。ミリ波レーダは、例えば、ある方向へ光L1を出射してから光L2(反射波)を検出するまでの時間に基づいて、光L2に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出位置と関連付けて集積することにより、光L2に関連付けられた物体の動きに係る情報を取得できる。 The optical sensor can form, for example, a part of a millimeter wave radar. In this case, as the light L1, for example, a millimeter wave of 24 GHz, 26 GHz, 76 GHz, or 79 GHz can be used. The millimeter wave radar can acquire the distance to the object associated with the light L2 based on the time from the emission of the light L1 in a certain direction to the detection of the light L2 (reflected wave), for example. Further, by accumulating such distance data in association with the detection position, it is possible to acquire information related to the movement of the object associated with the light L2.
 上記の実施形態は、本開示の理解を容易にするための例示にすぎない。上記の実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。 The above embodiment is merely an example for facilitating the understanding of the present disclosure. The configuration according to the above embodiment may be appropriately changed or improved without departing from the gist of the present disclosure.
 上記の実施形態においては、単一の基板12に単一の発光素子11が支持されている。しかしながら、単一の基板12に複数の発光素子11が支持されてもよい。この場合、発光素子11ごとに偏向面12bが形成される。 In the above embodiment, a single light emitting element 11 is supported on a single substrate 12. However, a plurality of light emitting elements 11 may be supported on a single substrate 12. In this case, a deflection surface 12b is formed for each light emitting element 11.
 上記の実施形態においては、単一の基板22に単一の受光素子21が支持されている。しかしながら、単一の基板22に複数の受光素子21が支持されてもよい。この場合、受光素子21ごとに偏向面22bが形成される。 In the above embodiment, a single light receiving element 21 is supported on a single substrate 22. However, a plurality of light receiving elements 21 may be supported on a single substrate 22. In this case, a deflection surface 22b is formed for each light receiving element 21.
 共通の基板に発光素子11と受光素子21が支持されてもよい。この場合、当該共通の基板に偏向面12bと偏向面22bが形成される。 The light emitting element 11 and the light receiving element 21 may be supported on a common substrate. In this case, the deflection surface 12b and the deflection surface 22b are formed on the common substrate.
 本開示の一部を構成するものとして、2019年10月2日に提出された日本国特許出願2019-182170号の内容が援用される。 The contents of Japanese Patent Application No. 2019-182170 filed on October 2, 2019 are incorporated as a part of this disclosure.

Claims (8)

  1.  発光面を有している発光素子と、
     前記発光素子を支持する支持面を有している基板と、
    を備えており、
     前記発光素子は、前記発光面が前記支持面に沿って延びるように前記基板に支持されており、
     前記発光面から出射された光の進行方向を前記支持面に沿う方向へ向ける偏向面が、前記基板に形成されている、
    発光装置。
    A light emitting element having a light emitting surface and
    A substrate having a support surface for supporting the light emitting element and
    Is equipped with
    The light emitting element is supported by the substrate so that the light emitting surface extends along the support surface.
    A deflection surface is formed on the substrate to direct the traveling direction of the light emitted from the light emitting surface toward the direction along the support surface.
    Light emitting device.
  2.  前記偏向面は、半導体プロセスにより形成されたものである、
    請求項1に記載の発光装置。
    The deflection surface is formed by a semiconductor process.
    The light emitting device according to claim 1.
  3.  前記偏向面の表面は、鏡面加工または金属めっき加工が施されている、
    請求項1または2に記載の発光装置。
    The surface of the deflection surface is mirror-finished or metal-plated.
    The light emitting device according to claim 1 or 2.
  4.  前記基板は、前記発光素子を駆動する回路を支持している、
    請求項1から3のいずれか一項に記載の発光装置。
    The substrate supports a circuit that drives the light emitting element.
    The light emitting device according to any one of claims 1 to 3.
  5.  受光面を有している受光素子と、
     前記受光素子を支持する支持面を有している基板と、
    を備えており、
     前記受光素子は、前記受光面が前記支持面に沿って延びるように前記基板に支持されており、
     前記支持面に沿って入射した光の進行方向を前記受光面へ向ける偏向面が、前記基板に形成されている、
    受光装置。
    A light receiving element having a light receiving surface and
    A substrate having a support surface for supporting the light receiving element and
    Is equipped with
    The light receiving element is supported by the substrate so that the light receiving surface extends along the support surface.
    A deflection surface that directs the traveling direction of light incident along the support surface toward the light receiving surface is formed on the substrate.
    Light receiving device.
  6.  前記偏向面は、半導体プロセスにより形成されたものである、
    請求項5に記載の受光装置。
    The deflection surface is formed by a semiconductor process.
    The light receiving device according to claim 5.
  7.  前記偏向面の表面は、鏡面加工または金属めっき加工が施されている、
    請求項5または6に記載の受光装置。
    The surface of the deflection surface is mirror-finished or metal-plated.
    The light receiving device according to claim 5 or 6.
  8.  前記受光素子は、前記受光面に入射した光の光量に対応する信号を出力するように構成されており、
     前記基板は、前記信号を処理する回路を支持している、
    請求項5から7のいずれか一項に記載の受光装置。
    The light receiving element is configured to output a signal corresponding to the amount of light incident on the light receiving surface.
    The substrate supports a circuit that processes the signal.
    The light receiving device according to any one of claims 5 to 7.
PCT/JP2020/034658 2019-10-02 2020-09-14 Light emitting device and light receiving device WO2021065436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021550549A JPWO2021065436A1 (en) 2019-10-02 2020-09-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182170 2019-10-02
JP2019-182170 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021065436A1 true WO2021065436A1 (en) 2021-04-08

Family

ID=75337930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034658 WO2021065436A1 (en) 2019-10-02 2020-09-14 Light emitting device and light receiving device

Country Status (2)

Country Link
JP (1) JPWO2021065436A1 (en)
WO (1) WO2021065436A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582810A (en) * 1991-09-19 1993-04-02 Fujitsu Ltd Photoelectric transfer device
JPH11274523A (en) * 1998-02-20 1999-10-08 Samsung Electronics Co Ltd Integrated optical transmitting/receiving module
JP2003222765A (en) * 2002-01-29 2003-08-08 Kyocera Corp Optical module
US20130330035A1 (en) * 2012-06-07 2013-12-12 Samsung Electronics Co., Ltd. Semiconductor Package and Semiconductor Device Including the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582810A (en) * 1991-09-19 1993-04-02 Fujitsu Ltd Photoelectric transfer device
JPH11274523A (en) * 1998-02-20 1999-10-08 Samsung Electronics Co Ltd Integrated optical transmitting/receiving module
JP2003222765A (en) * 2002-01-29 2003-08-08 Kyocera Corp Optical module
US20130330035A1 (en) * 2012-06-07 2013-12-12 Samsung Electronics Co., Ltd. Semiconductor Package and Semiconductor Device Including the Same

Also Published As

Publication number Publication date
JPWO2021065436A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
CN109254276B (en) Heterogeneous integration of passively aligned curved mirror structures for use in chip-scale lidar
US9831630B2 (en) Low cost small size LiDAR for automotive
US9188674B2 (en) Laser radar device
US20150124238A1 (en) Object detecting apparatus
CN110346777A (en) Image intensifer in coherent lidar system return path
WO2018051906A1 (en) Sensor system, sensor module, and lamp device
JP2018004426A (en) Object detector, sensing device, and mobile body device
CN107688203B (en) Refracted beam steering apparatus useful for automotive LIDAR
EP1703741A1 (en) 3-d imaging system
US9519059B2 (en) Limited-area reflection type optical sensor and electronic device
JP2013104746A (en) Laser radar device
EP2829951B1 (en) Optical sensor
US20060092004A1 (en) Optical sensor
JP2013108914A (en) Object detection device
WO2021065436A1 (en) Light emitting device and light receiving device
WO2015105053A1 (en) Optical sensor
US20210055406A1 (en) Object sensing device
JP2014219250A (en) Range finder and program
US20140097334A1 (en) Detection apparatus
KR20190071998A (en) Lidar apparatus for vehicle
CN110114693B (en) Receiving device for an optical detection device, detection device and driver assistance system
WO2018079561A1 (en) Sensor device, sensing method, program, and storage medium
KR101561487B1 (en) Optical sensor
US11412104B2 (en) Proximity detection device
JP7316277B2 (en) sensor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872557

Country of ref document: EP

Kind code of ref document: A1