WO2021065373A1 - Remaining life estimation system solid fuel crushing device, remaining life estimation method, and remaining life estimation program - Google Patents

Remaining life estimation system solid fuel crushing device, remaining life estimation method, and remaining life estimation program Download PDF

Info

Publication number
WO2021065373A1
WO2021065373A1 PCT/JP2020/033893 JP2020033893W WO2021065373A1 WO 2021065373 A1 WO2021065373 A1 WO 2021065373A1 JP 2020033893 W JP2020033893 W JP 2020033893W WO 2021065373 A1 WO2021065373 A1 WO 2021065373A1
Authority
WO
WIPO (PCT)
Prior art keywords
remaining life
roller
estimation
journal bearing
solid fuel
Prior art date
Application number
PCT/JP2020/033893
Other languages
French (fr)
Japanese (ja)
Inventor
聡太朗 山口
優也 植田
小林 浩幸
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021065373A1 publication Critical patent/WO2021065373A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present disclosure relates to a remaining life estimation system and a solid fuel crusher, a remaining life estimation method, and a remaining life estimation program.
  • solid fuel such as coal and biomass fuel is crushed into fine powder within a predetermined particle size range by a crusher (mill) and supplied to a combustion device.
  • the mill crushes solid fuel such as coal and biomass fuel charged into the rotary table by chewing between the rotary table and rollers.
  • the fuel that has been crushed into fine powder by the transport gas supplied from the outer circumference of the rotary table is sorted by a classifier in a predetermined particle size range, transported to a boiler, and burned by a combustion device. ..
  • steam is generated by heat exchange with the combustion gas generated by burning in a boiler, the steam turbine is rotationally driven by the steam, and the generator connected to the steam turbine is rotationally driven to generate electricity. Is done.
  • Patent Document 1 discloses that the hydraulic load is measured, the roller load fluctuation is calculated, and the replacement time is predicted based on the fatigue damage degree calculated by the roller load fluctuation.
  • the remaining life is estimated by using a design value according to the maximum load (for example, the maximum coal supply amount) applied to the journal bearing of the roller as a fixed value. Therefore, although the operating load of the mill fluctuates in response to the load fluctuation in the power plant, the fluctuation of the journal bearing load is not reflected in the estimated remaining life.
  • the replacement time predicted from the remaining life estimated using the design value according to the maximum load it is often the case that a replacement time with a margin period is actually selected, so the maintenance frequency that is originally required. There is a risk that the maintenance frequency will increase compared to.
  • Patent Document 1 discloses that a hydraulic load is measured, it is not possible to accurately grasp the distribution of the load in the radial direction and the axial direction with respect to the journal bearing only by measuring the hydraulic load, and when estimating the remaining life. It may not be possible to effectively reflect fluctuations in the load value.
  • the present disclosure has been made in view of such circumstances, and is a remaining life estimation system and a solid fuel crusher capable of estimating the remaining life of roller journal bearings more accurately, and a remaining life estimation method. , As well as to provide a remaining life estimation program.
  • the first aspect of the present disclosure is a system for estimating the remaining life of a journal bearing of a roller that crushes solid fuel with and from a table, in which a measured value of information regarding a load applied to the roller and an inclination of the roller with respect to the table. It is a remaining life estimation system including an acquisition unit that acquires a measured value of information about an angle and an estimation unit that estimates the remaining life of the journal bearing based on the information acquired by the acquisition unit.
  • a second aspect of the present disclosure is a method for estimating the remaining life of a journal bearing of a roller that crushes solid fuel with and from a table, in which a measured value of information regarding a load applied to the roller and an inclination of the roller with respect to the table are used.
  • This is a remaining life estimation method including an acquisition step of acquiring a measured value of information about an angle and an estimation step of estimating the remaining life of the journal bearing based on the information acquired in the acquisition step.
  • a third aspect of the present disclosure is a program for estimating the remaining life of a journal bearing of a roller that crushes solid fuel with and from a table, in which a measured value of information regarding a load applied to the roller and a distance of the roller to the table are used.
  • the remaining life for causing the computer to execute the acquisition process for acquiring the measured value of the information regarding the lift amount, and the estimation process for estimating the remaining life of the journal bearing based on the information acquired in the acquisition process. It is an estimation program.
  • the effect is that the remaining life of the journal bearing of the roller can be estimated more accurately.
  • the power plant 1 includes a solid fuel crusher 100 and a boiler 200.
  • the solid fuel crusher 100 of the present embodiment crushes a solid fuel (carbon-containing solid fuel) such as coal or biomass fuel as an example, generates fine pulverized fuel, and supplies it to the burner portion (combustion device) 220 of the boiler 200. It is a device.
  • the power plant 1 including the solid fuel crushing device 100 and the boiler 200 shown in FIG. 1 includes one solid fuel crushing device 100, and corresponds to each of the plurality of burner portions 220 of the one boiler 200.
  • the system may be provided with a plurality of solid fuel crushing devices 100.
  • the solid fuel crusher 100 of the present embodiment includes a mill (crushing unit) 10, a coal feeder (fuel supply unit) 20, a blower unit (transport gas supply unit) 30, and a state. It includes a detection unit (state detection device) 40 and a control unit (control device) 60.
  • “upper” indicates the direction of the vertically upper side
  • “upper” such as the upper part and the upper surface indicates the vertically upper part.
  • “bottom” refers to the vertically lower part.
  • the mill 10 for crushing solid fuel such as coal or biomass fuel supplied to the boiler 200 into pulverized fuel which is a pulverized solid fuel may be in the form of crushing only coal or crushing only biomass fuel. It may be in the form of crushing biomass fuel together with coal, and the type of solid fuel is not limited.
  • the biomass fuel is a renewable organic resource derived from living organisms, for example, thinned wood, waste wood, drifting wood, grass, waste, sludge, tires, and recycled fuel (pellets and pellets) made from these. Chips), etc., and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon-neutral, which does not emit carbon dioxide, which is a global warming gas, and its use is being studied in various ways.
  • the mill 10 rotationally drives the housing 11, the rotary table (table) 12, the roller (crushing roller) 13, the drive unit 14, the rotary classifier 16, the fuel supply unit 17, and the rotary classifier 16. It is provided with a motor 18 for making the motor 18.
  • the housing 11 is formed in a tubular shape extending in the vertical direction, and is a housing that houses a rotary table 12, a roller 13, a rotary classifier 16, and a fuel supply unit 17.
  • a fuel supply unit 17 is attached to the central portion of the ceiling portion 42 of the housing 11.
  • the fuel supply unit 17 supplies the solid fuel guided from the bunker 21 into the housing 11, is arranged along the vertical direction at the center position of the housing 11, and the lower end portion extends to the inside of the housing 11. ing.
  • a drive unit 14 is installed near the bottom surface portion 41 of the housing 11, and a rotary table 12 that rotates by a driving force transmitted from the drive unit 14 is rotatably arranged.
  • the rotary table 12 is a member having a circular shape in a plan view, and is arranged so that the lower ends of the fuel supply unit 17 face each other.
  • the upper surface of the rotary table 12 may have an inclined shape such that the central portion is low and the rotary table 12 is high toward the outside, and the outer peripheral portion may be bent upward.
  • the fuel supply unit 17 supplies solid fuel (for example, coal or biomass fuel in this embodiment) from the upper side to the lower rotary table 12, and the rotary table 12 crushes the supplied solid fuel with the roller 13. It is also called a crushing table.
  • the solid fuel When the solid fuel is charged from the fuel supply unit 17 toward the center of the rotary table 12, the solid fuel is guided to the outer peripheral side of the rotary table 12 by the centrifugal force due to the rotation of the rotary table 12, and is between the solid fuel and the roller 13. It is sandwiched and crushed.
  • the crushed solid fuel is blown upward by the transport gas (hereinafter referred to as primary air) guided from the transport gas flow path (hereinafter referred to as primary air flow path) 100a, and rotates. It is led to the formula classifier 16. That is, an outlet (not shown) is provided on the outer periphery of the rotary table 12 to allow the primary air flowing in from the primary air flow path 100a to flow out into the space above the rotary table 12 in the housing 11.
  • a vane (not shown) is installed at the air outlet to give a turning force to the primary air blown out from the air outlet.
  • the primary air to which the swirling force is applied by the vane becomes an air flow having a swirling velocity component, and guides the solid fuel crushed on the rotary table 12 to the upper rotary classifier 16 in the housing 11.
  • those having a particle size larger than the predetermined particle size are classified by the rotary classifier 16 or dropped onto the rotary table 12 without reaching the rotary classifier 16. It is returned and crushed again.
  • the roller 13 is a rotating body that crushes the solid fuel supplied from the fuel supply unit 17 to the rotary table 12.
  • the roller 13 is pressed against the upper surface of the rotary table 12 and cooperates with the rotary table 12 to crush the solid fuel.
  • FIG. 1 only one roller 13 is represented as a representative, but a plurality of rollers 13 are arranged to face each other at regular intervals in the circumferential direction so as to press the upper surface of the rotary table 12.
  • the three rollers 13 are arranged at equal intervals in the circumferential direction with an angular interval of 120 ° on the outer peripheral portion. In this case, the portion where the three rollers 13 are in contact with the upper surface of the rotary table 12 (the portion to be pressed) is equidistant from the rotation center axis of the rotary table 12.
  • the roller 13 can be swung up and down by the journal head 45, and is supported so as to be close to and separated from the upper surface of the rotary table 12.
  • the roller 13 receives a rotational force from the rotary table 12 and rotates around the roller 13.
  • the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the roller 13 and the rotary table 12 and crushed to become fine fuel.
  • the support arm 47 of the journal head 45 is supported on the side surface of the housing 11 by a support shaft 48 whose intermediate portion is along the horizontal direction so that the roller 13 can swing in the vertical direction around the support shaft 48.
  • a pressing device 49 is provided at the upper end portion on the vertically upper side of the support arm 47. The pressing device 49 is fixed to the housing 11 and applies a load to the roller 13 via the support arm 47 or the like so as to press the roller 13 against the rotary table 12.
  • FIG. 2 An example of the detailed configuration of the roller 13 is shown in FIG. 2 (partially enlarged vertical sectional view showing the circumference of the roller 13).
  • the roller 13 is supported by the housing 11 by the roller support portion 55.
  • the roller support portion 55 extends upward onto the support shaft 52 to which the roller 13 is attached, the main body 56 that holds the support shaft 52, the support shaft 48 that is fixedly attached to the side portion of the main body 56, and the upper surface of the main body 56.
  • a support arm 47 attached so as to exist, and a protrusion 57 provided on the lower surface of the main body 56 so as to project downward are provided.
  • a hollow hub 51 having a substantially cylindrical shape is attached to the center of the roller 13.
  • the roller 13 is attached to the tip of the support shaft 52 via the hub 51. That is, the roller 13 is attached to the support shaft 52 via the journal bearing (roller journal bearing) 59, so that the roller 13 can rotate around the support shaft 52 in the circumferential direction. As will be described later, in this embodiment, the remaining life of the journal bearing 59 is estimated.
  • the support shaft 48 is arranged so that its axis is substantially horizontal and extends in the tangential direction of the circular shape of the rotary table 12.
  • the roller support portion 55 is rotatable about the support shaft 48, and the distance (lift amount X) of the roller 13 to the rotary table 12 changes by rotating around the support shaft 48.
  • a pressing device 49 for pressing the upper end of the support arm 47 is attached to the housing 11.
  • the pressing device 49 includes an intermediate piston 53 attached to the housing 11 so as to be movable in the longitudinal direction, and a hydraulic load portion 54 attached to the outer periphery of the housing 11 to press the outer end portion of the intermediate piston 53.
  • the inner end of the intermediate piston 53 is in contact with the outer peripheral side of the upper end of the support arm 47.
  • the pressing device 49 generates a hydraulic load L1 (see FIG. 5) by the hydraulic load portion 54, and moves the intermediate piston 53 in the longitudinal direction to swing the roller support portion 55 around the support shaft 48. That is, the roller 13 is pressed against the rotary table 12 by the pressing device 49.
  • the protrusion 57 abuts on the stopper 58 when the roller support 55 swings to a certain position around the support shaft 48.
  • the stopper 58 functions as a limiting member that limits the amount of movement of the roller 13 in the direction of pressing the rotary table 12.
  • the drive unit 14 is a device that transmits a driving force to the rotary table 12 to rotate the rotary table 12 around a central axis (rotation axis).
  • the drive unit 14 generates a driving force for rotating the rotary table 12.
  • the rotary classifier 16 is provided on the upper part of the housing 11 and has a hollow substantially inverted conical outer shape.
  • the rotary classifier 16 includes a plurality of blades 16a extending in the vertical direction at its outer peripheral position.
  • the blades 16a are provided at predetermined intervals (equal intervals) around the central axis of the rotary classifier 16.
  • the solid fuel crushed by the roller 13 is larger than a predetermined particle size (for example, 70 to 100 ⁇ m for coal) (hereinafter, the crushed solid fuel exceeding the predetermined particle size is referred to as “crude fuel”.
  • the rotary classifier 16 that classifies by rotation is also called a rotary separator, and is given a rotational driving force by a motor 18 controlled by a control unit 60 to provide a cylindrical shaft (not shown) extending in the vertical direction of the housing 11. It rotates around the fuel supply unit 17 in the center.
  • the coarse powder fuel having a large diameter is produced by the blade 16a. It is knocked down, returned to the turntable 12, crushed again, and the pulverized fuel is guided to an outlet 19 at the ceiling 42 of the housing 11.
  • the pulverized fuel classified by the rotary classifier 16 is discharged from the outlet 19 to the supply flow path 100b, and is conveyed to the subsequent process together with the primary air.
  • the pulverized fuel that has flowed out to the supply flow path 100b is supplied to the burner portion 220 of the boiler 200.
  • the fuel supply unit 17 is attached so that the lower end portion extends vertically to the inside of the housing 11 so as to penetrate the upper end of the housing 11, and the solid fuel input from the upper part of the fuel supply unit 17 is transferred to the rotary table 12. Supply to the approximately central region of.
  • the fuel supply unit 17 is supplied with solid fuel from the coal feeder 20.
  • the coal feeder 20 includes a transport unit 22 and a motor 23.
  • the transport unit 22 transports the solid fuel discharged from the lower end portion of the down spout portion 24 directly under the bunker 21 by the driving force given from the motor 23, and is guided to the fuel supply unit 17 of the mill 10.
  • pulverized fuel which is a crushed solid fuel
  • Fuel is held in a laminated state inside the down spout portion 24, which is a pipe extending in the vertical direction directly under the bunker 21, and the solid fuel layer laminated in the down spout portion 24 causes the mill 10 side.
  • the sealing property is ensured so that the primary air and fine fuel do not flow back.
  • the amount of solid fuel supplied to the mill 10 may be adjusted by the belt speed of the belt conveyor of the transport unit 22.
  • the biomass fuel chips and pellets before crushing have a constant particle size (the size of the pellets) as compared with coal fuel (that is, the particle size of coal before crushing is, for example, about 2 to 50 mm). Is, for example, about 6 to 8 mm in diameter and about 40 mm or less in length), and is lightweight. Therefore, when the biomass fuel is stored in the down spout portion 24, the gap formed between the biomass fuels becomes larger than that in the case of the coal fuel. Therefore, since there is a gap between the biomass fuel chips and pellets in the down spout portion 24, the primary air blown up from the inside of the mill 10 and the fine powder fuel pass through the gap formed between the biomass fuels and the mill. 10 The internal pressure may drop.
  • a rotary valve (not shown) may be provided in the middle of the fuel supply unit 17 from the coal feeder 20 to suppress the backflow due to the blow-up of the primary air and the pulverized fuel.
  • the blower unit 30 is a device that dries the solid fuel crushed by the rollers 13 and blows primary air into the housing 11 for supplying the rotary classifier 16.
  • the blower unit 30 cools the primary air ventilator (PAF: Primary Air Fan) 31, the hot gas flow path 30a, and the cooling unit 30 in order to adjust the primary air blown to the housing 11 to an appropriate temperature. It includes a gas flow path 30b, a hot gas damper 30c, and a cold gas damper 30d.
  • PAF Primary Air Fan
  • the heat gas flow path 30a heats a part of the air (outside air) sent from the primary air ventilator 31 through a heat exchanger (heater) 34 such as an air preheater. It is supplied as heat gas.
  • a hot gas damper 30c (first blower portion) is provided on the downstream side of the hot gas flow path 30a.
  • the opening degree of the heat gas damper 30c is controlled by the control unit 60.
  • the flow rate of the hot gas supplied from the hot gas flow path 30a is determined by the opening degree of the hot gas damper 30c.
  • the cold gas flow path 30b supplies a part of the air sent from the primary air ventilator 31 as cold gas at room temperature.
  • a cold gas damper (second blower) 30d is provided on the downstream side of the cold gas flow path 30b.
  • the opening degree of the cold gas damper 30d is controlled by the control unit 60.
  • the flow rate of the cold gas supplied from the cold gas flow path 30b is determined by the opening degree of the cold gas damper 30d.
  • the flow rate of the primary air is the total flow rate of the hot gas supplied from the hot gas flow path 30a and the flow rate of the cold gas supplied from the cold gas flow path 30b, and the temperature of the primary air is the hot gas. It is determined by the mixing ratio of the hot gas supplied from the flow path 30a and the cold gas supplied from the cold gas flow path 30b, and is controlled by the control unit 60. A part of the combustion gas discharged from the boiler 200 is guided to the hot gas supplied from the hot gas flow path 30a through a gas recirculation ventilator (not shown) to form an air-fuel mixture, which flows in from the primary air flow path 100a. The oxygen concentration of the primary air may be adjusted.
  • the state detection unit 40 of the housing 11 transmits the measured or detected data to the control unit 60.
  • the state detection unit 40 of the present embodiment is, for example, a differential pressure measuring means, and is a portion where the primary air flows from the primary air flow path 100a into the mill 10 and the primary air and fine powder fuel from the inside of the mill 10 into the supply flow path 100b.
  • the differential pressure with the outlet 19 discharged from the mill 10 is measured as the differential pressure in the mill 10.
  • the increase and decrease of pressure changes.
  • the state detection unit 40 of the present embodiment is, for example, a temperature measuring means, and the temperature of the primary air supplied to the inside of the housing 11 for blowing the solid fuel crushed by the rollers 13 to the rotary classifier 16 and the housing.
  • the temperature of the primary air up to the outlet 19 is detected inside the 11 and the blower portion 30 is controlled so as not to exceed the upper limit temperature. Since the primary air is cooled by transporting the pulverized material while drying it in the housing 11, the temperature from the upper space of the housing 11 to the outlet 19 is, for example, about 60 to 80 degrees.
  • the boiler 200 burns using the fine fuel supplied from the solid fuel crusher 100 to generate steam. Therefore, the boiler 200 includes a fireplace 210 and a burner portion 220.
  • the burner unit 220 heats the primary air containing the fine fuel supplied from the supply flow path 100b and the air (outside air) sent from the forced air ventilator (FDF: Feed Draft Fan) 32 with the heat exchanger 34. It is a device that forms a flame by burning fine fuel using the supplied secondary air.
  • the pulverized fuel is burned in the furnace 210, and the high-temperature combustion gas is discharged to the outside of the boiler 200 after passing through a heat exchanger (not shown) such as an evaporator, a superheater, and an economizer.
  • the combustion gas discharged from the boiler 200 is subjected to a predetermined treatment by an environmental device (not shown by a denitration device, an electrostatic precipitator, etc.), and is sent from the primary air ventilator 31 by a heat exchanger 34 such as an air preheater, for example.
  • a heat exchanger 34 such as an air preheater, for example.
  • the heat is exchanged between the air and the air sent from the forced air blower 32, and is guided to the chimney (not shown) via the induced blower (IDF) 33 and discharged to the outside air.
  • IDF induced blower
  • each heat exchanger of the boiler 200 is heated by an economizer (not shown) and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature and high-pressure steam to generate electricity. It is sent to a steam turbine (not shown), which is a unit, to rotate drive the steam turbine, and a generator connected to the steam turbine (not shown) is driven to rotate to generate electricity, thereby forming a power plant 1.
  • the control unit 60 is a device that controls each part of the solid fuel crushing device 100.
  • the control unit 60 may control the rotation speed of the rotary table 12 with respect to the operation of the mill 10 by transmitting a drive instruction to the drive unit 14, for example.
  • the control unit 60 adjusts the classification performance by transmitting a drive instruction to the motor 18 of the rotary classifier 16 to control the rotation speed, thereby optimizing the differential pressure in the mill 10 within a predetermined range. It is possible to stabilize the supply of pulverized fuel.
  • the control unit 60 can adjust the amount of solid fuel supplied by the transport unit 22 to the fuel supply unit 17 by transmitting a drive instruction to the motor 23 of the coal feeder 20, for example. ..
  • the control unit 60 can control the opening degree of the hot gas damper 30c and the cold gas damper 30d to control the flow rate and temperature of the primary air by transmitting the opening degree instruction to the blower unit 30.
  • the control unit 60 controls the oil pressure applied to the hydraulic load unit 54 of the pressing device 49 according to, for example, the supply amount of solid fuel and the rotation speed of the rotary classifier 16, so that the roller 13 can be moved to the rotary table 12. It optimizes the pressing force and enables stable crushing of solid fuel.
  • the control unit 60 estimates the remaining life of the journal bearing 59. That is, the control unit 60 has a function as a remaining life estimation system of the journal bearing 59 of the roller 13 that crushes the solid fuel between the rotary table 12 and the rotary table 12.
  • the function as the remaining life estimation system may be provided in a control device different from the control unit 60.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the control unit 60 according to the present embodiment.
  • the control unit 60 is a computer system (computer system), for example, a CPU 110, a ROM (Read Only Memory) 120 for storing a program or the like executed by the CPU 110, and when each program is executed. It is provided with a RAM (Random Access Memory) 130 that functions as a work area of the above, a hard disk drive (HDD) 140 as a large-capacity storage device, and a communication unit 150 for connecting to a network or the like. Each of these parts is connected via a bus 180.
  • the control unit 60 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
  • the storage medium for storing the program or the like executed by the CPU 110 is not limited to the ROM 120.
  • it may be another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
  • a series of processing processes for realizing various functions described later is recorded in the HDD 140 or the like in the form of a program, and the CPU 110 reads this program into the RAM 130 or the like and executes information processing / calculation processing. , Various functions described later are realized.
  • the program may be installed in a ROM 120 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the HDD 140 may be replaced with a solid state disk (SSD) or the like.
  • FIG. 4 is a functional block diagram showing the function related to the remaining life estimation included in the control unit 60.
  • the control unit 60 includes an acquisition unit 62 and an estimation unit 63.
  • the acquisition unit 62 acquires the measured value of the information regarding the load applied to the roller 13 and the measured value of the information regarding the inclination angle of the roller 13 with respect to the rotary table 12.
  • the measured value of the information on the load applied to the roller 13, which is important for reflecting the actual operating state in the estimation of the remaining life of the journal bearing 59, and the information on the inclination angle of the roller 13 with respect to the rotary table 12 are obtained. Have acquired.
  • the information regarding the load applied to the roller 13 is the information regarding the load L2 received from the rotary table 12 in the roller 13.
  • the load L2 from the rotary table 12 is a force (load) received from the rotary table 12 when the roller 13 is pressed against the solid fuel supplied to the upper surface of the rotary table 12 and crushed. That is, it is the force that the roller 13 receives in the direction perpendicular to the adjacent facing surfaces when the contact surface between the rotary table 12 and the roller 13 or the gap between the roller 13 and the rotary table 12 is set to the minimum.
  • the load L2 from the rotary table 12 acts along the axis AX1 parallel to the rotary axis of the rotary table 12 (for example, in the direction of the rotary axis).
  • the shape of the rotary table 12 in FIG. 5 is an example and is not limited to the shape.
  • the additional load in the pressing device 49 (the pressing force that presses the roller 13 toward the rotary table 12 via the solid fuel that crushes the roller 13), that is, the hydraulic load in the hydraulic load unit 54.
  • the case of acquiring L1 will be described.
  • the hydraulic load (additional load) L1 is a parameter controlled when the roller 13 is pressed against the rotary table 12, and the measured value is measured by the installed sensor and output to the acquisition unit 62.
  • a pressure sensor such as a load cell or a pressure sensor can be used.
  • the information regarding the load applied to the roller 13 can be applied without being limited to the hydraulic load (additional load) L1 as long as it is a parameter related to the load applied to the roller 13.
  • the load applied to the roller 13 or the load applied to the journal bearing 59 may be directly measured and acquired by the sensor.
  • the information regarding the tilt angle of the roller 13 with respect to the rotary table 12 is information regarding the roller tilt angle ⁇ as shown in FIG. 6 (partially enlarged vertical cross-sectional view showing the roller tilt angle).
  • the roller tilt angle ⁇ is the tilt of the roller 13 with respect to the rotary table 12, and the axis in the rotation axis direction of the rotary table 12 (or the axis parallel to the rotation axis) AX1 and the axis perpendicular to the rotation axis AX2 of the roller 13 ( (Vertical surface) This is the angle formed by AX3.
  • the lift amount X of the roller 13 is used as the information regarding the inclination angle of the roller 13 with respect to the rotary table 12.
  • the lift amount X of the roller 13 is the distance between the rotary table 12 and the roller 13.
  • the lift amount X is a distance generated by the presence of solid fuel to be crushed between the rotary table 12 and the roller 13. Since the roller 13 rotates about the support shaft 48, the lift amount X is the distance between the rotary table 12 and the roller 13 when the roller 13 moves up and down with respect to the support shaft 48.
  • the lift amount X is acquired by a gap sensor as shown in FIG. 8, for example.
  • the lift amount X may be a linear movement sensor, a capacitance distance sensor, a laser distance sensor, or the like.
  • a measurement bar 71 and a gap sensor 72 are provided with respect to the support shaft 48.
  • the measurement bar 71 rotates with the rotation of the support shaft 48 (rotation of the roller 13).
  • the installation position of the gap sensor 72 is fixed, and the distance between the gap sensor 72 and the measurement bar 71 is measured.
  • the ratio of the distance L between the central axis (AX3) of the roller 13 and the support shaft 48 and the lift amount X, and the ratio between the length l of the measurement bar 71 in the gap sensor 72 and the gap value x. are equal. Therefore, the lift amount X can be calculated from the gap sensor 72 by the following equation (1).
  • L and l are design values, and x can be obtained from the gap sensor, so that the lift amount X can be calculated.
  • the lift amount X may be calculated from the operating amount of the pressing device 49, for example, the moving amount of the intermediate piston 53, or if the lift amount X can be directly measured, the lift amount X may be measured. Good.
  • the acquisition unit 62 may acquire the lift amount X, or may acquire the gap value x, which is the output of the gap sensor.
  • the 0 (zero) point of the gap value x is set as the roller 13. It may be set as the point where the gap of the rotary table 12 is minimized, and similarly, the 0 (zero) point of the gap value x of the gap sensor 72 is set as the point where the distance between the gap sensor 72 and the measurement bar 71 is minimized. You may put it.
  • the lift amount X of the roller 13 is used as the information regarding the tilt angle of the roller 13 with respect to the rotary table 12, but the information regarding the roller tilt angle ⁇ is not limited to the lift amount X of the roller 13. It is possible.
  • the roller inclination angle ⁇ may be directly measured and acquired by a sensor or the like. As will be described later, in the present embodiment, the roller inclination angle ⁇ is calculated from the lift amount X of the roller 13, the thrust load Ls and the radial load Lr are calculated and used for estimating the remaining life. When the lift amount X is acquired, the thrust load Ls and the radial load Lr may be calculated and the remaining life may be estimated without the calculation of the roller inclination angle ⁇ .
  • the acquisition unit 62 acquires the measured value of the information regarding the load applied to the roller 13 and the measured value of the information regarding the lift amount X of the roller 13 with respect to the rotary table 12.
  • the information regarding the lift amount X of the roller 13 with respect to the rotary table 12 can be used without being limited to the lift amount X as long as the information is related to the lift amount X.
  • the estimation unit 63 estimates the remaining life of the journal bearing 59 based on the information acquired by the acquisition unit 62. Specifically, the estimation unit 63 calculates the radial load Lr and the thrust load Ls applied to the journal bearing 59, and estimates the remaining life of the journal bearing 59 based on the radial load Lr and the thrust load Ls.
  • FIG. 5 is a view (partially enlarged vertical cross-sectional view) showing the relationship of each load around the roller 13.
  • the load L2 from the rotary table 12 is applied to the roller 13.
  • the load L2 from the rotary table 12 is also applied to the journal bearing 59 via the roller 13.
  • the estimation unit 63 estimates the remaining life of the journal bearing 59 from the radial load Lr and the thrust load Ls.
  • a known method can be used as a method for estimating the life of the journal bearing 59 using the radial load Lr and the thrust load Ls.
  • the hydraulic load L1 and the lift amount X acquired by the acquisition unit 62 are input to the estimation unit 63.
  • the gap value x may be input to the estimation unit 63, and the lift amount X may be calculated by the above calculation.
  • the estimation unit 63 calculates the load L2 received by the journal bearing 59 from the rotary table 12 based on the input hydraulic load L1. Since the roller 13 is pressed toward the rotary table 12 based on the hydraulic load L1 via the crushed solid fuel, the hydraulic load L1 and the load L2 from the rotary table 12 have a correlation. There is. Therefore, the estimation unit 63 can calculate the load L2 from the rotary table 12 from the hydraulic load L1.
  • the load L2 from the rotary table 12 can be directly acquired by the acquisition unit 62 by a measuring instrument using various sensors, the acquired load L2 from the rotary table 12 may be used.
  • the load due to the own weight of the roller 13 and the member supporting the roller 13 may be added.
  • the estimation unit 63 calculates the roller inclination angle ⁇ based on the input lift amount X.
  • the roller inclination angle ⁇ is calculated by the following equation (2).
  • ⁇ 0 is the roller inclination reference angle
  • is the amount of change in the roller inclination angle ⁇ with respect to the roller inclination reference angle
  • is the value of the inverse tangent function of the ratio of the lift amount X and the distance L. That is, when the lift amount X is small, the roller inclination angle ⁇ becomes large, and when the lift amount X is large, the roller inclination angle ⁇ becomes small.
  • the thrust load Ls and the radial load Lr are calculated as shown in the relationship of FIG.
  • the thrust load Ls is calculated by multiplying the load from the rotary table 12 by sin ( ⁇ )
  • the radial load Lr is calculated by multiplying the load from the rotary table 12 by cos ( ⁇ ).
  • the estimation unit 63 calculates the thrust load Ls and the radial load Lr applied to the journal bearing 59, and estimates the remaining life based on the thrust load Ls and the radial load Lr.
  • various methods can be applied as long as they are based on the thrust load Ls and the radial load Lr.
  • FIG. 9 is a flowchart showing an example of the procedure of the remaining life estimation process according to the present embodiment.
  • the flow shown in FIG. 9 is executed when, for example, an operator or the like gives an instruction to start estimating the remaining life.
  • the remaining life estimation process may be executed periodically even if there is no start instruction from the operator or the like.
  • roller inclination angle ⁇ is calculated based on the lift amount X (S102).
  • the remaining life of the journal bearing 59 is estimated using the radial load Lr and the thrust load Ls (S104). Regarding the estimation of the remaining life, it is possible to use information other than the radial load Lr and the thrust load Ls (for example, the design value of the journal bearing 59) depending on the estimation method.
  • FIG. 10 shows changes in the power plant load and the load applied to the journal bearing with respect to the operating time, and changes in the remaining life with respect to the operating time.
  • FIG. 10 shows, as a reference example, a case where the remaining life is estimated assuming that the maximum load continues to be applied as a design value.
  • the load applied to the journal bearing 59 is maximized in proportion to the load of the power plant 1. Is assumed. Therefore, the remaining life decreases linearly with respect to the operating time, and it is estimated that the operating time T2 in FIG. 10 is the time when maintenance is required.
  • the load related to the roller 13 is sequentially measured as the hydraulic load L1
  • the load applied to the journal bearing 59 corresponding to the actual operating state of the power plant 1 can be acquired. ..
  • the load (line graph) applied to the actual journal bearing 59 in FIG. 10 it may be lower than the maximum load. Therefore, it is a reference when estimating the remaining life in consideration of the measured value of the roller inclination angle ⁇ .
  • the reduction of the remaining life with respect to the operating time becomes slower.
  • the period Ta of FIG. 10 since the load applied to the journal bearing 59 is low, the remaining life consumption is reduced. Since the period Ta changes according to the operating state, it is not limited to the period shown in FIG.
  • the current point is the operating time T1 in FIG. 10
  • the operating time T3 is the time when maintenance is required by linearly extending the transition of the remaining life in the past predetermined period from the present. ..
  • the remaining life estimation of the present embodiment it is possible to estimate the remaining life of the journal bearing 59 with higher accuracy according to the actual operating state. Therefore, a more accurate maintenance required time can be estimated as compared with the reference example (operating time is T2 ⁇ T3), and the mill 10 can be operated more efficiently.
  • the remaining life is estimated by using the measured values of the hydraulic load L1 and the lift amount X, but the remaining life is also estimated by using the measured values of the rotation speed of the journal bearing 59 (rotation speed of the roller 13). It may be estimated.
  • the acquisition unit 62 acquires the actually measured value of the information on the rotation speed of the journal bearing 59
  • the estimation unit 63 estimates the remaining life by taking into account the actually measured value of the information on the rotation speed of the journal bearing 59. ..
  • the rotation speed of the journal bearing 59 may decrease or stop.
  • a rotation speed sensor that detects the actual rotation speed of the journal bearing 59 may be installed and the actual measured value of the rotation speed may be added when estimating the remaining life.
  • the estimation accuracy can be further improved as compared with the case where the remaining life is estimated assuming that the rotation speed of the journal bearing 59 is constant.
  • the sensor for example, in addition to a rotation position sensor such as a rotary encoder, a rotation speed sensor, an acceleration sensor that captures a change in the direction of gravity or a centrifugal force may be used.
  • a method of transmitting the measured information to the outside of the mill 10 it may be transmitted by a wired communication means, or may be transmitted by using some wireless communication means.
  • the remaining life is estimated by using the measured values of the hydraulic load L1 and the lift amount X, but the remaining life may be estimated by also using the state of the lubricant of the journal bearing 59.
  • the acquisition unit 62 acquires the actually measured value of the information on the state of the lubricant of the journal bearing 59, and the estimation unit 63 also takes into account the actually measured value of the information on the state of the lubricant of the journal bearing 59.
  • Estimate life For example, when fine powder particles of crushed solid fuel are mixed in the lubricating oil in the journal bearing 59 box of the roller 13, the life of the journal bearing 59 may be extremely shortened.
  • a sensor for detecting the state of the lubricating oil for example, a sensor for detecting the state of the lubricating oil (contamination, deterioration, etc.) is installed in the journal bearing 59 box, and the influence from the state of the lubricating oil is taken into consideration when estimating the remaining life. You may. By taking into account the state of the lubricant, the accuracy of estimating the remaining life can be further improved.
  • Most of the causes of lubricant contamination are contamination due to the intrusion of fine particles of crushed solid fuel from the seal portion (oil seal portion) of the roller 13. Since the cause of the invasion of fine particles is often due to insufficient seal air pressure in the seal portion, a sensor that detects changes in seal air pressure is installed to determine the effect of insufficient seal air pressure when estimating the remaining life. It may be added.
  • the remaining life estimation method, and the remaining life estimation program information on the load applied to the roller 13 and the roller 13 with respect to the rotary table 12 Information on the tilt angle of the journal bearing 59 is acquired as a measured value, and the remaining life of the journal bearing 59 is estimated. Therefore, it is possible to deal with fluctuations in the operating state of the mill 10 provided with the roller 13 in consideration of the influence on the estimation of the remaining life, and the accuracy of estimating the remaining life can be improved. According to the lift amount X of the roller 13 with respect to the rotary table 12, the direction of the load applied to the journal bearing 59 can be estimated. Therefore, the remaining life of the journal bearing 59 can be estimated using the lift amount X of the roller 13.
  • maintenance (replacement, etc.) of the journal bearing 59 can be performed at a more appropriate timing. That is, since the journal bearing 59 can be used for a longer period of time, the maintenance frequency of the mill 10 can be reduced. Therefore, the maintenance cost can be reduced. The operating rate of the mill 10 and the power plant 1 can be improved.
  • the control unit 60 in the present embodiment includes a prediction unit 64.
  • the prediction unit 64 determines the transition of the future remaining life from the transition of the remaining life estimated by the estimation unit 63 based on the database in which the operating state of the mill 10 and the remaining life transition characteristics corresponding to the operating state are accumulated in advance. Predict.
  • the remaining life estimation characteristic is information indicating the characteristic of the remaining life that changes depending on the operating state, and specifically, it is a curve characteristic (may be a straight line) as shown in A, B, and C of FIG. That is, the database stores operation information up to the past or present of the mill 10.
  • the database may store the past or present operation data of the mill 10 whose life is to be estimated, or may store the past operation data of other mills 10 having similar configurations.
  • the database may be provided in the control unit 60 (storage unit) or may be provided in another device.
  • the operating state includes the type of solid fuel (coal type information), the supply amount of solid fuel (coal supply amount), information on the load applied to the roller 13 (hydraulic load), and the classifier (rotary classifier) provided on the mill 10.
  • the rotation speed of 16) (the rotation speed of the classifier) and the differential pressure between the gas flowing into the mill 10 and the gas discharged from the mill 10 (the differential pressure in the mill 10 and an index indicating the load status of the mill 10). For example, it is generated between the upper atmosphere and the lower atmosphere of the rotary table 12).
  • the operating state is not limited to the above and can be included as long as it is a parameter that affects the life of the journal bearing 59.
  • the change in the remaining life with respect to the operating time between similar operating conditions is consistent within ⁇ 10%, excluding the operation information (estimated remaining life) that is clearly judged to be out of order, and more preferably ⁇ 5%. If there is a match within, the data of similar operating conditions may be prioritized and judged to be similar.
  • the prediction unit 64 refers to the database, selects data on an operating state similar to the operating state of the mill 10 whose remaining life is estimated, and corresponds to the data on the similar operating state. Select and acquire life transition characteristics.
  • the data of the similar operating state is the data of the operating state in which the degree of influence of the remaining life is estimated to be similar to the operating state of the mill 10 for which the remaining life is estimated.
  • the type of solid fuel is used as the operating state
  • the operating state including the above becomes a similar operating state.
  • the priority of the similarity judgment may be set, and the similarity judgment may be performed for the parameter having a high priority (for example, the type of solid fuel).
  • FIG. 12 is an example in which the remaining life transition characteristics in a similar operating state are selected for the mill 10 for which the remaining life is estimated.
  • FIG. 12 shows an example in which characteristic A, characteristic B, and characteristic C are selected as the remaining life transition characteristics. Then, in FIG. 12, E1 (first estimation result), E2 (second estimation result), and En (nth estimation result), which are the estimation results of the remaining life of the mill 10 which is the target of the remaining life estimation, are shown. Is shown.
  • the prediction unit 64 is based on the estimation results from E1 to En of the estimation results of the remaining life for the mill 10 which is the target of estimating the remaining life from the selected remaining life transition characteristics (A, B, C).
  • the remaining life transition characteristics (A, B, C) having the transition characteristics similar to the transition characteristics E are specified.
  • the characteristic B is specified. Therefore, it is estimated that the mill 10 whose remaining life is to be estimated will change the remaining life characteristic with respect to the operating time as in the characteristic B in the future, and will reach the life reaching time Tb.
  • the transition characteristic E of the estimation result of the remaining life with respect to the mill 10 for which the remaining life is estimated may be the transition characteristic from the time of completion to the present, the transition characteristic from the present to the past predetermined period, or the operation.
  • a period in which the state has changed significantly may be selected as the transition characteristic.
  • the transition characteristic of the estimation result of the remaining life with respect to the mill 10 for which the remaining life is estimated does not completely correspond to the selected remaining life transition characteristic. Similar transition characteristics may be selected from the selected remaining life transition characteristics. If there is no transition characteristic similar to the transition characteristic of the estimation result of the remaining life for the mill 10 whose remaining life is to be estimated in the selected remaining life transition characteristics in the database up to the past or present, the selected remaining life transition characteristic The prediction may be made based on the transition characteristics. For example, in FIG. 12, the transition characteristic of the estimation result of the remaining life with respect to the mill 10 for which the remaining life is estimated is the ratio of the difference between the characteristic A side and the characteristic B side between the characteristic A and the characteristic B.
  • the future remaining life transition of the mill 10 whose remaining life is estimated may be predicted based on the characteristic A and the characteristic B.
  • an intermediate line between the characteristic A and the characteristic B is generated by a proportional ratio of the difference between the characteristic A side and the characteristic B side, and the remaining life transition is predicted.
  • Processing by the prediction unit 64 may be processed by a preset algorithm or appropriately processed using AI. May be.
  • the remaining life estimation method, and the remaining life estimation program a database in which the operating state and the remaining life transition characteristics are associated with each other. Based on the above, it is possible to predict the future transition of the remaining life from the transition of the remaining life estimated by the estimation unit 63. It is possible to more accurately predict the transition of the remaining life in the future, and it is possible to carry out maintenance (replacement, etc.) of the journal bearing 59 at a more appropriate timing. That is, since the journal bearing 59 can be used for a longer period of time, the maintenance frequency of the mill 10 can be reduced. Therefore, the maintenance cost can be reduced. The operating rate of the mill 10 and the power plant 1 can be improved.
  • the control unit 60 in the present embodiment includes a planning unit 65.
  • the planning unit 65 makes a maintenance plan based on the estimated remaining life. Specifically, from the remaining life estimated by the estimation unit 63 and the remaining life estimated by the prediction unit 64, it is determined at what time in the future the life will be completely consumed, and the maintenance plan is performed by the planning unit 65. I do. Since the remaining life can be estimated more accurately as described above, it is possible to make a plan with an appropriate margin before the life is completely consumed.
  • the planning unit 65 performs a maintenance plan before a predetermined period, for example, with respect to the estimated life arrival time.
  • the predetermined period is set based on a period required for performing maintenance in a safe and efficient process, such as a period required for arranging and replacing the journal bearing 59.
  • the maintenance plan includes, for example, a maintenance time, an operation plan for adjusting the maintenance time, and at least one of load sharing adjustments in a plurality of mills 10.
  • the maintenance time is the time (recommended time) for replacing the journal bearing 59, which is set based on the estimated remaining life.
  • the maintenance time is set, for example, by adding a predetermined margin to the estimated life arrival time.
  • the operation plan for adjusting the maintenance time is the operation plan for the mill 10, and is for adjusting the maintenance time. For example, if the maintenance period has already been set and is later than the estimated lifespan, an operating plan is planned to extend the lifespan. Specifically, the type of solid fuel is changed, the degree of fineness of pulverization into solid fuel is relaxed, and the like. By making the operating condition appropriate, it is possible to extend the life in a safer and more efficient process and perform maintenance at an appropriate time. If the preset maintenance time is earlier than the estimated lifespan, plan an operation plan that increases the load so that the remaining lifespan does not increase, so that the remaining lifespan can be used effectively. May be.
  • the load sharing adjustment in the plurality of mills 10 is to appropriately adjust the load sharing among the mills 10 provided in the plurality of units.
  • the load sharing of each mill 10 is adjusted in order to match the maintenance time of the mills 10 in a plurality of units or to set the time stepwise (for example, the maintenance interval is set to be equal in the plurality of mills 10).
  • the load of the mill 10 is reduced and the load of the other mill 10 is increased. It is possible to adjust the life end points of the plurality of mills 10 so as to match the burden.
  • FIG. 14 is an example of a system related to a maintenance plan. As shown in FIG. 14, on the user side, the remaining life estimation information of the mill 10 is aggregated in the information aggregation system 101, and the server 102 on the device manufacturer side acquires the information aggregated in the aggregation system and plans the system 103. Make a plan and make a proposal to the user.
  • FIG. 14 illustrates a case where the planning unit 65 is provided as the planning system 103 on the device maker side, it may be provided on the solid fuel crushing device side of the user.
  • the remaining life estimation method, and the remaining life estimation program maintenance is performed by performing a maintenance plan based on the estimated remaining life. You can make a plan with plenty of time to set. Therefore, the operating rates of the mill 10 and the power plant 1 can be improved.
  • the remaining life estimation system and the solid fuel crusher, the remaining life estimation method, and the remaining life estimation program described in each of the above-described embodiments are grasped as follows, for example.
  • the remaining life estimation system according to the present disclosure is a remaining life estimation system for the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13).
  • a unit (63) for estimating the remaining life of the journal bearing (59) is provided.
  • the table (12) is, for example, a rotary table 12.
  • the remaining life estimation system According to the remaining life estimation system according to the present disclosure, information on the load applied to the roller (13) and information on the inclination angle of the roller (13) with respect to the table (12) are acquired as measured values of the journal bearing (59). Estimate the remaining life. Therefore, it is possible to respond to fluctuations in the operating state of the mill (10) provided with the rollers (13) in consideration of the influence on the estimation of the remaining life, so that the accuracy of estimating the remaining life can be improved. ..
  • maintenance (replacement, etc.) of the journal bearing (59) can be performed at a more appropriate timing. That is, since the journal bearing (59) can be used for a longer period of time, the maintenance frequency of the mill (10) can be reduced. Therefore, the maintenance cost can be reduced.
  • the operating rates of the mill (10) and the power plant (1) can be improved.
  • the remaining life estimation system is a remaining life estimation system for the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13).
  • the acquisition unit (62) and the acquisition unit (62) which acquire the measured value of the information related to the information and the measured value of the information related to the lift amount (X) which is the distance of the roller (13) to the table (12).
  • An estimation unit (63) for estimating the remaining life of the journal bearing (59) based on the acquired information is provided.
  • the remaining life estimation system According to the remaining life estimation system according to the present disclosure, information on the load applied to the roller (13) and information on the lift amount (X) of the roller (13) with respect to the table (12) are acquired as measured values, and the journal bearing ( Estimate the remaining life of 59). Therefore, it is possible to respond to fluctuations in the operating state of the mill (10) provided with the rollers (13) in consideration of the influence on the estimation of the remaining life, so that the accuracy of estimating the remaining life can be improved. .. According to the lift amount (X) of the roller (13) with respect to the table (12), the direction of the load applied to the journal bearing (59) can be estimated. Therefore, the lift amount (X) of the roller (13) is used to estimate the journal bearing (X). The remaining life of 59) can be estimated.
  • maintenance (replacement, etc.) of the journal bearing (59) can be performed at a more appropriate timing. That is, since the journal bearing (59) can be used for a longer period of time, the maintenance frequency of the mill (10) can be reduced. Therefore, the maintenance cost can be reduced. The operating rates of the mill (10) and the power plant (1) can be improved.
  • the information regarding the load applied to the roller (13) may be the pressing force for pressing the roller (13) against the table (12).
  • the journal bearing (59) is efficiently applied by using the pressing force for pressing the roller (13) against the table (12) as information regarding the load applied to the roller (13).
  • the load can be estimated and the remaining life can be estimated.
  • the estimation unit (63) calculates a radial load (Lr) and a thrust load (Ls) applied to the journal bearing (59), and the radial load (Lr). And the thrust load (Ls) may be used to estimate the remaining life of the journal bearing (59).
  • the remaining life of the journal bearing (59) can be efficiently estimated by the radial load (Lr) and the thrust load (Ls) applied to the journal bearing (59). ..
  • the acquisition unit (62) may acquire an actually measured value of information regarding the rotation speed of the journal bearing (59).
  • the measured value of the information on the rotation speed of the journal bearing (59) is acquired, and the rotation speed of the journal bearing (59) is added to the remaining life estimation of the journal bearing (59). By doing so, it is possible to take measures in consideration of the case where the rotation speed decreases or stops, so that the remaining life can be estimated more accurately.
  • the acquisition unit (62) may acquire an actually measured value of information regarding the state of the lubricant of the journal bearing (59).
  • the lubrication of the journal bearing (59) can be used to estimate the remaining life of the journal bearing (59) by acquiring the measured value of the information regarding the state of the lubricant of the journal bearing (59).
  • the state of the agent can be taken into consideration, and the remaining life can be estimated more accurately.
  • the state of the lubricant is, for example, the degree of contamination or the state of deterioration of the lubricant.
  • the remaining life estimation system is estimated by the estimation unit (63) based on a database in which the operating state of the mill (10) and the remaining life transition characteristics corresponding to the operating state are accumulated in advance.
  • a prediction unit (64) for predicting a future transition of the remaining life from the transition of the remaining life of the journal bearing (59) may be provided.
  • the future remaining life transition is based on the remaining life transition characteristic estimated by the estimation unit (63) based on the database in which the operating state and the remaining life transition characteristic are associated with each other. Can be predicted. It is possible to predict the transition of the remaining life in the future more accurately, and to carry out maintenance (replacement, etc.) of the journal bearing (59) at a more appropriate timing. That is, since the journal bearing (59) can be used for a longer period of time, the maintenance frequency of the mill (10) can be reduced. Therefore, the maintenance cost can be reduced. The operating rates of the mill (10) and the power plant (1) can be improved.
  • the operating state includes the type of solid fuel, the amount of solid fuel supplied, the information on the load, the rotation speed of the classifier provided in the mill (10), and the mill ( It may include at least one of the differential pressure between the gas flowing into the 10) and the gas discharged from the mill (10).
  • the remaining life estimation system information on the type of solid fuel, the amount of solid fuel supplied, the load, the rotation speed of the classifier provided in the mill (10), and the inflow into the mill (10).
  • the differential pressure between the gas and the gas discharged from the mill (10) is a factor that affects the remaining life. Therefore, as the operating state, the type of solid fuel, the amount of solid fuel supplied, the information on the load, the rotation speed of the classifier provided in the mill (10), and the gas and the mill (10) flowing into the mill (10). By using at least one of the differential pressures with the gas discharged from), it is possible to effectively predict the transition of the remaining life in the future.
  • the remaining life estimation system may include a planning unit (65) that performs maintenance planning based on the estimated remaining life of the journal bearing (59).
  • the remaining life estimation system by performing a maintenance plan based on the estimated remaining life, it is possible to make a plan with a margin at the time when maintenance is set. Therefore, the operating rate can be improved.
  • the maintenance plan for example, maintenance time, future operation plan for adjusting maintenance time (for example, change or proposal of solid fuel type, etc.), load sharing adjustment among multiple mills (10), etc. are performed. be able to.
  • the solid fuel crushing apparatus (100) rotatably supports a roller (13) for crushing solid fuel between a table (12) and the table (12), and the roller (13). It includes a journal bearing (59) and the above-mentioned remaining life estimation system.
  • the remaining life estimation method is a method for estimating the remaining life of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition step of acquiring the measured value of the information regarding the above and the measured value of the information regarding the inclination angle of the roller (13) with respect to the table (12) and the information acquired in the acquisition step, the journal bearing (59). ) Has an estimation step for estimating the remaining life.
  • the remaining life estimation method is a method for estimating the remaining life of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition step of acquiring the measured value of the information regarding the above and the measured value of the information regarding the lift amount (X) which is the distance of the roller (13) to the table (12) and the information acquired in the acquisition step. It has an estimation step of estimating the remaining life of the journal bearing (59).
  • the remaining life estimation program according to the present disclosure is a remaining life estimation program of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition process for acquiring the measured value of the information regarding the above and the measured value of the information regarding the inclination angle of the roller (13) with respect to the table (12) and the information acquired in the acquisition process, the journal bearing (59). ) Is made to execute the estimation process for estimating the remaining life.
  • the remaining life estimation program is a remaining life estimation program of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition process for acquiring the measured value of the information regarding the information and the measured value of the information regarding the lift amount (X) which is the distance of the roller (13) to the table (12) and the information acquired in the acquisition process. , The computer is made to execute the estimation process for estimating the remaining life of the journal bearing (59).

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

The purpose of the present invention to provide a remaining life estimation system capable of more accurately estimating remaining life, a solid fuel crushing device, a remaining life estimation method, and a remaining life estimation program. This system estimates the remaining life of a journal bearing of a roller (13) that grinds solid fuel between the roller and a rotating table (12), wherein the system comprises: an acquisition unit that acquires a measured value of a hydraulic load as information pertaining to a load applied to the roller (13), and a measured value of a lift amount of the roller (13) as information pertaining to the angle of inclination of the roller (13) relative to the rotating table (12); and an estimation unit that estimates the remaining life of the journal bearing on the basis of the information acquired in the acquisition unit.

Description

余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムRemaining life estimation system and solid fuel crusher, remaining life estimation method, and remaining life estimation program
 本開示は、余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムに関するものである。 The present disclosure relates to a remaining life estimation system and a solid fuel crusher, a remaining life estimation method, and a remaining life estimation program.
 従来、石炭やバイオマス燃料等の固体燃料(炭素含有固体燃料)は、粉砕機(ミル)で所定粒径範囲内の微粉状に粉砕して、燃焼装置へ供給される。ミルは、回転テーブルへ投入された石炭やバイオマス燃料等の固体燃料を、回転テーブルとローラの間で噛み砕くことで粉砕する。そして、回転テーブルの外周から供給される搬送用ガスによって、粉砕されて微粉状となった燃料を分級機で所定粒径範囲のものを選別し、ボイラへ搬送して燃焼装置で燃焼させている。火力発電プラントでは、ボイラで燃焼して生成された燃焼ガスとの熱交換により蒸気を発生させ、該蒸気により蒸気タービンを回転駆動して、蒸気タービンに接続した発電機を回転駆動することで発電が行われる。 Conventionally, solid fuel (carbon-containing solid fuel) such as coal and biomass fuel is crushed into fine powder within a predetermined particle size range by a crusher (mill) and supplied to a combustion device. The mill crushes solid fuel such as coal and biomass fuel charged into the rotary table by chewing between the rotary table and rollers. Then, the fuel that has been crushed into fine powder by the transport gas supplied from the outer circumference of the rotary table is sorted by a classifier in a predetermined particle size range, transported to a boiler, and burned by a combustion device. .. In a thermal power plant, steam is generated by heat exchange with the combustion gas generated by burning in a boiler, the steam turbine is rotationally driven by the steam, and the generator connected to the steam turbine is rotationally driven to generate electricity. Is done.
 固体燃料の粉砕時には、ローラには荷重がかかるため、ローラのジャーナル軸受に対しても荷重がかかり、耐久できる寿命が低下する。このため、ローラのジャーナル軸受の余寿命を把握して適切な時期にメンテナンスを行う必要がある。 When crushing solid fuel, a load is applied to the rollers, so a load is also applied to the journal bearings of the rollers, which shortens the durable life. Therefore, it is necessary to grasp the remaining life of the journal bearing of the roller and perform maintenance at an appropriate time.
 特許文献1では、油圧荷重を計測してローラ荷重変動を算出し、ローラ荷重変動により算出した疲労損傷度に基づいて交換時期を予測することが開示されている。 Patent Document 1 discloses that the hydraulic load is measured, the roller load fluctuation is calculated, and the replacement time is predicted based on the fatigue damage degree calculated by the roller load fluctuation.
特開2000-246126号公報Japanese Unexamined Patent Publication No. 2000-246126
 しかしながら、従来の余寿命推定方法では、ローラのジャーナル軸受へ付加される最大荷重(例えば最大給炭量)にあわせた設計値を固定値として用い、余寿命を推定している。このため、発電プラントにおける負荷変動に対応してミルの運転負荷変動が生じているものの、ジャーナル軸受荷重の変動は推定した余寿命に反映されていなかった。最大荷重にあわせた設計値を用いて推定した余寿命から予測される交換時期に加えて、実際には余裕期間を設けた交換時期を選定する場合が多いため、本来必要とされているメンテナンス頻度に比べてメンテナンス頻度が増加する恐れがある。 However, in the conventional remaining life estimation method, the remaining life is estimated by using a design value according to the maximum load (for example, the maximum coal supply amount) applied to the journal bearing of the roller as a fixed value. Therefore, although the operating load of the mill fluctuates in response to the load fluctuation in the power plant, the fluctuation of the journal bearing load is not reflected in the estimated remaining life. In addition to the replacement time predicted from the remaining life estimated using the design value according to the maximum load, it is often the case that a replacement time with a margin period is actually selected, so the maintenance frequency that is originally required. There is a risk that the maintenance frequency will increase compared to.
 特許文献1では、油圧荷重を計測することが開示されているものの、油圧荷重の計測のみではジャーナル軸受に対する半径方向と軸方向の荷重の分配を正確に把握することができず、余寿命推定時に荷重値の変動を効果的に反映できない場合がある。 Although Patent Document 1 discloses that a hydraulic load is measured, it is not possible to accurately grasp the distribution of the load in the radial direction and the axial direction with respect to the journal bearing only by measuring the hydraulic load, and when estimating the remaining life. It may not be possible to effectively reflect fluctuations in the load value.
 本開示は、このような事情に鑑みてなされたものであって、より精度よくローラのジャーナル軸受の余寿命の推定を行うことができる余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and is a remaining life estimation system and a solid fuel crusher capable of estimating the remaining life of roller journal bearings more accurately, and a remaining life estimation method. , As well as to provide a remaining life estimation program.
 本開示の第1態様は、テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定システムであって、前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの傾斜角に関する情報の計測値とを取得する取得部と、前記取得部において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定部と、を備える余寿命推定システムである。 The first aspect of the present disclosure is a system for estimating the remaining life of a journal bearing of a roller that crushes solid fuel with and from a table, in which a measured value of information regarding a load applied to the roller and an inclination of the roller with respect to the table. It is a remaining life estimation system including an acquisition unit that acquires a measured value of information about an angle and an estimation unit that estimates the remaining life of the journal bearing based on the information acquired by the acquisition unit.
 本開示の第2態様は、テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定方法であって、前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの傾斜角に関する情報の計測値とを取得する取得工程と、前記取得工程において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定工程と、を有する余寿命推定方法である。 A second aspect of the present disclosure is a method for estimating the remaining life of a journal bearing of a roller that crushes solid fuel with and from a table, in which a measured value of information regarding a load applied to the roller and an inclination of the roller with respect to the table are used. This is a remaining life estimation method including an acquisition step of acquiring a measured value of information about an angle and an estimation step of estimating the remaining life of the journal bearing based on the information acquired in the acquisition step.
 本開示の第3態様は、テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定プログラムであって、前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの距離であるリフト量に関する情報の計測値とを取得する取得処理と、前記取得処理において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定処理と、をコンピュータに実行させるための余寿命推定プログラムである。 A third aspect of the present disclosure is a program for estimating the remaining life of a journal bearing of a roller that crushes solid fuel with and from a table, in which a measured value of information regarding a load applied to the roller and a distance of the roller to the table are used. The remaining life for causing the computer to execute the acquisition process for acquiring the measured value of the information regarding the lift amount, and the estimation process for estimating the remaining life of the journal bearing based on the information acquired in the acquisition process. It is an estimation program.
 本開示によれば、より精度よくローラのジャーナル軸受の余寿命を推定することができるという効果を奏する。 According to the present disclosure, the effect is that the remaining life of the journal bearing of the roller can be estimated more accurately.
本開示の第1実施形態に係る固体燃料粉砕装置およびボイラを示す構成図である。It is a block diagram which shows the solid fuel crushing apparatus and the boiler which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係るローラ周りを示した部分拡大縦断面図である。It is a partially enlarged vertical sectional view which showed the circumference of the roller which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る制御部のハードウェア構成図である。It is a hardware block diagram of the control part which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る制御部が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the control part which concerns on 1st Embodiment of this disclosure has. 本開示の第1実施形態に係るローラの荷重状態を示す部分拡大縦断面図である。It is a partially enlarged vertical sectional view which shows the load state of the roller which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係るローラ傾斜角を示す部分拡大縦断面図である。It is a partially enlarged vertical sectional view which shows the roller inclination angle which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係るローラ傾斜角を示す部分拡大縦断面図である。It is a partially enlarged vertical sectional view which shows the roller inclination angle which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係るギャップセンサの構成例を示す図である。It is a figure which shows the structural example of the gap sensor which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る余寿命推定処理のフローチャートを示した図である。It is a figure which showed the flowchart of the remaining life estimation process which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る余寿命の推定結果を示す図である。It is a figure which shows the estimation result of the remaining life which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る制御部が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the control part which concerns on 2nd Embodiment of this disclosure has. 本開示の第2実施形態に係る余寿命の予測結果を示す図である。It is a figure which shows the prediction result of the remaining life which concerns on 2nd Embodiment of this disclosure. 本開示の第3実施形態に係る制御部が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the control part which concerns on 3rd Embodiment of this disclosure has. 本開示の第3実施形態に係るメンテナンス計画に係るシステムの例を示す図である。It is a figure which shows the example of the system which concerns on the maintenance plan which concerns on 3rd Embodiment of this disclosure.
〔第1実施形態〕
 以下に、本開示に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムの第1実施形態について、図面を参照して説明する。本実施形態では、余寿命システムが発電プラント1の固体燃料粉砕装置100に適用される場合について説明する。
[First Embodiment]
Hereinafter, the remaining life estimation system and the solid fuel crusher according to the present disclosure, the remaining life estimation method, and the first embodiment of the remaining life estimation program will be described with reference to the drawings. In this embodiment, the case where the remaining life system is applied to the solid fuel crusher 100 of the power plant 1 will be described.
 本実施形態に係る発電プラント1は、図1に示すように、固体燃料粉砕装置100とボイラ200とを備えている。 As shown in FIG. 1, the power plant 1 according to the present embodiment includes a solid fuel crusher 100 and a boiler 200.
 本実施形態の固体燃料粉砕装置100は、一例として石炭やバイオマス燃料等の固体燃料(炭素含有固体燃料)を粉砕し、微粉燃料を生成してボイラ200のバーナ部(燃焼装置)220へ供給する装置である。図1に示す固体燃料粉砕装置100とボイラ200とを含む発電プラント1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ部220のそれぞれに対応する複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。 The solid fuel crusher 100 of the present embodiment crushes a solid fuel (carbon-containing solid fuel) such as coal or biomass fuel as an example, generates fine pulverized fuel, and supplies it to the burner portion (combustion device) 220 of the boiler 200. It is a device. The power plant 1 including the solid fuel crushing device 100 and the boiler 200 shown in FIG. 1 includes one solid fuel crushing device 100, and corresponds to each of the plurality of burner portions 220 of the one boiler 200. The system may be provided with a plurality of solid fuel crushing devices 100.
 本実施形態の固体燃料粉砕装置100は、図1に示すように、ミル(粉砕部)10と、給炭機(燃料供給機)20と、送風部(搬送用ガス供給部)30と、状態検出部(状態検出装置)40と、制御部(制御装置)60とを備えている。
 本実施形態では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。同様に“下”とは鉛直下側の部分を示している。
As shown in FIG. 1, the solid fuel crusher 100 of the present embodiment includes a mill (crushing unit) 10, a coal feeder (fuel supply unit) 20, a blower unit (transport gas supply unit) 30, and a state. It includes a detection unit (state detection device) 40 and a control unit (control device) 60.
In the present embodiment, "upper" indicates the direction of the vertically upper side, and "upper" such as the upper part and the upper surface indicates the vertically upper part. Similarly, "bottom" refers to the vertically lower part.
 ボイラ200に供給する石炭やバイオマス燃料等の固体燃料を微粉状の固体燃料である微粉燃料へと粉砕するミル10は、石炭のみを粉砕する形式であっても良いし、バイオマス燃料のみを粉砕する形式であっても良いし、石炭とともにバイオマス燃料を粉砕する形式であってもよく、固体燃料の種類は限定されない。ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 The mill 10 for crushing solid fuel such as coal or biomass fuel supplied to the boiler 200 into pulverized fuel which is a pulverized solid fuel may be in the form of crushing only coal or crushing only biomass fuel. It may be in the form of crushing biomass fuel together with coal, and the type of solid fuel is not limited. Here, the biomass fuel is a renewable organic resource derived from living organisms, for example, thinned wood, waste wood, drifting wood, grass, waste, sludge, tires, and recycled fuel (pellets and pellets) made from these. Chips), etc., and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon-neutral, which does not emit carbon dioxide, which is a global warming gas, and its use is being studied in various ways.
 ミル10は、ハウジング11と、回転テーブル(テーブル)12と、ローラ(粉砕ローラ)13と、駆動部14と、回転式分級機16と、燃料供給部17と、回転式分級機16を回転駆動させるモータ18とを備えている。
 ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、回転テーブル12とローラ13と回転式分級機16と、燃料供給部17とを収容する筐体である。
ハウジング11の天井部42の中央部には、燃料供給部17が取り付けられている。この燃料供給部17は、バンカ21から導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。
The mill 10 rotationally drives the housing 11, the rotary table (table) 12, the roller (crushing roller) 13, the drive unit 14, the rotary classifier 16, the fuel supply unit 17, and the rotary classifier 16. It is provided with a motor 18 for making the motor 18.
The housing 11 is formed in a tubular shape extending in the vertical direction, and is a housing that houses a rotary table 12, a roller 13, a rotary classifier 16, and a fuel supply unit 17.
A fuel supply unit 17 is attached to the central portion of the ceiling portion 42 of the housing 11. The fuel supply unit 17 supplies the solid fuel guided from the bunker 21 into the housing 11, is arranged along the vertical direction at the center position of the housing 11, and the lower end portion extends to the inside of the housing 11. ing.
 ハウジング11の底面部41付近には駆動部14が設置され、この駆動部14から伝達される駆動力により回転する回転テーブル12が回転自在に配置されている。
 回転テーブル12は、平面視円形の部材であり、燃料供給部17の下端部が対向するように配置されている。回転テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。燃料供給部17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の回転テーブル12に向けて供給し、回転テーブル12は供給された固体燃料をローラ13との間で粉砕するもので、粉砕テーブルとも呼ばれる。
A drive unit 14 is installed near the bottom surface portion 41 of the housing 11, and a rotary table 12 that rotates by a driving force transmitted from the drive unit 14 is rotatably arranged.
The rotary table 12 is a member having a circular shape in a plan view, and is arranged so that the lower ends of the fuel supply unit 17 face each other. The upper surface of the rotary table 12 may have an inclined shape such that the central portion is low and the rotary table 12 is high toward the outside, and the outer peripheral portion may be bent upward. The fuel supply unit 17 supplies solid fuel (for example, coal or biomass fuel in this embodiment) from the upper side to the lower rotary table 12, and the rotary table 12 crushes the supplied solid fuel with the roller 13. It is also called a crushing table.
 固体燃料が燃料供給部17から回転テーブル12の中央へ向けて投入されると、回転テーブル12の回転による遠心力によって固体燃料は回転テーブル12の外周側へと導かれ、ローラ13との間に挟み込まれて粉砕される。粉砕された固体燃料は、搬送用ガス流路(以降は、一次空気流路と記載する)100aから導かれた搬送用ガス(以降は、一次空気と記載する)によって上方へと吹き上げられ、回転式分級機16へと導かれる。すなわち、回転テーブル12の外周には、一次空気流路100aから流入する一次空気をハウジング11内の回転テーブル12の上方の空間に流出させる吹出口(図示省略)が設けられている。吹出口にはベーン(図示省略)が設置されており、吹出口から吹き出した一次空気に旋回力を与える。ベーンにより旋回力が与えられた一次空気は、旋回する速度成分を有する気流となって、回転テーブル12上で粉砕された固体燃料をハウジング11内の上方の回転式分級機16へと導く。一次空気に混合した固体燃料の粉砕物のうち、所定粒径より大きいものは回転式分級機16により分級されて、または、回転式分級機16まで到達することなく、落下して回転テーブル12に戻されて、再び粉砕される。 When the solid fuel is charged from the fuel supply unit 17 toward the center of the rotary table 12, the solid fuel is guided to the outer peripheral side of the rotary table 12 by the centrifugal force due to the rotation of the rotary table 12, and is between the solid fuel and the roller 13. It is sandwiched and crushed. The crushed solid fuel is blown upward by the transport gas (hereinafter referred to as primary air) guided from the transport gas flow path (hereinafter referred to as primary air flow path) 100a, and rotates. It is led to the formula classifier 16. That is, an outlet (not shown) is provided on the outer periphery of the rotary table 12 to allow the primary air flowing in from the primary air flow path 100a to flow out into the space above the rotary table 12 in the housing 11. A vane (not shown) is installed at the air outlet to give a turning force to the primary air blown out from the air outlet. The primary air to which the swirling force is applied by the vane becomes an air flow having a swirling velocity component, and guides the solid fuel crushed on the rotary table 12 to the upper rotary classifier 16 in the housing 11. Of the crushed solid fuel mixed in the primary air, those having a particle size larger than the predetermined particle size are classified by the rotary classifier 16 or dropped onto the rotary table 12 without reaching the rotary classifier 16. It is returned and crushed again.
 ローラ13は、燃料供給部17から回転テーブル12に供給された固体燃料を粉砕する回転体である。ローラ13は、回転テーブル12の上面に押圧されて回転テーブル12と協働して固体燃料を粉砕する。図1では、ローラ13が代表して1つのみ示されているが、回転テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数のローラ13が対向して配置される。例えば、外周部上に120°の角度間隔を空けて、3つのローラ13が周方向に均等な間隔で配置される。この場合、3つのローラ13が回転テーブル12の上面と接する部分(押圧する部分)は、回転テーブル12の回転中心軸からの距離が等距離となる。 The roller 13 is a rotating body that crushes the solid fuel supplied from the fuel supply unit 17 to the rotary table 12. The roller 13 is pressed against the upper surface of the rotary table 12 and cooperates with the rotary table 12 to crush the solid fuel. In FIG. 1, only one roller 13 is represented as a representative, but a plurality of rollers 13 are arranged to face each other at regular intervals in the circumferential direction so as to press the upper surface of the rotary table 12. To. For example, the three rollers 13 are arranged at equal intervals in the circumferential direction with an angular interval of 120 ° on the outer peripheral portion. In this case, the portion where the three rollers 13 are in contact with the upper surface of the rotary table 12 (the portion to be pressed) is equidistant from the rotation center axis of the rotary table 12.
 ローラ13は、ジャーナルヘッド45によって、上下に揺動可能となっており、回転テーブル12の上面に対して接近離間自在に支持されている。ローラ13は、外周面が回転テーブル12の上面に接触した状態で、回転テーブル12が回転すると、回転テーブル12から回転力を受けて連れ回りするようになっている。燃料供給部17から固体燃料が供給されると、ローラ13と回転テーブル12との間で固体燃料が押圧されて粉砕されて、微粉燃料となる。 The roller 13 can be swung up and down by the journal head 45, and is supported so as to be close to and separated from the upper surface of the rotary table 12. When the rotary table 12 rotates with the outer peripheral surface in contact with the upper surface of the rotary table 12, the roller 13 receives a rotational force from the rotary table 12 and rotates around the roller 13. When the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the roller 13 and the rotary table 12 and crushed to become fine fuel.
 ジャーナルヘッド45の支持アーム47は、中間部が水平方向に沿った支持軸48によって、ハウジング11の側面部に支持軸48を中心としてローラ13を上下方向に揺動可能に支持されている。支持アーム47の鉛直上側にある上端部には、押圧装置49が設けられている。押圧装置49は、ハウジング11に固定され、ローラ13を回転テーブル12に押し付けるように、支持アーム47等を介してローラ13に荷重を付与する。 The support arm 47 of the journal head 45 is supported on the side surface of the housing 11 by a support shaft 48 whose intermediate portion is along the horizontal direction so that the roller 13 can swing in the vertical direction around the support shaft 48. A pressing device 49 is provided at the upper end portion on the vertically upper side of the support arm 47. The pressing device 49 is fixed to the housing 11 and applies a load to the roller 13 via the support arm 47 or the like so as to press the roller 13 against the rotary table 12.
 ローラ13の詳細な構成の例を、図2(ローラ13周りを示した部分拡大縦断面図)に示す。ローラ13は、ローラ支持部55によってハウジング11に支持されている。ローラ支持部55は、ローラ13を取り付ける支持軸52と、支持軸52を保持する本体56と、本体56の側部に固定して取り付けられた支持軸48と、本体56の上面に上方へ延在するように取り付けられた支持アーム47と、本体56の下面に下方に突出するように設けられた突起部57を備える。 An example of the detailed configuration of the roller 13 is shown in FIG. 2 (partially enlarged vertical sectional view showing the circumference of the roller 13). The roller 13 is supported by the housing 11 by the roller support portion 55. The roller support portion 55 extends upward onto the support shaft 52 to which the roller 13 is attached, the main body 56 that holds the support shaft 52, the support shaft 48 that is fixedly attached to the side portion of the main body 56, and the upper surface of the main body 56. A support arm 47 attached so as to exist, and a protrusion 57 provided on the lower surface of the main body 56 so as to project downward are provided.
 ローラ13の中心には、略円筒形状をした中空のハブ51が取り付けられている。ローラ13は、ハブ51を介して、支持軸52の先端部に取り付けられる。すなわち、ローラ13は支持軸52に対してジャーナル軸受(ローラジャーナル軸受)59を介して取り付けられることによって、ローラ13は、支持軸52を中心に周方向に回転可能となっている。後述するように、本実施形態では、ジャーナル軸受59の余寿命を推定する。支持軸48は、軸線が略水平方向であり、回転テーブル12の円形形状の接線方向に延在するように配置されている。ローラ支持部55は支持軸48を中心に回動可能となっており、支持軸48を中心に回動することにより、回転テーブル12に対するローラ13の距離(リフト量X)が変化する。 A hollow hub 51 having a substantially cylindrical shape is attached to the center of the roller 13. The roller 13 is attached to the tip of the support shaft 52 via the hub 51. That is, the roller 13 is attached to the support shaft 52 via the journal bearing (roller journal bearing) 59, so that the roller 13 can rotate around the support shaft 52 in the circumferential direction. As will be described later, in this embodiment, the remaining life of the journal bearing 59 is estimated. The support shaft 48 is arranged so that its axis is substantially horizontal and extends in the tangential direction of the circular shape of the rotary table 12. The roller support portion 55 is rotatable about the support shaft 48, and the distance (lift amount X) of the roller 13 to the rotary table 12 changes by rotating around the support shaft 48.
 ハウジング11には、支持アーム47の上端部を押圧する押圧装置49が取り付けられている。押圧装置49は、長手方向に移動可能な状態でハウジング11に取り付けられた中間ピストン53と、ハウジング11の外周に取り付けられ中間ピストン53の外側端部を押圧する油圧荷重部54を備える。中間ピストン53の内側端部は、支持アーム47の上端部外周側に接触している。押圧装置49は、油圧荷重部54によって油圧荷重L1(図5参照)を発生させ、中間ピストン53を長手方向に移動させることにより、ローラ支持部55を、支持軸48を中心に揺動させる。すなわち、ローラ13は、押圧装置49によって回転テーブル12に押圧されている。 A pressing device 49 for pressing the upper end of the support arm 47 is attached to the housing 11. The pressing device 49 includes an intermediate piston 53 attached to the housing 11 so as to be movable in the longitudinal direction, and a hydraulic load portion 54 attached to the outer periphery of the housing 11 to press the outer end portion of the intermediate piston 53. The inner end of the intermediate piston 53 is in contact with the outer peripheral side of the upper end of the support arm 47. The pressing device 49 generates a hydraulic load L1 (see FIG. 5) by the hydraulic load portion 54, and moves the intermediate piston 53 in the longitudinal direction to swing the roller support portion 55 around the support shaft 48. That is, the roller 13 is pressed against the rotary table 12 by the pressing device 49.
 突起部57は、ローラ支持部55が支持軸48を中心に一定の位置まで揺動した場合に、ストッパ58に突き当たる。ストッパ58は、ローラ13の回転テーブル12を押圧する方向への移動量を制限する制限部材として機能する。 The protrusion 57 abuts on the stopper 58 when the roller support 55 swings to a certain position around the support shaft 48. The stopper 58 functions as a limiting member that limits the amount of movement of the roller 13 in the direction of pressing the rotary table 12.
 駆動部14は、回転テーブル12に駆動力を伝達し、回転テーブル12を中心軸(回転軸)回りに回転させる装置である。駆動部14は、回転テーブル12を回転させる駆動力を発生する。 The drive unit 14 is a device that transmits a driving force to the rotary table 12 to rotate the rotary table 12 around a central axis (rotation axis). The drive unit 14 generates a driving force for rotating the rotary table 12.
 回転式分級機16は、ハウジング11の上部に設けられ中空状の略逆円錐形状の外形を有している。回転式分級機16は、その外周位置に上下方向に延在する複数のブレード16aを備えている。各ブレード16aは、回転式分級機16の中心軸線周りに所定の間隔(均等間隔)で設けられている。回転式分級機16は、ローラ13により粉砕された固体燃料を所定粒径(例えば、石炭では70~100μm)より大きいもの(以下、所定粒径を超える粉砕された固体燃料を「粗粉燃料」という。)と所定粒径以下のもの(以下、所定粒径以下の粉砕された固体燃料を「微粉燃料」という。)に分級する装置である。回転により分級する回転式分級機16は、ロータリセパレータとも呼ばれ、制御部60によって制御されるモータ18により回転駆動力を与えられ、ハウジング11の上下方向に延在する円筒軸(図示省略)を中心に燃料供給部17の周りを回転する。 The rotary classifier 16 is provided on the upper part of the housing 11 and has a hollow substantially inverted conical outer shape. The rotary classifier 16 includes a plurality of blades 16a extending in the vertical direction at its outer peripheral position. The blades 16a are provided at predetermined intervals (equal intervals) around the central axis of the rotary classifier 16. In the rotary classifier 16, the solid fuel crushed by the roller 13 is larger than a predetermined particle size (for example, 70 to 100 μm for coal) (hereinafter, the crushed solid fuel exceeding the predetermined particle size is referred to as “crude fuel”. It is a device that classifies fuels having a predetermined particle size or less (hereinafter, crushed solid fuel having a predetermined particle size or less is referred to as "fine powder fuel"). The rotary classifier 16 that classifies by rotation is also called a rotary separator, and is given a rotational driving force by a motor 18 controlled by a control unit 60 to provide a cylindrical shaft (not shown) extending in the vertical direction of the housing 11. It rotates around the fuel supply unit 17 in the center.
 回転式分級機16に到達した粉砕された固体燃料において、ブレード16aの回転により生じる遠心力と、一次空気の気流による向心力との相対的なバランスにより、大きな径の粗粉燃料は、ブレード16aによって叩き落とされ、回転テーブル12へと戻されて再び粉砕され、微粉燃料はハウジング11の天井部42にある出口19に導かれる。
 回転式分級機16によって分級された微粉燃料は、出口19から供給流路100bへ排出され、一次空気とともに後工程へと搬送される。供給流路100bへ流出した微粉燃料は、ボイラ200のバーナ部220へ供給される。
In the crushed solid fuel that has reached the rotary classifier 16, due to the relative balance between the centrifugal force generated by the rotation of the blade 16a and the centripetal force due to the airflow of the primary air, the coarse powder fuel having a large diameter is produced by the blade 16a. It is knocked down, returned to the turntable 12, crushed again, and the pulverized fuel is guided to an outlet 19 at the ceiling 42 of the housing 11.
The pulverized fuel classified by the rotary classifier 16 is discharged from the outlet 19 to the supply flow path 100b, and is conveyed to the subsequent process together with the primary air. The pulverized fuel that has flowed out to the supply flow path 100b is supplied to the burner portion 220 of the boiler 200.
 燃料供給部17は、ハウジング11の上端を貫通するように上下方向に沿って下端部がハウジング11内部まで延設されて取り付けられ、燃料供給部17の上部から投入される固体燃料を回転テーブル12の略中央領域に供給する。燃料供給部17は、給炭機20から固体燃料が供給される。 The fuel supply unit 17 is attached so that the lower end portion extends vertically to the inside of the housing 11 so as to penetrate the upper end of the housing 11, and the solid fuel input from the upper part of the fuel supply unit 17 is transferred to the rotary table 12. Supply to the approximately central region of. The fuel supply unit 17 is supplied with solid fuel from the coal feeder 20.
 給炭機20は、搬送部22と、モータ23とを備える。搬送部22は、モータ23から与えられる駆動力によってバンカ21の直下にあるダウンスパウト部24の下端部から排出される固体燃料を搬送し、ミル10の燃料供給部17に導かれる。
 通常、ミル10の内部には、粉砕した固体燃料である微粉燃料を搬送するための一次空気が供給されて、圧力が高くなっている。バンカ21の直下にある上下方向に延在する管であるダウンスパウト部24には内部に燃料が積層状態で保持されていて、ダウンスパウト部24内に積層された固体燃料層により、ミル10側の一次空気と微粉燃料が逆流入しないようなシール性を確保している。
 ミル10へ供給する固体燃料の供給量は、搬送部22のベルトコンベアのベルト速度で調整されてもよい。
The coal feeder 20 includes a transport unit 22 and a motor 23. The transport unit 22 transports the solid fuel discharged from the lower end portion of the down spout portion 24 directly under the bunker 21 by the driving force given from the motor 23, and is guided to the fuel supply unit 17 of the mill 10.
Normally, primary air for transporting pulverized fuel, which is a crushed solid fuel, is supplied to the inside of the mill 10, and the pressure is increased. Fuel is held in a laminated state inside the down spout portion 24, which is a pipe extending in the vertical direction directly under the bunker 21, and the solid fuel layer laminated in the down spout portion 24 causes the mill 10 side. The sealing property is ensured so that the primary air and fine fuel do not flow back.
The amount of solid fuel supplied to the mill 10 may be adjusted by the belt speed of the belt conveyor of the transport unit 22.
 一方、粉砕前のバイオマス燃料のチップやペレットは、石炭燃料(すなわち粉砕前の石炭の粒径は、例えば、粒径が2~50mm程度)に比べて、粒径が一定であり(ペレットのサイズは、例えば、直径6~8mm程度、長さは40mm以下程度)、かつ、軽量である。このため、バイオマス燃料がダウンスパウト部24内に貯留されている場合は、石炭燃料の場合に比べて、各バイオマス燃料間に形成される隙間が大きくなる。
 したがって、ダウンスパウト部24内のバイオマス燃料のチップやペレットの間には隙間があることから、ミル10内部から吹き上げる一次空気と微粉燃料が各バイオマス燃料間に形成される隙間を通過して、ミル10内部の圧力が低下する可能性がある。一次空気がバンカ21の貯留部へと吹き抜けると、バイオマス燃料の搬送性の悪化や粉塵発生、バンカ21及びダウンスパウト部24の着火や、また、ミル10内部の圧力が低下すると、微粉燃料の搬送量が低下するなど、ミル10の運転に種々の問題が生じる可能性がある。このため、給炭機20から燃料供給部17の途中にロータリバルブ(図示省略)を設けて、一次空気と微粉燃料の吹き上げによる逆流を抑制するようにしてもよい。
On the other hand, the biomass fuel chips and pellets before crushing have a constant particle size (the size of the pellets) as compared with coal fuel (that is, the particle size of coal before crushing is, for example, about 2 to 50 mm). Is, for example, about 6 to 8 mm in diameter and about 40 mm or less in length), and is lightweight. Therefore, when the biomass fuel is stored in the down spout portion 24, the gap formed between the biomass fuels becomes larger than that in the case of the coal fuel.
Therefore, since there is a gap between the biomass fuel chips and pellets in the down spout portion 24, the primary air blown up from the inside of the mill 10 and the fine powder fuel pass through the gap formed between the biomass fuels and the mill. 10 The internal pressure may drop. When the primary air blows into the storage part of the bunker 21, the transportability of the biomass fuel deteriorates and dust is generated, the bunker 21 and the down spout part 24 are ignited, and when the pressure inside the mill 10 drops, the pulverized fuel is transported. Various problems may occur in the operation of the mill 10, such as a decrease in the amount. Therefore, a rotary valve (not shown) may be provided in the middle of the fuel supply unit 17 from the coal feeder 20 to suppress the backflow due to the blow-up of the primary air and the pulverized fuel.
 送風部30は、ローラ13により粉砕された固体燃料を乾燥させるとともに回転式分級機16へ供給するための一次空気をハウジング11の内部へ送風する装置である。
 送風部30は、ハウジング11へ送風される一次空気を適切な温度に調整するために、本実施形態では、一次空気通風機(PAF:Primary Air Fan)31と、熱ガス流路30aと、冷ガス流路30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。
The blower unit 30 is a device that dries the solid fuel crushed by the rollers 13 and blows primary air into the housing 11 for supplying the rotary classifier 16.
In this embodiment, the blower unit 30 cools the primary air ventilator (PAF: Primary Air Fan) 31, the hot gas flow path 30a, and the cooling unit 30 in order to adjust the primary air blown to the housing 11 to an appropriate temperature. It includes a gas flow path 30b, a hot gas damper 30c, and a cold gas damper 30d.
 本実施形態では、熱ガス流路30aは、一次空気通風機31から送出された空気(外気)の一部を、例えば空気予熱器などの熱交換器(加熱器)34を通過して加熱せられた熱ガスとして供給する。熱ガス流路30aの下流側には熱ガスダンパ30c(第1送風部)が設けられている。熱ガスダンパ30cの開度は制御部60によって制御される。熱ガスダンパ30cの開度によって熱ガス流路30aから供給する熱ガスの流量が決定する。 In the present embodiment, the heat gas flow path 30a heats a part of the air (outside air) sent from the primary air ventilator 31 through a heat exchanger (heater) 34 such as an air preheater. It is supplied as heat gas. A hot gas damper 30c (first blower portion) is provided on the downstream side of the hot gas flow path 30a. The opening degree of the heat gas damper 30c is controlled by the control unit 60. The flow rate of the hot gas supplied from the hot gas flow path 30a is determined by the opening degree of the hot gas damper 30c.
 冷ガス流路30bは、一次空気通風機31から送出された空気の一部を常温の冷ガスとして供給する。冷ガス流路30bの下流側には冷ガスダンパ(第2送風部)30dが設けられている。冷ガスダンパ30dの開度は制御部60によって制御される。冷ガスダンパ30dの開度によって冷ガス流路30bから供給する冷ガスの流量が決定する。 The cold gas flow path 30b supplies a part of the air sent from the primary air ventilator 31 as cold gas at room temperature. A cold gas damper (second blower) 30d is provided on the downstream side of the cold gas flow path 30b. The opening degree of the cold gas damper 30d is controlled by the control unit 60. The flow rate of the cold gas supplied from the cold gas flow path 30b is determined by the opening degree of the cold gas damper 30d.
 一次空気の流量は、本実施形態では、熱ガス流路30aから供給する熱ガスの流量と冷ガス流路30bから供給する冷ガスの流量の合計の流量となり、一次空気の温度は、熱ガス流路30aから供給する熱ガスと冷ガス流路30bから供給する冷ガスの混合比率で決まり、制御部60によって制御される。
 熱ガス流路30aから供給する熱ガスに、図示しないガス再循環通風機を介してボイラ200から排出された燃焼ガスの一部を導き、混合気とすることで、一次空気流路100aから流入する一次空気の酸素濃度を調整してもよい。
In the present embodiment, the flow rate of the primary air is the total flow rate of the hot gas supplied from the hot gas flow path 30a and the flow rate of the cold gas supplied from the cold gas flow path 30b, and the temperature of the primary air is the hot gas. It is determined by the mixing ratio of the hot gas supplied from the flow path 30a and the cold gas supplied from the cold gas flow path 30b, and is controlled by the control unit 60.
A part of the combustion gas discharged from the boiler 200 is guided to the hot gas supplied from the hot gas flow path 30a through a gas recirculation ventilator (not shown) to form an air-fuel mixture, which flows in from the primary air flow path 100a. The oxygen concentration of the primary air may be adjusted.
 本実施形態では、ハウジング11の状態検出部40により、計測または検出したデータを制御部60に送信する。本実施形態の状態検出部40は、例えば、差圧計測手段であり、一次空気流路100aからミル10内部へ一次空気が流入する部分及びミル10内部から供給流路100bへ一次空気及び微粉燃料が排出する出口19との差圧をミル10内の差圧として計測する。例えば、回転式分級機16の分級性能により、ミル10内部を回転式分級機16付近と回転テーブル12付近の間で循環する粉砕された固体燃料の循環量の増減とこれに対するミル10内の差圧の上昇低減が変化する。すなわち、ミル10の内部に供給する固体燃料に対して、出口19から排出させる微粉燃料を調整して管理することができる。このため、微粉燃料の粒度がバーナ部220の燃焼性に影響しない範囲で、多くの微粉燃料をボイラ200に設けられたバーナ部220に供給することができる。
 本実施形態の状態検出部40は、例えば、温度計測手段であり、ローラ13により粉砕された固体燃料を回転式分級機16へ吹き上げるためにハウジング11の内部に供給する一次空気の温度と、ハウジング11の内部において出口19までの一次空気の温度を検出して、上限温度を超えないように送風部30を制御する。一次空気は、ハウジング11内において、粉砕物を乾燥しながら搬送することによって冷却されるので、ハウジング11の上部空間から出口19での温度は、例えば約60~80度程度となる。
In the present embodiment, the state detection unit 40 of the housing 11 transmits the measured or detected data to the control unit 60. The state detection unit 40 of the present embodiment is, for example, a differential pressure measuring means, and is a portion where the primary air flows from the primary air flow path 100a into the mill 10 and the primary air and fine powder fuel from the inside of the mill 10 into the supply flow path 100b. The differential pressure with the outlet 19 discharged from the mill 10 is measured as the differential pressure in the mill 10. For example, depending on the classification performance of the rotary classifier 16, the increase / decrease in the circulation amount of the crushed solid fuel that circulates inside the mill 10 between the vicinity of the rotary classifier 16 and the vicinity of the rotary table 12 and the difference in the mill 10 with respect to this. The increase and decrease of pressure changes. That is, it is possible to adjust and manage the pulverized fuel discharged from the outlet 19 with respect to the solid fuel supplied to the inside of the mill 10. Therefore, a large amount of pulverized fuel can be supplied to the burner portion 220 provided in the boiler 200 within a range in which the particle size of the pulverized fuel does not affect the combustibility of the burner portion 220.
The state detection unit 40 of the present embodiment is, for example, a temperature measuring means, and the temperature of the primary air supplied to the inside of the housing 11 for blowing the solid fuel crushed by the rollers 13 to the rotary classifier 16 and the housing. The temperature of the primary air up to the outlet 19 is detected inside the 11 and the blower portion 30 is controlled so as not to exceed the upper limit temperature. Since the primary air is cooled by transporting the pulverized material while drying it in the housing 11, the temperature from the upper space of the housing 11 to the outlet 19 is, for example, about 60 to 80 degrees.
 ボイラ200は、固体燃料粉砕装置100から供給される微粉燃料を用いて燃焼を行って蒸気を発生させる。このため、ボイラ200は、火炉210とバーナ部220とを備えている。 The boiler 200 burns using the fine fuel supplied from the solid fuel crusher 100 to generate steam. Therefore, the boiler 200 includes a fireplace 210 and a burner portion 220.
 バーナ部220は、供給流路100bから供給される微粉燃料を含む一次空気と、押込気通風機(FDF:Feed Draft Fan)32から送出される空気(外気)を熱交換器34で加熱して供給される二次空気とを用いて微粉燃料を燃焼させて火炎を形成する装置である。微粉燃料の燃焼は火炉210内で行われ、高温の燃焼ガスは、蒸発器,過熱器,エコノマイザなどの熱交換器(図示省略)を通過した後にボイラ200の外部に排出される。 The burner unit 220 heats the primary air containing the fine fuel supplied from the supply flow path 100b and the air (outside air) sent from the forced air ventilator (FDF: Feed Draft Fan) 32 with the heat exchanger 34. It is a device that forms a flame by burning fine fuel using the supplied secondary air. The pulverized fuel is burned in the furnace 210, and the high-temperature combustion gas is discharged to the outside of the boiler 200 after passing through a heat exchanger (not shown) such as an evaporator, a superheater, and an economizer.
 ボイラ200から排出された燃焼ガスは、環境装置(脱硝装置、電気集塵機などで図示省略)で所定の処理を行うとともに、例えば空気予熱器などの熱交換器34で一次空気通風機31から送出される空気と押込気通風機32から送出される空気との熱交換が行われ、誘引通風機(IDF:Induced Draft Fan)33を介して煙突(図示省略)へと導かれて外気へと放出される。熱交換器34において燃焼ガスにより加熱された一次空気通風機31から送出される空気は、前述した熱ガス流路30aに供給される。
 ボイラ200の各熱交換器への給水は、エコノマイザ(図示省略)において加熱された後に、蒸発器(図示省略)および過熱器(図示省略)によって更に加熱されて高温高圧の蒸気が生成され、発電部である蒸気タービン(図示省略)へと送られて蒸気タービンを回転駆動し、蒸気タービンに接続した発電機(図示省略)を回転駆動して発電が行われ、発電プラント1を構成する。
The combustion gas discharged from the boiler 200 is subjected to a predetermined treatment by an environmental device (not shown by a denitration device, an electrostatic precipitator, etc.), and is sent from the primary air ventilator 31 by a heat exchanger 34 such as an air preheater, for example. The heat is exchanged between the air and the air sent from the forced air blower 32, and is guided to the chimney (not shown) via the induced blower (IDF) 33 and discharged to the outside air. To. The air sent from the primary air ventilator 31 heated by the combustion gas in the heat exchanger 34 is supplied to the hot gas flow path 30a described above.
The water supply to each heat exchanger of the boiler 200 is heated by an economizer (not shown) and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature and high-pressure steam to generate electricity. It is sent to a steam turbine (not shown), which is a unit, to rotate drive the steam turbine, and a generator connected to the steam turbine (not shown) is driven to rotate to generate electricity, thereby forming a power plant 1.
 制御部60は、固体燃料粉砕装置100の各部を制御する装置である。制御部60は、例えば、駆動部14に駆動指示を伝達することによりミル10の運転に対する回転テーブル12の回転速度を制御してもよい。制御部60は、例えば回転式分級機16のモータ18へ駆動指示を伝達して回転速度を制御することで、分級性能を調整することにより、ミル10内の差圧を所定の範囲に適正化して微粉燃料の供給を安定化させることができる。制御部60は、例えば給炭機20のモータ23へ駆動指示を伝達することにより、搬送部22が固体燃料を搬送して燃料供給部17へ供給する固体燃料の供給量を調整することができる。制御部60は、開度指示を送風部30に伝達することにより、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御して一次空気の流量と温度を制御することができる。制御部60は、押圧装置49の油圧荷重部54に付加する油圧を、例えば、固体燃料の供給量や回転式分級機16の回転数に応じて制御することで、ローラ13が回転テーブル12に押圧される力を適正化し、安定した固体燃料の粉砕を可能とする。 The control unit 60 is a device that controls each part of the solid fuel crushing device 100. The control unit 60 may control the rotation speed of the rotary table 12 with respect to the operation of the mill 10 by transmitting a drive instruction to the drive unit 14, for example. The control unit 60 adjusts the classification performance by transmitting a drive instruction to the motor 18 of the rotary classifier 16 to control the rotation speed, thereby optimizing the differential pressure in the mill 10 within a predetermined range. It is possible to stabilize the supply of pulverized fuel. The control unit 60 can adjust the amount of solid fuel supplied by the transport unit 22 to the fuel supply unit 17 by transmitting a drive instruction to the motor 23 of the coal feeder 20, for example. .. The control unit 60 can control the opening degree of the hot gas damper 30c and the cold gas damper 30d to control the flow rate and temperature of the primary air by transmitting the opening degree instruction to the blower unit 30. The control unit 60 controls the oil pressure applied to the hydraulic load unit 54 of the pressing device 49 according to, for example, the supply amount of solid fuel and the rotation speed of the rotary classifier 16, so that the roller 13 can be moved to the rotary table 12. It optimizes the pressing force and enables stable crushing of solid fuel.
 制御部60は、ジャーナル軸受59における余寿命の推定を行う。すなわち、制御部60は、回転テーブル12との間で固体燃料を粉砕するローラ13のジャーナル軸受59の余寿命推定システムとしての機能を有している。余寿命推定システムとしての機能は、制御部60とは別の制御装置に設けることとしてもよい。 The control unit 60 estimates the remaining life of the journal bearing 59. That is, the control unit 60 has a function as a remaining life estimation system of the journal bearing 59 of the roller 13 that crushes the solid fuel between the rotary table 12 and the rotary table 12. The function as the remaining life estimation system may be provided in a control device different from the control unit 60.
 図3は、本実施形態に係る制御部60のハードウェア構成の一例を示した図である。
 図3に示すように、制御部60は、コンピュータシステム(計算機システム)であり、例えば、CPU110と、CPU110が実行するプログラム等を記憶するためのROM(Read Only Memory)120と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)130と、大容量記憶装置としてのハードディスクドライブ(HDD)140と、ネットワーク等に接続するための通信部150とを備えている。これら各部は、バス180を介して接続されている。
FIG. 3 is a diagram showing an example of the hardware configuration of the control unit 60 according to the present embodiment.
As shown in FIG. 3, the control unit 60 is a computer system (computer system), for example, a CPU 110, a ROM (Read Only Memory) 120 for storing a program or the like executed by the CPU 110, and when each program is executed. It is provided with a RAM (Random Access Memory) 130 that functions as a work area of the above, a hard disk drive (HDD) 140 as a large-capacity storage device, and a communication unit 150 for connecting to a network or the like. Each of these parts is connected via a bus 180.
 制御部60は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。 The control unit 60 may include an input unit including a keyboard, a mouse, and the like, a display unit including a liquid crystal display device for displaying data, and the like.
 CPU110が実行するプログラム等を記憶するための記憶媒体は、ROM120に限られない。例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。 The storage medium for storing the program or the like executed by the CPU 110 is not limited to the ROM 120. For example, it may be another auxiliary storage device such as a magnetic disk, a magneto-optical disk, or a semiconductor memory.
 後述の各種機能を実現するための一連の処理の過程は、プログラムの形式でHDD140等に記録されており、このプログラムをCPU110がRAM130等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。プログラムは、ROM120やその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。HDD140はソリッドステートディスク(SSD)等で置き換えられてもよい。 A series of processing processes for realizing various functions described later is recorded in the HDD 140 or the like in the form of a program, and the CPU 110 reads this program into the RAM 130 or the like and executes information processing / calculation processing. , Various functions described later are realized. The program may be installed in a ROM 120 or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or distributed via a wired or wireless communication means. May be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like. The HDD 140 may be replaced with a solid state disk (SSD) or the like.
 図4は、制御部60が備える余寿命推定に関する機能を示した機能ブロック図である。図4に示されるように、制御部60は、取得部62と、推定部63とを備えている。 FIG. 4 is a functional block diagram showing the function related to the remaining life estimation included in the control unit 60. As shown in FIG. 4, the control unit 60 includes an acquisition unit 62 and an estimation unit 63.
 取得部62は、ローラ13に掛かる荷重に関する情報の計測値と、回転テーブル12に対するローラ13の傾斜角に関する情報の計測値とを取得する。取得部62では、ジャーナル軸受59の余寿命推定において実際の運転状態を反映するために重要な、ローラ13にかかる荷重に関する情報の計測値と、回転テーブル12に対するローラ13の傾斜角に関する情報とを取得している。 The acquisition unit 62 acquires the measured value of the information regarding the load applied to the roller 13 and the measured value of the information regarding the inclination angle of the roller 13 with respect to the rotary table 12. In the acquisition unit 62, the measured value of the information on the load applied to the roller 13, which is important for reflecting the actual operating state in the estimation of the remaining life of the journal bearing 59, and the information on the inclination angle of the roller 13 with respect to the rotary table 12 are obtained. Have acquired.
 ローラ13に掛かる荷重に関する情報とは、図5に示すように、ローラ13における回転テーブル12から受ける荷重L2に関する情報である。回転テーブル12からの荷重L2とは、回転テーブル12の上面に供給されて粉砕される固体燃料に対してローラ13が押圧されることによって回転テーブル12から受ける力(荷重)である。すなわち、回転テーブル12とローラ13の接触面もしくはローラ13と回転テーブル12の隙間が最小と設定するときの近接した対面に垂直な方向にローラ13が受ける力である。回転テーブル12からの荷重L2は、回転テーブル12の回転軸と平行な軸AX1に沿って作用する(例えば、回転軸方向となる)。図5における回転テーブル12の形状は一例であり該形状に限定されない。 As shown in FIG. 5, the information regarding the load applied to the roller 13 is the information regarding the load L2 received from the rotary table 12 in the roller 13. The load L2 from the rotary table 12 is a force (load) received from the rotary table 12 when the roller 13 is pressed against the solid fuel supplied to the upper surface of the rotary table 12 and crushed. That is, it is the force that the roller 13 receives in the direction perpendicular to the adjacent facing surfaces when the contact surface between the rotary table 12 and the roller 13 or the gap between the roller 13 and the rotary table 12 is set to the minimum. The load L2 from the rotary table 12 acts along the axis AX1 parallel to the rotary axis of the rotary table 12 (for example, in the direction of the rotary axis). The shape of the rotary table 12 in FIG. 5 is an example and is not limited to the shape.
 本実施形態では、ローラ13に掛かる荷重に関する情報として、押圧装置49における付加荷重(ローラ13を粉砕する固体燃料を介して回転テーブル12に向けて押し付ける押圧力)、すなわち油圧荷重部54における油圧荷重L1を取得する場合について説明する。油圧荷重(付加荷重)L1については、回転テーブル12に対してローラ13を押圧制御する際に制御されるパラメータであり設置されたセンサによって実測値が計測され取得部62へ出力される。センサは例えばロードセルや感圧センサなどの圧力センサが使用できる。ローラ13に掛かる荷重に関する情報としては、ローラ13に掛かる荷重に関するパラメータであれば油圧荷重(付加荷重)L1に限定されず適用することができる。例えば、ローラ13に掛かる荷重やジャーナル軸受59に掛かる荷重を直接的にセンサによって計測し、取得することとしてもよい。 In the present embodiment, as information regarding the load applied to the roller 13, the additional load in the pressing device 49 (the pressing force that presses the roller 13 toward the rotary table 12 via the solid fuel that crushes the roller 13), that is, the hydraulic load in the hydraulic load unit 54. The case of acquiring L1 will be described. The hydraulic load (additional load) L1 is a parameter controlled when the roller 13 is pressed against the rotary table 12, and the measured value is measured by the installed sensor and output to the acquisition unit 62. As the sensor, a pressure sensor such as a load cell or a pressure sensor can be used. The information regarding the load applied to the roller 13 can be applied without being limited to the hydraulic load (additional load) L1 as long as it is a parameter related to the load applied to the roller 13. For example, the load applied to the roller 13 or the load applied to the journal bearing 59 may be directly measured and acquired by the sensor.
 回転テーブル12に対するローラ13の傾斜角に関する情報とは、図6(ローラ傾斜角を示す部分拡大縦断面図)に示すように、ローラ傾斜角θに関する情報である。ローラ傾斜角θとは、回転テーブル12に対するローラ13の傾きであり、回転テーブル12の回転軸方向の軸(または回転軸と平行な軸)AX1と、ローラ13の回転軸AX2に垂直な軸(垂直な面)AX3とがなす角である。 The information regarding the tilt angle of the roller 13 with respect to the rotary table 12 is information regarding the roller tilt angle θ as shown in FIG. 6 (partially enlarged vertical cross-sectional view showing the roller tilt angle). The roller tilt angle θ is the tilt of the roller 13 with respect to the rotary table 12, and the axis in the rotation axis direction of the rotary table 12 (or the axis parallel to the rotation axis) AX1 and the axis perpendicular to the rotation axis AX2 of the roller 13 ( (Vertical surface) This is the angle formed by AX3.
 本実施形態では、回転テーブル12に対するローラ13の傾斜角に関する情報として、ローラ13のリフト量Xを用いる。ローラ13のリフト量Xとは、回転テーブル12とローラ13との距離である。リフト量Xは回転テーブル12とローラ13との間に粉砕される固体燃料が存在することで生じる距離である。ローラ13は支持軸48を中心に回動するため、リフト量Xは、支持軸48に対してローラ13が上下に移動した場合における回転テーブル12とローラ13との距離となる。リフト量Xは、本実施形態では、例えば図8のようなギャップセンサによって取得される。リフト量Xはリニア移動センサ、静電容量距離センサやレーザ距離センサなどでもよい。図7では、支持軸48に対して計測バー71とギャップセンサ72が設けられている。計測バー71は、支持軸48の回転(ローラ13の回転)に伴って回転する。ギャップセンサ72は設置位置が固定されており、ギャップセンサ72と計測バー71との間の距離を計測する。図7及び図8において、ローラ13の中心軸(AX3)と支持軸48との距離Lとリフト量Xとの比と、ギャップセンサ72における計測バー71の長さlとギャップ値xとの比は等しくなる。このため、以下の式(1)によりギャップセンサ72よりリフト量Xを算出することができる。 In the present embodiment, the lift amount X of the roller 13 is used as the information regarding the inclination angle of the roller 13 with respect to the rotary table 12. The lift amount X of the roller 13 is the distance between the rotary table 12 and the roller 13. The lift amount X is a distance generated by the presence of solid fuel to be crushed between the rotary table 12 and the roller 13. Since the roller 13 rotates about the support shaft 48, the lift amount X is the distance between the rotary table 12 and the roller 13 when the roller 13 moves up and down with respect to the support shaft 48. In this embodiment, the lift amount X is acquired by a gap sensor as shown in FIG. 8, for example. The lift amount X may be a linear movement sensor, a capacitance distance sensor, a laser distance sensor, or the like. In FIG. 7, a measurement bar 71 and a gap sensor 72 are provided with respect to the support shaft 48. The measurement bar 71 rotates with the rotation of the support shaft 48 (rotation of the roller 13). The installation position of the gap sensor 72 is fixed, and the distance between the gap sensor 72 and the measurement bar 71 is measured. In FIGS. 7 and 8, the ratio of the distance L between the central axis (AX3) of the roller 13 and the support shaft 48 and the lift amount X, and the ratio between the length l of the measurement bar 71 in the gap sensor 72 and the gap value x. Are equal. Therefore, the lift amount X can be calculated from the gap sensor 72 by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、L及びlは設計値であり、xはギャップセンサより取得できるため、リフト量Xが算出可能となる。リフト量Xの計測は、押圧装置49の動作量、例えば中間ピストン53の移動量から算出してもよいし、直接的にリフト量Xが計測可能であればリフト量Xを計測することとしてもよい。 In the formula (1), L and l are design values, and x can be obtained from the gap sensor, so that the lift amount X can be calculated. The lift amount X may be calculated from the operating amount of the pressing device 49, for example, the moving amount of the intermediate piston 53, or if the lift amount X can be directly measured, the lift amount X may be measured. Good.
 取得部62では、リフト量Xを取得することとしてもよいし、ギャップセンサの出力であるギャップ値xを取得することとしてもよい。突起部57及びストッパ58によりローラ13の移動量に制限が設けられ、ローラ13と回転テーブル12との間に隙間が設けられている場合は、ギャップ値xの0(零)点をローラ13と回転テーブル12の隙間が最小とする点として置いてもよく、同様にギャップセンサ72のギャップ値xの0(零)点をギャップセンサ72と計測バー71との間の距離が最小とする点として置いてもよい。 The acquisition unit 62 may acquire the lift amount X, or may acquire the gap value x, which is the output of the gap sensor. When the amount of movement of the roller 13 is limited by the protrusion 57 and the stopper 58 and a gap is provided between the roller 13 and the rotary table 12, the 0 (zero) point of the gap value x is set as the roller 13. It may be set as the point where the gap of the rotary table 12 is minimized, and similarly, the 0 (zero) point of the gap value x of the gap sensor 72 is set as the point where the distance between the gap sensor 72 and the measurement bar 71 is minimized. You may put it.
 本実施形態では、回転テーブル12に対するローラ13の傾斜角に関する情報としてローラ13のリフト量Xを用いることとしているが、ローラ傾斜角θに関する情報であればローラ13のリフト量Xに限定されず用いることが可能である。ローラ傾斜角θを直接的にセンサ等で計測して取得することとしてもよい。後述するように、本実施形態では、ローラ13のリフト量Xからローラ傾斜角θを算出し、スラスト荷重Lsとラジアル荷重Lrとを算出して余寿命推定に使用しているが、ローラ13のリフト量Xを取得した場合にはローラ傾斜角θの算出を介さずに、スラスト荷重Ls及びラジアル荷重Lrの算出や余寿命推定を行うこととしてもよい。この場合には、取得部62は、ローラ13に掛かる荷重に関する情報の計測値と、回転テーブル12に対するローラ13のリフト量Xに関する情報の計測値とを取得する。回転テーブル12に対するローラ13のリフト量Xに関する情報は、リフト量Xに関する情報であればリフト量Xに限定されず用いることが可能である。 In the present embodiment, the lift amount X of the roller 13 is used as the information regarding the tilt angle of the roller 13 with respect to the rotary table 12, but the information regarding the roller tilt angle θ is not limited to the lift amount X of the roller 13. It is possible. The roller inclination angle θ may be directly measured and acquired by a sensor or the like. As will be described later, in the present embodiment, the roller inclination angle θ is calculated from the lift amount X of the roller 13, the thrust load Ls and the radial load Lr are calculated and used for estimating the remaining life. When the lift amount X is acquired, the thrust load Ls and the radial load Lr may be calculated and the remaining life may be estimated without the calculation of the roller inclination angle θ. In this case, the acquisition unit 62 acquires the measured value of the information regarding the load applied to the roller 13 and the measured value of the information regarding the lift amount X of the roller 13 with respect to the rotary table 12. The information regarding the lift amount X of the roller 13 with respect to the rotary table 12 can be used without being limited to the lift amount X as long as the information is related to the lift amount X.
 推定部63は、取得部62において取得した情報に基づいて、ジャーナル軸受59の余寿命を推定する。具体的には、推定部63は、ジャーナル軸受59に負荷されるラジアル荷重Lrとスラスト荷重Lsとを算出し、ラジアル荷重Lrとスラスト荷重Lsとに基づいてジャーナル軸受59の余寿命を推定する。 The estimation unit 63 estimates the remaining life of the journal bearing 59 based on the information acquired by the acquisition unit 62. Specifically, the estimation unit 63 calculates the radial load Lr and the thrust load Ls applied to the journal bearing 59, and estimates the remaining life of the journal bearing 59 based on the radial load Lr and the thrust load Ls.
 図5は、ローラ13周りの各荷重の関係を示した図(部分拡大縦断面図)である。図5に示すように、油圧荷重L1によって、ローラ13が回転テーブル12へ押し付けられるため、回転テーブル12からの荷重L2がローラ13へ掛かっている。ローラ13と回転テーブル12との間には粉砕される固体燃料が存在してもよい。そして、回転テーブル12からの荷重L2は、ローラ13を介してジャーナル軸受59に対しても掛かっている。ジャーナル軸受59の受ける荷重L2をラジアル成分とスラスト成分とに分解することで、ジャーナル軸受59におけるラジアル荷重Lrとスラスト荷重Lsを算出することができる。推定部63では、ラジアル荷重Lrとスラスト荷重Lsとにより、ジャーナル軸受59の余寿命を推定している。ラジアル荷重Lrとスラスト荷重Lsを用いてジャーナル軸受59の寿命を推定する方法については、公知の手法を用いることが可能である。 FIG. 5 is a view (partially enlarged vertical cross-sectional view) showing the relationship of each load around the roller 13. As shown in FIG. 5, since the roller 13 is pressed against the rotary table 12 by the hydraulic load L1, the load L2 from the rotary table 12 is applied to the roller 13. There may be solid fuel to be crushed between the roller 13 and the rotary table 12. The load L2 from the rotary table 12 is also applied to the journal bearing 59 via the roller 13. By decomposing the load L2 received by the journal bearing 59 into a radial component and a thrust component, the radial load Lr and the thrust load Ls of the journal bearing 59 can be calculated. The estimation unit 63 estimates the remaining life of the journal bearing 59 from the radial load Lr and the thrust load Ls. As a method for estimating the life of the journal bearing 59 using the radial load Lr and the thrust load Ls, a known method can be used.
 具体的には、推定部63には、取得部62において取得した油圧荷重L1とリフト量Xが入力される。推定部63には、ギャップ値xが入力され上述の計算によりリフト量Xを算出することとしてもよい。推定部63では、入力された油圧荷重L1に基づいて、回転テーブル12からのジャーナル軸受59の受ける荷重L2を算出する。ローラ13では、油圧荷重L1に基づいて回転テーブル12へ向けて、粉砕される固体燃料を介して押圧されているため、油圧荷重L1と回転テーブル12からの荷重L2とは相関関係を有している。このため、推定部63では、油圧荷重L1から回転テーブル12からの荷重L2を算出することができる。各種センサを用いた計測器により取得部62において回転テーブル12からの荷重L2が直接的に取得可能な場合には、取得した回転テーブル12からの荷重L2を用いることとしてもよい。油圧荷重L1から荷重L2を算出する際、油圧荷重L1に加え、ローラ13とそれを支持する部材の自重による荷重を加味してもよい。 Specifically, the hydraulic load L1 and the lift amount X acquired by the acquisition unit 62 are input to the estimation unit 63. The gap value x may be input to the estimation unit 63, and the lift amount X may be calculated by the above calculation. The estimation unit 63 calculates the load L2 received by the journal bearing 59 from the rotary table 12 based on the input hydraulic load L1. Since the roller 13 is pressed toward the rotary table 12 based on the hydraulic load L1 via the crushed solid fuel, the hydraulic load L1 and the load L2 from the rotary table 12 have a correlation. There is. Therefore, the estimation unit 63 can calculate the load L2 from the rotary table 12 from the hydraulic load L1. When the load L2 from the rotary table 12 can be directly acquired by the acquisition unit 62 by a measuring instrument using various sensors, the acquired load L2 from the rotary table 12 may be used. When calculating the load L2 from the hydraulic load L1, in addition to the hydraulic load L1, the load due to the own weight of the roller 13 and the member supporting the roller 13 may be added.
 そして、推定部63では、入力されたリフト量Xに基づいて、ローラ傾斜角θを算出する。ローラ傾斜角θは、以下の式(2)により算出される。 Then, the estimation unit 63 calculates the roller inclination angle θ based on the input lift amount X. The roller inclination angle θ is calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図6のように、式(2)において、θはローラ傾斜基準角であり、リフト量Xが0(零)の時(すなわちローラ13と回転テーブル12とが接している、もしくはローラ13と回転テーブル12の隙間が最小とするときの状態)のローラ傾斜角θである。そして、Δθは、ローラ傾斜基準角に対するローラ傾斜角θの変化量であり、Δθはリフト量Xと距離Lとの比の逆正接関数の値となる。すなわち、リフト量Xが小さい場合にはローラ傾斜角θは大きくなり、リフト量Xが大きくなるとローラ傾斜角θは小さくなっていく。 As shown in FIG. 6, in the equation (2), θ 0 is the roller inclination reference angle, and when the lift amount X is 0 (zero) (that is, the roller 13 and the rotary table 12 are in contact with each other, or the roller 13 and the roller 13 are in contact with each other. It is a roller inclination angle θ (a state when the gap of the rotary table 12 is minimized). Then, Δθ is the amount of change in the roller inclination angle θ with respect to the roller inclination reference angle, and Δθ is the value of the inverse tangent function of the ratio of the lift amount X and the distance L. That is, when the lift amount X is small, the roller inclination angle θ becomes large, and when the lift amount X is large, the roller inclination angle θ becomes small.
 このように、推定部63において、回転テーブル12からの荷重L2及びローラ傾斜角θが算出されると、図5の関係のように、スラスト荷重Ls及びラジアル荷重Lrが算出される。スラスト荷重Lsは、回転テーブル12からの荷重にsin(θ)を乗ずることによって算出され、ラジアル荷重Lrは、回転テーブル12からの荷重にcos(θ)を乗ずることによって算出される。 In this way, when the load L2 and the roller inclination angle θ from the rotary table 12 are calculated in the estimation unit 63, the thrust load Ls and the radial load Lr are calculated as shown in the relationship of FIG. The thrust load Ls is calculated by multiplying the load from the rotary table 12 by sin (θ), and the radial load Lr is calculated by multiplying the load from the rotary table 12 by cos (θ).
 このようにして、推定部63では、ジャーナル軸受59にかかるスラスト荷重Ls及びラジアル荷重Lrが算出され、スラスト荷重Ls及びラジアル荷重Lrに基づいて余寿命推定を行う。余寿命推定の方法については、スラスト荷重Ls及びラジアル荷重Lrに基づくものであれば様々な方法を適用することが可能である。 In this way, the estimation unit 63 calculates the thrust load Ls and the radial load Lr applied to the journal bearing 59, and estimates the remaining life based on the thrust load Ls and the radial load Lr. As a method for estimating the remaining life, various methods can be applied as long as they are based on the thrust load Ls and the radial load Lr.
 次に、上述の制御部60による余寿命推定処理の一例について図9を参照して説明する。図9は、本実施形態に係る余寿命推定処理の手順の一例を示すフローチャートである。図9に示すフローは、例えば、運転員等によって余寿命推定の開始指示がされた場合に実行される。余寿命推定処理は、運転員等による開始指示がなくとも、定期的に実行されることとしてもよい。 Next, an example of the remaining life estimation process by the control unit 60 described above will be described with reference to FIG. FIG. 9 is a flowchart showing an example of the procedure of the remaining life estimation process according to the present embodiment. The flow shown in FIG. 9 is executed when, for example, an operator or the like gives an instruction to start estimating the remaining life. The remaining life estimation process may be executed periodically even if there is no start instruction from the operator or the like.
 まず、油圧荷重L1及びリフト量Xの実測値を取得する(S101)。 First, the measured values of the hydraulic load L1 and the lift amount X are acquired (S101).
 次に、リフト量Xに基づいて、ローラ傾斜角θを算出する(S102)。 Next, the roller inclination angle θ is calculated based on the lift amount X (S102).
 次に、ジャーナル軸受59に負荷されるラジアル荷重Lr及びスラスト荷重Lsを算出する(S103)。 Next, the radial load Lr and the thrust load Ls loaded on the journal bearing 59 are calculated (S103).
 次に、ラジアル荷重Lr及びスラスト荷重Lsを用いて、ジャーナル軸受59の余寿命を推定する(S104)。余寿命の推定に関しては、推定方法に応じて、ラジアル荷重Lr及びスラスト荷重Ls以外の情報(例えばジャーナル軸受59の設計値等)を用いることが可能である。 Next, the remaining life of the journal bearing 59 is estimated using the radial load Lr and the thrust load Ls (S104). Regarding the estimation of the remaining life, it is possible to use information other than the radial load Lr and the thrust load Ls (for example, the design value of the journal bearing 59) depending on the estimation method.
 次に、上述の余寿命推定処理による効果について図10を参照して説明する。図10は、運転時間に対する発電プラント負荷及びジャーナル軸受に掛かる荷重の変化と、運転時間に対する余寿命の変化とを示している。図10では、参考例として、設計値として最大荷重が掛かり続けていると想定して余寿命を推定した場合を示している。 Next, the effect of the above-mentioned remaining life estimation process will be described with reference to FIG. FIG. 10 shows changes in the power plant load and the load applied to the journal bearing with respect to the operating time, and changes in the remaining life with respect to the operating time. FIG. 10 shows, as a reference example, a case where the remaining life is estimated assuming that the maximum load continues to be applied as a design value.
 参考例では、発電プラント1の負荷が定格負荷(例えば、100%負荷)で運転されていると想定した場合に、発電プラント1の負荷に比例してジャーナル軸受59に掛かる荷重も最大となることが想定されている。このため、余寿命は運転時間に対して直線的に減っていき、図10における運転時間T2でメンテナンスが必要な時期と推定される。 In the reference example, assuming that the load of the power plant 1 is operated at the rated load (for example, 100% load), the load applied to the journal bearing 59 is maximized in proportion to the load of the power plant 1. Is assumed. Therefore, the remaining life decreases linearly with respect to the operating time, and it is estimated that the operating time T2 in FIG. 10 is the time when maintenance is required.
 これに対して、本実施形態では、油圧荷重L1としてローラ13に係る荷重を逐次計測しているため、実際の発電プラント1の運転状態に対応したジャーナル軸受59に掛かる荷重を取得することができる。図10の実際のジャーナル軸受59に掛かる荷重(折れ線グラフ)のように、最大荷重よりも低くなる場合があるため、ローラ傾斜角θの実測値を考慮して余寿命を推定した場合に、参考例と比較して運転時間に対する余寿命の低減が緩やかになる。特に、図10の期間Taでは、ジャーナル軸受59に掛かる荷重が低いため、余寿命消費量が少なくなる。期間Taは運転状態に応じて変化するため、図10に示す期間に限定されない。 On the other hand, in the present embodiment, since the load related to the roller 13 is sequentially measured as the hydraulic load L1, the load applied to the journal bearing 59 corresponding to the actual operating state of the power plant 1 can be acquired. .. As shown in the load (line graph) applied to the actual journal bearing 59 in FIG. 10, it may be lower than the maximum load. Therefore, it is a reference when estimating the remaining life in consideration of the measured value of the roller inclination angle θ. Compared with the example, the reduction of the remaining life with respect to the operating time becomes slower. In particular, in the period Ta of FIG. 10, since the load applied to the journal bearing 59 is low, the remaining life consumption is reduced. Since the period Ta changes according to the operating state, it is not limited to the period shown in FIG.
 例えば、図10において現在の地点を運転時間T1とすると、現在から過去所定期間の余寿命推移を直線的に延長することによって、メンテナンスが必要な時期として運転時間T3を推定することも可能となる。 For example, assuming that the current point is the operating time T1 in FIG. 10, it is possible to estimate the operating time T3 as the time when maintenance is required by linearly extending the transition of the remaining life in the past predetermined period from the present. ..
 本実施形態の余寿命推定によれば、実際の運転状態に応じてジャーナル軸受59の余寿命をより高精度に推定することが可能となる。このため、参考例と比較してより正確なメンテナンス必要時期を推定することができ(運転時間はT2<T3)、ミル10をより効率的に運用することが可能となる。 According to the remaining life estimation of the present embodiment, it is possible to estimate the remaining life of the journal bearing 59 with higher accuracy according to the actual operating state. Therefore, a more accurate maintenance required time can be estimated as compared with the reference example (operating time is T2 <T3), and the mill 10 can be operated more efficiently.
 本実施形態では、油圧荷重L1及びリフト量Xの実測値を用いて余寿命を推定することとしているが、ジャーナル軸受59の回転速度(ローラ13の回転速度)の実測値も用いて余寿命を推定することとしてもよい。この場合には、取得部62は、ジャーナル軸受59の回転速度に関する情報の実測値を取得し、推定部63では、ジャーナル軸受59の回転速度に関する情報の実測値も加味して余寿命を推定する。例えば、回転テーブル12上の粉砕された固体燃料に対してローラ13のスリップ現象が発生した場合に、ジャーナル軸受59の回転速度が低下ないし停止してしまう場合がある。そのため、実際のジャーナル軸受59の回転速度を検知する回転速度センサを設置して回転速度の実計測値を余寿命の推定時に加味しても良い。ジャーナル軸受59の回転速度の実測値を考慮することにより、ジャーナル軸受59の回転速度を一定と想定して余寿命を推定する場合と比較して、より推定精度を向上させることができる。センサとしては、例えば、ロータリーエンコーダのような回転位置センサの他、回転速度センサ、重力方向の変化や遠心力を捉える加速度センサを用いてもよい。計測された情報をミル10外部へ伝達する方法としては、有線通信手段にて伝達しても良く、また、何らかの無線通信手段を用いて伝達してもよい。 In the present embodiment, the remaining life is estimated by using the measured values of the hydraulic load L1 and the lift amount X, but the remaining life is also estimated by using the measured values of the rotation speed of the journal bearing 59 (rotation speed of the roller 13). It may be estimated. In this case, the acquisition unit 62 acquires the actually measured value of the information on the rotation speed of the journal bearing 59, and the estimation unit 63 estimates the remaining life by taking into account the actually measured value of the information on the rotation speed of the journal bearing 59. .. For example, when the roller 13 slips with respect to the crushed solid fuel on the rotary table 12, the rotation speed of the journal bearing 59 may decrease or stop. Therefore, a rotation speed sensor that detects the actual rotation speed of the journal bearing 59 may be installed and the actual measured value of the rotation speed may be added when estimating the remaining life. By considering the measured value of the rotation speed of the journal bearing 59, the estimation accuracy can be further improved as compared with the case where the remaining life is estimated assuming that the rotation speed of the journal bearing 59 is constant. As the sensor, for example, in addition to a rotation position sensor such as a rotary encoder, a rotation speed sensor, an acceleration sensor that captures a change in the direction of gravity or a centrifugal force may be used. As a method of transmitting the measured information to the outside of the mill 10, it may be transmitted by a wired communication means, or may be transmitted by using some wireless communication means.
 本実施形態では、油圧荷重L1及びリフト量Xの実測値を用いて余寿命を推定することとしているが、ジャーナル軸受59の潤滑剤の状態も用いて余寿命を推定することとしてもよい。この場合には、取得部62は、ジャーナル軸受59の潤滑剤の状態に関する情報の実測値を取得し、推定部63では、ジャーナル軸受59の潤滑剤の状態に関する情報の実測値も加味して余寿命を推定する。例えば、粉砕された固体燃料の微粉粒子がローラ13のジャーナル軸受59箱内の潤滑油に混入した場合、ジャーナル軸受59寿命が極端に短くなる場合がある。このため、潤滑剤の状態として、例えばジャーナル軸受59箱内に潤滑油の状態(汚染、劣化など)を検知するセンサを設置して、潤滑油の状態からの影響を余寿命の推定時に加味しても良い。潤滑剤の状態も加味することにより、余寿命の推定精度をより向上させることができる。潤滑剤の汚染原因の大半はローラ13のシール部(オイルシール部)から固体燃料が粉砕された微粉粒子の侵入による汚濁である。そして、微粉粒子が侵入する原因としてはシール部のシールエア圧力が不足することによるものが多いため、シールエア圧力の変化を検知するセンサを設置して、シールエア圧力の不足による影響を余寿命の推定時に加味することとしても良い。 In the present embodiment, the remaining life is estimated by using the measured values of the hydraulic load L1 and the lift amount X, but the remaining life may be estimated by also using the state of the lubricant of the journal bearing 59. In this case, the acquisition unit 62 acquires the actually measured value of the information on the state of the lubricant of the journal bearing 59, and the estimation unit 63 also takes into account the actually measured value of the information on the state of the lubricant of the journal bearing 59. Estimate life. For example, when fine powder particles of crushed solid fuel are mixed in the lubricating oil in the journal bearing 59 box of the roller 13, the life of the journal bearing 59 may be extremely shortened. Therefore, as the state of the lubricant, for example, a sensor for detecting the state of the lubricating oil (contamination, deterioration, etc.) is installed in the journal bearing 59 box, and the influence from the state of the lubricating oil is taken into consideration when estimating the remaining life. You may. By taking into account the state of the lubricant, the accuracy of estimating the remaining life can be further improved. Most of the causes of lubricant contamination are contamination due to the intrusion of fine particles of crushed solid fuel from the seal portion (oil seal portion) of the roller 13. Since the cause of the invasion of fine particles is often due to insufficient seal air pressure in the seal portion, a sensor that detects changes in seal air pressure is installed to determine the effect of insufficient seal air pressure when estimating the remaining life. It may be added.
 以上説明したように、本実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムによれば、ローラ13に掛かる荷重に関する情報及び回転テーブル12に対するローラ13の傾斜角に関する情報を、計測値として取得し、ジャーナル軸受59の余寿命を推定する。このため、ローラ13を備えているミル10の運転状態の変動に対して余寿命推定への影響を考慮した対応が可能となり、余寿命の推定精度を向上させることができる。回転テーブル12に対するローラ13のリフト量Xによれば、ジャーナル軸受59に掛かる荷重の方向が推定できるため、ローラ13のリフト量Xを用いてジャーナル軸受59の余寿命を推定することができる。 As described above, according to the remaining life estimation system and the solid fuel crusher according to the present embodiment, the remaining life estimation method, and the remaining life estimation program, information on the load applied to the roller 13 and the roller 13 with respect to the rotary table 12 Information on the tilt angle of the journal bearing 59 is acquired as a measured value, and the remaining life of the journal bearing 59 is estimated. Therefore, it is possible to deal with fluctuations in the operating state of the mill 10 provided with the roller 13 in consideration of the influence on the estimation of the remaining life, and the accuracy of estimating the remaining life can be improved. According to the lift amount X of the roller 13 with respect to the rotary table 12, the direction of the load applied to the journal bearing 59 can be estimated. Therefore, the remaining life of the journal bearing 59 can be estimated using the lift amount X of the roller 13.
 余寿命がより正確に推定されることによって、より適切なタイミングでジャーナル軸受59のメンテナンス(交換等)を実施することができる。すなわち、より長くジャーナル軸受59を使用することができるため、ミル10のメンテナンス頻度を低減させることができる。このため、メンテナンスコストを低減することができる。ミル10および発電プラント1の稼働率を向上させることができる。 By estimating the remaining life more accurately, maintenance (replacement, etc.) of the journal bearing 59 can be performed at a more appropriate timing. That is, since the journal bearing 59 can be used for a longer period of time, the maintenance frequency of the mill 10 can be reduced. Therefore, the maintenance cost can be reduced. The operating rate of the mill 10 and the power plant 1 can be improved.
〔第2実施形態〕
 次に、本開示の第2実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムについて説明する。
 本実施形態では、将来の余寿命の変化推移を推定する。以下、本実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムについて、第1実施形態と異なる点について主に説明する。
[Second Embodiment]
Next, the remaining life estimation system and the solid fuel crusher, the remaining life estimation method, and the remaining life estimation program according to the second embodiment of the present disclosure will be described.
In the present embodiment, the change transition of the remaining life in the future is estimated. Hereinafter, the remaining life estimation system and the solid fuel crusher according to the present embodiment, the remaining life estimation method, and the remaining life estimation program will be mainly described with respect to the differences from the first embodiment.
 本実施形態における制御部60では、図11に示すように、予測部64を備える。
 予測部64は、ミル10の運転状態と、運転状態に対応した余寿命推移特性とが予め蓄積されたデータベースに基づいて、推定部63において推定した余寿命の推移より将来の余寿命の推移を予測する。余寿命推定特性とは、運転状態によって推移する余寿命の特性を示した情報であり、具体的には図12のA、B、Cに示すような曲線特性(直線でもよい)である。すなわち、データベースには、ミル10の過去または現在まで運転情報が格納されている。データベースには、寿命推定対象のミル10の過去または現在までの運転データを格納することとしてもよいし、構成が類似する他のミル10の過去運転データを格納することとしてもよい。実運転データだけでなく、仮想的にシミュレーションしたデータをデータベースに格納することとしてもよい。データベースは制御部60に設けられてもよい(記憶部)し、別装置に設けられることとしてもよい。運転状態は、固体燃料の種類(炭種情報)、固体燃料の供給量(給炭量)、ローラ13に掛かる荷重に関する情報(油圧荷重)、ミル10に設けられた分級機(回転式分級機16)の回転数(分級機回転数)、及びミル10内へ流入するガスとミル10から排出されるガスとの差圧(ミル10内の差圧であり、ミル10の負荷状況を示す指標となる。例えば、回転テーブル12の上側雰囲気と下側雰囲気との間で発生する。)の少なくともいずれか1つを含む。運転状態としては、ジャーナル軸受59の寿命に影響を与えるパラメータであれば上記に限定されず含むことができる。類似する運転状態どうしで運転時間に対する余寿命の変化が、例えば、明らかに突飛と判断される運転情報(推定する余寿命)を除いて±10%以内での一致あり、さらに好ましくは±5%以内での一致あれば、類似した運転状態のデータのなかでも優先順位を上げて類似していると判断してもよい。
As shown in FIG. 11, the control unit 60 in the present embodiment includes a prediction unit 64.
The prediction unit 64 determines the transition of the future remaining life from the transition of the remaining life estimated by the estimation unit 63 based on the database in which the operating state of the mill 10 and the remaining life transition characteristics corresponding to the operating state are accumulated in advance. Predict. The remaining life estimation characteristic is information indicating the characteristic of the remaining life that changes depending on the operating state, and specifically, it is a curve characteristic (may be a straight line) as shown in A, B, and C of FIG. That is, the database stores operation information up to the past or present of the mill 10. The database may store the past or present operation data of the mill 10 whose life is to be estimated, or may store the past operation data of other mills 10 having similar configurations. Not only the actual operation data but also the virtually simulated data may be stored in the database. The database may be provided in the control unit 60 (storage unit) or may be provided in another device. The operating state includes the type of solid fuel (coal type information), the supply amount of solid fuel (coal supply amount), information on the load applied to the roller 13 (hydraulic load), and the classifier (rotary classifier) provided on the mill 10. The rotation speed of 16) (the rotation speed of the classifier) and the differential pressure between the gas flowing into the mill 10 and the gas discharged from the mill 10 (the differential pressure in the mill 10 and an index indicating the load status of the mill 10). For example, it is generated between the upper atmosphere and the lower atmosphere of the rotary table 12). The operating state is not limited to the above and can be included as long as it is a parameter that affects the life of the journal bearing 59. The change in the remaining life with respect to the operating time between similar operating conditions is consistent within ± 10%, excluding the operation information (estimated remaining life) that is clearly judged to be out of order, and more preferably ± 5%. If there is a match within, the data of similar operating conditions may be prioritized and judged to be similar.
 具体的には、予測部64は、データベースを参照して、余寿命推定対象となっているミル10の運転状態に類似した運転状態のデータを選定し、類似した運転状態のデータに対応する余寿命推移特性を選定及び取得する。類似した運転状態のデータとは、余寿命推定対象となっているミル10の運転状態に対して、余寿命影響度が類似すると推定される運転状態のデータである。例えば、運転状態として固体燃料の種類を用いる場合には、余寿命推定対象となっているミル10の固体燃料に対して、余寿命影響度の観点から影響が似ていると想定される固体燃料を含む運転状態が、類似する運転状態となる。運転状態の各パラメータにおいて、類似判断の優先順位を設定し、優先順位の高いパラメータ(例えば、固体燃料の種類)について類似判断を行うこととしてもよい。 Specifically, the prediction unit 64 refers to the database, selects data on an operating state similar to the operating state of the mill 10 whose remaining life is estimated, and corresponds to the data on the similar operating state. Select and acquire life transition characteristics. The data of the similar operating state is the data of the operating state in which the degree of influence of the remaining life is estimated to be similar to the operating state of the mill 10 for which the remaining life is estimated. For example, when the type of solid fuel is used as the operating state, the solid fuel whose influence is assumed to be similar to the solid fuel of the mill 10 whose remaining life is estimated from the viewpoint of the degree of influence of the remaining life. The operating state including the above becomes a similar operating state. In each parameter of the operating state, the priority of the similarity judgment may be set, and the similarity judgment may be performed for the parameter having a high priority (for example, the type of solid fuel).
 図12は、余寿命推定対象となっているミル10に対して、類似した運転状態の余寿命推移特性を選定した例である。図12では、余寿命推移特性として、特性A、特性B、及び特性Cが選定された例を示している。そして、図12では、余寿命推定対象となっているミル10に対する余寿命の推定結果であるE1(1回目の推定結果)、E2(2回目の推定結果)、En(n回目の推定結果)を示している。 FIG. 12 is an example in which the remaining life transition characteristics in a similar operating state are selected for the mill 10 for which the remaining life is estimated. FIG. 12 shows an example in which characteristic A, characteristic B, and characteristic C are selected as the remaining life transition characteristics. Then, in FIG. 12, E1 (first estimation result), E2 (second estimation result), and En (nth estimation result), which are the estimation results of the remaining life of the mill 10 which is the target of the remaining life estimation, are shown. Is shown.
 予測部64は、選定した余寿命推移特性(A、B、C)の中から、余寿命推定対象となっているミル10に対する余寿命の推定結果のE1からEnまでの推定結果を基にした推移特性Eに類似する推移特性をもつ余寿命推移特性(A、B、C)を特定する。図12の例では、E1からEnまでの推移特性が、特性Bに類似しているため、特性Bが特定される。このため、余寿命推定対象となっているミル10は、将来的に特性Bのように運転時間に対する余寿命特性が推移し、寿命到達時期Tbに達すると推定される。このように過去または現在までのデータベースに対して推移特性Eを参照することで、将来の余寿命推移をミル10の運転状態も加味して予測することができるため、より精度よく余寿命を推定することが可能となる。余寿命推定対象となっているミル10に対する余寿命の推定結果の推移特性Eについては、竣工時から現在までの推移特性としてもよいし、現在から過去所定期間における推移特性としてもよいし、運転状態が大きく変化した(例えば固体燃料の種類が変化した)期間を選定して推移特性としてもよい。 The prediction unit 64 is based on the estimation results from E1 to En of the estimation results of the remaining life for the mill 10 which is the target of estimating the remaining life from the selected remaining life transition characteristics (A, B, C). The remaining life transition characteristics (A, B, C) having the transition characteristics similar to the transition characteristics E are specified. In the example of FIG. 12, since the transition characteristic from E1 to En is similar to the characteristic B, the characteristic B is specified. Therefore, it is estimated that the mill 10 whose remaining life is to be estimated will change the remaining life characteristic with respect to the operating time as in the characteristic B in the future, and will reach the life reaching time Tb. By referring to the transition characteristic E with respect to the database up to the past or the present in this way, the future remaining life transition can be predicted in consideration of the operating state of the mill 10, so that the remaining life can be estimated more accurately. It becomes possible to do. The transition characteristic E of the estimation result of the remaining life with respect to the mill 10 for which the remaining life is estimated may be the transition characteristic from the time of completion to the present, the transition characteristic from the present to the past predetermined period, or the operation. A period in which the state has changed significantly (for example, the type of solid fuel has changed) may be selected as the transition characteristic.
 図12の例のように、余寿命推定対象となっているミル10に対してした余寿命の推定結果の推移特性と、選定した余寿命推移特性とで完全に対応する場合でなくても、選定した余寿命推移特性の中から類似する推移特性が選定されればよい。選定した余寿命推移特性の中に余寿命推定対象となっているミル10に対する余寿命の推定結果の推移特性と類似する推移特性が過去または現在までのデータベースにない場合には、選定した余寿命推移特性に基づいて予測をすることとしてもよい。例えば、図12において、余寿命推定対象となっているミル10に対する余寿命の推定結果の推移特性が特性Aと特性Bの間に特性A側との差と特性B側との差の比で位置している場合には、特性Aと特性Bとに基づいて、余寿命推定対象となっているミル10の将来の余寿命推移を予測することとしてもよい。この場合には、例えば、特性Aと特性Bの中間線を特性A側との差と特性B側との差の案分比で生成して余寿命推移予測を行う。 As in the example of FIG. 12, even if the transition characteristic of the estimation result of the remaining life with respect to the mill 10 for which the remaining life is estimated does not completely correspond to the selected remaining life transition characteristic, Similar transition characteristics may be selected from the selected remaining life transition characteristics. If there is no transition characteristic similar to the transition characteristic of the estimation result of the remaining life for the mill 10 whose remaining life is to be estimated in the selected remaining life transition characteristics in the database up to the past or present, the selected remaining life transition characteristic The prediction may be made based on the transition characteristics. For example, in FIG. 12, the transition characteristic of the estimation result of the remaining life with respect to the mill 10 for which the remaining life is estimated is the ratio of the difference between the characteristic A side and the characteristic B side between the characteristic A and the characteristic B. If it is located, the future remaining life transition of the mill 10 whose remaining life is estimated may be predicted based on the characteristic A and the characteristic B. In this case, for example, an intermediate line between the characteristic A and the characteristic B is generated by a proportional ratio of the difference between the characteristic A side and the characteristic B side, and the remaining life transition is predicted.
 予測部64による処理(データベースにおける類似した運転状態の選定や、選定した余寿命推移特性における余寿命推定対象となっているミル10に対してした余寿命の推定結果の推移特性に類似する推移特性をもつ余寿命推移特性の選定や、選定した余寿命推移特性に基づく将来の余寿命推移の予測)については、予め設定したアルゴリズムで処理してもよいし、AIを用いて適切に処理することとしてもよい。 Processing by the prediction unit 64 (transition characteristics similar to the transition characteristics of the estimation results of the remaining life for the mill 10 that is the target of the selection of similar operating conditions in the database and the remaining life transition characteristics in the selected remaining life transition characteristics The selection of the remaining life transition characteristic with the above and the prediction of the future remaining life transition based on the selected remaining life transition characteristic) may be processed by a preset algorithm or appropriately processed using AI. May be.
 以上説明したように、本実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムによれば、運転状態と余寿命推移特性とが対応づけられたデータベースに基づくことで、推定部63において推定した余寿命の推移より将来の余寿命の推移を予測することができる。将来の余寿命の推移をより正確に予測することができ、より適切なタイミングでジャーナル軸受59のメンテナンス(交換等)を実施することができる。すなわち、より長くジャーナル軸受59を使用することがでるため、ミル10のメンテナンス頻度を低減させることができる。このため、メンテナンスコストを低減することができる。ミル10および発電プラント1の稼働率を向上させることができる。 As described above, according to the remaining life estimation system and the solid fuel crusher according to the present embodiment, the remaining life estimation method, and the remaining life estimation program, a database in which the operating state and the remaining life transition characteristics are associated with each other. Based on the above, it is possible to predict the future transition of the remaining life from the transition of the remaining life estimated by the estimation unit 63. It is possible to more accurately predict the transition of the remaining life in the future, and it is possible to carry out maintenance (replacement, etc.) of the journal bearing 59 at a more appropriate timing. That is, since the journal bearing 59 can be used for a longer period of time, the maintenance frequency of the mill 10 can be reduced. Therefore, the maintenance cost can be reduced. The operating rate of the mill 10 and the power plant 1 can be improved.
〔第3実施形態〕
 次に、本開示の第3実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムについて説明する。
 本実施形態では、推定された余寿命に基づいてメンテナンス計画を作成する。以下、本実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムについて、第1実施形態及び第2実施形態と異なる点について主に説明する。
[Third Embodiment]
Next, the remaining life estimation system and the solid fuel crusher, the remaining life estimation method, and the remaining life estimation program according to the third embodiment of the present disclosure will be described.
In this embodiment, a maintenance plan is created based on the estimated remaining life. Hereinafter, the remaining life estimation system and the solid fuel crusher according to the present embodiment, the remaining life estimation method, and the remaining life estimation program will be mainly described with respect to the differences from the first embodiment and the second embodiment.
 本実施形態における制御部60では、図13に示すように、計画部65を備える。
 計画部65は、推定された余寿命に基づいて、メンテナンス計画を行う。具体的には、推定部63において推定した余寿命や、予測部64において推定した余寿命から、将来のどの時期に寿命を完全に消費してしまうかを判断して、計画部65でメンテナンス計画を行う。上述のようにより正確に余寿命を推定することができるため、寿命を完全に消費する前に適正な余裕をもって計画を立てることが可能となる。
As shown in FIG. 13, the control unit 60 in the present embodiment includes a planning unit 65.
The planning unit 65 makes a maintenance plan based on the estimated remaining life. Specifically, from the remaining life estimated by the estimation unit 63 and the remaining life estimated by the prediction unit 64, it is determined at what time in the future the life will be completely consumed, and the maintenance plan is performed by the planning unit 65. I do. Since the remaining life can be estimated more accurately as described above, it is possible to make a plan with an appropriate margin before the life is completely consumed.
 計画部65では、例えば、推定される寿命到達時期に対して、所定期間前にメンテナンス計画を行う。所定期間とは、例えばジャーナル軸受59の手配から交換に要する期間等のメンテナンスを安全で効率的な工程で行うために必要な期間に基づいて設定される。メンテナンス計画では、例えば、メンテナンス時期、メンテナンス時期を調整するための運転方案、及び複数台のミル10における負荷分担調整の少なくとも1つを含んで計画を行う。 The planning unit 65 performs a maintenance plan before a predetermined period, for example, with respect to the estimated life arrival time. The predetermined period is set based on a period required for performing maintenance in a safe and efficient process, such as a period required for arranging and replacing the journal bearing 59. The maintenance plan includes, for example, a maintenance time, an operation plan for adjusting the maintenance time, and at least one of load sharing adjustments in a plurality of mills 10.
 メンテナンス時期とは、推定された余寿命に基づいて設定されるジャーナル軸受59の交換をすべき時期(推奨時期)である。メンテナンス時期は、例えば推定される寿命到達時期に対して所定の余裕度を加味して設定される。 The maintenance time is the time (recommended time) for replacing the journal bearing 59, which is set based on the estimated remaining life. The maintenance time is set, for example, by adding a predetermined margin to the estimated life arrival time.
 メンテナンス時期を調整するための運転方案とは、ミル10に対する運転方案であり、メンテナンス時期を調整するためのものである。例えば、メンテナンス時期がすでに設定されており、推定される寿命到達時期よりも後である場合には、寿命を延長するための運転方案が計画される。具体的には、固体燃料の種類の変更や、固体燃料に粉砕する微粉度の緩和等である。運転状態を適切にすることで、より安全で効率的な工程にて寿命を延ばし、適切な時期にメンテナンスを行うことが可能となる。予め設定されたメンテナンス時期が推定される寿命到達時期よりも前である場合には、余寿命の余裕が大きくならないように負荷を上げる運転方案を計画することで、余寿命を有効に活用することとしてもよい。 The operation plan for adjusting the maintenance time is the operation plan for the mill 10, and is for adjusting the maintenance time. For example, if the maintenance period has already been set and is later than the estimated lifespan, an operating plan is planned to extend the lifespan. Specifically, the type of solid fuel is changed, the degree of fineness of pulverization into solid fuel is relaxed, and the like. By making the operating condition appropriate, it is possible to extend the life in a safer and more efficient process and perform maintenance at an appropriate time. If the preset maintenance time is earlier than the estimated lifespan, plan an operation plan that increases the load so that the remaining lifespan does not increase, so that the remaining lifespan can be used effectively. May be.
 複数台のミル10における負荷分担調整とは、複数台設けられたミル10間で負荷分担を適切に調整することである。例えば、複数台におけるミル10のメンテナンス時期を合わせる、または段階的に時期を設定する(例えば、メンテナンス間隔を複数のミル10で等間隔とする)等のために各ミル10の負荷分担の調整を計画する。例えば複数台のミル10のうち1台のミル10の寿命到達地点が他のミル10と比較して早い場合には、該ミル10の負荷を低減して、他のミル10の負荷を上昇して負担させることによって、複数台のミル10の寿命到達地点を合わせるように調整することができる。 The load sharing adjustment in the plurality of mills 10 is to appropriately adjust the load sharing among the mills 10 provided in the plurality of units. For example, the load sharing of each mill 10 is adjusted in order to match the maintenance time of the mills 10 in a plurality of units or to set the time stepwise (for example, the maintenance interval is set to be equal in the plurality of mills 10). To plan. For example, when the life end point of one of the plurality of mills 10 is earlier than that of the other mill 10, the load of the mill 10 is reduced and the load of the other mill 10 is increased. It is possible to adjust the life end points of the plurality of mills 10 so as to match the burden.
 図14は、メンテナンス計画に係るシステムの例である。図14のように、ユーザ側において、ミル10の余寿命推定情報が情報集約システム101に集約されており、装置メーカ側のサーバ102において、集約システムに集約された情報を取得し、計画システム103で計画を行い、ユーザへ提案を行う。図14では計画部65が計画システム103として装置メーカ側に設けられる場合を例示しているが、ユーザにおける固体燃料粉砕装置側に設けられることとしてもよい。 FIG. 14 is an example of a system related to a maintenance plan. As shown in FIG. 14, on the user side, the remaining life estimation information of the mill 10 is aggregated in the information aggregation system 101, and the server 102 on the device manufacturer side acquires the information aggregated in the aggregation system and plans the system 103. Make a plan and make a proposal to the user. Although FIG. 14 illustrates a case where the planning unit 65 is provided as the planning system 103 on the device maker side, it may be provided on the solid fuel crushing device side of the user.
 以上説明したように、本実施形態に係る余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムによれば、推定された余寿命によりメンテナンス計画を行うことで、メンテナンスを設定する時期に余裕をもって計画を立てることができる。このため、ミル10及び発電プラント1の稼働率を向上させることができる。 As described above, according to the remaining life estimation system and the solid fuel crusher according to the present embodiment, the remaining life estimation method, and the remaining life estimation program, maintenance is performed by performing a maintenance plan based on the estimated remaining life. You can make a plan with plenty of time to set. Therefore, the operating rates of the mill 10 and the power plant 1 can be improved.
 本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。各実施形態を組み合わせることも可能である。すなわち、上記の第1実施形態、第2実施形態、及び第3実施形態については、それぞれ組み合わせることも可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention. It is also possible to combine each embodiment. That is, the above-mentioned first embodiment, second embodiment, and third embodiment can be combined with each other.
 以上説明した各実施形態に記載の余寿命推定システム及び固体燃料粉砕装置、並びに余寿命推定方法、並びに余寿命推定プログラムは例えば以下のように把握される。
 本開示に係る余寿命推定システムは、テーブル(12)との間で固体燃料を粉砕するローラ(13)のジャーナル軸受(59)の余寿命推定システムであって、前記ローラ(13)に掛かる荷重に関する情報の計測値と、前記テーブル(12)に対する前記ローラ(13)の傾斜角に関する情報の計測値とを取得する取得部(62)と、前記取得部(62)において取得した情報に基づいて、前記ジャーナル軸受(59)の余寿命を推定する推定部(63)と、を備える。テーブル(12)とは例えば回転テーブル12である。
The remaining life estimation system and the solid fuel crusher, the remaining life estimation method, and the remaining life estimation program described in each of the above-described embodiments are grasped as follows, for example.
The remaining life estimation system according to the present disclosure is a remaining life estimation system for the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition unit (62) that acquires the measured value of the information regarding the above and the measurement value of the information regarding the inclination angle of the roller (13) with respect to the table (12), and the information acquired by the acquisition unit (62). A unit (63) for estimating the remaining life of the journal bearing (59) is provided. The table (12) is, for example, a rotary table 12.
 本開示に係る余寿命推定システムによれば、ローラ(13)に掛かる荷重に関する情報及びテーブル(12)に対するローラ(13)の傾斜角に関する情報を、計測値として取得し、ジャーナル軸受(59)の余寿命を推定する。このため、ローラ(13)を備えているミル(10)の運転状態の変動に対して余寿命推定への影響を考慮した対応が可能となるため、余寿命の推定精度を向上させることができる。余寿命がより正確に推定されることによって、より適切なタイミングでジャーナル軸受(59)のメンテナンス(交換等)を実施することができる。すなわち、より長くジャーナル軸受(59)を使用することができるため、ミル(10)のメンテナンス頻度を低減させることができる。このため、メンテナンスコストを低減することができる。ミル(10)及び発電プラント(1)の稼働率を向上させることができる。 According to the remaining life estimation system according to the present disclosure, information on the load applied to the roller (13) and information on the inclination angle of the roller (13) with respect to the table (12) are acquired as measured values of the journal bearing (59). Estimate the remaining life. Therefore, it is possible to respond to fluctuations in the operating state of the mill (10) provided with the rollers (13) in consideration of the influence on the estimation of the remaining life, so that the accuracy of estimating the remaining life can be improved. .. By estimating the remaining life more accurately, maintenance (replacement, etc.) of the journal bearing (59) can be performed at a more appropriate timing. That is, since the journal bearing (59) can be used for a longer period of time, the maintenance frequency of the mill (10) can be reduced. Therefore, the maintenance cost can be reduced. The operating rates of the mill (10) and the power plant (1) can be improved.
 本開示に係る余寿命推定システムは、テーブル(12)との間で固体燃料を粉砕するローラ(13)のジャーナル軸受(59)の余寿命推定システムであって、前記ローラ(13)に掛かる荷重に関する情報の計測値と、前記テーブル(12)に対する前記ローラ(13)の距離であるリフト量(X)に関する情報の計測値とを取得する取得部(62)と、前記取得部(62)において取得した情報に基づいて、前記ジャーナル軸受(59)の余寿命を推定する推定部(63)と、を備える。 The remaining life estimation system according to the present disclosure is a remaining life estimation system for the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). In the acquisition unit (62) and the acquisition unit (62), which acquire the measured value of the information related to the information and the measured value of the information related to the lift amount (X) which is the distance of the roller (13) to the table (12). An estimation unit (63) for estimating the remaining life of the journal bearing (59) based on the acquired information is provided.
 本開示に係る余寿命推定システムによれば、ローラ(13)に掛かる荷重に関する情報及びテーブル(12)に対するローラ(13)のリフト量(X)に関する情報を、計測値として取得し、ジャーナル軸受(59)の余寿命を推定する。このため、ローラ(13)を備えているミル(10)の運転状態の変動に対して余寿命推定への影響を考慮した対応が可能となるため、余寿命の推定精度を向上させることができる。テーブル(12)に対するローラ(13)のリフト量(X)によれば、ジャーナル軸受(59)に掛かる荷重の方向が推定できるため、ローラ(13)のリフト量(X)を用いてジャーナル軸受(59)の余寿命を推定することができる。余寿命がより正確に推定されることによって、より適切なタイミングでジャーナル軸受(59)のメンテナンス(交換等)を実施することができる。すなわち、より長くジャーナル軸受(59)を使用することができるため、ミル(10)メンテナンス頻度を低減させることができる。このため、メンテナンスコストを低減することができる。ミル(10)及び発電プラント(1)の稼働率を向上させることができる。 According to the remaining life estimation system according to the present disclosure, information on the load applied to the roller (13) and information on the lift amount (X) of the roller (13) with respect to the table (12) are acquired as measured values, and the journal bearing ( Estimate the remaining life of 59). Therefore, it is possible to respond to fluctuations in the operating state of the mill (10) provided with the rollers (13) in consideration of the influence on the estimation of the remaining life, so that the accuracy of estimating the remaining life can be improved. .. According to the lift amount (X) of the roller (13) with respect to the table (12), the direction of the load applied to the journal bearing (59) can be estimated. Therefore, the lift amount (X) of the roller (13) is used to estimate the journal bearing (X). The remaining life of 59) can be estimated. By estimating the remaining life more accurately, maintenance (replacement, etc.) of the journal bearing (59) can be performed at a more appropriate timing. That is, since the journal bearing (59) can be used for a longer period of time, the maintenance frequency of the mill (10) can be reduced. Therefore, the maintenance cost can be reduced. The operating rates of the mill (10) and the power plant (1) can be improved.
 本開示に係る余寿命推定システムは、前記ローラ(13)に掛かる荷重に関する情報は、前記ローラ(13)を前記テーブル(12)に押し付ける押圧力であることとしてもよい。 In the remaining life estimation system according to the present disclosure, the information regarding the load applied to the roller (13) may be the pressing force for pressing the roller (13) against the table (12).
 本開示に係る余寿命推定システムによれば、ローラ(13)に掛かる荷重に関する情報としてローラ(13)をテーブル(12)に押し付ける押圧力を用いることで、効率的にジャーナル軸受(59)に掛かる荷重を推定し余寿命を推定することができる。 According to the remaining life estimation system according to the present disclosure, the journal bearing (59) is efficiently applied by using the pressing force for pressing the roller (13) against the table (12) as information regarding the load applied to the roller (13). The load can be estimated and the remaining life can be estimated.
 本開示に係る余寿命推定システムは、前記推定部(63)は、前記ジャーナル軸受(59)に負荷されるラジアル荷重(Lr)とスラスト荷重(Ls)とを算出し、前記ラジアル荷重(Lr)と前記スラスト荷重(Ls)とに基づいて前記ジャーナル軸受(59)の余寿命を推定することとしてもよい。 In the remaining life estimation system according to the present disclosure, the estimation unit (63) calculates a radial load (Lr) and a thrust load (Ls) applied to the journal bearing (59), and the radial load (Lr). And the thrust load (Ls) may be used to estimate the remaining life of the journal bearing (59).
 本開示に係る余寿命推定システムによれば、ジャーナル軸受(59)に負荷されるラジアル荷重(Lr)とスラスト荷重(Ls)によって効率的にジャーナル軸受(59)の余寿命を推定することができる。 According to the remaining life estimation system according to the present disclosure, the remaining life of the journal bearing (59) can be efficiently estimated by the radial load (Lr) and the thrust load (Ls) applied to the journal bearing (59). ..
 本開示に係る余寿命推定システムは、前記取得部(62)は、前記ジャーナル軸受(59)の回転速度に関する情報の実測値を取得することとしてもよい。 In the remaining life estimation system according to the present disclosure, the acquisition unit (62) may acquire an actually measured value of information regarding the rotation speed of the journal bearing (59).
 本開示に係る余寿命推定システムによれば、ジャーナル軸受(59)の回転速度に関する情報の実測値を取得して、ジャーナル軸受(59)の余寿命推定にジャーナル軸受(59)の回転速度を加味することで回転速度が低下ないし停止した場合を考慮した対応が可能となるため、より正確に余寿命を推定することができる。 According to the remaining life estimation system according to the present disclosure, the measured value of the information on the rotation speed of the journal bearing (59) is acquired, and the rotation speed of the journal bearing (59) is added to the remaining life estimation of the journal bearing (59). By doing so, it is possible to take measures in consideration of the case where the rotation speed decreases or stops, so that the remaining life can be estimated more accurately.
 本開示に係る余寿命推定システムは、前記取得部(62)は、前記ジャーナル軸受(59)の潤滑剤の状態に関する情報の実測値を取得することとしてもよい。 In the remaining life estimation system according to the present disclosure, the acquisition unit (62) may acquire an actually measured value of information regarding the state of the lubricant of the journal bearing (59).
 本開示に係る余寿命推定システムによれば、ジャーナル軸受(59)の潤滑剤の状態に関する情報の実測値を取得することで、ジャーナル軸受(59)の余寿命推定にジャーナル軸受(59)の潤滑剤の状態を加味することができ、より正確に余寿命を推定することができる。潤滑剤の状態とは、例えば潤滑剤の汚染度合や劣化状態等である。 According to the remaining life estimation system according to the present disclosure, the lubrication of the journal bearing (59) can be used to estimate the remaining life of the journal bearing (59) by acquiring the measured value of the information regarding the state of the lubricant of the journal bearing (59). The state of the agent can be taken into consideration, and the remaining life can be estimated more accurately. The state of the lubricant is, for example, the degree of contamination or the state of deterioration of the lubricant.
 本開示に係る余寿命推定システムは、ミル(10)の運転状態と、前記運転状態に対応した余寿命推移特性とが予め蓄積されたデータベースに基づいて、前記推定部(63)において推定した前記ジャーナル軸受(59)の余寿命の推移より将来の余寿命の推移を予測する予測部(64)を備えることとしてもよい。 The remaining life estimation system according to the present disclosure is estimated by the estimation unit (63) based on a database in which the operating state of the mill (10) and the remaining life transition characteristics corresponding to the operating state are accumulated in advance. A prediction unit (64) for predicting a future transition of the remaining life from the transition of the remaining life of the journal bearing (59) may be provided.
 本開示に係る余寿命推定システムによれば、運転状態と余寿命推移特性とが対応づけられたデータベースに基づくことで、推定部(63)において推定した余寿命の推移より将来の余寿命の推移を予測することができる。将来の余寿命の推移をより正確に予測することができ、より適切なタイミングでジャーナル軸受(59)のメンテナンス(交換等)を実施することができる。すなわち、より長くジャーナル軸受(59)を使用することがでるため、ミル(10)メンテナンス頻度を低減させることができる。このため、メンテナンスコストを低減することができる。ミル(10)及び発電プラント(1)の稼働率を向上させることができる。 According to the remaining life estimation system according to the present disclosure, the future remaining life transition is based on the remaining life transition characteristic estimated by the estimation unit (63) based on the database in which the operating state and the remaining life transition characteristic are associated with each other. Can be predicted. It is possible to predict the transition of the remaining life in the future more accurately, and to carry out maintenance (replacement, etc.) of the journal bearing (59) at a more appropriate timing. That is, since the journal bearing (59) can be used for a longer period of time, the maintenance frequency of the mill (10) can be reduced. Therefore, the maintenance cost can be reduced. The operating rates of the mill (10) and the power plant (1) can be improved.
 本開示に係る余寿命推定システムは、前記運転状態は、固体燃料の種類、固体燃料の供給量、前記荷重に関する情報、前記ミル(10)に設けられた分級機の回転数、及び前記ミル(10)内へ流入するガスと前記ミル(10)から排出されるガスとの差圧の少なくともいずれか1つを含むこととしてもよい。 In the remaining life estimation system according to the present disclosure, the operating state includes the type of solid fuel, the amount of solid fuel supplied, the information on the load, the rotation speed of the classifier provided in the mill (10), and the mill ( It may include at least one of the differential pressure between the gas flowing into the 10) and the gas discharged from the mill (10).
 本開示に係る余寿命推定システムによれば、固体燃料の種類、固体燃料の供給量、荷重に関する情報、ミル(10)に設けられた分級機の回転数、及びミル(10)内へ流入するガスとミル(10)から排出されるガスとの差圧は、余寿命に影響を与える因子である。このため、運転状態として、固体燃料の種類、固体燃料の供給量、荷重に関する情報、ミル(10)に設けられた分級機の回転数、及びミル(10)内へ流入するガスとミル(10)から排出されるガスとの差圧の少なくともいずれか1つを用いることで、効果的に将来の余寿命の推移を予測することができる。 According to the remaining life estimation system according to the present disclosure, information on the type of solid fuel, the amount of solid fuel supplied, the load, the rotation speed of the classifier provided in the mill (10), and the inflow into the mill (10). The differential pressure between the gas and the gas discharged from the mill (10) is a factor that affects the remaining life. Therefore, as the operating state, the type of solid fuel, the amount of solid fuel supplied, the information on the load, the rotation speed of the classifier provided in the mill (10), and the gas and the mill (10) flowing into the mill (10). By using at least one of the differential pressures with the gas discharged from), it is possible to effectively predict the transition of the remaining life in the future.
 本開示に係る余寿命推定システムは、推定された前記ジャーナル軸受(59)の余寿命に基づいて、メンテナンス計画を行う計画部(65)を備えることとしてもよい。 The remaining life estimation system according to the present disclosure may include a planning unit (65) that performs maintenance planning based on the estimated remaining life of the journal bearing (59).
 本開示に係る余寿命推定システムによれば、推定された余寿命によりメンテナンス計画を行うことで、メンテナンスを設定する時期に余裕をもって計画を立てることができる。このため、稼働率を向上させることができる。メンテナンス計画では、例えば、メンテナンス時期や、メンテナンス時期を調整するための今後の運転方案(例えば、固体燃料の種類の変更や提案等)、また複数台のミル(10)における負荷分担調整などを行うことができる。 According to the remaining life estimation system according to the present disclosure, by performing a maintenance plan based on the estimated remaining life, it is possible to make a plan with a margin at the time when maintenance is set. Therefore, the operating rate can be improved. In the maintenance plan, for example, maintenance time, future operation plan for adjusting maintenance time (for example, change or proposal of solid fuel type, etc.), load sharing adjustment among multiple mills (10), etc. are performed. be able to.
 本開示に係る固体燃料粉砕装置(100)は、テーブル(12)と、前記テーブル(12)との間で固体燃料を粉砕するローラ(13)と、前記ローラ(13)を回転可能に支持するジャーナル軸受(59)と、上記の余寿命推定システムと、を備える。 The solid fuel crushing apparatus (100) according to the present disclosure rotatably supports a roller (13) for crushing solid fuel between a table (12) and the table (12), and the roller (13). It includes a journal bearing (59) and the above-mentioned remaining life estimation system.
 本開示に係る余寿命推定方法は、テーブル(12)との間で固体燃料を粉砕するローラ(13)のジャーナル軸受(59)の余寿命推定方法であって、前記ローラ(13)に掛かる荷重に関する情報の計測値と、前記テーブル(12)に対する前記ローラ(13)の傾斜角に関する情報の計測値とを取得する取得工程と、前記取得工程において取得した情報に基づいて、前記ジャーナル軸受(59)の余寿命を推定する推定工程と、を有する。 The remaining life estimation method according to the present disclosure is a method for estimating the remaining life of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition step of acquiring the measured value of the information regarding the above and the measured value of the information regarding the inclination angle of the roller (13) with respect to the table (12) and the information acquired in the acquisition step, the journal bearing (59). ) Has an estimation step for estimating the remaining life.
 本開示に係る余寿命推定方法は、テーブル(12)との間で固体燃料を粉砕するローラ(13)のジャーナル軸受(59)の余寿命推定方法であって、前記ローラ(13)に掛かる荷重に関する情報の計測値と、前記テーブル(12)に対する前記ローラ(13)の距離であるリフト量(X)に関する情報の計測値とを取得する取得工程と、前記取得工程において取得した情報に基づいて、前記ジャーナル軸受(59)の余寿命を推定する推定工程と、を有する。 The remaining life estimation method according to the present disclosure is a method for estimating the remaining life of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition step of acquiring the measured value of the information regarding the above and the measured value of the information regarding the lift amount (X) which is the distance of the roller (13) to the table (12) and the information acquired in the acquisition step. It has an estimation step of estimating the remaining life of the journal bearing (59).
 本開示に係る余寿命推定プログラムは、テーブル(12)との間で固体燃料を粉砕するローラ(13)のジャーナル軸受(59)の余寿命推定プログラムであって、前記ローラ(13)に掛かる荷重に関する情報の計測値と、前記テーブル(12)に対する前記ローラ(13)の傾斜角に関する情報の計測値とを取得する取得処理と、前記取得処理において取得した情報に基づいて、前記ジャーナル軸受(59)の余寿命を推定する推定処理と、をコンピュータに実行させる。 The remaining life estimation program according to the present disclosure is a remaining life estimation program of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition process for acquiring the measured value of the information regarding the above and the measured value of the information regarding the inclination angle of the roller (13) with respect to the table (12) and the information acquired in the acquisition process, the journal bearing (59). ) Is made to execute the estimation process for estimating the remaining life.
 本開示に係る余寿命推定プログラムは、テーブル(12)との間で固体燃料を粉砕するローラ(13)のジャーナル軸受(59)の余寿命推定プログラムであって、前記ローラ(13)に掛かる荷重に関する情報の計測値と、前記テーブル(12)に対する前記ローラ(13)の距離であるリフト量(X)に関する情報の計測値とを取得する取得処理と、前記取得処理において取得した情報に基づいて、前記ジャーナル軸受(59)の余寿命を推定する推定処理と、をコンピュータに実行させる。 The remaining life estimation program according to the present disclosure is a remaining life estimation program of the journal bearing (59) of the roller (13) that crushes the solid fuel with the table (12), and is a load applied to the roller (13). Based on the acquisition process for acquiring the measured value of the information regarding the information and the measured value of the information regarding the lift amount (X) which is the distance of the roller (13) to the table (12) and the information acquired in the acquisition process. , The computer is made to execute the estimation process for estimating the remaining life of the journal bearing (59).
1    :発電プラント
10   :ミル
11   :ハウジング
12   :回転テーブル
13   :ローラ
14   :駆動部
16   :回転式分級機
16a  :ブレード
17   :燃料供給部
18   :モータ
19   :出口
20   :給炭機
21   :バンカ
22   :搬送部
23   :モータ
24   :ダウンスパウト部
30   :送風部
30a  :熱ガス流路
30b  :冷ガス流路
30c  :熱ガスダンパ
30d  :冷ガスダンパ
31   :一次空気通風機(PAF)
32   :押込通風機(FDF)
34   :熱交換器
40   :状態検出部
41   :底面部
42   :天井部
45   :ジャーナルヘッド
47   :支持アーム
48   :支持軸
49   :押圧装置
51   :ハブ
52   :支持軸
53   :中間ピストン
54   :油圧荷重部
55   :ローラ支持部
56   :本体
57   :突起部
58   :ストッパ
59   :ジャーナル軸受
60   :制御部
62   :取得部
63   :推定部
64   :予測部
65   :計画部
71   :計測バー
72   :ギャップセンサ
100  :固体燃料粉砕装置
100a :一次空気流路
100b :供給流路
101  :情報集約システム
102  :サーバ
103  :計画システム
110  :CPU
120  :ROM
130  :RAM
140  :HDD
150  :通信部
180  :バス
200  :ボイラ
210  :火炉
220  :バーナ部
L1   :油圧荷重
Lr   :ラジアル荷重
Ls   :スラスト荷重
X    :リフト量
θ    :ローラ傾斜角
1: Power plant 10: Mill 11: Housing 12: Rotating table 13: Roller 14: Drive unit 16: Rotary classifier 16a: Blade 17: Fuel supply unit 18: Motor 19: Outlet 20: Coal feeder 21: Bunker 22 : Conveying part 23: Motor 24: Down spout part 30: Blower part 30a: Hot gas flow path 30b: Cold gas flow path 30c: Hot gas damper 30d: Cold gas damper 31: Primary air ventilator (PAF)
32: Push-in ventilator (FDF)
34: Heat exchanger 40: State detection unit 41: Bottom surface 42: Ceiling 45: Journal head 47: Support arm 48: Support shaft 49: Pressing device 51: Hub 52: Support shaft 53: Intermediate piston 54: Hydraulic load unit 55: Roller support 56: Main body 57: Protrusion 58: Stopper 59: Journal bearing 60: Control unit 62: Acquisition unit 63: Estimating unit 64: Prediction unit 65: Planning unit 71: Measuring bar 72: Gap sensor 100: Solid Fuel crusher 100a: Primary air flow path 100b: Supply flow path 101: Information aggregation system 102: Server 103: Planning system 110: CPU
120: ROM
130: RAM
140: HDD
150: Communication unit 180: Bus 200: Boiler 210: Fireplace 220: Burner unit L1: Hydraulic load Lr: Radial load Ls: Thrust load X: Lift amount θ: Roller inclination angle

Claims (14)

  1.  テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定システムであって、
     前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの傾斜角に関する情報の計測値とを取得する取得部と、
     前記取得部において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定部と、
    を備える余寿命推定システム。
    A system for estimating the remaining life of roller journal bearings that grind solid fuel to and from the table.
    An acquisition unit that acquires a measured value of information on the load applied to the roller and a measured value of information on the inclination angle of the roller with respect to the table.
    An estimation unit that estimates the remaining life of the journal bearing based on the information acquired by the acquisition unit, and an estimation unit.
    Remaining life estimation system equipped with.
  2.  テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定システムであって、
     前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの距離であるリフト量に関する情報の計測値とを取得する取得部と、
     前記取得部において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定部と、
    を備える余寿命推定システム。
    A system for estimating the remaining life of roller journal bearings that grind solid fuel to and from the table.
    An acquisition unit that acquires a measured value of information on the load applied to the roller and a measured value of information on the lift amount, which is the distance of the roller to the table.
    An estimation unit that estimates the remaining life of the journal bearing based on the information acquired by the acquisition unit, and an estimation unit.
    Remaining life estimation system equipped with.
  3.  前記ローラに掛かる荷重に関する情報は、前記ローラを前記テーブルに押し付ける押圧力である請求項1または2に記載の余寿命推定システム。 The remaining life estimation system according to claim 1 or 2, wherein the information regarding the load applied to the roller is a pressing force for pressing the roller against the table.
  4.  前記推定部は、前記ジャーナル軸受に負荷されるラジアル荷重とスラスト荷重とを算出し、前記ラジアル荷重と前記スラスト荷重とに基づいて前記ジャーナル軸受の余寿命を推定する請求項1から3のいずれか1項に記載の余寿命推定システム。 The estimation unit calculates the radial load and the thrust load applied to the journal bearing, and estimates the remaining life of the journal bearing based on the radial load and the thrust load. The remaining life estimation system according to item 1.
  5.  前記取得部は、前記ジャーナル軸受の回転速度に関する情報の実測値を取得する請求項1から4のいずれか1項に記載の余寿命推定システム。 The remaining life estimation system according to any one of claims 1 to 4, wherein the acquisition unit acquires an actually measured value of information on the rotation speed of the journal bearing.
  6.  前記取得部は、前記ジャーナル軸受の潤滑剤の状態に関する情報の実測値を取得する請求項1から5のいずれか1項に記載の余寿命推定システム。 The remaining life estimation system according to any one of claims 1 to 5, wherein the acquisition unit acquires an actually measured value of information regarding the state of the lubricant of the journal bearing.
  7.  ミルの運転状態と、前記運転状態に対応した余寿命推移特性とが予め蓄積されたデータベースに基づいて、前記推定部において推定した前記ジャーナル軸受の余寿命の推移より将来の余寿命の推移を予測する予測部を備える請求項1から6のいずれか1項に記載の余寿命推定システム。 Based on a database in which the operating state of the mill and the remaining life transition characteristics corresponding to the operating state are accumulated in advance, the future transition of the remaining life is predicted from the transition of the remaining life of the journal bearing estimated by the estimation unit. The remaining life estimation system according to any one of claims 1 to 6, further comprising a prediction unit.
  8.  前記運転状態は、固体燃料の種類、固体燃料の供給量、前記荷重に関する情報、前記ミルに設けられた分級機の回転数、及び前記ミル内へ流入するガスと前記ミルから排出されるガスとの差圧の少なくともいずれか1つを含む請求項7に記載の余寿命推定システム。 The operating states include the type of solid fuel, the amount of solid fuel supplied, the information on the load, the rotation speed of the classifier provided in the mill, and the gas flowing into the mill and the gas discharged from the mill. The remaining life estimation system according to claim 7, which comprises at least one of the differential pressures of the above.
  9.  推定された前記ジャーナル軸受の余寿命に基づいて、メンテナンス計画を行う計画部を備える請求項1から8のいずれか1項に記載の余寿命推定システム。 The remaining life estimation system according to any one of claims 1 to 8, further comprising a planning unit for performing maintenance planning based on the estimated remaining life of the journal bearing.
  10.  テーブルと、
     前記テーブルとの間で固体燃料を粉砕するローラと、
     前記ローラを回転可能に支持するジャーナル軸受と、
     請求項1から9のいずれか1項に記載の余寿命推定システムと、
    を備える固体燃料粉砕装置。
    With a table
    A roller that grinds solid fuel between the table and
    A journal bearing that rotatably supports the roller,
    The remaining life estimation system according to any one of claims 1 to 9, and the remaining life estimation system.
    A solid fuel crusher equipped with.
  11.  テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定方法であって、
     前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの傾斜角に関する情報の計測値とを取得する取得工程と、
     前記取得工程において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定工程と、
    を有する余寿命推定方法。
    It is a method of estimating the remaining life of the journal bearing of a roller that grinds solid fuel to and from the table.
    An acquisition process for acquiring a measured value of information on the load applied to the roller and a measured value of information on the inclination angle of the roller with respect to the table.
    An estimation step for estimating the remaining life of the journal bearing based on the information acquired in the acquisition step, and an estimation step.
    Remaining life estimation method having.
  12.  テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定方法であって、
     前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの距離であるリフト量に関する情報の計測値とを取得する取得工程と、
     前記取得工程において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定工程と、
    を有する余寿命推定方法。
    It is a method of estimating the remaining life of the journal bearing of a roller that grinds solid fuel to and from the table.
    An acquisition step of acquiring a measured value of information on the load applied to the roller and a measured value of information on the lift amount which is the distance of the roller to the table.
    An estimation step for estimating the remaining life of the journal bearing based on the information acquired in the acquisition step, and an estimation step.
    Remaining life estimation method having.
  13.  テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定プログラムであって、
     前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの傾斜角に関する情報の計測値とを取得する取得処理と、
     前記取得処理において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定処理と、
    をコンピュータに実行させるための余寿命推定プログラム。
    A program for estimating the remaining life of roller journal bearings that grind solid fuel to and from the table.
    An acquisition process for acquiring a measured value of information on the load applied to the roller and a measured value of information on the inclination angle of the roller with respect to the table.
    Based on the information acquired in the acquisition process, the estimation process for estimating the remaining life of the journal bearing and the estimation process
    Remaining life estimation program to run the computer.
  14.  テーブルとの間で固体燃料を粉砕するローラのジャーナル軸受の余寿命推定プログラムであって、
     前記ローラに掛かる荷重に関する情報の計測値と、前記テーブルに対する前記ローラの距離であるリフト量に関する情報の計測値とを取得する取得処理と、
     前記取得処理において取得した情報に基づいて、前記ジャーナル軸受の余寿命を推定する推定処理と、
    をコンピュータに実行させるための余寿命推定プログラム。
    A program for estimating the remaining life of roller journal bearings that grind solid fuel to and from the table.
    An acquisition process for acquiring a measured value of information on the load applied to the roller and a measured value of information on the lift amount which is the distance of the roller to the table.
    Based on the information acquired in the acquisition process, the estimation process for estimating the remaining life of the journal bearing and the estimation process
    Remaining life estimation program to run the computer.
PCT/JP2020/033893 2019-09-30 2020-09-08 Remaining life estimation system solid fuel crushing device, remaining life estimation method, and remaining life estimation program WO2021065373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179896A JP6828113B1 (en) 2019-09-30 2019-09-30 Remaining life estimation system and solid fuel crusher, remaining life estimation method, and remaining life estimation program
JP2019-179896 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065373A1 true WO2021065373A1 (en) 2021-04-08

Family

ID=74529701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033893 WO2021065373A1 (en) 2019-09-30 2020-09-08 Remaining life estimation system solid fuel crushing device, remaining life estimation method, and remaining life estimation program

Country Status (2)

Country Link
JP (1) JP6828113B1 (en)
WO (1) WO2021065373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112902A1 (en) * 2021-12-13 2023-06-22 三菱重工業株式会社 Component management system, management system, component management method, and component management program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573354A (en) * 1978-11-24 1980-06-03 Combustion Eng Grinding mill
JPS59206055A (en) * 1983-04-27 1984-11-21 コンバツシヨン・エンヂニアリング・インコ−ポレ−テツド Journal bearing system for crushing roll
JP2002148148A (en) * 2000-08-29 2002-05-22 Nsk Ltd Rolling bearing life prediction method, life prediction device, rolling bearing selecting device using life prediction device, and storage medium
JP2008286612A (en) * 2007-05-17 2008-11-27 Hitachi Zosen Corp Method for determining lifetime of sliding bearing
JP2012036964A (en) * 2010-08-06 2012-02-23 Ihi Corp Method and device for reducing abrasion of mill roller bearing
JP2012130927A (en) * 2010-12-20 2012-07-12 Nsk Ltd Bearing unit with sensor for continuous casting facility
JP2012245495A (en) * 2011-05-31 2012-12-13 Ihi Corp Load observing method and apparatus of vertical mill
JP2019141796A (en) * 2018-02-21 2019-08-29 三菱日立パワーシステムズ株式会社 Deterioration diagnosis device of crusher, crushing system and deterioration diagnosis method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573354A (en) * 1978-11-24 1980-06-03 Combustion Eng Grinding mill
JPS59206055A (en) * 1983-04-27 1984-11-21 コンバツシヨン・エンヂニアリング・インコ−ポレ−テツド Journal bearing system for crushing roll
JP2002148148A (en) * 2000-08-29 2002-05-22 Nsk Ltd Rolling bearing life prediction method, life prediction device, rolling bearing selecting device using life prediction device, and storage medium
JP2008286612A (en) * 2007-05-17 2008-11-27 Hitachi Zosen Corp Method for determining lifetime of sliding bearing
JP2012036964A (en) * 2010-08-06 2012-02-23 Ihi Corp Method and device for reducing abrasion of mill roller bearing
JP2012130927A (en) * 2010-12-20 2012-07-12 Nsk Ltd Bearing unit with sensor for continuous casting facility
JP2012245495A (en) * 2011-05-31 2012-12-13 Ihi Corp Load observing method and apparatus of vertical mill
JP2019141796A (en) * 2018-02-21 2019-08-29 三菱日立パワーシステムズ株式会社 Deterioration diagnosis device of crusher, crushing system and deterioration diagnosis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112902A1 (en) * 2021-12-13 2023-06-22 三菱重工業株式会社 Component management system, management system, component management method, and component management program

Also Published As

Publication number Publication date
JP6828113B1 (en) 2021-02-10
JP2021053590A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021065760A1 (en) Solid fuel mill, boiler system, and method for detecting amount of milling roller wear
JP7463100B2 (en) Wear evaluation system, solid fuel pulverizer, wear evaluation method, and wear evaluation program
WO2021065373A1 (en) Remaining life estimation system solid fuel crushing device, remaining life estimation method, and remaining life estimation program
WO2022209456A1 (en) Classifier, power plant, and method for operating classifier
JP2020116536A (en) Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
KR102533816B1 (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
JP2021030114A (en) Solid fuel pulverization device, power plant and method for controlling solid fuel pulverization device
KR20220100828A (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
JP2021067408A (en) Stable operation control system, solid fuel crusher, stable operation control method and stable operation control program
WO2023068329A1 (en) Abnormality detection system, solid fuel milling device, and abnormality detection method
CN111482243B (en) Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP7458782B2 (en) Wear evaluation system, solid fuel pulverizer, wear evaluation method, and wear evaluation program
WO2023112902A1 (en) Component management system, management system, component management method, and component management program
JP2022041974A (en) Device, power generating plant, device control method, program, power generating plant system, and control method of power generating plant system
JP7467160B2 (en) Wall thinning monitoring system, power generation plant, wall thinning monitoring method, and wall thinning monitoring program
WO2022045345A1 (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
WO2022163244A1 (en) Solid fuel crushing device, power generation plant, and roller wear amount monitoring method
JP2021007898A (en) Crushing device, boiler system, and operation method of crushing device
JP2020032313A (en) Solid fuel crushing apparatus, power generation plant comprising the same, and solid fuel crushing method
JP2022041973A (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
JP2022130856A (en) Rotary valve and power generation plant, and operational method of rotary valve
JP2022156405A (en) Classifier and power plant, and operation method of classifier
JP2022086305A (en) Crushing machine and power generation plant and operation method of crushing machine
JP2022029439A (en) Device, plant facility, device control method, program, plant system, and plant system control method
JP2022054095A (en) Mill and power plant, and operational method for mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871944

Country of ref document: EP

Kind code of ref document: A1