WO2021065258A1 - Diamond rod, diamond tool, and cantilever - Google Patents

Diamond rod, diamond tool, and cantilever Download PDF

Info

Publication number
WO2021065258A1
WO2021065258A1 PCT/JP2020/032265 JP2020032265W WO2021065258A1 WO 2021065258 A1 WO2021065258 A1 WO 2021065258A1 JP 2020032265 W JP2020032265 W JP 2020032265W WO 2021065258 A1 WO2021065258 A1 WO 2021065258A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
rod
single crystal
shaped body
tool
Prior art date
Application number
PCT/JP2020/032265
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 野原
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Publication of WO2021065258A1 publication Critical patent/WO2021065258A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • Patent Document 1 makes use of the characteristic of CVD single crystal diamond that impurities and crystal defects are easily introduced by controlling them, thereby causing defects such as chips and cracks.
  • the suppressed CVD single crystal diamond is disclosed.
  • the diamond rod-shaped body according to the present disclosure is a diamond rod-shaped body made of CVD single crystal diamond, the diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less, and the diamond rod-shaped body is described above.
  • the cross section having the minimum area is defined as the first cross section among the cross sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction, the ratio of the length L to the maximum width W in the first cross section.
  • L / W is 10 or more and 30 or less.
  • the diamond tool according to the present disclosure is a diamond tool including a base metal portion and a diamond portion joined to the base metal portion, and the diamond portion is made of the diamond rod-shaped body.
  • the cantilever according to the present disclosure is made of the above diamond rod-shaped body.
  • Patent Document 1 discloses a technique for suppressing the occurrence of defects such as chips and cracks in a CVD single crystal diamond, but does not describe suppressing breakage in a shape having a high aspect ratio. Therefore, in a cutting tool containing CVD single crystal diamond, it is desired to develop a cutting tool in which breakage is suppressed even when it has a high aspect ratio and thus a long life is realized.
  • the diamond rod-shaped body according to one aspect of the present disclosure is a diamond rod-shaped body made of CVD single crystal diamond, and the diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less, and is described above.
  • the diamond rod-shaped body has a cross section that appears by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction, and when the cross section having the minimum area is the first cross section, the maximum width W in the first cross section is obtained.
  • the ratio L / W of the length L is 10 or more and 30 or less.
  • a diamond rod-shaped body having such characteristics can suppress breakage of the tool even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material. A long life can be realized.
  • the average atomic concentration of nitrogen contained in the CVD single crystal diamond is preferably 1 ppm or more and 100 ppm or less.
  • the CVD single crystal diamond has an average value of a phase difference of 1 nm or more and 200 nm or less, and the phase difference is a phase difference generated when the CVD single crystal diamond is irradiated with circular polarization. Is preferable. As a result, even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, breakage of the tool can be more sufficiently suppressed, and thus the life of the tool is extended. Can be realized.
  • the diamond tool according to one aspect of the present disclosure is a diamond tool including a base metal portion and a diamond portion joined to the base metal portion, and the diamond portion is composed of the diamond rod-shaped body. Is preferable.
  • a diamond tool having such a feature can suppress breakage even when it has a high aspect ratio, and thus can realize a long life.
  • the diamond tool is preferably a drill. As a result, even when the drill has a high aspect ratio, breakage can be suppressed, and a long life can be realized.
  • the cantilever according to one aspect of the present disclosure is made of the diamond rod-shaped body.
  • a cantilever having such a feature can suppress breakage even when it has a high aspect ratio, and can improve the quality of the sound picked up from the sound groove of the record.
  • the cantilever preferably contains a stylus. As a result, the quality of the sound picked up from the sound groove of the record can be further improved.
  • the diamond rod-shaped body according to the present embodiment is a diamond rod-shaped body made of CVD single crystal diamond.
  • the diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less. Further, the diamond rod-shaped body has the maximum width in the first cross section when the cross section having the smallest area is defined as the first cross section among the cross sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction.
  • the ratio L / W of the length L to W is 10 or more and 30 or less.
  • the work is processed as a tool having a CVD single crystal diamond having a high aspect ratio (that is, a ratio L / W of 10 or more and 30 or less). Even so, breakage can be suppressed. Therefore, the diamond rod-shaped body can extend the life of the tool including the diamond rod-shaped body.
  • the diamond rod is made of CVD single crystal diamond.
  • the CVD single crystal diamond means a single crystal diamond produced by epitaxially growing a single crystal diamond layer on a substrate made of the single crystal diamond by using a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the method for obtaining such a CVD single crystal diamond for example, the item described later about the method for producing a diamond rod can be referred to.
  • the average atomic concentration of nitrogen contained in the CVD single crystal diamond is preferably 1 ppm or more and 100 ppm or less. As a result, even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, breakage of the tool can be more sufficiently suppressed.
  • the average atomic concentration of nitrogen is less than 1 ppm, the cleavage property, which is one of the properties of single crystal diamond, appears strongly, so cracks tend to occur when an impact is applied to a specific surface (cleavage surface). There is.
  • the average atomic concentration of nitrogen in the CVD single crystal diamond is more preferably 20 ppm or more and 50 ppm or less.
  • the method for measuring the average atomic concentration of nitrogen in CVD single crystal diamond is as follows. That is, the atomic concentration of nitrogen in the CVD single crystal diamond can be measured by a secondary ion mass spectrometry (SIMS) method.
  • SIMS secondary ion mass spectrometry
  • a SIMS device (trade name: "IMS 7f", manufactured by CAMECA) can be used.
  • a CVD single crystal diamond is first obtained to obtain a sample having a length of 2 mm or more and 20 mm or less in the longitudinal direction. To make. Next, a surface having a depth of 0.5 ⁇ m from the outermost surface of this sample is exposed by sputtering to obtain a measurement target surface of the sample.
  • the atomic concentration of nitrogen on the surface to be measured can be determined by irradiating the surface to be measured with Cs + as a primary ion as a primary ion under the conditions of an acceleration voltage of 15 kV and a detection region of 35 ⁇ m ⁇ . ..
  • the atomic concentration of nitrogen is quantified by comparison with a separately prepared standard sample (single crystal diamond with a known atomic concentration of nitrogen prepared by ion implantation). If the value of the impurity concentration is small, the measured value may deviate from the true value depending on the accuracy of the measuring device. Therefore, from the viewpoint of obtaining more accurate values, the depth from the outermost surface is deepened at a total of three locations including two locations at one end and the other end in the longitudinal direction of the sample and one location at the center portion in the longitudinal direction. It is preferable to obtain a measurement target surface having a size of 0.5 ⁇ m, calculate the average value of the measured values obtained at these three measurement target surfaces, and obtain this average value as the average atomic concentration of nitrogen.
  • the CVD single crystal diamond preferably has an average value of phase difference of 1 nm or more and 200 nm or less.
  • the phase difference means the phase difference generated when the CVD single crystal diamond is irradiated with circularly polarized light.
  • the above phase difference occurs when crystal defects are present in the CVD single crystal diamond. That is, the phase difference is an index showing the magnitude of distortion caused by crystal defects in the CVD single crystal diamond.
  • the average value of the phase difference of the CVD single crystal diamond is 1 nm or more and 200 nm or less, the magnitude of the strain caused by the crystal defects in the CVD single crystal diamond is convenient for improving the toughness. Therefore, by applying the diamond rod-shaped body made of the CVD single crystal diamond as a tool material, breakage of the tool can be more sufficiently suppressed even when a tool having a high aspect ratio is formed. ..
  • phase difference When the average value of the above phase difference is less than 1 nm, the cleavage property, which is one of the properties of single crystal diamond, appears strongly, so that cracks are likely to occur when an impact is applied to a specific surface (cleavage surface). Tend. When the average value of the phase difference exceeds 200 nm, it becomes difficult to provide the CVD single crystal diamond with the desired toughness, and there is a risk that breakage cannot be sufficiently suppressed.
  • the phase difference is more preferably 50 nm or more and 100 nm or less.
  • the average value of the phase difference in the CVD single crystal diamond can be measured by following the procedures (a-1) to (a-3) below.
  • A-1) Preparation of Measurement Sample For example, based on the method for producing a diamond rod-shaped body described later, a CVD single crystal diamond is first obtained to have a length of 3 to 50 mm in the longitudinal direction, which is perpendicular to the longitudinal direction. A rectangular parallelepiped sample having a length of 1 to 5 mm in the above direction and a thickness of 700 ⁇ m or more is prepared. Next, by performing polishing, etching, etc. on the above sample, a measurement sample having a thickness of 700 ⁇ m is obtained. If the thickness of the measurement cannot be reduced to 700 ⁇ m, the phase difference can be measured with respect to the sample by the following measurement method, and then the measured value can be converted to the case where the thickness is 700 ⁇ m.
  • Circularly polarized light is irradiated to one main surface of the measurement sample prepared in the above (a-1) substantially perpendicularly.
  • Circularly polarized light can be formed by a laser provided in a measuring device described later.
  • A-3) Measurement of Birefringence Index 10 measurement areas (1 mm ⁇ 1 mm) are set on the main surface irradiated with circularly polarized light, and the phase difference is measured in these 10 measurement areas.
  • a birefringence distribution measuring device (trade name: "WPA-100", manufactured by Photonic Lattice Co., Ltd.) can be used for measuring the phase difference. Since the measuring device includes lasers of three types of wavelengths (523 nm, 543 nm and 575 nm), the phase difference measurement range can be expanded by properly using these lasers. From the above, the measured values in the measurement region of 10 points can be obtained, and the average value can be calculated as the average value of the phase difference of the CVD single crystal diamond.
  • the diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less.
  • the length L of the diamond rod in the longitudinal direction is preferably 5 mm or more and 15 mm or less, and more preferably 8 mm or more and 15 mm or less.
  • the length L of the diamond rod in the longitudinal direction can be measured by using a conventionally known length measuring device such as a caliper.
  • the diamond rod is a rod having a circular, elliptical, oval, triangular, quadrangular, or other polygonal cross section that appears by cutting the diamond rod in a plane perpendicular to the longitudinal direction. May be good.
  • the diamond rod-shaped body preferably has a square rod shape (square columnar shape) or a round bar shape (cylindrical column) in appearance.
  • the diamond rods may have the same or different cross-sectional shapes of two or more appearing by cutting the diamond rods in a plane perpendicular to the longitudinal direction. Therefore, the areas (sizes) of the two or more cross sections may be the same or different from each other.
  • the maximum width W of the diamond rod-shaped body in the first cross-section is defined as the cross-section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction.
  • the ratio L / W of the length L to the above is 10 or more and 30 or less. That is, the first cross section is a cross section having the smallest area among the cross sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction.
  • the diamond rod-shaped bodies may have the same or different cross-sectional shapes of two or more appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction as described above. .. Therefore, in the present specification, the "first cross section" is defined as the cross section having the smallest area among the two or more cross sections, regardless of the difference in shape and area.
  • the area of the first cross section is preferably 0.01 to 3.5 mm 2 , more preferably 0.03 to 2 mm 2 , and further preferably 0.5 to 1 mm 2. preferable.
  • the first cross section of the diamond rod-shaped body can be specified and the area of the first cross section can be obtained by measuring the outer diameter using a projector or the like.
  • the maximum width W of the diamond rod-shaped body in the first cross-section is defined as the cross-section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction.
  • the ratio L / W of the length L to the above is 10 or more and 30 or less.
  • the ratio L / W is preferably 15 or more and 30 or less, and more preferably 20 or more and 30 or less.
  • the term "high aspect ratio” means a case where the ratio L / W is 10 or more.
  • the "maximum width W" means the distance of the maximum line segment among the line segments connecting arbitrary two points on the outer line of the first cross section. For example, when the first cross section is circular, the diameter of the circle of the first cross section is the "maximum width W".
  • the maximum width W of the diamond rod-shaped body can be measured by using the above-mentioned projector or the like.
  • the diamond tool according to the present embodiment is preferably a diamond tool including a base metal portion and a diamond portion joined to the base metal portion.
  • the diamond portion is made of the diamond rod-shaped body. Since the diamond tool includes a diamond portion made of the diamond rod-shaped body, breakage can be suppressed even when the aspect ratio is high, and a long life can be realized.
  • the diamond portion may be formed by joining the diamond rod-shaped body to the base metal portion by means such as brazing and processing the diamond rod-shaped body.
  • any conventionally known alloy can be used as the base metal portion as the base metal portion of this type.
  • cemented carbide for example, WC-based cemented carbide, WC, as well as those containing Co or added with carbonitrides such as Ti, Ta, Nb
  • cermet containing WC
  • high-speed steel including at least W
  • ceramics including WC, carbide Titanium, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc. as the main components
  • the diamond tools include, for example, drills, end mills, cutting tips with replaceable cutting edges for milling, cutting tips with replaceable cutting edges for turning, cutting tools such as reamers or taps, abrasion resistant tools such as dressers, grindstones, blades, bits, etc. Any of them can be used for various tools such as tools.
  • the diamond portion When the diamond tool is a cutting tool, the diamond portion includes a part of a rake face, a part of a flank, and a cutting edge consisting of a ridge line where the rake face and the flank intersect.
  • the diamond tool can suppress breakage during machining of the work even when the diamond portion including the cutting edge has a high aspect ratio (that is, the ratio L / W is 10 or more and 30 or less).
  • the "cutting edge" is composed of a part of a rake face, a part of a flank surface, and a ridge line where the rake face and the flank face intersect as described above, and is used for cutting or grinding a work material. The part that is directly involved.
  • the diamond tool when the diamond tool is a cutting tool, the diamond tool is preferably a drill.
  • the drill preferably comprises, for example, a shank as the base metal portion and a diamond portion formed by joining the shank by means such as brazing and processing a diamond rod-shaped body.
  • This diamond portion also includes at least the cutting edge described above. Even when the diamond portion including the cutting edge has a high aspect ratio (that is, the ratio L / W is 10 or more and 30 or less), the drill can suppress breakage during machining of the work, and thus has a long length. It is possible to realize a long life.
  • the cantilever according to the present embodiment is made of the diamond rod-shaped body. Since the cantilever is made of the diamond rod-like body, breakage can be suppressed even when the cantilever has a high aspect ratio (that is, the ratio L / W is 10 or more and 30 or less). Further, since the cantilever is made of the diamond rod-like body, the quality of the sound picked up from the sound groove of the record can be improved.
  • the cantilever is manufactured by processing the diamond rod-shaped body into a predetermined shape as a cantilever applied to a record player by using a conventionally known method.
  • the cantilever preferably contains a stylus.
  • the stylus of the cantilever is also made of a diamond rod, the quality of the sound picked up from the sound groove of the record can be further improved.
  • the method for producing a diamond rod-shaped body according to the present embodiment can be produced by appropriately using a conventionally known method for producing this type of diamond rod-shaped body, except for the second step and the third step described later. ..
  • As the method for producing a diamond rod according to the present embodiment it is preferable to use the following method from the viewpoint of producing the diamond rod made of CVD single crystal diamond having the above-mentioned effect with good yield.
  • a conductive layer is formed on the surface of the single crystal substrate by preparing a single crystal substrate made of diamond (first step) and injecting ions into the single crystal substrate. Steps (second step), epitaxial growth of an epitaxial growth layer made of CVD single crystal diamond on the conductive layer (third step), and separation of the epitaxial growth layer from the single crystal substrate (fourth step).
  • a manufacturing method including a step (fifth step) of obtaining a diamond rod-shaped body made of a CVD single crystal diamond by grinding or polishing a CVD single crystal diamond which is a separated epitaxial growth layer can be mentioned.
  • the first step is a step of preparing a single crystal substrate made of diamond.
  • the single crystal substrate made of diamond a conventionally known one can be used.
  • the above-mentioned single crystal substrate can be prepared by using a single crystal substrate (type: Ib) having a flat plate shape and made of diamond manufactured by a high-temperature and high-pressure synthesis method.
  • the single crystal substrate is preferably a flat plate having a surface made of (100) planes of single crystal diamond and side surfaces made of (001) planes and (011) planes perpendicular to the surfaces. Further, in the single crystal substrate, the variation in the thickness of the flat plate is preferably 10% or less. It is also preferable that the surface of the single crystal substrate has a surface roughness Ra of 30 nm or less.
  • the shape of the surface (upper surface) of the single crystal substrate may be a rectangular shape such as a square or a rectangle, or a polygonal shape other than a rectangle such as a hexagon or an octagon.
  • the surface of the single crystal substrate is preferably a (100) plane as described above, and more preferably a plane having an off angle of 0.5 ° or more and 0.7 ° or less with respect to the (100) plane. preferable.
  • the "(100) plane" of a single crystal diamond refers to a plane of a single crystal diamond whose off angle is within ⁇ 7 ° from the (100) plane. It is referred to as "(100) plane”.
  • the "(001) plane” and “(011) plane” perpendicular to the surface of the (100) plane of the single crystal diamond have an off angle of ⁇ 7 ° from the (001) plane and the (011) plane. If the planes are within, these are referred to as the "(001) plane” and the "(011) plane” of the single crystal diamond, respectively.
  • etching is performed on the surface of the single crystal substrate.
  • the surface of the single crystal substrate is etched by reactive ion etching (RIE) using oxygen (O 2 ) gas and carbon tetrafluoride (CF 4) gas.
  • RIE reactive ion etching
  • the etching method is not limited to the above-mentioned RIE, and may be, for example, sputtering using a gas mainly composed of argon (Ar) gas. This makes it possible to efficiently epitaxially grow CVD single crystal diamond on the surface of the single crystal substrate in the third step described later.
  • the second step is a step of forming a conductive layer on the surface of the single crystal substrate by implanting ions into the single crystal substrate. Specifically, in this step, carbon (C) ions are injected toward the surface of the single crystal substrate etched as described above. Thereby, the conductive layer can be formed in the region including the surface of the single crystal substrate.
  • the injected ion is not limited to the carbon ion, and may be a nitrogen ion, a silicon ion, a phosphorus ion, or a sulfur ion.
  • the single crystal substrate on which the conductive layer is formed is polished using a polishing machine or the like in which diamond abrasive grains are embedded, and the surface roughness Ra of the conductive layer is adjusted to obtain a CVD single crystal. It is possible to control the average value of the phase difference generated when the diamond is irradiated with circular polarization. Specifically, when the surface roughness Ra of the single crystal substrate having the conductive layer formed on the surface is polished to 0.5 nm or more and 100 nm or less to irradiate circular polarization in the CVD single crystal diamond.
  • the average value of the phase difference generated in the above can be 1 nm or more and 200 nm or less.
  • the third step is a step of epitaxially growing an epitaxial growth layer made of CVD single crystal diamond on the conductive layer.
  • the substrate is placed and the microwave plasma CVD method is executed in the above CVD furnace.
  • the CVD single crystal diamond can be epitaxially grown through the conductive layer, and thus the epitaxial growth layer can be formed on the conductive layer.
  • the method for forming the growth layer should not be limited to the microwave plasma CVD method, and for example, a thermal filament CVD method, a DC plasma method, or the like can be used.
  • the amount of nitrogen (N 2 ) gas in the atmosphere inside the CVD furnace By adjusting the amount of nitrogen (N 2 ) gas, the nitrogen in the CVD single crystal diamond can have an average atomic concentration of 1 ppm or more and 100 ppm or less.
  • a gas containing other hydrocarbons such as ethane gas can be used instead of methane gas.
  • the fourth step is a step of separating the epitaxial growth layer from the single crystal substrate.
  • the single crystal substrate and the epitaxial growth layer are separated by performing electrochemical etching on the conductive layer in the single crystal substrate.
  • a separated epitaxial growth layer that is, a CVD single crystal diamond can be obtained.
  • the method for separating the epitaxial growth layer should not be limited to the above-mentioned electrochemical etching, and may be a slice using a laser, for example.
  • the fifth step is a step of obtaining a diamond rod-shaped body made of a CVD single crystal diamond by grinding or polishing a CVD single crystal diamond which is a separated epitaxial growth layer. Specifically, by performing a conventionally known grinding process or polishing process on the CVD single crystal diamond, the length L in the longitudinal direction is 2 mm or more and 20 mm or less, and the maximum width W in the first cross section is obtained. It is possible to obtain a diamond rod-shaped body made of a CVD single crystal diamond having a ratio L / W of the length L of 10 or more and 30 or less.
  • the diamond rod-shaped body according to the present embodiment can be manufactured.
  • Such a diamond rod-like body can suppress breakage of the tool even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, thereby extending the life of the tool. can do.
  • the diamond tool according to the present embodiment can be manufactured by a conventionally known method as long as the diamond rod-shaped body manufactured as described above is used.
  • a diamond tool is composed of a base metal portion and a diamond portion
  • the diamond rod-shaped body is joined to the base metal portion via a waxing means such as silver wax using, for example, a known clamping means, and then the diamond rod-shaped body is formed. It can be obtained by processing the body into a diamond portion including a cutting edge having a desired shape by using a conventionally known grinding process or polishing process.
  • the cantilever according to the present embodiment can be manufactured by a conventionally known method as long as it consists of the diamond rod-shaped body manufactured as described above.
  • it can be obtained by processing the diamond rod-shaped body into a shape suitable for use in a record player by using a conventionally known grinding process or polishing process.
  • the cantilever is preferably processed into a shape including a stylus.
  • a diamond rod made of CVD single crystal diamond has a length L in the longitudinal direction of 2 mm or more and 20 mm or less.
  • the diamond rod-shaped body has a cross section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction as the first cross section.
  • a diamond rod-like body having a ratio L / W of the length L to the maximum width W in the first cross section of 10 or more and 30 or less.
  • Appendix 2 The diamond rod-shaped body according to Appendix 1, wherein the length L of the diamond rod-shaped body in the longitudinal direction is 5 mm or more and 15 mm or less, or 8 mm or more and 15 mm or less.
  • the diamond rod is selected from the group consisting of a circular, elliptical, oval, triangular, quadrangular and other polygons having a cross section formed by cutting the diamond rod in a plane perpendicular to the longitudinal direction.
  • the diamond rod-shaped body according to Appendix 1 or Appendix 2 which has one shape.
  • the area of the first cross section is 0.01 to 3.5 mm 2 , or 0.03 to 2 mm 2 , or 0.5 to 1 mm 2 , according to any one of Appendix 1 to Appendix 3.
  • the diamond rod of the description is 0.01 to 3.5 mm 2 , or 0.03 to 2 mm 2 , or 0.5 to 1 mm 2 , according to any one of Appendix 1 to Appendix 3.
  • ⁇ Appendix 5> The diamond rod shape according to any one of Appendix 1 to Appendix 4, wherein the ratio L / W of the length L to the maximum width W in the first cross section is 15 or more and 30 or less, or 20 or more and 30 or less. body.
  • a diamond rod made of CVD single crystal diamond The diamond rod-like body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less.
  • the diamond rod has a first cross section and has a first cross section.
  • the first cross section is a cross section having the smallest area among the cross sections appearing by cutting the diamond rod in a plane perpendicular to the longitudinal direction.
  • the diamond rod has a ratio L / W of 10 or more and 30 or less.
  • the ratio L / W is a ratio of the length L to the maximum width W in the first cross section, which is a diamond rod-shaped body.
  • Appendix 9 The diamond rod-shaped body according to Appendix 8, wherein the CVD single crystal diamond has an average atomic concentration of nitrogen of 1 ppm or more and 100 ppm or less.
  • Example 1 In Example 1 described below, a diamond rod-shaped body produced by the CVD method of Sample 4, Sample 6, Sample 8, Sample 9, and Sample 11 and a diamond tool containing the same correspond to Examples. On the other hand, a diamond rod-shaped body produced by a high-temperature and high-pressure synthesis method of Sample 1, Sample 3, Sample 5, Sample 7, and Sample 10 and a diamond tool containing the same correspond to Comparative Examples. Further, a diamond rod-shaped body produced by the CVD method of Sample 2 and Sample 12, and a diamond tool including the diamond rod-shaped body thereof also correspond to Comparative Examples.
  • a diamond rod-shaped body (sample 1) having a diameter (maximum width W) of 0.1 mm ⁇ a total length (length L) of 0.6 mm and a diameter (maximum).
  • Each of the above diamond rods is fixed using a known clamping device, brazed to a cemented carbide shank which is a base metal portion with silver wax, and then the diamond rods are ground by a conventionally known grinding process. It was processed into a diamond portion including a cutting edge having a predetermined drill shape. As a result, a diamond tool (drill) for Sample 1, Sample 3, Sample 5, Sample 7, and Sample 10 was obtained.
  • the CVD single crystal diamond as the epitaxial growth layer was separated from the diamond single crystal substrate by performing electrochemical etching on the conductive layer in the diamond single crystal substrate.
  • the average atomic concentration of nitrogen in the CVD single crystal diamond was measured by the above method using SIMS and found to be 24 ppm. Further, when the average value (strain amount) of the phase difference was obtained by the above method, it was 68 nm.
  • a diamond rod-shaped body (sample 2) having a diameter (maximum width W) of 0.1 mm ⁇ a total length (length L) of 0.6 mm and a diameter (sample 2) Maximum width W) 0.5 mm x total length (length L) 5 mm diamond rod (sample 4), diameter (maximum width W) 0.5 mm x total length (length L) 8 mm diamond rod (sample 6), A diamond rod (sample 8) having a diameter (maximum width W) of 0.1 mm x a total length (length L) of 2 mm, and a diamond rod (sample 11) having a diameter (maximum width W) of 0.5 mm x a total length (length L) of 15 mm. ), And a diamond rod-shaped body (sample 12) having a diameter (maximum width W) of 0.5 mm and a total length
  • Example 9 ⁇ Making a diamond rod>
  • one diamond single crystal substrate having a flat plate shape of 1 mm in length ⁇ 15 mm in width ⁇ 0.7 mm in thickness is prepared, and in the third step, nitrogen (N 2 ) gas with respect to methane gas is used as the atmosphere in the CVD furnace.
  • the average atomic concentration of nitrogen in the diamond rod was measured by the above method using SIMS and found to be 0.6 ppm. Further, when the average value (strain amount) of the phase difference was obtained by the above method, it was 53 nm.
  • the diamond tool (drill) of Sample 9 was obtained by executing the same method as the method for producing the diamond tool of Sample 8 on the diamond rod-shaped body.
  • the diamond tool of sample 7, the diamond tool of sample 8, and the diamond tool of sample 9 all have a ratio L / W of 20, but the number of times the diamond tool of sample 8 and 9 is processed is larger than that of the diamond tool of sample 7. There were many cases, and the life was extended.
  • the diamond tool of sample 10 and the diamond tool of sample 11 both have a ratio of L / W of 30, but the diamond tool of sample 11 is processed more frequently than the diamond tool of sample 10, and the life is extended. Was there.
  • the diamond tool of sample 12 had a ratio L / W of more than 30, and was broken after 50 times of hole drilling.
  • Example 2 ⁇ Making a diamond rod>
  • the diamond rod of this example was prepared by using the same method as the diamond rod of sample 4 in Example 1.
  • a cantilever containing a stylus was obtained by performing a conventionally known grinding process on the diamond rod-shaped body.
  • This cantilever had a shape of (maximum width W) 0.5 mm ⁇ (length L) 5 mm.
  • the needle tip length of the stylus formed on the free end side of the cantilever was 0.1 mm.
  • the maximum width W of the cantilever was measured at the stylus portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The diamond rod is a diamond rod comprising a CVD single crystal diamond, wherein the diamond rod has a length L in the longitudinal direction of 2-20 mm inclusive and, when the cross-section having the minimum area of the cross-sections that appear when the diamond rod is cut in a plane perpendicular to the longitudinal direction is taken to be the first cross-section, the ratio L/W of the length L to the maximum width W in the first cross-section is 10 to 30 inclusive.

Description

ダイヤモンド棒状体、ダイヤモンド工具およびカンチレバーDiamond rods, diamond tools and cantilever
 本開示は、ダイヤモンド棒状体、ダイヤモンド工具およびカンチレバーに関する。本出願は、2019年10月1日に出願した日本特許出願である特願2019-181349号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This disclosure relates to diamond rods, diamond tools and cantilever. This application claims priority based on Japanese Patent Application No. 2019-181349 filed on October 1, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
 切削工具、耐摩工具などの材料となる単結晶ダイヤモンドとしては、天然のダイヤモンドよりむしろ、高温高圧合成(HPHT:High Pressure and High Temperature)法により製造された人工ダイヤモンドが汎用されている。その理由は、人工ダイヤモンドが天然のダイヤモンドよりも、品質および供給量において安定しているからである。しかしながら、高温高圧合成法により製造される人工ダイヤモンドは、製造設備のコストが高くなるため、低コスト化に対する要請が大きい。一方、他の合成法から製造される人工ダイヤモンドとして、化学気相蒸着(CVD:Chemical Vapor Deposition)法により製造される単結晶ダイヤモンド(以下、「CVD単結晶ダイヤモンド」とも記す)が知られる。しかしながらCVD単結晶ダイヤモンドは、工具材料として用いた場合、欠け、割れなどの欠損が発生し易いとされている。 As single crystal diamonds used as materials for cutting tools, abrasion resistant tools, etc., artificial diamonds manufactured by a high temperature and high pressure synthesis (HPHT: High Pressure and High Temperature) method are widely used rather than natural diamonds. The reason is that synthetic diamonds are more stable in quality and supply than natural diamonds. However, artificial diamond produced by the high-temperature and high-pressure synthesis method has a high demand for cost reduction because the cost of the production equipment is high. On the other hand, as an artificial diamond produced by another synthetic method, a single crystal diamond produced by a chemical vapor deposition (CVD) method (hereinafter, also referred to as "CVD single crystal diamond") is known. However, when CVD single crystal diamond is used as a tool material, it is said that defects such as chips and cracks are likely to occur.
 これに対し、国際公開第2014/168053号(特許文献1)は、不純物および結晶欠陥を制御して導入しやすいというCVD単結晶ダイヤモンドの特徴を生かすことにより、欠け、割れなどの欠損の発生を抑制したCVD単結晶ダイヤモンドを開示している。 On the other hand, International Publication No. 2014/168053 (Patent Document 1) makes use of the characteristic of CVD single crystal diamond that impurities and crystal defects are easily introduced by controlling them, thereby causing defects such as chips and cracks. The suppressed CVD single crystal diamond is disclosed.
国際公開第2014/168053号International Publication No. 2014/168053
 本開示に係るダイヤモンド棒状体は、CVD単結晶ダイヤモンドからなるダイヤモンド棒状体であって、上記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有し、上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、上記第1断面における最大幅Wに対する上記長さLの比L/Wは、10以上30以下である。 The diamond rod-shaped body according to the present disclosure is a diamond rod-shaped body made of CVD single crystal diamond, the diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less, and the diamond rod-shaped body is described above. When the cross section having the minimum area is defined as the first cross section among the cross sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction, the ratio of the length L to the maximum width W in the first cross section. L / W is 10 or more and 30 or less.
 本開示に係るダイヤモンド工具は、台金部と、上記台金部に接合されるダイヤモンド部とを含むダイヤモンド工具であって、上記ダイヤモンド部は、上記ダイヤモンド棒状体からなる。 The diamond tool according to the present disclosure is a diamond tool including a base metal portion and a diamond portion joined to the base metal portion, and the diamond portion is made of the diamond rod-shaped body.
 本開示に係るカンチレバーは、上記ダイヤモンド棒状体からなる。 The cantilever according to the present disclosure is made of the above diamond rod-shaped body.
 [本開示が解決しようとする課題]
 近年、単結晶ダイヤモンドを用いた切削工具が加工対象とする非鉄金属、樹脂などの被加工材(以下、「ワーク」とも記す)において、肥厚化が進んでいる。このため、上記切削工具の長手方向の長さと、上記切削工具を上記長手方向に対して垂直な平面で切断して現れる断面の幅との比が大きな高アスペクト比を有する切削工具が要求されている。ところが、上記肥厚化と並行してワークの高強度化も進んでいるため、高アスペクト比を有する切削工具は折損しやすく、工具の寿命が短くなる傾向がある。上記特許文献1は、CVD単結晶ダイヤモンドにおける欠け、割れなどの欠損の発生を抑制する技術について開示しているが、高アスペクト比を有する形状において折損を抑制することについては述べていない。したがって、CVD単結晶ダイヤモンドを含む切削工具において、高アスペクト比を有する場合であっても折損が抑制され、もって長寿命化が実現される切削工具の開発が切望されている。
[Issues to be solved by this disclosure]
In recent years, thickening has been progressing in work materials such as non-ferrous metals and resins (hereinafter, also referred to as "work"), which are processed by cutting tools using single crystal diamond. Therefore, there is a demand for a cutting tool having a high aspect ratio in which the ratio of the length of the cutting tool in the longitudinal direction to the width of the cross section obtained by cutting the cutting tool in a plane perpendicular to the longitudinal direction is large. There is. However, since the strength of the work is increasing in parallel with the thickening, the cutting tool having a high aspect ratio tends to break easily and the life of the tool tends to be shortened. Patent Document 1 discloses a technique for suppressing the occurrence of defects such as chips and cracks in a CVD single crystal diamond, but does not describe suppressing breakage in a shape having a high aspect ratio. Therefore, in a cutting tool containing CVD single crystal diamond, it is desired to develop a cutting tool in which breakage is suppressed even when it has a high aspect ratio and thus a long life is realized.
 上記実情に鑑み、本開示は、長寿命化が実現されるダイヤモンド棒状体、ダイヤモンド工具およびカンチレバーを提供することを目的とする。 In view of the above circumstances, it is an object of the present disclosure to provide a diamond rod, a diamond tool and a cantilever that can achieve a long life.
 [本開示の効果]
 本開示によれば、長寿命化が実現されるダイヤモンド棒状体、ダイヤモンド工具およびカンチレバーを提供することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a diamond rod, a diamond tool and a cantilever that can achieve a long life.
 [本開示の実施形態の説明]
 本発明者らは、上記課題を解決するために鋭意検討を重ね、本開示を完成させた。具体的には、CVD単結晶ダイヤモンドに導入する不純物および結晶欠陥を適切に制御することにより、高アスペクト比を有する場合であっても折損が抑制されるCVD単結晶ダイヤモンドが得られることを知見した。このCVD単結晶ダイヤモンドを工具材料として適用することにより、高アスペクト比を有する場合であっても工具の長寿命化が実現されるダイヤモンド棒状体およびダイヤモンド工具に想到し、本開示に到達した。さらに上記ダイヤモンド棒状体からなるカンチレバーは、レコードの音溝から拾う音の品質を向上させることも知見した。
[Explanation of Embodiments of the present disclosure]
The present inventors have completed the present disclosure by repeating diligent studies in order to solve the above problems. Specifically, it has been found that by appropriately controlling impurities and crystal defects introduced into a CVD single crystal diamond, a CVD single crystal diamond in which breakage is suppressed even when it has a high aspect ratio can be obtained. .. By applying this CVD single crystal diamond as a tool material, we have come up with a diamond rod and a diamond tool that can extend the life of the tool even when it has a high aspect ratio, and have reached the present disclosure. It was also found that the cantilever made of the diamond rod-like body improves the quality of the sound picked up from the sound groove of the record.
 最初に本開示の実施態様を列記して説明する。
 [1]本開示の一態様に係るダイヤモンド棒状体は、CVD単結晶ダイヤモンドからなるダイヤモンド棒状体であって、上記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有し、上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、上記第1断面における最大幅Wに対する上記長さLの比L/Wは、10以上30以下である。このような特徴を備えるダイヤモンド棒状体は、これを工具材料として適用することにより高アスペクト比を有する工具を形成した場合であっても、上記工具の折損を抑制することができ、もって上記工具の長寿命化を実現することができる。
First, embodiments of the present disclosure will be listed and described.
[1] The diamond rod-shaped body according to one aspect of the present disclosure is a diamond rod-shaped body made of CVD single crystal diamond, and the diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less, and is described above. The diamond rod-shaped body has a cross section that appears by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction, and when the cross section having the minimum area is the first cross section, the maximum width W in the first cross section is obtained. The ratio L / W of the length L is 10 or more and 30 or less. A diamond rod-shaped body having such characteristics can suppress breakage of the tool even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material. A long life can be realized.
 [2]上記CVD単結晶ダイヤモンドに含まれる窒素の平均原子濃度は、1ppm以上100ppm以下であることが好ましい。これにより、ダイヤモンド棒状体を工具材料として適用することによって高アスペクト比を有する工具を形成した場合であっても、上記工具の折損をより十分に抑制することができ、もって上記工具の長寿命化を実現することができる。 [2] The average atomic concentration of nitrogen contained in the CVD single crystal diamond is preferably 1 ppm or more and 100 ppm or less. As a result, even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, breakage of the tool can be more sufficiently suppressed, and thus the life of the tool is extended. Can be realized.
 [3]上記CVD単結晶ダイヤモンドは、1nm以上200nm以下の位相差の平均値を有し、上記位相差は、上記CVD単結晶ダイヤモンドに対し円偏光を照射した場合に発生する位相差であることが好ましい。これにより、ダイヤモンド棒状体を工具材料として適用することによって高アスペクト比を有する工具を形成した場合であっても、上記工具の折損をより十分に抑制することができ、もって上記工具の長寿命化を実現することができる。 [3] The CVD single crystal diamond has an average value of a phase difference of 1 nm or more and 200 nm or less, and the phase difference is a phase difference generated when the CVD single crystal diamond is irradiated with circular polarization. Is preferable. As a result, even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, breakage of the tool can be more sufficiently suppressed, and thus the life of the tool is extended. Can be realized.
 [4]本開示の一態様に係るダイヤモンド工具は、台金部と、上記台金部に接合されるダイヤモンド部とを含むダイヤモンド工具であって、上記ダイヤモンド部は、上記ダイヤモンド棒状体からなることが好ましい。このような特徴を備えるダイヤモンド工具は、高アスペクト比を有する場合であっても折損を抑制することができ、もって長寿命化を実現することができる。 [4] The diamond tool according to one aspect of the present disclosure is a diamond tool including a base metal portion and a diamond portion joined to the base metal portion, and the diamond portion is composed of the diamond rod-shaped body. Is preferable. A diamond tool having such a feature can suppress breakage even when it has a high aspect ratio, and thus can realize a long life.
 [5]上記ダイヤモンド工具は、ドリルであることが好ましい。これにより、上記ドリルが高アスペクト比を有する場合であっても折損を抑制することができ、もって長寿命化を実現することができる。 [5] The diamond tool is preferably a drill. As a result, even when the drill has a high aspect ratio, breakage can be suppressed, and a long life can be realized.
 [6]本開示の一態様に係るカンチレバーは、上記ダイヤモンド棒状体からなる。このような特徴を備えるカンチレバーは、高アスペクト比を有する場合であっても折損を抑制することができ、かつレコードの音溝から拾う音の品質を向上させることができる。 [6] The cantilever according to one aspect of the present disclosure is made of the diamond rod-shaped body. A cantilever having such a feature can suppress breakage even when it has a high aspect ratio, and can improve the quality of the sound picked up from the sound groove of the record.
 [7]上記カンチレバーは、スタイラスを含むことが好ましい。これにより、レコードの音溝から拾う音の品質をさらに向上させることができる。 [7] The cantilever preferably contains a stylus. As a result, the quality of the sound picked up from the sound groove of the record can be further improved.
 [本開示の実施形態の詳細]
 以下、本開示の実施形態(以下、「本実施形態」とも記す)についてさらに詳細に説明する。ここで本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
[Details of Embodiments of the present disclosure]
Hereinafter, embodiments of the present disclosure (hereinafter, also referred to as “the present embodiments”) will be described in more detail. Here, in the present specification, the notation in the form of "A to B" means the upper and lower limits of the range (that is, A or more and B or less), and the unit is not described in A and the unit is described only in B. , The unit of A and the unit of B are the same.
 〔ダイヤモンド棒状体〕
 本実施形態に係るダイヤモンド棒状体は、CVD単結晶ダイヤモンドからなるダイヤモンド棒状体である。上記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有する。さらに上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、上記第1断面における最大幅Wに対する上記長さLの比L/Wは、10以上30以下である。
[Diamond rod]
The diamond rod-shaped body according to the present embodiment is a diamond rod-shaped body made of CVD single crystal diamond. The diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less. Further, the diamond rod-shaped body has the maximum width in the first cross section when the cross section having the smallest area is defined as the first cross section among the cross sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction. The ratio L / W of the length L to W is 10 or more and 30 or less.
 このような特徴を備えるダイヤモンド棒状体は、これを工具材料として適用することにより、高アスペクト比(すなわち比L/Wが10以上30以下)のCVD単結晶ダイヤモンドを有する工具としてワークを加工した場合であっても、折損を抑制することができる。もって上記ダイヤモンド棒状体は、これを含む工具を長寿命化することができる。 When a diamond rod having such characteristics is applied as a tool material, the work is processed as a tool having a CVD single crystal diamond having a high aspect ratio (that is, a ratio L / W of 10 or more and 30 or less). Even so, breakage can be suppressed. Therefore, the diamond rod-shaped body can extend the life of the tool including the diamond rod-shaped body.
 <CVD単結晶ダイヤモンド>
 ダイヤモンド棒状体は、CVD単結晶ダイヤモンドからなる。CVD単結晶ダイヤモンドとは、単結晶ダイヤモンドからなる基板上に、化学気相蒸着(CVD)法を用いて単結晶ダイヤモンド層をエピタキシャル成長させることにより製造される単結晶ダイヤモンドを意味する。このようなCVD単結晶ダイヤモンドを得る方法については、たとえば後述のダイヤモンド棒状体の製造方法について解説した項目を参照することができる。
<CVD single crystal diamond>
The diamond rod is made of CVD single crystal diamond. The CVD single crystal diamond means a single crystal diamond produced by epitaxially growing a single crystal diamond layer on a substrate made of the single crystal diamond by using a chemical vapor deposition (CVD) method. As for the method for obtaining such a CVD single crystal diamond, for example, the item described later about the method for producing a diamond rod can be referred to.
 (窒素の平均原子濃度)
 CVD単結晶ダイヤモンドに含まれる窒素の平均原子濃度は、1ppm以上100ppm以下であることが好ましい。これにより、上記ダイヤモンド棒状体を工具材料として適用することによって高アスペクト比を有する工具を形成した場合であっても、上記工具の折損をより十分に抑制することができる。上記窒素の平均原子濃度が1ppm未満となる場合、単結晶ダイヤモンドの性質の一つである劈開性が強く表れるため、特定の面(劈開面)に衝撃が加わったときにクラックが発生しやすい傾向がある。上記窒素の平均原子濃度が100ppmを超える場合、CVD単結晶ダイヤモンドに所望の靭性を備えさせることが困難となり、工具の折損を十分に抑制することができなくなる恐れがある。CVD単結晶ダイヤモンドにおける窒素の平均原子濃度は、20ppm以上50ppm以下であることがより好ましい。
(Average atomic concentration of nitrogen)
The average atomic concentration of nitrogen contained in the CVD single crystal diamond is preferably 1 ppm or more and 100 ppm or less. As a result, even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, breakage of the tool can be more sufficiently suppressed. When the average atomic concentration of nitrogen is less than 1 ppm, the cleavage property, which is one of the properties of single crystal diamond, appears strongly, so cracks tend to occur when an impact is applied to a specific surface (cleavage surface). There is. If the average atomic concentration of nitrogen exceeds 100 ppm, it becomes difficult to provide the CVD single crystal diamond with desired toughness, and there is a risk that breakage of the tool cannot be sufficiently suppressed. The average atomic concentration of nitrogen in the CVD single crystal diamond is more preferably 20 ppm or more and 50 ppm or less.
 CVD単結晶ダイヤモンドにおける窒素の平均原子濃度の測定方法は、以下のとおりである。すなわちCVD単結晶ダイヤモンド中の窒素の原子濃度は、2次イオン質量分析(SIMS:Secondary Ion Mass Spectrometry)法により測定することができる。測定装置としては、たとえばSIMS装置(商品名:「IMS 7f」、CAMECA社製)を用いることができる。 The method for measuring the average atomic concentration of nitrogen in CVD single crystal diamond is as follows. That is, the atomic concentration of nitrogen in the CVD single crystal diamond can be measured by a secondary ion mass spectrometry (SIMS) method. As the measuring device, for example, a SIMS device (trade name: "IMS 7f", manufactured by CAMECA) can be used.
 CVD単結晶ダイヤモンドにおける窒素の原子濃度の測定に際しては、たとえば後述のダイヤモンド棒状体の製造方法に基づいて、まずCVD単結晶ダイヤモンドを得ることにより、長手方向の長さが2mm以上20mm以下の試料を作製する。次に、この試料の最表面から深さ0.5μmとなる面をスパッタすることにより露出させ、上記試料の測定対象面を得る。上記測定対象面に対し、上記SIMS装置を用いて一次イオンとしてCsを、加速電圧15kV、検出領域35μmφの条件下で照射することにより、上記測定対象面における窒素の原子濃度を求めることができる。 In measuring the atomic concentration of nitrogen in a CVD single crystal diamond, for example, based on the method for producing a diamond rod described later, a CVD single crystal diamond is first obtained to obtain a sample having a length of 2 mm or more and 20 mm or less in the longitudinal direction. To make. Next, a surface having a depth of 0.5 μm from the outermost surface of this sample is exposed by sputtering to obtain a measurement target surface of the sample. The atomic concentration of nitrogen on the surface to be measured can be determined by irradiating the surface to be measured with Cs + as a primary ion as a primary ion under the conditions of an acceleration voltage of 15 kV and a detection region of 35 μmφ. ..
 窒素の原子濃度の定量は、別途用意した標準試料(イオン注入により作製した窒素の原子濃度が既知の単結晶ダイヤモンド)との比較により行う。不純物濃度は、その値が小さい場合、測定装置の精度によって測定値が真の値からずれる場合がある。このため、より正確な値を得る観点から、上記試料の長手方向の一端および他端の2箇所と、上記長手方向の中央部の1箇所とを合わせた合計3箇所において、最表面から深さ0.5μmとなる測定対象面を得、これら3箇所の測定対象面において得られた測定値の平均値を算出し、この平均値を窒素の平均原子濃度として求めることが好ましい。 The atomic concentration of nitrogen is quantified by comparison with a separately prepared standard sample (single crystal diamond with a known atomic concentration of nitrogen prepared by ion implantation). If the value of the impurity concentration is small, the measured value may deviate from the true value depending on the accuracy of the measuring device. Therefore, from the viewpoint of obtaining more accurate values, the depth from the outermost surface is deepened at a total of three locations including two locations at one end and the other end in the longitudinal direction of the sample and one location at the center portion in the longitudinal direction. It is preferable to obtain a measurement target surface having a size of 0.5 μm, calculate the average value of the measured values obtained at these three measurement target surfaces, and obtain this average value as the average atomic concentration of nitrogen.
 (位相差:結晶欠陥により生じる歪み)
 CVD単結晶ダイヤモンドは、1nm以上200nm以下の位相差の平均値を有することが好ましい。上記位相差とは、上記CVD単結晶ダイヤモンドに対し円偏光を照射した場合に発生する位相差を意味する。上記位相差は、CVD単結晶ダイヤモンド中に結晶欠陥が存在する場合に発生する。すなわち位相差は、CVD単結晶ダイヤモンド中の結晶欠陥により生じる歪みの大きさを表す指標となる。CVD単結晶ダイヤモンドは、上記位相差の平均値が1nm以上200nm以下である場合、CVD単結晶ダイヤモンド中の結晶欠陥により生じる歪みの大きさが、靭性の向上に好都合となる。このため、上記CVD単結晶ダイヤモンドからなるダイヤモンド棒状体を工具材料として適用することにより、高アスペクト比を有する工具を形成した場合であっても、上記工具の折損をより十分に抑制することができる。
(Phase difference: Distortion caused by crystal defects)
The CVD single crystal diamond preferably has an average value of phase difference of 1 nm or more and 200 nm or less. The phase difference means the phase difference generated when the CVD single crystal diamond is irradiated with circularly polarized light. The above phase difference occurs when crystal defects are present in the CVD single crystal diamond. That is, the phase difference is an index showing the magnitude of distortion caused by crystal defects in the CVD single crystal diamond. When the average value of the phase difference of the CVD single crystal diamond is 1 nm or more and 200 nm or less, the magnitude of the strain caused by the crystal defects in the CVD single crystal diamond is convenient for improving the toughness. Therefore, by applying the diamond rod-shaped body made of the CVD single crystal diamond as a tool material, breakage of the tool can be more sufficiently suppressed even when a tool having a high aspect ratio is formed. ..
 上記位相差の平均値が、1nm未満となる場合、単結晶ダイヤモンドの性質の一つである劈開性が強く表れるため、特定の面(劈開面)に衝撃が加わったときにクラックが発生しやすい傾向がある。上記位相差の平均値が200nmを超える場合、CVD単結晶ダイヤモンドに所望の靭性を備えさせることが困難となり、折損を十分に抑制することができなくなる恐れがある。上記位相差は、50nm以上100nm以下であることがより好ましい。 When the average value of the above phase difference is less than 1 nm, the cleavage property, which is one of the properties of single crystal diamond, appears strongly, so that cracks are likely to occur when an impact is applied to a specific surface (cleavage surface). Tend. When the average value of the phase difference exceeds 200 nm, it becomes difficult to provide the CVD single crystal diamond with the desired toughness, and there is a risk that breakage cannot be sufficiently suppressed. The phase difference is more preferably 50 nm or more and 100 nm or less.
 CVD単結晶ダイヤモンドにおける位相差の平均値は、下記の(a-1)~(a-3)の手順に従うことにより測定することができる。 The average value of the phase difference in the CVD single crystal diamond can be measured by following the procedures (a-1) to (a-3) below.
 (a-1)測定試料の準備
 たとえば後述するダイヤモンド棒状体の製造方法に基づいて、まずCVD単結晶ダイヤモンドを得ることにより長手方向の長さが3~50mmであり、上記長手方向に対して垂直な方向の長さが1~5mmであり、かつ厚みが700μm以上である直方体形状の試料を作製する。次に上記試料に対して研磨、エッチング等を実行することにより、厚みが700μmとなる測定試料を得る。仮に、上記測定の厚みを700μmまで薄くすることができない場合、上記試料に対して以下の測定方法により位相差を測定した後、その測定値を厚み700μmである場合に換算することができる。
(A-1) Preparation of Measurement Sample For example, based on the method for producing a diamond rod-shaped body described later, a CVD single crystal diamond is first obtained to have a length of 3 to 50 mm in the longitudinal direction, which is perpendicular to the longitudinal direction. A rectangular parallelepiped sample having a length of 1 to 5 mm in the above direction and a thickness of 700 μm or more is prepared. Next, by performing polishing, etching, etc. on the above sample, a measurement sample having a thickness of 700 μm is obtained. If the thickness of the measurement cannot be reduced to 700 μm, the phase difference can be measured with respect to the sample by the following measurement method, and then the measured value can be converted to the case where the thickness is 700 μm.
 (a-2)円偏光の照射
 上記(a-1)で準備された測定試料の一方の主面に対し、ほぼ垂直に円偏光を照射する。円偏光は、後述する測定装置に備わるレーザにより形成することができる。
(A-2) Irradiation of circularly polarized light Circularly polarized light is irradiated to one main surface of the measurement sample prepared in the above (a-1) substantially perpendicularly. Circularly polarized light can be formed by a laser provided in a measuring device described later.
 (a-3)複屈折率の測定
 円偏光が照射された主面において、測定領域(1mm×1mm)を10点設定し、この10点の測定領域において位相差を測定する。位相差の測定は、複屈折分布測定装置(商品名:「WPA-100」、株式会社フォトニックラティス社製)を用いることができる。上記測定装置は、3種類の波長(523nm、543nmおよび575nm)のレーザを備えるため、これらのレーザを使い分けることにより、位相差の測定範囲を拡張することができる。以上から、10点の測定領域における測定値を求め、その平均値をCVD単結晶ダイヤモンドの位相差の平均値として算出することができる。
(A-3) Measurement of Birefringence Index 10 measurement areas (1 mm × 1 mm) are set on the main surface irradiated with circularly polarized light, and the phase difference is measured in these 10 measurement areas. A birefringence distribution measuring device (trade name: "WPA-100", manufactured by Photonic Lattice Co., Ltd.) can be used for measuring the phase difference. Since the measuring device includes lasers of three types of wavelengths (523 nm, 543 nm and 575 nm), the phase difference measurement range can be expanded by properly using these lasers. From the above, the measured values in the measurement region of 10 points can be obtained, and the average value can be calculated as the average value of the phase difference of the CVD single crystal diamond.
 <長手方向の長さL>
 上記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有する。上記長手方向の長さLが2mm以上20mm以下である場合、ダイヤモンド棒状体は、これを工具材料として適用することにより、高アスペクト比を有する工具を形成した場合であっても、上記工具の折損を抑制することができる。上記ダイヤモンド棒状体の長手方向の長さLは、5mm以上15mm以下であることが好ましく、8mm以上15mm以下であることがより好ましい。上記ダイヤモンド棒状体の長手方向の長さLは、ノギス等の従来公知の長さ測定器を用いることにより測定することができる。
<Length L in the longitudinal direction>
The diamond rod-shaped body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less. When the length L in the longitudinal direction is 2 mm or more and 20 mm or less, the diamond rod-shaped body is broken even when a tool having a high aspect ratio is formed by applying this as a tool material. Can be suppressed. The length L of the diamond rod in the longitudinal direction is preferably 5 mm or more and 15 mm or less, and more preferably 8 mm or more and 15 mm or less. The length L of the diamond rod in the longitudinal direction can be measured by using a conventionally known length measuring device such as a caliper.
 上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面が円形、楕円形、卵形、三角形、四角形およびその他の多角形を有する棒状体であってもよい。具体的には、上記ダイヤモンド棒状体は、外観形状が角棒状(四角柱状)または丸棒状(円柱状)であることが好ましい。さらに上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる2以上の断面の形状が互いに同じであってもよく、異なっていてもよい。もって上記2以上の断面の面積(大きさ)は、互いに同じであってもよく、異なっていてもよい。 The diamond rod is a rod having a circular, elliptical, oval, triangular, quadrangular, or other polygonal cross section that appears by cutting the diamond rod in a plane perpendicular to the longitudinal direction. May be good. Specifically, the diamond rod-shaped body preferably has a square rod shape (square columnar shape) or a round bar shape (cylindrical column) in appearance. Further, the diamond rods may have the same or different cross-sectional shapes of two or more appearing by cutting the diamond rods in a plane perpendicular to the longitudinal direction. Therefore, the areas (sizes) of the two or more cross sections may be the same or different from each other.
 <第1断面、および第1断面の最大幅W>
 上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、上記第1断面における最大幅Wに対する上記長さLの比L/Wは、10以上30以下である。すなわち上記第1断面は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面である。ここでダイヤモンド棒状体は、上述のように上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる2以上の断面の形状が互いに同じであってもよく、異なっていてもよい。このため本明細書において「第1断面」は、上記2以上の断面の形状および面積の異同に関わらず、そのうち最小面積を有する断面として規定される。
<First cross section and maximum width W of the first cross section>
The maximum width W of the diamond rod-shaped body in the first cross-section is defined as the cross-section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction. The ratio L / W of the length L to the above is 10 or more and 30 or less. That is, the first cross section is a cross section having the smallest area among the cross sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction. Here, the diamond rod-shaped bodies may have the same or different cross-sectional shapes of two or more appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction as described above. .. Therefore, in the present specification, the "first cross section" is defined as the cross section having the smallest area among the two or more cross sections, regardless of the difference in shape and area.
 上記第1断面の面積は、具体的には0.01~3.5mm2であることが好ましく、0.03~2mm2であることがより好ましく、0.5~1mm2であることがさらに好ましい。 Specifically, the area of the first cross section is preferably 0.01 to 3.5 mm 2 , more preferably 0.03 to 2 mm 2 , and further preferably 0.5 to 1 mm 2. preferable.
 ここで上記ダイヤモンド棒状体における上記複数の断面のうち、第1断面に相当する断面を特定する方法は、投影機などを用いる方法を例示することができる。具体的には投影機などを用い、外径測定することにより上記ダイヤモンド棒状体における第1断面を特定し、かつ当該第1断面の面積を求めることができる。 Here, as a method of specifying the cross section corresponding to the first cross section among the plurality of cross sections of the diamond rod-shaped body, a method using a projector or the like can be exemplified. Specifically, the first cross section of the diamond rod-shaped body can be specified and the area of the first cross section can be obtained by measuring the outer diameter using a projector or the like.
 <比L/W>
 上記ダイヤモンド棒状体は、上記長手方向に対して垂直な平面で上記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、上記第1断面における最大幅Wに対する上記長さLの比L/Wは、10以上30以下である。上記比L/Wは、15以上30以下であることが好ましく、20以上30以下であることがより好ましい。本明細書において「高アスペクト比」とは、上記比L/Wが10以上である場合を意味する。さらに本明細書において「最大幅W」とは、上記第1断面の外郭線上の任意の2点間を結ぶ線分のうち、最大となる線分の距離を意味する。たとえば上記第1断面が円形である場合、上記第1断面の円の直径が「最大幅W」となる。上記ダイヤモンド棒状体における最大幅Wは、上述した投影機などを用いることにより測定することができる。
<Ratio L / W>
The maximum width W of the diamond rod-shaped body in the first cross-section is defined as the cross-section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction. The ratio L / W of the length L to the above is 10 or more and 30 or less. The ratio L / W is preferably 15 or more and 30 or less, and more preferably 20 or more and 30 or less. As used herein, the term "high aspect ratio" means a case where the ratio L / W is 10 or more. Further, in the present specification, the "maximum width W" means the distance of the maximum line segment among the line segments connecting arbitrary two points on the outer line of the first cross section. For example, when the first cross section is circular, the diameter of the circle of the first cross section is the "maximum width W". The maximum width W of the diamond rod-shaped body can be measured by using the above-mentioned projector or the like.
 〔ダイヤモンド工具〕
 本実施形態に係るダイヤモンド工具は、台金部と、上記台金部に接合されるダイヤモンド部とを含むダイヤモンド工具であることが好ましい。この場合において上記ダイヤモンド部は、上記ダイヤモンド棒状体からなる。上記ダイヤモンド工具は、上記ダイヤモンド棒状体からなるダイヤモンド部を含むことから、高アスペクト比となる場合であっても折損を抑制することができ、もって長寿命化を実現することができる。
[Diamond tool]
The diamond tool according to the present embodiment is preferably a diamond tool including a base metal portion and a diamond portion joined to the base metal portion. In this case, the diamond portion is made of the diamond rod-shaped body. Since the diamond tool includes a diamond portion made of the diamond rod-shaped body, breakage can be suppressed even when the aspect ratio is high, and a long life can be realized.
 上記ダイヤモンド工具においてダイヤモンド部は、上記ダイヤモンド棒状体が上記台金部に蝋付け等の手段により接合され、かつ上記ダイヤモンド棒状体が加工されることにより形成される場合がある。上記ダイヤモンド工具において台金部は、この種の台金部として従来公知の合金をいずれも使用することができる。台金部の材料としては、超硬合金(たとえばWC基超硬合金、WCのほか、Coを含み、あるいはTi、Ta、Nbなどの炭窒化物を添加したものも含む)、サーメット(WC含有Ti(C,N)基サーメット、およびWCのほか、Co、Ni、Crなどの鉄系金属を添加したものも含む)、高速度鋼(少なくともWを含むもの)、セラミックス(WCを含み、炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなどを主成分とするもの)等を例示することができる。 In the diamond tool, the diamond portion may be formed by joining the diamond rod-shaped body to the base metal portion by means such as brazing and processing the diamond rod-shaped body. In the diamond tool, any conventionally known alloy can be used as the base metal portion as the base metal portion of this type. As the material of the base metal part, cemented carbide (for example, WC-based cemented carbide, WC, as well as those containing Co or added with carbonitrides such as Ti, Ta, Nb), cermet (containing WC). In addition to Ti (C, N) -based cermet and WC, those to which iron-based metals such as Co, Ni, and Cr are added), high-speed steel (including at least W), ceramics (including WC, carbide) Titanium, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc. as the main components) and the like can be exemplified.
 上記ダイヤモンド工具は、たとえばドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、リーマまたはタップ等の切削工具、ドレッサー等の耐摩工具、砥石、ブレード、ビット等の研削工具等の各種の工具にいずれも用いることができる。 The diamond tools include, for example, drills, end mills, cutting tips with replaceable cutting edges for milling, cutting tips with replaceable cutting edges for turning, cutting tools such as reamers or taps, abrasion resistant tools such as dressers, grindstones, blades, bits, etc. Any of them can be used for various tools such as tools.
 上記ダイヤモンド工具が切削工具である場合、ダイヤモンド部は、すくい面の一部、逃げ面の一部、および上記すくい面および上記逃げ面が交差する稜線からなる切れ刃を含む。上記ダイヤモンド工具は、上記切れ刃を含むダイヤモンド部が高アスペクト比(すなわち比L/Wが10以上30以下)を有する場合であっても、ワークの加工時に折損することを抑制することができる。本明細書において「切れ刃」とは、上述のようにすくい面の一部、逃げ面の一部、および上記すくい面および上記逃げ面が交差する稜線からなり、被削材の切削または研削に直接関与する部分をいう。 When the diamond tool is a cutting tool, the diamond portion includes a part of a rake face, a part of a flank, and a cutting edge consisting of a ridge line where the rake face and the flank intersect. The diamond tool can suppress breakage during machining of the work even when the diamond portion including the cutting edge has a high aspect ratio (that is, the ratio L / W is 10 or more and 30 or less). In the present specification, the "cutting edge" is composed of a part of a rake face, a part of a flank surface, and a ridge line where the rake face and the flank face intersect as described above, and is used for cutting or grinding a work material. The part that is directly involved.
 なかでも上記ダイヤモンド工具が切削工具である場合、上記ダイヤモンド工具は、ドリルであることが好ましい。ドリルは、たとえば上記台金部としてのシャンクと、上記シャンクに蝋付け等の手段により接合され、かつダイヤモンド棒状体が加工されることにより形成されるダイヤモンド部とからなることが好ましい。このダイヤモンド部も、少なくとも上述した切れ刃を含む。ドリルは、上記切れ刃を含むダイヤモンド部が高アスペクト比(すなわち比L/Wが10以上30以下)を有する場合であっても、ワークの加工時に折損することを抑制することができ、もって長寿命化を実現することができる。 Among them, when the diamond tool is a cutting tool, the diamond tool is preferably a drill. The drill preferably comprises, for example, a shank as the base metal portion and a diamond portion formed by joining the shank by means such as brazing and processing a diamond rod-shaped body. This diamond portion also includes at least the cutting edge described above. Even when the diamond portion including the cutting edge has a high aspect ratio (that is, the ratio L / W is 10 or more and 30 or less), the drill can suppress breakage during machining of the work, and thus has a long length. It is possible to realize a long life.
 〔カンチレバー〕
 本実施形態に係るカンチレバーは、上記ダイヤモンド棒状体からなる。上記カンチレバーは、上記ダイヤモンド棒状体からなることから、高アスペクト比(すなわち比L/Wが10以上30以下)を有する場合であっても折損を抑制することができる。さらに上記カンチレバーは、上記ダイヤモンド棒状体からなることから、レコードの音溝から拾う音の品質を向上させることができる。
[Cantilever]
The cantilever according to the present embodiment is made of the diamond rod-shaped body. Since the cantilever is made of the diamond rod-like body, breakage can be suppressed even when the cantilever has a high aspect ratio (that is, the ratio L / W is 10 or more and 30 or less). Further, since the cantilever is made of the diamond rod-like body, the quality of the sound picked up from the sound groove of the record can be improved.
 上記カンチレバーは、具体的には、上記ダイヤモンド棒状体から従来公知の方法を用いることにより、レコードプレーヤに適用されるカンチレバーとして所定の形状に加工されることにより製造される。この場合、上記カンチレバーは、スタイラスを含むことが好ましい。これにより、上記カンチレバーは、スタイラスもダイヤモンド棒状体からなるため、レコードの音溝から拾う音の品質をさらに向上させることができる。 Specifically, the cantilever is manufactured by processing the diamond rod-shaped body into a predetermined shape as a cantilever applied to a record player by using a conventionally known method. In this case, the cantilever preferably contains a stylus. As a result, since the stylus of the cantilever is also made of a diamond rod, the quality of the sound picked up from the sound groove of the record can be further improved.
 〔ダイヤモンド棒状体の製造方法〕
 本実施形態に係るダイヤモンド棒状体の製造方法は、後述する第2工程および第3工程を除き、この種のダイヤモンド棒状体を製造するための従来公知の手法を適宜用いることにより製造することができる。本実施形態に係るダイヤモンド棒状体の製造方法は、上述した効果を奏するCVD単結晶ダイヤモンドからなる上記ダイヤモンド棒状体を歩留まり良く製造する観点から、次の方法を用いることが好ましい。
[Manufacturing method of diamond rod]
The method for producing a diamond rod-shaped body according to the present embodiment can be produced by appropriately using a conventionally known method for producing this type of diamond rod-shaped body, except for the second step and the third step described later. .. As the method for producing a diamond rod according to the present embodiment, it is preferable to use the following method from the viewpoint of producing the diamond rod made of CVD single crystal diamond having the above-mentioned effect with good yield.
 すなわち上記ダイヤモンド棒状体の製造方法として、ダイヤモンドからなる単結晶基板を準備する工程(第1工程)と、上記単結晶基板に対しイオン注入することにより、上記単結晶基板の表面に導電層を形成する工程(第2工程)と、上記導電層上にCVD単結晶ダイヤモンドからなるエピタキシャル成長層をエピタキシャル成長させる工程(第3工程)と、上記エピタキシャル成長層を単結晶基板から分離する工程(第4工程)と、分離したエピタキシャル成長層であるCVD単結晶ダイヤモンドを研削加工あるいは研磨加工することにより、CVD単結晶ダイヤモンドからなるダイヤモンド棒状体を得る工程(第5工程)と、を含む製造方法を挙げることができる。 That is, as a method for producing the diamond rod-shaped body, a conductive layer is formed on the surface of the single crystal substrate by preparing a single crystal substrate made of diamond (first step) and injecting ions into the single crystal substrate. Steps (second step), epitaxial growth of an epitaxial growth layer made of CVD single crystal diamond on the conductive layer (third step), and separation of the epitaxial growth layer from the single crystal substrate (fourth step). A manufacturing method including a step (fifth step) of obtaining a diamond rod-shaped body made of a CVD single crystal diamond by grinding or polishing a CVD single crystal diamond which is a separated epitaxial growth layer can be mentioned.
 <第1工程>
 第1工程は、ダイヤモンドからなる単結晶基板を準備する工程である。ダイヤモンドからなる単結晶基板は従来公知のものを用いることができる。たとえば平板形状を有し、高温高圧合成法により製造されたダイヤモンドからなる単結晶基板(タイプ:Ib)を用いることにより、上記単結晶基板を準備することができる。
<First step>
The first step is a step of preparing a single crystal substrate made of diamond. As the single crystal substrate made of diamond, a conventionally known one can be used. For example, the above-mentioned single crystal substrate can be prepared by using a single crystal substrate (type: Ib) having a flat plate shape and made of diamond manufactured by a high-temperature and high-pressure synthesis method.
 上記単結晶基板は、単結晶ダイヤモンドの(100)面からなる表面と、表面に対して垂直な(001)面および(011)面などからなる側面とを有する平板であることが好ましい。さらに単結晶基板は、上記平板の厚みのばらつきが10%以下であることが好ましい。単結晶基板の表面は、表面粗さRaが30nm以下であることも好ましい。単結晶基板の表面(上面)の形状は、たとえば正方形、長方形などの矩形状であってもよく、六角形、八角形などの矩形以外の多角形状であってもよい。 The single crystal substrate is preferably a flat plate having a surface made of (100) planes of single crystal diamond and side surfaces made of (001) planes and (011) planes perpendicular to the surfaces. Further, in the single crystal substrate, the variation in the thickness of the flat plate is preferably 10% or less. It is also preferable that the surface of the single crystal substrate has a surface roughness Ra of 30 nm or less. The shape of the surface (upper surface) of the single crystal substrate may be a rectangular shape such as a square or a rectangle, or a polygonal shape other than a rectangle such as a hexagon or an octagon.
 上記単結晶基板の表面は、上述のように(100)面であることが好ましく、(100)面に対して0.5°以上0.7°以下のオフ角を有する面であることがより好ましい。ただし、本明細書において単結晶ダイヤモンドの「(100)面」とは、単結晶ダイヤモンドの一面が、(100)面からオフ角が±7°以内の面である場合、これを単結晶ダイヤモンドの「(100)面」と称する。単結晶ダイヤモンドの(100)面からなる表面に対して垂直な「(001)面」および「(011)面」も同様に、上記(001)面および(011)面からオフ角が±7°以内の面である場合、これらを単結晶ダイヤモンドの「(001)面」および「(011)面」とそれぞれ称するものとする。 The surface of the single crystal substrate is preferably a (100) plane as described above, and more preferably a plane having an off angle of 0.5 ° or more and 0.7 ° or less with respect to the (100) plane. preferable. However, in the present specification, the "(100) plane" of a single crystal diamond refers to a plane of a single crystal diamond whose off angle is within ± 7 ° from the (100) plane. It is referred to as "(100) plane". Similarly, the "(001) plane" and "(011) plane" perpendicular to the surface of the (100) plane of the single crystal diamond have an off angle of ± 7 ° from the (001) plane and the (011) plane. If the planes are within, these are referred to as the "(001) plane" and the "(011) plane" of the single crystal diamond, respectively.
 さらに上記単結晶基板の表面に対し、エッチングが実行されることが好ましい。たとえば酸素(O2)ガスおよび四フッ化炭素(CF4)ガスを用いた反応性イオンエッチング(RIE:Reactive Ion Etching)により、上記単結晶基板の表面をエッチングする。エッチングの方法は、上記RIEに限定されるべきではなく、たとえばアルゴン(Ar)ガスを主体としたガスによるスパッタリングであってもよい。これにより後述する第3工程において、CVD単結晶ダイヤモンドを上記単結晶基板の表面に効率的にエピタキシャル成長させることが可能となる。 Further, it is preferable that etching is performed on the surface of the single crystal substrate. For example, the surface of the single crystal substrate is etched by reactive ion etching (RIE) using oxygen (O 2 ) gas and carbon tetrafluoride (CF 4) gas. The etching method is not limited to the above-mentioned RIE, and may be, for example, sputtering using a gas mainly composed of argon (Ar) gas. This makes it possible to efficiently epitaxially grow CVD single crystal diamond on the surface of the single crystal substrate in the third step described later.
 <第2工程>
 第2工程は、上記単結晶基板に対しイオン注入することにより、上記単結晶基板の表面に導電層を形成する工程である。本工程は、具体的には上述のようにエッチングされた単結晶基板の表面へ向けて、カーボン(C)イオンを注入する。これにより、単結晶基板の表面を含む領域に導電層を形成することができる。注入イオンは、カーボンイオンに限定されるべきではなく、窒素イオンでもよいし、シリコンイオンでもよいし、リンイオンでもよいし、硫黄イオンでもよい。ここで上記導電層が表面に形成された単結晶基板に対し、ダイヤモンド砥粒が埋め込まれた研磨盤などを用いて研磨し、上記導電層の表面粗さRaを調整することにより、CVD単結晶ダイヤモンドにおける円偏光を照射した場合に発生する位相差の平均値を制御することができる。具体的には、上記導電層が表面に形成された上記単結晶基板の表面粗さRaを0.5nm以上100nm以下となるように研磨することにより、CVD単結晶ダイヤモンドにおける円偏光を照射した場合に発生する位相差の平均値を、1nm以上200nm以下とすることができる。
<Second step>
The second step is a step of forming a conductive layer on the surface of the single crystal substrate by implanting ions into the single crystal substrate. Specifically, in this step, carbon (C) ions are injected toward the surface of the single crystal substrate etched as described above. Thereby, the conductive layer can be formed in the region including the surface of the single crystal substrate. The injected ion is not limited to the carbon ion, and may be a nitrogen ion, a silicon ion, a phosphorus ion, or a sulfur ion. Here, the single crystal substrate on which the conductive layer is formed is polished using a polishing machine or the like in which diamond abrasive grains are embedded, and the surface roughness Ra of the conductive layer is adjusted to obtain a CVD single crystal. It is possible to control the average value of the phase difference generated when the diamond is irradiated with circular polarization. Specifically, when the surface roughness Ra of the single crystal substrate having the conductive layer formed on the surface is polished to 0.5 nm or more and 100 nm or less to irradiate circular polarization in the CVD single crystal diamond. The average value of the phase difference generated in the above can be 1 nm or more and 200 nm or less.
 <第3工程>
 第3工程は、上記導電層上にCVD単結晶ダイヤモンドからなるエピタキシャル成長層をエピタキシャル成長させる工程である。本工程は、具体的には水素(H2)ガス、メタン(CH4)ガスおよび窒素(N2)ガスを導入することにより雰囲気を形成したCVD炉に、上記導電層が形成された単結晶基板を配置し、上記CVD炉においてマイクロ波プラズマCVD法を実行する。これにより導電層を介してCVD単結晶ダイヤモンドをエピタキシャル成長させ、もって導電層上にエピタキシャル成長層を形成することができる。成長層の形成方法は、マイクロ波プラズマCVD法に限定されるべきではなく、たとえば熱フィラメントCVD法、DCプラズマ法などを用いることができる。CVD炉内の雰囲気において、窒素(N2)ガスの量を調整することにより、CVD単結晶ダイヤモンドにおける窒素の平均原子濃度を決定することができる。たとえば窒素(N2)ガスの量を調整することにより、CVD単結晶ダイヤモンド中における窒素を、1ppm以上100ppm以下の平均原子濃度とすることができる。さらにCVD炉内の雰囲気に関し、メタンガスに代えてエタンガスなどの他の炭化水素を含むガスを用いることができる。
<Third step>
The third step is a step of epitaxially growing an epitaxial growth layer made of CVD single crystal diamond on the conductive layer. In this step, specifically, a single crystal in which the conductive layer is formed in a CVD furnace in which an atmosphere is formed by introducing hydrogen (H 2 ) gas, methane (CH 4 ) gas, and nitrogen (N 2) gas. The substrate is placed and the microwave plasma CVD method is executed in the above CVD furnace. As a result, the CVD single crystal diamond can be epitaxially grown through the conductive layer, and thus the epitaxial growth layer can be formed on the conductive layer. The method for forming the growth layer should not be limited to the microwave plasma CVD method, and for example, a thermal filament CVD method, a DC plasma method, or the like can be used. By adjusting the amount of nitrogen (N 2 ) gas in the atmosphere inside the CVD furnace, the average atomic concentration of nitrogen in the CVD single crystal diamond can be determined. For example, by adjusting the amount of nitrogen (N 2 ) gas, the nitrogen in the CVD single crystal diamond can have an average atomic concentration of 1 ppm or more and 100 ppm or less. Further, regarding the atmosphere in the CVD furnace, a gas containing other hydrocarbons such as ethane gas can be used instead of methane gas.
 <第4工程>
 第4工程は、上記エピタキシャル成長層を単結晶基板から分離する工程である。本工程では、具体的には単結晶基板中の導電層に対し電気化学的なエッチングを実行することにより、単結晶基板とエピタキシャル成長層とを分離する。これにより分離したエピタキシャル成長層、すなわちCVD単結晶ダイヤモンドを得ることができる。エピタキシャル成長層の分離方法は、上述した電気化学的なエッチングに限定されるべきではなく、たとえばレーザを用いたスライスであってもよい。
<4th process>
The fourth step is a step of separating the epitaxial growth layer from the single crystal substrate. In this step, specifically, the single crystal substrate and the epitaxial growth layer are separated by performing electrochemical etching on the conductive layer in the single crystal substrate. As a result, a separated epitaxial growth layer, that is, a CVD single crystal diamond can be obtained. The method for separating the epitaxial growth layer should not be limited to the above-mentioned electrochemical etching, and may be a slice using a laser, for example.
 <第5工程>
 第5工程は、分離したエピタキシャル成長層であるCVD単結晶ダイヤモンドを研削加工あるいは研磨加工することにより、CVD単結晶ダイヤモンドからなるダイヤモンド棒状体を得る工程である。具体的には、上記CVD単結晶ダイヤモンドに対して従来公知の研削加工あるいは研磨加工を実行することにより、長手方向の長さLが2mm以上20mm以下であり、かつ第1断面における最大幅Wに対する上記長さLの比L/Wが10以上30以下であるCVD単結晶ダイヤモンドからなるダイヤモンド棒状体を得ることができる。
<Fifth step>
The fifth step is a step of obtaining a diamond rod-shaped body made of a CVD single crystal diamond by grinding or polishing a CVD single crystal diamond which is a separated epitaxial growth layer. Specifically, by performing a conventionally known grinding process or polishing process on the CVD single crystal diamond, the length L in the longitudinal direction is 2 mm or more and 20 mm or less, and the maximum width W in the first cross section is obtained. It is possible to obtain a diamond rod-shaped body made of a CVD single crystal diamond having a ratio L / W of the length L of 10 or more and 30 or less.
 以上により、本実施形態に係るダイヤモンド棒状体を製造することができる。このようなダイヤモンド棒状体は、これを工具材料として適用することによって高アスペクト比を有する工具を形成した場合であっても、上記工具の折損を抑制することができ、もって上記工具を長寿命化することができる。 From the above, the diamond rod-shaped body according to the present embodiment can be manufactured. Such a diamond rod-like body can suppress breakage of the tool even when a tool having a high aspect ratio is formed by applying the diamond rod-shaped body as a tool material, thereby extending the life of the tool. can do.
 〔ダイヤモンド工具の製造方法〕
 本実施形態に係るダイヤモンド工具は、上述のようにして製造されたダイヤモンド棒状体を用いる限り、従来公知の手法により製造することができる。たとえばダイヤモンド工具は、台金部とダイヤモンド部とからなる場合、上記ダイヤモンド棒状体をたとえば公知のクランプ手段を用い、台金部に銀蝋などの蝋付け手段を介して接合した後、当該ダイヤモンド棒状体を従来公知の研削加工あるいは研磨加工を用いて所望の形状の切れ刃を含むダイヤモンド部に加工することにより得ることができる。
[Diamond tool manufacturing method]
The diamond tool according to the present embodiment can be manufactured by a conventionally known method as long as the diamond rod-shaped body manufactured as described above is used. For example, when a diamond tool is composed of a base metal portion and a diamond portion, the diamond rod-shaped body is joined to the base metal portion via a waxing means such as silver wax using, for example, a known clamping means, and then the diamond rod-shaped body is formed. It can be obtained by processing the body into a diamond portion including a cutting edge having a desired shape by using a conventionally known grinding process or polishing process.
 〔カンチレバーの製造方法〕
 本実施形態に係るカンチレバーは、上述のようにして製造されたダイヤモンド棒状体からなる限り、従来公知の手法により製造することができる。たとえば、上記ダイヤモンド棒状体を、従来公知の研削加工あるいは研磨加工を用いてレコードプレーヤに用いることに好適な形状に加工することにより得ることができる。この場合において、カンチレバーは、スタイラスを含む形状に加工されることが好ましい。
[Manufacturing method of cantilever]
The cantilever according to the present embodiment can be manufactured by a conventionally known method as long as it consists of the diamond rod-shaped body manufactured as described above. For example, it can be obtained by processing the diamond rod-shaped body into a shape suitable for use in a record player by using a conventionally known grinding process or polishing process. In this case, the cantilever is preferably processed into a shape including a stylus.
 〔付記〕
 以上の説明は、以下に付記する実施形態を含む。
[Additional Notes]
The above description includes the embodiments described below.
 <付記1>
 CVD単結晶ダイヤモンドからなるダイヤモンド棒状体であって、
 前記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有し、
 前記ダイヤモンド棒状体は、前記長手方向に対して垂直な平面で前記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、
 前記第1断面における最大幅Wに対する前記長さLの比L/Wは、10以上30以下である、ダイヤモンド棒状体。
<Appendix 1>
A diamond rod made of CVD single crystal diamond.
The diamond rod-like body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less.
The diamond rod-shaped body has a cross section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction as the first cross section.
A diamond rod-like body having a ratio L / W of the length L to the maximum width W in the first cross section of 10 or more and 30 or less.
 <付記2>
 前記ダイヤモンド棒状体の長手方向の長さLは、5mm以上15mm以下であり、あるいは8mm以上15mm以下である、付記1に記載のダイヤモンド棒状体。
<Appendix 2>
The diamond rod-shaped body according to Appendix 1, wherein the length L of the diamond rod-shaped body in the longitudinal direction is 5 mm or more and 15 mm or less, or 8 mm or more and 15 mm or less.
 <付記3>
 前記ダイヤモンド棒状体は、前記長手方向に対して垂直な平面で前記ダイヤモンド棒状体を切断して現れる断面が円形、楕円形、卵形、三角形、四角形およびその他の多角形からなる群より選ばれるいずれか1つの形状である、付記1または付記2に記載のダイヤモンド棒状体。
<Appendix 3>
The diamond rod is selected from the group consisting of a circular, elliptical, oval, triangular, quadrangular and other polygons having a cross section formed by cutting the diamond rod in a plane perpendicular to the longitudinal direction. The diamond rod-shaped body according to Appendix 1 or Appendix 2, which has one shape.
 <付記4>
 前記第1断面の面積は、0.01~3.5mm2であり、あるいは0.03~2mm2であり、もしくは0.5~1mm2である、付記1から付記3のいずれか1項に記載のダイヤモンド棒状体。
<Appendix 4>
The area of the first cross section is 0.01 to 3.5 mm 2 , or 0.03 to 2 mm 2 , or 0.5 to 1 mm 2 , according to any one of Appendix 1 to Appendix 3. The diamond rod of the description.
 <付記5>
 前記第1断面における最大幅Wに対する前記長さLの比L/Wは、15以上30以下であり、あるいは20以上30以下である、付記1から付記4のいずれか1項に記載のダイヤモンド棒状体。
<Appendix 5>
The diamond rod shape according to any one of Appendix 1 to Appendix 4, wherein the ratio L / W of the length L to the maximum width W in the first cross section is 15 or more and 30 or less, or 20 or more and 30 or less. body.
 <付記6>
 前記CVD単結晶ダイヤモンドに含まれる窒素の平均原子濃度は、20ppm以上50ppm以下である、付記1から付記5のいずれか1項に記載のダイヤモンド棒状体。
<Appendix 6>
The diamond rod-shaped body according to any one of Supplementary note 1 to Supplementary note 5, wherein the average atomic concentration of nitrogen contained in the CVD single crystal diamond is 20 ppm or more and 50 ppm or less.
 <付記7>
 前記CVD単結晶ダイヤモンドは、50nm以上100nm以下の位相差の平均値を有する、付記1から付記6のいずれか1項に記載のダイヤモンド棒状体。
<Appendix 7>
The diamond rod-shaped body according to any one of Supplementary note 1 to Supplementary note 6, wherein the CVD single crystal diamond has an average value of a phase difference of 50 nm or more and 100 nm or less.
 <付記8>
 CVD単結晶ダイヤモンドからなるダイヤモンド棒状体であって、
 前記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有し、
 前記ダイヤモンド棒状体は、第1断面を有し、
 前記第1断面は、前記長手方向に対して垂直な平面で前記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面であり、
 前記ダイヤモンド棒状体は、10以上30以下の比L/Wを有し、
 前記比L/Wは、前記第1断面における最大幅Wに対する前記長さLの比である、ダイヤモンド棒状体。
<Appendix 8>
A diamond rod made of CVD single crystal diamond.
The diamond rod-like body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less.
The diamond rod has a first cross section and has a first cross section.
The first cross section is a cross section having the smallest area among the cross sections appearing by cutting the diamond rod in a plane perpendicular to the longitudinal direction.
The diamond rod has a ratio L / W of 10 or more and 30 or less.
The ratio L / W is a ratio of the length L to the maximum width W in the first cross section, which is a diamond rod-shaped body.
 <付記9>
 前記CVD単結晶ダイヤモンドは、1ppm以上100ppm以下の窒素の平均原子濃度を有する、付記8に記載のダイヤモンド棒状体。
<Appendix 9>
The diamond rod-shaped body according to Appendix 8, wherein the CVD single crystal diamond has an average atomic concentration of nitrogen of 1 ppm or more and 100 ppm or less.
 以下、実施例を挙げて本開示をより詳細に説明するが、本開示はこれらに限定されるものではない。 Hereinafter, the present disclosure will be described in more detail with reference to examples, but the present disclosure is not limited thereto.
 [実施例1]
 以下に説明する実施例1では、試料4、試料6、試料8、試料9および試料11のCVD法により製造されたダイヤモンド棒状体、ならびにこれを含むダイヤモンド工具が実施例に該当する。一方、試料1、試料3、試料5、試料7および試料10の高温高圧合成法により製造されたダイヤモンド棒状体、ならびにこれを含むダイヤモンド工具が比較例に該当する。さらに、試料2および試料12のCVD法により製造されたダイヤモンド棒状体、ならびにこれを含むダイヤモンド工具も比較例に該当する。
[Example 1]
In Example 1 described below, a diamond rod-shaped body produced by the CVD method of Sample 4, Sample 6, Sample 8, Sample 9, and Sample 11 and a diamond tool containing the same correspond to Examples. On the other hand, a diamond rod-shaped body produced by a high-temperature and high-pressure synthesis method of Sample 1, Sample 3, Sample 5, Sample 7, and Sample 10 and a diamond tool containing the same correspond to Comparative Examples. Further, a diamond rod-shaped body produced by the CVD method of Sample 2 and Sample 12, and a diamond tool including the diamond rod-shaped body thereof also correspond to Comparative Examples.
 〔試料1、試料3、試料5、試料7、試料10〕
 <ダイヤモンド棒状体の作製>
 従来公知の高温高圧合成法を実行することにより、縦1mm×横15mm×厚み0.7mmからなる直方体形状の単結晶ダイヤモンド(以下、「高温高圧ダイヤモンド」とも記す)を5個作製した。上記高温高圧ダイヤモンド中の窒素の平均原子濃度を、SIMSを用いて上述の方法により測定したところ、150ppmであった。さらに上述の方法により位相差の平均値(歪量)を求めたところ、150nmであった。
[Sample 1, Sample 3, Sample 5, Sample 7, Sample 10]
<Making a diamond rod>
By executing a conventionally known high-temperature and high-pressure synthesis method, five rectangular parallelepiped-shaped single crystal diamonds (hereinafter, also referred to as "high-temperature and high-pressure diamonds") having a length of 1 mm, a width of 15 mm, and a thickness of 0.7 mm were produced. The average atomic concentration of nitrogen in the high-temperature and high-pressure diamond was measured by the above-mentioned method using SIMS and found to be 150 ppm. Further, when the average value (strain amount) of the phase difference was obtained by the above method, it was 150 nm.
 上記高温高圧ダイヤモンドに対し、従来公知の研磨加工をそれぞれ実行することにより、直径(最大幅W)0.1mm×全長(長さL)0.6mmのダイヤモンド棒状体(試料1)、直径(最大幅W)0.5mm×全長(長さL)5mmのダイヤモンド棒状体(試料3)、直径(最大幅W)0.5mm×全長(長さL)8mmのダイヤモンド棒状体(試料5)、直径(最大幅W)0.1mm×全長(長さL)2mmのダイヤモンド棒状体(試料7)および直径(最大幅W)0.5mm×全長(長さL)15mmのダイヤモンド棒状体(試料10)を得た。 By performing conventionally known polishing processes on the above high-temperature and high-pressure diamonds, a diamond rod-shaped body (sample 1) having a diameter (maximum width W) of 0.1 mm × a total length (length L) of 0.6 mm and a diameter (maximum). Significant W) 0.5 mm x total length (length L) 5 mm diamond rod (sample 3), diameter (maximum width W) 0.5 mm x total length (length L) 8 mm diamond rod (sample 5), diameter (Maximum width W) 0.1 mm × total length (length L) 2 mm diamond rod (sample 7) and diameter (maximum width W) 0.5 mm × total length (length L) 15 mm diamond rod (sample 10) Got
 <ダイヤモンド工具の作製>
 上記の各ダイヤモンド棒状体をそれぞれ公知のクランプ装置を用いて固定し、台金部である超硬合金製のシャンクへ銀蝋により蝋付けした後、上記ダイヤモンド棒状体を、従来公知の研削加工を用いて所定のドリル形状の切れ刃を含むダイヤモンド部に加工した。これにより試料1、試料3、試料5、試料7および試料10のダイヤモンド工具(ドリル)を得た。
<Making diamond tools>
Each of the above diamond rods is fixed using a known clamping device, brazed to a cemented carbide shank which is a base metal portion with silver wax, and then the diamond rods are ground by a conventionally known grinding process. It was processed into a diamond portion including a cutting edge having a predetermined drill shape. As a result, a diamond tool (drill) for Sample 1, Sample 3, Sample 5, Sample 7, and Sample 10 was obtained.
 〔試料2、試料4、試料6、試料8、試料11および試料12〕
 <ダイヤモンド棒状体の作製>
 (第1工程)
 従来公知の高温高圧合成法を実行することにより、縦1mm×横15mm×厚み0.7mmの平板形状からなるダイヤモンド単結晶基板を6個準備した。これらの単結晶基板の表面に対し、RIEにより表面から0.3μmの深さ領域までエッチングした。
[Sample 2, Sample 4, Sample 6, Sample 8, Sample 11 and Sample 12]
<Making a diamond rod>
(First step)
By executing a conventionally known high-temperature and high-pressure synthesis method, six diamond single crystal substrates having a flat plate shape of 1 mm in length × 15 mm in width × 0.7 mm in thickness were prepared. The surfaces of these single crystal substrates were etched by RIE to a depth region of 0.3 μm from the surface.
 (第2工程)
 次に、エネルギーを3MeV、ドーズ量を3.0×1016個/cm2としてカーボンイオンを注入し、上記ダイヤモンド単結晶基板の表面に導電層を形成した。このとき上記導電層が表面に形成された単結晶基板に対し、ダイヤモンド砥粒が埋め込まれた研磨盤を用いて研磨することによって上記導電層の表面粗さRaを調整した。
(Second step)
Next, carbon ions were injected at an energy of 3 MeV and a dose amount of 3.0 × 10 16 / cm 2 , to form a conductive layer on the surface of the diamond single crystal substrate. At this time, the surface roughness Ra of the conductive layer was adjusted by polishing the single crystal substrate on which the conductive layer was formed on the surface using a polishing machine in which diamond abrasive grains were embedded.
 (第3工程)
 さらにマイクロ波プラズマCVD法を実行し、上記ダイヤモンド単結晶基板の導電層上に厚みが1mmのCVD単結晶ダイヤモンドからなるエピタキシャル成長層をエピタキシャル成長させた。このときCVD炉内の雰囲気として水素ガス、メタンガスおよび窒素ガスを使用し、メタンガスに対する窒素(N2)ガスの量を調整することにより、上記エピタキシャル成長層中の窒素原子の含有量を決定した。
(Third step)
Further, a microwave plasma CVD method was carried out, and an epitaxial growth layer made of a CVD single crystal diamond having a thickness of 1 mm was epitaxially grown on the conductive layer of the diamond single crystal substrate. At this time, hydrogen gas, methane gas, and nitrogen gas were used as the atmosphere in the CVD furnace, and the content of nitrogen atoms in the epitaxial growth layer was determined by adjusting the amount of nitrogen (N 2) gas with respect to methane gas.
 (第4工程)
 次に、上記ダイヤモンド単結晶基板中の導電層に対し電気化学的なエッチングを実行することにより、ダイヤモンド単結晶基板からエピタキシャル成長層としてのCVD単結晶ダイヤモンドを分離した。上記CVD単結晶ダイヤモンド中の窒素の平均原子濃度を、SIMSを用いて上述の方法により測定したところ、24ppmであった。さらに上述の方法により位相差の平均値(歪量)を求めたところ、68nmであった。
(4th step)
Next, the CVD single crystal diamond as the epitaxial growth layer was separated from the diamond single crystal substrate by performing electrochemical etching on the conductive layer in the diamond single crystal substrate. The average atomic concentration of nitrogen in the CVD single crystal diamond was measured by the above method using SIMS and found to be 24 ppm. Further, when the average value (strain amount) of the phase difference was obtained by the above method, it was 68 nm.
 (第5工程)
 上記CVD単結晶ダイヤモンドに対し、従来公知の研磨加工をそれぞれ実行することにより、直径(最大幅W)0.1mm×全長(長さL)0.6mmのダイヤモンド棒状体(試料2)、直径(最大幅W)0.5mm×全長(長さL)5mmのダイヤモンド棒状体(試料4)、直径(最大幅W)0.5mm×全長(長さL)8mmのダイヤモンド棒状体(試料6)、直径(最大幅W)0.1mm×全長(長さL)2mmのダイヤモンド棒状体(試料8)、直径(最大幅W)0.5mm×全長(長さL)15mmのダイヤモンド棒状体(試料11)、および直径(最大幅W)0.5mm×全長(長さL)20mmのダイヤモンド棒状体(試料12)を得た。
(Fifth step)
By executing a conventionally known polishing process on the above CVD single crystal diamond, a diamond rod-shaped body (sample 2) having a diameter (maximum width W) of 0.1 mm × a total length (length L) of 0.6 mm and a diameter (sample 2) Maximum width W) 0.5 mm x total length (length L) 5 mm diamond rod (sample 4), diameter (maximum width W) 0.5 mm x total length (length L) 8 mm diamond rod (sample 6), A diamond rod (sample 8) having a diameter (maximum width W) of 0.1 mm x a total length (length L) of 2 mm, and a diamond rod (sample 11) having a diameter (maximum width W) of 0.5 mm x a total length (length L) of 15 mm. ), And a diamond rod-shaped body (sample 12) having a diameter (maximum width W) of 0.5 mm and a total length (length L) of 20 mm was obtained.
 <ダイヤモンド工具の作製>
 上記の各ダイヤモンド棒状体に対し、試料1、試料3、試料5、試料7および試料10のダイヤモンド工具の作製方法と同じ方法を実行することにより、試料2、試料4、試料6、試料8、試料11および試料12のダイヤモンド工具(ドリル)を得た。
<Making diamond tools>
By executing the same method as the method for producing the diamond tools of Sample 1, Sample 3, Sample 5, Sample 7, and Sample 10 for each of the above diamond rods, Sample 2, Sample 4, Sample 6, and Sample 8 can be used. The diamond tools (drills) of Sample 11 and Sample 12 were obtained.
 〔試料9〕
 <ダイヤモンド棒状体の作製>
 第1工程において縦1mm×横15mm×厚み0.7mmの平板形状からなるダイヤモンド単結晶基板を1個準備すること、および第3工程においてCVD炉内の雰囲気としてメタンガスに対する窒素(N2)ガスの量を変更すること以外、試料8のダイヤモンド棒状体と同じ製造方法とすることにより、直径(最大幅W)0.1mm×全長(長さL)2mmのダイヤモンド棒状体(試料9)を得た。上記ダイヤモンド棒状体中の窒素の平均原子濃度を、SIMSを用いて上述の方法により測定したところ、0.6ppmであった。さらに上述の方法により位相差の平均値(歪量)を求めたところ、53nmであった。
[Sample 9]
<Making a diamond rod>
In the first step, one diamond single crystal substrate having a flat plate shape of 1 mm in length × 15 mm in width × 0.7 mm in thickness is prepared, and in the third step, nitrogen (N 2 ) gas with respect to methane gas is used as the atmosphere in the CVD furnace. A diamond rod (Sample 9) having a diameter (maximum width W) of 0.1 mm and a total length (length L) of 2 mm was obtained by the same manufacturing method as the diamond rod of Sample 8 except that the amount was changed. .. The average atomic concentration of nitrogen in the diamond rod was measured by the above method using SIMS and found to be 0.6 ppm. Further, when the average value (strain amount) of the phase difference was obtained by the above method, it was 53 nm.
 <ダイヤモンド工具の作製>
 上記ダイヤモンド棒状体に対し、上記試料8のダイヤモンド工具の作製方法と同じ方法を実行することにより、試料9のダイヤモンド工具(ドリル)を得た。
<Making diamond tools>
The diamond tool (drill) of Sample 9 was obtained by executing the same method as the method for producing the diamond tool of Sample 8 on the diamond rod-shaped body.
 <切削試験>
 試料1~試料12のダイヤモンド工具を用い、以下に示す条件の下、ワークとしてのアルミナ板(厚み:1mm)に対し、穴加工を実行した。50回の穴加工を実行する毎に各ダイヤモンド工具の切れ刃を、光学顕微鏡(商品名:「VHX-5000」、株式会社キーエンス製)を用いて100倍の倍率で観察することにより、各ダイヤモンド工具に折損が発生したか否かを確認し、加工性能(加工可能回数)を評価した。結果を表1に示す。表1中の「評価」の項目では、比L/Wが同じであるダイヤモンド部を有するダイヤモンド工具で比較した場合において、より多い回数の穴加工を実行した試料を「優」と表し、より少ない回数の穴加工を実行した試料を「劣」と表した。もって「優」と評価される試料(ダイヤモンド工具)は、長寿命化されていると理解することができる。さらに表1では、試料1~試料12のダイヤモンド工具におけるダイヤモンド部の直径(最大幅W)、全長(長さL)および比L/W、各ダイヤモンド工具の外観形状、ダイヤモンド部の種別、窒素の平均原子濃度、平均位相差についても記した。
<Cutting test>
Using the diamond tools of Samples 1 to 12, drilling was performed on an alumina plate (thickness: 1 mm) as a work under the conditions shown below. Each diamond is observed by observing the cutting edge of each diamond tool with an optical microscope (trade name: "VHX-5000", manufactured by KEYENCE CORPORATION) at a magnification of 100 times every 50 times of hole drilling. It was confirmed whether or not the tool was broken, and the machining performance (number of times that the tool could be machined) was evaluated. The results are shown in Table 1. In the item of "evaluation" in Table 1, when comparing with a diamond tool having a diamond part having the same ratio L / W, the sample that has been drilled a larger number of times is expressed as "excellent" and less. Samples that have been drilled a number of times are labeled as "inferior." It can be understood that the sample (diamond tool) evaluated as "excellent" has a long life. Further, in Table 1, the diameter (maximum width W), total length (length L) and ratio L / W of the diamond part of the diamond tools of Samples 1 to 12, the appearance shape of each diamond tool, the type of diamond part, and the nitrogen. The average atomic concentration and average phase difference are also described.
 (穴加工の条件)
 ワーク: アルミナ板(厚み:1mm)
 加工装置: UVM-430(東芝機械株式会社)
 ドリルの回転数: 30000/min
 送り速度: 10mm/min
 切削油材: オイルミスト(湿式)。
(Conditions for hole processing)
Work: Alumina plate (thickness: 1 mm)
Processing equipment: UVM-430 (Toshiba Machine Co., Ltd.)
Drill speed: 30,000 / min
Feed rate: 10 mm / min
Cutting oil material: Oil mist (wet).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (考察)
 試料1のダイヤモンド工具と試料2のダイヤモンド工具とは、いずれも比L/Wが10未満であって、アルミナ板を穴加工することができなかった。一方、試料3のダイヤモンド工具と試料4のダイヤモンド工具とは、いずれも比L/Wが10であるが、試料3のダイヤモンド工具に比べ試料4のダイヤモンド工具の加工回数が多く、寿命が長寿命化されていた。さらに試料5のダイヤモンド工具と試料6のダイヤモンド工具とは、いずれも比L/Wが16であるが、試料5のダイヤモンド工具に比べ試料6のダイヤモンド工具の加工回数が多く、寿命が長寿命化されていた。
(Discussion)
Both the diamond tool of sample 1 and the diamond tool of sample 2 had a ratio L / W of less than 10, and the alumina plate could not be drilled. On the other hand, the diamond tool of sample 3 and the diamond tool of sample 4 both have a ratio of L / W of 10, but the diamond tool of sample 4 is processed more frequently than the diamond tool of sample 3 and has a long life. It was transformed. Further, the diamond tool of sample 5 and the diamond tool of sample 6 both have a ratio L / W of 16, but the diamond tool of sample 6 is processed more frequently than the diamond tool of sample 5, and the life is extended. It had been.
 試料7のダイヤモンド工具、試料8のダイヤモンド工具および試料9のダイヤモンド工具とは、いずれも比L/Wが20であるが、試料7のダイヤモンド工具に比べ試料8および試料9のダイヤモンド工具の加工回数が多く、寿命が長寿命化されていた。試料10のダイヤモンド工具と試料11のダイヤモンド工具とは、いずれも比L/Wが30であるが、試料10のダイヤモンド工具に比べ試料11のダイヤモンド工具の加工回数が多く、寿命が長寿命化されていた。試料12のダイヤモンド工具は、比L/Wが30を超え、50回の穴加工で折損が発生した。 The diamond tool of sample 7, the diamond tool of sample 8, and the diamond tool of sample 9 all have a ratio L / W of 20, but the number of times the diamond tool of sample 8 and 9 is processed is larger than that of the diamond tool of sample 7. There were many cases, and the life was extended. The diamond tool of sample 10 and the diamond tool of sample 11 both have a ratio of L / W of 30, but the diamond tool of sample 11 is processed more frequently than the diamond tool of sample 10, and the life is extended. Was there. The diamond tool of sample 12 had a ratio L / W of more than 30, and was broken after 50 times of hole drilling.
 以上から、試料2、試料4、試料6、試料8、試料9および試料11のダイヤモンド棒状体、およびこれを含むダイヤモンド工具は、ワークを加工した場合に折損が抑制され、もって長寿命化されることが理解される。 From the above, the diamond rods of Sample 2, Sample 4, Sample 6, Sample 8, Sample 9 and Sample 11, and the diamond tool including them are suppressed from being broken when the workpiece is processed, and thus the life is extended. Is understood.
 [実施例2]
 <ダイヤモンド棒状体の作製>
 上記実施例1における試料4のダイヤモンド棒状体と同じ方法を用いることにより、本実施例のダイヤモンド棒状体を作製した。
[Example 2]
<Making a diamond rod>
The diamond rod of this example was prepared by using the same method as the diamond rod of sample 4 in Example 1.
 <カンチレバーの作製>
 上記ダイヤモンド棒状体に対し、従来公知の研削加工を実行することにより、スタイラスを含むカンチレバーを得た。このカンチレバーは(最大幅W)0.5mm×(長さL)5mmの形状を有していた。上記カンチレバーの自由端側に形成されたスタイラスの針先長さは0.1mmであった。カンチレバーの最大幅Wは、スタイラス部分において測定された。
<Making a cantilever>
A cantilever containing a stylus was obtained by performing a conventionally known grinding process on the diamond rod-shaped body. This cantilever had a shape of (maximum width W) 0.5 mm × (length L) 5 mm. The needle tip length of the stylus formed on the free end side of the cantilever was 0.1 mm. The maximum width W of the cantilever was measured at the stylus portion.
 上記カンチレバーを公知のレコードプレーヤに適用したところ、レコードに形成された音溝から良好な音色を拾うことができた。 When the above cantilever was applied to a known record player, a good tone could be picked up from the sound groove formed in the record.
 以上のように本開示の実施の形態および実施例について説明を行ったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形したりすることも当初から予定している。 Although the embodiments and examples of the present disclosure have been described as described above, it is planned from the beginning that the configurations of the above-described embodiments and examples may be appropriately combined or variously modified. ..
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the embodiments and examples described above, and is intended to include meaning equivalent to the scope of claims and all modifications within the scope.

Claims (7)

  1.  CVD単結晶ダイヤモンドからなるダイヤモンド棒状体であって、
     前記ダイヤモンド棒状体は、2mm以上20mm以下の長手方向の長さLを有し、
     前記ダイヤモンド棒状体は、前記長手方向に対して垂直な平面で前記ダイヤモンド棒状体を切断して現れる断面のうち、最小面積を有する断面を第1断面とした場合、
     前記第1断面における最大幅Wに対する前記長さLの比L/Wは、10以上30以下である、ダイヤモンド棒状体。
    A diamond rod made of CVD single crystal diamond.
    The diamond rod-like body has a length L in the longitudinal direction of 2 mm or more and 20 mm or less.
    The diamond rod-shaped body has a cross section having the smallest area among the cross-sections appearing by cutting the diamond rod-shaped body in a plane perpendicular to the longitudinal direction as the first cross section.
    A diamond rod-like body having a ratio L / W of the length L to the maximum width W in the first cross section of 10 or more and 30 or less.
  2.  前記CVD単結晶ダイヤモンドに含まれる窒素の平均原子濃度は、1ppm以上100ppm以下である、請求項1に記載のダイヤモンド棒状体。 The diamond rod-shaped body according to claim 1, wherein the average atomic concentration of nitrogen contained in the CVD single crystal diamond is 1 ppm or more and 100 ppm or less.
  3.  前記CVD単結晶ダイヤモンドは、1nm以上200nm以下の位相差の平均値を有し、
     前記位相差は、前記CVD単結晶ダイヤモンドに対し円偏光を照射した場合に発生する位相差である、請求項1または請求項2に記載のダイヤモンド棒状体。
    The CVD single crystal diamond has an average value of phase difference of 1 nm or more and 200 nm or less.
    The diamond rod-shaped body according to claim 1 or 2, wherein the phase difference is a phase difference generated when the CVD single crystal diamond is irradiated with circular polarization.
  4.  台金部と、前記台金部に接合されるダイヤモンド部とを含むダイヤモンド工具であって、
     前記ダイヤモンド部は、請求項1から請求項3のいずれか1項に記載のダイヤモンド棒状体からなる、ダイヤモンド工具。
    A diamond tool including a base metal portion and a diamond portion joined to the base metal portion.
    The diamond part is a diamond tool made of the diamond rod-shaped body according to any one of claims 1 to 3.
  5.  前記ダイヤモンド工具は、ドリルである、請求項4に記載のダイヤモンド工具。 The diamond tool according to claim 4, wherein the diamond tool is a drill.
  6.  請求項1から請求項3のいずれか1項に記載のダイヤモンド棒状体からなる、カンチレバー。 A cantilever made of the diamond rod-shaped body according to any one of claims 1 to 3.
  7.  前記カンチレバーは、スタイラスを含む、請求項6に記載のカンチレバー。 The cantilever according to claim 6, wherein the cantilever includes a stylus.
PCT/JP2020/032265 2019-10-01 2020-08-27 Diamond rod, diamond tool, and cantilever WO2021065258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181349 2019-10-01
JP2019181349 2019-10-01

Publications (1)

Publication Number Publication Date
WO2021065258A1 true WO2021065258A1 (en) 2021-04-08

Family

ID=75337895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032265 WO2021065258A1 (en) 2019-10-01 2020-08-27 Diamond rod, diamond tool, and cantilever

Country Status (1)

Country Link
WO (1) WO2021065258A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546613A (en) * 1978-09-29 1980-04-01 Noboru Tominari Pickup cartridge
JPH07243048A (en) * 1994-03-07 1995-09-19 Idemitsu Material Kk Production of coated bar-shaped member, method for preventing localization of plasma, and supporting stand for producing coated bar-shaped member
WO2014168053A1 (en) * 2013-04-09 2014-10-16 住友電気工業株式会社 Single crystal diamond and diamond tool
WO2016010028A1 (en) * 2014-07-15 2016-01-21 住友電気工業株式会社 Single crystal diamond, method for producing single crystal diamond, and tool using single crystal diamond

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546613A (en) * 1978-09-29 1980-04-01 Noboru Tominari Pickup cartridge
JPH07243048A (en) * 1994-03-07 1995-09-19 Idemitsu Material Kk Production of coated bar-shaped member, method for preventing localization of plasma, and supporting stand for producing coated bar-shaped member
WO2014168053A1 (en) * 2013-04-09 2014-10-16 住友電気工業株式会社 Single crystal diamond and diamond tool
WO2016010028A1 (en) * 2014-07-15 2016-01-21 住友電気工業株式会社 Single crystal diamond, method for producing single crystal diamond, and tool using single crystal diamond

Similar Documents

Publication Publication Date Title
JP6409930B2 (en) CVD diamond single crystal
KR101386856B1 (en) Surface-coated cutting tool
JP5124790B2 (en) Diamond coated cutting tool
JP5958835B2 (en) Cutting tool and manufacturing method thereof
JP6752143B2 (en) Synthetic single crystal diamonds, methods for manufacturing synthetic single crystal diamonds, and tools using synthetic single crystal diamonds
JP5176621B2 (en) Amorphous carbon coated tool
CN104053517A (en) Diamond-coated tool
WO2020031871A1 (en) Lathing tool
CN102626853B (en) Diamond-coated cutting element
TW202012309A (en) Diamond polycrystal and tool including same
TWI690488B (en) Diamond polycrystal and tool including same
JP2009035802A (en) Cemented carbide
JP2019005894A (en) Coated cutting tool
WO2021065258A1 (en) Diamond rod, diamond tool, and cantilever
US10751805B2 (en) Coated cutting tool
JP2008238314A (en) Cutting tool, its manufacturing method, and cutting method
WO2021054019A1 (en) Diamond cutting tool
TW202231387A (en) Diamond tool
EP3815806B1 (en) Tool with through hole comprising a diamond component
JPH04240007A (en) Polycrystal diamond cutting tool and manufacture thereof
JP5983878B2 (en) Coated cutting tool
JP6040698B2 (en) Diamond-coated cemented carbide drill
JP5838858B2 (en) Diamond coated cemented carbide drill with excellent wear resistance
CN115135439A (en) Cutting tool
JP2019181574A (en) Diamond-coated hard metal-made cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP