WO2021064793A1 - Input shaft system - Google Patents

Input shaft system Download PDF

Info

Publication number
WO2021064793A1
WO2021064793A1 PCT/JP2019/038514 JP2019038514W WO2021064793A1 WO 2021064793 A1 WO2021064793 A1 WO 2021064793A1 JP 2019038514 W JP2019038514 W JP 2019038514W WO 2021064793 A1 WO2021064793 A1 WO 2021064793A1
Authority
WO
WIPO (PCT)
Prior art keywords
input shaft
bearing
case
outer ring
peripheral surface
Prior art date
Application number
PCT/JP2019/038514
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 琴尾
和彦 西宮
淳司 大塚
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2019/038514 priority Critical patent/WO2021064793A1/en
Priority to CN201980067974.2A priority patent/CN112997014B/en
Priority to JP2020558061A priority patent/JP6921470B1/en
Publication of WO2021064793A1 publication Critical patent/WO2021064793A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/16Rotary-absorption dynamometers, e.g. of brake type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the present invention relates to an input shaft system having an input shaft connected to a specimen.
  • the input shaft system is used for testing drive system units such as power trains in chassis dynamometers, for example.
  • drive system units such as power trains in chassis dynamometers
  • an input shaft system rotates the input shaft by a drive source simulating a HEV (Hybrid Electric Vehicle) motor or an EV (Electric Vehicle) motor, which is becoming smaller at high speed, and the input shaft is used as a transmission or the like. It is rotatably connected to the specimen.
  • HEV Hybrid Electric Vehicle
  • EV Electric Vehicle
  • Such an input shaft system has a shaft torque meter for measuring the shaft torque of the input shaft, and is used as a test system capable of measuring the shaft torque of the input shaft.
  • Examples of the input shaft system described above include main components (low inertia motor, torque detector, etc.) of the automobile test apparatus disclosed in Patent Document 1.
  • An object of the present invention is to solve the above-mentioned problems and to provide an input shaft system capable of accurately measuring the shaft torque of the input shaft.
  • the input shaft system is an input shaft system having an input shaft connected to a specimen, and is provided between a drive source for rotating the input shaft and the drive source and the specimen.
  • the intermediate bearing device includes an intermediate bearing device that supports the input shaft, and a shaft torque meter that is provided between the intermediate bearing device and the drive source and measures the shaft torque of the input shaft.
  • the intermediate bearing device has an oil film forming region. It is characterized by having a damping function of reducing the vibration applied to the input shaft by the oil film forming region.
  • the intermediate bearing device in the input shaft system of the present invention according to claim 1 has a damping function of reducing vibration applied to the input shaft by an oil film forming region.
  • the intermediate bearing device is provided between the specimen and the shaft torque meter, and due to the damping function of the intermediate bearing device, vibration or eccentric load from the specimen side causes the shaft torque meter to be installed on the input shaft. The impact can be significantly reduced.
  • the input shaft system of the present invention according to claim 1 has an effect that the shaft torque of the input shaft can be accurately measured by the shaft torque meter.
  • FIG. 1 is an explanatory diagram showing a configuration of a drive system dynamo stem 500 using the input shaft system JS of the embodiment.
  • the drive system dynamo stem 500 includes an input shaft system JS, a specimen 300, an output shaft 250, and front wheel dynamo pairs 201 and 202 as main components.
  • the input shaft 150 of the input shaft system JS is rotatably connected to the specimen 300, and the output shafts 250 of the front wheel dynamo pairs 201 and 202 are also rotatably connected to the specimen 300. There is.
  • the input shaft system JS includes a low inertia motor 110 and an intermediate shaft structure JM as main components.
  • the input shaft system JS is shown in a simplified manner, and the actual structure shows the structure shown in FIG. 2 which will be described later. Further, the input shaft system JS and the front wheel right dynamo 202 have no connection relationship.
  • the low inertia motor 110 which is the drive source, rotates the directly connected input shaft 150.
  • the rotational force of the input shaft 150 is transmitted to the specimen 300 via the intermediate shaft structure JM.
  • FIG. 1 shows the FF transmission as the specimen 300.
  • the "FF transmission” means a transmission for a front engine / front drive (Front Engine / Front Drive).
  • the input shaft 150 is rotatably connected to the low inertia motor 110, the input shaft 150 is rotatably supported by the intermediate shaft structure JM, and the tip portion thereof is connected in the specimen 300.
  • the specimen 300 receives the rotational movement force of the input shaft 150 from the low inertia motor 110, and rotates the output shaft 250 based on this rotational movement force. This point will be described in detail below.
  • the input shaft 150 is rotated, and the rotational kinetic force of the input shaft 150 is transmitted to the specimen 300 via the intermediate shaft structure JM. ..
  • the specimen 300 has an input shaft 150, internal gears 351 to 354, a relay shaft 330, and an input shaft 150 as main components.
  • the tip portion of the input shaft 150 is connected in the specimen 300, and the central portion of the output shaft 250 is connected in the specimen 300.
  • the internal gear 351 is attached to the tip of the input shaft 150 and rotates with the rotation of the input shaft 150.
  • Internal gears 352 and 353 are provided at both ends of the relay shaft 330.
  • the internal gear 354 is attached to the central portion of the output shaft 250, and rotates the output shaft 250 as it rotates. Further, the internal gear 351 and the internal gear 352 are meshed with each other, and the internal gear 353 and the internal gear 354 are meshed with each other.
  • the rotational force of the input shaft 150 is transmitted to the relay shaft 330 via the internal gears 351 and 352 that mesh with each other, and the rotational force of the relay shaft 330 is transmitted to the relay shaft 330 via the internal gears 353 and 354 that mesh with each other. It is transmitted to 250.
  • the rotational kinetic force of the input shaft 150 is transmitted from above to below between the plurality of internal gears 351 to 354, and then is transmitted to the output shaft 250.
  • the front wheel dynamos pairs 201 and 202 can be rotated with the rotation of the output shaft 250.
  • FIG. 2 is an explanatory diagram showing a detailed structure of the input axis system JS shown in FIG.
  • the input shaft system JS includes a low inertia motor 110, an intermediate shaft structure JM, and a base 106 as main components.
  • the intermediate shaft structure JM includes an intermediate bearing device 100, a shaft torque meter 102, and a shaft joint 104.
  • the input shaft 150 (not shown in FIG. 2) is rotatably supported by the intermediate bearing device 100 via the shaft joint 104 and the shaft torque meter 102.
  • the base 106 has a flush upper surface, and the low inertia motor 110 and the intermediate bearing device 100 are fixedly arranged on the upper surface to support the low inertia motor 110 and the intermediate bearing device 100 from below. Further, the base 106 is integrally configured with the low inertia motor 110 (including the input shaft 150), the shaft joint 104, the shaft torque meter 102, and the low inertia motor 110.
  • the input shaft 150 directly connected to the low inertia motor 110 is removable from the specimen 300.
  • the input shaft system JS is provided between the low inertia motor 110 as a drive source for rotating the input shaft 150, the low inertia motor 110, and the specimen 300, and rotatably supports the input shaft 150.
  • a shaft torque meter 102 which is provided between the intermediate bearing device 100 and the intermediate bearing device 100 and the low inertia motor 110 and measures the shaft torque applied to the input shaft 150, is provided as a main component.
  • the intermediate bearing device 100 has an oil film forming region R5 described later, and the oil film forming region R5 has a damping function for reducing vibration applied to the input shaft 150.
  • the intermediate bearing device 100 in the input shaft system JS of the present embodiment has a damping function of reducing the vibration applied to the input shaft 150 by the oil film forming region R5.
  • An intermediate bearing device 100 is provided between the specimen 300 and the shaft torque meter 102, and the shaft torque on the input shaft 150 due to vibration or eccentric load from the specimen 300 side due to the damping function of the intermediate bearing device 100.
  • the influence on the installation locations of 102 in total can be significantly reduced.
  • the input shaft system JS of the present embodiment has an effect that the shaft torque of the input shaft 150 can be accurately measured by the shaft torque meter 102.
  • the low inertia motor 110 and the intermediate bearing device 100 can be fixedly arranged on the upper surface of the base 106 and supported with good stability, and the input shaft is supported by the shaft torque meter 102.
  • the shaft torque of 150 can be measured more accurately.
  • the base 106, the low inertia motor 110 (including the input shaft 150), the shaft joint 104, the shaft torque meter 102, and the intermediate bearing device 100 are integrally configured.
  • the input axis system JS including the above can be easily handled.
  • the input shaft 150 of the input shaft system JS can be removed from the specimen 300 and connected to another specimen, etc., which can be performed relatively easily.
  • FIG. 3 is an explanatory diagram showing the overall configuration of the intermediate bearing device 100 shown in FIG.
  • the intermediate bearing device 100 includes a cylindrical bearing 4 that rotatably supports the input shaft 150, a cylindrical bearing case 5 that supports the bearing 4 from the outer peripheral surface side of the bearing 4, and a bearing.
  • a bearing For bearings that have a facing surface (inner peripheral surface) facing the outer peripheral surface of the case 5 and support the bearing case 5 by bringing the outer peripheral surface and the facing surface of the bearing case 5 into contact with each other via a pair of O-rings 51.
  • the housing 1 is included as a main component.
  • FIG. 4 is a perspective view schematically showing the external structure of the bearing case 5 shown in FIG. As shown in FIGS. 3 and 4, the bearing case 5 has a cylindrical shape having a hollow portion for accommodating the bearing 4 inside.
  • the bearing case 5 has a pair of O-ring grooves 53 (a pair of grooves) provided in an annular shape along the circumferential direction on the outer peripheral surface, and a pair of O-rings 51 provided in the pair of O-ring grooves 53. And four case through holes 50 (two case through holes in FIG. 4) that are selectively provided on one semicircular side (upper semicircular side) of the side surface of the bearing case 5 in the circumferential direction and each penetrates the side surface. (Only 50 is shown) is included as a main component. In FIG. 4, for convenience of explanation, the pair of O-rings 51 are not shown.
  • the bearing case 5 has four case through holes 50 as a plurality of case through holes penetrating the side surface. Further, as shown in FIG. 4, the pair of O-ring grooves 53 are provided near both ends in the axial direction (direction connecting the bottom surface and the top surface) on the side surface of the bearing case 5. Then, the region on the outer peripheral surface of the bearing case 5 between the pair of O-rings 51 becomes the oil film forming region R5, and the four case through holes 50 are selectively provided in the oil film forming region R5.
  • a pair of detent dents 55 are provided on the side surface of the bearing case 5 at the boundary between the upper semicircle and the lower semicircle.
  • the bearing 4 includes an inner ring 6, an outer ring 7, and a rolling ball 8 as main components.
  • the outer ring 7 has a cylindrical shape having an outer peripheral surface in contact with the inner peripheral surface of the bearing case 5, and the inner ring 6 has a cylindrical shape provided so as to have an internal space between the outer ring 7 and the outer ring 7. Then, the rolling ball 8 is arranged in the internal space between the inner ring 6 and the outer ring 7.
  • the outer ring 7 is composed of an outer ring side portion 7a, an outer ring side portion 7b, and an outer ring center portion 7c, and has a positional relationship in which the outer ring center portion 7c is sandwiched between the outer ring side portions 7a and 7b. ..
  • An outer ring through hole 70 penetrating the outer ring center 7c is provided in the outer ring center 7c above the outer ring 7. Further, in the outer ring center portion 7c below the outer ring 7, a through hole 71 penetrating the outer ring center portion 7c is provided.
  • the through hole 71 is formed with a recess in the lower region for restraining the structure wider than the upper region in the rotational direction, and this recess becomes the screw accommodating region 71x.
  • FIG. 5 is a perspective view schematically showing the external structure of the outer ring 7.
  • each of the outer ring 7 selectively corresponds to a plurality of case through holes 50 on one semicircular side (upper semicircular side of FIG. 5) in the circumferential direction of the side surface.
  • It has four outer ring through holes 70 (only two outer ring through holes 70 are shown in FIG. 5), which are provided and are a plurality of outer ring through holes penetrating the side surface.
  • the outer ring 7 has one through hole 71 provided on the other semicircular side (lower semicircular side) facing the one semicircular side in the circumferential direction of the side surface.
  • FIG. 6 is an explanatory view schematically showing the positional relationship of the side surfaces of the bearing case 5 and the outer ring 7 in the circumferential direction.
  • the cross section AA shown in FIG. 6 has the structure shown in FIG.
  • the four case through holes 50 of the bearing case 5 and the four outer ring through holes 70 of the outer ring 7 are continuously connected between the corresponding case through holes 50 and the outer ring through holes 70.
  • the common center of the circle defining the circumferential direction of the side surface of the bearing case 5 and the circle defining the circumferential direction of the side surface of the outer ring 7 is the center point C1, from the center point C1.
  • the outer ring through hole 70 of one of the four outer ring through holes 70 is provided so as to be always located on the four straight lines extending over the four case through holes 50. That is, the four case through holes 50 and the four outer ring through holes 70 have a one-to-one correspondence, and the corresponding case through holes 50 and the outer ring through holes 70 exist on the same straight line starting from the center point C1.
  • the tip region of the outer ring through hole 70 has a narrower oil flow path than the other regions and has a throttle structure 70s that branches into two, and the flow of oil is restricted by these throttle structures 70s.
  • Stable oil can be supplied to the inner ring 6 and the rolling ball 8 of the bearing 4.
  • a pair of detent dents 55 are provided on the side surface of the bearing case 5 at the boundary between the upper semicircle and the lower semicircle. Therefore, the center point C1 exists on the line connecting the pair of detent dents 55.
  • the bearing case 5 and the outer ring 7 have through holes 57 and through holes 71 of the bearing case 5 provided on the other semicircular side in the circumferential direction of the respective side surfaces.
  • FIG. 7 is a perspective view schematically showing the external structure of the inner ring 6.
  • the inner ring 6 has a side surface having a diameter smaller than the side surface of the outer ring 7 and is formed in a cylindrical shape so that an internal space is formed between the inner ring 6 and the outer ring 7.
  • the bottom screw 73 which is a fixing screw, is provided between the outer ring 7 and the bearing case 5 on the other semicircular side of the side surface of the bearing case 5 and the outer ring 7, and is centered on the outer ring.
  • the movement of the portion 7c in the rotation direction is restrained. That is, the bottom screw 73 is provided so as to penetrate the through hole 57 of the bearing case 5 and be housed in the screw accommodating area 71x of the through hole 71.
  • FIG. 8 is a block diagram schematically showing an oil supply system in the intermediate bearing device 100 shown in FIG. Oil is supplied from the oil supply circuit 10 shown in the figure onto the outer peripheral surface of the bearing case 5. The oil supplied on the outer peripheral surface of the bearing case 5 is supplied to the inside of the bearing 4 only through the four case through holes 50 of the bearing case 5 and the four outer ring through holes 70 of the outer ring 7.
  • the flow of oil is indicated by an arrow.
  • the oil supplied from the oil supply circuit 10 to the outer ring 7 and the rolling ball 8 of the bearing 4 via the outer ring center 7c of the bearing case 5 and the outer ring 7 is the other half of the outer ring 7 in the outer peripheral direction. It is discharged to the outside from the bearing 4 on the circular side.
  • FIG. 9 is an explanatory diagram schematically showing the formation state of the oil film.
  • the region on the outer peripheral surface of the bearing case 5 between the pair of O-rings 51 is the oil film forming region R5. Therefore, when oil is supplied from the oil supply circuit 10 onto the outer peripheral surface of the bearing case 5, the oil film 25 is formed in the oil film forming region R5 between the outer peripheral surface of the bearing case 5 and the facing surface (inner peripheral surface) of the housing 1. It is formed.
  • an oil film 25 is formed in the oil film forming region R5 as shown in FIGS. 3 and 9 by refueling from the refueling circuit 10. This is because the pair of O-rings 51 closes the oil film forming region R5 on the outer peripheral surface of the bearing case 5 from other regions except for the four case through holes 50 selectively provided in the oil film forming region R5. Because it becomes a space.
  • the oil film 25 is shown in a mode having a predetermined thickness, but the thickness of the oil film 25 is actually very small.
  • the intermediate bearing device 100 used in the input shaft system JS of the present embodiment can exhibit the above damping function of effectively reducing the vibration applied to the supporting input shaft 150 by the oil film forming region R5. it can.
  • the intermediate bearing device 100 has the oil film forming region R5, and has the damping function of reducing the vibration applied to the input shaft 150 by the oil film forming region R5.
  • the oil film 25 in the oil film forming region R5 is formed through the four case through holes 50 (plural case through holes) of the bearing case 5 and the four outer ring through holes 70 (plural outer ring through holes) of the bearing 4. A part of the oil is supplied to the bearing 4. Therefore, the intermediate bearing device 100 can cool the bearing 4 without increasing the size of the device.
  • the oil is supplied to the bearing 4 only through the four case through holes 50 and the four outer ring through holes 70 selectively formed in the oil film forming region R5.
  • the oil film 25 can be stably formed in the oil film forming region R5.
  • the tip region of each of the plurality of outer ring through holes 70 has a drawing structure 70s in which the oil flow path is narrower than the other regions. That is, in the intermediate bearing device 100, the tip region of the outer ring through hole 70 provided in the outer ring center portion 7c of the outer ring 7 has a drawing structure 70s in which the oil flow path is narrower than the other regions.
  • the oil is smoothly supplied to the inner ring 6 and the rolling ball 8 in the bearing 4, and the formation of the oil film 25 in the oil film forming region R5 is stably maintained. Can be done.
  • the intermediate bearing device 100 of the present embodiment has the effect of reducing vibration due to the input shaft 150 and cooling the bearing 4 with a relatively small number of members.
  • the FF transmission is shown as the specimen 300, but the present invention is not limited to this, and for example, a differential gear or the like may be used. That is, all the constituent parts that can be connected to the input shaft 150 can be used as the specimen 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

The purpose of the present invention is to provide an input shaft system that makes it possible to accurately measure the shaft torque of an input shaft. This input shaft system (JS) comprises, as principal components, a low-inertia motor (110) that makes an input shaft (150) rotate, an intermediate bearing device (100) that is provided between the low-inertia motor (110) and a test piece (300) and rotatably supports the input shaft (150), and a shaft torque meter (102) that is provided between the intermediate bearing device (100) and the low-inertia motor (110) and measures the torque exerted on the input shaft (150). The intermediate bearing device (100) has a damping function whereby the vibration applied to the input shaft (150) is reduced by means of an oil film formation region (R5).

Description

入力軸システムInput axis system
 この発明は、供試体に連結される入力軸を有する入力軸システムに関する。 The present invention relates to an input shaft system having an input shaft connected to a specimen.
 入力軸システムは、例えば、シャーシダイナモメータにおいて、パワートレイン等の駆動系ユニットの試験に使用されている。このような入力軸システムは、近年、高速小型化するHEV(Hybrid Electric Vehicle)モータや、EV(Electric Vehicle)モータ等を模擬した駆動源によって入力軸を回転させ、この入力軸をトランスミッション等の供試体に回転自在に連結している。 The input shaft system is used for testing drive system units such as power trains in chassis dynamometers, for example. In recent years, such an input shaft system rotates the input shaft by a drive source simulating a HEV (Hybrid Electric Vehicle) motor or an EV (Electric Vehicle) motor, which is becoming smaller at high speed, and the input shaft is used as a transmission or the like. It is rotatably connected to the specimen.
 このような入力軸システムは、入力軸の軸トルクを測定するための軸トルク計を有しており、入力軸の軸トルクを測定可能な試験システムとして利用されている。上述した入力軸システムとして、例えば、特許文献1に開示された自動車試験装置の主要構成部(低慣性モータ、トルク検出器等)が挙げられる。 Such an input shaft system has a shaft torque meter for measuring the shaft torque of the input shaft, and is used as a test system capable of measuring the shaft torque of the input shaft. Examples of the input shaft system described above include main components (low inertia motor, torque detector, etc.) of the automobile test apparatus disclosed in Patent Document 1.
特開2003-65900号公報Japanese Unexamined Patent Publication No. 2003-65900
 従来の入力軸システムにおいて、供試体に軸トルク計を直接接続したり、一般的な中間軸受部を介して供試体と軸トルク計とを接続したりする構成が一般的であった。 In the conventional input shaft system, it was common to connect the shaft torque meter directly to the specimen or to connect the specimen and the shaft torque meter via a general intermediate bearing.
 従来の入力軸システムは、上記のような構成であるため、供試体側より外乱振動や偏荷重が、直接、あるいは中間軸受部を介して入力軸に伝達されてしまうため、軸トルク計によって入力軸の軸トルクを正確に測定することができないという問題点があった。 Since the conventional input shaft system has the above configuration, disturbance vibration and eccentric load are transmitted to the input shaft directly or via the intermediate bearing from the specimen side, so the input is made by the shaft torque meter. There is a problem that the shaft torque of the shaft cannot be measured accurately.
 本発明では、上記のような問題点を解決し、入力軸の軸トルクを正確に測定することができる入力軸システムを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide an input shaft system capable of accurately measuring the shaft torque of the input shaft.
 この発明に係る入力軸システムは、供試体に連結される入力軸を有する入力軸システムであって、前記入力軸を回転させる駆動源と、前記駆動源と前記供試体との間に設けられ、前記入力軸を支持する中間軸受装置と、前記中間軸受装置と前記駆動源との間に設けられ、前記入力軸の軸トルクを計測する軸トルク計とを備え、前記中間軸受装置は油膜形成領域を有し、前記入力軸にかかる振動を前記油膜形成領域によって低減化する減衰機能を有することを特徴とする。 The input shaft system according to the present invention is an input shaft system having an input shaft connected to a specimen, and is provided between a drive source for rotating the input shaft and the drive source and the specimen. The intermediate bearing device includes an intermediate bearing device that supports the input shaft, and a shaft torque meter that is provided between the intermediate bearing device and the drive source and measures the shaft torque of the input shaft. The intermediate bearing device has an oil film forming region. It is characterized by having a damping function of reducing the vibration applied to the input shaft by the oil film forming region.
 請求項1記載の本願発明の入力軸システムにおける中間軸受装置は、入力軸にかかる振動を油膜形成領域によって低減化する減衰機能を有している。 The intermediate bearing device in the input shaft system of the present invention according to claim 1 has a damping function of reducing vibration applied to the input shaft by an oil film forming region.
 中間軸受装置は供試体と軸トルク計との間に設けられており、中間軸受装置の上記減衰機能により、供試体側からの振動や偏荷重による、入力軸における軸トルク計の設置箇所への影響を大幅に低減化することができる。 The intermediate bearing device is provided between the specimen and the shaft torque meter, and due to the damping function of the intermediate bearing device, vibration or eccentric load from the specimen side causes the shaft torque meter to be installed on the input shaft. The impact can be significantly reduced.
 その結果、請求項1記載の本願発明の入力軸システムは、軸トルク計によって入力軸の軸トルクを正確に測定することができる効果を奏する。 As a result, the input shaft system of the present invention according to claim 1 has an effect that the shaft torque of the input shaft can be accurately measured by the shaft torque meter.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objectives, features, aspects, and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態の入力軸システムを用いた駆動系ダイナモステムの構成を示す説明図である。It is explanatory drawing which shows the structure of the drive system dynamo stem using the input shaft system of embodiment. 図1で示した入力軸システムの詳細構造を示す説明図である。It is explanatory drawing which shows the detailed structure of the input axis system shown in FIG. 図2で示した中間軸受装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the intermediate bearing apparatus shown in FIG. 図3で示した軸受ケースの外観構造を模式的に示す斜視図である。It is a perspective view which shows typically the appearance structure of the bearing case shown in FIG. 図3で示した外輪の外観構造を模式的に示す斜視図である。It is a perspective view which shows typically the appearance structure of the outer ring shown in FIG. 軸受ケース及び外輪における側面の円周方向における位置関係を模式的に示す説明図である。It is explanatory drawing which shows typically the positional relationship in the circumferential direction of the side surface of a bearing case and an outer ring. 図3で示した内輪の外観構造を模式的に示す斜視図である。It is a perspective view which shows typically the appearance structure of the inner ring shown in FIG. 図2で示した中間軸受装置における油供給系統を模式的に示すブロック図である。It is a block diagram which shows typically the oil supply system in the intermediate bearing apparatus shown in FIG. 油膜の形成状態を模式的に示す説明図である。It is explanatory drawing which shows typically the formation state of the oil film.
 <実施の形態>
 図1は実施の形態の入力軸システムJSを用いた駆動系ダイナモステム500の構成を示す説明図である。
<Embodiment>
FIG. 1 is an explanatory diagram showing a configuration of a drive system dynamo stem 500 using the input shaft system JS of the embodiment.
 同図に示すように、駆動系ダイナモステム500は、入力軸システムJS、供試体300、出力軸250、前輪用ダイナモ対201及び202を主要構成要素として含んでいる。 As shown in the figure, the drive system dynamo stem 500 includes an input shaft system JS, a specimen 300, an output shaft 250, and front wheel dynamo pairs 201 and 202 as main components.
 同図に示すように、入力軸システムJSの入力軸150は供試体300に回転自在に連結されており、前輪用ダイナモ対201及び202の出力軸250も供試体300に回転自在に連結されている。 As shown in the figure, the input shaft 150 of the input shaft system JS is rotatably connected to the specimen 300, and the output shafts 250 of the front wheel dynamo pairs 201 and 202 are also rotatably connected to the specimen 300. There is.
 入力軸システムJSは、低慣性モータ110及び中間軸構造体JMを主要構成要素として含んでいる。なお、図1では、入力軸システムJSは簡略化して示しており、実際の構造は後述する図2で示す構造を呈している。また、入力軸システムJSと前輪右用ダイナモ202とは何ら接続関係を有していない。 The input shaft system JS includes a low inertia motor 110 and an intermediate shaft structure JM as main components. In addition, in FIG. 1, the input shaft system JS is shown in a simplified manner, and the actual structure shows the structure shown in FIG. 2 which will be described later. Further, the input shaft system JS and the front wheel right dynamo 202 have no connection relationship.
 これらの図に示すように、駆動源となる低慣性モータ110は直結される入力軸150を回転させている。入力軸150の回転運動力は、中間軸構造体JMを介して供試体300に伝達される。 As shown in these figures, the low inertia motor 110, which is the drive source, rotates the directly connected input shaft 150. The rotational force of the input shaft 150 is transmitted to the specimen 300 via the intermediate shaft structure JM.
 図1では、供試体300としてFFトランスミッションを示している。なお、「FFトランスミッション」とは、フロントエンジン・フロントドライブ(Front Engine・Front Drive)用のトランスミッションを意味する。 FIG. 1 shows the FF transmission as the specimen 300. The "FF transmission" means a transmission for a front engine / front drive (Front Engine / Front Drive).
 低慣性モータ110に入力軸150が回転可能に連結されており、入力軸150は回転可能に中間軸構造体JMで支持され、その先端部分が供試体300内で連結される。 The input shaft 150 is rotatably connected to the low inertia motor 110, the input shaft 150 is rotatably supported by the intermediate shaft structure JM, and the tip portion thereof is connected in the specimen 300.
 供試体300は、低慣性モータ110から入力軸150の回転運動力を受け、この回転運動力に基づき、出力軸250を回転させる。以下、この点を詳述する。 The specimen 300 receives the rotational movement force of the input shaft 150 from the low inertia motor 110, and rotates the output shaft 250 based on this rotational movement force. This point will be described in detail below.
 前述したように、駆動源である低慣性モータ110を駆動させることにより、入力軸150は回転し、入力軸150の回転運動力は、中間軸構造体JMを介して供試体300に伝達される。 As described above, by driving the low inertia motor 110 which is a drive source, the input shaft 150 is rotated, and the rotational kinetic force of the input shaft 150 is transmitted to the specimen 300 via the intermediate shaft structure JM. ..
 供試体300は、入力軸150、内部ギヤ351~354、中継軸330及び入力軸150を主要構成要として有している。入力軸150の先端部分が供試体300内で連結され、出力軸250の中心部分が供試体300内で連結される。 The specimen 300 has an input shaft 150, internal gears 351 to 354, a relay shaft 330, and an input shaft 150 as main components. The tip portion of the input shaft 150 is connected in the specimen 300, and the central portion of the output shaft 250 is connected in the specimen 300.
 内部ギヤ351は入力軸150の先端部に取り付けられ、入力軸150の回転と共に回転する。中継軸330の両端に内部ギヤ352及び353が設けられる。内部ギヤ354は出力軸250の中心部に取り付けられ、自身の回転に伴い出力軸250を回転させる。また、内部ギヤ351と内部ギヤ352とが噛み合っており、内部ギヤ353と内部ギヤ354とが噛み合っている。 The internal gear 351 is attached to the tip of the input shaft 150 and rotates with the rotation of the input shaft 150. Internal gears 352 and 353 are provided at both ends of the relay shaft 330. The internal gear 354 is attached to the central portion of the output shaft 250, and rotates the output shaft 250 as it rotates. Further, the internal gear 351 and the internal gear 352 are meshed with each other, and the internal gear 353 and the internal gear 354 are meshed with each other.
 したがって、入力軸150の回転運動力が、互いに噛み合う内部ギヤ351及び352を介して中継軸330に伝達され、中継軸330の回転運動力が、互いに噛み合う内部ギヤ353及び354を介して、出力軸250に伝達される。 Therefore, the rotational force of the input shaft 150 is transmitted to the relay shaft 330 via the internal gears 351 and 352 that mesh with each other, and the rotational force of the relay shaft 330 is transmitted to the relay shaft 330 via the internal gears 353 and 354 that mesh with each other. It is transmitted to 250.
 その結果、供試体300において、入力軸150の回転運動力は、複数の内部ギヤ351~354間を上方から下方にかけて伝達された後、出力軸250に伝達される。そして、最終的に出力軸250の回転に伴い前輪用ダイナモ対201及び202を回転させることができる。 As a result, in the specimen 300, the rotational kinetic force of the input shaft 150 is transmitted from above to below between the plurality of internal gears 351 to 354, and then is transmitted to the output shaft 250. Finally, the front wheel dynamos pairs 201 and 202 can be rotated with the rotation of the output shaft 250.
 なお、上述した供試体300の動作は、FFトランスミッションとしての供試体300の動作を原理的に簡略化して説明しており、必ずしも実際の動作と一致しない。 Note that the above-mentioned operation of the specimen 300 is described by simplifying the operation of the specimen 300 as an FF transmission in principle, and does not necessarily match the actual operation.
 図2は図1で示した入力軸システムJSの詳細構造を示す説明図である。同図に示す様に、入力軸システムJSは、低慣性モータ110、中間軸構造体JM及び基台106を主要構成要素として含んでいる。そして、中間軸構造体JMは中間軸受装置100、軸トルク計102及び軸継手104を含んでいる。 FIG. 2 is an explanatory diagram showing a detailed structure of the input axis system JS shown in FIG. As shown in the figure, the input shaft system JS includes a low inertia motor 110, an intermediate shaft structure JM, and a base 106 as main components. The intermediate shaft structure JM includes an intermediate bearing device 100, a shaft torque meter 102, and a shaft joint 104.
 したがって、中間軸構造体JM内において、図2では図示しない入力軸150は軸継手104、軸トルク計102を介して中間軸受装置100で回転自在に支持されている。 Therefore, in the intermediate shaft structure JM, the input shaft 150 (not shown in FIG. 2) is rotatably supported by the intermediate bearing device 100 via the shaft joint 104 and the shaft torque meter 102.
 基台106は面一の上面を有し、低慣性モータ110及び中間軸受装置100を上面上に固定配置することにより、低慣性モータ110及び中間軸受装置100を下方から支持する。さらに、基台106は、低慣性モータ110(入力軸150を含む)、軸継手104、軸トルク計102及び低慣性モータ110と一体的に構成される。 The base 106 has a flush upper surface, and the low inertia motor 110 and the intermediate bearing device 100 are fixedly arranged on the upper surface to support the low inertia motor 110 and the intermediate bearing device 100 from below. Further, the base 106 is integrally configured with the low inertia motor 110 (including the input shaft 150), the shaft joint 104, the shaft torque meter 102, and the low inertia motor 110.
 なお、低慣性モータ110に直結されている入力軸150は、供試体300から着脱可能である。 The input shaft 150 directly connected to the low inertia motor 110 is removable from the specimen 300.
 このように、入力軸システムJSは、入力軸150を回転させる駆動源となる低慣性モータ110と、低慣性モータ110と供試体300との間に設けられ、入力軸150を回転自在に支持する中間軸受装置100と、中間軸受装置100と低慣性モータ110との間に設けられ、入力軸150に加わる軸トルクを計測する軸トルク計102とを主要構成要素として備えている。 As described above, the input shaft system JS is provided between the low inertia motor 110 as a drive source for rotating the input shaft 150, the low inertia motor 110, and the specimen 300, and rotatably supports the input shaft 150. A shaft torque meter 102, which is provided between the intermediate bearing device 100 and the intermediate bearing device 100 and the low inertia motor 110 and measures the shaft torque applied to the input shaft 150, is provided as a main component.
 さらに、中間軸受装置100は、後述する油膜形成領域R5を有し、この油膜形成領域R5によって、入力軸150にかかる振動を低減化する減衰機能を有している。 Further, the intermediate bearing device 100 has an oil film forming region R5 described later, and the oil film forming region R5 has a damping function for reducing vibration applied to the input shaft 150.
 このように、本実施の形態の入力軸システムJSにおける中間軸受装置100は、入力軸150にかかる振動を、油膜形成領域R5によって低減化する減衰機能を有している。 As described above, the intermediate bearing device 100 in the input shaft system JS of the present embodiment has a damping function of reducing the vibration applied to the input shaft 150 by the oil film forming region R5.
 供試体300と軸トルク計102との間に中間軸受装置100が設けられており、中間軸受装置100の上記減衰機能により、供試体300側からの振動や偏荷重による、入力軸150における軸トルク計102の設置箇所への影響を大幅に低減化することができる。 An intermediate bearing device 100 is provided between the specimen 300 and the shaft torque meter 102, and the shaft torque on the input shaft 150 due to vibration or eccentric load from the specimen 300 side due to the damping function of the intermediate bearing device 100. The influence on the installation locations of 102 in total can be significantly reduced.
 その結果、本実施の形態の入力軸システムJSは、軸トルク計102によって入力軸150の軸トルクを正確に測定することができる効果を奏する。 As a result, the input shaft system JS of the present embodiment has an effect that the shaft torque of the input shaft 150 can be accurately measured by the shaft torque meter 102.
 さらに、本実施の形態の入力軸システムJSは、基台106の上面上に、低慣性モータ110と中間軸受装置100とを固定配置して安定性良く支持できる分、軸トルク計102によって入力軸150の軸トルクをより正確に測定することができる。 Further, in the input shaft system JS of the present embodiment, the low inertia motor 110 and the intermediate bearing device 100 can be fixedly arranged on the upper surface of the base 106 and supported with good stability, and the input shaft is supported by the shaft torque meter 102. The shaft torque of 150 can be measured more accurately.
 加えて、入力軸システムJSにおいて、基台106と、低慣性モータ110(入力軸150を含む)、軸継手104、軸トルク計102及び中間軸受装置100とが一体的に構成されるため、これらを含む入力軸システムJSの取り扱いが容易になる。 In addition, in the input shaft system JS, the base 106, the low inertia motor 110 (including the input shaft 150), the shaft joint 104, the shaft torque meter 102, and the intermediate bearing device 100 are integrally configured. The input axis system JS including the above can be easily handled.
 例えば、入力軸システムJSの入力軸150を供試体300から取り外し、他の供試体に接続する等の処理を比較的簡単に行うことができる。 For example, the input shaft 150 of the input shaft system JS can be removed from the specimen 300 and connected to another specimen, etc., which can be performed relatively easily.
 <中間軸受装置100>
 図3は図2で示した中間軸受装置100の全体構成を示す説明図である。同図に示すように、中間軸受装置100は、入力軸150を回転自在に支持する円筒状の軸受4と、軸受4の外周面側から軸受4を支持する円筒状の軸受ケース5と、軸受ケース5の外周面に対向する対向面(内周面)を有し、軸受ケース5の外周面と対向面とを一対のOリング51を介して接触させて軸受ケース5を支持する軸受用のハウジング1とを主要構成部として含んでいる。
<Intermediate bearing device 100>
FIG. 3 is an explanatory diagram showing the overall configuration of the intermediate bearing device 100 shown in FIG. As shown in the figure, the intermediate bearing device 100 includes a cylindrical bearing 4 that rotatably supports the input shaft 150, a cylindrical bearing case 5 that supports the bearing 4 from the outer peripheral surface side of the bearing 4, and a bearing. For bearings that have a facing surface (inner peripheral surface) facing the outer peripheral surface of the case 5 and support the bearing case 5 by bringing the outer peripheral surface and the facing surface of the bearing case 5 into contact with each other via a pair of O-rings 51. The housing 1 is included as a main component.
 図4は図3で示した軸受ケース5の外観構造を模式的に示す斜視図である。図3及び図4に示すように、軸受ケース5は内部に軸受4を収容するため空洞部を有する円筒状を呈している。 FIG. 4 is a perspective view schematically showing the external structure of the bearing case 5 shown in FIG. As shown in FIGS. 3 and 4, the bearing case 5 has a cylindrical shape having a hollow portion for accommodating the bearing 4 inside.
 軸受ケース5は、外周面上において円周方向に沿って円環状に設けられる一対のOリング用溝53(一対の溝)と、一対のOリング用溝53内に設けられる一対のOリング51と、軸受ケース5の側面の円周方向における一方半円側(上部半円側)に選択的に設けられ、各々が側面を貫通する4つのケース貫通穴50(図4では2つのケース貫通穴50のみ図示)とを主要構成部として含んでいる。なお、図4では説明の都合上、一対のOリング51の図示を省略している。 The bearing case 5 has a pair of O-ring grooves 53 (a pair of grooves) provided in an annular shape along the circumferential direction on the outer peripheral surface, and a pair of O-rings 51 provided in the pair of O-ring grooves 53. And four case through holes 50 (two case through holes in FIG. 4) that are selectively provided on one semicircular side (upper semicircular side) of the side surface of the bearing case 5 in the circumferential direction and each penetrates the side surface. (Only 50 is shown) is included as a main component. In FIG. 4, for convenience of explanation, the pair of O-rings 51 are not shown.
 このように、軸受ケース5は、側面を貫通する複数のケース貫通穴として4つのケース貫通穴50を有している。また、図4に示すように、一対のOリング用溝53は、軸受ケース5の側面における軸方向(底面と上面とを結ぶ方向)の両端部近傍に設けられる。そして、一対のOリング51間における軸受ケース5の外周面上の領域が油膜形成領域R5となり、4つのケース貫通穴50は油膜形成領域R5に選択的に設けられる。 As described above, the bearing case 5 has four case through holes 50 as a plurality of case through holes penetrating the side surface. Further, as shown in FIG. 4, the pair of O-ring grooves 53 are provided near both ends in the axial direction (direction connecting the bottom surface and the top surface) on the side surface of the bearing case 5. Then, the region on the outer peripheral surface of the bearing case 5 between the pair of O-rings 51 becomes the oil film forming region R5, and the four case through holes 50 are selectively provided in the oil film forming region R5.
 さらに、図4に示すように、軸受ケース5の側面において、上部半円部と下部半円部との境界に一対の回り止め窪み55が設けられる。 Further, as shown in FIG. 4, a pair of detent dents 55 are provided on the side surface of the bearing case 5 at the boundary between the upper semicircle and the lower semicircle.
 一対の回り止め窪み55に対しハウジング1側から回転方向に拘束することにより、ハウジング1内で軸受ケース5が回転する現象を防止することができる。 By restraining the pair of detent dents 55 in the rotation direction from the housing 1 side, it is possible to prevent the phenomenon that the bearing case 5 rotates in the housing 1.
 軸受4は、内輪6、外輪7及び転動球8を主要構成要素として含んでいる。外輪7は軸受ケース5内周面に接する外周面を有する円筒状を呈し、内輪6は外輪7との間に内部空間を有するよう設けられる円筒状を呈している。そして、内輪6と外輪7との間の内部空間に転動球8が配置される。 The bearing 4 includes an inner ring 6, an outer ring 7, and a rolling ball 8 as main components. The outer ring 7 has a cylindrical shape having an outer peripheral surface in contact with the inner peripheral surface of the bearing case 5, and the inner ring 6 has a cylindrical shape provided so as to have an internal space between the outer ring 7 and the outer ring 7. Then, the rolling ball 8 is arranged in the internal space between the inner ring 6 and the outer ring 7.
 図3に示すように、外輪7は外輪側部7a、外輪側部7b及び外輪中心部7cにより構成され、外輪側部7a,7b間に外輪中心部7cが挟まれる位置関係を有している。 As shown in FIG. 3, the outer ring 7 is composed of an outer ring side portion 7a, an outer ring side portion 7b, and an outer ring center portion 7c, and has a positional relationship in which the outer ring center portion 7c is sandwiched between the outer ring side portions 7a and 7b. ..
 外輪7の上部の外輪中心部7cにおいて、外輪中心部7cを貫通する外輪貫通穴70が設けられる。さらに、外輪7の下部の外輪中心部7cにおいて、外輪中心部7cを貫通する貫通穴71が設けられる。貫通穴71は、下方領域に、上部領域より幅広構造の回転方向に拘束するための窪みが形成され、この窪みがネジ収容領域71xとなる。 An outer ring through hole 70 penetrating the outer ring center 7c is provided in the outer ring center 7c above the outer ring 7. Further, in the outer ring center portion 7c below the outer ring 7, a through hole 71 penetrating the outer ring center portion 7c is provided. The through hole 71 is formed with a recess in the lower region for restraining the structure wider than the upper region in the rotational direction, and this recess becomes the screw accommodating region 71x.
 図5は外輪7の外観構造を模式的に示す斜視図である。図3及び図5に示すように、外輪7は、側面の円周方向における一方半円側(図5の上部半円側)において、各々が複数のケース貫通穴50に対応して選択的に設けられ、側面を貫通する複数の外輪貫通穴である4つの外輪貫通穴70(図5では2つの外輪貫通穴70のみ図示)を有する。 FIG. 5 is a perspective view schematically showing the external structure of the outer ring 7. As shown in FIGS. 3 and 5, each of the outer ring 7 selectively corresponds to a plurality of case through holes 50 on one semicircular side (upper semicircular side of FIG. 5) in the circumferential direction of the side surface. It has four outer ring through holes 70 (only two outer ring through holes 70 are shown in FIG. 5), which are provided and are a plurality of outer ring through holes penetrating the side surface.
 さらに、外輪7は、側面の円周方向における一方半円側に対向する他方半円側(下部半円側)に設けられる1つの貫通穴71を有している。 Further, the outer ring 7 has one through hole 71 provided on the other semicircular side (lower semicircular side) facing the one semicircular side in the circumferential direction of the side surface.
 図6は軸受ケース5及び外輪7における側面の円周方向における位置関係を模式的に示す説明図である。図6で示すA-A断面が図3で示す構造となる。 FIG. 6 is an explanatory view schematically showing the positional relationship of the side surfaces of the bearing case 5 and the outer ring 7 in the circumferential direction. The cross section AA shown in FIG. 6 has the structure shown in FIG.
 図6に示すように、軸受ケース5の4つのケース貫通穴50と、外輪7の4つの外輪貫通穴70とが、対応するケース貫通穴50及び外輪貫通穴70間で連続的に繋がるように、互いに対応する位置関係で設けられる。すなわち、図6に示すように、軸受ケース5の側面の円周方向を規定する円及び外輪7の側面の円周方向を規定する円の共通の中心を中心点C1とすると、中心点C1から4つのケース貫通穴50にかけて延びる4つの直線上に4つの外輪貫通穴70のうちの一の外輪貫通穴70が必ず位置するように設けられる。すなわち、4つのケース貫通穴50と4つの外輪貫通穴70とは1対1に対応し、対応するケース貫通穴50と外輪貫通穴70とは中心点C1を起点として同一直線上に存在する。 As shown in FIG. 6, the four case through holes 50 of the bearing case 5 and the four outer ring through holes 70 of the outer ring 7 are continuously connected between the corresponding case through holes 50 and the outer ring through holes 70. , Provided in a positional relationship corresponding to each other. That is, as shown in FIG. 6, assuming that the common center of the circle defining the circumferential direction of the side surface of the bearing case 5 and the circle defining the circumferential direction of the side surface of the outer ring 7 is the center point C1, from the center point C1. The outer ring through hole 70 of one of the four outer ring through holes 70 is provided so as to be always located on the four straight lines extending over the four case through holes 50. That is, the four case through holes 50 and the four outer ring through holes 70 have a one-to-one correspondence, and the corresponding case through holes 50 and the outer ring through holes 70 exist on the same straight line starting from the center point C1.
 なお、外輪貫通穴70の先端領域は他の領域より油の流通経路が狭くなり、かつ、2つに分岐する絞り構造70sを有し、これら絞り構造70sによって油の流れを制限することにより、軸受4の内輪6及び転動球8に安定した油の供給を行うことができる。 The tip region of the outer ring through hole 70 has a narrower oil flow path than the other regions and has a throttle structure 70s that branches into two, and the flow of oil is restricted by these throttle structures 70s. Stable oil can be supplied to the inner ring 6 and the rolling ball 8 of the bearing 4.
 また、図4及び図6に示すように、軸受ケース5の側面において、上部半円部と下部半円部との境界に一対の回り止め窪み55が設けられる。したがって、一対の回り止め窪み55を結ぶ線上に中心点C1が存在する。 Further, as shown in FIGS. 4 and 6, a pair of detent dents 55 are provided on the side surface of the bearing case 5 at the boundary between the upper semicircle and the lower semicircle. Therefore, the center point C1 exists on the line connecting the pair of detent dents 55.
 図6に示すように、軸受ケース5及び外輪7は、それぞれの側面の円周方向における上記他方半円側に設けられる軸受ケース5の貫通穴57及び貫通穴71を有している。 As shown in FIG. 6, the bearing case 5 and the outer ring 7 have through holes 57 and through holes 71 of the bearing case 5 provided on the other semicircular side in the circumferential direction of the respective side surfaces.
 図7は内輪6の外観構造を模式的に示す斜視図である。図3及び図7に示すように、内輪6は外輪7との間に内部空間が形成されるように、外輪7の側面より小さい径の側面を有して円筒状に形成される。 FIG. 7 is a perspective view schematically showing the external structure of the inner ring 6. As shown in FIGS. 3 and 7, the inner ring 6 has a side surface having a diameter smaller than the side surface of the outer ring 7 and is formed in a cylindrical shape so that an internal space is formed between the inner ring 6 and the outer ring 7.
 そして、図3に示すように、固定用ネジである底部ネジ73は、軸受ケース5及び外輪7の側面の上記他方半円側において、外輪7と軸受ケース5との間に設けられ、外輪中心部7cの回転方向の動きを拘束している。すなわち、底部ネジ73は軸受ケース5の貫通穴57を貫通し、貫通穴71のネジ収容領域71xに収納されるように設けられる。 Then, as shown in FIG. 3, the bottom screw 73, which is a fixing screw, is provided between the outer ring 7 and the bearing case 5 on the other semicircular side of the side surface of the bearing case 5 and the outer ring 7, and is centered on the outer ring. The movement of the portion 7c in the rotation direction is restrained. That is, the bottom screw 73 is provided so as to penetrate the through hole 57 of the bearing case 5 and be housed in the screw accommodating area 71x of the through hole 71.
 図8は図2で示した中間軸受装置100における油供給系統を模式的に示すブロック図である。同図に示す給油回路10から軸受ケース5の外周面上に油が供給される。軸受ケース5の外周面上に供給された油は、軸受ケース5の4つのケース貫通穴50及び外輪7の4つの外輪貫通穴70のみを介して、軸受4の内部に供給される。 FIG. 8 is a block diagram schematically showing an oil supply system in the intermediate bearing device 100 shown in FIG. Oil is supplied from the oil supply circuit 10 shown in the figure onto the outer peripheral surface of the bearing case 5. The oil supplied on the outer peripheral surface of the bearing case 5 is supplied to the inside of the bearing 4 only through the four case through holes 50 of the bearing case 5 and the four outer ring through holes 70 of the outer ring 7.
 なお、図3において、油の流れを矢印で示している。図3に示すように、給油回路10から軸受ケース5及び外輪7の外輪中心部7cを介して軸受4の外輪7及び転動球8に供給された油は、外輪7の外周方向の他方半円側において軸受4から外部に排出される。 Note that in FIG. 3, the flow of oil is indicated by an arrow. As shown in FIG. 3, the oil supplied from the oil supply circuit 10 to the outer ring 7 and the rolling ball 8 of the bearing 4 via the outer ring center 7c of the bearing case 5 and the outer ring 7 is the other half of the outer ring 7 in the outer peripheral direction. It is discharged to the outside from the bearing 4 on the circular side.
 図9は油膜の形成状態を模式的に示す説明図である。同図に示すように、一対のOリング51間における軸受ケース5の外周面上の領域が油膜形成領域R5となる。したがって、給油回路10から軸受ケース5の外周面上に油が供給されると、軸受ケース5の外周面とハウジング1の対向面(内周面)との間の油膜形成領域R5に油膜25が形成される。 FIG. 9 is an explanatory diagram schematically showing the formation state of the oil film. As shown in the figure, the region on the outer peripheral surface of the bearing case 5 between the pair of O-rings 51 is the oil film forming region R5. Therefore, when oil is supplied from the oil supply circuit 10 onto the outer peripheral surface of the bearing case 5, the oil film 25 is formed in the oil film forming region R5 between the outer peripheral surface of the bearing case 5 and the facing surface (inner peripheral surface) of the housing 1. It is formed.
 図2で示した中間軸受装置100は、給油回路10からの給油により、図3及び図9に示すように、油膜形成領域R5に油膜25が形成される。なぜなら、一対のOリング51によって軸受ケース5の外周面上の油膜形成領域R5は、油膜形成領域R5に選択的に設けられる4つのケース貫通穴50を除いて、他の領域から遮断される閉鎖空間となるからである。 In the intermediate bearing device 100 shown in FIG. 2, an oil film 25 is formed in the oil film forming region R5 as shown in FIGS. 3 and 9 by refueling from the refueling circuit 10. This is because the pair of O-rings 51 closes the oil film forming region R5 on the outer peripheral surface of the bearing case 5 from other regions except for the four case through holes 50 selectively provided in the oil film forming region R5. Because it becomes a space.
 なお、図9では模式的に示しているため、油膜25が所定の厚みを有する態様で図示しているが、実際には油膜25の厚みは微小である。 Since it is schematically shown in FIG. 9, the oil film 25 is shown in a mode having a predetermined thickness, but the thickness of the oil film 25 is actually very small.
 さらに、図3及び図4に示すように、一対のOリング用溝53を軸受ケース5の側面における軸方向の両端部近傍に設けることにより、軸受ケース5の外周面の大部分の領域を油膜形成領域R5とすることができるため、比較的広い領域で油膜25による油膜ダンパ機構を発揮させることができる。 Further, as shown in FIGS. 3 and 4, by providing a pair of O-ring grooves 53 near both ends in the axial direction on the side surface of the bearing case 5, most of the outer peripheral surface of the bearing case 5 is covered with an oil film. Since the formation region R5 can be formed, the oil film damper mechanism by the oil film 25 can be exhibited in a relatively wide area.
 その結果、本実施の形態の入力軸システムJSに用いられる中間軸受装置100は、油膜形成領域R5によって、支持する入力軸150にかかる振動を効果的に低減化する上記減衰機能を発揮することができる。このように、中間軸受装置100は油膜形成領域R5を有し、入力軸150にかかる振動を油膜形成領域R5によって低減化する上記減衰機能を有している。 As a result, the intermediate bearing device 100 used in the input shaft system JS of the present embodiment can exhibit the above damping function of effectively reducing the vibration applied to the supporting input shaft 150 by the oil film forming region R5. it can. As described above, the intermediate bearing device 100 has the oil film forming region R5, and has the damping function of reducing the vibration applied to the input shaft 150 by the oil film forming region R5.
 加えて、軸受ケース5の4つのケース貫通穴50(複数のケース貫通穴)及び軸受4の4つの外輪貫通穴70(複数の外輪貫通穴)を介して、油膜形成領域R5における油膜25を形成する油の一部を軸受4内に供給している。このため、中間軸受装置100は、装置を大型化することなく軸受4を冷却することができる。 In addition, the oil film 25 in the oil film forming region R5 is formed through the four case through holes 50 (plural case through holes) of the bearing case 5 and the four outer ring through holes 70 (plural outer ring through holes) of the bearing 4. A part of the oil is supplied to the bearing 4. Therefore, the intermediate bearing device 100 can cool the bearing 4 without increasing the size of the device.
 この際、軸受4内への油の供給は、油膜形成領域R5に選択的に形成された4つのケース貫通穴50と4つの外輪貫通穴70とのみを介することにより、軸受4への油供給量に制限されることによって、油膜形成領域R5における油膜25の形成を安定して行うことができる。 At this time, the oil is supplied to the bearing 4 only through the four case through holes 50 and the four outer ring through holes 70 selectively formed in the oil film forming region R5. By being limited to the amount, the oil film 25 can be stably formed in the oil film forming region R5.
 入力軸システムJS内の中間軸受装置100において、複数の外輪貫通穴70それぞれの先端領域は他の領域より油の流通経路が狭くなる絞り構造70sを有している。すなわち、中間軸受装置100において、外輪7の外輪中心部7cに設けられる外輪貫通穴70の先端領域は他の領域より油の流通経路が狭くなる絞り構造70sを有している。 In the intermediate bearing device 100 in the input shaft system JS, the tip region of each of the plurality of outer ring through holes 70 has a drawing structure 70s in which the oil flow path is narrower than the other regions. That is, in the intermediate bearing device 100, the tip region of the outer ring through hole 70 provided in the outer ring center portion 7c of the outer ring 7 has a drawing structure 70s in which the oil flow path is narrower than the other regions.
 このため、実施の形態の中間軸受装置100は、軸受4内の内輪6及び転動球8への油の供給をスムーズにして、油膜形成領域R5における油膜25の形成を安定して維持することができる。 Therefore, in the intermediate bearing device 100 of the embodiment, the oil is smoothly supplied to the inner ring 6 and the rolling ball 8 in the bearing 4, and the formation of the oil film 25 in the oil film forming region R5 is stably maintained. Can be done.
 さらに、底部ネジ73よって、外輪7と軸受ケース5とを固定することにより、外輪7の外輪中心部7cによる回転方向の動きを拘束することができる。 Further, by fixing the outer ring 7 and the bearing case 5 with the bottom screw 73, the movement of the outer ring 7 in the rotation direction by the outer ring center portion 7c can be restrained.
 その結果、本実施の形態の中間軸受装置100は、比較的少ない部材で入力軸150による振動の低減化及び軸受4の冷却を図ることができる効果を奏する。 As a result, the intermediate bearing device 100 of the present embodiment has the effect of reducing vibration due to the input shaft 150 and cooling the bearing 4 with a relatively small number of members.
 <その他>
 本実施の形態では、供試体300として、FFトランスミッションを示したがこれに限定されず、例えば、ディファレンシャルギア等でも良い。すなわち、入力軸150に連結可能な全ての構成部を供試体300として用いることができる。
<Others>
In the present embodiment, the FF transmission is shown as the specimen 300, but the present invention is not limited to this, and for example, a differential gear or the like may be used. That is, all the constituent parts that can be connected to the input shaft 150 can be used as the specimen 300.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。すなわち、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 Although the present invention has been described in detail, the above description is an example in all aspects, and the present invention is not limited thereto. It is understood that innumerable variations not illustrated can be assumed without departing from the scope of the present invention. That is, in the present invention, the embodiments can be appropriately modified or omitted within the scope of the invention.
 1 ハウジング
 4 軸受
 5 軸受ケース
 6 内輪
 7 外輪
 25 油膜
 50 ケース貫通穴
 51 Oリング
 53 Oリング用溝
 71 貫通穴
 70 外輪貫通穴
 73 底部ネジ
 100 中間軸受装置
 102 軸トルク計
 106 基台
 110 低慣性モータ
 150 入力軸
 250 出力軸
 300 供試体
 JM 中間軸構造体
 R5 油膜形成領域
1 Housing 4 Bearing 5 Bearing case 6 Inner ring 7 Outer ring 25 Oil film 50 Case through hole 51 O-ring 53 O-ring groove 71 Through hole 70 Outer ring through hole 73 Bottom screw 100 Intermediate bearing device 102 Axis torque meter 106 Base 110 Low inertia motor 150 Input shaft 250 Output shaft 300 Specimen JM Intermediate shaft Structure R5 O-ring formation region

Claims (3)

  1.  供試体に連結される入力軸を有する入力軸システムであって、
     前記入力軸を回転させる駆動源と、
     前記駆動源と前記供試体との間に設けられ、前記入力軸を支持する中間軸受装置と、
     前記中間軸受装置と前記駆動源との間に設けられ、前記入力軸の軸トルクを計測する軸トルク計とを備え、
     前記中間軸受装置は油膜形成領域を有し、前記入力軸にかかる振動を前記油膜形成領域によって低減化する減衰機能を有することを特徴とする、
    入力軸システム。
    An input shaft system having an input shaft connected to a specimen.
    The drive source that rotates the input shaft and
    An intermediate bearing device provided between the drive source and the specimen to support the input shaft, and
    A shaft torque meter provided between the intermediate bearing device and the drive source and measuring the shaft torque of the input shaft is provided.
    The intermediate bearing device has an oil film forming region, and has a damping function for reducing vibration applied to the input shaft by the oil film forming region.
    Input axis system.
  2.  請求項1記載の入力軸システムであって、
     前記駆動源及び前記中間軸受装置を上面上に固定配置し、前記駆動源、前記軸トルク計及び前記中間軸受装置と一体的に構成される基台をさらに備える、
    入力軸システム。
    The input axis system according to claim 1.
    The drive source and the intermediate bearing device are fixedly arranged on the upper surface, and further include a base integrally formed with the drive source, the shaft torque meter, and the intermediate bearing device.
    Input axis system.
  3.  請求項1または請求項2に記載の入力軸システムであって、
     前記中間軸受装置は、
     前記入力軸を回転自在に支持する円筒状の軸受と、
     前記軸受の外周面側から前記軸受を支持する円筒状の軸受ケースと、
     前記軸受ケースの外周面に対向する対向面を有し、前記軸受ケースの外周面と対向面とを接触させて前記軸受ケースを支持する軸受用のハウジングと、
     前記軸受ケースの外周面上に油を供給する給油回路とを備え、
     前記軸受ケースは、
     外周面上において円周方向に沿って円環状に設けられる一対の溝と、
     前記一対の溝内に設けられる一対のOリングと、
     側面の円周方向における一方半円側に選択的に設けられ、各々が側面を貫通する複数のケース貫通穴とを含み、
     前記一対のOリング間における前記軸受ケースの外周面上の領域が前記油膜形成領域となり、前記複数のケース貫通穴は前記油膜形成領域に設けられ、
     前記軸受は、
     前記軸受ケースの内周面に接する外周面を有する円筒状の外輪と、
     前記外輪との間に内部空間を有するよう設けられる円筒状の内輪とを有し、前記内部空間に転動球が配置され、
     前記外輪は、側面の円周方向における前記一方半円側において、各々が前記複数のケース貫通穴に対応して選択的に設けられ、側面を貫通する複数の外輪貫通穴を有する、
    入力軸システム。
    The input axis system according to claim 1 or 2.
    The intermediate bearing device is
    A cylindrical bearing that rotatably supports the input shaft,
    A cylindrical bearing case that supports the bearing from the outer peripheral surface side of the bearing,
    A housing for a bearing having a facing surface facing the outer peripheral surface of the bearing case and supporting the bearing case by bringing the outer peripheral surface and the facing surface of the bearing case into contact with each other.
    A refueling circuit that supplies oil on the outer peripheral surface of the bearing case is provided.
    The bearing case is
    A pair of grooves provided in an annular shape along the circumferential direction on the outer peripheral surface,
    A pair of O-rings provided in the pair of grooves and
    Selectively provided on one semicircular side in the circumferential direction of the side surface, each including a plurality of case through holes penetrating the side surface.
    A region on the outer peripheral surface of the bearing case between the pair of O-rings serves as the oil film forming region, and the plurality of case through holes are provided in the oil film forming region.
    The bearing is
    A cylindrical outer ring having an outer peripheral surface in contact with the inner peripheral surface of the bearing case,
    It has a cylindrical inner ring provided so as to have an internal space between it and the outer ring, and a rolling sphere is arranged in the internal space.
    Each of the outer rings is selectively provided corresponding to the plurality of case through holes on the one semicircular side in the circumferential direction of the side surface, and has a plurality of outer ring through holes penetrating the side surface.
    Input axis system.
PCT/JP2019/038514 2019-09-30 2019-09-30 Input shaft system WO2021064793A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/038514 WO2021064793A1 (en) 2019-09-30 2019-09-30 Input shaft system
CN201980067974.2A CN112997014B (en) 2019-09-30 2019-09-30 Input shaft system
JP2020558061A JP6921470B1 (en) 2019-09-30 2019-09-30 Input axis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038514 WO2021064793A1 (en) 2019-09-30 2019-09-30 Input shaft system

Publications (1)

Publication Number Publication Date
WO2021064793A1 true WO2021064793A1 (en) 2021-04-08

Family

ID=75337780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038514 WO2021064793A1 (en) 2019-09-30 2019-09-30 Input shaft system

Country Status (3)

Country Link
JP (1) JP6921470B1 (en)
CN (1) CN112997014B (en)
WO (1) WO2021064793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525716A1 (en) * 2021-12-03 2023-06-15 Avl List Gmbh DYNAMIC TEST BENCH FOR DUT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187752U (en) * 1982-06-10 1983-12-13 トヨタ自動車株式会社 Power transmission system testing equipment
JPS639428U (en) * 1986-07-02 1988-01-22
JPH07324972A (en) * 1994-04-06 1995-12-12 Nippon Seiko Kk Apparatus for measuring vibration of roller bearing
JP2017187086A (en) * 2016-04-04 2017-10-12 Ntn株式会社 Vibration control bearing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226400A (en) * 2005-02-17 2006-08-31 Jtekt Corp Shaft device
JP2014119080A (en) * 2012-12-19 2014-06-30 Hitachi Ltd Slide bearing device
JP6205803B2 (en) * 2013-04-05 2017-10-04 日本精工株式会社 Test equipment for radial rolling bearings
JP6144216B2 (en) * 2014-02-14 2017-06-07 大豊工業株式会社 Plain bearing
JP2018076780A (en) * 2016-11-07 2018-05-17 日立ジョンソンコントロールズ空調株式会社 Refrigerant compressor
CN107560855B (en) * 2017-10-12 2019-03-01 重庆大学 A kind of filmatic bearing dynamic and static state performance experimental rig

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187752U (en) * 1982-06-10 1983-12-13 トヨタ自動車株式会社 Power transmission system testing equipment
JPS639428U (en) * 1986-07-02 1988-01-22
JPH07324972A (en) * 1994-04-06 1995-12-12 Nippon Seiko Kk Apparatus for measuring vibration of roller bearing
JP2017187086A (en) * 2016-04-04 2017-10-12 Ntn株式会社 Vibration control bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525716A1 (en) * 2021-12-03 2023-06-15 Avl List Gmbh DYNAMIC TEST BENCH FOR DUT

Also Published As

Publication number Publication date
JP6921470B1 (en) 2021-08-18
JPWO2021064793A1 (en) 2021-11-04
CN112997014B (en) 2023-07-21
CN112997014A (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP5221358B2 (en) Reduction gear
JP5533194B2 (en) Transmission gear unit
US20100199796A1 (en) Gear device and turning portion structure of industrial robot using the gear device
WO2018099392A1 (en) Planetary speed reducer with small tooth difference, in-vehicle display, and vehicle
JP2019094932A (en) Driving device for vehicle
JP2002005791A (en) Testing device for transaxle
WO2021064793A1 (en) Input shaft system
JP4867523B2 (en) Transaxle testing equipment
JP2007212179A (en) Support device for measuring characteristics of rolling bearing, and characteristics measuring device of the rolling bearing
JP6491456B2 (en) Traction power transmission device
JP2018205090A (en) Rotation oscillation tester
JP2007205866A (en) Gear evaluating apparatus
JP2966040B2 (en) Centrifugal load bearing tester
JP5009232B2 (en) Eccentric oscillating gear unit
KR102223100B1 (en) Test method for integrated drive axle
CN111207922B (en) High-power high-rotation-speed planetary speed change mechanism test device
JP2009276211A (en) Coupling device and tester
KR101262485B1 (en) Idler device
JP2005331441A (en) Bearing unit with built-in torque meter, and assembling method therefor
JP2006258270A (en) Supporting structure of turning member in planetary gear reducer
JPH09178616A (en) Test device for vehicle
JP2019066197A5 (en)
KR200306622Y1 (en) Universal spindle fixing device using for dynamic balancing test
JP2006023085A (en) Support device for vibration measuring
JP2023147376A (en) electric actuator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558061

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947429

Country of ref document: EP

Kind code of ref document: A1