WO2021063304A1 - 通信认证方法和相关设备 - Google Patents

通信认证方法和相关设备 Download PDF

Info

Publication number
WO2021063304A1
WO2021063304A1 PCT/CN2020/118342 CN2020118342W WO2021063304A1 WO 2021063304 A1 WO2021063304 A1 WO 2021063304A1 CN 2020118342 W CN2020118342 W CN 2020118342W WO 2021063304 A1 WO2021063304 A1 WO 2021063304A1
Authority
WO
WIPO (PCT)
Prior art keywords
authentication
gba
authentication vector
vector
autn
Prior art date
Application number
PCT/CN2020/118342
Other languages
English (en)
French (fr)
Inventor
张博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20871334.7A priority Critical patent/EP4030801A4/en
Publication of WO2021063304A1 publication Critical patent/WO2021063304A1/zh
Priority to US17/706,877 priority patent/US20220255734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/321Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
    • H04L9/3213Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority using tickets or tokens, e.g. Kerberos
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity

Definitions

  • This application relates to the field of communication technology, in particular to communication authentication methods and related equipment.
  • GBA Generic Bootstrapping Architecture
  • NAF Network Application Function
  • the 3rd Generation Partnership Project (3GPP, 3rd Generation Partnership Project) has studied how GBA technology is applied to 3G and 4G networks. With the gradual commercial use of 5G networks, how to apply GBA technology to 5G networks has become a technical subject that the industry needs to study.
  • the embodiments of the present application provide a communication authentication method and related equipment.
  • the embodiment of the present application also provides a communication authentication method, including: the unified data management entity UDM receives a universal boot framework GBA authentication request carrying a user terminal identifier (this GBA authentication request may be sent by AUSF or BSF, GBA authentication The request has the function of requesting GBA authentication, but the specific message name of this GBA authentication request may be an authentication request, an access request, a registration request, or a message with other names); the UDM generates the first user terminal indicated by the user terminal identifier An authentication vector, wherein the first authentication vector is different from the second authentication vector of the user terminal, the first authentication vector is a 5G GBA authentication vector, and the second authentication vector includes one of the following authentication vectors or Multiple: 3G GBA authentication vector, 4G GBA authentication vector, or 5G authentication vector; the UDM sends a GBA authentication response carrying the first authentication vector.
  • this GBA authentication request may be sent by AUSF or BSF, GBA authentication The request has the function of requesting GBA authentication, but the specific message name of
  • the above-mentioned example solution can realize GBA authentication in 5G network, which is beneficial to lay a good foundation for applying GBA technology to 5G network.
  • the above-mentioned scheme is conducive to the isolation of the 5G GBA authentication vector from other authentication vectors of the UE.
  • the encryption key CK' and the integrity protection key IK' in the 5G GBA vector can be separated from the encryption secrets in other authentication vectors of the UE.
  • the isolation of the key CK and the integrity protection key IK is beneficial to prevent, for example, the encryption key CK' and the integrity protection key IK' from being abused.
  • the first authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector
  • the second authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector.
  • the first authentication vector is a five-tuple authentication vector (CK', IK', RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES); wherein, the encryption key CK' in the first authentication vector is different from the encryption key CK in the second authentication vector, And/or, the integrity protection key IK' in the first authentication vector is different from the integrity protection key IK in the second authentication vector.
  • the parameters used to derive the encryption key CK' include the random number RAND, the root key K, and the derivation parameter y1; the parameters used to derive the integrity protection key IK' include RAND, the root key K, and the derivation parameter y2.
  • the deduction function f3' used for deriving the CK' is different from the deduction function f3 used for deriving the CK; the deduction function f4' used for deriving the IK' is different from the deduction function f4 used for deriving the IK.
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the second authentication vector.
  • the AUTN in the first authentication vector will use the first SQN
  • inferring the AUTN in the second authentication vector will use the second SQN.
  • the first SQN and the second SQN include a flag bit
  • the flag bit of the first SQN is different from the flag bit of the second SQN, or the first SQN and the second SQN are divided Belong to different SQN segment intervals.
  • the first authentication vector is a 4-tuple authentication vector (K gba , RAND, AUTN, XRES);
  • the second authentication vector is a 5-tuple authentication vector (CK, IK, RAND, AUTN, XRES), or
  • the second authentication vector is a four-tuple authentication vector ( Kausf , RAND, AUTN, XRES);
  • the deduction parameters used in the deduction key Kgba may include, for example, the encryption key CK, the integrity protection IK, and the parameter y2.
  • the UDM receiving the GBA authentication request carrying the user terminal identifier includes: UDM receiving the GBA authentication request carrying the user terminal identifier from the BSF; or UDM receiving the GBA authentication request carrying the user terminal identifier from AUSF request.
  • the UDM sending the GBA authentication response carrying the first authentication vector includes: the UDM sending the GBA authentication response carrying the first authentication vector to AUSF, where the The GBA authentication response is used to trigger the AUSF to use CK to perform CK" and to use IK to perform IK", or the GBA authentication response to trigger the AUSF to use Kgba to perform Kgba’, which is used to perform Kgba’
  • the derived parameters include parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number Fresh parameters such as nonce or serial number.
  • the embodiments of the present application also provide a unified data management entity UDM, including:
  • the communication unit is configured to receive a universal boot framework GBA authentication request carrying a user terminal identifier (the GBA authentication request may be sent by AUSF or BSF).
  • the generating unit is configured to generate a first authentication vector of the user terminal indicated by the user terminal identifier, where the first authentication vector is different from the second authentication vector of the user terminal, and the first authentication vector is a 5G GBA authentication vector ,
  • the second authentication vector includes a 3G/4G GBA authentication vector and/or a 5G authentication vector.
  • the communication unit is further configured to send a GBA authentication response carrying the first authentication vector.
  • the above-mentioned example solution can realize GBA authentication in 5G network, which is beneficial to lay a good foundation for applying GBA technology to 5G network.
  • the above-mentioned scheme is conducive to the isolation of the 5G GBA authentication vector from other authentication vectors of the UE.
  • the encryption key CK' and the integrity protection key IK' in the 5G GBA vector can be separated from the encryption secrets in other authentication vectors of the UE.
  • the isolation of the key CK and the integrity protection key IK is beneficial to prevent, for example, the encryption key CK' and the integrity protection key IK' from being abused.
  • the first authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector
  • the second authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector.
  • the first authentication vector is a five-tuple authentication vector (CK', IK', RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES); wherein, the encryption key CK' in the first authentication vector is different from the encryption key CK in the second authentication vector, And/or, the integrity protection key IK' in the first authentication vector is different from the integrity protection key IK in the second authentication vector.
  • the parameters used to derive the encryption key CK' include the random number RAND, the root key K, and the derivation parameter y1; the parameters used to derive the integrity protection key IK' include RAND, the root key K, and the derivation parameter y2.
  • the deduction function f3' used for deriving the CK' is different from the deduction function f3 used for deriving the CK; the deduction function f4' used for deriving the IK' is different from the deduction function f4 used for deriving the IK.
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the second authentication vector.
  • the AUTN in the first authentication vector will use the first SQN
  • inferring the AUTN in the second authentication vector will use the second SQN.
  • the first SQN and the second SQN include a flag bit
  • the flag bit of the first SQN is different from the flag bit of the second SQN, or the first SQN and the second SQN are divided Belong to different SQN segment intervals.
  • the first authentication vector is a 4-tuple authentication vector (K gba , RAND, AUTN, XRES);
  • the second authentication vector is a 5-tuple authentication vector (CK, IK, RAND, AUTN, XRES), or
  • the second authentication vector is a four-tuple authentication vector ( Kausf , RAND, AUTN, XRES);
  • the deduction parameters used in the deduction key Kgba may include, for example, the encryption key CK, the integrity protection IK, and the parameter y2.
  • the UDM receiving the GBA authentication request carrying the user terminal identifier includes: UDM receiving the GBA authentication request carrying the user terminal identifier from the BSF; or UDM receiving the GBA authentication request carrying the user terminal identifier from AUSF request.
  • the UDM sending the GBA authentication response carrying the first authentication vector includes: the UDM sending the GBA authentication response carrying the first authentication vector to AUSF, where the The GBA authentication response is used to trigger the AUSF to use CK to perform CK" and to use IK to perform IK", or the GBA authentication response to trigger the AUSF to use Kgba to perform Kgba’, which is used to perform Kgba’
  • the derived parameters include parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number Fresh parameters such as nonce or serial number.
  • the communication unit receiving the universal boot framework GBA authentication request carrying the user terminal identifier includes: receiving the GBA authentication request carrying the user terminal identifier from the BSF; or receiving the GBA authentication request carrying the user terminal identifier from the AUSF Identifies the GBA certification request.
  • sending the GBA authentication response carrying the first authentication vector by the communication unit includes: sending a GBA authentication response carrying the first authentication vector to AUSF, where the GBA authentication response is used for To trigger the AUSF to use CK' to derive CK" and to use IK to derive IK", or the GBA authentication response to trigger the AUSF to use Kgba to derive Kgba’, to derive the deduction parameters used in Kgba’ Include parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number Fresh parameters such as nonce or serial number.
  • an embodiment of the present application provides a communication authentication method, including: a user terminal sends a universal boot framework GBA authentication request carrying a user terminal identifier; the user terminal receives an authentication request carrying AUTN and RAND; the user terminal is based on AUTN Derive a first authentication vector with RAND, the first authentication vector is different from the second authentication vector of the user terminal, the first authentication vector is a 5G GBA authentication vector, and the second authentication vector includes 3G/4G GBA authentication Vector and/or 5G certification vector.
  • the above-mentioned example solution can realize GBA authentication in 5G network, which is beneficial to lay a good foundation for applying GBA technology to 5G network.
  • the above-mentioned scheme is conducive to the isolation of the 5G GBA authentication vector from other authentication vectors of the UE.
  • the encryption key CK' and the integrity protection key IK' in the 5G GBA vector can be separated from the encryption secrets in other authentication vectors of the UE.
  • the isolation of the key CK and the integrity protection key IK is beneficial to prevent, for example, the encryption key CK' and the integrity protection key IK' from being abused.
  • the first authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector
  • the second authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector.
  • the first authentication vector is a five-tuple authentication vector (CK', IK', RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES); wherein, the encryption key CK' in the first authentication vector is different from the encryption key CK in the second authentication vector, And/or, the integrity protection key IK' in the first authentication vector is different from the integrity protection key IK in the second authentication vector.
  • the parameters used to derive the encryption key CK' include the random number RAND, the root key K, and the derivation parameter y1; the parameters used to derive the integrity protection key IK' include RAND, the root key K, and the derivation parameter y2.
  • the deduction function f3' used for deriving the CK' is different from the deduction function f3 used for deriving the CK; the deduction function f4' used for deriving the IK' is different from the deduction function f4 used for deriving the IK.
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the second authentication vector.
  • the AUTN in the first authentication vector will use the first SQN
  • inferring the AUTN in the second authentication vector will use the second SQN.
  • the first SQN and the second SQN include a flag bit
  • the flag bit of the first SQN is different from the flag bit of the second SQN, or the first SQN and the second SQN are divided Belong to different SQN segment intervals.
  • the first authentication vector is a 4-tuple authentication vector (K gba , RAND, AUTN, XRES);
  • the second authentication vector is a 5-tuple authentication vector (CK, IK, RAND, AUTN, XRES), or
  • the second authentication vector is a four-tuple authentication vector ( Kausf , RAND, AUTN, XRES);
  • the deduction parameters used in the deduction key Kgba may include, for example, the encryption key CK, the integrity protection IK, and the parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number Fresh parameters such as nonce or serial number.
  • an embodiment of the present application also provides a user terminal, including:
  • the communication unit is used to send a universal boot framework GBA authentication request carrying a user terminal identifier; to receive an authentication request carrying AUTN and RAND;
  • the generating unit is configured to derive a first authentication vector based on AUTN and RAND, the first authentication vector is different from the second authentication vector of the user terminal, the first authentication vector is a 5G GBA authentication vector, and the second authentication
  • the vector includes 3G/4G GBA certification vector and/or 5G certification vector.
  • the first authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector
  • the second authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector.
  • the first authentication vector is a five-tuple authentication vector (CK', IK', RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES); wherein, the encryption key CK' in the first authentication vector is different from the encryption key CK in the second authentication vector, And/or, the integrity protection key IK' in the first authentication vector is different from the integrity protection key IK in the second authentication vector.
  • the parameters used to derive the encryption key CK' include the random number RAND, the root key K, and the derivation parameter y1; the parameters used to derive the integrity protection key IK' include RAND, the root key K, and the derivation parameter y2.
  • the deduction function f3' used for deriving the CK' is different from the deduction function f3 used for deriving the CK; the deduction function f4' used for deriving the IK' is different from the deduction function f4 used for deriving the IK.
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the second authentication vector.
  • the AUTN in the first authentication vector will use the first SQN
  • inferring the AUTN in the second authentication vector will use the second SQN.
  • the first SQN and the second SQN include a flag bit
  • the flag bit of the first SQN is different from the flag bit of the second SQN, or the first SQN and the second SQN are divided Belong to different SQN segment intervals.
  • the first authentication vector is a 4-tuple authentication vector (K gba , RAND, AUTN, XRES);
  • the second authentication vector is a 5-tuple authentication vector (CK, IK, RAND, AUTN, XRES), or
  • the second authentication vector is a four-tuple authentication vector ( Kausf , RAND, AUTN, XRES);
  • the deduction parameters used in the deduction key Kgba may include, for example, the encryption key CK, the integrity protection IK, and the parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number Fresh parameters such as nonce or serial number.
  • an embodiment of the present application also provides a terminal device, including:
  • an embodiment of the present application also provides a UDM, including:
  • the processor is configured to call a computer program stored in the memory to execute part or all of the steps of the method of the first aspect above.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, wherein the computer program is executed by a processor to complete part of the methods in the above aspects Or all steps.
  • the embodiments of the present application also provide a computer program product including instructions, wherein when the computer program product runs on a user terminal, the user terminal is caused to execute part or all of any one of the methods in the second aspect step.
  • the embodiments of the present application also provide a computer program product including instructions, wherein when the computer program product runs in the UDM, the UDM is caused to execute part or all of the steps of any one of the methods in the first aspect.
  • an embodiment of the present application further provides a communication device, including: at least one input terminal, a signal processor, and at least one output terminal;
  • the signal processor is used to execute part or all of the steps of any one of the above aspects.
  • an embodiment of the present application further provides a communication device, including: an input interface circuit, a logic circuit, and an output interface circuit, wherein the logic circuit is used to execute any one of the first aspect or the second aspect Part or all of the steps of the method.
  • Fig. 1-A is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 1-B to FIG. 1-D are schematic diagrams of the architecture of other communication systems provided by embodiments of the present application.
  • Fig. 2 is a schematic flowchart of a communication authentication method provided by an embodiment of the present application.
  • Fig. 3-A is a schematic flowchart of another communication authentication method provided by an embodiment of the present application.
  • Fig. 3-B to Fig. 3-E are schematic diagrams of derivation of several authentication vectors provided by embodiments of the present application.
  • Fig. 4 is a schematic flowchart of another communication authentication method provided by an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of another communication authentication method provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a UDM provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another UDM provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a user terminal provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another user terminal provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1-A is a schematic diagram of a 5G network architecture exemplified in an embodiment of the present application.
  • the 5G network splits certain functional network elements of the 4G network (for example, Mobility Management Entity (MME, Mobility Management Entity), etc.), and defines an architecture based on a service-oriented architecture.
  • MME Mobility Management Entity
  • MMF Session Management Function
  • a user terminal accesses a data network (DN, Data Network) and so on by accessing the operator's network, and can use services provided by the operator or a third party on the DN.
  • DN Data Network
  • the user terminal, user equipment, terminal device, or terminal in the embodiments of the present application may be collectively referred to as UE. That is, unless otherwise specified, the UE described later in the embodiments of the present application can be replaced with a user terminal, a user equipment, a terminal device, or a terminal, and of course they can also be interchanged.
  • the Access and Mobility Management Function is a control plane function in the 3GPP network, which is mainly responsible for the access control and mobility management of the UE's access to the operator's network.
  • the security anchor function SEAF, Security Anchor Function
  • SEAF may be deployed in the AMF, or the SEAF may also be deployed in another device different from the AMF.
  • the SEAF is deployed in the AMF as an example.
  • SEAF and AMF can be collectively referred to as AMF.
  • the session management function is a control plane function in the 3GPP network. Among them, the SMF is mainly used to manage the data packet (PDU, Packet Data Unit) session of the UE.
  • the PDU session is a channel used to transmit PDUs.
  • the UE can send PDUs to each other through the PDU session and the DN.
  • SMF is responsible for management work such as the establishment, maintenance and deletion of PDU sessions.
  • DN Data Network
  • PDN Packet Data Network
  • a certain DN is a private network of a smart factory, sensors installed on the smart factory workshop play the role of UE, and a control server for the sensors is deployed in the DN.
  • the UE communicates with the control server, and after obtaining the instruction of the control server, the UE can transmit the collected data to the control server according to the instruction.
  • a DN is a company's internal office network, and the terminal used by the company's employees can play the role of a UE, and this UE can access the company's internal information and other resources.
  • the unified data management entity (UDM, Unified Data Management) is also a control plane function in the 3GPP network.
  • UDM is mainly responsible for storing the subscription data, credential and permanent identity of the subscriber (UE) in the 3GPP network.
  • SUPI Subscriber Permanent Identifier
  • These data can be used for authentication and authorization of the UE to access the operator's 3GPP network.
  • the authentication server function (AUSF, Authentication Server Function) is also a control plane function in the 3GPP network, and the AUSF is mainly used for the first-level authentication (that is, the 3GPP network authenticates its subscribers).
  • the Network Exposure Function is also a control plane function in the 3GPP network.
  • NEF is mainly responsible for opening the external interface of the 3GPP network to third parties in a safe manner.
  • a functional entity such as SMF needs to communicate with a third-party network element
  • NEF can be used as a communication relay.
  • when relaying, NEF can translate internal and external logos. For example, when sending the UE's SUPI from the 3GPP network to a third party, the NEF can translate the SUPI into its corresponding external identity (ID, Identity). Conversely, NEF can translate the external identity ID into the corresponding SUPI when it is sent to the 3GPP network.
  • ID external identity
  • the network storage function (NRF, Network Repository Function) is also a control plane function in the 3GPP network, which is mainly responsible for storing the configuration service profile of the accessible network function (NF) and providing the network for other functional entities. Functional discovery service.
  • User Plane Function is the gateway for the communication between the 3GPP network and the DN.
  • the Policy Control Function (PCF, Policy Control Function) is a control plane function in the 3GPP network, which is used to provide the SMF with the policy of the PDU session.
  • Policies can include billing, quality of service (QoS, Quality of Service), authorization-related policies, and so on.
  • the access network (AN, Access Network) is a sub-network of the 3GPP network. To access the 3GPP network, the UE first needs to go through the AN. In the wireless access scenario, AN is also called Radio Access Network (RAN, Radio Access Network), so the two terms RAN and AN are often mixed without distinction.
  • RAN Radio Access Network
  • 3GPP network refers to a network that complies with 3GPP standards. Among them, the part except UE and DN in Figure 1-A can be regarded as a 3GPP network.
  • 3GPP networks are not limited to 5G networks defined by 3GPP, but can also include 2G, 3G, and 4G networks. Usually 3GPP networks are operated by operators.
  • N1, N2, N3, N4, N6, etc. in the architecture shown in FIG. 1-A respectively represent reference points between related network entities/network functions. Nausf, Namf... etc. respectively represent service-oriented interfaces of related network functions.
  • 3GPP networks and non-3GPP networks may coexist, and some network elements in the 5G network may also be used in some non-5G networks.
  • FIGS. 1-B to 1-D illustrate schematic diagrams of some specific network architectures where GBA technology may be applied.
  • the bootstrapping server function (BSF, Bootstrapping Server Function) can interact with the UE and perform authentication between the UE and the BSF.
  • BSF Bootstrapping Server Function
  • the network-side application server (NAF, Network Application Function), each application may have one or more NAFs, and the BSF and UE may interact with multiple NAFs.
  • NAF Network Application Function
  • the location subscription service (SLF, Subscriber Locator Function), the BSF can obtain the HSS name corresponding to the UE from the SLF (in multiple HSS scenarios).
  • the Home Subscriber System (HSS, Home Subscriber System) can be used to store the subscription information of the UE, and can also be used to generate an authentication vector.
  • GBA mainly contains two major functions:
  • Function 1 Perform GBA AKA authentication. Participants of GBA AKA authentication include UE, BSF, and HSS; based on the root key shared between UE and HSS to realize Ks key negotiation between UE and BSF; by performing the authentication process, A shared key is established between the BSF and the UE.
  • Function 2 Perform K_NAF key negotiation between UE and NAF, where the participants in the K_NAF key negotiation between UE and NAF include UE, NAF and BSF.
  • BSF and UDM exchange messages through AUSF.
  • FIG. 2 is a schematic flowchart of a communication authentication method provided by an embodiment of this application.
  • the communication authentication method illustrated in FIG. 2 can be implemented specifically based on the network architecture illustrated in FIG. 1-C or FIG. 1-D.
  • a communication authentication method may specifically include:
  • the UE sends to the BSF a GBA authentication request carrying the user terminal identifier.
  • this GBA authentication request may be sent by AUSF or BSF.
  • the GBA authentication request has the function of requesting GBA authentication, but the specific message name of this GBA authentication request may be an authentication request, an access request, a registration request or a message with other names.
  • the unified data management entity UDM receives a GBA authentication request from the BSF or AUSF that carries the user terminal identifier (BSF or AUSF can forward the universal boot framework GBA authentication request from the UE that carries the user terminal identifier to the UDM).
  • BSF or AUSF can forward the universal boot framework GBA authentication request from the UE that carries the user terminal identifier to the UDM.
  • the UDM generates a first authentication vector of the user terminal indicated by the user terminal identifier.
  • the first authentication vector is different from the second authentication vector of the user terminal, the first authentication vector is a 5G GBA authentication vector, and the second authentication vector includes one or more of the following authentication vectors: 3G GBA authentication Vector, 4G GBA certification vector or 5G certification vector.
  • the UDM sends a GBA authentication response carrying the first authentication vector.
  • the BSF After receiving the GBA authentication response carrying the first authentication vector from the UDM, the BSF sends an authentication request carrying AUTN and RAND to the UE.
  • the user terminal receives an authentication request carrying AUTN and RAND, and the user terminal derives the first authentication vector based on AUTN and RAND.
  • the above-mentioned example solution can realize GBA authentication in 5G network, which is beneficial to lay a good foundation for applying GBA technology to 5G network.
  • the first authentication vector in the above solution is different from the second authentication vector of the user terminal, which facilitates the isolation of the 5G GBA authentication vector from other authentication vectors of the UE.
  • the encryption key CK' in the 5G GBA vector can be realized.
  • integrity protection key IK' separated from the encryption key CK and integrity protection key IK in other authentication vectors of the UE, which is beneficial to avoid misuse of, for example, the encryption key CK' and integrity protection key IK' .
  • FIG. 3-A is a schematic flowchart of a communication authentication method provided by an embodiment of this application.
  • a communication authentication method illustrated in FIG. 3-A may be implemented based on the network architecture illustrated in FIG. 1-C.
  • a communication authentication method may specifically include:
  • the UE sends a 5G GBA authentication request carrying the UE ID to the BSF.
  • the 5G GBA authentication request is an authentication request used to request 5G GBA authentication
  • the specific message name may be a registration request, an access request, or other messages.
  • the UE ID here can be a permanent identifier, or a temporary identifier, or an encapsulation identifier of the UE, and the specific UE ID is not limited.
  • the BSF After the BSF receives the 5G GBA authentication request carrying the UE ID from the UE, the BSF sends the 5G GBA authentication request carrying the UE ID to the UDM.
  • the BSF may determine UDM information, such as UDM routing information, according to the UE ID.
  • the BSF sends an authentication type indication to UDM through a 5G GBA authentication request.
  • the authentication type indication can be used to indicate that this authentication request is an authentication request for 5G GBA authentication.
  • the BSF may also indicate UDM by sending a dedicated authentication request message name or type.
  • This authentication request is an authentication request for 5G GBA authentication, for example, through a dedicated servicing message name or type.
  • the BSF sends an identifier of the BSF to the UDM, such as the name, IP, instance ID, or other address information of the BSF and other information identifying the BSF.
  • UDM receives 5G GBA authentication request carrying UE ID from BSF.
  • UDM may determine that the authentication request is a 5G GBA authentication request according to the authentication type indication carried in the 5G GBA authentication request.
  • UDM may determine that this authentication request is a 5G GBA authentication request according to the name or type of a dedicated authentication request message.
  • the optional UDM receives the identification information of the BSF; or the UDM can determine the identification information of the BSF according to the link information between the UDM and the BSF.
  • UDM decides whether the subscription data corresponding to this UE ID is allowed to use 5G GBA services. If not allowed, UDM can reject the 5G GBA authentication request. Optionally, the UDM may reject the 5G GBA authentication request by sending a rejection indication to the UE, indicating that the UE is not authorized to use the 5G GBA service. If allowed, UDM can continue the 5G GBA certification process.
  • UDM can also default to the UE ID corresponding to the subscription data to allow the use of 5G GBA services. In this case, UDM may not need to perform the step of determining whether the UE ID corresponding to the subscription data allows the use of 5G GBA services.
  • UDM generates 5G GBA authentication vectors (CK’, IK’, RAND, AUTN, XRES).
  • the way of generating CK’ and IK’ can ensure the isolation of CK’ and IK’, that is, ensuring that CK’ and IK’ are bound to 5G GBA services.
  • CK' and IK' can be the following examples:
  • new deduction parameters y1 and y2 can be introduced for the deduction of CK' and IK', respectively. That is, the parameters used to derive the CK' include RAND, the root key K, and the derivation parameter y1 (the parameters used to derive the CK include RAND and the root key K, but do not include the derivation parameter y1); The parameters used by IK' include RAND, root key K, and derivation parameter y2 (the parameters used in deriving the IK include RAND and root key K, but do not include derivation parameter y2).
  • the deduction parameter y1 and the deduction parameter y2 can be, for example, the character string "5G GBA" or "GBA” or the 5G GBA dedicated identifier or BSF identifier or 5G identifier, or slice selection auxiliary information, or slice ID, or PDU session ID or UE identification (permanent or temporary), or counter, or fresh parameters such as random number nonce or sequence number.
  • the slice selection auxiliary information, or the ID of the slice may be sent to the UDM by the BSF, or determined by the UDM according to local information.
  • the PDU session ID information is sent by the BSF to UDM, or UDM is determined based on local information.
  • the slice selection auxiliary information, or the ID of the slice, or the PDU session ID is the slice information related to the communication link between the BSF and the UE, or the session information; it is used to restrict the key to be used only on this link.
  • the network element in the network (such as UDM, AUSF, or BSF) can This parameter is passed to the UE.
  • the deduction function f3' can be used to deduct the encryption key CK'
  • the deduction function f4' can be used to deduct the integrity protection key IK'.
  • the deduction function f3' is different from the deduction function f3 for deducing CK
  • the deduction function f4' is different from the deduction function f4 for deducing IK.
  • Other derived parameters may also include y1 and/or y2.
  • CK' and IK' can be derived based on CK and IK.
  • the encryption key CK and the deduction parameter y1 can be used to derive the encryption key CK', and the integrity protection key IK and The deduction parameter y1 deduces the integrity protection key IK'.
  • CK' and IK' are generated based on the new FC value. For example, based on the new FC value and CK, IK generates CK’ and IK’, and other parameters may also include y1.
  • deriving the AUTN in the 5G GBA authentication vector will use the first SQN
  • deriving the 5G authentication vector or the AUTN in the GBA authentication vector will use the second SQN.
  • the first SQN and the second SQN include Flag bit (the flag bit is, for example, the highest 1 bit or the highest multiple bits of the SQN), the flag bit of the first SQN is different from the flag bit of the second SQN (different flag bits can be used to distinguish whether it is 5G certification or 5G GBA certification ).
  • the SQN can also be divided by SQN segmentation. Specifically, for example, if the SQN includes a value from 1 to 100, the first 50 SQN is used as the first SQN; the last 50 SQN is the second SQN.
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the 5G authentication vector.
  • the FC value in this patent should be a new value, that is, different from the FC value used in the prior art.
  • the purpose of the above examples is to make the CK' in the 5G GBA authentication vector different from the 3G GBA/4G GBA/5G authentication vector CK, and make the IK' in the 5G GBA authentication vector different from 3G GBA/4G GBA/5G Authentication vector IK.
  • Other ways to achieve this goal can also be considered.
  • UDM sends a 5G GBA authentication response carrying a 5G GBA authentication vector to the BSF.
  • the BSF sends an authentication request carrying RAND and AUTN to the UE.
  • the UE checks the AUTN, calculates the RES after the AUTN is verified, and the UE sends an authentication response carrying the RES to the BSF.
  • the BSF sends the B-TID and key lifetime.
  • the B-TID is the temporary identifier assigned by the BSF to the UE, and the key lifetime represents the validity period of the Ks.
  • Ks CK'
  • IK' the method for UE to generate CK' and IK' is the same as the method for UDM to generate CK' and IK'.
  • step of generating CK' and IK' by the UE can be performed at any time after step 306.
  • the step of generating CK' and IK' by the BSF can be performed at any time after step 306.
  • the steps of calculating other parameters such as XRES other than CK' and IK' are also executed at any time before using them.
  • the solution exemplified in this embodiment realizes the isolation of CK' and IK' in the 5G GBA vector from the CK and IK in other authentication vectors of the UE, which is beneficial to avoid abuse of CK' and IK'.
  • the BSF still receives the 5G GBA certification vector 5-tuple, and the operations in the BSF can reuse old products.
  • FIG. 4 is a schematic flowchart of a communication authentication method provided by an embodiment of this application.
  • a communication authentication method as shown in the example in FIG. 4 can be specifically implemented based on the network architecture as shown in the example in FIG. 1-C.
  • a communication authentication method may specifically include:
  • the UE sends a 5G GBA authentication request carrying the UE ID to the BSF.
  • the 5G GBA authentication request is an authentication request used to request 5G GBA authentication
  • the specific message name may be a registration request, an access request, or other messages.
  • the UE ID can be the permanent identification, or temporary identification, or encapsulation identification of the UE, and there is no restriction.
  • the BSF After the BSF receives the 5G GBA authentication request carrying the UE ID from the UE, the BSF sends the 5G GBA authentication request carrying the UE ID to the UDM.
  • the BSF may determine UDM information according to the UE ID.
  • the BSF sends an authentication type indication to UDM through a 5G GBA authentication request.
  • the authentication type indication can be used to indicate that this authentication request is an authentication request for 5G GBA authentication.
  • the BSF may also indicate UDM by sending a dedicated authentication request message name or type, which is used to indicate an authentication request for 5G GBA authentication, for example, through a dedicated servicing message name or type.
  • the BSF sends an identifier of the BSF to UDM.
  • the identifier of the BSF such as the name, IP, instance ID, or other address information of the BSF, identifies the BSF.
  • UDM receives 5G GBA authentication request carrying UE ID from BSF.
  • UDM may determine that the authentication request is a 5G GBA authentication request according to the authentication type indication carried in the 5G GBA authentication request.
  • UDM may determine that this authentication request is a 5G GBA authentication request according to the name or type of a dedicated authentication request message.
  • the optional UDM receives the identification information of the BSF; or the UDM can determine the identification information of the BSF according to the link information between the UDM and the BSF.
  • UDM decides whether the subscription data corresponding to this UE ID is allowed to use 5G GBA services. If not allowed, UDM can reject the 5G GBA authentication request.
  • the manner in which UDM rejects the 5G GBA authentication request may be, for example, sending a rejection indication to the UE, indicating that the UE is not authorized to use the 5G GBA service. If allowed, UDM can continue the 5G GBA certification process.
  • UDM can also default to the UE ID corresponding to the subscription data to allow the use of 5G GBA services. In this case, UDM may not need to perform the step of determining whether the UE ID corresponding to the subscription data allows the use of 5G GBA services.
  • UDM generates 5G GBA certification vectors (K gba , RAND, AUTN, XRES).
  • K gba is derived based on CK and IK (see Figure 3-E for an example), or K gba is a cascade of CK' and IK' or derived from CK' and IK'.
  • the way of generating CK’ and IK’ should ensure the isolation of CK’ and IK’, that is, ensure that CK’ and IK’ are bound to 5G GBA services.
  • the way of generating CK' and IK' can refer to the derivation method of CK' and IK' described in the example in the corresponding embodiment of FIG. 3-A.
  • the way of generating Kgba can also be: generating according to CK, IK and y1 parameters; or generating according to CK', IK' and y1 parameters.
  • other parameters or possibilities may also be included.
  • a new deduction function f8 can also be introduced, and Kgba can be deduced by using the deduction function f8.
  • Kgba can also be generated based on the new FC value.
  • Kgba is generated based on the new FC value, CK, IK, etc., and other deduction parameters may also include y1.
  • the AUTN in the derivation of the 5G GBA authentication vector will use the first SQN
  • the derivation of the 5G authentication vector or the AUTN in the GBA authentication vector will use the second SQN
  • the first SQN and the second SQN contain flag bits.
  • the flag bit is, for example, the highest 1 bit or the highest multiple bits of the SQN.
  • the flag bit of the first SQN is different from the flag bit of the second SQN (different flag bits can be used to distinguish whether it is 5G certification or 5G GBA certification).
  • use the SQN segmentation method to divide the SQN. For example, if the SQN includes a value from 1 to 100, the first 50 SQN is used as the first SQN; the last 50 SQN is the second SQN.
  • the Kgba is derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the 5G authentication vector.
  • the purpose of the above example is to make Kgba or CK' and IK' in the 5G GBA authentication vector different from the key in the 3G GBA/4G GBA/4G authentication vector/5G authentication vector.
  • Other ways to achieve this goal can also be considered.
  • the FC value in this patent should be a new value, that is, a different FC value used in the prior art.
  • the UDM sends a 5G GBA authentication response carrying a 5G GBA authentication vector (K gba , RAND, AUTN, XRES) to the BSF.
  • a 5G GBA authentication vector K gba , RAND, AUTN, XRES
  • the BSF sends an authentication request carrying RAND and AUTN to the UE.
  • the UE verifies the AUTN, calculates the RES after the AUTN is verified, and the UE sends an authentication response carrying the RES to the BSF.
  • the BSF sends the B-TID and key lifetime.
  • the B-TID is the temporary identifier assigned by the BSF to the UE, and the key lifetime represents the validity period of the Ks.
  • the method for UE to generate CK' and IK' is the same as the method for UDM to generate CK' and IK'.
  • step of generating CK' and IK' by the UE can be performed at any time after step 406.
  • the step of generating CK' and IK' by the BSF can be performed at any time after step 406.
  • the steps of calculating other parameters such as XRES other than CK' and IK' are also executed at any time before using them.
  • the UDM sends an algorithm indication or identifier to the BSF to tell the BSF whether 5G GBA chooses EAP AKA or 5G AKA authentication algorithm. Because EAP AKA’ and 5G AKA calculate CK and IK in different ways.
  • the BSF sends an algorithm indication or identifier to the UE to tell the UE whether 5G GBA chooses EAP AKA or 5G AKA.
  • the solution exemplified in this embodiment realizes the isolation of CK' and IK' in the 5G GBA vector from the CK and IK in other authentication vectors of the UE, which is beneficial to avoid abuse of CK' and IK'.
  • FIG. 5 is a schematic flowchart of a communication authentication method provided by an embodiment of this application.
  • a communication authentication method as shown in the example in FIG. 5 can be implemented based on the network architecture as shown in the example in FIG. 1-D.
  • a communication authentication method may specifically include:
  • the UE sends a 5G GBA authentication request carrying the UE ID to the BSF.
  • the 5G GBA authentication request is an authentication request used to request 5G GBA authentication
  • the specific message name may be a registration request, an access request, or other messages.
  • the UE ID can be the permanent identification, or temporary identification, or encapsulation identification of the UE, and there is no restriction.
  • the BSF After the BSF receives the 5G GBA authentication request carrying the UE ID from the UE, the BSF sends the 5G GBA authentication request carrying the UE ID to the AUSF.
  • the BSF may determine the information of the AUSF according to the UE ID.
  • the BSF sends an authentication type indication to AUSF through a 5G GBA authentication request.
  • the authentication type indication can be used to indicate that this authentication request is an authentication request for 5G GBA authentication.
  • the BSF may also send a dedicated authentication request message name or type to indicate AUSF, which is used to indicate an authentication request for 5G GBA authentication, for example, through a dedicated servicing message name or type.
  • the BSF sends an identification of the BSF to AUSF, such as the name, IP, instance ID, or other address information of the BSF and other information identifying the BSF.
  • AUSF receives 5G GBA authentication request carrying UE ID from BSF.
  • AUSF sends a 5G GBA authentication request carrying UE ID to UDM.
  • AUSF may determine that this authentication request is a 5G GBA authentication request according to the authentication type indication carried in the 5G GBA authentication request.
  • AUSF may determine that this authentication request is a 5G GBA authentication request according to the name or type of the dedicated authentication request message.
  • the optional AUSF receives the identification information of the BSF; or the AUSF can determine the identification information of the BSF according to the link information between the AUSF and the BSF.
  • AUSF sends an authentication type indication to UDM through a 5G GBA authentication request, and the authentication type indication may be used to indicate that this authentication request is an authentication request for 5G GBA authentication.
  • AUSF may also send a dedicated authentication request message name or type to indicate UDM, which is used to indicate an authentication request for 5G GBA authentication, for example, through a dedicated servicing message name or type.
  • the optional AUSF sends the identification information of the BSF to the UDM.
  • UDM receives 5G GBA authentication request carrying UE ID from AUSF.
  • UDM may determine that the authentication request is a 5G GBA authentication request according to the authentication type indication carried in the 5G GBA authentication request.
  • UDM may determine that this authentication request is a 5G GBA authentication request according to the name or type of a dedicated authentication request message.
  • UDM decides whether the subscription data corresponding to this UE ID is allowed to use 5G GBA services. If not allowed, UDM can reject the 5G GBA authentication request. Optionally, if not allowed, UDM sends a rejection message to the UE, and the message may carry a rejection indication. If allowed, UDM can continue the 5G GBA certification process.
  • UDM can also default to the UE ID corresponding to the subscription data to allow the use of 5G GBA services. In this case, UDM may not need to perform the step of determining whether the UE ID corresponding to the subscription data allows the use of 5G GBA services.
  • UDM generates a 5G GBA authentication vector
  • the 5G GBA authentication direction is for example (CK’, IK’, RAND, AUTN, XRES) or (Kgba1, RAND, AUTN, XRES).
  • the way of generating CK’ and IK’ can ensure the isolation of CK’ and IK’, that is, ensuring that CK’ and IK’ are bound to 5G GBA services.
  • the method of generating Kgba1 can ensure the isolation of Kgba1, that is, ensure that Kgba1 is bound to the 5G GBA service.
  • the way of generating Kgba1 can refer to the way of generating Kgba in the embodiment corresponding to FIG. 4.
  • UDM sends a 5G GBA authentication response carrying a 5G GBA authentication vector to AUSF.
  • AUSF After AUSF receives the 5G GBA authentication response carrying the 5G GBA authentication vector from UDM, AUSF further calculates the 5G GBA authentication vector (CK", IK", RAND, AUTN, XRES) or (Kgba2, RAND, AUTN, XRES).
  • CK" and IK" are derived based on CK' and IK'.
  • Kgba2 is derived based on Kgba1.
  • Kgba2 is derived based on CK’ and IK’.
  • CK and IK are derived based on Kgba1.
  • the above-mentioned derived parameter includes at least one of the parameter y1; and/or is based on a new FC value.
  • AUSF sends a 5G GBA authentication response carrying a 5G GBA authentication vector (CK", IK”, RAND, AUTN, XRES) or (Kgba2, RAND, AUTN, XRES) to the BSF.
  • CK 5G GBA authentication vector
  • IK IK
  • RAND AUTN
  • XRES Kgba2
  • RAND AUTN, XRES
  • Or AUSF sends a 5G GBA authentication response carrying a 5G GBA authentication vector (RAND, AUTN) to the BSF.
  • RAND 5G GBA authentication vector
  • the BSF sends an authentication request carrying RAND and AUTN to the UE.
  • the UE verifies the AUTN, calculates the RES after the AUTN is verified, and the UE sends an authentication response carrying the RES to the BSF.
  • a scheme is that the BSF only receives RAND and AUTN, and then sends RES to AUSF. After AUSF verifies that XRES and RES are the same, then send CK" and IK", or Kgba2 to BSF.
  • the BSF sends the B-TID and key lifetime.
  • the B-TID is the temporary identifier assigned by the BSF to the UE, and the key lifetime represents the validity period of the Ks.
  • IK” or Ks Kgba2.
  • the method for UE to generate CK" and IK” or Kgba2 is the same as the method for UDM and AUSF to generate CK" and IK" or Kgba2 together.
  • the step of generating CK" and IK" or Kgba2 by the UE can be performed at any time after step 506.
  • the step of generating Ks by the BSF can be performed at any time after step 506.
  • the steps of calculating other parameters such as XRES other than CK' and IK' are also executed at any time before using them.
  • UDM sends the authentication algorithm identifier to AUSF in step 505; AUSF sends the authentication algorithm identifier to BSF in step 507; BSF sends the authentication algorithm identifier to the UE in step 508 so that the UE can determine the authentication algorithm used for authentication.
  • the AUSF determines the authentication algorithm according to the parameters received from the UDM in step 505; the AUSF sends the authentication algorithm identifier to the BSF in step 507; the BSF sends the authentication algorithm identifier to the UE in step 508 so that the UE can determine the authentication algorithm used for authentication.
  • the solution exemplified in this embodiment implements CK" and IK” or Kgba2 in the 5G GBA vector, and CK and IK in other authentication vectors of the UE, or other keys (such as the 4G authentication key Kasme, or The isolation of 5G authentication key (Kausf) helps to avoid abuse of CK" and IK" or Kgba2.
  • the specific UE and BSF, and the details of the AUSF check and authentication are not limited.
  • Some device embodiments are also provided below, and the functions of the devices described in these device embodiments can be specifically implemented based on the method embodiment methods.
  • an embodiment of the present application provides a unified data management entity 600, including:
  • the communication unit 610 is configured to receive a universal boot framework GBA authentication request (which may be sent by AUSF or BSF) carrying a user terminal identifier.
  • a universal boot framework GBA authentication request (which may be sent by AUSF or BSF) carrying a user terminal identifier.
  • the generating unit 620 is configured to generate a first authentication vector of the user terminal indicated by the user terminal identifier, where the first authentication vector is different from the second authentication vector of the user terminal, and the first authentication vector is a 5G GBA authentication vector,
  • the second authentication vector includes a 3G/4G GBA authentication vector and/or a 5G authentication vector.
  • the communication unit 610 is further configured to send a GBA authentication response carrying the first authentication vector.
  • the above scheme can realize GBA certification in 5G network, and then lay the foundation for applying GBA technology to 5G network.
  • the above solution realizes the isolation of CK' and IK' in the 5G GBA vector from CK and IK in other authentication vectors of the UE, which is beneficial to avoid abuse of CK' and IK'.
  • the first authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector
  • the second authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector.
  • the first authentication vector is a five-tuple authentication vector (CK', IK', RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES); wherein, the CK' is different from CK, and/or, the IK' is different from the IK.
  • the parameters used to derive the encryption key CK’ include RAND, the root key K, and the derivation parameter y1;
  • the parameters used to derive the integrity protection key IK’ include RAND, the root key K, and the derivation parameter y2;
  • the deduction function f3' used for deriving the CK’ is different from the deduction function f3 used for deriving the CK;
  • the deduction function f4’ used for deriving the IK’ is different from the deduction function f4 used for deriving the IK;
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the second authentication vector;
  • the AUTN in the first authentication vector is derived to use the first SQN
  • the AUTN in the second authentication vector is derived to use the second SQN.
  • the first SQN and the second SQN contain flag bits, so The flag bit of the first SQN is different from the flag bit of the second SQN.
  • the first authentication vector is a 4-tuple authentication vector (K gba , RAND, AUTN, XRES);
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES) or a four-tuple authentication vector ( Kausf , RAND, AUTN, XRES);
  • the parameters used in deriving the Kgba include CK, IK, and parameter y2.
  • the communication unit receiving the universal boot framework GBA authentication request carrying the user terminal identifier includes: receiving the universal boot framework GBA authentication request carrying the user terminal identifier from the BSF; or receiving the carrying from the AUSF The GBA authentication request of the universal boot framework with the user terminal identifier.
  • sending the GBA authentication response carrying the first authentication vector by the communication unit includes: sending a GBA authentication response carrying the first authentication vector to AUSF, where the GBA authentication The response is used to trigger the AUSF to use CK' to perform CK" and to use IK to perform IK", or the GBA authentication response to trigger the AUSF to use Kgba to perform Kgba' and to use Kgba' to perform the recommendation.
  • the parameters include parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number Fresh parameters such as nonce or serial number.
  • a terminal device 700 may include: a processor 710 and a memory 720 coupled to each other.
  • the processor is used to call a computer program stored in the memory to execute part or all of the steps of any method executed by the terminal device in the embodiments of the present application.
  • an embodiment of the present application further provides a user terminal 800, including:
  • the communication unit 810 is configured to send a universal boot framework GBA authentication request carrying a user terminal identifier; to receive an authentication request carrying AUTN and RAND.
  • the generating unit 820 is configured to derive a first authentication vector based on AUTN and RAND.
  • the first authentication vector is different from the second authentication vector of the user terminal.
  • the first authentication vector is a 5G GBA authentication vector
  • the second authentication vector is a 5G GBA authentication vector.
  • the authentication vector includes 3G/4G GBA authentication vector and/or 5G authentication vector.
  • the above scheme can realize GBA certification in 5G network, and then lay the foundation for applying GBA technology to 5G network.
  • the above solution realizes the isolation of CK' and IK' in the 5G GBA vector from CK and IK in other authentication vectors of the UE, which is beneficial to avoid abuse of CK' and IK'.
  • the first authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector
  • the second authentication vector may be a five-tuple authentication vector or a four-tuple authentication vector.
  • the first authentication vector is a five-tuple authentication vector (CK', IK', RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES); wherein, the CK' is different from CK, and/or, the IK' is different from the IK.
  • the parameters used to derive the encryption key CK' include RAND, the root key K, and the derivation parameter y1; the parameters used to derive the integrity protection key IK' include RAND, the root key K, and the derivation parameter y2.
  • the deduction function f3' used for deriving the CK' is different from the deduction function f3 used for deriving the CK; the deduction function f4' used for deriving the IK' is different from the deduction function f4 used for deriving the IK.
  • the CK' and IK' are derived from the CK, IK, and an FC value, and the FC value is different from the FC value used to derive the second authentication vector.
  • the AUTN in the first authentication vector is derived to use the first SQN
  • the AUTN in the second authentication vector is derived to use the second SQN.
  • the first SQN and the second SQN contain flag bits, so The flag bit of the first SQN is different from the flag bit of the second SQN.
  • the first authentication vector is a 4-tuple authentication vector (K gba , RAND, AUTN, XRES).
  • the second authentication vector is a five-tuple authentication vector (CK, IK, RAND, AUTN, XRES) or a four-tuple authentication vector ( Kausf , RAND, AUTN, XRES).
  • the parameters used in deriving the Kgba include CK, IK, and parameter y2.
  • the parameter y1 or parameter y2 includes one or more of the following parameters: string 5G GBA, string GBA, 5G GBA special identifier, BSF identifier, 5G identifier, counter, random number nonce or serial number.
  • an embodiment of the present application also provides a UDM 900, which may include:
  • the processor 910 and the memory 920 are coupled to each other.
  • the processor is used to call a computer program stored in the memory to execute part or all of the steps of any method executed by the UDM in the embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of a communication device 1000 provided by this application.
  • the communication device 1000 is, for example, a terminal device or a UDM.
  • the communication device 1000 may include:
  • At least one input terminal 1001 is used for signal input.
  • At least one output terminal 1003 is used for signal output.
  • the signal processor 1002 is configured to execute part or all of the steps of any method provided in the embodiments of the present application.
  • FIG. 11 shows a schematic structural diagram of a communication device 1100 provided in this application.
  • the communication device 1100 is, for example, a terminal device or UDM.
  • the communication device 1100 may include:
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program is executed by hardware (such as a processor, etc.), and is executed by any device in the embodiment of the present application Part or all of the steps in any one of the methods.
  • the embodiments of the present application also provide a computer program product including instructions, which when the computer program product runs on a computer device, cause the computer device to execute part or all of the steps of any one of the above aspects.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape), an optical medium (such as an optical disk), or a semiconductor medium (such as a solid-state hard disk).
  • the disclosed device may also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored or not implemented.
  • the displayed or discussed indirect coupling or direct coupling or communication connection between each other may be through some interfaces, indirect coupling or communication connection between devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may also be implemented in the form of software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media may include, for example: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other storable program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信认证方法和相关设备。一种通信认证方法可包括:统一数据管理实体UDM接收携带有用户终端标识的通用引导架构GBA认证请求;所述UDM生成所述用户终端标识所表示用户终端的第一认证向量,第一认证向量不同于所述用户终端的第二认证向量,第一认证向量为5G GBA认证向量,第二认证向量包括3G/4G GBA认证向量和/或5G认证向量;所述UDM发送携带有所述第一认证向量的GBA认证响应。本申请实施例的上述方案可实现在5G网络中进行GBA认证,进而有利于为将GBA技术应用于5G网络奠定良好基础。

Description

通信认证方法和相关设备
本申请要求于2019年09月30日提交中国专利局、申请号为201910945857.3、申请名称为“通信认证方法和相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信认证方法和相关设备。
背景技术
通用引导架构(GBA,Generic Bootstrapping Architecture)技术可被用来建立用户终端与应用服务器(NAF,Network Application Function)之间的安全隧道,可提升NAF与用户终端之间的交互便捷安全性。
第三代合作伙伴项目(3GPP,3rd Generation Partnership Project)研究了GBA技术应用于3G网络和4G网络的方式。随着5G网络逐步商用,如何将GBA技术应用于5G网络已成为业界需研究的一个技术课题。
发明内容
本申请实施例提供通信认证方法和相关设备。
第一方面,本申请实施例还提供一种通信认证方法,包括:统一数据管理实体UDM接收携带有用户终端标识的通用引导架构GBA认证请求(这个GBA认证请求可能由AUSF或BSF发送,GBA认证请求具有请求GBA认证的功能,但这个GBA认证请求的具体消息名称可能是认证请求、接入请求、注册请求或其他名称的消息);所述UDM生成所述用户终端标识所表示用户终端的第一认证向量,其中,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括如下认证向量中的一个或多个:3G GBA认证向量、4G GBA认证向量或5G认证向量;所述UDM发送携带有所述第一认证向量的GBA认证响应。
可以看出,上述举例方案可实现在5G网络中进行GBA认证,进而有利于为将GBA技术应用于5G网络奠定良好的基础。并且,上述方案有利于5G GBA认证向量和UE其他认证向量的隔离,例如可实现5G GBA向量中的加密密钥CK’和完整性保护密钥IK’,与UE的其他认证向量中的加密密钥CK和完整性保护密钥IK的隔离,有利于避免例如加密密钥CK’和完整性保护密钥IK’被滥用。
其中,第一认证向量可为五元组认证向量或四元组认证向量;第二认证向量可为五元组认证向量或四元组认证向量。
具体例如,第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES)。所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);其中,第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK,和/或,第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK。
可以理解,使第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK 的方式可以是多种多样的,例如相关推演参数和/或推演函数不同。使第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK的方式可以是多种多样的,例如相关推演参数和/或推演函数不同。
例如推演加密密钥CK’所使用的参数包括随机数RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2。
或者,
推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4。
或者,
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value。
或者,
推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN。其中,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位,或者,所述第一SQN和所述第二SQN分属于不同的SQN分段区间。
又例如,所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者所述第二认证向量为四元组认证向量(K ausf,RAND,AUTN,XRES);
其中,推演密钥Kgba所使用的推演参数例如可包括加密密钥CK、完整性保护IK和参数y2。
在一些可能实施方式中,UDM接收携带有用户终端标识的GBA认证请求包括:UDM接收来自BSF的携带有用户终端标识的GBA认证请求;或者,UDM接收来自AUSF的携带有用户终端标识的GBA认证请求。
在一些可能的实施方式之中,所述UDM发送携带有所述第一认证向量的GBA认证响应包括:所述UDM向AUSF发送携带有所述第一认证向量的GBA认证响应,其中,所述GBA认证响应用于触发所述AUSF使用CK’推演出CK”并使用IK’推演出IK”,或者所述GBA认证响应用于触发所述AUSF使用Kgba推演出Kgba’,推演Kgba’所使用到的推衍参数包括参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或者序列号等新鲜参数。
第二方面,本申请实施例还提供一种统一数据管理实体UDM,包括:
通信单元,用于接收携带有用户终端标识的通用引导架构GBA认证请求(GBA认证请求可能由AUSF或BSF发送)。
生成单元,用于生成所述用户终端标识所表示用户终端的第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所 述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量。
通信单元还用于,发送携带有所述第一认证向量的GBA认证响应。
可以看出,上述举例方案可实现在5G网络中进行GBA认证,进而有利于为将GBA技术应用于5G网络奠定良好的基础。并且,上述方案有利于5G GBA认证向量和UE其他认证向量的隔离,例如可实现5G GBA向量中的加密密钥CK’和完整性保护密钥IK’,与UE的其他认证向量中的加密密钥CK和完整性保护密钥IK的隔离,有利于避免例如加密密钥CK’和完整性保护密钥IK’被滥用。
其中,第一认证向量可为五元组认证向量或四元组认证向量;第二认证向量可为五元组认证向量或四元组认证向量。
具体例如,第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES)。所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);其中,第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK,和/或,第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK。
可以理解,使第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK的方式可以是多种多样的,例如相关推演参数和/或推演函数不同。使第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK的方式可以是多种多样的,例如相关推演参数和/或推演函数不同。
例如推演加密密钥CK’所使用的参数包括随机数RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2。
或者,
推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4。
或者,
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value。
或者,
推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN。其中,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位,或者,所述第一SQN和所述第二SQN分属于不同的SQN分段区间。
又例如,所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者所述第二认证向量为四元组认证向量(K ausf,RAND,AUTN,XRES);
其中,推演密钥Kgba所使用的推演参数例如可包括加密密钥CK、完整性保护IK和参数y2。
在一些可能实施方式中,UDM接收携带有用户终端标识的GBA认证请求包括:UDM接收来自BSF的携带有用户终端标识的GBA认证请求;或者,UDM接收来自AUSF的携带有用户终端标识的GBA认证请求。
在一些可能的实施方式之中,所述UDM发送携带有所述第一认证向量的GBA认证响应包括:所述UDM向AUSF发送携带有所述第一认证向量的GBA认证响应,其中,所述GBA认证响应用于触发所述AUSF使用CK’推演出CK”并使用IK’推演出IK”,或者所述GBA认证响应用于触发所述AUSF使用Kgba推演出Kgba’,推演Kgba’所使用到的推衍参数包括参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或者序列号等新鲜参数。
在一些可能的实施方式中,所述通信单元接收携带有用户终端标识的通用引导架构GBA认证请求包括:接收来自BSF的携带有用户终端标识的GBA认证请求;或者接收来自AUSF的携带有用户终端标识的GBA认证请求。
在一些可能的实施方式之中,所述通信单元发送携带有所述第一认证向量的GBA认证响应包括:向AUSF发送携带有所述第一认证向量的GBA认证响应,所述GBA认证响应用于触发所述AUSF使用CK’推演出CK”并使用IK’推演出IK”,或者所述GBA认证响应用于触发所述AUSF使用Kgba推演出Kgba’,推演Kgba’所使用到的推衍参数包括参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或者序列号等新鲜参数。
第三方面,本申请实施例提供一种通信认证方法,包括:用户终端发送携带有用户终端标识的通用引导架构GBA认证请求;用户终端接收携带AUTN和RAND的认证请求;所述用户终端基于AUTN和RAND推演第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量。
可以看出,上述举例方案可实现在5G网络中进行GBA认证,进而有利于为将GBA技术应用于5G网络奠定良好的基础。并且,上述方案有利于5G GBA认证向量和UE其他认证向量的隔离,例如可实现5G GBA向量中的加密密钥CK’和完整性保护密钥IK’,与UE的其他认证向量中的加密密钥CK和完整性保护密钥IK的隔离,有利于避免例如加密密钥CK’和完整性保护密钥IK’被滥用。
其中,第一认证向量可为五元组认证向量或四元组认证向量;第二认证向量可为五元组认证向量或四元组认证向量。
具体例如,第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES)。所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);其中,第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK,和/或,第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK。
可以理解,使第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK的方式可以是多种多样的,例如相关推演参数和/或推演函数不同。使第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK的方式可以是多种多样的, 例如相关推演参数和/或推演函数不同。
例如推演加密密钥CK’所使用的参数包括随机数RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2。
或者,
推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4。
或者,
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value。
或者,
推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN。其中,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位,或者,所述第一SQN和所述第二SQN分属于不同的SQN分段区间。
又例如,所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者所述第二认证向量为四元组认证向量(K ausf,RAND,AUTN,XRES);
其中,推演密钥Kgba所使用的推演参数例如可包括加密密钥CK、完整性保护IK和参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或者序列号等新鲜参数。
第四方面,本申请实施例还提供一种用户终端,包括:
通信单元,用于发送携带有用户终端标识的通用引导架构GBA认证请求;接收携带AUTN和RAND的认证请求;
生成单元,用于基于AUTN和RAND推演第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量。
其中,第一认证向量可为五元组认证向量或四元组认证向量;第二认证向量可为五元组认证向量或四元组认证向量。
具体例如,第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES)。所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);其中,第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK,和/或,第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK。
可以理解,使第一认证向量中的加密密钥CK’不同于第二认证向量中的加密密钥CK的方式可以是多种多样的,例如相关推演参数和/或推演函数不同。使第一认证向量中的完整性保护密钥IK’不同于第二认证向量中的完整性保护密钥IK的方式可以是多种多样的, 例如相关推演参数和/或推演函数不同。
例如推演加密密钥CK’所使用的参数包括随机数RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2。
或者,
推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4。
或者,
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value。
或者,
推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN。其中,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位,或者,所述第一SQN和所述第二SQN分属于不同的SQN分段区间。
又例如,所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者所述第二认证向量为四元组认证向量(K ausf,RAND,AUTN,XRES);
其中,推演密钥Kgba所使用的推演参数例如可包括加密密钥CK、完整性保护IK和参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或者序列号等新鲜参数。
第五方面,本申请实施例还提供一种终端设备,包括:
相互耦合的处理器和存储器;其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行以上第二方面的方法的部分或全部步骤。
第六方面,本申请实施例还提供一种UDM,包括:
相互耦合的处理器和存储器;
其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行以上第一方面的方法的部分或全部步骤。
第七方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行,以完成以上各方面的方法的部分或全部步骤。
第八方面,本申请实施例还提供了一种包括指令的计算机程序产品,其中,当所述计算机程序产品在用户终端运行时,使得用户终端执行第二方面的任意一种方法的部分或者全部步骤。
第九方面,本申请实施例还提供了一种包括指令的计算机程序产品,其中,当所述计算机程序产品在UDM运行时,使得UDM执行第一方面的任意一种方法的部分或全部步骤。
第十方面,本申请实施例还提供一种通信装置,包括:至少一个输入端、信号处理器 和至少一个输出端;
其中,所述信号处理器,用于执行以上各方面的任意一种方法的部分或全部步骤。
第十一方面,本申请实施例还提供一种通信装置,包括:输入接口电路,逻辑电路和输出接口电路,其中,所述逻辑电路,用于执行第一方面或第二方面的任意一种方法的部分或全部步骤。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1-A是本申请实施例提供的一种通信系统的架构示意图。
图1-B至图1-D是本申请实施例提供的另一些通信系统的架构示意图。
图2是本申请实施例提供的一种通信认证方法的流程示意图。
图3-A是本申请实施例提供的另一种通信认证方法的流程示意图。
图3-B至图3-E是本申请实施例提供的几种认证向量的推演示意图。
图4是本申请实施例提供的另一种通信认证方法的流程示意图。
图5是本申请实施例提供的另一种通信认证方法的流程示意图。
图6是本申请实施例提供的一种UDM的结构示意图。
图7是本申请实施例提供的另一种UDM的结构示意图。
图8是本申请实施例提供的一种用户终端的结构示意图。
图9是本申请实施例提供的另一种用户终端的结构示意图。
图10是本申请实施例提供的一种通信装置的结构示意图。
图11是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
参见图1-A,图1-A是本申请实施例举例的一种5G网络架构的示意图。其中,5G网络对4G网络的某些功能网元(例如移动性管理实体(MME,Mobility Management Entity)等等)进行了一定拆分,并定义了基于服务化架构的架构。在图1-A所示网络架构中,类似4G网络中的MME的功能,被拆分成了接入与移动性管理功能(AMF,Access and Mobility Management Function)和会话管理功能(SMF,Session Management Function)等等。
下面对其他一些相关功能实体进行介绍。
用户终端(UE,User Equipment)通过接入运营商网络来访问数据网络(DN,Data Network)等等,可使用DN上的由运营商或第三方提供的业务。
为方便说明,本申请实施例中用户终端、用户设备、终端设备或终端可统称为UE。即若无特别说明,本申请实施例后文所描述的UE均可替换为用户终端、用户设备、终端设备或者终端,当然它们之间也可互换。
接入与移动性管理功能(AMF)是3GPP网络中的一种控制面功能,主要负责UE接入运营商网络的接入控制和移动性管理。其中,安全锚点功能(SEAF,Security Anchor Function)可以部署于AMF之中,或SEAF也可能部署于不同于AMF的另一设备中,图1-A中以SEAF被部 署于AMF中为例。当SEAF被部署于AMF中时,SEAF和AMF可合称AMF。
会话管理功能(SMF)是3GPP网络中的一种控制面功能,其中,SMF主要用于负责管理UE的数据包(PDU,Packet Data Unit)会话。PDU会话是一个用于传输PDU的通道,UE可以通过PDU会话与DN互相发送PDU。SMF负责PDU会话的建立、维护和删除等管理工作。
数据网络(DN,Data Network)也称为分组数据网络(PDN,Packet Data Network),是位于3GPP网络之外的网络。其中,3GPP网络可接入多个DN,DN上可部署运营商或第三方提供的多种业务。例如,某个DN是一个智能工厂的私有网络,安装在智能工厂车间的传感器扮演UE的角色,DN中部署了传感器的控制服务器。UE与控制服务器通信,UE在获取控制服务器的指令之后,可根据这个指令将采集的数据传递给控制服务器。又例如,DN是一个公司的内部办公网络,该公司员工所使用的终端则可扮演UE的角色,这个UE可以访问公司内部的信息和其他资源。
其中,统一数据管理实体(UDM,Unified Data Management)也是3GPP网络中的一种控制面功能,UDM主要负责存储3GPP网络中签约用户(UE)的签约数据、信任状(credential)和永久身份标识(SUPI,Subscriber Permanent Identifier)等。这些数据可以被用于UE接入运营商3GPP网络的认证和授权。
认证服务器功能(AUSF,Authentication Server Function)也是3GPP网络中的一种控制面功能,AUSF主要用于第一级认证(即3GPP网络对其签约用户的认证)。
其中,网络开放功能(NEF,Network Exposure Function)也是3GPP网络之中的一种控制面功能。NEF主要负责以安全的方式对第三方开放3GPP网络的对外接口。其中,在SMF等功能实体需要与第三方网元通信时,可以以NEF为通信的中继。其中,中继时,NEF可以进行内外部标识的翻译。比如,将UE的SUPI从3GPP网络发送到第三方时,NEF可以将SUPI翻译成其对应的外部身份标识(ID,Identity)。反之,NEF可以将外部身份ID在发送到3GPP网络时,将其翻译成对应的SUPI。
其中,网络存储功能(NRF,Network Repository Function)也是3GPP网络中的一种控制面功能,主要负责存储可被访问的网络功能(NF)的配置额服务资料(profile),为其他功能实体提供网络功能的发现服务。
用户面功能(UPF,User Plane Function)是3GPP网络与DN通信的网关。
策略控制功能(PCF,Policy Control Function)是3GPP网络中的一种控制面功能,用于向SMF提供PDU会话的策略。策略可包括计费、服务质量(QoS,Quality of Service)、授权相关策略等。
接入网(AN,Access Network)是3GPP网络的一个子网络,UE要接入3GPP网络,首先需要经过AN。在无线接入场景下AN也称无线接入网(RAN,Radio Access Network),因此RAN和AN这两个术语经常不做区分的混用。
3GPP网络是指符合3GPP标准的网络。其中,图1-A中除了UE和DN以外的部分可看作是3GPP网络。3GPP网络不只局限于3GPP定义的5G网络,还可包括2G、3G、4G网络。通常3GPP网络由运营商来运营。此外,在图1-A所示架构中的N1、N2、N3、N4、N6等分别代表相关网络实体/网络功能之间的参照点(Reference Point)。Nausf、Namf...等分别代表相关网络功能的服务化接口。
当然,3GPP网络和非3GPP网络可能共存,5G网络的中的一些网元也可能被运用到一些非5G网络中。
参见图1-B至图1-D,图1-B至图1-D举例示出了GBA技术可能应用的一些具体的网络架构的示意图。
其中,引导服务功能(BSF,Bootstrapping Server Function)可与UE交互,可执行UE与BSF之间的认证。BSF与HSS之间有Zh接口,BSF可以从HSS获得UE认证的相关参数。
其中,网络侧的应用服务器(NAF,Network Application Function),每个应用都可以有一个或多个NAF,BSF和UE可能与多个NAF进行交互。
其中,位置订阅服务(SLF,Subscriber Locator Function),BSF可以从SLF处得到UE对应的HSS名称(多个HSS场景下)。
其中,归属订阅系统(HSS,Home Subscriber System)可用于存储UE的订阅信息,还可用于生成认证向量等。
其中,GBA主要包含两个大的功能:
功能1:执行GBA AKA认证,GBA AKA认证的参与方包括UE、BSF、HSS;基于UE与HSS之间共享的根密钥来实现UE与BSF之间Ks的密钥协商;通过执行认证过程,在BSF与UE之间建立一个共享密钥。
功能2:执行UE与NAF之间K_NAF的密钥协商,其中,UE与NAF之间K_NAF的密钥协商的参与方包括UE、NAF和BSF。
其中,图1-C举例架构中BSF和UDM之间具有直连接口。图1-D举例架构中BSF和UDM之间通过AUSF来交互消息。
下面对GBA技术应用于5G网络的一些方案进行介绍。
参见图2,图2为本申请实施例提供的一种通信认证方法的流程示意图。图2举例所示的一种通信认证方法可基于图1-C或图1-D举例所示网络架构来具体实施。一种通信认证方法具体可包括:
201.UE向BSF发送携带有用户终端标识的通用引导架构GBA认证请求。
其中,这个GBA认证请求可能由AUSF或BSF发送,GBA认证请求具有请求GBA认证的功能,但这个GBA认证请求的具体消息名称可能是认证请求、接入请求、注册请求或其他名称的消息。
202.统一数据管理实体UDM接收来自BSF或AUSF的携带有用户终端标识的通用引导架构GBA认证请求(BSF或AUSF可向UDM转发来自UE的携带有用户终端标识的通用引导架构GBA认证请求)。
203.所述UDM生成所述用户终端标识所表示用户终端的第一认证向量。所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括如下认证向量中的一个或多个:3G GBA认证向量、4G GBA认证向量或5G认证向量。
204.所述UDM发送携带有所述第一认证向量的GBA认证响应。
205.BSF例如在接收到来自UDM的携带有第一认证向量的GBA认证响应后,向UE 发送携带AUTN和RAND的认证请求。
206.所述用户终端接收携带AUTN和RAND的认证请求,所述用户终端基于AUTN和RAND推演所述第一认证向量。
可以看出,上述举例方案可实现在5G网络中进行GBA认证,进而有利于为将GBA技术应用于5G网络奠定良好的基础。并且上述方案中所述第一认证向量不同于所述用户终端的第二认证向量,这有利于5G GBA认证向量和UE其他认证向量的隔离,例如可实现5G GBA向量中的加密密钥CK’和完整性保护密钥IK’,与UE的其他认证向量中的加密密钥CK和完整性保护密钥IK的隔离,有利于避免例如加密密钥CK’和完整性保护密钥IK’被滥用。
参见图3-A,图3-A为本申请实施例提供的一种通信认证方法的流程示意图。图3-A举例所示的一种通信认证方法可基于图1-C举例所示网络架构来具体实施。一种通信认证方法具体可包括:
301.UE向BSF发送携带UE ID的5G GBA认证请求。
其中,5G GBA认证请求为用于请求5G GBA认证的认证请求,具体的消息名称可能是注册请求、接入请求或其他消息。其中,这里UE ID可为UE的永久标识,或者临时标识,或者封装标识,具体是那种UE ID不做限制。
302.BSF接收到来自UE的携带UE ID的5G GBA认证请求后,BSF向UDM发送携带UE ID的5G GBA认证请求。
可选的,这里BSF可以根据UE ID确定UDM的信息,例如UDM的路由信息。
可选的,BSF通过5G GBA认证请求向UDM发送认证类型指示,认证类型指示可用于指示此认证请求为用于5G GBA认证的认证请求。
可选的,BSF也可以通过发送专用的认证请求消息名称或者类型来指示UDM,这个认证请求为5G GBA认证的认证请求,例如通过专用的服务化消息名称或者类型。
可选的,BSF发送BSF的标识至UDM,例如BSF的名称,IP,实例ID,或者其他地址信息等标识BSF的信息。
303.UDM接收来自BSF的携带UE ID的5G GBA认证请求。
可选的,UDM可根据5G GBA认证请求携带的认证类型指示确定此认证请求为5G GBA认证请求。
可选的,UDM可以根据专用的认证请求消息名称或者类型确定此认证请求为5G GBA认证请求。
可选的UDM接收BSF的标识信息;或者UDM可以根据UDM与BSF的链接信息,确定BSF的标识信息。
可选的,UDM判决此UE ID对应签约数据是否允许使用5G GBA业务。如果不允许则UDM可拒绝5G GBA认证请求。可选的,UDM可拒绝5G GBA认证请求的方式可以是发送拒绝指示给UE,指示UE不被授权使用5G GBA业务。如果允许则UDM可继续5G GBA认证流程。
当然,UDM也可默认UE ID对应签约数据允许使用5G GBA业务,在这种情况下UDM可无需执行判决此UE ID对应签约数据是否允许使用5G GBA业务的步骤。
UDM生成5G GBA认证向量(CK’,IK’,RAND,AUTN,XRES)。
其中,生成CK’和IK’的方式可确保CK’和IK’的隔离性,即确保CK’和IK’是与5G GBA业务绑定的。
其中,生成CK’和IK’的方式可为如下举例方式:
参见图3-B,在基于根密钥K和RAND推衍CK’和IK’的时候,可引入新的推演参数y1和推演参数y2分别用于CK’和IK’的推演。即,推演所述CK’所使用的参数包括RAND、根密钥K和推演参数y1(推演所述CK所使用的参数包括RAND和根密钥K,但不包括推演参数y1);推演所述IK’所使用的参数包括RAND、根密钥K和推演参数y2(推演所述IK所使用的参数包括RAND和根密钥K,但不包括推演参数y2)。
其中,推演参数y1和推演参数y2例如可分别为字符串“5G GBA”或“GBA”或5G GBA专用标识indicator或BSF的标识或者5G的标识,或者切片选择辅助信息,或者切片的ID,或者PDU session ID或者UE的标识(永久标识或者临时标识),或者计数器,或者随机数nonce或序列号等新鲜参数等。其中,这里切片选择辅助信息,或者切片的ID可以为BSF发送给UDM,或者UDM根据本地信息确定的。PDU session ID信息为BSF发送给UDM,或者UDM根据本地信息确定的。可以理解为,这里切片选择辅助信息,或者切片的ID,或者PDU session ID为BSF与UE通信链路相关的切片信息,或者会话信息;用于限制密钥仅用于此链路。
针对本申请的所有实施例,如果UE未保存或者自己不能推算出上述推衍中使用到的计数器,或者nonce或者序列号等新鲜参数,则网络中网元(如UDM,AUSF或者BSF)可以将此参数传递给UE。
参见图3-C,还可引入新的推演函数f3’和推演函数f4’,其中,使用推演函数f3’可推演出加密密钥CK’,使用推演函数f4’可推演出完整性保护密钥IK’。其中,推演函数f3’不同于推演CK的推演函数f3,推演函数f4’不同于推演IK的推演函数f4。其他推衍参数还可以包括y1和/或y2。
参见图3-D,可基于CK和IK继续推衍而得到CK’和IK’,例如可以使用加密密钥CK和推演参数y1推演出加密密钥CK’,可以使用完整性保护密钥IK和推演参数y1推演出完整性保护密钥IK’。
或者,基于新的FC value生成CK’和IK’。具体例如,基于新的FC value和CK,IK生成CK’和IK’,其他参数还可能包括y1。
或者,使用HN name来推演CK’和IK’,因为BSF也是属于归属网络。
又例如,推演5G GBA认证向量中的AUTN将使用到第一SQN,推演所述5G认证向量或者GBA认证向量中的AUTN将使用到第二SQN,所述第一SQN和所述第二SQN包含标志位(标志位例如为SQN的最高1位或最高多位),第一SQN的标志位不同于所述第二SQN的标志位(不同标志位可用于区分是5G认证,还是5G GBA的认证)。或者,也可以采用SQN分段的方式来划分SQN,具体例如,如果SQN包括1到100的值,前50的SQN用于为第一SQN;后50的SQN为第二SQN。
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述5G认证向量所使用的FC value。
可选的,如果除了FC value之外,推衍参数跟已有技术推衍密钥相同,那么此专利中FC value应该是一个新的值,即不同于已有技术中所用的FC value。
总的来说,上述举例方式目的是使5G GBA认证向量中的CK’不同于3G GBA/4G GBA/5G认证向量CK,使5G GBA认证向量中的IK’不同于3G GBA/4G GBA/5G认证向量IK。能够实现这一目的的其他方式也是可以考虑选用的。
304.UDM向BSF发送携带5G GBA认证向量的5G GBA认证响应。
305.BSF向UE发送携带RAND和AUTN的认证请求。
306.UE对AUTN进行校验,在校验AUTN通过后计算RES,UE向BSF发送携带RES的认证响应。
307.BSF接收来自UE的认证响应,校验XRES与认证响应携带的RES是否相同,若相同则生成Ks=CK’||IK’。
308.BSF发送B-TID和key lifetime。其中,B-TID为BSF为UE分配的临时标识,key lifetime代表Ks的有效期。
309.UE生成Ks,其中,Ks=CK’||IK’。其中,UE生成CK’和IK’的方法与UDM生成CK’和IK’的方法相同。
可以理解,UE生成CK’和IK’的步骤可以在步骤306之后的任意时刻执行。BSF生成CK’和IK’的步骤可以在步骤306之后的任意时刻执行。计算除CK’和IK’之外的例如XRES等其他参数的步骤,也在需要使用它之前的任意时刻执行。
可以看出,本实施例举例的方案实现了5G GBA向量中的CK’和IK’,与UE的其他认证向量中的CK和IK的隔离,有利于避免CK’和IK’被滥用。并且,BSF还是接收到了5G GBA认证向量5元组,BSF内操作可重用旧的产品。
参见图4,图4为本申请实施例提供的一种通信认证方法的流程示意图。其中,图4举例所示的一种通信认证方法可基于图1-C举例所示网络架构来具体实施。一种通信认证方法具体可包括:
401.UE向BSF发送携带UE ID的5G GBA认证请求。
其中,5G GBA认证请求为用于请求5G GBA认证的认证请求,具体的消息名称可能是注册请求、接入请求或其他消息。这里UE ID可以为UE的永久标识,或者临时标识,或者封装标识,不做限制。
402.BSF接收到来自UE的携带UE ID的5G GBA认证请求后,BSF向UDM发送携带UE ID的5G GBA认证请求。
可选的,这里BSF可以根据UE ID确定UDM的信息。
可选的,BSF通过5G GBA认证请求向UDM发送认证类型指示,认证类型指示可用于指示此认证请求为用于5G GBA认证的认证请求。
可选的,BSF也可以通过发送专用的认证请求消息名称或者类型来指示UDM,用于指示为5G GBA认证的认证请求,例如通过专用的服务化消息名称或者类型。
可选的,BSF发送BSF的标识至UDM,BSF的标识例如BSF的名称,IP,实例ID,或者其他地址信息等标识BSF的信息。
403.UDM接收来自BSF的携带UE ID的5G GBA认证请求。
可选的,UDM可根据5G GBA认证请求携带的认证类型指示确定此认证请求为5G GBA认证请求。
可选的,UDM可以根据专用的认证请求消息名称或者类型确定此认证请求为5G GBA认证请求。
可选的UDM接收BSF的标识信息;或者UDM可以根据UDM与BSF的链接信息,确定BSF的标识信息。
可选的,UDM判决此UE ID对应签约数据是否允许使用5G GBA业务。如果不允许则UDM可拒绝5G GBA认证请求。可选的,UDM拒绝5G GBA认证请求的方式例如可以是发送拒绝指示给UE,指示UE不被授权使用5G GBA业务。如果允许则UDM可继续5G GBA认证流程。
当然,UDM也可默认UE ID对应签约数据允许使用5G GBA业务,在这种情况下UDM可无需执行判决此UE ID对应签约数据是否允许使用5G GBA业务的步骤。
UDM生成5G GBA认证向量(K gba,RAND,AUTN,XRES)。
其中,K gba基于CK和IK推演得到(参见图3-E举例),或K gba为CK’和IK’的级联或者根据CK’和IK’推衍得到。
其中,生成CK’和IK’的方式当确保CK’和IK’的隔离性,即确保CK’和IK’是与5G GBA业务绑定的。
其中,生成CK’和IK’的方式可参考上述图3-A对应实施例中的举例描述的CK’和IK’的推衍方法。
其中,生成Kgba的方式还可以为:根据CK,IK和y1参数生成;或者根据CK’,IK’和y1参数生成。此外,除了CK和IK,或者CK’和IK’来推衍Kgba之外,还可能包括其他的参数或者可能性。
参见图3-E,还可引入新的推演函数f8,使用推演函数f8可推演出Kgba。
或者,也可基于新的FC value生成Kgba。具体例如,基于新的FC value和CK,IK等来生成Kgba,其他推演参数还可能包括y1。
或者,使用HN name来推演Kgba,因为BSF也是属于归属网络。
又例如,推演5G GBA认证向量中的AUTN将使用到第一SQN,推演所述5G认证向量或GBA认证向量中的AUTN将使用到第二SQN,所述第一SQN和第二SQN包含标志位(标志位例如为SQN的最高1位或最高多位),第一SQN的标志位不同于第二SQN的标志位(不同标志位可用于区分是5G认证,还是5G GBA的认证)。或者采用SQN分段的方式来划分SQN,例如如果SQN包括1到100的值,前50的SQN用于为第一SQN;后50的SQN为第二SQN。
所述Kgba由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述5G认证向量所使用的FC value。
总的来说,上述举例方式目的是使5G GBA认证向量中的Kgba或者CK’和IK’等不同于3G GBA/4G GBA/4G认证向量中密钥/5G认证向量中密钥。能够实现这一目的的其他方式也是可以考虑选用的。
可选的,如果除了FC value之外,推衍参数跟已有技术推衍密钥相同,那么此专利中FC  value应当是一个新的值,即不同已有技术中所用的FC value。
404.UDM向BSF发送携带有5G GBA认证向量(K gba,RAND,AUTN,XRES)的5G GBA认证响应。
405.BSF向UE发送携带RAND和AUTN的认证请求。
406.UE对AUTN进行校验,在校验AUTN通过后计算RES,UE向BSF发送携带RES的认证响应。
407.BSF接收来自UE的认证响应,校验XRES与认证响应携带的RES是否相同,若相同则生成Ks=CK’||IK’。
408.BSF发送B-TID和key lifetime。其中,B-TID为BSF为UE分配的临时标识,key lifetime代表Ks的有效期。
409.UE生成Ks,其中,Ks=CK’||IK’。其中,UE生成CK’和IK’的方法与UDM生成CK’和IK’的方法相同。
可以理解,UE生成CK’和IK’的步骤可以在步骤406之后的任意时刻执行。BSF生成CK’和IK’的步骤可以在步骤406之后的任意时刻执行。计算除CK’和IK’之外的例如XRES等其他参数的步骤,也在需要使用它之前的任意时刻执行。
可选的,UDM发送算法指示或标识给BSF,用于告诉BSF,5G GBA选择的是EAP AKA’,还是5G AKA认证算法。因为EAP AKA’和5G AKA计算CK和IK采用的方式是不同的。BSF发送算法指示或标识给UE,用于告诉UE,5G GBA选择的是EAP AKA’,还是5G AKA。
可以看出,本实施例举例的方案实现了5G GBA向量中的CK’和IK’,与UE的其他认证向量中的CK和IK的隔离,有利于避免CK’和IK’被滥用。
参见图5,图5为本申请实施例提供的一种通信认证方法的流程示意图。其中,图5举例所示的一种通信认证方法可基于图1-D举例所示网络架构来具体实施。一种通信认证方法具体可包括:
501.UE向BSF发送携带UE ID的5G GBA认证请求。
其中,5G GBA认证请求为用于请求5G GBA认证的认证请求,具体的消息名称可能是注册请求、接入请求或其他消息。这里UE ID可以为UE的永久标识,或者临时标识,或者封装标识,不做限制。
502.BSF接收到来自UE的携带UE ID的5G GBA认证请求后,BSF向AUSF发送携带UE ID的5G GBA认证请求。
可选的,这里BSF可以根据UE ID确定AUSF的信息。
可选的,BSF通过5G GBA认证请求向AUSF发送认证类型指示,认证类型指示可用于指示此认证请求为用于5G GBA认证的认证请求。
可选的,BSF也可以通过发送专用的认证请求消息名称或者类型来指示AUSF,用于指示为5G GBA认证的认证请求,例如通过专用的服务化消息名称或者类型。
可选的,BSF发送BSF的标识至AUSF,例如BSF的名称,IP,实例ID,或者其他地址信息等标识BSF的信息。
503.AUSF接收来自BSF的携带UE ID的5G GBA认证请求。AUSF向UDM发送携带UE  ID的5G GBA认证请求。
可选的,AUSF可根据5G GBA认证请求携带的认证类型指示确定此认证请求为5G GBA认证请求。
可选的,AUSF可以根据专用的认证请求消息名称或者类型确定此认证请求为5G GBA认证请求。
可选的AUSF接收BSF的标识信息;或者AUSF可以根据AUSF与BSF的链接信息,确定BSF的标识信息。
可选的,AUSF通过5G GBA认证请求向UDM发送认证类型指示,所述认证类型指示可用于指示此认证请求为用于5G GBA认证的认证请求。
可选的,AUSF也可以通过发送专用的认证请求消息名称或者类型来指示UDM,用于指示为5G GBA认证的认证请求,例如通过专用的服务化消息名称或者类型。
可选的AUSF发送BSF的标识信息至UDM。
504.UDM接收来自AUSF的携带UE ID的5G GBA认证请求。
可选的,UDM可根据5G GBA认证请求携带的认证类型指示确定此认证请求为5G GBA认证请求。
可选的,UDM可以根据专用的认证请求消息名称或者类型确定此认证请求为5G GBA认证请求。
可选的,UDM判决此UE ID对应签约数据是否允许使用5G GBA业务。如果不允许则UDM可拒绝5G GBA认证请求。可选的,如果不允许,UDM发送拒绝消息至UE,所述消息可以携带拒绝指示。如果允许则UDM可继续5G GBA认证流程。
当然,UDM也可默认UE ID对应签约数据允许使用5G GBA业务,在这种情况下UDM可无需执行判决此UE ID对应签约数据是否允许使用5G GBA业务的步骤。
UDM生成5G GBA认证向量,5G GBA认证向例如(CK’,IK’,RAND,AUTN,XRES)或者(Kgba1,RAND,AUTN,XRES)。
其中,生成CK’和IK’的方式可确保CK’和IK’的隔离性,即确保CK’和IK’是与5G GBA业务绑定的。生成Kgba1的方式可确保Kgba1的隔离性,即确保Kgba1是与5G GBA业务绑定的。
其中,生成CK’和IK’的方式可参考图3-A对应实施例。
其中,生成Kgba1的方式可参考图4对应实施例中Kgba的生成方式。
505.UDM向AUSF发送携带5G GBA认证向量的5G GBA认证响应。
506.AUSF接收来自UDM的携带5G GBA认证向量的5G GBA认证响应后,AUSF进一步计算5G GBA认证向量(CK”,IK”,RAND,AUTN,XRES)或(Kgba2,RAND,AUTN,XRES)。
其中,CK”和IK”基于CK’和IK’推演得到。
或者,Kgba2基于Kgba1推演得到。
或者,Kgba2基于CK’和IK’推演得到。
或者,CK”和IK”基于Kgba1推衍得到。
上述推衍方式不做限制。
上述推衍参数包括参数y1的至少一项;和/或基于新的FC value等。
507.AUSF向BSF发送携带5G GBA认证向量(CK”,IK”,RAND,AUTN,XRES)或(Kgba2,RAND,AUTN,XRES)的5G GBA认证响应。
或者AUSF向BSF发送携带5G GBA认证向量(RAND,AUTN)的5G GBA认证响应。
508.BSF向UE发送携带RAND和AUTN的认证请求。
509.UE对AUTN进行校验,在校验AUTN通过后计算RES,UE向BSF发送携带RES的认证响应。
510.BSF接收来自UE的认证响应,校验XRES与认证响应携带的RES是否相同,若相同则生成Ks=CK”||IK”。
或者一种方案为BSF仅接收到RAND和AUTN,则发送RES至AUSF。AUSF校验XRES与RES相同后,则发送CK”和IK”,或者Kgba2至BSF。
511.BSF发送B-TID和key lifetime。其中,B-TID为BSF为UE分配的临时标识,key lifetime代表Ks的有效期。
512.UE生成Ks=CK”||IK”或者Ks=Kgba2。UE生成CK”和IK”或者Kgba2的方法与UDM和AUSF一起生成CK”和IK”或者Kgba2的方法相同。
可以理解,UE生成CK”和IK”或者Kgba2的步骤可以在步骤506之后的任意时刻执行。BSF生成Ks的步骤可以在步骤506之后的任意时刻执行。计算除CK’和IK’之外的例如XRES等其他参数的步骤,也在需要使用它之前的任意时刻执行。
可选的,UDM在步骤505发送认证算法标识至AUSF;AUSF在步骤507再发送认证算法标识给BSF;BSF在步骤508发送认证算法标识给UE,以使UE确定认证采用的认证算法。
可选的,AUSF根据从步骤505UDM接收到参数确定认证算法;AUSF在步骤507发送认证算法标识给BSF;BSF在步骤508发送认证算法标识给UE,以使UE确定认证采用的认证算法。
可以看出,本实施例举例的方案实现了5G GBA向量中的CK”和IK”或者Kgba2,与UE的其他认证向量中的CK和IK,或者其他密钥(如4G认证密钥Kasme,或者5G认证密钥Kausf)的隔离,有利于避免CK”和IK”或者Kgba2被滥用。
针对上述所有实施例,具体UE与BSF,以及AUSF校验和认证的细节不做限制。
下面还提供一些设备实施例,这些设备实施例中所描述的设备的功能可基于方法实施例方法来具体实施。
参见图6,本申请实施例提供一种统一数据管理实体600,包括:
通信单元610,用于接收携带有用户终端标识的通用引导架构GBA认证请求(可能由AUSF或BSF发送)。
生成单元620,用于生成所述用户终端标识所表示用户终端的第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,第一认证向量为5G GBA认证向量,所述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量。
通信单元610还用于,发送携带有所述第一认证向量的GBA认证响应。
可以看出,上述方案可实现在5G网络中进行GBA认证,进而为将GBA技术应用于5G网络奠定基础。并且,上述方案实现了5G GBA向量中的CK’和IK’,与UE的其他认 证向量中的CK和IK的隔离,有利于避免CK’和IK’被滥用。
其中,第一认证向量可为五元组认证向量或四元组认证向量;第二认证向量可为五元组认证向量或四元组认证向量。
具体例如,第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES)。所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);其中,所述CK’不同于CK,和/或,所述IK’不同于所述IK。
举例来说,推演加密密钥CK’所使用的参数包括RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2;
或者,
推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4;
或者,
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value;
或者,
推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位。
又例如所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);
所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者四元组认证向量(K ausf,RAND,AUTN,XRES);
其中,推演所述Kgba所使用的参数包括CK、IK和参数y2。
在一些可能的实施方式中,所述通信单元接收携带有用户终端标识的通用引导架构GBA认证请求包括:接收来自BSF的携带有用户终端标识的通用引导架构GBA认证请求;或者接收来自AUSF的携带有用户终端标识的通用引导架构GBA认证请求。
在一些可能的实施方式之中,所述通信单元发送携带有所述第一认证向量的GBA认证响应包括:向AUSF发送携带有所述第一认证向量的GBA认证响应,其中,所述GBA认证响应用于触发所述AUSF使用CK’推演出CK”并使用IK’推演出IK”,或者所述GBA认证响应用于触发所述AUSF使用Kgba推演出Kgba’,推演Kgba’所使用到的推衍参数包括参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或序列号等新鲜参数。
参见图7,一种终端设备700可包括:相互耦合的处理器710和存储器720。所述处理器用于调用所述存储器中存储的计算机程序,以执行本申请实施例中由终端设备执行的任意一种方法的部分或全部步骤。
参见图8,本申请实施例还提供一种用户终端800,包括:
通信单元810,用于发送携带有用户终端标识的通用引导架构GBA认证请求;接收携带AUTN和RAND的认证请求。
生成单元820,用于基于AUTN和RAND推演第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量。
可以看出,上述方案可实现在5G网络中进行GBA认证,进而为将GBA技术应用于5G网络奠定基础。并且,上述方案实现了5G GBA向量中的CK’和IK’,与UE的其他认证向量中的CK和IK的隔离,有利于避免CK’和IK’被滥用。
其中,第一认证向量可为五元组认证向量或四元组认证向量;第二认证向量可为五元组认证向量或四元组认证向量。
具体例如,第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES)。所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);其中,所述CK’不同于CK,和/或,所述IK’不同于所述IK。
举例来说,推演加密密钥CK’所使用的参数包括RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2。
或者,
推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4。
或者,
所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value。
或者,
推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位。
又例如,所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES)。
所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者四元组认证向量(K ausf,RAND,AUTN,XRES)。
其中,推演所述Kgba所使用的参数包括CK、IK和参数y2。
在一些可能的实施方式中,所述参数y1或参数y2包括如下参数中的一种或多种:字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机数nonce或者序列号。
参见图9,本申请实施例还提供一种UDM 900可包括:
相互耦合的处理器910和存储器920。
其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行本申请实施例中由UDM执行的任意一种方法的部分或全部步骤。
参见图10,图10所示为本申请提供的一种通信装置1000的结构示意图,通信装置1000例如为终端设备或UDM。通信装置1000可以包括:
至少一个输入端1001、信号处理器1002和至少一个输出端1003。
其中,至少一个输入端1001用于信号的输入。
其中,至少一个输出端1003用于信号的输出。
其中,信号处理器1002用于执行本申请实施例提供的任意一种方法的部分或全部步骤。
参见图11,图11所示为本申请提供的一种通信装置1100的结构示意图,通信装置1100例如为终端设备或UDM。通信装置1100可以包括:
输入接口电路1001,逻辑电路1002和输出接口电路1003。其中,至少一个输入端1001用于信号的输入。其中,至少一个输出端1003用于信号的输出。其中,逻辑电路1002用于执行本申请实施例提供的任意一种方法的部分或全部步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以本申请实施例中由任意设备执行的任意一种方法的部分或全部步骤。
本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机设备上运行时,使得所述这个计算机设备执行以上各方面的任意一种方法的部分或者全部步骤。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可 以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
另外,在本申请各实施例中的各功能单元可集成在一个处理单元中,也可以是各单元单独物理存在,也可两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,或者也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质例如可包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或光盘等各种可存储程序代码的介质。

Claims (17)

  1. 一种通信认证方法,其特征在于,包括:统一数据管理实体UDM接收携带有用户终端标识的通用引导架构GBA认证请求;
    所述UDM生成所述用户终端标识所表示用户终端的第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量;
    所述UDM发送携带有所述第一认证向量的GBA认证响应。
  2. 根据权利要求1所述方法,其特征在于,
    所述第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES);
    所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);
    其中,加密密钥CK’不同于加密密钥CK,和/或,完整性保护密钥IK’不同于完整性保护密钥IK。
  3. 根据权利要求2所述方法,其特征在于,
    推演加密密钥CK’所使用的参数包括RAND、根密钥K和推演参数y1;推演完整性保护密钥IK’所使用的参数包括RAND、根密钥K和推演参数y2;
    或者,
    推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4;
    或者,
    所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value;
    或者,
    推演所述第一认证向量中的认证令牌AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位。
  4. 根据权利要求1所述方法,其特征在于,
    所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);
    所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者四元组认证向量(K ausf,RAND,AUTN,XRES);
    其中,推演密钥Kgba所使用的推演参数包括:加密密钥CK、完整性保护密钥IK和参数y2。
  5. 根据权利要求1至4任意一项所述方法,其特征在于,所述UDM接收携带有用户终端标识的通用引导架构GBA认证请求包括:UDM接收来自BSF的携带有用户终端标识的 通用引导架构GBA认证请求;或者,UDM接收来自AUSF的携带有用户终端标识的通用引导架构GBA认证请求。
  6. 根据权利要求5所述方法,其特征在于,所述UDM发送携带有所述第一认证向量的GBA认证响应包括:
    所述UDM向AUSF发送携带有所述第一认证向量的GBA认证响应,所述GBA认证响应用于触发所述AUSF使用加密密钥CK’推演出加密密钥CK”并使用完整性保护密钥IK’推演出完整性保护密钥IK”,或者所述GBA认证响应用于触发所述AUSF使用密钥Kgba推演出密钥Kgba’,推演密钥Kgba’所使用到的推衍参数包括参数y2。
  7. 根据权利要求3或6所述方法,其特征在于,所述参数y1或参数y2包括如下参数中的一种或多种:
    字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机值nonce或序列号。
  8. 一种通信认证方法,其特征在于,包括:用户终端发送携带有用户终端标识的通用引导架构GBA认证请求;
    所述用户终端接收携带认证令牌AUTN和随机数RAND的认证请求;
    所述用户终端基于AUTN和RAND推演第一认证向量,所述第一认证向量不同于所述用户终端的第二认证向量,所述第一认证向量为5G GBA认证向量,所述第二认证向量包括3G/4G GBA认证向量和/或5G认证向量。
  9. 根据权利要求8所述方法,其特征在于,
    所述第一认证向量为五元组认证向量(CK’,IK’,RAND,AUTN,XRES);
    所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES);
    其中,加密密钥CK’不同于加密密钥CK,和/或,完整性保护密钥IK’不同于完整性保护密钥IK。
  10. 根据权利要求9所述方法,其特征在于,
    推演所述CK’所使用的参数包括RAND、根密钥K和推演参数y1;推演所述IK’所使用的参数包括RAND、根密钥K和推演参数y2;
    或者,
    推演所述CK’所使用的推演函数f3’不同于推演所述CK所使用的推演函数f3;推演所述IK’所使用的推演函数f4’不同于推演所述IK所使用的推演函数f4;
    或者,
    所述CK’和IK’由所述CK、IK和一个FC value推衍得到,所述FC value不同于推演所述第二认证向量所使用的FC value;
    或者,
    推演所述第一认证向量中的AUTN将使用到第一SQN,推演所述第二认证向量中的AUTN将使用到第二SQN,所述第一SQN和所述第二SQN包含标志位,所述第一SQN的标志位不同于所述第二SQN的标志位。
  11. 根据权利要求8所述方法,其特征在于,
    所述第一认证向量为4元组认证向量(K gba,RAND,AUTN,XRES);
    所述第二认证向量为五元组认证向量(CK,IK,RAND,AUTN,XRES)或者四元组认证向量(K ausf,RAND,AUTN,XRES);
    其中,推演密钥Kgba所使用的推演参数包括:加密密钥CK、完整性保护密钥IK和参数y2。
  12. 根据权利要求10或11所述方法,其特征在于,所述参数y1或参数y2包括如下参数中的一种或多种:
    字符串5G GBA、字符串GBA、5G GBA专用标识、BSF标识、5G标识、计数器、随机值nonce或序列号。
  13. 一种终端设备,其特征在于,包括:
    相互耦合的处理器和存储器;
    其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行权利要求8至12任意一项所述的方法。
  14. 一种统一数据管理实体UDM,其特征在于,包括:
    相互耦合的处理器和存储器;
    其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行权利要求1至7任意一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时能够完成权利要求1至12任意一项所述的方法。
  16. 一种通信装置,其特征在于,包括:
    至少一个输入端、信号处理器和至少一个输出端;其中,所述信号处理器,用于执行权利要求1-12任意一项所述的方法。
  17. 一种通信装置,包括:输入接口电路,逻辑电路和输出接口电路,其中,
    所述逻辑电路,用于执行如权利要求1-7中任一所述的方法,或者,执行如权利要求8-12任一项所述的方法。
PCT/CN2020/118342 2019-09-30 2020-09-28 通信认证方法和相关设备 WO2021063304A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20871334.7A EP4030801A4 (en) 2019-09-30 2020-09-28 COMMUNICATION AUTHENTICATION PROCESS AND ASSOCIATED MECHANISM
US17/706,877 US20220255734A1 (en) 2019-09-30 2022-03-29 Communication Authentication Method and Related Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910945857.3A CN112672345B (zh) 2019-09-30 2019-09-30 通信认证方法和相关设备
CN201910945857.3 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/706,877 Continuation US20220255734A1 (en) 2019-09-30 2022-03-29 Communication Authentication Method and Related Device

Publications (1)

Publication Number Publication Date
WO2021063304A1 true WO2021063304A1 (zh) 2021-04-08

Family

ID=75336372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118342 WO2021063304A1 (zh) 2019-09-30 2020-09-28 通信认证方法和相关设备

Country Status (4)

Country Link
US (1) US20220255734A1 (zh)
EP (1) EP4030801A4 (zh)
CN (1) CN112672345B (zh)
WO (1) WO2021063304A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205814B (zh) * 2021-12-03 2023-11-21 中国联合网络通信集团有限公司 一种数据传输方法、装置、系统、电子设备及存储介质
CN116419218A (zh) * 2022-01-05 2023-07-11 大唐移动通信设备有限公司 认证与安全方法、装置及存储介质
CN114221751B (zh) * 2022-01-26 2024-03-29 全球能源互联网研究院有限公司 一种物联网通信认证方法、系统及计算机设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113593A1 (en) * 2015-01-13 2016-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Application protocol query for securing gba usage
CN107205208A (zh) * 2016-03-16 2017-09-26 华为技术有限公司 鉴权的方法、终端和服务器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885640B2 (en) * 2007-01-11 2011-02-08 Nokia Corporation Authentication in communication networks
EP2503754B1 (en) * 2011-03-25 2014-05-07 Cassidian SAS Authentication in a communications system
CN103067345A (zh) * 2011-10-24 2013-04-24 中兴通讯股份有限公司 一种变异gba的引导方法及系统
CN111866871B (zh) * 2019-04-29 2021-11-26 华为技术有限公司 通信方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113593A1 (en) * 2015-01-13 2016-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Application protocol query for securing gba usage
CN107205208A (zh) * 2016-03-16 2017-09-26 华为技术有限公司 鉴权的方法、终端和服务器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on authentication and key management for applications based on 3GPP credential in 5G (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 33.835, no. V1.0.1, 17 September 2019 (2019-09-17), pages 1 - 92, XP051784560 *
HUAWEI ET AL.: "S3-192126 Evaluation of solution 4", 3GPP TSG SA WG3 (SECURITY) MEETING #95, 17 June 2019 (2019-06-17), XP051753061 *
HUAWEI, HISILICON: "Evaluation of solution 4", 3GPP DRAFT; S3-191290-EVALUATION FOR SOLUTION4, vol. SA WG3, 29 April 2019 (2019-04-29), Reno (US), pages 1 - 4, XP051721464 *
See also references of EP4030801A4

Also Published As

Publication number Publication date
CN112672345B (zh) 2023-02-10
EP4030801A4 (en) 2022-10-26
EP4030801A1 (en) 2022-07-20
US20220255734A1 (en) 2022-08-11
CN112672345A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US11689934B2 (en) Key configuration method, security policy determining method, and apparatus
US9240881B2 (en) Secure communications for computing devices utilizing proximity services
WO2021063304A1 (zh) 通信认证方法和相关设备
CN111447675B (zh) 通信方法和相关产品
US8656171B2 (en) Method, apparatus, and system for configuring key
US11909869B2 (en) Communication method and related product based on key agreement and authentication
WO2020248624A1 (zh) 一种通信方法、网络设备、用户设备和接入网设备
US11159940B2 (en) Method for mutual authentication between user equipment and a communication network
WO2020088026A1 (zh) 一种基于通用引导架构gba的认证方法及相关设备
CN108809635A (zh) 锚密钥生成方法、设备以及系统
EP2648437B1 (en) Method, apparatus and system for key generation
EP4262257A1 (en) Secure communication method and device
CN111770492B (zh) 通信方法和通信设备
JP6123035B1 (ja) Twagとueとの間でのwlcpメッセージ交換の保護
WO2020151677A1 (zh) 通信方法和相关产品
WO2015165250A1 (zh) 一种终端接入通信网络的方法、装置及通信系统
US20220030428A1 (en) Communication Method and Communications Device
WO2020147602A1 (zh) 一种认证方法、装置和系统
WO2021249325A1 (zh) 切片服务验证方法及其装置
Rani et al. Study on threats and improvements in LTE Authentication and Key Agreement Protocol
Ramezani Coordinated Robust Authentication In Wireless Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871334

Country of ref document: EP

Effective date: 20220413