WO2021063158A1 - 汽车的分布式制动系统、汽车及其控制方法 - Google Patents

汽车的分布式制动系统、汽车及其控制方法 Download PDF

Info

Publication number
WO2021063158A1
WO2021063158A1 PCT/CN2020/113983 CN2020113983W WO2021063158A1 WO 2021063158 A1 WO2021063158 A1 WO 2021063158A1 CN 2020113983 W CN2020113983 W CN 2020113983W WO 2021063158 A1 WO2021063158 A1 WO 2021063158A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
wheel
pressure
cylinder
pipeline
Prior art date
Application number
PCT/CN2020/113983
Other languages
English (en)
French (fr)
Inventor
张永生
王广义
张伟
刘晓康
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20872218.1A priority Critical patent/EP4029743A4/en
Publication of WO2021063158A1 publication Critical patent/WO2021063158A1/zh
Priority to US17/657,216 priority patent/US20220219665A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/04Arrangements of piping, valves in the piping, e.g. cut-off valves, couplings or air hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry

Definitions

  • This application relates to the automotive field, and more specifically, to the distributed braking system of the automobile, the automobile and the control method of the distributed braking system in the automobile.
  • the braking system of a car is a system that applies a certain braking force to the wheels of the car to perform a certain degree of forced braking.
  • the function of the braking system is to force a driving car to decelerate or even stop according to the requirements of the driver or the controller, or to make a stopped car park stably under various road conditions (for example, on a ramp), or to make The speed of the car driving downhill remains stable.
  • the requirements of automobiles on braking systems are getting higher and higher.
  • the dependence of the operation of the braking system on the driver is reduced.
  • the requirements for the control accuracy of the braking system are getting higher and higher.
  • Distributed Electro-hydraulic Braking System (DEHB)
  • DEHB Distributed Electro-hydraulic Braking System
  • DEHB it usually contains 4 sets of independent supercharging devices to provide braking force for 4 wheels.
  • the supercharging device of the right rear wheel and the supercharging device of the left rear wheel of the car are divided into one group, namely the H-shaped arrangement.
  • the other is to divide the supercharging device of the right front wheel of the car and the supercharging device of the left rear wheel of the car into one group, and at the same time, the supercharging device of the right rear wheel of the car and the supercharging device of the left front wheel of the car are divided into one group.
  • Divide into one group namely X-type layout.
  • the present application provides a distributed braking system, a car, and a control method of an automobile, so as to improve the redundancy performance of the distributed braking system in the automobile.
  • a distributed braking system for an automobile includes a first supercharging device (5), a second supercharging device (6), and a first control valve (17),
  • the first pressure-increasing device (5) is used to adjust the pressure of the brake fluid in the first brake pipe (111) to control the pressure applied to the first wheel brake cylinder (13) of the automobile The braking force;
  • the second pressure boosting device (6) used to adjust the pressure of the brake fluid in the second brake pipeline (112) to control the second brake wheel cylinder applied to the car (14) Braking force;
  • the first control valve (17) connects the first brake pipeline (111) and the second brake pipeline (112), if the first control valve ( 17) In the on state, the first brake pipeline (111) is in communication with the second brake pipeline (112); if the first control valve (17) is in the off state, then The first brake pipeline (111) is disconnected from the second brake pipeline (112), wherein the first wheel brake cylinder (13) is the brake wheel of the right front wheel of the
  • the first control valve (17) is connected between the first brake line (111) and the second brake line (112), so as to correspond to the booster devices belonging to the same group
  • the brake pipelines are connected, that is, when the first control valve (17) is in a conducting state, the first brake pipeline (111) and the second brake pipeline (112) are connected.
  • the first control valve (17) can be controlled to be in a conducting state so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices belonging to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the first pressure-increasing device (5) is used to adjust the internal pressure of the first brake pipeline (111) The pressure of the brake fluid to adjust the pressure of the brake fluid in the second brake line (112); and/or if the first control valve is in a conducting state, the second pressure boosting device (6 ) Is used to adjust the pressure of the brake fluid in the second brake line (112) by adjusting the pressure of the brake fluid in the first brake line (111).
  • the first pressure-increasing device (5) can pass through the connected first brake pipeline (111) and the second brake pipeline (112). ) To control the braking force applied to the second wheel brake cylinder (14), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the second pressure boosting device (5) can control the first brake pipeline (111) and the second brake pipeline (112) through the connected
  • the braking force applied to the first wheel brake cylinder (13) is beneficial to improve the redundancy performance of the distributed braking system.
  • the distributed braking system further includes a second control valve (19), a third booster device (7), and a fourth booster device (8).
  • the third booster The device (7) is used to control the braking force exerted on the third brake wheel cylinder (15) by adjusting the pressure of the brake fluid in the third brake pipeline (113); the fourth pressure increase
  • the device (8) is also used to control the braking force exerted on the fourth brake wheel cylinder (16) by adjusting the pressure of the brake fluid in the fourth brake pipeline (114); the second control The valve (19) connects the third brake pipe (113) and the fourth brake pipe (114).
  • the third brake pipe The moving pipeline (113) is in communication with the fourth brake pipeline (114); if the second control valve (19) is in a disconnected state, the third brake pipeline (113) is connected to the The fourth brake pipeline (114) is disconnected, wherein the third wheel brake cylinder (15), the fourth wheel brake cylinder (16), the first wheel brake cylinder (13) and The second wheel brake cylinder (14) is used to provide braking force for different wheels in the automobile, and the third wheel brake cylinder (15) is the wheel brake cylinder of the right rear wheel of the automobile, And the fourth brake wheel cylinder (16) is the brake wheel cylinder of the left rear wheel of the automobile; or the third brake wheel cylinder (15) is the brake wheel of the right front wheel of the automobile Cylinder, and the fourth wheel brake cylinder (16) is the wheel brake cylinder of the left front wheel of the automobile; or the third wheel brake cylinder (15) is the wheel brake of the right front wheel of the automobile A moving wheel cylinder, and the fourth wheel brake cylinder (16) is the
  • the second control valve (19) is connected between the third brake line (113) and the fourth brake line (114), so as to correspond to the booster devices belonging to the same group
  • the brake pipeline is connected, that is, when the second control valve (19) is in the conducting state, the third brake pipeline (113) is connected with the fourth brake pipeline (114).
  • the second control valve (19) can be controlled to be in a conducting state so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices belonging to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the third pressure-increasing device (7) is used to adjust the pressure in the third brake pipeline (113) The pressure of the brake fluid to adjust the pressure of the brake fluid in the fourth brake pipe (114); and/or if the second control valve (19) is in the conducting state, the fourth pressure increase The device (8) is used to adjust the pressure of the brake fluid in the third brake line (113) by adjusting the pressure of the brake fluid in the fourth brake line (114).
  • the third pressure-increasing device (7) can pass through the connected third brake pipeline (113) and the fourth brake pipeline (114). ) To control the braking force applied to the fourth wheel brake cylinder (16), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the fourth pressure-increasing device (8) can control the third brake line (113) and the fourth brake line (114) through the The braking force applied to the third wheel brake cylinder (15) is beneficial to improve the redundancy performance of the distributed braking system.
  • the distributed braking system further includes a third control valve (18), a fifth brake pipeline (115), and a sixth brake pipeline (116).
  • the pressure outlet port of the brake pipe (115) is connected to the pressure inlet port of the first brake pipe (111), and the pressure outlet port of the fifth brake pipe (115) is connected to the second brake pipe (111).
  • the pressure inlet port of the dynamic pipeline (112) is connected, the pressure outlet port of the sixth brake pipeline (116) is connected to the pressure inlet port of the third brake pipeline (113), and the sixth brake pipeline (113) is connected to the pressure inlet port.
  • the pressure outlet port of the moving pipeline (116) is connected to the pressure inlet port of the fourth brake pipeline (114), and the third control valve (18) is used to connect the second brake pipeline (112).
  • the third control valve (18) is connected between the second brake pipe (112) and the third brake pipe (113), so as to correspond to the supercharging devices that do not belong to the same group.
  • the third control valve (18) When the third control valve (18) is in the conducting state, the second brake pipe (112) and the third brake pipe (113) are connected.
  • the third control valve (18) can be controlled to be in a conducting state, so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices that do not belong to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the distributed braking system further includes a master cylinder (3), and the master cylinder (3) is used to adjust the fifth brake pipeline (115).
  • the pressure of the internal brake fluid is used to adjust the pressure of the brake fluid in the first brake pipe (111) or the second brake pipe (112); the master brake cylinder (3) is also used By adjusting the pressure of the brake fluid in the sixth brake pipe (116) to adjust the brake fluid in the third brake pipe (113) or the fourth brake pipe (114) pressure.
  • the distributed braking system can also implement mechanical braking mode or linear braking based on the master cylinder (3), the fifth brake pipeline (115), and the sixth brake pipeline (116).
  • the dynamic mode enables the distributed braking system to work in multiple modes to improve the diversity of braking force provided by the braking system.
  • the above-mentioned brake master cylinder (3) is a series double-chamber type brake master cylinder.
  • an automobile in a second aspect, is provided.
  • the automobile includes a first wheel brake cylinder (13), a second wheel brake cylinder (14), a first control valve (17), a first supercharging device (5), and
  • the second pressure increasing device (6), the first pressure increasing device (5), is used to control the pressure of the brake fluid in the first brake line (111) to control the pressure applied to the first brake pipe (111).
  • the braking force on the moving wheel cylinder (13); the second pressurizing device (6) is used to adjust the pressure of the brake fluid in the second brake line (112) to control the pressure applied to the first The braking force on the two brake wheel cylinders (14); the first control valve (17) connects the first brake pipeline (111) and the second brake pipeline (112), if the The first control valve (17) is in the conducting state, the first brake pipeline (111) is in communication with the second brake pipeline (112); if the first control valve (17) is in the off state Open state, the first brake line (111) is disconnected from the second brake line (112), wherein the first wheel brake cylinder (13) is the front right side of the automobile Wheel brake cylinder, and the second wheel brake cylinder (14) is the wheel brake cylinder of the left front wheel of the automobile; or, the first wheel brake cylinder (13) is the automobile The brake wheel cylinder of the right rear wheel, and the second wheel brake cylinder (14) is the wheel brake cylinder of the left rear wheel of the automobile; or, the first wheel brake cylinder
  • the first control valve (17) is connected between the first brake line (111) and the second brake line (112), so as to correspond to the booster devices belonging to the same group
  • the brake pipelines are connected, that is, when the first control valve (17) is in a conducting state, the first brake pipeline (111) and the second brake pipeline (112) are connected.
  • the first control valve (17) can be controlled to be in a conducting state so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices belonging to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the first pressure-increasing device (5) is used to adjust the internal pressure of the first brake pipeline (111) The pressure of the brake fluid to adjust the pressure of the brake fluid in the second brake line (112); and/or if the first control valve is in a conducting state, the second pressure boosting device (6 ) Is used to adjust the pressure of the brake fluid in the second brake line (112) by adjusting the pressure of the brake fluid in the first brake line (111).
  • the first pressure-increasing device (5) can pass through the connected first brake pipeline (111) and the second brake pipeline (112). ) To control the braking force applied to the second wheel brake cylinder (14), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the second pressure boosting device (5) can control the first brake pipeline (111) and the second brake pipeline (112) through the connected
  • the braking force applied to the first wheel brake cylinder (13) is beneficial to improve the redundancy performance of the distributed braking system.
  • the automobile further includes a second control valve (19), a third supercharging device (7), and a fourth supercharging device (8), the third supercharging device (7) , Used to control the braking force exerted on the third brake wheel cylinder (15) by adjusting the pressure of the brake fluid in the third brake pipeline (113); the fourth pressure boosting device ( 8) It is also used to control the braking force exerted on the fourth brake wheel cylinder (16) by adjusting the pressure of the brake fluid in the fourth brake pipeline (114); the second control The valve (19) connects the third brake pipe (113) and the fourth brake pipe (114).
  • the third brake pipe The moving pipeline (113) is in communication with the fourth brake pipeline (114); if the second control valve (19) is in a disconnected state, the third brake pipeline (113) is connected to the The fourth brake pipeline (114) is disconnected, wherein the third wheel brake cylinder (15), the fourth wheel brake cylinder (16), the first wheel brake cylinder (13) and The second wheel brake cylinder (14) is used to provide braking force for different wheels in the automobile, and the third wheel brake cylinder (15) is the wheel brake cylinder of the right rear wheel of the automobile, And the fourth brake wheel cylinder (16) is the brake wheel cylinder of the left rear wheel of the automobile; or the third brake wheel cylinder (15) is the brake wheel of the right front wheel of the automobile Cylinder, and the fourth wheel brake cylinder (16) is the wheel brake cylinder of the left front wheel of the automobile; or the third wheel brake cylinder (15) is the wheel brake of the right front wheel of the automobile A moving wheel cylinder, and the fourth wheel brake cylinder (16) is the
  • the second control valve (19) is connected between the third brake line (113) and the fourth brake line (114), so as to correspond to the booster devices belonging to the same group
  • the brake pipeline is connected, that is, when the second control valve (19) is in the conducting state, the third brake pipeline (113) is connected with the fourth brake pipeline (114).
  • the second control valve (19) can be controlled to be in a conducting state so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices belonging to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the third pressure-increasing device (7) is used to adjust the pressure in the third brake pipeline (113) The pressure of the brake fluid to adjust the pressure of the brake fluid in the fourth brake pipe (114); and/or if the second control valve (19) is in the conducting state, the fourth pressure increase The device (8) is used to adjust the pressure of the brake fluid in the third brake line (113) by adjusting the pressure of the brake fluid in the fourth brake line (114).
  • the third pressure-increasing device (7) can pass through the connected third brake pipeline (113) and the fourth brake pipeline (114). ) To control the braking force applied to the fourth wheel brake cylinder (16), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the fourth pressure-increasing device (8) can control the third brake line (113) and the fourth brake line (114) through the The braking force applied to the third wheel brake cylinder (15) is beneficial to improve the redundancy performance of the distributed braking system.
  • the distributed braking system further includes a third control valve (18), a fifth brake pipeline (115), and a sixth brake pipeline (116).
  • the pressure outlet port of the brake pipe (115) is connected to the pressure inlet port of the first brake pipe (111), and the pressure outlet port of the fifth brake pipe (115) is connected to the second brake pipe (111).
  • the pressure inlet port of the dynamic pipeline (112) is connected, the pressure outlet port of the sixth brake pipeline (116) is connected to the pressure inlet port of the third brake pipeline (113), and the sixth brake pipeline (113) is connected to the pressure inlet port.
  • the pressure outlet port of the moving pipeline (116) is connected to the pressure inlet port of the fourth brake pipeline (114), and the third control valve (18) is used to connect the second brake pipeline (112).
  • the third control valve (18) is connected between the second brake pipe (112) and the third brake pipe (113), so as to correspond to the supercharging devices that do not belong to the same group.
  • the third control valve (18) When the third control valve (18) is in the conducting state, the second brake pipe (112) and the third brake pipe (113) are connected.
  • the third control valve (18) can be controlled to be in a conducting state, so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices that do not belong to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the automobile further includes a brake pedal (1)
  • the distributed braking system further includes a master cylinder (3)
  • the brake pedal (1) is used to receive driving The pedaling force input by the operator and push the piston in the master brake cylinder (3) to produce a displacement relative to the cylinder body of the master brake cylinder (3)
  • the master brake cylinder (3) is used to:
  • the displacement determines the pressure of the brake fluid in the fifth brake pipe (115);
  • the pressure of the brake fluid in the fifth brake pipe (115) is adjusted to adjust the first brake The pressure of the brake fluid in the pipeline (111) or the second brake pipeline (112); by adjusting the pressure of the brake fluid in the sixth brake pipeline (116) to adjust the third The pressure of the brake fluid in the brake pipe (113) or the fourth brake pipe (114).
  • the distributed braking system can also implement mechanical braking mode or linear braking based on the master cylinder (3), the fifth brake pipeline (115), and the sixth brake pipeline (116).
  • the dynamic mode enables the distributed braking system to work in multiple modes to improve the diversity of braking force provided by the braking system.
  • the above-mentioned brake master cylinder (3) is a series double-chamber type brake master cylinder.
  • a method for controlling a distributed braking system in an automobile includes a controller, a first control valve (17), a first booster device (5), and a second booster A device (6), the first pressure-increasing device (5) is used to adjust the pressure of the brake fluid in the first brake pipe (111) to control the first wheel brake cylinder applied to the automobile (13) the braking force; the second booster device (6) is used to control the second brake applied to the car by adjusting the pressure of the brake fluid in the second brake line (112)
  • the first control valve (17) connects the first brake pipeline (111) and the second brake pipeline (112), wherein the first A wheel brake cylinder (13) is the wheel brake cylinder of the right front wheel of the automobile, and the second wheel brake cylinder (14) is the wheel brake cylinder of the left front wheel of the automobile; or,
  • the first wheel brake cylinder (13) is a wheel brake cylinder of the right rear wheel of the automobile, and the
  • the first control valve (17) is connected between the first brake line (111) and the second brake line (112), so as to correspond to the booster devices belonging to the same group
  • the brake pipeline is connected, that is, when the first control valve (17) is in the conducting state, the first brake pipeline (111) and the second brake pipeline (112) are connected.
  • the first control valve (17) can be controlled to be in a conducting state so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices belonging to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the method further includes: the controller determines that the first boosting device (5) or the second boosting device (6) is invalid; the controller controls the The first control valve (17) is in the conducting state.
  • the first control valve (17) can be controlled to be in a conducting state, so that the first pressure boosting device (5) ) And the normal working pressure boosting device in the second pressure boosting device (6) can replace the failed boosting device through the connected first brake pipeline (111) and second brake pipeline (112) ) To provide braking force for the first wheel brake cylinder (13) and/or the second wheel brake cylinder (14), which is beneficial to improve the redundancy performance of the distributed brake system.
  • the first pressure-increasing device (5) is used to adjust the internal pressure of the first brake pipeline (111) The pressure of the brake fluid to adjust the pressure of the brake fluid in the second brake line (112); and/or if the first control valve is in a conducting state, the second pressure boosting device (6 ) Is used to adjust the pressure of the brake fluid in the second brake line (112) by adjusting the pressure of the brake fluid in the first brake line (111).
  • the first pressure-increasing device (5) can pass through the connected first brake pipeline (111) and the second brake pipeline (112). ) To control the braking force applied to the second wheel brake cylinder (14), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the second pressure boosting device (5) can control the first brake pipeline (111) and the second brake pipeline (112) through the connected
  • the braking force applied to the first wheel brake cylinder (13) is beneficial to improve the redundancy performance of the distributed braking system.
  • the distributed braking system further includes a second control valve (19), a third booster device (7), and a fourth booster device (8).
  • the third booster The device (7) is used to control the braking force exerted on the third brake wheel cylinder (15) by adjusting the pressure of the brake fluid in the third brake pipeline (113); the fourth pressure increase
  • the device (8) is also used to control the braking force exerted on the fourth brake wheel cylinder (16) by adjusting the pressure of the brake fluid in the fourth brake pipeline (114); the second control The valve (19) connects the third brake pipe (113) and the fourth brake pipe (114), wherein the third brake wheel cylinder (15), the fourth brake wheel The cylinder (16), the first wheel brake cylinder (13) and the second wheel brake cylinder (14) are used to provide braking force for different wheels in the automobile, and the third wheel brake cylinder (15) is the brake wheel cylinder of the right rear wheel of the automobile, and the fourth brake wheel cylinder (16) is the brake wheel cylinder of the left rear wheel of the automobile; or the third brake The wheel
  • the second control valve (19) is connected between the third brake line (113) and the fourth brake line (114), so as to correspond to the booster devices belonging to the same group
  • the brake pipeline is connected, that is, when the second control valve (19) is in the conducting state, the third brake pipeline (113) is connected with the fourth brake pipeline (114).
  • the second control valve (19) can be controlled to be in a conducting state so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices belonging to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the method includes: the controller determines that the third supercharging device (7) or the fourth supercharging device (8) is faulty; and the controller controls the second supercharging device (8).
  • the second control valve (19) is in a conducting state.
  • the second control valve (19) can be controlled to be in a conducting state, so that the third supercharging device (7) )
  • the pressurizing device that can work normally in the fourth pressurizing device (8) can replace the failed pressurizing device, through the connected third brake pipe (113) and fourth brake pipe (114),
  • Providing braking force for the third wheel brake cylinder (15) and/or the fourth wheel brake cylinder (16) is beneficial to improving the redundancy performance of the distributed brake system.
  • the third pressure-increasing device (7) is used to adjust the pressure in the third brake pipeline (113) The pressure of the brake fluid to adjust the pressure of the brake fluid in the fourth brake pipe (114); and/or if the second control valve (19) is in the conducting state, the fourth pressure increase The device (8) is used to adjust the pressure of the brake fluid in the third brake line (113) by adjusting the pressure of the brake fluid in the fourth brake line (114).
  • the third pressure-increasing device (7) can pass through the connected third brake pipeline (113) and the fourth brake pipeline (114). ) To control the braking force applied to the fourth wheel brake cylinder (16), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the fourth pressure-increasing device (8) can control the third brake line (113) and the fourth brake line (114) through the The braking force applied to the third wheel brake cylinder (15) is beneficial to improve the redundancy performance of the distributed braking system.
  • the distributed braking system further includes a third control valve (18), a fifth brake pipeline (115), and a sixth brake pipeline (116).
  • the pressure outlet port of the brake pipeline (115) is connected to the pressure inlet port of the first brake pipeline (111), and the pressure outlet port of the fifth brake pipeline (115) is connected to the second The pressure inlet port of the brake pipeline (112) is connected, the pressure outlet port of the sixth brake pipeline (116) is connected with the pressure inlet port of the third brake pipeline (113), and the first The pressure outlet port of the six brake pipeline (116) is connected to the pressure inlet port of the fourth brake pipeline (114), and the third control valve (18) is used to connect the second brake pipeline (112) and the third brake line (113), the method further includes: if the controller controls the third control valve (18) to be in a conducting state, the second brake line (112) communicates with the third brake pipeline (113); if the controller controls the third control valve (18) to be in a disconnected state, the second brake pipeline (112) and the The third brake line
  • the third control valve (18) is connected between the second brake pipe (112) and the third brake pipe (113), so as to correspond to the supercharging devices that do not belong to the same group.
  • the third control valve (18) When the third control valve (18) is in the conducting state, the second brake pipe (112) and the third brake pipe (113) are connected.
  • the third control valve (18) can be controlled to be in a conducting state, so that the brake fluid in the two brake lines can circulate.
  • Any one of the two supercharging devices that do not belong to the same group can brake the two wheel cylinders of the car through two connected brake pipelines, which is beneficial to improve the redundant performance of the distributed braking system.
  • the method further includes: the controller determines that the first booster device (5) and the second booster device (6) are faulty; the controller controls the The third control valve (18) is in a conducting state.
  • the third control valve (18) can be controlled to be in a conducting state, so that the third pressurizing device ( 7) and the normal working pressurization device of the fourth pressurization device (8) can replace the above-mentioned failed pressurization device, through the connected second brake pipe (112) and third brake pipe (113). )
  • the method further includes: if the first boosting device (5) and the second boosting device (6) fail, the controller controls the first control valve (17) In a conducting state, so that the first brake line (111) and the second brake line (112) communicate.
  • the third control valve (18) and the first control valve (17) can be controlled to be in a conducting state
  • the normal working pressure boosting device of the third pressure boosting device (7) and the fourth pressure boosting device (8) can replace the above-mentioned failed pressure boosting device, through the connected second brake pipeline (112) and
  • the third brake pipeline (113) provides braking force for the first wheel brake cylinder (13) and/or the second wheel brake cylinder (14), which is beneficial to improve the redundancy performance of the distributed brake system.
  • the method further includes: the controller determines that the third supercharging device (7) and the fourth supercharging device (8) are faulty; the controller controls the The third control valve (18) is in a conducting state, so that the second brake line (112) communicates with the third brake line (113).
  • the third control valve (18) can be controlled to be in a conducting state, so that the first supercharging device ( 5)
  • the pressure boosting device that can work normally in the second pressure boosting device (6) can replace the failed boosting device, through the connected second brake pipeline (112) and third brake pipeline (113) , Provide braking force for the second wheel brake cylinder (14), which is beneficial to improve the redundancy performance of the distributed braking system.
  • the method further includes: if the third supercharging device (7) and the fourth supercharging device (8) fail, the controller controls the second control valve (19) In a conducting state, so that the third brake line (111) and the fourth brake line (112) are in communication with the.
  • the third control valve (18) and the second control valve (19) can be controlled to be in a conducting state In this way, the normally working pressure boosting device of the first pressure boosting device (5) and the second pressure boosting device (6) can replace the failed pressure boosting device, through the connected second brake pipeline (112) and the first pressure boosting device.
  • the three brake pipelines (113) provide braking force for the second wheel brake cylinder (14) and/or the first wheel brake cylinder (13), which is beneficial to improve the redundancy performance of the distributed brake system.
  • the automobile further includes a brake master cylinder (3), and the brake master cylinder (3) is used to adjust the brake fluid in the fifth brake pipeline (115).
  • the master brake cylinder (3) is also used to pass Adjust the pressure of the brake fluid in the sixth brake pipe (116) to adjust the brake fluid in the third brake pipe (113) and/or the fourth brake pipe (114) pressure.
  • the distributed braking system can also implement mechanical braking mode or linear braking based on the master cylinder (3), the fifth brake pipeline (115), and the sixth brake pipeline (116).
  • the dynamic mode enables the distributed braking system to work in multiple modes to improve the diversity of braking force provided by the braking system.
  • the above-mentioned brake master cylinder (3) is a series double-chamber type brake master cylinder.
  • a controller may be an independent device or a chip in the device.
  • the controller may include a processing unit and a sending unit.
  • the processing unit may be a processor, and the sending unit may be an input/output interface;
  • the device may also include a storage unit, and the storage unit may be a memory;
  • the storage unit is configured to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the device executes the method in the third aspect.
  • the processing unit may be a processor, the sending unit may be a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to enable the control
  • the device executes the method in the third aspect
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage device located outside the chip in the terminal device/network device. Unit (for example, read only memory, random access memory, etc.).
  • the memory is coupled with the processor, and it can be understood that the memory is located inside the processor, or the memory is located outside the processor, thereby being independent of the processor.
  • a computer program product includes computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor.
  • first storage medium may be packaged with the processor, or may be packaged separately with the processor.
  • a computer-readable medium stores a program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
  • Fig. 1 is a schematic diagram of a distributed braking system 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a distributed braking system 200 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a distributed braking system 300 according to another embodiment of the present application.
  • Fig. 4 is a schematic diagram of a car provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the working mode of the distributed braking system 300 according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the working mode of the distributed braking system 300 according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the working mode of the distributed braking system 300 according to an embodiment of the present application.
  • Fig. 16 is a flowchart of a control method of a distributed braking system in an automobile according to an embodiment of the present application.
  • distributed electro-hydraulic braking system In the traditional distributed braking system, distributed electro-hydraulic braking system (Distributed Electro-hydraulic Braking System, DEHB), as a popular braking system, usually includes 4 sets of independent pressure boosting devices to provide braking system for 4 wheels. power.
  • DEHB distributed Electro-hydraulic Braking System
  • the other is to divide the supercharging device of the right front wheel of the car and the supercharging device of the left rear wheel of the car into one group, and at the same time the supercharging device of the right rear wheel of the car and the supercharging device of the left front wheel of the car Divide into one group, namely X-type layout.
  • the supercharging devices in each group must be in a normal working state at the same time.
  • one booster device in the same group fails, the other one will be shielded from the braking system even if it works normally.
  • an embodiment of the present application provides a new distributed braking system, that is, through the first control valve (17), the brake pipes corresponding to the booster devices belonging to the same group are combined
  • the first control valve (17) can be controlled to be in a conducting state, so that the brake fluid in the two brake lines can circulate,
  • the first control valve (17) is also called " Connecting valve”.
  • pressure outlet port can be understood as the port through which the brake fluid flows out
  • pressure inlet port can be understood as the port through which the brake fluid flows in.
  • pressure outlet port and “pressure inlet port” can be understood as the function of limiting the role of the port.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” can be used to define a physical port to work in different ways.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” may also correspond to two different physical ports, which are not limited in the embodiment of the present application.
  • the pressure inlet port of the device A when connected to the pressure outlet port of the device B described below, it can be understood as corresponding to two physical ports and used to describe the connection relationship between the device A and the device B.
  • Fig. 1 is a schematic diagram of a distributed braking system 100 according to an embodiment of the present application.
  • the distributed braking system 100 shown in FIG. 1 includes a first booster device (5), a second booster device (6), and a first control valve (17).
  • the first pressure-increasing device (5) is used to adjust the pressure of the brake fluid in the first brake pipe (111) to control the pressure applied to the first wheel brake cylinder (13) of the automobile The braking force.
  • the pressure outlet port of the first booster device (5) is connected to the pressure inlet port of the first brake pipeline (111), and the pressure outlet port of the first brake pipeline (111) is connected to the first brake wheel cylinder ( 13) The pressure inlet port is connected.
  • the first pressurizing device (5) can be used to pressurize the brake fluid in the first brake line (111) to increase the brake pressure applied to the first brake wheel cylinder (13) of the automobile. power.
  • the first pressure-increasing device (5) includes a motor and a hydraulic cylinder, and the motor is used to drive a piston in the hydraulic cylinder to make a linear reciprocating motion to pressurize the brake fluid in the first brake pipeline (111).
  • the second pressure-increasing device (6) is used to adjust the pressure of the brake fluid in the second brake pipeline (112) to control the pressure applied to the second wheel brake cylinder (14) of the automobile The braking force.
  • the pressure outlet port of the second booster device (6) is connected to the pressure inlet port of the second brake pipeline (112), and the pressure outlet port of the second brake pipeline (112) is connected to the second brake wheel cylinder ( 14) The pressure inlet port is connected.
  • the second pressurizing device (6) can be used to pressurize the brake fluid in the second brake line (112) to increase the brake pressure applied to the second wheel brake cylinder (14) of the automobile. power.
  • the second pressurizing device (6) includes a motor and a hydraulic cylinder, and the motor is used to drive a piston in the hydraulic cylinder to make a linear reciprocating motion to pressurize the brake fluid in the second brake pipeline (112).
  • the first control valve (17) is connected to the first brake pipeline (111) and the second brake pipeline (112). If the first control valve (17) is in a conducting state, then The first brake pipeline (111) is in communication with the second brake pipeline (112); if the first control valve (17) is in a disconnected state, the first brake pipeline ( 111) is disconnected from the second brake line (112).
  • the first pressure-increasing device (5) is used to adjust the pressure of the brake fluid in the first brake pipe (111) to adjust the second brake pipe (112) The pressure of the internal brake fluid.
  • the first pressure boosting device (5) can adjust the braking force of the second wheel brake cylinder (14) through the connected first brake line (111) and the second brake line (112).
  • the isolation valve (4) can be controlled to be in a disconnected state to prevent the brake fluid from flowing back through the fifth brake pipeline (115).
  • the second pressure-increasing device (6) is used to adjust the pressure of the brake fluid in the first brake pipe (111) to adjust the second brake pipe (112) The pressure of the brake fluid inside. That is to say, the second pressure boosting device (6) can adjust the braking force of the first wheel brake cylinder (13) through the connected first brake line (111) and the second brake line (112).
  • the first brake pipeline (111) is disconnected from the second brake pipeline (112), which can be understood as the first brake pipeline ( 111) and the second brake pipe (112) are two independent brake pipes.
  • the brake fluid in the two brake pipes cannot circulate with each other and is blocked by the first control valve (17)
  • the pressure of the brake fluid in the two brake lines can be the same or different.
  • the first wheel brake cylinder (13) and the second wheel brake cylinder (14) are wheel brake cylinders belonging to the same group in the H-shaped arrangement. That is, the first wheel brake cylinder (13) is the wheel brake cylinder of the right front wheel of the automobile, and the second wheel brake cylinder (14) is the wheel brake cylinder of the left front wheel of the automobile. Alternatively, the first wheel brake cylinder (13) is the wheel brake cylinder of the right rear wheel of the automobile, and the second wheel brake cylinder (14) is the wheel brake cylinder of the left rear wheel of the automobile.
  • the first wheel brake cylinder (13) and the second wheel brake cylinder (14) are wheel brake cylinders belonging to the same group in an X-shaped arrangement. That is, the first wheel brake cylinder (13) is the wheel brake cylinder of the right rear wheel of the automobile, and the second wheel brake cylinder (14) is the wheel brake cylinder of the left front wheel of the automobile; or, the first system
  • the moving wheel cylinder (13) is the brake wheel cylinder of the right front wheel of the automobile, and the second brake wheel cylinder (14) is the brake wheel cylinder of the left rear wheel of the automobile.
  • the 4 sets of supercharging devices corresponding to the 4 wheels will be divided into two groups, one of which is described above, and the other is described below.
  • the other group can use the existing connection mode of the distributed braking system, or can use the connection mode provided in the present application that is beneficial to improving the redundancy performance. That is, the second control valve (113) is connected between the third brake line (113) controlled by the third booster device (7) and the fourth brake line (114) controlled by the fourth booster device (8). 19).
  • the group in which the first wheel brake cylinder (13) and the second wheel brake cylinder (14) are located is called the “first group”
  • the group in which the wheel brake cylinders (16) are located is called the "second group”.
  • the third pressure-increasing device (7) is used to control the braking force applied to the third brake wheel cylinder (15) by adjusting the pressure of the brake fluid in the third brake pipeline (113).
  • the pressure outlet port of the third booster device (7) is connected to the pressure inlet port of the third brake pipeline (113), and the pressure outlet port of the third brake pipeline (113) is connected to the third brake wheel cylinder ( 15) The pressure inlet port is connected.
  • the third pressurizing device (7) can be used to pressurize the brake fluid in the third brake line (113) to increase the brake pressure applied to the third brake wheel cylinder (15) of the automobile. power.
  • the third pressure-increasing device (7) includes a motor and a hydraulic cylinder, and the motor is used to drive a piston in the hydraulic cylinder to make a linear reciprocating motion to pressurize the brake fluid in the third brake pipeline (113).
  • the fourth pressure-increasing device (8) is also used to control the braking force applied to the fourth brake wheel cylinder (16) by adjusting the pressure of the brake fluid in the fourth brake pipeline (114) .
  • the pressure outlet port of the fourth booster device (8) is connected to the pressure inlet port of the fourth brake pipeline (114), and the pressure outlet port of the fourth brake pipeline (114) is connected to the fourth brake wheel cylinder ( 16) The pressure inlet port is connected.
  • the fourth pressurizing device (8) can be used to pressurize the brake fluid in the fourth brake line (114) to increase the brake pressure applied to the fourth brake wheel cylinder (16) of the automobile. power.
  • the fourth pressure-increasing device (8) includes a motor and a hydraulic cylinder, and the motor is used to drive a piston in the hydraulic cylinder to make a linear reciprocating motion to pressurize the brake fluid in the fourth brake pipeline (114).
  • the second control valve (19) is connected to the third brake pipeline (113) and the fourth brake pipeline (114). If the second control valve (19) is in a conducting state, then The third brake pipeline (113) is in communication with the fourth brake pipeline (114); if the second control valve (19) is in a disconnected state, the third brake pipeline ( 113) Disconnected from the fourth brake pipeline (114).
  • the above-mentioned second control valve (19) is in a conducting state, and the third pressure-increasing device (7) is used to adjust the pressure of the brake fluid in the third brake pipe (113) to adjust the fourth brake pipe ( 114) Pressure of internal brake fluid.
  • the third pressure boosting device (7) can adjust the braking force of the fourth wheel brake cylinder (16) through the connected third brake line (113) and the fourth brake line (114).
  • the above-mentioned second control valve (19) is in a conducting state, and the fourth pressure-increasing device (8) is used to adjust the pressure of the brake fluid in the fourth brake pipe (114) to adjust the third brake pipe ( 113) The pressure of the brake fluid inside. That is, the fourth pressure boosting device (8) can adjust the braking force of the third wheel brake cylinder (15) through the connected third brake line (113) and the fourth brake line (114).
  • the third brake pipe (113) and the fourth brake pipe (114) are disconnected, which can be understood as the third brake pipe ( 113) and the fourth brake pipe (114) are two independent brake pipes.
  • the brake fluid in the two brake pipes cannot circulate with each other and is blocked by the second control valve (19)
  • the pressure of the brake fluid in the two brake lines can be the same or different.
  • the third wheel brake cylinder (15) and the fourth wheel brake cylinder (16) are wheel brake cylinders belonging to the same group in the H-shaped arrangement, and are identical to those of the first wheel brake cylinder (13). ) And the second wheel brake cylinder (14) belong to different groups.
  • the first wheel brake cylinder (13) is the wheel brake cylinder of the right front wheel of the car
  • the second wheel brake cylinder (14) is the wheel brake cylinder of the left front wheel of the car
  • the third brake The moving wheel cylinder (15) is the brake wheel cylinder of the right rear wheel of the automobile
  • the fourth brake wheel cylinder (16) is the brake wheel cylinder of the left rear wheel of the automobile.
  • the first wheel brake cylinder (13) is the wheel brake cylinder of the right rear wheel of the automobile
  • the second wheel brake cylinder (14) is the wheel brake cylinder of the left rear wheel of the automobile.
  • the third wheel brake cylinder (15) is the wheel brake cylinder of the right front wheel of the automobile
  • the fourth wheel brake cylinder (16) is the wheel brake cylinder of the left front wheel of the automobile.
  • the third wheel brake cylinder (15) and the fourth wheel brake cylinder (16) are wheel brake cylinders belonging to the same group in the X-shaped arrangement, and are identical to the first wheel brake cylinder (13). ) And the second wheel brake cylinder (14) belong to different groups.
  • the first wheel brake cylinder (13) is the wheel brake cylinder of the right rear wheel of the car
  • the second wheel brake cylinder (14) is the wheel brake cylinder of the left front wheel of the car
  • the third brake The wheel cylinder (15) is the brake wheel cylinder of the right front wheel of the automobile
  • the fourth brake wheel cylinder (16) is the brake wheel cylinder of the left rear wheel of the automobile.
  • the first wheel brake cylinder (13) is the wheel brake cylinder of the right front wheel of the car
  • the second wheel brake cylinder (14) is the wheel brake cylinder of the left rear wheel of the car
  • the third brake The wheel cylinder (15) is the brake wheel cylinder of the right rear wheel of the automobile
  • the fourth brake wheel cylinder (16) is the brake wheel cylinder of the left front wheel of the automobile.
  • the above four pressure boosting devices (5, 6, 7, 8) can be controlled by the controller to control the pressure of the brake fluid that each pressure boosting device needs to provide.
  • the driver can also step on the brake pedal, and input the brake fluid to the fifth brake line (115) through the first hydraulic cylinder (310) of the master cylinder (3), and then through the second hydraulic cylinder (311)
  • the brake fluid is input to the sixth brake pipe (116) to adjust the pressure of the brake fluid in the above four brake pipes (111, 112, 113, 114) respectively.
  • the common working mode is to control the isolation valve (4, 20) in the disconnected state, and the brake pipeline (111, 112) in the distributed braking system is connected to the distributed braking system.
  • the brake pipelines (113, 114) in the brake system are independent of each other. This scheme of providing braking force for the 4 wheel brake cylinders (13, 14, 15, 16) through independent brake pipelines is possible As a result, the pressure of the brake fluid in the brake pipeline in the distributed brake system 100 is not balanced.
  • the present application also provides a new brake system 200, that is, the second brake pipeline (112) and the third brake pipeline (113) are connected, and a third control valve (18) is provided.
  • the third control valve (18) When the third control valve (18) is in the conducting state, the second brake line (112) is in communication with the third brake line (113), so that the pressure of the brake fluid in the two brake lines Can reach equilibrium.
  • the third control valve (18) When the third control valve (18) is in a disconnected state, the second brake line (112) is disconnected from the third brake line (113).
  • the third control valve (18) can also be controlled to be in a conducting state, so that the third pressure boosting device ( 7) and/or the fourth supercharging device (8) can replace the malfunctioning supercharging device and provide braking force for the corresponding wheel brake cylinder.
  • the third control valve (18) can also be controlled to be in a conducting state, so that the first pressure boosting device (5) And/or the second supercharging device (6) can replace the malfunctioning supercharging device and provide braking force for the corresponding wheel brake cylinder.
  • the following describes a schematic diagram of a distributed braking system 200 according to an embodiment of the present application in conjunction with FIG. 2.
  • the distributed braking system 200 shown in FIG. 2 includes a third control valve (18). It should be understood that the components in the distributed braking system 200 that have the same functions as those in the distributed braking system 100 use the same numbers, and for the sake of brevity, detailed descriptions will not be given below.
  • the pressure inlet port of the fifth brake pipeline (115) is connected with the pressure outlet port of the first hydraulic cylinder (310) of the brake master cylinder (3).
  • the pressure of the brake fluid in the fifth brake line (115) can be provided by the first hydraulic cylinder (310) of the master cylinder (3).
  • the pressure outlet port of the fifth brake pipeline (115) is connected to the pressure inlet port of the first isolation valve (4), and the pressure inlet port of the second brake pipeline (112) is connected to the first isolation valve (4).
  • the pressure inlet port of the sixth brake pipeline (116) is connected with the pressure outlet port of the second hydraulic cylinder (311) of the master brake cylinder (3).
  • the pressure of the brake fluid in the sixth brake line (116) can be provided by the second hydraulic cylinder (311) of the master cylinder (3).
  • the pressure outlet port of the sixth brake pipeline (116) is connected to the pressure inlet port of the second isolation valve (20), and the pressure inlet port of the third brake pipeline (113) is connected to the pressure inlet port of the second isolation valve (20). ) Is connected to the pressure outlet port.
  • the pressure of the brake fluid in the third brake pipeline (113) can be provided by the second hydraulic cylinder (311) of the brake master cylinder (3).
  • the third control valve (18) is used to connect the second brake pipeline (112) and the third brake pipeline (113), if the third control valve (18) is in a conducting state , The second brake line (112) and the third brake line (113) are connected, and if the third control valve (18) is in a disconnected state, the second brake line (112) is disconnected from the third brake line (113).
  • the above-mentioned third control valve (18) is in a conducting state, and the second pressure boosting device (6) can adjust the pressure of the brake fluid in the second brake line (112) to adjust the third brake line (113). ) Pressure of brake fluid inside.
  • the second pressure boosting device (6) can adjust the braking force of the third wheel brake cylinder (15) through the connected second brake line (112) and the third brake line (113). .
  • the above-mentioned third control valve (18) is in a conducting state, and the third pressure-increasing device (7) is used to adjust the pressure of the brake fluid in the third brake pipe (113) to adjust the second brake pipe ( 112) The pressure of the brake fluid inside.
  • the third pressure boosting device (7) can adjust the braking force of the second wheel brake cylinder (14) through the connected second brake line (112) and the third brake line (113).
  • the second brake pipeline (112) and the third brake pipeline (113) are disconnected, which can be understood as the second brake pipeline ( 112) and the third brake pipe (113) are two independent brake pipes.
  • the brake fluid in the two brake pipes cannot circulate with each other and is blocked by the third control valve (18)
  • the pressure of the brake fluid in the two brake lines can be the same or different.
  • the third control valve (18), the first control valve (17), and the second control valve (19) provided in the embodiments of the present application can be used in a braking system individually or in a combined manner. (See Figure 2) It is applied to a distributed braking system, which is not limited in the embodiment of the present application.
  • the distributed braking system can also realize the braking function in the brake-by-wire mode.
  • the mechanical system mode is through the brake master cylinder (3) through the fifth brake pipe (115) and the sixth brake pipe (116) to the four brake wheel cylinders (13, 14, 15, 16) Provide braking force.
  • the brake-by-wire mode is that after the driver steps on the brake pedal and inputs the required braking force to the braking system, the controller controls the 4 booster devices (5, 6, 7, 8) based on the required braking force for 4 brakes Wheel cylinders (13, 14, 15, 16) provide braking force.
  • the other mode can be used to maintain the braking performance of the braking system.
  • the master brake cylinder (3) is a series dual-chamber master cylinder, due to the series structure of the two chambers in the master cylinder (3), even the fifth control pipeline ( 115) and the sixth control pipe (116) are independent brake pipes, which can also equalize the pressure of the brake fluid in the brake system. At this time, there is no need to control the third control valve (18) to be in a conducting state, so as to balance the pressure of the brake fluid in the brake system.
  • the first isolation valve (4) on the fifth brake pipe (115) and the second isolation valve (20) on the sixth brake pipe (116) need to be set to Disconnected state, so that when the driver steps on the brake pedal and pushes the piston of the master brake cylinder (3) to produce a displacement relative to the cylinder of the master brake cylinder (3), the fifth brake pipeline (115) and The brake fluid in the sixth brake pipe (116) cannot flow into the four brake pipes (111, 112, 113, 114) due to the isolation valve (4, 20).
  • the brake fluid in the sixth brake pipeline (116) can be delivered to the pedal feel simulator (21) through the fourth control valve (22), Pushing the piston in the pedal sensation simulator (21) produces displacement relative to the housing of the pedal sensation simulator (21).
  • the controller can sense the displacement of the piston in the simulator (21) through the pedal to determine the pressure of the brake fluid in the third brake line (113), and based on the control in the third brake line (113)
  • the hydraulic pressure controls 4 booster devices (5, 6, 7, 8) to provide braking force for the 4 wheel brake cylinders (13, 14, 15, 16).
  • the controller may determine the braking force required by the driver based on other methods in addition to determining the braking force required by the driver based on the pedal feel simulator (21).
  • the braking force required by the driver may be determined based on the pedal stroke detected by the pedal stroke sensor.
  • the braking force required by the driver can be determined based on the pressure of the brake fluid at the outlet port of the brake master cylinder (3) detected by the pressure sensor. The embodiment of the application does not specifically limit this.
  • the first brake line (111), the second brake line (112), the third brake line (113) and the fourth brake line are provided with liquid inlet valves (9, 10, 11, 12).
  • the liquid inlet valve (9, 10, 11, 12) When the liquid inlet valve (9, 10, 11, 12) is in a conducting state, the pressure-increasing device on each brake pipeline can deliver the brake fluid to the corresponding brake wheel cylinder.
  • the fluid inlet valve (9, 10, 11, 12) is in the disconnected state, the pressure-increasing device on each brake pipeline cannot deliver the brake fluid to the corresponding brake wheel cylinder, and the brake fluid is on the brake pipeline The inlet valve is blocked.
  • the first inlet valve (9) is located in the first brake pipe (111) between the first booster (5) and the first wheel brake cylinder (13), or in other words, the first brake pipe
  • the pressure outlet port of the path (111) is connected with the pressure inlet port of the first wheel brake cylinder (13) through the first liquid inlet valve (9).
  • the second inlet valve (10) is located in the second brake pipeline (112) between the second booster (6) and the second wheel brake cylinder (13), or in other words, the second brake
  • the pressure outlet port of the pipeline (112) is connected to the pressure inlet port of the second wheel brake cylinder (14) through the second liquid inlet valve (10).
  • the third inlet valve (11) is located in the third brake pipeline (113) between the third booster (7) and the third wheel brake cylinder (15), or in other words, the third brake
  • the pressure outlet port of the pipeline (113) is connected with the pressure inlet port of the third wheel brake cylinder (15) through the third liquid inlet valve (11).
  • the fourth inlet valve (12) is located in the fourth brake pipeline (114) between the fourth booster device (8) and the fourth wheel brake cylinder (16), or in other words, the fourth brake
  • the pressure outlet port of the pipeline (114) is connected to the pressure inlet port of the fourth wheel brake cylinder (16) through the fourth inlet valve (12).
  • the above-mentioned inlet valve (9, 10, 11, 12) is a functional limitation of the control valve (9, 10, 11, 12).
  • the control valve (9, 10, 11, , 12) can also act as an outlet valve.
  • the control valve (9, 10, 11, 12) can act as a liquid outlet valve.
  • the above-mentioned pressure reduction function can be realized by a pressure increase device.
  • the booster device may include an electric motor (312) and a hydraulic cylinder (313).
  • the motor (312) of the booster device rotates forward, it can push the piston in the hydraulic cylinder (313) to move the brake hydraulic pressure in the hydraulic cylinder (313) into the corresponding brake pipeline, so that the brake pipeline is The brake fluid is pressurized.
  • the four brake pipes (111, 112, 113, 114) can also be provided with liquid outlet valves (23, 24, 25, 26).
  • the 4 brake pipes When the liquid outlet valve is in a conducting state, the 4 brake pipes
  • the brake fluid in the roads (111, 112, 113, 114) can be sent to the liquid storage device (2) through the liquid outlet pipe (117) for recycling.
  • the fluid outlet valve When the fluid outlet valve is in a disconnected state, the brake fluid in the brake pipeline cannot flow to the fluid storage device (2).
  • FIG. 3 is a schematic diagram of a distributed braking system 300 according to another embodiment of the present application. It should be understood that the components in the distributed braking system 300 shown in FIG. 3 that have the same functions as those in the distributed braking system 200 use the same numbers, and for the sake of brevity, details are not described herein again.
  • a first liquid outlet valve (23) is provided on the liquid outlet pipe (117) between the pressure inlet port of the first wheel brake cylinder (13) and the liquid storage device (2).
  • the first outlet valve (23) When the first outlet valve (23) is in the conducting state, the brake fluid in the first brake pipeline (111) can flow to the outlet pipeline (117) through the outlet valve (23), and finally into the reservoir
  • the device (2) avoids pressurizing the first wheel brake cylinder (13) through the brake fluid.
  • the first outlet valve (23) is in a disconnected state, the brake fluid in the first brake pipeline (111) cannot flow to the outlet pipeline (117) through the first outlet valve (23).
  • a second liquid outlet valve (24) is provided on the liquid outlet pipe (117) between the pressure inlet port of the second wheel brake cylinder (14) and the liquid storage device (2).
  • the brake fluid in the second brake pipeline (112) can flow to the outlet pipeline (117) through the second outlet valve (24), and finally into The liquid storage device (2) avoids pressurizing the second wheel brake cylinder (14) through the brake fluid.
  • the second outlet valve (24) is in a disconnected state, the brake fluid in the second brake pipeline (112) cannot flow to the outlet pipeline (117) through the second outlet valve (24).
  • a third liquid outlet valve (25) is provided on the liquid outlet pipe (117) between the pressure inlet port of the third wheel brake cylinder (15) and the liquid storage device (2).
  • the third outlet valve (25) When the third outlet valve (25) is in the conducting state, the brake fluid in the third brake pipeline (113) can flow to the outlet pipeline (117) through the third outlet valve (25), and finally into The liquid storage device (2) prevents the third brake wheel cylinder (15) from being pressurized by the brake fluid.
  • the third outlet valve (25) is in a disconnected state, the brake fluid in the third brake pipeline (113) cannot flow to the outlet pipeline (117) through the third outlet valve (25).
  • a third liquid outlet valve (26) is provided on the liquid outlet pipe (117) between the pressure inlet port of the fourth wheel brake cylinder (16) and the liquid storage device (2).
  • the fourth outlet valve (26) When the fourth outlet valve (26) is in the conducting state, the brake fluid in the fourth brake pipeline (112) can flow to the outlet pipeline (117) through the fourth outlet valve (26), and finally into The liquid storage device (2) avoids pressurizing the fourth wheel brake cylinder (16) through the brake fluid.
  • the fourth outlet valve (26) is in the open state, the brake fluid in the fourth brake pipeline (114) cannot flow to the outlet pipeline (117) through the fourth outlet valve (26).
  • the distributed braking system can also use other liquid discharge solutions, for example, the above-mentioned liquid discharge solution in which the motor (312) is reversed is combined with the above-mentioned liquid discharge solution based on the liquid outlet valve.
  • the embodiments of this application do not limit this.
  • control valve introduced above may be a solenoid valve. That is, when power is not supplied to the solenoid valve, the solenoid valve is in the default state. After power is supplied to the solenoid valve, the operating state (including the on state or the off state) of the solenoid valve can be controlled by the controller.
  • the controller controls the controller. The following specifically introduces a possible combination of the default state of the solenoid valve.
  • the first control valve (17) and the second control valve are usually (19) Set as a normally open valve, set the third control valve (18) as a normally closed valve, and set the outlet valves (23, 24, 25, 26) as a normally closed valve.
  • the isolation valves (4, 20) as normally open valves
  • the fifth brake pipeline (115) and the sixth brake pipeline (115) and the sixth The brake fluid in the brake pipeline (116) can flow to the four brake wheel cylinders (13, 14, 15, 16), which is beneficial to improve the reliability of the distributed brake system.
  • any one of the above-mentioned distributed braking system 100, distributed braking system 200, and distributed braking system 300 can be independently applied to an automobile.
  • the distributed braking system 200 is applied to an automobile 400.
  • the car provided by the embodiment of the present application is introduced.
  • the components in the automobile 400 that have the same functions as those in the distributed braking system 200 use the same numbers. For the sake of brevity, I will not introduce them one by one below.
  • Fig. 4 is a schematic diagram of a car provided by an embodiment of the present application.
  • the car 400 shown in FIG. 4 includes a brake pedal (1).
  • the brake pedal (1) pushes the piston in the brake master cylinder (3) to move, and the brakes in the first hydraulic cylinder (310) and the second hydraulic cylinder (311)
  • the hydraulic pressure enters the fifth brake line (115) and the sixth brake line (116).
  • the automobile 400 shown in FIG. 4 may also include a pedal stroke sensor (410), which is used to detect the displacement generated when the brake pedal (1) pushes the piston, or in other words, the piston and the brake Move the relative displacement between the main cylinder (3).
  • the pedal stroke sensor (410) sends the detected displacement to the controller, and the controller controls 4 booster devices (5, 6, 7, 8) into 4 wheel brake cylinders (13, 14, 15, 16) Provide braking force.
  • the pedal stroke sensor (410) and the pedal feel simulator (21) can improve the redundant performance of the distributed braking system.
  • the controller can control the 4 booster devices (5, 6, 7, 8) to 4 brake wheel cylinders (13) based on the feedback of the pedal feel simulator (21). , 14, 15, 16) Provide braking force.
  • the default state of the control valve in the distributed braking system 200 is that the first control valve (17) and the second control valve (19) are set as normally open valves, and the third control valve (18) is set as normally closed valves, and The outlet valves (23, 24, 25, 26) are set as normally closed valves.
  • FIG. 5 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 5 shows the flow path of the brake fluid during the pressurization process of the brake system 200 in the online control dynamic mode.
  • the controller controls the fourth control valve (22) to be in the on state, the isolation valve (4, 20) is in the off state, and the other control valves are in the above-mentioned default state.
  • the brake fluid in the master cylinder (3) flows into the pedal feel simulator (21) via the sixth brake pipe (116). Since the isolation valves (4, 20) are in a disconnected state, the brake fluid will not enter the wheel brake cylinders (13, 14, 15, and 15 through the fifth brake pipe (115) and the sixth brake pipe (116)). 16), so as to realize the braking decoupling of the master brake cylinder (3) and the brake wheel cylinders (13, 14, 15, 16).
  • the controller controls the 4 booster devices (5, 6, 7, 8) based on the required braking force input by the driver by stepping on the brake pedal, and through 4 brake lines (111 , 112, 113, 114), the brake fluid is input into the four brake wheel cylinders (13, 14, 15, 16) to generate braking force for the wheels through the brake wheel cylinders to achieve braking.
  • the controller can control the third control valve (18) to be in a conducting state, so that the brake fluid can be braked in the second brake.
  • the pipeline (112) and the third brake pipeline (113) flow between, so that the pressure of the brake fluid in the second brake pipeline (112) and the third brake pipeline (113) is balanced.
  • the controller can control the reversal of the motors (312) of the four pressure-increasing devices (5, 6, 7, 8) according to the pedal stroke detected by the pedal stroke sensor, so as to realize the decompression of the braking system.
  • the controller can control the reverse rotation of the motors (312) of the four pressure boosting devices (5, 6, 7, 8) to realize the decompression of the brake system.
  • the controller can also control the isolation valves (4, 20) to be in a conducting state.
  • the brake fluid in the wheel brake cylinders (13, 14, 15, 16) flows to the 4 cylinders due to the pressure difference.
  • the pressure boosting device (5, 6, 7, 8), the other part flows to the master cylinder (3) through the fifth brake pipe (115) and the sixth brake pipe (116), and finally the brake wheel cylinder
  • the pressure of the brake fluid is close to zero or zero.
  • FIG. 6 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 6 shows the flow path of the brake fluid during the pressurization process of the brake system 200 in the automatic driving mode. It should be noted that the flow path shown in FIG. 6 is similar to the flow path shown in FIG. 5. The main difference is that in the above-mentioned brake-by-wire mode, the work of the brake system depends on the operation of the driver, while in the automatic driving mode, the work of the brake system can no longer depend on the operation of the driver.
  • the controller controls the isolation valve (4, 20) to be in the disconnected state, and the other control valves are in the above-mentioned default state.
  • the braking force demand can be sent to the controller in the form of instructions by the advanced driving assistance system (ADAS).
  • ADAS advanced driving assistance system
  • the controller controls the 4 booster devices (5, 6, 7, 8), and the brake fluid is fed into the brake fluid through the 4 brake pipelines (111, 112, 113, 114).
  • the brake wheel cylinders are used to generate braking force for the wheels to achieve braking.
  • the controller can control the third control valve (18) to be in a conducting state, and the brake fluid can be in the second brake pipeline (112) and the third brake pipe (113) flow between, so that the pressure of the brake fluid in the second brake pipe (112) and the third brake pipe (113) is balanced.
  • the controller can control the motors (312) of the 4 booster devices (5, 6, 7, 8) to reverse rotation to realize the decompression of the braking system .
  • FIG. 7 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 7 shows the flow path of the brake fluid during the pressurization process of the braking system 200 in the single-wheel braking mode.
  • the single-wheel braking mode can be applied to functions such as electronic stability control (ESC), antilock brake system (ABS), and traction control system (TCS).
  • ESC electronic stability control
  • ABS antilock brake system
  • TCS traction control system
  • the controller determines that the first wheel brake cylinder (13) needs to be pressurized, it controls the first control valve (17) to be in a disconnected state, and other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the first boosting device (5) to rotate forward so as to press the brake fluid into the first wheel brake cylinder (13) through the first brake pipeline (111) to achieve the first The brake wheel cylinder (13) is pressurized.
  • the controller determines that it is necessary to decompress the first wheel brake cylinder (13), it controls the first control valve (17) to be in a disconnected state, and other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the first booster device (5) to reverse, so as to draw the brake fluid through the first brake pipeline (111) from the first wheel brake cylinder (13) to the first
  • the pressure increasing device (5) realizes the pressure reduction of the first wheel brake cylinder (13).
  • FIG. 7 is introduced by taking the adjustment of the braking force of the first wheel brake cylinder (13) as an example.
  • the adjustment of the braking force of the fourth wheel brake cylinder (16) is similar, that is, the second control valve (19) is controlled to be in a disconnected state.
  • the second control valve (19) is controlled to be in a disconnected state.
  • FIG. 8 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 8 shows the flow path of the brake fluid during the pressurization process of the braking system 200 in the single-wheel braking mode.
  • the single-wheel braking mode can be applied to ESC, ABS, TCS and other functions.
  • the controller determines that the second wheel brake cylinder (14) needs to be pressurized, it controls the first control valve (17) and the isolation valve (4) to be in a disconnected state, and other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the second boosting device (6) to rotate forward, so as to press the brake fluid into the second wheel brake cylinder (14) through the second brake pipeline (112) to achieve the second The brake wheel cylinder (14) is pressurized.
  • the controller determines that the second wheel brake cylinder (14) needs to be decompressed, it controls the first control valve (17) and the isolation valve (4) to be in a disconnected state, and other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the second booster device (6) to reverse to pump the brake fluid from the second wheel brake cylinder (14) through the second brake pipeline (112) to the second
  • the pressure increasing device (6) realizes the pressure reduction of the second wheel brake cylinder (14).
  • FIG. 8 is introduced by taking the adjustment of the braking force of the second wheel brake cylinder (14) as an example.
  • the adjustment of the braking force of the third wheel brake cylinder (15) is similar, that is, the second control valve (19) and the isolation valve (20) are controlled to be in a disconnected state.
  • the second control valve (19) and the isolation valve (20) are controlled to be in a disconnected state.
  • FIG. 9 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 9 shows the flow path of the brake fluid during the pressurization process of the brake system 200 in the mechanical brake mode.
  • control valves in the braking system 200 are all in the above-mentioned default state.
  • the brake fluid in the master cylinder (3) flows into the second brake line (112) and the first brake line ( 111), flows into the third brake line (113) and the fourth brake line (114) via the sixth brake line (116), thereby providing brake wheel cylinders (13, 14, 15, 16) Braking force.
  • the master brake cylinder (3) When the driver completely releases the brake pedal, the master brake cylinder (3) is connected to the reservoir (2), and the brake fluid in the four wheel brake cylinders (13, 14, 15, 16) finally flows back to the reservoir. In the liquid device (2).
  • the above-mentioned mechanical braking mode, brake-by-wire mode, and automatic driving mode can be used in combination to improve the redundancy performance of the distributed braking system 200.
  • the distributed braking system 200 may switch to the mechanical braking mode.
  • the distributed braking system 200 may switch from the mechanical braking mode to the automatic driving mode.
  • the four working modes of the distributed braking system 200 are described above in conjunction with FIGS. 5 to 9, namely, the brake-by-wire mode, the automatic driving mode, the single-wheel braking mode, and the mechanical braking mode.
  • the distributed braking system 200 also has a special function. It works in a redundant mode, that is, when the four pressure boosting devices (5, 6, 7, 8) are used, When only part of the booster device can work normally, the controller can control the working state of the control valve so that the booster device that can work normally replaces the booster device that cannot work normally.
  • the distributed braking system 200 works in the above-mentioned working mode and combines the redundancy mode to improve the redundancy performance of the distributed braking system 200.
  • FIG. 10 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • Fig. 10 shows the brake fluid flow path during the pressurization process of the second wheel brake cylinder (14) in the online control mode of the brake system 200 and the failure of the second pressurizing device (6). It should be noted that after other booster devices in the distributed braking system 200 fail, the principle of the controller controlling the working status of the components in the distributed braking system 200 is similar to the principle introduced below, and will not be described in detail for the sake of brevity. .
  • the controller controls the fourth control valve (22) to be in the on state, and the isolation valve (4, 20) to be in the off state.
  • the remaining control valves are in the above-mentioned default state.
  • the brake fluid in the brake master cylinder (3) flows into the pedal feel simulator (21) from the sixth brake pipeline (116). Since the isolation valves (4, 20) are in a disconnected state, the brake fluid in the brake master cylinder (3) will not enter the brake wheel cylinder, so as to realize the decoupling of the brake wheel cylinder and the brake master cylinder.
  • the controller detects a failure of the second booster device (6) and cannot provide braking force for the fourth wheel brake cylinder (14). At this time, if the wire control mode described above is used for normal control, the pressure increase speed and capacity of the brake wheel cylinders (13, 14) are likely to decrease. Therefore, the controller needs to control the third control valve (18) to be in a conducting state, so as to utilize the capacity of the remaining booster devices (5, 7, 8) in a balanced manner, so as to improve the reliability of the distributed braking system.
  • the controller determines the required braking force (or "target braking force”) through the pedal travel collected by the pedal travel sensor (410). Based on the required braking force, the controller controls the normally working booster devices (5, 7, 8), through 4 brake lines (111, 112, 113, 114), to the brake wheel cylinders (13, 14, 15) , 16) Deliver brake fluid to provide braking force for brake wheel cylinders.
  • the controller obtains the pedal stroke through the pedal stroke sensor (410).
  • the controller determines the required braking force based on the pedal stroke.
  • the controller controls the motor (312) in the normally working booster devices (5, 7, 8) to reverse to reduce the braking force of the brake wheel cylinder.
  • the controller can control the motor (312) of the normally working booster device (5, 7, 8) to reverse to realize the decompression of the brake system.
  • the controller can also control the isolation valves (4, 20) to be in a conducting state.
  • the brake fluid in the wheel brake cylinders (13, 14, 15, 16) flows to the three due to the pressure difference.
  • the pressure boosting device (5, 7, 8) the other part flows to the master brake cylinder (3) through the fifth brake pipe (115) and the sixth brake pipe (116), and finally brakes in the wheel cylinder
  • the pressure of the liquid is close to zero or zero.
  • FIG. 11 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • FIG. 11 shows the flow path of the brake fluid in the process of the second wheel brake cylinder (14) being pressurized after the second pressurizing device (6) fails under the automatic driving of the brake system 200. It should be noted that after other booster devices in the distributed braking system 200 fail, the principle of the controller controlling the working status of the components in the distributed braking system 200 is similar to the principle introduced below, and will not be described in detail for the sake of brevity. .
  • the flow path shown in FIG. 11 is similar to the flow path shown in FIG. 10.
  • the main difference is that in the above-mentioned brake-by-wire mode, the work of the brake system depends on the operation of the driver, while in the automatic driving mode, the work of the brake system can no longer depend on the operation of the driver.
  • the controller controls the normally working booster devices (5, 7, 8) through 4 brake pipelines (111, 112). , 113, 114) Input the brake fluid into the four brake wheel cylinders (13, 14, 15, 16) to generate braking force for the wheels through the brake wheel cylinders to realize the braking function.
  • the controller can control the motor (312) of the normally working booster device (5, 7, 8) to reverse rotation to realize the decompression of the braking system.
  • FIG. 12 is a schematic diagram of the working mode of the distributed braking system 200 according to an embodiment of the present application.
  • Fig. 12 shows the flow path of the brake fluid in the process of pressurizing the second wheel brake cylinder (14) after the brake system 200 is under automatic driving and the second pressurizing device (6) fails.
  • the principle of the controller controlling the working status of the components in the distributed braking system 200 is similar to the principle introduced below, and will not be described in detail for the sake of brevity. .
  • the aforementioned single-wheel braking mode can be applied to ESC, ABS, TCS and other functions.
  • the controller determines that the first wheel brake cylinder (14) needs to be pressurized, it selects the first pressurization device (5) to replace the failed second pressurization device (6).
  • the controller controls the first inlet valve (9) to be in a disconnected state, and the first isolation valve (4) to be in a disconnected state.
  • the other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the first boosting device (5) to rotate forward, so as to press the brake fluid into the second brake line (112) through the first brake line (111), and then pass through the second brake line (112).
  • the brake pipeline (112) conveys the brake fluid to the second wheel brake cylinder (14) to realize the pressurization of the second wheel brake cylinder (14).
  • the first liquid inlet valve (9) is in an open state, the brake fluid cannot flow into the first brake wheel cylinder (13) through the first brake pipeline (111).
  • the controller determines that it is necessary to decompress the second wheel brake cylinder (14), it controls the first inlet valve (9) to be in a disconnected state, and the first isolation valve (4) to be in a disconnected state.
  • the other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the first booster device (5) to reverse so as to pass the brake fluid through the second brake line (112) and the first brake line (111), from the second brake
  • the wheel cylinder (14) is retracted to the first pressure-increasing device (5) to realize the pressure reduction of the second brake wheel cylinder (14).
  • the flow path shown in FIG. 12 is introduced by taking the adjustment of the braking force of the second wheel brake cylinder (14) as an example.
  • the third booster device (7) can control the braking force of the third wheel brake cylinder (16).
  • the specific adjustment is similar to the above principle, that is, the third booster is controlled.
  • the liquid valve (11) is in a disconnected state
  • the second isolation valve (20) is in a disconnected state
  • the third pressure-increasing device (7) controls the braking force of the fourth wheel brake cylinder (16).
  • the second booster device (6) can control the braking force of the first wheel brake cylinder (13).
  • the specific adjustment is similar to the above principle, that is, the second booster is controlled.
  • the liquid valve (10) is in a disconnected state
  • the first isolation valve (4) is in a disconnected state
  • the first pressure-increasing device (7) controls the braking force of the second wheel brake cylinder (14).
  • the fourth booster device (8) can control the braking force of the third wheel brake cylinder (15).
  • the specific adjustment is similar to the above principle, that is, the fourth booster is controlled.
  • the liquid valve (12) is in a disconnected state
  • the second isolation valve (20) is in a disconnected state
  • the fourth pressure-increasing device (8) controls the braking force of the third wheel brake cylinder (15).
  • the controller can select an alternative booster device based on the principle of "selecting nearby" to improve braking efficiency and reduce control complexity.
  • the first supercharging device (5) and the second supercharging device (6) can be substituted for each other.
  • the third supercharging device (8) and the fourth supercharging device (9) can replace each other.
  • the embodiments of this application do not limit this.
  • the working mode of the distributed braking system 200 of the embodiment of the present application is described above in conjunction with FIGS. 5 to 12, and the working mode of the distributed braking system 200 of the embodiment of the present application is described below in conjunction with FIGS. 13 to 15. It should be understood that the working modes of the two distributed controller systems are basically the same. The main difference lies in the way of liquid discharge. Therefore, the following only lists several main working modes as examples. For the remaining working modes, please refer to the above about distribution An introduction to the working mode of the brake system 200.
  • the default state of the control valve in the distributed braking system 300 is: the first control valve (17) and the second control valve (19) are normally open valves, and the third control valve (18) is a normally closed valve.
  • the inlet valves (9, 10, 11, 12) are normally open valves.
  • the outlet valves (23, 24, 25, 26) are normally closed valves.
  • the isolation valves (4, 20) are normally open valves.
  • the fourth control valve (22) is a normally closed valve.
  • FIG. 13 is a schematic diagram of the working mode of the distributed braking system 300 according to an embodiment of the present application.
  • FIG. 13 shows the flow path of the brake fluid during the pressurization process of the distributed brake system 300 in the online control dynamic mode.
  • the controller controls the fourth control valve (22) to be in the on state, the isolation valve (4, 20) is in the off state, and the other control valves are in the above-mentioned default state.
  • the brake fluid in the master cylinder (3) flows into the pedal feel simulator (21) via the sixth brake pipeline (116). Since the isolation valve (4, 20) is in a disconnected state, the brake fluid will not enter the wheel brake cylinder (9) through the fifth brake pipe (115) and the sixth brake pipe (116), thereby achieving control The braking decoupling of the active master cylinder (3) and the brake wheel cylinders (13, 14, 15, 16).
  • the controller determines the pedal stroke through the pedal stroke sensor (410), and determines the required braking force based on the acquired pedal stroke.
  • the controller controls the 4 booster devices (5, 6, 7, 8), and the brake fluid is fed into the 4 brake wheel cylinders (13, 14) through the 4 brake pipelines (111, 112, 113, 114) respectively. , 15, 16), the brake wheel cylinder is used to generate braking force for the wheels to achieve braking.
  • the controller can control the third control valve (18) to be in a conducting state, so that the brake fluid can be braked in the second brake.
  • the pipeline (112) and the third brake pipeline (113) flow between, so that the pressure of the brake fluid in the second brake pipeline (112) and the third brake pipeline (113) is balanced.
  • the controller can control the reversal of the motors (312) of the four pressure-increasing devices (5, 6, 7, 8) according to the pedal stroke detected by the pedal stroke sensor, so as to realize the decompression of the braking system.
  • the controller can control the 4 outlet valves (23, 24, 25, 26) to be in a conducting state. At this time, the brake wheel cylinders (13, 14, The brake fluid in 15 and 16) will flow to the liquid storage device (2) through the liquid outlet pipe (117) due to the pressure difference. Achieve decompression of the braking system.
  • the controller can also control the isolation valves (4, 20) to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders (13, 14, 15, 16) passes through the fifth system due to the pressure difference.
  • the moving pipeline (115) and the sixth brake pipeline (116) flow to the master brake cylinder (3), and finally the pressure of the brake fluid in the wheel brake cylinder is close to zero or zero.
  • FIG. 14 is a schematic diagram of the working mode of the distributed braking system 300 according to an embodiment of the present application.
  • FIG. 6 shows the flow path of the brake fluid during the pressurization process of the brake system 200 in the automatic driving mode. It should be noted that the flow path shown in FIG. 6 is similar to the flow path shown in FIG. 5. The main difference is that in the above-mentioned brake-by-wire mode, the work of the brake system depends on the operation of the driver, while in the automatic driving mode, the work of the brake system can no longer depend on the operation of the driver.
  • the braking force demand can be sent to the controller in the form of instructions by the advanced driving assistance system (ADAS).
  • ADAS advanced driving assistance system
  • the controller controls the 4 booster devices (5, 6, 7, 8), and the brake fluid is fed into the brake fluid through the 4 brake pipelines (111, 112, 113, 114).
  • the brake wheel cylinders are used to generate braking force for the wheels to achieve braking.
  • the controller can control the third control valve (18) to be in a conducting state, so that the brake fluid can be braked in the second brake.
  • the pipeline (112) and the third brake pipeline (113) flow between, so that the pressure of the brake fluid in the second brake pipeline (112) and the third brake pipeline (113) is balanced.
  • the controller can control the motors (312) of the 4 booster devices (5, 6, 7, 8) to reverse rotation to realize the decompression of the braking system .
  • FIG. 15 is a schematic diagram of the working mode of the distributed braking system 300 according to an embodiment of the present application.
  • FIG. 15 shows the flow path of the brake fluid during the pressurization process of the braking system 300 in the single-wheel braking mode.
  • the single-wheel braking mode can be applied to ESC, ABS, TCS and other functions.
  • the controller determines that the first wheel brake cylinder (13) needs to be pressurized, it controls the first control valve (17) to be in a disconnected state, and other control valves are in the above-mentioned default state.
  • the controller controls the motor (312) of the first boosting device (5) to rotate forward so as to press the brake fluid into the first wheel brake cylinder (13) through the first brake pipeline (111) to achieve the first The brake wheel cylinder (13) is pressurized.
  • the controller After the controller determines that the first wheel brake cylinder (13) needs to be decompressed, it controls the first control valve (17) to be in a disconnected state, and controls the first outlet valve (23) to be in a conductive state.
  • the other control valves are in the above-mentioned default state. such.
  • the brake fluid output by the first booster device (5) flows into the first outlet valve (23) through the first brake pipeline (111), and then passes through the outlet pipeline (117) via the first outlet valve (23). ) Flow to the liquid storage device (2).
  • the first inlet valve (9) can also be controlled to be in a disconnected state, so that the pressure inlet port of the first inlet valve (9) is connected to the first increasing device (5)
  • a higher brake pressure can be maintained between the pressure outlet ports, that is, the brake fluid can be maintained in the first brake pipeline (111) between the first inlet valve (9) and the first increasing device (5)
  • the pressure of the first wheel brake cylinder (13) needs to be pressurized again, it can respond quickly.
  • FIG. 15 is introduced by taking the adjustment of the braking force of the first wheel brake cylinder (13) as an example.
  • the adjustment of the braking force of other brake wheel cylinders is similar.
  • detailed descriptions are omitted in conjunction with the drawings.
  • the distributed braking system and the automobile according to the embodiments of the present application are described above in conjunction with FIG. 1 to FIG. 15.
  • the following describes the control method provided by the embodiment of the present application in conjunction with FIG. 16.
  • the control method shown in FIG. 16 can be used in combination with the various distributed braking systems described above.
  • Fig. 16 is a flowchart of a control method of a distributed braking system in an automobile according to an embodiment of the present application.
  • the method shown in FIG. 16 can be executed by the controller of the distributed braking system.
  • the method shown in FIG. 16 includes: step 1610 and step 1620.
  • the above method also includes: when the controller determines that the first booster device (5) or the second booster device (6) is faulty; the controller controls the first control valve (17) ) Is in a conducting state, so that the first brake line (111) is communicated with the second brake line (112).
  • the controller can control the first control valve (17) to be in an open state, and then the controller detects that the first wheel brake cylinder (13) corresponds to The acceleration of the wheels determines whether the first supercharging device (5) fails.
  • the controller can determine that the first pressure boosting device (5) has failed, on the contrary, the first pressure boosting device (5) works normally.
  • the first pressure-increasing device (5) is used to adjust the pressure of the brake fluid in the first brake pipe (111) to adjust the second brake.
  • the pressure of the internal brake fluid is used to adjust the pressure of the brake fluid in the second brake line (111).
  • the above method further includes: the controller determines that the third booster device (7) or the fourth booster device (8) is faulty; the controller controls the second control valve (19) to be in a conducting state, so that the third The brake line (113) communicates with the fourth brake line (114).
  • the normally working pressure boosting device of the third pressure boosting device (7) or the fourth pressure boosting device (8) can pass through the third brake pipeline (113) and the fourth brake pipeline (114) that are connected to each other.
  • the first supercharging device (5) and the second supercharging device (6) can be used to replace the third supercharging device (7).
  • the fourth supercharging device (8) which provides braking force for the third wheel brake cylinder (15) or the fourth wheel brake cylinder (16).
  • the above method further includes: the controller determines that both the first supercharging device (5) and the second supercharging device (6) are faulty, and it needs to be the second brake wheel cylinder (14) and the first brake wheel.
  • the controller determines that both the first supercharging device (5) and the second supercharging device (6) are faulty, and it needs to be the second brake wheel cylinder (14) and the first brake wheel.
  • the third control valve (18) can be controlled to be in a conducting state, so that the third pressure boosting device (7) and/or the fourth pressure boosting device (8) is the second brake
  • the wheel cylinder (14) and the first brake wheel cylinder (13) provide braking force.
  • the fourth pressure-increasing device (8) is the first brake wheel cylinder (13) and the second brake wheel
  • the cylinder (14) provides braking force
  • the second control valve (19) needs to be in a conducting state.
  • the fourth pressure-increasing device (8) is used to adjust the pressure of the brake fluid in the fourth brake line (114) and the third brake line (113) that are in communication, and is the first wheel brake cylinder. (13) and the second wheel brake cylinder (14) provide braking force.
  • the second control valve (19) can be in the off position. Open state.
  • the isolation in order to prevent the brake fluid from flowing back to the master cylinder (3) through the fifth brake pipe (115) and the sixth brake pipe (116), the isolation can be controlled
  • the valves (4, 20) are in an open state.
  • the controller controls the first control valve (17) to be in a conducting state, so that the first brake line (111) It communicates with the second brake pipeline (112).
  • the third supercharging device (7) and/or the fourth supercharging device (8) can be used to replace the first supercharging device (5) and the second supercharging device (6) as the first wheel brake cylinder ( 13) Or the second wheel brake cylinder (14) provides braking force.
  • the above method further includes: the controller determines that the third pressure boosting device (7) and the fourth pressure boosting device (8) are faulty; the controller controls the third control valve (18) to be in a conducting state, so that the second The brake line (112) communicates with the third brake line (113).
  • the first pressure-increasing device (5) or the second pressure-increasing device (6) can be the third wheel brake cylinder through the connected third brake pipeline (113) and the fourth brake pipeline (114) (15) and/or the fourth wheel brake cylinder (16) provides braking force.
  • the first pressure boosting device (5) is required to be the third brake wheel cylinder (15) and the fourth brake wheel
  • the cylinder (16) provides braking force
  • the first control valve (17) needs to be in a conducting state.
  • the first pressure-increasing device (5) is used to adjust the pressure of the brake fluid in the first brake line (111) and the second brake line (112) that are connected to each other, as the third wheel brake cylinder (15) and the fourth wheel brake cylinder (16) provide braking force.
  • the first control valve (17) can be in the off position. Open state.
  • the isolation in order to prevent the brake fluid from flowing back to the master cylinder (3) through the fifth brake pipe (115) and the sixth brake pipe (116), the isolation can be controlled
  • the valves (4, 20) are in an open state.
  • the controller controls the second control valve (19) to be in a conducting state, so that the third brake line (113) It communicates with the fourth brake pipeline (114).
  • the first supercharging device (5) and/or the second supercharging device (6) can be used to replace the third supercharging device (7) and the fourth supercharging device (8) as the third wheel brake cylinder ( 15) Or the fourth wheel brake cylinder (16) provides braking force.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

一种汽车的分布式制动系统(100、200、300)、汽车(400)及分布式制动系统(100、200、300)的控制方法,通过在第一制动管路(111)以及第二制动管路(112)之间连接第一控制阀(17),以将属于同组的增压装置(5、6)对应的制动管路(111、112)相连;当两条制动管路(111、112)中有一条制动管路出现故障时,可以控制第一控制阀(17)处于导通状态,使得两条制动管路(111、112)中的制动液可以流通,有利于提高分布式制动系统(100、200、300)的冗余性能。

Description

汽车的分布式制动系统、汽车及其控制方法
本申请要求于2019年09月30日提交中国专利局、申请号为201910943569.4、申请名称为“汽车的分布式制动系统、汽车及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车领域,并且更具体地,涉及汽车的分布式制动系统、汽车及汽车中分布式制动系统的控制方法。
背景技术
汽车的制动系统是通过对汽车的车轮施加一定的制动力,从而对其进行一定程度的强制制动的系统。制动系统作用是使行驶中的汽车按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的汽车在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的汽车速度保持稳定。随着汽车电动化和智能化的发展,汽车对制动系统的要求也越来越高。随着自动驾驶等级的提升,减少了制动系统的运行对驾驶员的依赖,为了使得车辆可以适应各种复杂的驾驶环境,对制动系统的控制精度的要求越来越高。分布式电液制动系统(Distributed Electro-hydraulic Braking System,DEHB),作为目前主流的分布式制动系统,具有较高的可控性。
在DEHB中,通常包含4套独立的增压装置分别为4个车轮提供制动力。目前,有两种方式将上述4套增压装置划分为两组,一种是将汽车的右前轮的增压装置与汽车的左前轮的增压装置划分为一组,同时将汽车的右后轮的增压装置与汽车的左后轮的增压装置划分为一组,即H型布置方式。另一种是将汽车的右前轮的增压装置与汽车的左后轮的增压装置划分为一组,同时将汽车的右后轮的增压装置与汽车的左前轮的增压装置划分为一组,即X型布置方式。为了保证汽车的在制动过程中的稳定性,要求每组内的增压装置必须同时处于正常工作的状态。当同组中有一个增压装置故障后,另一个即使能正常工作也会被从制动系统中屏蔽掉。
如上文所述,无论是X型布置方式还是H型布置方式,只要一组中的两个增压装置故障后,属于同一组的另一增压装置也被屏蔽,这样,汽车会由于某一个增压装置的故障,而失去一半的制动力,导致了汽车的分布式制动系统的冗余性能较低。
发明内容
本申请提供一种汽车的分布式制动系统、汽车及控制方法,以提高汽车中分布式制动系统的冗余性能。
第一方面,提供了一种汽车的分布式制动系统,所述分布式制动系统包括第一增压装置(5)、第二增压装置(6)以及第一控制阀(17),所述第一增压装置(5),用于通 过调节第一制动管路(111)内的制动液的压力,以控制施加在所述汽车的第一制动轮缸(13)上的制动力;所述第二增压装置(6),用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述汽车的第二制动轮缸(14)上的制动力;所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),若所述第一控制阀(17)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(112)连通;若所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开,其中,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸。
在本申请实施例中,通过在第一制动管路(111)以及第二制动管路(112)之间连接第一控制阀(17),以将属于同组的增压装置对应的制动管路相连,即第一控制阀(17)处于导通状态时,第一制动管路(111)以及第二制动管路(112)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第一控制阀(17)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。避免了现有的分布式制动系统中,汽车中每个制动轮缸对应的制动管路为相互独立的,导致当同组中有一个增压装置故障后,另一个即使能正常工作也会被从制动系统中屏蔽掉。
在一种可能的实现方式中,若所述第一控制阀(17)处于导通状态,所述第一增压装置(5)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内制动液的压力;和/或若所述第一控制阀处于导通状态,所述第二增压装置(6)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内的制动液的压力。
在本申请实施例中,当第一控制阀(17)处于导通状态,第一增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),控制施加在第二制动轮缸(14)上的制动力,有利于提高分布式制动系统的冗余性能。
另一方面,当第一控制阀(17)处于导通状态,第二增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),控制施加在第一制动轮缸(13)上的制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述分布式制动系统还包括第二控制阀(19)、第三增压装置(7)以及第四增压装置(8),所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在第三制动轮缸(15)上的制动力;所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在第四制动轮缸(16)上的制动力;所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),若所述第二控制阀(19)处于导通状态,则所述第三制动管路(113)与所述第四制动管路(114)连通;若所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开,其中,所述第三制动轮缸 (15)、所述第四制动轮缸(16)、所述第一制动轮缸(13)与所述第二制动轮缸(14)用于为所述汽车中不同的车轮提供制动力,所述第三制动轮缸(15)为所述汽车的右后轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左前轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的左前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的右后轮的制动轮缸。
在本申请实施例中,通过在第三制动管路(113)与第四制动管路(114)之间连接第二控制阀(19),以将属于同组的增压装置对应的制动管路相连,即第二控制阀(19)处于导通状态时,第三制动管路(113)与第四制动管路(114)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第二控制阀(19)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,若所述第二控制阀(19)处于导通状态,所述第三增压装置(7)用于通过调节所述第三制动管路(113)内制动液的压力,以调节所述第四制动管路(114)内制动液的压力;和/或若所述第二控制阀(19)处于导通状态,所述第四增压装置(8)用于通过调节所述第四制动管路(114)内制动液的压力,以调节所述第三制动管路(113)内的制动液的压力。
在本申请实施例中,当第二控制阀(19)处于导通状态,第三增压装置(7)可以通过连通的第三制动管路(113)和第四制动管路(114),控制施加在第四制动轮缸(16)上的制动力,有利于提高分布式制动系统的冗余性能。
另一方面,当第二控制阀(19)处于导通状态,第四增压装置(8)可以通过连通的第三制动管路(113)和第四制动管路(114),控制施加在第三制动轮缸(15)上的制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述分布式制动系统还包括第三控制阀(18),第五制动管路(115)以及第六制动管路(116),所述第五制动管路(115)的压力出端口与所述第一制动管路(111)的压力入端口相连,所述第五制动管路(115)的压力出端口与所述第二制动管路(112)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第三制动管路(113)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第四制动管路(114)的压力入端口相连,所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),若所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)连通,若所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
在本申请实施例中,通过在第二制动管路(112)和第三制动管路(113)之间连接第三控制阀(18),以将不属于同组的增压装置对应的制动管路相连,即第三控制阀(18)处于导通状态时,第二制动管路(112)和第三制动管路(113)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第三控制阀(18)处于导通状态,使得两条制动管路中的制动液可以流通,此时,不属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述分布式制动系统还包括制动主缸(3),所述制动主缸(3)用于通过调节所述第五制动管路(115)内制动液的压力,以调节所述第一制动管路(111)或所述第二制动管路(112)内制动液的压力;所述制动主缸(3)还用于通过调节所述第六制动管路(116)内制动液的压力,以调节所述第三制动管路(113)或所述第四制动管路(114)内制动液的压力。
在本申请实施例中,分布式制动系统还可以基于制动主缸(3)、第五制动管路(115)以及第六制动管路(116)实现机械制动模式或者线性制动模式,使得分布式制动系统可以在多种模式下工作,以提高制动系统的提供制动力的多样性。
可选地,上述制动主缸(3)为串联双腔式制动主缸。
第二方面,提供一种汽车,所述汽车包括第一制动轮缸(13)、第二制动轮缸(14)、第一控制阀(17)、第一增压装置(5)以及第二增压装置(6),所述第一增压装置(5),用于通过调节第一制动管路(111)内的制动液的压力,以控制施加在所述第一制动轮缸(13)上的制动力;所述第二增压装置(6),用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述第二制动轮缸(14)上的制动力;所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),若所述第一控制阀(17)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(112)连通;若所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开,其中,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸。
在本申请实施例中,通过在第一制动管路(111)以及第二制动管路(112)之间连接第一控制阀(17),以将属于同组的增压装置对应的制动管路相连,即第一控制阀(17)处于导通状态时,第一制动管路(111)以及第二制动管路(112)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第一控制阀(17)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。避免了现有的分布式制动系统中,汽车中每个制动轮缸对应的制动管路为相互独立的,导致当同组中有一个增压装置故障后,另一个即使能正常工作也会被从制动系统中屏蔽掉。
在一种可能的实现方式中,若所述第一控制阀(17)处于导通状态,所述第一增压装置(5)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内制动液的压力;和/或若所述第一控制阀处于导通状态,所述第二增压装置(6)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内的制动液的压力。
在本申请实施例中,当第一控制阀(17)处于导通状态,第一增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),控制施加在第二制动轮缸(14)上的制动力,有利于提高分布式制动系统的冗余性能。
另一方面,当第一控制阀(17)处于导通状态,第二增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),控制施加在第一制动轮缸(13)上的制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述汽车还包括第二控制阀(19),第三增压装置(7)以及第四增压装置(8),所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在所述第三制动轮缸(15)上的制动力;所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在所述第四制动轮缸(16)上的制动力;所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),若所述第二控制阀(19)处于导通状态,则所述第三制动管路(113)与所述第四制动管路(114)连通;若所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开,其中,所述第三制动轮缸(15)、所述第四制动轮缸(16)、所述第一制动轮缸(13)与所述第二制动轮缸(14)用于为所述汽车中不同的车轮提供制动力,所述第三制动轮缸(15)为所述汽车的右后轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左前轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的左前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的右后轮的制动轮缸。
在本申请实施例中,通过在第三制动管路(113)与第四制动管路(114)之间连接第二控制阀(19),以将属于同组的增压装置对应的制动管路相连,即第二控制阀(19)处于导通状态时,第三制动管路(113)与第四制动管路(114)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第二控制阀(19)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,若所述第二控制阀(19)处于导通状态,所述第三增压装置(7)用于通过调节所述第三制动管路(113)内制动液的压力,以调节所述第四制动管路(114)内制动液的压力;和/或若所述第二控制阀(19)处于导通状态,所述第四增压装置(8)用于通过调节所述第四制动管路(114)内制动液的压力,以调节所述第三制动管路(113)内的制动液的压力。
在本申请实施例中,当第二控制阀(19)处于导通状态,第三增压装置(7)可以通过连通的第三制动管路(113)和第四制动管路(114),控制施加在第四制动轮缸(16)上的制动力,有利于提高分布式制动系统的冗余性能。
另一方面,当第二控制阀(19)处于导通状态,第四增压装置(8)可以通过连通的第三制动管路(113)和第四制动管路(114),控制施加在第三制动轮缸(15)上的制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述分布式制动系统还包括第三控制阀(18),第五制动管路(115)以及第六制动管路(116),所述第五制动管路(115)的压力出端口与所述第一制动管路(111)的压力入端口相连,所述第五制动管路(115)的压力出端口与所述第二制动管路(112)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述 第三制动管路(113)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第四制动管路(114)的压力入端口相连,所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),若所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)连通,若所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
在本申请实施例中,通过在第二制动管路(112)和第三制动管路(113)之间连接第三控制阀(18),以将不属于同组的增压装置对应的制动管路相连,即第三控制阀(18)处于导通状态时,第二制动管路(112)和第三制动管路(113)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第三控制阀(18)处于导通状态,使得两条制动管路中的制动液可以流通,此时,不属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述汽车还包括制动踏板(1),所述分布式制动系统还包括制动主缸(3),所述制动踏板(1)用于接收驾驶员输入的踩踏力,并推动制动主缸(3)中的活塞产生相对于所述制动主缸(3)的缸体的位移;所述制动主缸(3)用于:根据所述位移,确定所述第五制动管路(115)内制动液的压力;通过调节所述第五制动管路(115)内制动液的压力,以调节所述第一制动管路(111)或所述第二制动管路(112)内制动液的压力;通过调节所述第六制动管路(116)内制动液的压力,以调节所述第三制动管路(113)或所述第四制动管路(114)内制动液的压力。
在本申请实施例中,分布式制动系统还可以基于制动主缸(3)、第五制动管路(115)以及第六制动管路(116)实现机械制动模式或者线性制动模式,使得分布式制动系统可以在多种模式下工作,以提高制动系统的提供制动力的多样性。
可选地,上述制动主缸(3)为串联双腔式制动主缸。
第三方面,提供一种汽车中分布式制动系统的控制方法,所述分布式制动系统包括控制器、第一控制阀(17),第一增压装置(5)以及第二增压装置(6),所述第一增压装置(5)用于通过调节第一制动管路(111)内的制动液的压力,以控制施加在所述汽车的第一制动轮缸(13)上的制动力;所述第二增压装置(6)用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述汽车的第二制动轮缸(14)上的制动力;所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),其中,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸,所述方法包括:若所述控制器控制所述第一控制阀(17)处于导通状态,所述第一制动管路(111)与所述第二制动管路(112)连通;若所述控制器控制所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开。
在本申请实施例中,通过在第一制动管路(111)以及第二制动管路(112)之间连接第一控制阀(17),以将属于同组的增压装置对应的制动管路相连,即第一控制阀(17) 处于导通状态时,第一制动管路(111)以及第二制动管路(112)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第一控制阀(17)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。避免了现有的分布式制动系统中,汽车中每个制动轮缸对应的制动管路为相互独立的,导致当同组中有一个增压装置故障后,另一个即使能正常工作也会被从制动系统中屏蔽掉。
在一种可能的实现方式中,所述方法还包括:所述控制器确定所述第一增压装置(5)或所述第二增压装置(6)失效;所述控制器控制所述第一控制阀(17)处于所述导通状态。
在本申请实施例中,当第一增压装置(5)或第二增压装置(6)失效时,可以控制第一控制阀(17)处于导通状态,这样第一增压装置(5)和所述第二增压装置(6)中可以正常工作的增压装置便可以替代失效的增压装置,通过连通的第一制动管路(111)和第二制动管路(112),为第一制动轮缸(13)和/或第二制动轮缸(14)提供制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,若所述第一控制阀(17)处于导通状态,所述第一增压装置(5)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内制动液的压力;和/或若所述第一控制阀处于导通状态,所述第二增压装置(6)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内的制动液的压力。
在本申请实施例中,当第一控制阀(17)处于导通状态,第一增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),控制施加在第二制动轮缸(14)上的制动力,有利于提高分布式制动系统的冗余性能。
另一方面,当第一控制阀(17)处于导通状态,第二增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),控制施加在第一制动轮缸(13)上的制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述分布式制动系统还包括第二控制阀(19)、第三增压装置(7)以及第四增压装置(8),所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在第三制动轮缸(15)上的制动力;所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在第四制动轮缸(16)上的制动力;所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),其中,所述第三制动轮缸(15)、所述第四制动轮缸(16)、所述第一制动轮缸(13)与所述第二制动轮缸(14)用于为所述汽车中不同的车轮提供制动力,所述第三制动轮缸(15)为所述汽车的右后轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左前轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或所述第三制动轮缸(15)为所述汽车的左前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的右后轮的制动轮缸,所述方法还包括:若所述控制器控制所述第二控制阀(19)处于导通状态,所述第三制动管路(113)与所述第四制动管路(114) 连通;若所述控制器控制所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开。
在本申请实施例中,通过在第三制动管路(113)与第四制动管路(114)之间连接第二控制阀(19),以将属于同组的增压装置对应的制动管路相连,即第二控制阀(19)处于导通状态时,第三制动管路(113)与第四制动管路(114)连通。当上述两条制动管路中有一条制动管路出现故障时,可以控制第二控制阀(19)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述方法包括:所述控制器确定所述第三增压装置(7)或所述第四增压装置(8)故障;所述控制器控制所述第二控制阀(19)处于导通状态。
在本申请实施例中,当第三增压装置(7)或第四增压装置(8)失效时,可以控制第二控制阀(19)处于导通状态,这样第三增压装置(7)和第四增压装置(8)中可以正常工作的增压装置便可以替代失效的增压装置,通过连通的第三制动管路(113)和第四制动管路(114),为第三制动轮缸(15)和/或第四制动轮缸(16)提供制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,若所述第二控制阀(19)处于导通状态,所述第三增压装置(7)用于通过调节所述第三制动管路(113)内制动液的压力,以调节所述第四制动管路(114)内制动液的压力;和/或若所述第二控制阀(19)处于导通状态,所述第四增压装置(8)用于通过调节所述第四制动管路(114)内制动液的压力,以调节所述第三制动管路(113)内的制动液的压力。
在本申请实施例中,当第二控制阀(19)处于导通状态,第三增压装置(7)可以通过连通的第三制动管路(113)和第四制动管路(114),控制施加在第四制动轮缸(16)上的制动力,有利于提高分布式制动系统的冗余性能。
另一方面,当第二控制阀(19)处于导通状态,第四增压装置(8)可以通过连通的第三制动管路(113)和第四制动管路(114),控制施加在第三制动轮缸(15)上的制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述分布式制动系统还包括第三控制阀(18),第五制动管路(115)以及第六制动管路(116),所述第五制动管路(115)的压力出端口与所述第一制动管路(111)的压力入端口相连,且所述第五制动管路(115)的压力出端口与所述第二制动管路(112)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第三制动管路(113)的压力入端口相连,且所述第六制动管路(116)的压力出端口与所述第四制动管路(114)的压力入端口相连,所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),所述方法还包括:若所述控制器控制所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)连通;若所述控制器控制所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
在本申请实施例中,通过在第二制动管路(112)和第三制动管路(113)之间连接第三控制阀(18),以将不属于同组的增压装置对应的制动管路相连,即第三控制阀(18)处于导通状态时,第二制动管路(112)和第三制动管路(113)连通。当上述两条制动管 路中有一条制动管路出现故障时,可以控制第三控制阀(18)处于导通状态,使得两条制动管路中的制动液可以流通,此时,不属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述方法还包括:所述控制器确定所述第一增压装置(5)以及所述第二增压装置(6)故障;所述控制器控制所述第三控制阀(18)处于导通状态。
在本申请实施例中,当第一增压装置(5)和第二增压装置(6)都失效时,可以控制第三控制阀(18)处于导通状态,这样第三增压装置(7)和第四增压装置(8)中可以正常工作的增压装置便可以替代上述失效的增压装置,通过连通的第二制动管路(112)和第三制动管路(113),为第二制动轮缸(14)提供制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述方法还包括:若所述第一增压装置(5)以及所述第二增压装置(6)故障,所述控制器控制所述第一控制阀(17)处于导通状态,以使所述第一制动管路(111)与所述第二制动管路(112)连通。
在本申请实施例中,当第一增压装置(5)和第二增压装置(6)都失效时,可以控制第三控制阀(18)以及第一控制阀(17)处于导通状态,这样第三增压装置(7)和第四增压装置(8)中可以正常工作的增压装置便可以替代上述失效的增压装置,通过连通的第二制动管路(112)和第三制动管路(113),为第一制动轮缸(13)和/或第二制动轮缸(14)提供制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述方法还包括:所述控制器确定所述第三增压装置(7)以及所述第四增压装置(8)故障;所述控制器控制所述第三控制阀(18)处于导通状态,以使所述第二制动管路(112)与所述第三制动管路(113)连通。
在本申请实施例中,当第三增压装置(7)和第四增压装置(8)都失效时,可以控制第三控制阀(18)处于导通状态,这样第一增压装置(5)和第二增压装置(6)中可以正常工作的增压装置便可以替代失效的增压装置,通过连通的第二制动管路(112)和第三制动管路(113),为第二制动轮缸(14)提供制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述方法还包括:若所述第三增压装置(7)以及所述第四增压装置(8)故障,所述控制器控制所述第二控制阀(19)处于导通状态,以使所述第三制动管路(111)与所述第四制动管路(112)与所述连通。
在本申请实施例中,当第三增压装置(7)和第四增压装置(8)都失效时,可以控制第三控制阀(18)以及第二控制阀(19)处于导通状态,这样第一增压装置(5)和第二增压装置(6)中可以正常工作的增压装置便可以替代失效的增压装置,通过连通的第二制动管路(112)和第三制动管路(113),为第二制动轮缸(14)和/或第一制动轮缸(13)提供制动力,有利于提高分布式制动系统的冗余性能。
在一种可能的实现方式中,所述汽车还包括制动主缸(3),所述制动主缸(3)用于通过调节所述第五制动管路(115)内制动液的压力,以调节所述第一制动管路(111)和/或所述第二制动管路(112)内制动液的压力;所述制动主缸(3)还用于通过调节所述第六制动管路(116)内制动液的压力,以调节所述第三制动管路(113)和/或所述第四制动管路(114)内制动液的压力。
在本申请实施例中,分布式制动系统还可以基于制动主缸(3)、第五制动管路(115)以及第六制动管路(116)实现机械制动模式或者线性制动模式,使得分布式制动系统可以在多种模式下工作,以提高制动系统的提供制动力的多样性。
可选地,上述制动主缸(3)为串联双腔式制动主缸。
第四方面,提供一种控制器,所述控制器可以是独立的设备,也可以是设备内的芯片。所述控制器可以包括处理单元和发送单元。当所述控制器是独立的设备时,所述处理单元可以是处理器,所述发送单元可以是输入/输出接口;所述设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述设备执行第三方面中的方法。当所述控制器是设备内的芯片时,所述处理单元可以是处理器,所述发送单元可以是管脚或电路等;所述处理单元执行存储单元所存储的指令,以使所述控制器执行第三方面中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述终端设备/网络设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
在上述第四方面中,存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第六方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是本申请实施例的分布式制动系统100的示意图。
图2是本申请实施例的分布式制动系统200的示意图。
图3是本申请另一实施例的分布式制动系统300的示意图。
图4是本申请实施例提供的汽车的示意图。
图5是本申请实施例的分布式制动系统200的工作模式的示意图。
图6是本申请实施例的分布式制动系统200的工作模式的示意图。
图7是本申请实施例的分布式制动系统200的工作模式的示意图。
图8是本申请实施例的分布式制动系统200的工作模式的示意图。
图9是本申请实施例的分布式制动系统200的工作模式的示意图。
图10是本申请实施例的分布式制动系统200的工作模式的示意图。
图11是本申请实施例的分布式制动系统200的工作模式的示意图。
图12是本申请实施例的分布式制动系统200的工作模式的示意图。
图13是本申请实施例的分布式制动系统300的工作模式的示意图。
图14是本申请实施例的分布式制动系统300的工作模式的示意图。
图15是本申请实施例的分布式制动系统300的工作模式的示意图。
图16是本申请实施例的汽车中分布式制动系统的控制方法的流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在传统的分布式制动系统中,分布式电液制动系统(Distributed Electro-hydraulic Braking System,DEHB)作为流行的制动系统,通常包含4套独立的增压装置分别为4个车轮提供制动力。目前,有两种方式将上述4套增压装置划分为两组,一种是将汽车的右前轮的增压装置与汽车的左前轮的增压装置划分为一组,同时将汽车的右后轮的增压装置与汽车的左后轮的增压装置划分为一组,即H型布置方式。另一种是将汽车的右前轮的增压装置与汽车的左后轮的增压装置划分为一组,同时将汽车的右后轮的增压装置与汽车的左前轮的增压装置划分为一组,即X型布置方式。为了保证汽车的在制动过程中的稳定性,要求每组内的增压装置必须同时处于正常工作的状态。当同组中有一个增压装置故障后,另一个即使能正常工作也会被从制动系统中屏蔽掉。
如上文所述,无论是X型布置方式还是H型布置方式,只要一组中的两个增压装置故障后,属于同一组的另一增压装置也被屏蔽,这样,汽车会由于某一个增压装置的故障,而失去一半的制动力,导致了汽车的分布式制动系统的冗余性能较低。
为了提高分布式制动系统的冗余性能,本申请实施例提供了一种新的分布式制动系统,即通过第一控制阀(17)将属于同组的增压装置对应的制动管路相连,当两条制动管路中有一条制动管路出现故障时,可以控制第一控制阀(17)处于导通状态,使得两条制动管路中的制动液可以流通,此时,属于同组的两个增压装置中的任一个都可以通过两个相通的制动管路,为汽车的两个轮缸制动力,因此,第一控制阀(17)又称“连通阀”。下文将结合图1介绍本申请实施例的分布式制动系统。
需要说明的是,为了便于描述分布式制动系统中各个制动元件之间的连接关系,会使用“压力出端口”以及“压力入端口”等术语。其中,“压力出端口”可以理解为制动液流出的端口,“压力入端口”可以理解为制动液流入的端口。也就是说,“压力出端口”以及“压力入端口”可以理解为是从功能上限定端口的作用,上述“压力出端口”以及“压力入端口”可以用于限定一个物理端口在不同的工作模式下的作用,上述“压力出端口”以及“压力入端口”还可以对应两个不同的物理端口,本申请实施例对此不做限定。
通常,下文中介绍设备A的压力入端口与设备B的压力出端口相连时,可以理解为对应两个物理端口,并且用于描述设备A与设备B之间的连接关系。
图1是本申请实施例的分布式制动系统100的示意图。图1所示的分布式制动系统100包括第一增压装置(5)、第二增压装置(6)以及第一控制阀(17)。
所述第一增压装置(5),用于通过调节第一制动管路(111)内的制动液的压力,以控制施加在所述汽车的第一制动轮缸(13)上的制动力。
上述第一增压装置(5)的压力出端口与第一制动管路(111)的压力入端口相连,第一制动管路(111)的压力出端口与第一制动轮缸(13)的压力入端口相连。相应地,第一增压装置(5)可以用于为第一制动管路(111)的制动液进行增压,以增加施加在汽车的第一制动轮缸(13)上的制动力。
可选地,第一增压装置(5)包括电机以及液压缸,电机用于驱动液压缸中的活塞做 直线往复运动,以为第一制动管路(111)内的制动液增压。
所述第二增压装置(6),用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述汽车的第二制动轮缸(14)上的制动力。
上述第二增压装置(6)的压力出端口与第二制动管路(112)的压力入端口相连,第二制动管路(112)的压力出端口与第二制动轮缸(14)的压力入端口相连。相应地,第二增压装置(6)可以用于为第二制动管路(112)的制动液进行增压,以增加施加在汽车的第二制动轮缸(14)上的制动力。
可选地,第二增压装置(6)包括电机以及液压缸,电机用于驱动液压缸中的活塞做直线往复运动,以为第二制动管路(112)内的制动液增压。
所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),若所述第一控制阀(17)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(112)连通;若所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开。
上述第一控制阀(17)处于导通状态时,第一增压装置(5)用于通过调节第一制动管路(111)内制动液的压力,以调节第二制动管路(112)内制动液的压力。也就是说,第一增压装置(5)可以通过连通的第一制动管路(111)和第二制动管路(112),调节第二制动轮缸(14)的制动力。
需要说明的是,在图1所示的分布式制动系统100中,如果控制第一控制阀(17)处于导通状态后,为了防止制动液经过第五制动管路(115)回流至制动主缸,可以控制隔离阀(4)处于断开状态,以阻隔制动液通过第五制动管路(115)回流。
上述第一控制阀(17)处于导通状态时,第二增压装置(6)用于通过调节第一制动管路(111)内制动液的压力,以调节第二制动管路(112)内的制动液的压力。也就是说,第二增压装置(6)可以通过连通的第一制动管路(111)和第二制动管路(112),调节第一制动轮缸(13)的制动力。
相应地,上述第一控制阀(17)处于断开状态时,则第一制动管路(111)与第二制动管路(112)断开,可以理解为第一制动管路(111)与第二制动管路(112)为两条独立的制动管路,此时,这两条制动管路中制动液不能相互流通,被第一控制阀(17)阻断,相应地,这两条制动管路中制动液的压力可以相同也可以不同。
可选地,上述第一制动轮缸(13)与上述第二制动轮缸(14)为H型布置方式中属于同组的制动轮缸。即上述第一制动轮缸(13)为汽车的右前轮的制动轮缸,且第二制动轮缸(14)为汽车的左前轮的制动轮缸。或者,第一制动轮缸(13)为汽车的右后轮的制动轮缸,且第二制动轮缸(14)为汽车的左后轮的制动轮缸。
可选地,上述第一制动轮缸(13)与上述第二制动轮缸(14)为X型布置方式中属于同组的制动轮缸。即,第一制动轮缸(13)为汽车的右后轮的制动轮缸,且第二制动轮缸(14)为汽车的左前轮的制动轮缸;或者,第一制动轮缸(13)为汽车的右前轮的制动轮缸,且第二制动轮缸(14)为汽车的左后轮的制动轮缸。
如上文所述,无论是X型布置还是H型布置,4个车轮对应的4套增压装置会被划分为两组,上文介绍了其中一组下文介绍另一组。需要说明的是,在本申请实施例中,另一组可以使用现有的分布式制动系统的连接方式,也可以使用本申请提供的有利于提高冗余 性能的连接方式。即在第三增压装置(7)控制的第三制动管路(113),与第四增压装置(8)控制的第四制动管路(114)之间连接第二控制阀(19)。
为了便于区分,将上述第一制动轮缸(13)与上述第二制动轮缸(14)所在的组称为“第一组”,将第三制动轮缸(15)与第四制动轮缸(16)所在的组称为“第二组”。
所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在第三制动轮缸(15)上的制动力。
上述第三增压装置(7)的压力出端口与第三制动管路(113)的压力入端口相连,第三制动管路(113)的压力出端口与第三制动轮缸(15)的压力入端口相连。相应地,第三增压装置(7)可以用于为第三制动管路(113)的制动液进行增压,以增加施加在汽车的第三制动轮缸(15)上的制动力。
可选地,第三增压装置(7)包括电机以及液压缸,电机用于驱动液压缸中的活塞做直线往复运动,以为第三制动管路(113)内的制动液增压。
所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在第四制动轮缸(16)上的制动力。
上述第四增压装置(8)的压力出端口与第四制动管路(114)的压力入端口相连,第四制动管路(114)的压力出端口与第四制动轮缸(16)的压力入端口相连。相应地,第四增压装置(8)可以用于为第四制动管路(114)的制动液进行增压,以增加施加在汽车的第四制动轮缸(16)上的制动力。
可选地,第四增压装置(8)包括电机以及液压缸,电机用于驱动液压缸中的活塞做直线往复运动,以为第四制动管路(114)内的制动液增压。
所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),若所述第二控制阀(19)处于导通状态,则所述第三制动管路(113)与所述第四制动管路(114)连通;若所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开。
上述第二控制阀(19)处于导通状态,第三增压装置(7)用于通过调节第三制动管路(113)内制动液的压力,以调节第四制动管路(114)内制动液的压力。也就是说,第三增压装置(7)可以通过连通的第三制动管路(113)和第四制动管路(114),调节第四制动轮缸(16)的制动力。
上述第二控制阀(19)处于导通状态,第四增压装置(8)用于通过调节第四制动管路(114)内制动液的压力,以调节第三制动管路(113)内的制动液的压力。也就是说,第四增压装置(8)可以通过连通的第三制动管路(113)和第四制动管路(114),调节第三制动轮缸(15)的制动力。
相应地,上述第二控制阀(19)处于断开状态时,则第三制动管路(113)和第四制动管路(114)断开,可以理解为第三制动管路(113)与第四制动管路(114)为两条独立的制动管路,此时,这两条制动管路中制动液不能相互流通,被第二控制阀(19)阻断,相应地,这两条制动管路中制动液的压力可以相同也可以不同。
可选地,上述第三制动轮缸(15)与上述第四制动轮缸(16)为H型布置方式中属于同组的制动轮缸,且与第一制动轮缸(13)和第二制动轮缸(14)属于不同的组。
即,上述第一制动轮缸(13)为汽车的右前轮的制动轮缸,且第二制动轮缸(14)为 汽车的左前轮的制动轮缸,则第三制动轮缸(15)为汽车的右后轮的制动轮缸,且第四制动轮缸(16)为汽车的左后轮的制动轮缸。或者,第一制动轮缸(13)为汽车的右后轮的制动轮缸,且第二制动轮缸(14)为汽车的左后轮的制动轮缸。上述第三制动轮缸(15)为汽车的右前轮的制动轮缸,且第四制动轮缸(16)为汽车的左前轮的制动轮缸。
可选地,上述第三制动轮缸(15)与上述第四制动轮缸(16)为X型布置方式中属于同组的制动轮缸,且与第一制动轮缸(13)和第二制动轮缸(14)属于不同的组。
即,第一制动轮缸(13)为汽车的右后轮的制动轮缸,且第二制动轮缸(14)为汽车的左前轮的制动轮缸,则第三制动轮缸(15)为汽车的右前轮的制动轮缸,且第四制动轮缸(16)为汽车的左后轮的制动轮缸。或者,第一制动轮缸(13)为汽车的右前轮的制动轮缸,且第二制动轮缸(14)为汽车的左后轮的制动轮缸,则第三制动轮缸(15)为汽车的右后轮的制动轮缸,且第四制动轮缸(16)为汽车的左前轮的制动轮缸。
通常,为了提高分布式制动系统的冗余性能,上述四个增压装置(5、6、7、8)除了可以由控制器控制每个增压装置需要提供的制动液的压力外,还可以由驾驶员踩踏制动踏板,通过制动主缸(3)的第一液压缸(310)向第五制动管路(115)输入制动液,并通过第二液压缸(311)向第六制动管路(116)输入制动液,以分别调节上述4个制动管路(111、112、113、114)中制动液的压力。
然而,现有的分布式制动系统中,常用的工作模式是控制隔离阀(4、20)处于断开状态,且分布式制动系统中的制动管路(111、112)与分布式制动系统中的制动管路(113、114)相互独立,这种通过独立的制动管路为4个制动轮缸(13、14、15、16)提供制动力的方案,有可能导致分布式制动系统100中制动管路内制动液的压力不均衡。
为了避免上述问题,本申请还提供一种新的制动系统200,即将第二制动管路(112)和第三制动管路(113)相连,并设置第三控制阀(18)。当第三控制阀(18)处于导通状态时,第二制动管路(112)与第三制动管路(113)连通,这样,两个制动管路内的制动液的压力可以达到均衡。当第三控制阀(18)处于断开状态时,第二制动管路(112)与第三制动管路(113)断开。
另一方面,若第一增压装置(5)和/或第二增压装置(6)故障后,也可以控制第三控制阀(18)处于导通状态,这样,第三增压装置(7)和/或第四增压装置(8)可以替代故障的增压装置,为相应的制动轮缸提供制动力。当然,若第三增压装置(7)和/或第四增压装置(8)故障后,也可以控制第三控制阀(18)处于导通状态,这样,第一增压装置(5)和/或第二增压装置(6)可以替代故障的增压装置,为相应的制动轮缸提供制动力。
下文结合图2介绍本申请实施例的分布式制动系统200的示意图。图2所示的分布式制动系统200包括第三控制阀(18)。应理解,分布式制动系统200中功能与分布式制动系统100中功能相同的元件使用相同的编号,为了简洁,下文中不再具体介绍。
上述第五制动管路(115)的压力入端口与制动主缸(3)的第一液压缸(310)的压力出端口相连。或者说,第五制动管路(115)中制动液的压力可以由制动主缸(3)的第一液压缸(310)提供。
相应地,第五制动管路(115)的压力出端口与第一隔离阀(4)的压力入端口相连,第二制动管路(112)的压力入端口与第一隔离阀(4)的压力出端口相连。当第一隔离阀 (4)处于导通状态时,第二制动管路(112)内制动液的压力可由制动主缸(3)的第一液压缸(310)提供。
上述第六制动管路(116)的压力入端口与制动主缸(3)的第二液压缸(311)的压力出端口相连。或者说,第六制动管路(116)中制动液的压力可以由制动主缸(3)的第二液压缸(311)提供。
相应地,第六制动管路(116)的压力出端口与第二隔离阀(20)的压力入端口相连,第三制动管路(113)的压力入端口与第二隔离阀(20)的压力出端口相连。当第二隔离阀(20)处于导通状态时,第三制动管路(113)内制动液的压力可由制动主缸(3)的第二液压缸(311)提供。
所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),若所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)导通,若所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
上述第三控制阀(18)处于导通状态,第二增压装置(6)可以通过调节第二制动管路(112)内制动液的压力,以调节第三制动管路(113)内制动液的压力。也就是说,第二增压装置(6)可以可以通过连通的第二制动管路(112)和第三制动管路(113),调节第三制动轮缸(15)的制动力。
上述第三控制阀(18)处于导通状态,第三增压装置(7)用于通过调节第三制动管路(113)内制动液的压力,以调节第二制动管路(112)内的制动液的压力。也就是说,第三增压装置(7)可以通过连通的第二制动管路(112)和第三制动管路(113),调节第二制动轮缸(14)的制动力。
相应地,上述第三控制阀(18)处于断开状态时,则第二制动管路(112)和第三制动管路(113)断开,可以理解为第二制动管路(112)和第三制动管路(113)为两条独立的制动管路,此时,这两条制动管路中制动液不能相互流通,被第三控制阀(18)阻断,相应地,这两条制动管路中制动液的压力可以相同也可以不同。
需要说明的是,本申请实施例的提供的第三控制阀(18)、第一控制阀(17)以及第二控制阀(19)可以单独地应用于制动系统中,也可以以结合方式(参见图2)应用于一个分布式制动系统中,本申请实施例对此不做限定。
为了提高分布式制动系统的冗余性能,分布式制动系统除了以机械制动模式实现制动功能,还可以以线控制动模式实现制动功能。其中,机械制度模式为通过制动主缸(3)经由第五制动管路(115)和第六制动管路(116)向4个制动轮缸(13、14、15、16)提供制动力。线控制动模式为在驾驶员踩制动踏板,向制动系统输入需求制动力后,由控制器基于需求制动力控制4个增压装置(5、6、7、8)为4个制动轮缸(13、14、15、16)提供制动力。当机械的制动模式和线控的制动模式中有一种模式失效后,可以通过另一种模式维持制动系统的制动性能。
在机械制动模式下,若制动主缸(3)为串联双腔式制动主缸,则由于制动主缸(3)内两个腔的串联结构,使得即使第五控制管路(115)和第六控制管路(116)是独立的制动管路,也可以使得制动系统内制动液的压力达到均衡。此时,无需通过控制第三控制阀(18)处于导通状态,以使得制动系统内制动液的压力达到均衡。
在线控制动模式下,需要将位于第五制动管路(115)上的第一隔离阀(4),以及位于第六制动管路(116)上的第二隔离阀(20)设置为断开状态,这样当驾驶员踩制动踏板,推动制动主缸(3)的活塞产生相对于制动主缸(3)的缸体的位移后,第五制动管路(115)和第六制动管路(116)内的制动液由于隔离阀(4、20)的隔断,无法流入4条制动管路(111、112、113、114)。
但是,当第四控制阀(22)处于导通状态时,第六制动管路(116)内的制动液可以通过第四控制阀(22),输送到踏板感觉模拟器(21),推动踏板感觉模拟器(21)中的活塞产生相对于踏板感觉模拟器(21)壳体的位移。此时,控制器便可通过踏板感觉模拟器(21)中活塞的位移,确定第三制动管路(113)中制动液的压力,并基于第三制动管路(113)中制动液的压力,控制4个增压装置(5、6、7、8)为4个制动轮缸(13、14、15、16)提供制动力。
需要说明的是,在上述线控制动的模式下,控制器除了基于踏板感觉模拟器(21)确定驾驶员需求的制动力,还可以基于其他方式确定驾驶员需求的制动力。例如可以基于踏板行程传感器检测的踏板行程确定驾驶员需求的制动力。又例如,可以基于压力传感器检测的制动主缸(3)的压力出端口的制动液的压力,确定驾驶员需求的制动力。本申请实施例对此不做具体限定。
为了提高控制制动系统的可靠性,还可以在第一制动管路(111)、第二制动管路(112)、第三制动管路(113)以及第四制动管路(114)中的一条或多条制动管路上设置进液阀(9、10、11、12)。当进液阀(9、10、11、12)处于导通状态时,各个制动管路上的增压装置可以将制动液输送到对应的制动轮缸。当进液阀(9、10、11、12)处于断开状态时,各个制动管路上的增压装置无法将制动液输送到对应的制动轮缸,制动液被制动管路上的进液阀阻断。
例如,第一进液阀(9)位于第一增压装置(5)与第一制动轮缸(13)之间的第一制动管路(111),或者说,第一制动管路(111)的压力出端口通过第一进液阀(9)与第一制动轮缸(13)的压力入端口相连。
又例如,第二进液阀(10)位于第二增压装置(6)与第二制动轮缸(13)之间的第二制动管路(112),或者说,第二制动管路(112)的压力出端口通过第二进液阀(10)与第二制动轮缸(14)的压力入端口相连。
又例如,第三进液阀(11)位于第三增压装置(7)与第三制动轮缸(15)之间的第三制动管路(113),或者说,第三制动管路(113)的压力出端口通过第三进液阀(11)与第三制动轮缸(15)的压力入端口相连。
又例如,第四进液阀(12)位于第四增压装置(8)与第四制动轮缸(16)之间的第四制动管路(114),或者说,第四制动管路(114)的压力出端口通过第四进液阀(12)与第四制动轮缸(16)的压力入端口相连。
需要说明的是,上述进液阀(9、10、11、12)是对控制阀(9、10、11、12)从功能方面的限定,在一些情况下,控制阀(9、10、11、12)还可以充当出液阀的作用。例如,当4个增压装置(5、6、7、8)的电机反转时,可以将制动轮缸中的制动液,通过4条制动管路(111、112、113、114)抽回对应的增压装置,此时,控制阀(9、10、11、12)可以充当出液阀。
通常,对于分布式制动系统而言,在一些情况下,还需要减小在制动轮缸上的制动力。在本申请实施例的分布式制动系统200中,可以通过增压装置实现上述的减压功能。例如,增压装置可以包括电机(312)和液压缸(313)。当增压装置的电机(312)正转时,可以推动液压缸(313)中的活塞运动,将液压缸(313)中的制动液压入对应的制动管路,以为制动管路中的制动液增压。当增压装置的电机(312)反转时,可以拉动液压缸(313)中的活塞运动,将对应的制动管路、制动轮缸中的制动液抽回液压缸(313)中,以为制动轮缸降压。
当然,也可以在4条制动管路(111、112、113、114)上设置出液阀(23、24、25、26),当出液阀处于导通状态时,4条制动管路(111、112、113、114)内的制动液可以通过出液管路(117)送到储液装置(2),以便循环利用。当出液阀处于断开状态时,制动管路内的制动液无法流向储液装置(2)。
下文结合图3介绍带出液阀的分布式制动系统。图3是本申请另一实施例的分布式制动系统300的示意图。应理解,图3所示的分布式制动系统300中与分布式制动系统200中作用相同的元件使用的编号相同,为了简洁,在此不再赘述。
如图3所示,在第一制动轮缸(13)的压力入端口与储液装置(2)之间的出液管路(117)上,设置有第一出液阀(23)。当第一出液阀(23)处于导通状态时,第一制动管路(111)中制动液的可以通过出液阀(23)流向出液管路(117),最后流入储液装置(2),以避免通过制动液向第一制动轮缸(13)增压。当第一出液阀(23)处于断开状态时,第一制动管路(111)中的制动液的无法通过第一出液阀(23)流向出液管路(117)。
在第二制动轮缸(14)的压力入端口与储液装置(2)之间的出液管路(117)上,设置有第二出液阀(24)。当第二出液阀(24)处于导通状态时,第二制动管路(112)中制动液的可以通过第二出液阀(24)流向出液管路(117),最后流入储液装置(2),以避免通过制动液向第二制动轮缸(14)增压。当第二出液阀(24)处于断开状态时,第二制动管路(112)中制动液的无法通过第二出液阀(24)流向出液管路(117)。
在第三制动轮缸(15)的压力入端口与储液装置(2)之间的出液管路(117)上,设置有第三出液阀(25)。当第三出液阀(25)处于导通状态时,第三制动管路(113)中制动液的可以通过第三出液阀(25)流向出液管路(117),最后流入储液装置(2),以避免通过制动液向第三制动轮缸(15)增压。当第三出液阀(25)处于断开状态时,第三制动管路(113)中制动液的无法通过第三出液阀(25)流向出液管路(117)。
在第四制动轮缸(16)的压力入端口与储液装置(2)之间的出液管路(117)上,设置有第三出液阀(26)。当第四出液阀(26)处于导通状态时,第四制动管路(112)中制动液的可以通过第四出液阀(26)流向出液管路(117),最后流入储液装置(2),以避免通过制动液向第四制动轮缸(16)增压。当第四出液阀(26)处于断开状态时,第四制动管路(114)中制动液的无法通过第四出液阀(26)流向出液管路(117)。
当然,分布式制动系统还可以使用其他的出液方案,例如将上述通过电机(312)反转的出液方案,与上述基于出液阀的出液方案结合。本申请实施例对此不做限定。
可选地,上文中介绍的控制阀可以为电磁阀。即在未向电磁阀供电时,电磁阀处于默认状态,当向电磁阀供电后,电磁阀的工作状态(包括导通状态或者断开状态)可由控制器控制。下文具体介绍上述电磁阀的默认状态的一种可能的组合方式。
在上述分布式制动系统100、分布式制动系统200以及分布式制动系统300中,为了减少控制器对电磁阀工作状态的控制,通常将第一控制阀(17)和第二控制阀(19)设置为常开阀,将第三控制阀(18)设置为常闭阀,将出液阀(23、24、25、26)设置为常闭阀。将进液阀(9、10、11、12)设置为常开阀。将隔离阀(4、20)设置为常开阀。将第四控制阀(22)设置为常闭阀。
需要说明的是,上述电磁阀的默认状态可以理解为一种可能的配置方式,本申请实施例对电磁阀的默认状态不做具体限定。
在本申请实施例中,通过将隔离阀(4、20)设置为常开阀,可以使得在分布式制动系统的供电功能故障的情况下,第五制动管路(115)以及第六制动管路(116)内的制动液可以流向4个制动轮缸(13、14、15、16),有利于提高分布式制动系统的可靠性。
上述分布式制动系统100、分布式制动系统200以及分布式制动系统300中的任意一种制动系统都可以单独应用于汽车中,下文以将分布式制动系统200应用于汽车400为例,介绍本申请实施例提供的汽车。需要说明的是,汽车400中与分布式制动系统200中功能相同的元件,使用的编号相同。为了简洁,下文不再一一介绍。
图4是本申请实施例提供的汽车的示意图。图4所示的汽车400包括制动踏板(1)。当驾驶员踩踏制动踏板(1)时,制动踏板(1)推动制动主缸(3)中的活塞运动,将第一液压缸(310)和第二液压缸(311)中的制动液压入第五制动管路(115)和第六制动管路(116)。
可选地,图4所示的汽车400还可以包括踏板行程传感器(410),踏板行程传感器(410)用于检测制动踏板(1)推动活塞时产生的位移,或者说,是活塞与制动主缸(3)缸体之间的相对位移。踏板行程传感器(410)将检测到的位移发送给控制器,由控制器控制4个增压装置(5、6、7、8)为4个制动轮缸(13、14、15、16)提供制动力。
由上可知,踏板行程传感器(410)与踏板感觉模拟器(21)可以提高分布式制动系统的冗余性能。例如,当踏板行程传感器(410)失效后,控制器可以基于踏板感觉模拟器(21)的反馈,控制4个增压装置(5、6、7、8)为4个制动轮缸(13、14、15、16)提供制动力。
上文结合图1至图4介绍了本申请实施例的分布式制动系统以及汽车的架构,下文结合图5至图12介绍分布式制动系统的多种工作模式。其中图5至图9介绍了分布式制动系统200的多种工作模式,图10至图12介绍了本申请实施例的分布式制动系统300的多种工作模式。
假设分布式制动系统200中控制阀的默认状态为第一控制阀(17)和第二控制阀(19)设置为常开阀,将第三控制阀(18)设置为常闭阀,将出液阀(23、24、25、26)设置为常闭阀。将进液阀(9、10、11、12)设置为常开阀。将隔离阀(4、20)设置为常开阀。将第四控制阀(22)设置为常闭阀。
图5是本申请实施例的分布式制动系统200的工作模式的示意图。图5示出了制动系统200在线控制动模式下的增压过程中制动液的流动路径。
在线控制动模式下,控制器控制第四控制阀(22)处于导通状态,隔离阀(4、20)处于断开状态,其余控制阀均处于上述默认状态。
当驾驶员踩下制动踏板,制动主缸(3)中的制动液,经由第六制动管路(116)流入 踏板感觉模拟器(21)中。由于隔离阀(4、20)处于断开状态,制动液不会经由第五制动管路(115)以及第六制动管路(116)进入制动轮缸(13、14、15、16),从而实现制动主缸(3)与制动轮缸(13、14、15、16)的制动解耦。
相应地,控制器通过基于驾驶员通过踩踏制动踏板输入的需求制动力,并基于需求制动力控制4个增压装置(5、6、7、8),通过4条制动管路(111、112、113、114),将制动液输入4个制动轮缸(13、14、15、16)中,以通过制动轮缸为车轮产生制动力,实现制动。
在制动过程中,当需要对制动管路内制动液的压力进行平衡时,控制器可以控制第三控制阀(18)处于导通状态,如此,制动液可以在第二制动管路(112)以及第三制动管路(113)之间流动,使得第二制动管路(112)以及第三制动管路(113)内制动液的压力达到平衡。
当驾驶员踩踏板力度减小或未完全松开制动踏板时(图中未示出制动踏板),此时制动需求减小。控制器可以根据踏板行程传感器检测到的踏板行程,控制4个增压装置(5、6、7、8)的电机(312)反转,实现制动系统减压。
当驾驶员完全松开制动踏板时,一方面,控制器可以控制4个增压装置(5、6、7、8)的电机(312)反转,实现制动系统减压。另一方面,控制器还可以控制隔离阀(4、20)处于导通状态,此时,制动轮缸(13、14、15、16)中的制动液由于压力差,一部分流向4个增压装置(5、6、7、8),另一部分通过第五制动管路(115)和第六制动管路(116)流向制动主缸(3),最终制动轮缸中制动液的压力接近0或为0。
图6是本申请实施例的分布式制动系统200的工作模式的示意图。图6示出了制动系统200在自动驾驶模式下的增压过程中制动液的流动路径。需要说明的是,图6所示的流动路径与图5所示的流动路径类似。主要区别是在上述线控制动模式下,制动系统的工作依赖于驾驶员的操作,而在自动驾驶模式下,制动系统的工作可以不再依赖于驾驶员的操作。
在自动驾驶模式下,控制器控制隔离阀(4、20)处于断开状态,其余控制阀均处于上述默认状态。
由于此时制动系统的工作不再需要驾驶员参与,制动力需求可以由高级驾驶辅助系统(advanced driving assistant system,ADAS)以指令的方式发送给控制器。
当ADAS通知控制器制动力需求后,控制器控制4个增压装置(5、6、7、8),分别通过4条制动管路(111、112、113、114)将制动液输入4个制动轮缸(13、14、15、16)中,以通过制动轮缸为车轮产生制动力,实现制动。
在制动过程中,当需要对制动管路内制动液的压力进行平衡时,控制器可以控制第三控制阀(18)处于导通状态,制动液可以在第二制动管路(112)以及第三制动管路(113)之间流动,使得第二制动管路(112)以及第三制动管路(113)内制动液的压力达到平衡。
当ADAS通知控制器降低制动力需求,或者制动力需求为0后,控制器可以控制4个增压装置(5、6、7、8)的电机(312)反转,实现制动系统减压。
图7是本申请实施例的分布式制动系统200的工作模式的示意图。图7示出了制动系统200在单轮制动模式下的增压过程中制动液的流动路径。其中单轮制动模式可以应用于电子稳定性控制(electronic stability control,ESC)、制动防抱死系统(antilock brake system、 ABS)、牵引力控制系统(traction control system,TCS)等功能。
控制器确定需要对第一制动轮缸(13)进行增压后,控制第一控制阀(17)处于断开状态,其他控制阀处于上述默认状态。控制器控制第一增压装置(5)的电机(312)正转,以将制动液通过第一制动管路(111)压入第一制动轮缸(13),实现为第一制动轮缸(13)增压。
控制器确定需要对第一制动轮缸(13)进行减压后,控制第一控制阀(17)处于断开状态,其他控制阀处于上述默认状态。控制器控制第一增压装置(5)的电机(312)反转,以将制动液通过第一制动管路(111),从第一制动轮缸(13)抽回至第一增压装置(5),实现为第一制动轮缸(13)减压。
需要说明的是,图7所示的流动路径,以调整第一制动轮缸(13)的制动力为例进行介绍。对第四制动轮缸(16)制动力的调整类似,即控制第二控制阀(19)处于断开状态即可。为了简洁,不再结合附图详细说明。
图8是本申请实施例的分布式制动系统200的工作模式的示意图。图8示出了制动系统200在单轮制动模式下的增压过程中制动液的流动路径。其中单轮制动模式可以应用于ESC、ABS、TCS等功能。
控制器确定需要对第二制动轮缸(14)进行增压后,控制第一控制阀(17)以及隔离阀(4)处于断开状态,其他控制阀处于上述默认状态。控制器控制第二增压装置(6)的电机(312)正转,以将制动液通过第二制动管路(112)压入第二制动轮缸(14),实现为第二制动轮缸(14)增压。
控制器确定需要对第二制动轮缸(14)进行减压后,控制第一控制阀(17)以及隔离阀(4)处于断开状态,其他控制阀处于上述默认状态。控制器控制第二增压装置(6)的电机(312)反转,以将制动液通过第二制动管路(112)从第二制动轮缸(14)中抽回至第二增压装置(6),实现为第二制动轮缸(14)减压。
需要说明的是,图8所示的流动路径,以调整第二制动轮缸(14)的制动力为例进行介绍。对第三制动轮缸(15)制动力的调整类似,即控制第二控制阀(19)以及隔离阀(20)处于断开状态即可。为了简洁,不再结合附图详细说明。
图9是本申请实施例的分布式制动系统200的工作模式的示意图。图9示出了制动系统200在机械制动模式下的增压过程中制动液的流动路径。
在机械制动模式下,制动系统200中的控制阀均处于上述默认状态。
当驾驶员踩下制动踏板,制动主缸(3)中的制动液,经由第五制动管路(115)流入第二制动管路(112)和第一制动管路(111),经由第六制动管路(116)流入第三制动管路(113)和第四制动管路(114),从而为制动轮缸(13、14、15、16)提供制动力。
当驾驶员踩踏板力度减小或未完全松开踏板时,需求制动力减小,4个制动轮缸(13、14、15、16)内的制动液在压力差作用下,经过第五制动管路(115)和第六制动管路(116)流回制动主缸(3)中。
当驾驶员完全松开制动踏板,制动主缸(3)与储液装置(2)连通,4个制动轮缸(13、14、15、16)中的制动液最终流回储液装置(2)中。
需要说明的是,上述机械制动模式、线控制动模式、自动驾驶模式可以结合使用,以提高分布式制动系统200的冗余性能。例如,当分布式制动系统200中的增压装置的增压 功能全部失效后,分布式制动系统200可以切入机械制动模式。又例如,当驾驶员希望进入自动驾驶模式时,分布式制动系统200可以由机械制动模式转换为自动驾驶模式。
上文结合图5至图9介绍了分布式制动系统200的4种工作模式,即线控制动模式、自动驾驶模式,单轮制动模式以及机械制动模式。在本申请提供的分布式制动系统200中,分布式制动系统200还具有特殊的功能,工作在冗余模式下,即当4个增压装置(5、6、7、8)中,只有部分增压装置可以正常工作时,控制器可以通过控制控制阀的工作状态,使得可以正常工作的增压装置替代无法正常工作的增压装置。
下文结合图10至图12介绍,分布式制动系统200工作在上述工作模式下,结合冗余模式以提高分布式制动系统200的冗余性能的方案。
图10是本申请实施例的分布式制动系统200的工作模式的示意图。图10示出了制动系统200在线控制动模式下,且第二增压装置(6)故障的后为第二制动轮缸(14)增压的过程中制动液的流动路径。需要说明的是,分布式制动系统200中其他的增压装置故障后,控制器控制分布式制动系统200中元件的工作状态的原理与下文介绍的原理类似,为了简洁,不再具体赘述。
在线控制动模式下,控制器控制第四控制阀(22)处于导通状态,隔离阀(4、20)处于断开状态。其余的控制阀处于上述默认状态。
当驾驶员踩下制动踏板,制动主缸(3)中的制动液,由第六制动管路(116)流入踏板感觉模拟器(21)中。由于隔离阀(4、20)处于断开状态,制动主缸(3)中的制动液不会进入制动轮缸,以实现制动轮缸与制动主缸的解耦。
控制器检测到第二增压装置(6)故障,无法为第四制动轮缸(14)提供制动力。此时,若按上文介绍的线控模式正常控制,则容易导致制动轮缸(13、14)的增压速度和能力降低。因此,控制器需要控制第三控制阀(18)处于导通状态,以将余下的增压装置(5、7、8)的能力均衡利用,以提高分布式制动系统的可靠性。
控制器通过踏板行程传感器(410)采集的踏板行程,确定需求制动力(或称“目标制动力”)。控制器基于需求制动力,控制正常工作的增压装置(5、7、8),通过4条制动管路(111、112、113、114),向制动轮缸(13、14、15、16)输送制动液,以为制动轮缸提供制动力。
当驾驶员踩踏板力度减小或未完全松开制动踏板时(图中未示出制动踏板),制动需求减小,控制器通过踏板行程传感器(410)获取踏板行程。控制器基于踏板行程确定需求制动力。控制器控制正常工作的增压装置(5、7、8)中的电机(312)反转,以减少制动轮缸的制动力。
当驾驶员完全松开制动踏板时,一方面,控制器可以控制正常工作的增压装置(5、7、8)的电机(312)反转,实现制动系统减压。另一方面,控制器还可以控制隔离阀(4、20)处于导通状态,此时,制动轮缸(13、14、15、16)中的制动液由于压力差,一部分流向3个增压装置(5、7、8),另一部分通过第五制动管路(115)和第六制动管路(116)流向制动主缸(3),最终制动轮缸中制动液的压力接近0或为0。
图11是本申请实施例的分布式制动系统200的工作模式的示意图。图11示出了制动系统200在自动驾驶下,且第二增压装置(6)故障的后为第二制动轮缸(14)增压的过程中制动液的流动路径。需要说明的是,分布式制动系统200中其他的增压装置故障后, 控制器控制分布式制动系统200中元件的工作状态的原理与下文介绍的原理类似,为了简洁,不再具体赘述。
图11所示的流动路径与图10所示的流动路径类似。主要区别是在上述线控制动模式下,制动系统的工作依赖于驾驶员的操作,而在自动驾驶模式下,制动系统的工作可以不再依赖于驾驶员的操作。
假设第二增压装置(6)故障,当ADAS通知控制器制动力需求后,控制器控制正常工作的增压装置(5、7、8),分别通过4条制动管路(111、112、113、114)将制动液输入4个制动轮缸(13、14、15、16)中,以通过制动轮缸为车轮产生制动力,实现制动功能。
当ADAS通知控制器降低制动力需求,或者制动力需求为0后,控制器可以控制正常工作的增压装置(5、7、8)的电机(312)反转,实现制动系统减压。
图12是本申请实施例的分布式制动系统200的工作模式的示意图。图12示出了制动系统200在自动驾驶下,且第二增压装置(6)故障的后为第二制动轮缸(14)增压的过程中制动液的流动路径。需要说明的是,分布式制动系统200中其他的增压装置故障后,控制器控制分布式制动系统200中元件的工作状态的原理与下文介绍的原理类似,为了简洁,不再具体赘述。上述单轮制动模式可以应用于ESC、ABS、TCS等功能。
假设控制器确定需要对第一制动轮缸(14)进行增压后,选择由第一增压装置(5)替代故障的第二增压装置(6)。
控制器控制第一进液阀(9)处于断开状态,第一隔离阀(4)处于断开状态。其他控制阀处于上述默认状态。
控制器控制第一增压装置(5)的电机(312)正转,以将制动液通过第一制动管路(111)压入第二制动管路(112),并通过第二制动管路(112)为第二制动轮缸(14)输送制动液,实现为第二制动轮缸(14)增压。此时,由于第一进液阀(9)处于断开状态,制动液无法通过第一制动管路(111)流入第一制动轮缸(13)。
假设控制器确定需要对第二制动轮缸(14)进行减压后,控制第一进液阀(9)处于断开状态,第一隔离阀(4)处于断开状态。其他控制阀处于上述默认状态。
控制器控制第一增压装置(5)的电机(312)反转,以将制动液通过第二制动管路(112)以及第一制动管路(111),从第二制动轮缸(14)抽回至第一增压装置(5),实现为第二制动轮缸(14)减压。
需要说明的是,图12所示的流动路径,以调整第二制动轮缸(14)的制动力为例进行介绍。当第四增压装置(8)故障后,可以由第三增压装置(7)控制第三制动轮缸(16)的制动力,具体的调整与上文原理相似,即控制第三进液阀(11)处于断开状态,第二隔离阀(20)处于断开状态,由第三增压装置(7)控制第四制动轮缸(16)的制动力。
当第一增压装置(5)故障后,可以由第二增压装置(6)控制第一制动轮缸(13)的制动力,具体的调整与上文原理相似,即控制第二进液阀(10)处于断开状态,第一隔离阀(4)处于断开状态,由第一增压装置(7)控制第二制动轮缸(14)的制动力。
当第三增压装置(7)故障后,可以由第四增压装置(8)控制第三制动轮缸(15)的制动力,具体的调整与上文原理相似,即控制第四进液阀(12)处于断开状态,第二隔离阀(20)处于断开状态,由第四增压装置(8)控制第三制动轮缸(15)的制动力。为了 简洁,不再对上述情况详细说明。
需要说明的是,当增压装置故障后,控制器可以以“就近选择”为原则选择替代的增压装置,以提高制动效率,降低控制的复杂度。例如,第一增压装置(5)与第二增压装置(6)可以互相替代。第三增压装置(8)与第四增压装置(9)可以相互替代。当然,也可以选择较远的增压装置作为替代。本申请实施例对此不做限定。
上文结合图5至图12介绍了本申请实施例的分布式制动系统200的工作模式,下文结合图13至图15介绍本申请实施例的分布式制动系统200的工作模式。应理解,两个分布式控制器系统的工作方式基本相同,主要区别在于出液的方式不同,因此,下文仅示例地列举了几种主要的工作模式,剩余的工作模式请参考上文关于分布式制动系统200的工作模式的介绍。
假设分布式制动系统300中控制阀的默认状态为:第一控制阀(17)和第二控制阀(19)为常开阀,第三控制阀(18)为常闭阀。进液阀(9、10、11、12)为常开阀。出液阀(23、24、25、26)为常闭阀。隔离阀(4、20)为常开阀。第四控制阀(22)为常闭阀。
图13是本申请实施例的分布式制动系统300的工作模式的示意图。图13示出了分布式制动系统300在线控制动模式下的增压过程中制动液的流动路径。
在线控制动模式下,控制器控制第四控制阀(22)处于导通状态,隔离阀(4、20)处于断开状态,其余控制阀均处于上述默认状态。
当驾驶员踩下制动踏板,制动主缸(3)中的制动液,经由第六制动管路(116)流入踏板感觉模拟器(21)中。由于隔离阀(4、20)处于断开状态,制动液不会经由第五制动管路(115)以及第六制动管路(116)进入制动轮缸(9),从而实现制动主缸(3)与制动轮缸(13、14、15、16)的制动解耦。
相应地,控制器通过踏板行程传感器(410)确定踏板行程,并基于获取的踏板行程确定需求制动力。控制器控制4个增压装置(5、6、7、8),分别通过4条制动管路(111、112、113、114)将制动液输入4个制动轮缸(13、14、15、16)中,以通过制动轮缸为车轮产生制动力,实现制动。
在制动过程中,当需要对制动管路内制动液的压力进行平衡时,控制器可以控制第三控制阀(18)处于导通状态,如此,制动液可以在第二制动管路(112)以及第三制动管路(113)之间流动,使得第二制动管路(112)以及第三制动管路(113)内制动液的压力达到平衡。
当驾驶员踩踏板力度减小或未完全松开制动踏板时(图中未示出制动踏板),此时制动需求减小。控制器可以根据踏板行程传感器检测到的踏板行程,控制4个增压装置(5、6、7、8)的电机(312)反转,实现制动系统减压。
当驾驶员完全松开制动踏板时,一方面,控制器可以控制4个出液阀(23、24、25、26)为处于导通状态,此时,制动轮缸(13、14、15、16)中的制动液由于压力差,会通过出液管路(117)流向储液装置(2)。实现制动系统减压。另一方面,控制器还可以控制隔离阀(4、20)处于导通状态,此时,制动轮缸(13、14、15、16)中的制动液由于压力差,通过第五制动管路(115)和第六制动管路(116)流向制动主缸(3),最终制动轮缸中制动液的压力接近0或为0。
图14是本申请实施例的分布式制动系统300的工作模式的示意图。图6示出了制动 系统200在自动驾驶模式下的增压过程中制动液的流动路径。需要说明的是,图6所示的流动路径与图5所示的流动路径类似。主要区别是在上述线控制动模式下,制动系统的工作依赖于驾驶员的操作,而在自动驾驶模式下,制动系统的工作可以不再依赖于驾驶员的操作。
在自动驾驶模式下,由于制动系统的工作不再需要驾驶员参与,制动力需求可以由高级驾驶辅助系统(advanced driving assistant system,ADAS)以指令的方式发送给控制器。
当ADAS通知控制器制动力需求后,控制器控制4个增压装置(5、6、7、8),分别通过4条制动管路(111、112、113、114)将制动液输入4个制动轮缸(13、14、15、16)中,以通过制动轮缸为车轮产生制动力,实现制动。
在制动过程中,当需要对制动管路内制动液的压力进行平衡时,控制器可以控制第三控制阀(18)处于导通状态,如此,制动液可以在第二制动管路(112)以及第三制动管路(113)之间流动,使得第二制动管路(112)以及第三制动管路(113)内制动液的压力达到平衡。
当ADAS通知控制器降低制动力需求,或者制动力需求为0后,控制器可以控制4个增压装置(5、6、7、8)的电机(312)反转,实现制动系统减压。
图15是本申请实施例的分布式制动系统300的工作模式的示意图。图15示出了制动系统300在单轮制动模式下的增压过程中制动液的流动路径。其中单轮制动模式可以应用于ESC、ABS、TCS等功能。
控制器确定需要对第一制动轮缸(13)进行增压后,控制第一控制阀(17)处于断开状态,其他控制阀处于上述默认状态。控制器控制第一增压装置(5)的电机(312)正转,以将制动液通过第一制动管路(111)压入第一制动轮缸(13),实现为第一制动轮缸(13)增压。
控制器确定需要对第一制动轮缸(13)进行减压后,控制第一控制阀(17)处于断开状态,控制第一出液阀(23)处于导通状态。其他控制阀处于上述默认状态。这样。第一增压装置(5)输出的制动液通过第一制动管路(111)流入第一出液阀(23),并经由第一出液阀(23)通过出液管路(117)流至储液装置(2)。
可选地,在上述减压过程中,还可以控制第一进液阀(9)处于断开状态,这样,在第一进液阀(9)的压力入端口与第一增加装置(5)的压力出端口之间可以保持较高的制动压力,即第一进液阀(9)与第一增加装置(5)之间的第一制动管路(111)内,保持制动液的压力处于较高的状态,当需要再一次对第一制动轮缸(13)增压时,可以较快地响应。
需要说明的是,图15所示的流动路径,以调整第一制动轮缸(13)的制动力为例进行介绍。对其他制动轮缸制动力的调整类似。为了简洁,不再结合附图详细说明。
上文结合图1至图15介绍了本申请实施例的分布式制动系统以及汽车。下文集合图16介绍本申请实施例的提供的控制方法。图16所示的控制方法可以与上述各种分布式制动系统结合使用。
图16是本申请实施例的汽车中分布式制动系统的控制方法的流程图。图16所示的方法可以由分布式制动系统的控制器执行。图16所示的方法包括:步骤1610和步骤1620。
1610,若控制器控制第一控制阀(17)处于导通状态,第一制动管路(111)与第二 制动管路(112)连通。
1620,若控制器控制第一控制阀(17)处于断开状态,第一制动管路(111)与第二制动管路(112)断开。
通常,为了提高分布式制动系统的可靠性,上述方法还包括:当控制器确定第一增压装置(5)或第二增压装置(6)故障;控制器控制第一控制阀(17)处于导通状态,以使第一制动管路(111)与第二制动管路(112)连通。
需要说明的是,检测增压装置失效的方式有很多种,本申请对此不做具体限定。例如,在准备对第一制动轮缸(13)增压时,控制器可以控制第一控制阀(17)处于断开状态,然后,控制器通过检测第一制动轮缸(13)对应的车轮的加速度,确定第一增压装置(5)是否失效。当轮加速度在一定时间内几乎无显著性增加,或与预期正常情况差别较大时,控制器可以确定第一增压装置(5)失效,相反,第一增压装置(5)工作正常。
可选地,若第一控制阀(17)处于导通状态,第一增压装置(5)用于通过调节第一制动管路(111)内制动液的压力,以调节第二制动管路(112)内制动液的压力;和/或若第一控制阀(17)处于导通状态,第二增压装置(6)用于通过调节第二制动管路(112)内制动液的压力,以调节第二制动管路(111)内的制动液的压力。
可选地,上述方法还包括:控制器确定第三增压装置(7)或第四增压装置(8)故障;控制器控制第二控制阀(19)处于导通状态,以使第三制动管路(113)与第四制动管路(114)连通。这样,第三增压装置(7)或第四增压装置(8)中正常工作的增压装置,可以通过连通的第三制动管路(113)与第四制动管路(114)为第三制动轮缸(15)和/或第四制动轮缸(16)提供制动力。
这样,当第三增压装置(7)或第四增压装置(8)故障后,可以使用第一增压装置(5)和第二增压装置(6)替代第三增压装置(7)或第四增压装置(8),为第三制动轮缸(15)或第四制动轮缸(16)提供制动力。
需要说明的是,在上述故障的情况下,为了防止制动液通过第五制动管路(115)和第六制动管路(116)回流至制动主缸,可以控制隔离阀(4、20)处于断开状态。
可选地,上述方法还包括:控制器确定第一增压装置(5)和第二增压装置(6)都故障,且需要为第二制动轮缸(14)和第一制动轮缸(13)提供制动力时,可以控制第三控制阀(18)处于导通状态,这样由第三增压装置(7)和/或第四增压装置(8),为第二制动轮缸(14)和第一制动轮缸(13)提供制动力。
在上述第一增压装置(5)和第二增压装置(6)都故障情况下,若需要第四增压装置(8)为第一制动轮缸(13)和第二制动轮缸(14)提供制动力,第二控制阀(19)需要处于导通状态。这样,第四增压装置(8)用于通过调节连通的第四制动管路(114)和第三制动管路(113)内的制动液的压力,为第一制动轮缸(13)和第二制动轮缸(14)提供制动力。当然,在仅需要第三增压装置(7)为第一制动轮缸(13)和第二制动轮缸(14)提供制动力的情况下,第二控制阀(19)可以处于断开状态。
需要说明的是,在上述故障的情况下,为了防止制动液通过第五制动管路(115)和第六制动管路(116)回流至制动主缸(3),可以控制隔离阀(4、20)处于断开状态。
在上述第一增压装置(5)以及第二增压装置(6)都故障情况下,控制器控制第一控制阀(17)处于导通状态,以使第一制动管路(111)与第二制动管路(112)连通。这样, 可以使用第三增压装置(7)和/或第四增压装置(8)替代第一增压装置(5)和第二增压装置(6),为第一制动轮缸(13)或第二制动轮缸(14)提供制动力。
可选地,上述方法还包括:控制器确定第三增压装置(7)以及第四增压装置(8)故障;控制器控制第三控制阀(18)处于导通状态,以使第二制动管路(112)与第三制动管路(113)连通。这样,第一增压装置(5)或第二增压装置(6),可以通过连通的第三制动管路(113)与第四制动管路(114)为第三制动轮缸(15)和/或第四制动轮缸(16)提供制动力。
在上述第三增压装置(7)以及第四增压装置(8)都故障情况下,若需要第一增压装置(5)为第三制动轮缸(15)和第四制动轮缸(16)提供制动力,第一控制阀(17)需要处于导通状态。这样,第一增压装置(5)用于通过调节连通的第一制动管路(111)和第二制动管路(112)内的制动液的压力,为第三制动轮缸(15)和第四制动轮缸(16)提供制动力。当然,在仅需要第二增压装置(6)为第三制动轮缸(15)和第四制动轮缸(16)提供制动力的情况下,第一控制阀(17)可以处于断开状态。
需要说明的是,在上述故障的情况下,为了防止制动液通过第五制动管路(115)和第六制动管路(116)回流至制动主缸(3),可以控制隔离阀(4、20)处于断开状态。
在上述第三增压装置(7)以及第四增压装置(8)都故障情况下,控制器控制第二控制阀(19)处于导通状态,以使第三制动管路(113)与第四制动管路(114)与连通。这样,可以使用第一增压装置(5)和/或第二增压装置(6)替代第三增压装置(7)和第四增压装置(8),为第三制动轮缸(15)或第四制动轮缸(16)提供制动力。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种汽车的分布式制动系统,其特征在于,所述分布式制动系统包括第一增压装置(5)、第二增压装置(6)以及第一控制阀(17),
    所述第一增压装置(5),用于通过调节第一制动管路(111)内的制动液的压力,以控制施加在所述汽车的第一制动轮缸(13)上的制动力;
    所述第二增压装置(6),用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述汽车的第二制动轮缸(14)上的制动力;
    所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),若所述第一控制阀(17)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(112)连通;若所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开,
    其中,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸。
  2. 如权利要求1所述的分布式制动系统,其特征在于,若所述第一控制阀(17)处于导通状态,所述第一增压装置(5)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内制动液的压力;和/或
    若所述第一控制阀处于导通状态,所述第二增压装置(6)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内的制动液的压力。
  3. 如权利要求1或2所述的分布式制动系统,其特征在于,所述分布式制动系统还包括第二控制阀(19)、第三增压装置(7)以及第四增压装置(8),
    所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在第三制动轮缸(15)上的制动力;
    所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在第四制动轮缸(16)上的制动力;
    所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),若所述第二控制阀(19)处于导通状态,则所述第三制动管路(113)与所述第四制动管路(114)连通;若所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开,
    其中,所述第三制动轮缸(15)、所述第四制动轮缸(16)、所述第一制动轮缸(13)与所述第二制动轮缸(14)用于为所述汽车中不同的车轮提供制动力,所述第三制动轮缸(15)为所述汽车的右后轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮 的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左前轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的左前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的右后轮的制动轮缸。
  4. 如权利要求3所述的分布式制动系统,其特征在于,若所述第二控制阀(19)处于导通状态,所述第三增压装置(7)用于通过调节所述第三制动管路(113)内制动液的压力,以调节所述第四制动管路(114)内制动液的压力;和/或
    若所述第二控制阀(19)处于导通状态,所述第四增压装置(8)用于通过调节所述第四制动管路(114)内制动液的压力,以调节所述第三制动管路(113)内的制动液的压力。
  5. 如权利要求3或4所述的分布式制动系统,其特征在于,所述分布式制动系统还包括第三控制阀(18),第五制动管路(115)以及第六制动管路(116),所述第五制动管路(115)的压力出端口与所述第一制动管路(111)的压力入端口相连,所述第五制动管路(115)的压力出端口与所述第二制动管路(112)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第三制动管路(113)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第四制动管路(114)的压力入端口相连,
    所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),若所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)连通,若所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
  6. 如权利要求5所述的分布式制动系统,其特征在于,所述分布式制动系统还包括制动主缸(3),所述制动主缸(3)用于通过调节所述第五制动管路(115)内制动液的压力,以调节所述第一制动管路(111)或所述第二制动管路(112)内制动液的压力;
    所述制动主缸(3)还用于通过调节所述第六制动管路(116)内制动液的压力,以调节所述第三制动管路(113)或所述第四制动管路(114)内制动液的压力。
  7. 一种汽车,其特征在于,所述汽车包括第一制动轮缸(13)、第二制动轮缸(14)、第一控制阀(17)、第一增压装置(5)以及第二增压装置(6),
    所述第一增压装置(5),用于通过调节第一制动管路(111)内的制动液的压力,以控制施加在所述第一制动轮缸(13)上的制动力;
    所述第二增压装置(6),用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述第二制动轮缸(14)上的制动力;
    所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),若所述第一控制阀(17)处于导通状态,则所述第一制动管路(111)与所述第二制动管路(112)连通;若所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开,
    其中,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮 缸(14)为所述汽车的左前轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸。
  8. 如权利要求7所述的汽车,其特征在于,若所述第一控制阀(17)处于导通状态,所述第一增压装置(5)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内制动液的压力;和/或
    若所述第一控制阀处于导通状态,所述第二增压装置(6)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内的制动液的压力。
  9. 如权利要求7或8所述的汽车,其特征在于,所述汽车还包括第三制动轮缸(15)、第四制动轮缸(16)、第二控制阀(19),第三增压装置(7)以及第四增压装置(8),
    所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在所述第三制动轮缸(15)上的制动力;
    所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在所述第四制动轮缸(16)上的制动力;
    所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),若所述第二控制阀(19)处于导通状态,则所述第三制动管路(113)与所述第四制动管路(114)连通;若所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开,
    其中,所述第三制动轮缸(15)、所述第四制动轮缸(16)、所述第一制动轮缸(13)与所述第二制动轮缸(14)用于为所述汽车中不同的车轮提供制动力,所述第三制动轮缸(15)为所述汽车的右后轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左前轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的左前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的右后轮的制动轮缸。
  10. 如权利要求9所述的汽车,其特征在于,若所述第二控制阀(19)处于导通状态,所述第三增压装置(7)用于通过调节所述第三制动管路(113)内制动液的压力,以调节所述第四制动管路(114)内制动液的压力;和/或
    若所述第二控制阀(19)处于导通状态,所述第四增压装置(8)用于通过调节所述第四制动管路(114)内制动液的压力,以调节所述第三制动管路(113)内的制动液的压力。
  11. 如权利要求9或10所述的汽车,其特征在于,所述分布式制动系统还包括第三 控制阀(18),第五制动管路(115)以及第六制动管路(116),所述第五制动管路(115)的压力出端口与所述第一制动管路(111)的压力入端口相连,所述第五制动管路(115)的压力出端口与所述第二制动管路(112)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第三制动管路(113)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第四制动管路(114)的压力入端口相连,
    所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),若所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)连通,若所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
  12. 如权利要求11所述的汽车,其特征在于,所述汽车还包括制动踏板(1),所述分布式制动系统还包括制动主缸(3),所述制动踏板(1)用于接收驾驶员输入的踩踏力,并推动制动主缸(3)中的活塞产生相对于所述制动主缸(3)的缸体的位移;
    所述制动主缸(3)用于:
    根据所述位移,确定所述第五制动管路(115)内制动液的压力;
    通过调节所述第五制动管路(115)内制动液的压力,以调节所述第一制动管路(111)或所述第二制动管路(112)内制动液的压力;
    通过调节所述第六制动管路(116)内制动液的压力,以调节所述第三制动管路(113)或所述第四制动管路(114)内制动液的压力。
  13. 一种汽车中分布式制动系统的控制方法,其特征在于,所述分布式制动系统包括控制器、第一控制阀(17),第一增压装置(5)以及第二增压装置(6),
    所述第一增压装置(5)用于通过调节第一制动管路(111)内的制动液的压力,以控制施加在所述汽车的第一制动轮缸(13)上的制动力;
    所述第二增压装置(6)用于通过调节第二制动管路(112)内的制动液的压力,以控制施加在所述汽车的第二制动轮缸(14)上的制动力;
    所述第一控制阀(17)连接所述第一制动管路(111)与所述第二制动管路(112),
    其中,所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右后轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左前轮的制动轮缸;或者,
    所述第一制动轮缸(13)为所述汽车的右前轮的制动轮缸,且所述第二制动轮缸(14)为所述汽车的左后轮的制动轮缸,
    所述方法包括:
    若所述控制器控制所述第一控制阀(17)处于导通状态,所述第一制动管路(111)与所述第二制动管路(112)连通;
    若所述控制器控制所述第一控制阀(17)处于断开状态,则所述第一制动管路(111)与所述第二制动管路(112)断开。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    所述控制器确定所述第一增压装置(5)或所述第二增压装置(6)失效;
    所述控制器控制所述第一控制阀(17)处于所述导通状态。
  15. 如权利要求13或14所述的方法,其特征在于,若所述第一控制阀(17)处于导通状态,所述第一增压装置(5)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内制动液的压力;和/或
    若所述第一控制阀处于导通状态,所述第二增压装置(6)用于通过调节所述第一制动管路(111)内制动液的压力,以调节所述第二制动管路(112)内的制动液的压力。
  16. 如权利要求13-15中任一项所述的方法,其特征在于,所述分布式制动系统还包括第二控制阀(19)、第三增压装置(7)以及第四增压装置(8),
    所述第三增压装置(7),用于通过调节第三制动管路(113)内的制动液的压力,以控制施加在第三制动轮缸(15)上的制动力;
    所述第四增压装置(8),还用于通过调节第四制动管路(114)内的制动液的压力,以控制施加在第四制动轮缸(16)上的制动力;
    所述第二控制阀(19)连接所述第三制动管路(113)与所述第四制动管路(114),
    其中,所述第三制动轮缸(15)、所述第四制动轮缸(16)、所述第一制动轮缸(13)与所述第二制动轮缸(14)用于为所述汽车中不同的车轮提供制动力,所述第三制动轮缸(15)为所述汽车的右后轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左前轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的右前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的左后轮的制动轮缸;或
    所述第三制动轮缸(15)为所述汽车的左前轮的制动轮缸,且所述第四制动轮缸(16)为所述汽车的右后轮的制动轮缸,
    所述方法还包括:
    若所述控制器控制所述第二控制阀(19)处于导通状态,所述第三制动管路(113)与所述第四制动管路(114)连通;
    若所述控制器控制所述第二控制阀(19)处于断开状态,则所述第三制动管路(113)与所述第四制动管路(114)断开。
  17. 如权利要求16所述的方法,其特征在于,所述方法包括:
    所述控制器确定所述第三增压装置(7)或所述第四增压装置(8)故障;
    所述控制器控制所述第二控制阀(19)处于导通状态。
  18. 如权利要求16或17所述的方法,其特征在于,若所述第二控制阀(19)处于导通状态,所述第三增压装置(7)用于通过调节所述第三制动管路(113)内制动液的压力,以调节所述第四制动管路(114)内制动液的压力;和/或
    若所述第二控制阀(19)处于导通状态,所述第四增压装置(8)用于通过调节所述第四制动管路(114)内制动液的压力,以调节所述第三制动管路(113)内的制动液的压力。
  19. 如权利要求16-18中任一项所述的方法,其特征在于,所述分布式制动系统还包 括第三控制阀(18),第五制动管路(115)以及第六制动管路(116),所述第五制动管路(115)的压力出端口与所述第一制动管路(111)的压力入端口相连,且所述第五制动管路(115)的压力出端口与所述第二制动管路(112)的压力入端口相连,所述第六制动管路(116)的压力出端口与所述第三制动管路(113)的压力入端口相连,且所述第六制动管路(116)的压力出端口与所述第四制动管路(114)的压力入端口相连,
    所述第三控制阀(18)用于连接所述第二制动管路(112)和所述第三制动管路(113),
    所述方法还包括:
    若所述控制器控制所述第三控制阀(18)处于导通状态,所述第二制动管路(112)和所述第三制动管路(113)连通;
    若所述控制器控制所述第三控制阀(18)处于断开状态,所述第二制动管路(112)和所述第三制动管路(113)断开。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述控制器确定所述第一增压装置(5)以及所述第二增压装置(6)故障;
    所述控制器控制所述第三控制阀(18)处于导通状态。
  21. 如权利要求20所述的方法,其特征在于,所述方法还包括:
    若所述第一增压装置(5)以及所述第二增压装置(6)故障,所述控制器控制所述第一控制阀(17)处于导通状态,以使所述第一制动管路(111)与所述第二制动管路(112)连通。
  22. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述控制器确定所述第三增压装置(7)以及所述第四增压装置(8)故障;
    所述控制器控制所述第三控制阀(18)处于导通状态,以使所述第二制动管路(112)与所述第三制动管路(113)连通。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    若所述第三增压装置(7)以及所述第四增压装置(8)故障,所述控制器控制所述第二控制阀(19)处于导通状态,以使所述第三制动管路(111)与所述第四制动管路(112)与所述连通。
  24. 如权利要求19-23中任一项所述的方法,其特征在于,所述汽车还包括制动主缸(3),所述制动主缸(3)用于通过调节所述第五制动管路(115)内制动液的压力,以调节所述第一制动管路(111)和/或所述第二制动管路(112)内制动液的压力;
    所述制动主缸(3)还用于通过调节所述第六制动管路(116)内制动液的压力,以调节所述第三制动管路(113)和/或所述第四制动管路(114)内制动液的压力。
PCT/CN2020/113983 2019-09-30 2020-09-08 汽车的分布式制动系统、汽车及其控制方法 WO2021063158A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20872218.1A EP4029743A4 (en) 2019-09-30 2020-09-08 AUTOMOTIVE DISTRIBUTED BRAKING SYSTEM, AUTOMOTIVE AND CONTROL METHOD FOR DISTRIBUTED BRAKING SYSTEM
US17/657,216 US20220219665A1 (en) 2019-09-30 2022-03-30 Distributed Braking System in Automobile, Automobile, and Control Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910943569.4A CN112572381B (zh) 2019-09-30 2019-09-30 汽车的分布式制动系统、汽车及其控制方法
CN201910943569.4 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/657,216 Continuation US20220219665A1 (en) 2019-09-30 2022-03-30 Distributed Braking System in Automobile, Automobile, and Control Method Therefor

Publications (1)

Publication Number Publication Date
WO2021063158A1 true WO2021063158A1 (zh) 2021-04-08

Family

ID=75116610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113983 WO2021063158A1 (zh) 2019-09-30 2020-09-08 汽车的分布式制动系统、汽车及其控制方法

Country Status (4)

Country Link
US (1) US20220219665A1 (zh)
EP (1) EP4029743A4 (zh)
CN (2) CN112572381B (zh)
WO (1) WO2021063158A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019211537A1 (de) * 2019-08-01 2021-02-04 Robert Bosch Gmbh Hydraulisches Bremssystem für ein Kraftfahrzeug, Verfahren zum Betreiben
CN113561953B (zh) * 2021-07-27 2022-11-25 中国北方车辆研究所 一种重载车辆线控冗余制动操纵系统及其容错控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582605A (zh) * 2012-03-27 2012-07-18 清华大学 一种带有保压阀的汽车分布式电子液压制动系统
CN102602384A (zh) * 2012-03-27 2012-07-25 清华大学 一种汽车分布式电子液压制动系统
DE102011122776A1 (de) * 2011-07-21 2013-01-24 Daimler Ag Bremsanlage für ein Kraftfahrzeug
CN105383462A (zh) * 2015-12-03 2016-03-09 浙江亚太机电股份有限公司 一种汽车电子稳定程序控制系统及控制方法
CN107697050A (zh) * 2017-11-13 2018-02-16 吉林大学 一种液体高压源发生器所在线控液压制动系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6520599B2 (en) * 2001-05-05 2003-02-18 Westinghouse Air Brake Technologies Corporation Four port variable load valve weigh system for a brake pipe controlled brake system
CN101638099A (zh) * 2008-08-01 2010-02-03 通用电气公司 用于动力分散式车辆中的制动系统控制的系统和方法
CN102490711B (zh) * 2011-11-30 2013-10-23 清华大学 一种使用隔离阀的分布式电子液压制动系统
CN102700538B (zh) * 2012-06-14 2015-01-14 清华大学 一种汽车分布式电子液压制动系统
CN109927698A (zh) * 2018-01-18 2019-06-25 万向钱潮股份有限公司 一种线控电液制动系统及制动方法
CN108162942B (zh) * 2018-02-06 2019-07-19 吉林大学 四轮压力独立控制的线控液压制动系统及其制动控制方法
DE102018104143A1 (de) * 2018-02-23 2019-08-29 Wabco Gmbh Bremsanlage für einen Fahrzeugzug sowie damit ausgestattete Zugmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122776A1 (de) * 2011-07-21 2013-01-24 Daimler Ag Bremsanlage für ein Kraftfahrzeug
CN102582605A (zh) * 2012-03-27 2012-07-18 清华大学 一种带有保压阀的汽车分布式电子液压制动系统
CN102602384A (zh) * 2012-03-27 2012-07-25 清华大学 一种汽车分布式电子液压制动系统
CN105383462A (zh) * 2015-12-03 2016-03-09 浙江亚太机电股份有限公司 一种汽车电子稳定程序控制系统及控制方法
CN107697050A (zh) * 2017-11-13 2018-02-16 吉林大学 一种液体高压源发生器所在线控液压制动系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029743A4

Also Published As

Publication number Publication date
CN112572381A (zh) 2021-03-30
US20220219665A1 (en) 2022-07-14
CN115366854A (zh) 2022-11-22
EP4029743A1 (en) 2022-07-20
CN112572381B (zh) 2022-08-26
EP4029743A4 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
KR102002716B1 (ko) 모터 차량용 브레이크 시스템
US10926748B2 (en) Braking system for a motor vehicle
WO2021063159A1 (zh) 汽车的制动系统、汽车及制动系统的控制方法
CN112188976A (zh) 具有两个压力源的制动系统及其运行方法
WO2021063158A1 (zh) 汽车的分布式制动系统、汽车及其控制方法
WO2021248396A1 (zh) 踏板感觉模拟系统、液压调节单元及控制方法
US20230033528A1 (en) Hydraulic adjustment unit of brake system in vehicle, brake system, and control method
CN110356381B (zh) 车辆制动系统
WO2021098345A1 (zh) 汽车制动系统中的液压调节单元、汽车及控制方法
US20230092225A1 (en) Hydraulic control unit, braking system, and control method
WO2022021106A1 (zh) 液压调节单元、制动系统、车辆及控制方法
US20190299956A1 (en) Braking system for autonomous vehicle
WO2021226887A1 (zh) 液压调节单元、制动系统及控制方法
CN112566824B (zh) 液压调节装置、液压调节系统、制动系统及控制方法
CN108688634A (zh) 机动车的制动系统以及运行机动车的制动系统的方法
JP2023548123A (ja) ブレーキシステムを制御するための方法及び自動車用ブレーキシステム
CN112638728A (zh) 制动控制装置、制动控制系统及控制方法
EP4349673A1 (en) Braking system and method for controlling braking system
WO2023272667A1 (zh) 线控制动系统及控制方法
KR20230010894A (ko) 전자식 유압 브레이크 및 이의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872218

Country of ref document: EP

Effective date: 20220413