WO2021063085A1 - 一种通信装置 - Google Patents

一种通信装置 Download PDF

Info

Publication number
WO2021063085A1
WO2021063085A1 PCT/CN2020/103072 CN2020103072W WO2021063085A1 WO 2021063085 A1 WO2021063085 A1 WO 2021063085A1 CN 2020103072 W CN2020103072 W CN 2020103072W WO 2021063085 A1 WO2021063085 A1 WO 2021063085A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
transceiver
bridge
power amplifier
communication device
Prior art date
Application number
PCT/CN2020/103072
Other languages
English (en)
French (fr)
Inventor
郑晓军
陈卫
崔建明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20873058.0A priority Critical patent/EP4030633A4/en
Publication of WO2021063085A1 publication Critical patent/WO2021063085A1/zh
Priority to US17/707,152 priority patent/US20220224368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication device.
  • multi-antenna technology refers to the use of multiple transmitting antennas and/or multiple receiving antennas at the transmitting end and the receiving end, and using multiple antennas at the transmitting end for signal transmission and/or using multiple antennas at the receiving end for signal reception . This can not only improve the communication quality of the signal, but also, by sending and receiving signals through multiple antennas, the system channel capacity can be doubled without increasing the spectrum resources and antenna transmission power.
  • multi-antenna technology improves signal communication quality and system channel capacity, it also brings high power consumption to operators. Therefore, it is necessary to reduce system power consumption when applying multi-antenna technology. .
  • the embodiment of the present application provides a communication device, so that when the multi-antenna technology is applied, the power consumption of the system can be reduced based on the communication device and energy saving can be realized.
  • embodiments of the present application provide a communication device, which may include a first transceiver, a second transceiver, and a first power amplifier; wherein, the first transceiver and the second transceiver The machine can be connected to the first power amplifier respectively.
  • the communication device when the communication device is used to implement the application of multi-antenna technology, if the current network load of the system is low and the system needs to be energy-saving, the first transceiver or the second transceiver in the communication device can be turned off.
  • the shut down transceiver no longer generates power consumption, which reduces the overall power consumption of the communication device, thus applying multi-antenna technology
  • the power consumption of the system can be reduced to achieve the effect of energy saving;
  • the first power amplifier can still receive the corresponding radio frequency signal from the transceiver that is not turned off for power Amplification and corresponding radio frequency signal transmission keeps the channel capacity of the system basically unchanged, and the antenna gain has not been reduced, so that the coverage of the network signal has not been reduced.
  • the communication device may further include a second power amplifier, wherein the first transceiver and the second transceiver may be respectively connected to the second power amplifier.
  • each power amplifier in the communication device can be connected to multiple transceivers.
  • the second power amplifier can also be connected to the first transceiver.
  • the letter machine is connected with the second transceiver.
  • the second power amplifier can still receive radio frequency signals from the transceiver that is not turned off. Therefore, when the system is energy-saving through the transceiver, the channel capacity of the system can basically remain unchanged, and the coverage of the network signal does not decrease.
  • the communication device further includes a first electrical bridge; wherein, the first transceiver is connected to the first port of the first electrical bridge; the second transceiver is connected to the first electrical bridge The second port is connected; the third port of the first bridge is connected with the first power amplifier; the fourth port of the first bridge is connected with the second power amplifier; the first bridge The first port is respectively connected to the third port of the first electrical bridge and the fourth port of the first electrical bridge, and the second port of the first electrical bridge is respectively connected to the third port of the first electrical bridge. The port is connected to the fourth port of the first bridge.
  • the communication device may include at least two power amplifiers, and each transceiver may be connected to the two power amplifiers through a bridge.
  • the remaining transceivers can also achieve signal output through two power amplifiers, so that while saving energy in the system, it can also increase the channel capacity of the system and the coverage of the network signal. Did not get lowered.
  • the communication device further includes a first processor, and the first processor is respectively connected to the first transceiver and the second transceiver; the first processing The device is used to perform weighted summation processing on the first baseband signal and the second baseband signal respectively according to the first weighting matrix to obtain the third baseband signal and the fourth baseband signal, wherein the third baseband signal is output to the second baseband signal A transceiver, the fourth baseband signal is output to the second transceiver; the first weighting matrix is the inverse matrix of the bridge matrix of the first bridge.
  • the received radio frequency signal may be a radio frequency signal output by one transceiver, rather than a mixture of radio frequency signals output by multiple transceivers.
  • the communication device further includes a third transceiver, a fourth transceiver, a third power amplifier, a fourth power amplifier, a second bridge, a third bridge, and a fourth bridge
  • the first transceiver is connected to the first port of the second electrical bridge, the third port of the second electrical bridge is connected to the first port of the first electrical bridge; the second transceiver is connected to The first port of the third electrical bridge is connected, the third port of the third electrical bridge is connected to the second port of the first electrical bridge; the third transceiver is connected to the second port of the second electrical bridge
  • the second port is connected, the fourth port of the second electrical bridge is connected to the first port of the fourth electrical bridge;
  • the fourth transceiver is connected to the second port of the third electrical bridge, the The fourth port of the third electrical bridge is connected to the second port of the fourth electrical bridge; the third port of the fourth electrical bridge is connected to the third power amplifier, and the fourth port of the fourth electrical bridge Connected to the fourth power amplifier; the first port of the second
  • the third port of the electric bridge and the fourth port of the fourth electric bridge are connected.
  • the four transceivers and the four power amplifiers in the communication device can be connected through four bridges, and based on the four bridges, the radio frequency signal received by each power amplifier can be The mixing of the radio frequency signals output by the four transceivers, that is, each power amplifier can be connected to the four transceivers at the same time, and receive the radio frequency signals received by the four transceivers. In this way, even if one to three of the transceivers are turned off to save system energy consumption, each power amplifier can receive the radio frequency signals sent by the remaining transceivers, so that the system's channel capacity and network signal coverage are also reduced. Did not get lowered.
  • the communication device further includes a first switch and a second switch; the third port of the third bridge is connected to one end of the first switch, and the other end of the first switch Connect the second port of the first electric bridge; the fourth port of the second electric bridge is connected to one end of the second switch, and the other end of the second switch is connected to the first port of the fourth electric bridge ; When the second transceiver and the third transceiver are turned off, or, when the first transceiver and the fourth transceiver are turned off, the first switch and the first The second switch is off.
  • a connection switch can be further provided between the bridges, so that when two of the four transceivers are turned off, each power amplifier can receive the radio frequency output by one transceiver.
  • the radio frequency signal received by two power amplifiers is the radio frequency signal output by the same transceiver, and the radio frequency signal received by the other two power amplifiers is the radio frequency signal output by the other transceiver.
  • the connection switches set between the four bridges can be disconnected, and the corresponding transceivers can be turned off to save system energy consumption.
  • the communication device further includes a third switch; the second transceiver is connected to the first power amplifier through the third switch.
  • a third switch can be provided between the second transceiver and the first power amplifier. When the system shuts down the first transceiver based on the need for energy saving, the third switch can be closed. In this way, the first The second transceiver can be connected to the first power amplifier, so that the first power amplifier can still receive the radio frequency signal output by the second transceiver, so as to save energy without reducing the channel capacity and network of the system. Signal coverage.
  • the communication device is a remote radio unit RRU.
  • the communication device further includes a first group of antennas, and the first power amplifier is connected to the first group of antennas.
  • the communication device may use the first set of antennas to transmit the radio frequency signal amplified by the first power amplifier, or may use the first set of antennas to receive the signal sent by the client (such as user equipment, etc.). And the power is amplified by the first power amplifier.
  • the communication device further includes a second group of antennas, and the second power amplifier is connected to the second group of antennas.
  • the communication device may use the second set of antennas to transmit the radio frequency signal amplified by the second power amplifier, or may use the second set of antennas to receive the signal sent by the client, and pass the second power The amplifier amplifies its power.
  • the communication device is an active antenna unit AAU.
  • the first processor included in the communication device may be a baseband processing unit BBU.
  • the communication device may further be a base station.
  • the communication device further includes a second processor; the second processor is connected to the first transceiver, the second transceiver, and the third transceiver respectively. Connected to the fourth transceiver; the second processor is configured to perform weighted summation processing on the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal respectively according to the second weighting matrix , Obtain a fifth baseband signal, a sixth baseband signal, a seventh baseband signal, and an eighth baseband signal, wherein the fifth baseband signal is output to the first transceiver, and the sixth baseband signal is output to the The second transceiver, the seventh baseband signal is output to the third transceiver, and the eighth baseband signal is output to the fourth transceiver; the second weighting matrix is the third weighting matrix Inverse matrix, the third weighting matrix is based on the electric bridge matrix of the first electric bridge, the electric bridge matrix of the second electric bridge, the electric bridge matrix of the third electric bridge,
  • a bridge matrix and a combined bridge matrix obtained by determining the connection relationship of the first electrical bridge, the second electrical bridge, the third electrical bridge, and the fourth electrical bridge.
  • a corresponding second processor can be added to make the signal received by each power amplifier be
  • the signal output by a single transceiver may not be a mixture of the radio frequency signals output by the four transceivers, so that a one-to-one correspondence between each transceiver and the power amplifier can be established.
  • the first port of the first electrical bridge and the second port of the first electrical bridge are input ends; the third port of the first electrical bridge and the first electrical bridge
  • the fourth port is the output terminal.
  • the radio frequency signal output by the first transceiver can be input to the first bridge through the first port, and the output value of the first power amplifier can be output through the third port.
  • the first power amplifier will power amplify it and then send the signal;
  • the second transceiver can be input to the first bridge through the second port, and output to the second power amplifier through the fourth port for power Amplify, and then send the signal.
  • the first port of the first electrical bridge and the second port of the first electrical bridge are output ends; the third port of the first electrical bridge and the first electrical bridge The fourth port is the input terminal.
  • the third port and the fourth port of the first bridge can become signal input ends, and the first port as the signal output end transmits the signal To the first transceiver, the signal is transmitted to the second transceiver through the second port as the signal output terminal.
  • the communication device further includes a fourth processor, which is respectively connected to the first transceiver and the second transceiver; the fourth processor , Used to perform weighted summation processing on the first baseband signal output by the first transceiver and the second baseband signal output by the first transceiver respectively according to the fourth weighting matrix to obtain the third baseband signal and the second baseband signal Four baseband signals; the fourth weighting matrix is the inverse matrix of the bridge matrix of the first bridge.
  • the fourth processor when the system receives the signal sent by the client, for the mixed signal corresponding to the multiple clients received by the same power amplifier, the fourth processor can be used to perform weighted summation processing to make the final output to
  • the signal of each transceiver is a baseband signal corresponding to a single client. In actual applications, it can be a baseband signal sent by a client that has completed pairing with the transceiver, rather than a mixture of baseband signals sent by multiple clients.
  • the first port of the first electrical bridge, the second port of the first electrical bridge, the first port of the second electrical bridge, and the second port of the second electrical bridge A port, a first port of the third electrical bridge, a second port of the third electrical bridge, a first port of the fourth electrical bridge, and a second port of the fourth electrical bridge are all input terminals;
  • the third port of the third bridge, the fourth port of the third bridge, the third port of the fourth bridge, and the fourth port of the fourth bridge are all output ends.
  • the first port and the second port of each bridge can be used as input, and the radio frequency signal output by the transceiver can pass through the first port of each bridge Or the second port of the electric bridge is outputted to the power amplifier through the third port or the fourth port of the corresponding electric bridge, so that the power amplifier completes the signal transmission after power amplifying it.
  • the first port of the first electrical bridge, the second port of the first electrical bridge, the first port of the second electrical bridge, and the second port of the second electrical bridge A port, a first port of the third electrical bridge, a second port of the third electrical bridge, a first port of the fourth electrical bridge, and a second port of the fourth electrical bridge are all output ends;
  • the third port of the third electrical bridge, the fourth port of the third electrical bridge, the third port of the fourth electrical bridge, and the fourth port of the fourth electrical bridge are all input terminals.
  • the communication device may receive the radio frequency signal sent by the client, and input it into the electric bridge through the third port or the fourth port of each electric bridge, and then connect it to the electric bridge through the first port or the second port of the corresponding electric bridge.
  • the signal is output to the corresponding transceiver.
  • the communication device further includes a fifth processor; the fifth processor is connected to the first transceiver, the second transceiver, the third transceiver and the The fourth transceiver is connected; the fifth processor is configured to perform weighting processing on the first baseband signal, the second baseband signal, the third baseband signal, and the fourth baseband signal respectively according to the fifth weighting matrix to obtain the fifth The baseband signal, the sixth baseband signal, the seventh baseband signal, and the eighth baseband signal; the fifth weighting matrix is the inverse matrix of the sixth weighting matrix, and the sixth weighting matrix is the electric bridge according to the first electric bridge Matrix, the bridge matrix of the second bridge, the bridge matrix of the third bridge, the bridge matrix of the fourth bridge, and the first bridge, the second bridge, and the first bridge The connection relationship between the three electric bridges and the fourth electric bridge is determined to obtain a combined electric bridge matrix.
  • the fifth processor can be used to perform weighted summation processing on it, so that the signal finally output to each transceiver It is a baseband signal of a single client. In actual applications, it can be a baseband signal sent by a client that has completed pairing with the transceiver, rather than a mixture of baseband signals sent by multiple clients.
  • the communication device may include a first transceiver, a second transceiver, and a power amplifier, where the first transceiver and the second transceiver may be respectively connected to the power amplifier.
  • the redundant transceivers can end their operation, so any one of the transceivers in the communication device can be shut down, for example, the first transceiver or the second transceiver can be shut down. It can be understood that in the process of implementing the multi-antenna technology application based on the communication device, since one of the transceivers in the communication device is closed, the shut down transceiver no longer generates power consumption, which reduces the power consumption.
  • the overall power consumption of the communication device can reduce the power consumption of the system when applying the multi-antenna technology, and achieve the effect of energy saving. Moreover, when the electronic device in the communication device is turned off, one of the transceivers connected to the power amplifier is turned off, but the power amplifier may not be turned off, and the power amplifier can still receive the corresponding signal from the transceiver that has not been turned off.
  • the radio frequency signal is power amplified and the corresponding radio frequency signal is transmitted, which makes the channel capacity of the system basically remain unchanged, and the antenna gain has not been reduced, so that the coverage of the network signal has not been reduced.
  • Figure 1 is a schematic structural diagram of an exemplary communication system in an embodiment of this application.
  • Fig. 2 is a schematic structural diagram of an exemplary communication device in an embodiment of the application
  • Fig. 3 is a schematic diagram of another exemplary communication system in an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a communication device including two power amplifiers in an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an exemplary communication device including an electric bridge and two transceivers in an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of an exemplary communication device including a first processor in an embodiment of the application
  • Fig. 7 is a schematic structural diagram of an exemplary communication device including four electric bridges in an embodiment of the application;
  • FIG. 8 is a schematic diagram of setting switches in four electric bridges in an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an exemplary communication device including a second processor in an embodiment of the application.
  • FIG. 10 is a schematic diagram of setting a switch between the transceiver and the power amplifier in an embodiment of the application.
  • the communication system may include a baseband device 101, a radio frequency device 102, and an antenna device 103.
  • the baseband device 101 is connected to the radio frequency device 102, and the radio frequency device 102 is connected to the antenna device 103.
  • the communication system may be a base station.
  • the baseband device 101 is mainly used to process communication protocols and communication data, and to control the entire base station, execute software programs, and process data of the software programs.
  • the chip in the baseband device 101 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software. Program data.
  • the processor in the baseband device 101 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as a bus.
  • the baseband device 101 may include multiple baseband processors to adapt to different network standards, and the baseband device 101 may include multiple central processors to enhance its processing capabilities.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the baseband device may be a baseband unit (BBU).
  • the radio frequency device 102 can be used to convert received digital signals into radio frequency signals, send the radio frequency signals to the antenna device 103, or receive radio frequency signals from the antenna device 103, convert the radio frequency signals into digital signals, and transmit them to the baseband control unit .
  • the antenna device 103 can transmit the received radio frequency signal or receive an external radio frequency signal and transmit it to the radio frequency device 102.
  • the radio frequency device 102 may include multiple radio frequency channels. It should be noted that the radio frequency channel here may refer to the circuit channel in the radio frequency device 102. The circuit channel may include one or more electronic devices. Multiple radio frequency channels may share the circuit channel, or each radio frequency channel may include a separate circuit. aisle. Or, the radio frequency channel here may refer to a logical channel in a radio frequency device, and the conversion between a baseband signal and a radio frequency signal can be completed in the logical channel.
  • Logical channels can also be called transceivers, transceiver units, transceivers, transceiver devices, radio frequency channels, transceivers, and so on.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit. That is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit is also It can be called a receiver, an input port, a receiving circuit, etc., and a sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the radio frequency device 102 and the antenna device 103 can be physically separated.
  • the radio frequency device 102 may be a radio remote unit (RRU) or a radio frequency unit (RFU), and the antenna device 103 may be multiple antennas, and the multiple antennas may be arranged in a radome .
  • the radio frequency device 102 and the antenna device 103 may also be physically integrated.
  • the system may be an Active Antenna Unit (AAU).
  • AAU Active Antenna Unit
  • the antenna device 103 may include multiple antenna arrays.
  • an antenna array can be called an antenna.
  • Each radio frequency channel is connected to a corresponding antenna array, and each radio frequency channel can send a radio frequency signal to a corresponding antenna array, and the corresponding antenna array transmits into the air.
  • Each antenna array can be composed of one or more antenna elements. It should be noted that the radio frequency channel is connected to the corresponding antenna array, which can mean that the radio frequency channel is connected to each antenna element in the antenna array; the radio frequency channel sends the radio frequency signal to the corresponding antenna array, which can mean that the radio frequency channel is connected to each antenna element in the antenna array. The radio frequency signal is sent to each antenna element in the antenna array.
  • the radio frequency channel sends radio frequency signals to the antenna array, which can be understood as radio frequency signals sent to the antenna array through the radio frequency channel, or expressed as the radio frequency channel driving the antenna array.
  • An antenna array includes N (N is an integer greater than or equal to 1) antenna elements, which can also be expressed as a radio frequency channel driving N antenna elements or simply referred to as 1 driving N.
  • the signal that the baseband device can process is called the baseband signal.
  • it may be a digital baseband signal or a digital intermediate frequency signal, or other signals.
  • the embodiment of the present application does not limit this, and the radio frequency
  • the signal processed by the device or the signal received from the antenna is called the radio frequency signal.
  • the signal processed by the radio frequency device or the signal received from the antenna may be other signals, which are not limited in the embodiment of the application. .
  • multi-antenna technology such as MIMO technology
  • the multi-antenna technology can support multi-user pairing, that is, it can support multiple users to perform data stream transmission at the same time on the same time-frequency resource.
  • the radio frequency module may include multiple transceivers (transceiver, TRX for short), and correspondingly, each TRX is connected to a power amplifier (PA), such as TRX1 and PA1.
  • PA power amplifier
  • the data stream can be input to the PA for power amplification after being processed by the IF of TRX, and then transmitted to the bandpass filter and antenna device in turn, so that the data stream is transmitted to the MIMO client.
  • the number of TRX contained in the radio frequency module determines the pairing capability of the network. Normally, the more TRX number of the radio frequency module, the stronger the network pairing ability, that is, it can support more users to use the same time-frequency resource to transmit data stream at the same time.
  • the power consumption generated by multiple TRXs and PAs during operation is usually high, especially when the network load is low, the actual paired users of the network are fewer, but all TRX and PA are still used, that is, all TRXs are still used. And the PA is in the operating state of high power consumption, which produces unnecessary waste of power consumption.
  • an embodiment of the present application provides a communication device, so that when the multi-antenna technology is applied, the system power consumption can be reduced based on the communication device, and the energy saving effect can be achieved.
  • the communication device may be applied to the communication system shown in FIG. 1.
  • the communication device may include a first transceiver 11, a second transceiver 12, and a first power amplifier 13.
  • a transceiver 11 and a second transceiver 12 can be connected to the first power amplifier 13 respectively.
  • connection in the embodiments of the present application can be understood as direct connection (that is, there may be no other components in the middle to realize the connection), or indirect connection (that is, the connection may be realized in the middle through other components, such as electric bridges, switches, etc.). It is worth noting that when the switch between the transceiver and the power amplifier is not closed, it can also be considered that the transceiver is connected to the power amplifier.
  • the transceiver when the transceiver is connected to the power amplifier, it can also be understood that after the baseband signal is processed by the transceiver's radio frequency, the obtained radio frequency signal can be transmitted to the power amplifier.
  • the first transceiver 11 and the second transceiver 12 can be respectively connected to the first power amplifier 13, and the signal can be transmitted to the power amplifier through the first transceiver 11 and the second transceiver 12 at the same time. It may also be not transmitted to the power amplifier at the same time.
  • the first signal can be transmitted to the first power amplifier 13 through the first transceiver 11, and at time T2 (not equal to time T1), the second signal can be transmitted to the first power amplifier through the second transceiver 12 13; or, while the first signal is transmitted to the first power amplifier 13 through the first transceiver 11, the second signal is also transmitted to the first power amplifier 13 through the second transceiver 12.
  • the redundant transceivers can end their operation, so any transceiver in the communication device can be shut down, for example, the first transceiver 11 or the second transceiver 12 can be shut down.
  • the shut down transceiver no longer generates power consumption, which reduces the power consumption.
  • the overall power consumption of the communication device can reduce the power consumption of the system when applying the multi-antenna technology, and achieve the effect of energy saving.
  • the electronic device in the communication device is turned off, one of the transceivers connected to the power amplifier is turned off, but the power amplifier may not be turned off, and the power amplifier can still receive the corresponding signal from the transceiver that has not been turned off.
  • the radio frequency signal is power amplified and the corresponding radio frequency signal is transmitted, which makes the channel capacity of the system basically remain unchanged, and the antenna gain has not been reduced, so that the coverage of the network signal has not been reduced.
  • the radio frequency device 102 may include a first transceiver 11 and a second transceiver 12, and the antenna device 103 may include The power amplifier 13 and the band-pass filter 14 (of course, in other embodiments, the band-pass filter 14 and the antenna 15 may not be included).
  • the first transceiver 11 and the second transceiver 12 are respectively connected to a power amplifier 13, the power amplifier 13 is connected to a band pass filter 14, and the band pass filter 14 is connected to an antenna 15.
  • the first transceiver 11 may include a modulator 111, an up-converter 112, an oscillator 113, a down-converter 114, and a demodulator 115 that are electrically connected.
  • the modulator 111 and the demodulator 115 are connected to an oscillator 113
  • the up-converter 112 and the down-converter 114 are connected to an oscillator 113.
  • the modulator 111 and the demodulator 115 can be connected Different oscillators, the up-converter 112 and the down-converter 114 can be connected to different oscillators, which is not limited in the embodiment of the present application.
  • the baseband signal sent by the baseband control unit After the baseband signal sent by the baseband control unit enters the first transceiver 11, it passes through the modulator 111, the up-converter 112, the power amplifier 13 and the band-pass filter 14 in sequence, and then is sent to the antenna device 103.
  • the antenna signal from the antenna device 103 sequentially passes through the band pass filter 14, the power amplifier 13, the down converter 114, and the demodulator 115 to form a baseband signal and send it to the baseband control unit.
  • the second transceiver 12 may include a modulator 121, an up-converter 122, an oscillator 123, a down-converter 124, and a demodulator 125 that are electrically connected.
  • the modulator 121 and the demodulator 125 are connected to an oscillator 123, and the up-converter 112 and the down-converter 114 are connected to an oscillator 123.
  • FIG. 3 is only used as an example for illustration. In practical applications, the number of electronic devices, the number of electronic devices, and the connection relationship between the electronic devices in the radio frequency device 102 are not limited to this.
  • the first transceiver 11 in the system can be turned off (of course, the second transceiver 12 in the system can also be turned off.
  • the first transceiver 12 in the system can also be turned off.
  • a transceiver 11 is taken as an example for description), so that the first transceiver 11 in the system ends operation, while the second transceiver 12 continues to operate and cooperates with the power amplifier 13 to complete the transmission and reception of radio frequency signals. Since the first transceiver 11 in the system ends its operation, the first transceiver 11 can stop generating energy consumption, thereby reducing the power consumption of the system and achieving the effect of energy saving.
  • the power amplifier 13 in the system is not turned off, and the data stream can still be received from the second transceiver 12 for corresponding power amplification and signal transmission. Therefore, the channel capacity of the system remains basically unchanged, and the antenna gain It has not been reduced, so that while reducing the power consumption of the system, it has not reduced the coverage of the network signal and the channel capacity of the system.
  • FIG. 4 it is a communication device provided by an embodiment of this application.
  • the first transceiver 11 and the second transceiver 12 included in the communication device may be connected to the second power amplifier 43 while being connected to the first power amplifier 13 respectively.
  • the transceiver and power amplifier shown in FIG. 4 may have the same or similar functions as the transceiver and power amplifier shown in FIG. 2.
  • the data stream 1 After the data stream 1 is processed by the first transceiver 11 in the radio frequency, it can enter the first power amplifier 13 and the second power amplifier 43 respectively for power amplification, and be transmitted to the antenna 1 connected to the first power amplifier 13
  • the first client (such as transmission to user equipment, etc.) is transmitted to the second client through the antenna 2 connected to the second power amplifier 43; similarly, the data stream 2 is processed by the intermediate radio frequency of the second transceiver 12 , It can also be connected to the first power amplifier 13 and the second power amplifier 43 for power amplification, and respectively transmitted to the first client through the antenna 1 connected to the first power amplifier 13, and then connected to the first power amplifier 43
  • the antenna 2 is transmitted to the second client.
  • the first power amplifier 13 can also be connected to a first group of antennas (not shown in FIG. 4), the first group of antennas includes a first transmitting antenna and a first receiving antenna; the second power amplifier 43 can also Connected to a second group of antennas (not shown in FIG. 4), the second group of antennas includes a second transmitting antenna and a second receiving antenna.
  • the radio frequency signal sent by antenna 1 or antenna 2 is a mixed radio frequency signal corresponding to multiple data streams.
  • the radio frequency signal sent by antenna 1 to the first client is Integrate the mixed radio frequency signal obtained by data stream 1 and data stream 2, then, after receiving the mixed radio frequency signal, the first client or the second client can demodulate the mixed radio frequency signal to obtain the data stream respectively 1 corresponds to the signal and data stream 2 corresponds to the signal.
  • the second transceiver 12 corresponding to the second client can be turned off. It can be understood that after the second transceiver 12 is turned off, the second transceiver 12 no longer generates power consumption, and accordingly, the power consumption of the system can be reduced; at the same time, the first power amplifier 13 and the second power amplifier 43 It still continues to run, so as not to reduce the network signal coverage of the system and the channel capacity of the system.
  • first transceiver 11 and the second transceiver 12 may be respectively connected to the first power amplifier 13 and the second power amplifier 43 through a bridge, as shown in FIG. 5.
  • first transceiver 11 can be connected to the first port 51 of the first electrical bridge 50
  • second transceiver 12 can be connected to the second port 52 of the first electrical bridge 50.
  • the third port 53 can be connected to the first power amplifier 13
  • fourth port 54 of the first power bridge 50 can be connected to the second power amplifier 43
  • the first port 51 of the first power bridge 50 can be connected to the first power amplifier respectively.
  • the third port 53 and the fourth port 54 of the electric bridge 50 are connected, and the second port 52 of the first electric bridge 50 can be connected to the third port 53 and the fourth port 54 of the first electric bridge 50 respectively.
  • the data stream received by the first transceiver 11 can pass through the first electric bridge
  • the first port 51 of 50 enters the bridge, and flows into the first power amplifier 13 from the third port 53 and into the second power amplifier 43 from the fourth port 54; similarly, the information received by the second transceiver 12
  • the data stream can enter the bridge through the second port 52 of the first bridge 50 and flow into the first power amplifier 13 from the third port 53 and into the second power amplifier 43 from the fourth port 54 respectively.
  • the first port 51 and the second port 52 of the first electrical bridge 50 are input ends, and the third port 53 and the fourth port 54 of the first electrical bridge 50 are output ends.
  • the data stream received by the first power amplifier 13 can flow into the first bridge 50 through the third port 53 of the first bridge 50, and then flow from the first port 51.
  • the first transceiver 11 flows into the second transceiver 12 from the second port 52; similarly, the data stream received by the second power amplifier 43 can flow into the first bridge through the fourth port 54 of the first bridge 50 50, and flow into the first transceiver 11 from the first port 51, and flow into the second transceiver 12 from the second port 52.
  • the first port 51 and the second port 52 of the first electrical bridge 50 are output ends, and the third port 53 and the fourth port 54 of the first electrical bridge 50 are input ends.
  • the first transceiver 11 or the second transceiver 12 may be turned off.
  • the specific decision of which transceiver to turn off can be determined according to the pairing situation between the transceiver and the user equipment (client). For example, if the first transceiver 11 does not currently have a user equipment paired with it, the first transceiver 11 can be turned off, and the second transceiver 12 can continue to perform data processing and transmission for the user equipment paired with it. In this way, while the first transceiver 11 is turned off to save energy, since the first power amplifier 13 and the second power amplifier 43 are not turned off, the channel capacity of the system and the network signal coverage are not reduced.
  • the communication device may include N transceivers, where N is an integer greater than or equal to 1, for example, N is 64.
  • N is an integer greater than or equal to 1
  • N is 64.
  • the above process can be used to transmit and receive two transceivers.
  • turn off 32 of the 64 transceivers, and each of the remaining 32 transceivers can be connected to two power amplifiers to achieve system energy saving .
  • the number of transceivers to be turned off is not limited to 32. For example, 16 or 20 of them can also be turned off. Among them, without reducing the system channel capacity and network signal coverage, the For a system containing 64 transceivers, the number of closed transceivers is not more than 32.
  • the signal received by each power amplifier is mixed with multiple transceivers
  • the output signal for example, when the first transceiver 11 and the second transceiver are running at the same time, the radio frequency signals output by the first transceiver 11 and the second transceiver 12 are both transmitted to the power amplifier 13, so that the power
  • the radio frequency signal received by the amplifier is a radio frequency signal obtained by mixing the output radio frequency signals of multiple transceivers.
  • the first processor 10 may be further added to obtain the system shown in FIG. 6.
  • the first processor 10 can be connected to the first transceiver 11 and the second transceiver 12 respectively.
  • the first processor 10 may use the first weighting matrix to perform weighted summation processing on the first baseband signal to be transmitted to the first transceiver 11 to obtain the corresponding third baseband signal, and use the first weighting matrix
  • the second baseband signal to be transmitted to the second transceiver 12 is subjected to weighted summation processing to obtain the fourth baseband signal, and the first weighting matrix is the inverse matrix of the bridge matrix of the first bridge 50. Then, the third baseband signal is output to the first transceiver 11, and the fourth baseband signal is output to the second transceiver 12.
  • the first weighting matrix may specifically be:
  • j is plural.
  • the electric bridge matrix of the first electric bridge 50 is the inverse matrix of the first weighting matrix, which is:
  • X0 represents the first baseband signal
  • X1 represents the second baseband signal
  • Y0 and Y1 respectively represent two different radio frequency signals output by the first bridge 50, then:
  • the signal received by each power amplifier is the radio frequency signal output by a single transceiver, rather than multiple radio frequencies.
  • the mixing of signals realizes the consistency of the input and output signals of each signal.
  • the system when it receives the signal sent by the user equipment, it can also use the processor (to distinguish it from the first processor 10, hereinafter referred to as the fourth processor) to perform weighted summation processing on the signal output by the transceiver .
  • the system may include a fourth processor, which is also connected to the first transceiver 11 and the second transceiver 12 respectively, and may use the fourth weighting matrix to output to the first transceiver 11 Perform weighted summation processing on the first baseband signal to obtain the corresponding third baseband signal, and use the fourth weighting matrix to perform weighted summation processing on the second baseband signal output by the second transceiver 12 to obtain the corresponding fourth baseband signal.
  • the fourth weighting matrix is the inverse matrix of the bridge matrix of the first bridge 50.
  • the above-mentioned first processor 10 and the fourth processor may be the same processor.
  • the processor may be coupled with the memory to execute programs or instructions in the memory to complete the weighted summation process, or the memory may store information about the weighting matrix, and the processor may read the information stored in the memory The information of the weighting matrix, complete the processing of weighted summation.
  • the foregoing first processor may specifically be in a baseband processing unit (Building Baseband Unite, BBU), and the system integrating the BBU may be a base station, etc., optionally, the BBU also includes a memory. Or the first processor may be located in the radio frequency device 102. Optionally, the radio frequency device 102 further includes a memory.
  • the system can be switched from the state of 64 transceivers to the state of 32 transceivers.
  • the system can be further switched from the state where 64 transceivers are running to the state where 16 transceivers are running.
  • the following takes the system including 4 transceivers as an example for illustration, refer to the system shown in FIG. 5.
  • the communication device shown in FIG. 7 includes 4 transceivers, namely a first transceiver 11, a second transceiver 12, a third transceiver 23, and a fourth transceiver 24, and also includes 4 transceivers.
  • the power amplifiers are the first power amplifier 13, the second power amplifier 43, the third power amplifier 130, and the fourth power amplifier 430, and also include 4 bridges, namely the bridge 50, the bridge 60, the bridge 70, and the Bridge 80. Among them, as shown in FIG.
  • the mutual connection relationship of the various electronic devices is: the first transceiver 11 is connected to the first port 61 of the second electrical bridge 60, and the third port 63 of the second electrical bridge 60 is connected to The first port 51 of the first electrical bridge 50 is connected; the second transceiver 12 is connected to the first port 71 of the third electrical bridge 70, and the third port 73 of the third electrical bridge 70 is connected to the second port of the first electrical bridge 50.
  • Port 52 is connected; the third transceiver 23 is connected to the second port 62 of the second bridge 60, and the fourth port 64 of the second bridge 60 is connected to the first port 81 of the fourth bridge 80; the fourth transceiver
  • the machine 24 is connected to the second port 72 of the third electrical bridge 70, the fourth port 74 of the third electrical bridge 70 is connected to the second port 82 of the fourth electrical bridge 80; the third port 83 of the fourth electrical bridge 80 is connected to the The three power amplifiers 23 are connected, the fourth port 84 of the fourth bridge 80 is connected to the fourth power amplifier 24; the first port 61 of the second bridge 60 is connected to the third port 63 and the second power amplifier of the second bridge 60, respectively.
  • the fourth port 64 of the bridge 60 is connected, and the second port 62 of the second electrical bridge 60 is respectively connected to the third port 63 of the second electrical bridge 60 and the fourth port 64 of the second electrical bridge 60;
  • the first port 71 is respectively connected to the third port 73 of the third electrical bridge 70 and the fourth port 74 of the third electrical bridge 70, and the second port 72 of the third electrical bridge 70 is respectively connected to the third port of the third electrical bridge 70 73 and the fourth port 74 of the third bridge 70 are connected;
  • the first port 81 of the fourth bridge 80 is connected to the third port 83 of the fourth bridge 80 and the fourth port 84 of the fourth bridge 80, respectively.
  • the second port 82 of the four electric bridge 80 is respectively connected to the third port 83 of the fourth electric bridge 80 and the fourth port 84 of the fourth electric bridge 80.
  • the first power amplifier 13 can also be connected to a first group of antennas (not shown in FIG. 7).
  • the first group of antennas includes a first transmitting antenna and a first receiving antenna;
  • the second power amplifier 43 can also be connected to The second group of antennas (not shown in FIG. 7) is connected to the second group of antennas, including a second transmitting antenna and a second receiving antenna;
  • the third power amplifier 130 can also be connected to a third group of antennas (not shown in FIG. 7) Connecting to the third group of antennas includes a third transmitting antenna and a third receiving antenna;
  • the fourth power amplifier 430 can also be connected to a fourth group of antennas (not shown in FIG. 7).
  • the fourth group of antennas includes a fourth transmitting antenna and The fourth receiving antenna.
  • the third transceiver 23 receives The data stream can flow into the second bridge 60 through the second port 62 of the second bridge 60. Since the second port 62 is connected to the third port 63 and the fourth port 64 respectively, the data stream can reach from the second port respectively. The third port 63 and the fourth port 64; then, the third port 63 is connected to the first port 51 of the first bridge 50, and the first port 51 is connected to the third port 53 and the fourth port 54 respectively.
  • the data stream at the three port 63 can flow into the first power amplifier 11 through the first port 51 and the third port 53 in sequence, and flow into the second power amplifier 12 through the first port 51 and the third port 53, and the third port 63 and
  • the first port 81 of the fourth bridge 80 is connected, and the first port 81 is respectively connected to the third port 83 and the fourth port 84. Therefore, the data flow at the third port 63 can also pass through the first port 81 and the second port in turn.
  • the three ports 83 flow into the third power amplifier 23, and flow into the fourth power amplifier 24 through the first port 81 and the fourth port 84. That is, the data stream received by each transceiver can finally flow into the four power amplifiers respectively.
  • the data stream received by each power amplifier is also received by the integrated four transceivers.
  • the mixed data stream obtained by the data stream.
  • the first port 51, the second port 52, the first port 61, the second port 62, the first port 71, the second port 72, the first port 81, and the second port 82 are all input ends of the data stream.
  • the third port 53, the fourth port 54, the third port 63, the fourth port 64, the third port 73, the fourth port 74, the third port 83, and the fourth port 84 are all output ends of the data stream.
  • the first power amplifier 13 can pass the data stream through the first bridge.
  • the third port 53 of 50 flows into the first bridge, and then flows into the first transceiver 11 through the first port 51, the third port 63, and the first port 61 in turn, and flows through the first port 51, the third port 63, and the second port.
  • Port 62 flows into the third transceiver 23, flows into the second transceiver 12 through the second port 52, the third port 73, and the first port 71, and flows into the second transceiver 12 through the second port 52, the third port 73, and the second port 72.
  • the first port 51, the second port 52, the first port 61, the second port 62, the first port 71, the second port 72, the first port 81, and the second port 82 are all output ends of the data stream.
  • the third port 53, the fourth port 54, the third port 63, the fourth port 64, the third port 73, the fourth port 74, the third port 83, and the fourth port 84 are all input ends of the data stream.
  • the system determines that the network load is low or the system is notified that the network load is low, it can turn off the transceiver that does not currently have a user equipment paired with it. For example, assume that only the first transceiver 11 currently has a user equipment with it. Pairing, the second transceiver 12, the third transceiver 23, and the fourth transceiver 24 can be turned off.
  • the data stream received by the first transceiver 11 can be Into the four power amplifiers respectively, and then sent out through each power amplifier and the corresponding antenna device, which makes the channel capacity of the system and the coverage of the network signal not reduced.
  • the above implementation can be used to close 48 of the 64 transceivers, and switch the system from the operating state of 64 transceivers to 16 transceivers.
  • the number of transceivers shut down by the system can also be determined by itself according to actual application needs. For example, it can also be that only 20 or 32 transceivers are shut down. Among them, without reducing the system channel capacity and network signal coverage, for a system containing 64 transceivers, the number of closed transceivers is not more than 48.
  • the structure shown in FIG. 8 can be further adopted.
  • the system may further include a first switch S1 and a second switch S2.
  • the third port 73 of the third electrical bridge 70 is connected to one end of the first switch S1, and the other end of the first switch S1 is connected to the second port of the first electrical bridge 50; at the same time, the fourth port of the second electrical bridge 60
  • the port 64 is connected to one end of the second switch S2, and the other end of the second switch S2 can be connected to the first port 81 of the fourth bridge 80, as shown in FIG. 7.
  • the first switch S1 and the second switch S2 can be turned off.
  • the data stream received by the second transceiver 12 may sequentially pass through the second port 62, the third port 63, the first port 51, and the second port of the second bridge 60.
  • the three ports 53 flow into the first power amplifier 13 for power amplification and subsequent radio frequency signal transmission.
  • they also pass through the second port 62, the third port 63, the first port 51, and the fourth port of the second bridge 60 in sequence.
  • the port 54 flows into the second power amplifier 43 for power amplification and subsequent radio frequency signal transmission.
  • the data stream received by the transceiver that is not turned off can flow into the two power amplifiers for power amplification and signal output.
  • the data stream received by the third transceiver 23 can flow into the third power amplifier 130 and the fourth power amplifier 430, respectively. It is worth noting that even if the first transceiver 11 and the fourth transceiver 24 are turned off, the power amplifiers in the system shown in FIG. 8 still continue to operate. Therefore, the channel capacity of the system and the coverage of the network signal are not reduced. range.
  • the second transceiver 12 and the third transceiver 23 can also be turned off, and the first switch S1 and the second switch S2 can be turned off. It is similar to turning off the first transceiver 11 and the fourth transceiver 24, and will not be repeated here.
  • a second processor 20 may be added to the communication device shown in FIG.
  • the phases of the input and output are the same.
  • the communication device including the second processor 20 may be as shown in FIG. 9.
  • the second processor 20 may be connected to the first transceiver 11, the second transceiver 12, the third transceiver 23, and the fourth transceiver 24, respectively.
  • the second processor 20 may use the second weighting matrix to perform weighted summation processing on the first baseband signal that needs to be transmitted to the first transceiver 11 to obtain the corresponding fifth baseband Signal, and the obtained fifth baseband signal is output to the first transceiver 11; the second baseband signal that needs to be transmitted to the second transceiver 12 is weighted and summed using the second weighting matrix to obtain the corresponding first Six baseband signals, and the obtained sixth baseband signal is output to the second transceiver 12; the third baseband signal that needs to be transmitted to the third transceiver 23 is weighted and summed using the second weighting matrix to obtain the corresponding The seventh baseband signal obtained is output to the third transceiver 23; the fourth baseband signal that needs to be transmitted to the fourth transceiver 24 is weighted and summed using the second weighting matrix, The corresponding eighth baseband signal is obtained, and the obtained eighth baseband signal is output to the fourth transceiver 24
  • the above-mentioned second weighting matrix is the inverse matrix of the third weighting matrix
  • the third weighting matrix is based on the electric bridge matrix of the first electric bridge 50, the electric bridge matrix of the second electric bridge 60, and the electric power of the third electric bridge 70.
  • the bridge matrix, the bridge matrix of the fourth bridge 80, and the connection relationship between the respective bridges are determined to obtain a combined bridge matrix.
  • the bridge matrixes of the first electrical bridge 50, the second electrical bridge 60, the third electrical bridge 70, and the fourth electrical bridge 80 are as follows:
  • the combined bridge matrix (that is, the above-mentioned third weighting matrix) determined according to the bridge matrices of the four bridges and the connections between the bridges can be:
  • the second weighting matrix is the inverse matrix of the third weighting matrix.
  • the signal received by each power amplifier is the radio frequency signal output by a single transceiver, but not The mixing of multiple radio frequency signals realizes the consistency of the input and output signals of each signal.
  • the system when it receives the signal sent by the user equipment, it can also use the processor (to distinguish it from the first processor 20, hereinafter referred to as the fifth processor) to perform weighted summation processing on the signal output by the transceiver .
  • the system may include a fifth processor, which is also connected to the first transceiver 11, the second transceiver 12, the third transceiver 23, and the fourth transceiver 24 respectively, and, The fifth weighting matrix can be used to perform weighted summation processing on the first baseband signal output by the first transceiver 11 to obtain the corresponding fifth baseband signal, and perform weighted summation on the second baseband signal output by the second transceiver 12 Process to obtain the corresponding sixth baseband signal, perform weighted summation processing on the third baseband signal output by the third transceiver 23 to obtain the corresponding seventh baseband signal, and perform the fourth baseband signal output by the fourth transceiver 24 Perform weighted summation processing to obtain the corresponding eighth baseband signal
  • the above-mentioned fifth weighting matrix is the inverse of the sixth weighting matrix, and the sixth weighting matrix is based on the bridge matrix of the first bridge 50, the bridge matrix of the second bridge 60, and the bridge matrix of the third bridge 70.
  • the combined electric bridge matrix obtained by determining the electric bridge matrix of the fourth electric bridge 80 and the connection relationship between the respective electric bridges.
  • the transceiver and the power amplifier are connected by a bridge, and in other possible implementations, the transceiver and the power amplifier can also be connected by a switch. connection.
  • the first transceiver 11 may be connected to the first power amplifier 13
  • the second transceiver 12 may be connected to the first power amplifier 13 through a third switch.
  • the third switch can be closed, so that the second transceiver 12 is connected to the first power amplifier 13.
  • the data stream received by the second transceiver 12 can flow into the first power amplifier 13, so that the first power amplifier 13 can continue to run and complete the signal transmission of this path, thereby increasing the system's channel capacity and network signal The coverage has not been reduced.
  • the communication device shown in FIG. 10 (taking system transmission data as an example), the transceiver and power amplifier included in the communication device are the same as those in the communication device shown in FIGS. 4 to 9 The same or similar functions.
  • the first transceiver 11 is connected to the first power amplifier 13, and at the same time, the first transceiver 11 is connected to the second power amplifier 43 through the switch S3, and the second transceiver 12 is connected to the second power amplifier 43.
  • the second transceiver 12 is connected to the first power amplifier 13 through the switch S4. Based on the structure shown in FIG.
  • the switch S3 and the switch S4 can be turned off, and the first transceiver 11 can only be connected to the second transceiver.
  • a power amplifier 13 transmits radio frequency signals, while the second transceiver 12 can only transmit radio frequency signals to the second power amplifier 43; when the power consumption of the system needs to be reduced, the first transceiver 11 can be turned off, and the switch S4 can be closed.
  • the second transceiver 12 can be connected to the first power amplifier 13 and the second power amplifier 43 at the same time, so as to realize energy saving of the system, while the channel capacity of the system and the coverage of the network signal are not reduced.
  • the switch S3 can be closed, so that the first transceiver 11 can be connected to the first power amplifier 13 and the second power amplifier 43 at the same time.
  • the embodiment of the present application provides the following communication device:
  • the embodiment of the present application provides a communication device, which includes a transceiver, an electric bridge, and a power amplifier.
  • the communication device may be an RRU, a radio frequency unit (RFU), or other devices capable of completing the conversion between a digital signal or an intermediate frequency signal and a radio frequency signal.
  • RRU radio frequency unit
  • the embodiment of the present application provides a communication device, which includes a transceiver, an electric bridge, a power amplifier, and an antenna device 103.
  • the communication device may be an AAU or other device capable of converting digital signals or intermediate frequency signals into radio frequency signals and transmitting them into the air.
  • first and “second” in this application are only used to distinguish different objects, and “first” and “second” do not limit the actual order or function of the modified objects.
  • first and “second” in the “first antenna array” and “second antenna array” are just to distinguish between the two corresponding to the first radio frequency channel and the second radio frequency channel.
  • “One” and “Second” do not limit their actual sequence or function.
  • the processor in this application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or Various computing devices such as artificial intelligence processors that run software.
  • Each computing device may include one or more cores for executing software instructions for calculations or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits). System), or it can be integrated into the ASIC as a built-in processor of an ASIC, and the ASIC integrated with the processor can be packaged separately or together with other circuits.
  • the processor may also include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the disclosed system or device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信装置。该通信装置可以包括第一收发信机、第二收发信机以及功率放大器,其中,第一收发信机和第二收发信机可以分别与功率放大器连接。这样,当确定网络负载较低时,可以关闭该通信装置中的任意一个收发信机。由于该被关闭的收发信机不再继续产生功耗,也就降低了该通信装置整体的功耗,达到节能的效果。而且,在关闭通信装置中的电子器件时,可以不关闭功率放大器,该功率放大器依然可以从未关闭的收发信机中接收到相应的射频信号进行功率放大以及相应的射频信号发送,这使得系统的信道容量基本保持不变,并且天线增益并没有得到降低,从而使得网络信号的覆盖范围也没有发生降低。

Description

一种通信装置
本申请要求于2019年9月30日提交中国国家知识产权局、申请号为201910944620.3、发明名称为“一种通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其是涉及一种通信装置。
背景技术
随着长期演进(long term evolution,LTE)、第五代移动通信技术(5th generation mobile networks,5G)移动通信网络的不断发展,多天线技术,例如多输入多输出(multiple-input multiple-output,MIMO)技术逐渐成为移动通信的核心技术,并被运营商进行重点部署。其中,多天线技术,是指在发射端和接收端分别使用多个发射天线和/或多个接收天线,并利用发射端的多个天线进行信号发送和/或利用接收端的多个天线进行信号接收。这不仅可以改善信号的通信质量,而且,通过多个天线收发信号,可以在不增加频谱资源和天线发射功率的情况下,成倍的提高系统信道容量。
但是,多天线技术在改善信号的通信质量以及提高系统信道容量的同时,也给运营商带来了功耗较高的问题,因此,在应用多天线技术时降低系统功耗是非常有必要的。
发明内容
为了解决上述问题,本申请实施例提供了一种通信装置,以使得在应用多天线技术时可以基于该通信装置降低系统功耗,实现节能。
第一方面,本申请实施例提供了一种通信装置,该通信装置可以包括第一收发信机、第二收发信机以及第一功率放大器;其中,该第一收发信机与第二收发信机可以分别与该第一功率放大器连接。在该实施方式中,在利用该通信装置实现多天线技术的应用时,若系统当前的网络负载较低,需要对系统进行节能,则可以关闭该通信装置中的第一收发信机或者第二收发信机,由于关闭了该通信装置中的其中一个收发信机,该被关闭的收发信机不再继续产生功耗,也就降低了该通信装置整体的功耗,从而在应用多天线技术时可以降低系统的功耗,达到节能的效果;同时,该通信装置中的其中一个收发信机关闭后,第一功率放大器依然可以从未关闭的收发信机中接收到相应的射频信号进行功率放大以及相应的射频信号发送,这使得系统的信道容量基本保持不变,并且天线增益并没有得到降低,从而使得网络信号的覆盖范围也没有发生降低。
在一种可能的实施方式中,该通信装置还可以包括第二功率放大器,其中,第一收发信机与第二收发信机可以分别与第二功率放大器连接。在该实施方式中,对于通信装置中的每个功率放大器,均可以与多个收发信机连接,比如,当通信装置还包括第二功率放大器时,该第二功率放大器还可以与第一收发信机与第二收发信机连接。这样,与第一功率 放大器类似,当与第二功率放大器连接的第一收发信机或者第二收发信机关闭时,第二功率放大器依然可以接收到来自未关闭的收发信机的射频信号,从而在通过收发信机实现系统节能时,系统的信道容量可以基本保持不变,并且网络信号的覆盖范围也没有发生降低。
在进一步可能的实施方式中,通信装置还包括第一电桥;其中,该第一收发信机与第一电桥的第一端口连接;所述第二收发信机与所述第一电桥的第二端口连接;所述第一电桥的第三端口与所述第一功率放大器连接;所述第一电桥的第四端口与所述第二功率放大器连接;所述第一电桥的第一端口分别与所述第一电桥的第三端口以及所述第一电桥的第四端口连接,所述第一电桥的第二端口分别与所述第一电桥的第三端口以及所述第一电桥的第四端口连接。在该实施方式中,通信装置可以包括至少两个功率放大器,并且,每个收发信机均可以通过电桥与两个功率放大器之间进行连接。这样,当关闭通信装置中的任一个收发信机,剩余收发信机也可以通过两个功率放大器实现信号输出,从而在实现系统节能的同时,也能使得系统的信道容量以及网络信号的覆盖范围没有得到降低。
在一种可能的实施方式中,所述通信装置还包括第一处理器,所述第一处理器分别与所述第一收发信机和所述第二收发信机连接;所述第一处理器,用于根据第一加权矩阵对第一基带信号和第二基带信号分别进行加权求和处理,得到第三基带信号和第四基带信号,其中,所述第三基带信号输出给所述第一收发信机,所述第四基带信号输出给所述第二收发信机;所述第一加权矩阵为所述第一电桥的电桥矩阵的逆矩阵。在该实施方式中,通过增加第一处理器来对输出给收发信机的基带信号进行加权处理,可以使得收发信机与功率放大器之间具有一一对应的关系,即每个功率放大器所接收到的射频信号可以是一个收发信机所输出的射频信号,而不是多个收发信机所输出的射频信号的混合。
在一些可能的实施方式中,所述通信装置还包括第三收发信机、第四收发信机、第三功率放大器、第四功率放大器、第二电桥、第三电桥和第四电桥;所述第一收发信机与第二电桥的第一端口连接,所述第二电桥的第三端口与所述第一电桥的第一端口连接;所述第二收发信机与所述第三电桥的第一端口连接,所述第三电桥的第三端口与所述第一电桥的第二端口连接;所述第三收发信机与所述第二电桥的第二端口连接,所述第二电桥的第四端口与所述第四电桥的第一端口连接;所述第四收发信机与所述第三电桥的第二端口连接,所述第三电桥的第四端口与所述第四电桥的第二端口连接;所述第四电桥的第三端口与所述第三功率放大器连接,所述第四电桥的第四端口与所述第四功率放大器连接;所述第二电桥的第一端口分别与所述第二电桥的第三端口以及所述第二电桥的第四端口连接,所述第二电桥的第二端口分别与所述第二电桥的第三端口以及所述第二电桥的第四端口连接;所述第三电桥的第一端口分别与所述第三电桥的第三端口以及所述第三电桥的第四端口连接,所述第三电桥的第二端口分别与所述第三电桥的第三端口以及所述第三电桥的第四端口连接;所述第四电桥的第一端口分别与所述第四电桥的第三端口以及所述第四电桥的第四端口连接,所述第四电桥的第二端口分别与所述第四电桥的第三端口以及所述第四电桥的第四端口连接。在该实施方式中,通信装置中的四个收发信机以及四个功率放大器可以通过四个电桥进行连接,并且,基于该四个电桥,每个功率放大器所接收到的射频信号可以是四个收发信机所输出射频信号的混合,即每个功率放大器可以同时与四个收发信 机连接,并接收到四个收发信机所接收到的射频信号。这样,即使其中一个至三个收发信机被关闭以节省系统能耗,每个功率放大器均可以接收到剩余收发信机所发送的射频信号,从而使得系统的信道容量以及网络信号的覆盖范围也没有得到降低。
在一些可能的是实施方式中,所述通信装置还包括第一开关和第二开关;所述第三电桥的第三端口连接所述第一开关的一端,所述第一开关的另一端连接所述第一电桥的第二端口;所述第二电桥的第四端口连接所述第二开关的一端,所述第二开关的另一端连接所述第四电桥的第一端口;当所述第二收发信机和所述第三收发信机关闭时,或,当所述第一收发信机和所述第四收发信机关闭时,所述第一开关和所述第二开关断开。在该实施方式中,可以进一步在电桥之间设置连接开关,以使得当四个收发信机的其中两个收发信机关闭时,每个功率放大器均可以接收到一个收发信机输出的射频信号,并且,其中两个功率放大器所接收到的射频信号为同一个收发信机所输出的射频信号,另两个功率放大器所接收到的射频信号为另一个收发信机所输出的射频信号。实际应用中,当系统需要节能时,可以断开在四个电桥之间所设置的连接开关,并关闭相应的收发信机,以节省系统能耗。
在一些可能的实施方式中,所述通信装置还包括第三开关;所述第二收发信机通过所述第三开关与所述第一功率放大器连接。在该实施方式中,在第二收发信机与第一功率放大器之间可以设置有第三开关,当系统基于节能的需要关闭第一收发信机时,可以将第三开关闭合,这样,第二收发信机可以与第一功率放大器连接,从而可以使得第一功率放大器依然可以接收到第二收发信机所输出的射频信号,以便在实现节能的同时也不会降低系统的信道容量以及网络信号的覆盖范围。
在一些可能的实施方式中,所述通信装置为远端射频单元RRU。
在一些可能的实施方式中,所述通信装置还包括第一组天线,所述第一功率放大器与第一组天线连接。在该实施方式中,通信装置可以利用该第一组天线对第一功率放大器所放大的射频信号进行信号发送,也可以利用该第一组天线接收客户端(如用户设备等)发送的信号,并通过该第一功率放大器对其进行功率放大。
在一些可能的实施方式中,所述通信装置还包括第二组天线,所述第二功率放大器与第二组天线连接。在该实施方式中,通信装置可以利用该第二组天线对第二功率放大器所放大的射频信号进行信号发送,也可以利用该第二组天线接收客户端发送的信号,并通过该第二功率放大器对其进行功率放大。
在一些可能的实施方式中,所述通信装置为有源天线单元AAU。
在一些可能的实施方式中,所述通信装置中包括的第一处理器可以为基带处理单元BBU。
在一些可能的实施方式中,所述通信装置可以进一步为基站。
在一些可能的实施方式中,所述通信装置还包括第二处理器;所述第二处理器分别与所述第一收发信机、所述第二收发信机、所述第三收发信机和所述第四收发信机连接;所述第二处理器,用于根据第二加权矩阵对第一基带信号、第二基带信号、第三基带信号和第四基带信号分别进行加权求和处理,得到第五基带信号、第六基带信号、第七基带信号和第八基带信号,其中,所述第五基带信号输出给所述第一收发信机,所述第六基带信号 输出给所述第二收发信机,所述第七基带信号输出给所述第三收发信机,所述第八基带信号输出给所述第四收发信机;所述第二加权矩阵为第三加权矩阵的逆矩阵,所述第三加权矩阵为根据所述第一电桥的电桥矩阵、所述第二电桥的电桥矩阵、所述第三电桥的电桥矩阵和第四电桥的电桥矩阵以及所述第一电桥、所述第二电桥、所述第三电桥和所述第四电桥的连接关系确定得到的组合电桥矩阵。在该实施方式中,当通信装置利用四个电桥连接至少四个收发信机以及至少四个功率放大器时,可以通过增加相应的第二处理器来使得每个功率放大器所接收到的信号为单一收发信机所输出的信号,而可以不是四个收发信机所输出的射频信号的混合,从而可以建立各个收发信机与功率放大器之间的一一对应关系。
在一些可能的实施方式中,所述第一电桥的第一端口和所述第一电桥的第二端口为输入端;所述第一电桥的第三端口和所述第一电桥的第四端口为输出端。在该实施方式中,当通信装置向客户端发送射频信号时,第一收发信机所输出的射频信号可以通过第一端口输入至第一电桥,并通过第三端口输出值第一功率放大器,以便由第一功率放大器对其进行功率放大后进行信号发送;类似的,第二收发信机可以通过第二端口输入至第一电桥,并通过第四端口输出至第二功率放大器进行功率放大,进而进行信号发送。
在一些可能的实施方式中,所述第一电桥的第一端口和所述第一电桥的第二端口为输出端;所述第一电桥的第三端口和所述第一电桥的第四端口为输入端。在该实施方式中,当通信装置接收客户端发送的射频信号时,第一电桥的第三端口以及第四端口,可以变成信号输入端,并由作为信号输出端的第一端口将信号传输至第一收发信机,由作为信号输出端的第二端口将信号传输至第二收发信机。
在一些可能的实施方式中,所述通信装置还包括第四处理器,所述第四处理器分别与所述第一收发信机和所述第二收发信机连接;所述第四处理器,用于根据第四加权矩阵对所述第一收发信机输出的第一基带信号和所述第一收发信机输出的第二基带信号分别进行加权求和处理,得到第三基带信号和第四基带信号;所述第四加权矩阵为所述第一电桥的电桥矩阵的逆矩阵。在该实施方式中,当系统接收客户端发送的信号时,对于同一功率放大器所接收到多客户端对应的混合信号,可以利用第四处理器对其进行加权求和处理,以使得最终输出给各个收发信机的信号为单一客户端对应的基带信号,实际应用中即可以为与该收发信机完成配对的客户端所发送的基带信号,而不是多个客户端发送的基带信号的混合。
在一些可能的实施方式中,所述第一电桥的第一端口、所述第一电桥的第二端口、所述第二电桥的第一端口、所述第二电桥的第二端口、所述第三电桥的第一端口、所述第三电桥的第二端口、所述第四电桥的第一端口、所述第四电桥的第二端口均为输入端;所述第一电桥的第三端口、所述第一电桥的第四端口、所述第二电桥的第三端口、所述第二电桥的第四端口、所述第三电桥的第三端口、所述第三电桥的第四端口、所述第四电桥的第三端口、所述第四电桥的第四端口均为输出端。在该实施方式中,当通信装置向客户端发送射频信号时,各个电桥的第一端口以及第二端口可以作为输入端,收发信机所输出的射频信号可以通过各个电桥的第一端口或者第二端口输出的电桥中,并通过相应电桥的第三端口或者第四端口输出至功率放大器,以便于功率放大器对其进行功率放大后完成信号发 送。
在一些可能的实施方式中,所述第一电桥的第一端口、所述第一电桥的第二端口、所述第二电桥的第一端口、所述第二电桥的第二端口、所述第三电桥的第一端口、所述第三电桥的第二端口、所述第四电桥的第一端口、所述第四电桥的第二端口均为输出端;所述第一电桥的第三端口、所述第一电桥的第四端口、所述第二电桥的第三端口、所述第二电桥的第四端口、所述第三电桥的第三端口、所述第三电桥的第四端口、所述第四电桥的第三端口、所述第四电桥的第四端口均为输入端。在该实施方式中,通信装置可以接收客户端发送的射频信号,并通过各个电桥的第三端口或者第四端口输入至电桥中,再通过相应电桥的第一端口或者第二端口将信号输出至相应的收发信机。
在该实施方式中,所述通信装置还包括第五处理器;所述第五处理器分别与所述第一收发信机、所述第二收发信机、所述第三收发信机和所述第四收发信机连接;所述第五处理器,用于根据第五加权矩阵对第一基带信号、第二基带信号、第三基带信号和第四基带信号分别进行加权处理,得到第五基带信号、第六基带信号、第七基带信号和第八基带信号;所述第五加权矩阵为第六加权矩阵的逆矩阵,所述第六加权矩阵为根据所述第一电桥的电桥矩阵、所述第二电桥的电桥矩阵、所述第三电桥的电桥矩阵和第四电桥的电桥矩阵以及所述第一电桥、所述第二电桥、所述第三电桥和所述第四电桥的连接关系确定得到的组合电桥矩阵。当系统接收客户端发送的信号时,对于同一功率放大器所接收到多客户端对应的混合信号,可以利用第五处理器对其进行加权求和处理,以使得最终输出给各个收发信机的信号为单一客户端的基带信号,实际应用中即可以为与该收发信机完成配对的客户端所发送的基带信号,而不是多个客户端发送的基带信号的混合。
从以上技术方案可以看出,本申请实施例具有以下优点:
本实施例中所提供的通信装置可以包括第一收发信机、第二收发信机以及功率放大器,其中,第一收发信机和第二收发信机可以分别与功率放大器连接。这样,当确定网络负载较低时,多余的收发信机可以结束运行,因此可以关闭该通信装置中的任意一个收发信机,如可以关闭第一收发信机或者第二收发信机。可以理解,在基于该通信装置实现多天线技术应用的过程中,由于关闭了该通信装置中的其中一个收发信机,该被关闭的收发信机不再继续产生功耗,也就降低了该通信装置整体的功耗,从而在应用多天线技术时可以降低系统的功耗,达到节能的效果。而且,在关闭通信装置中的电子器件时,是对与功率放大器相连的其中一个收发信机进行关闭,而可以不关闭功率放大器,该功率放大器依然可以从未关闭的收发信机中接收到相应的射频信号进行功率放大以及相应的射频信号发送,这使得系统的信道容量基本保持不变,并且天线增益并没有得到降低,从而使得网络信号的覆盖范围也没有发生降低。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一示例性通信系统结构示意图;
图2为本申请实施例中一示例性通信装置的结构示意图;
图3为本申请实施例中又一示例性通信系统示意图;
图4为本申请实施例中包括两个功率放大器的通信装置结构示意图;
图5为本申请实施例中包括电桥以及两个收发信机的示例性通信装置的结构示意图;
图6为本申请实施例中包括第一处理器的示例性通信装置的结构示意图;
图7为本申请实施例中包括四个电桥的示例性通信装置的结构示意图;
图8为本申请实施例中在四个电桥中设置开关的示意图;
图9为本申请实施例中包括第二处理器的示例性通信装置的结构示意图;
图10为本申请实施例中在收发信机与功率放大器之间设置开关的示意图。
具体实施方式
参阅图1,本申请实施例的技术方案可以适用于图1所示的通信系统。在该通信系统,可以包括基带装置101、射频装置102以及天线装置103。其中,基带装置101与射频装置102相连,射频装置102与天线装置103连接。该通信系统可以是基站。
基带装置101主要用于对通信协议以及通信数据进行处理,以及对整个基站进行控制,执行软件程序,处理软件程序的数据。基带装置101中的芯片可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。或者,基带装置101中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,基带装置101可以包括多个基带处理器以适应不同的网络制式,基带装置101可以包括多个中央处理器以增强其处理能力。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。例如,基带装置可以是基带单元(base band unit,BBU)。
射频装置102可以用于将接收到的数字信号转换成射频信号,将射频信号发送至天线装置103,或者从天线装置103接收射频信号,并将射频信号转换成数字信号,并传送至基带控制单元。天线装置103可以将接收到的射频信号发射出去或者接收外界的射频信号并传送至射频装置102。
其中,射频装置102可以包括多个射频通道。需要说明的是,这里射频通道可以指射频装置102中的电路通道,该电路通道可以包括一个或者多个电子器件,多个射频通道可以共用电路通道,也可以每个射频通道都包括单独的电路通道。或者,这里的射频通道可以指射频装置中的逻辑通道,该逻辑通道中可以完成基带信号与射频信号的转换。
逻辑通道也可以称为收发器、收发单元、收发机、收发装置、射频通道、收发信机等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实 现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。射频装置102和天线装置103物理上可以分开。例如,射频装置102可以是射频拉远单元(radio remote unit,RRU)或者射频单元(radio frequency unit,RFU),天线装置103可以是多根天线,该多根天线可以布局在一副天线罩内。当然,射频装置102和天线装置103物理上也可以集成在一起。例如,系统可以是有源天线单元(Active Antenna Unit,AAU)。
天线装置103可以包括多个天线阵列。这里一个天线阵列可以称为一根天线。每个射频通道与一个对应的天线阵列连接,每个射频通道可以将射频信号发送至一个对应的天线阵列,由该对应的天线阵列发射到空中。每个天线阵列可以由一个或者多个天线阵子组成。需要说明的是,射频通道与对应的天线阵列连接,可以表示该射频通道与该天线阵列中的每个天线阵子相连接;射频通道将射频信号发送至对应的天线阵列,可以表示该射频通道将射频信号发送至该天线阵列中的每个天线阵子。该射频通道将射频信号发送至该天线阵列,可以理解为射频信号经过射频通道发送至天线阵列,或者表述为射频通道驱动该天线阵列。1个天线阵列包括N(N为大于等于1的整数)个天线阵子,也可以表示为1个射频通道驱动N天线阵子或者简称为1驱N。
需要说明的是,上述介绍中,将基带装置可以处理的信号称为基带信号,实现中可能是数字基带信号或者数字中频信号,或者是其他信号,本申请实施例对此不做限定,将射频装置处理得到的信号或者从天线接收的信号称为射频信号,随着无线通信技术的发展,射频装置处理得到的信号或者从天线接收到的信号可能是其他信号,本申请实施例对此不作限定。
实际应用中,可以采用多天线技术(如MIMO技术)实现上述通信系统。其中,多天线技术可以支持多用户配对,即在同一块时频资源上可以支持多个用户同时进行数据流传输。以应用MIMO技术为例,射频模块可以包括多个收发信机(transceiver,简称TRX),相应的,每个TRX与功率放大器(power amplifier,PA)之间进行一对一连接,如TRX1与PA1一对一连接等。假设当前需要发送信号,数据流在经过TRX的中射频处理后,可以输入至PA中进行功率放大,再依次传输至带通滤波器以及天线装置,使得数据流被传输至MIMO客户端。其中,射频模块所包含的TRX数目决定了网络的配对能力。通常情况下,射频模块的TRX数目越多,网络配对的能力越强,也即可以同时支持更多的用户使用相同的时频资源来传输数据流。
但是,多个TRX与PA在运行时所产生的功耗通常较高,尤其是当网络负载较低时,网络的实际配对用户较少,但仍然会使用所有的TRX以及PA,即所有的TRX以及PA均处于高功耗的运行状态,这就产生了不必要的功耗浪费。
为此,本申请实施例提供了一种通信装置,以使得在应用多天线技术时可以基于该通信装置降低系统功耗,达到节能效果。具体的,如所示,该通信装置可以应用于图1所示的通信系统中,该通信装置可以包括第一收发信机11、第二收发信机12以及第一功率放大器13,其中,第一收发信机11和第二收发信机12可以分别与第一功率放大器13连接。
本申请实施例中的连接,可以理解为直接连接(即中间可以没有其它元器件实现连接),也可以是间接连接(即中间可以是通过其它元器件实现连接,如电桥、开关等)。值得注意的是,当收发信机与功率放大器之间的开关没有闭合的时候,也可以是认为收发信机与功率放大器连接。
另外,收发信机与功率放大器连接,还可以理解为,基带信号在经过收发信机的射频处理后,所得到的射频信号可以传输至功率放大器。需要说明的是,第一收发信机11和第二收发信机12可以分别与第一功率放大器13连接,信号可以同时通过第一收发信机11与第二收发信机12传输至功率放大器,也可以是不同时传输至功率放大器。例如,T1时刻,第一信号可以通过第一收发信机11传输至第一功率放大器13,T2时刻(不等于T1时刻),第二信号可以通过第二收发信机12传输至第一功率放大器13;或者,第一信号在通过第一收发信机11传输至第一功率放大器13的同时,第二信号也通过第二收发信机12传输至第一功率放大器13。
这样,当确定网络负载较低时,多余的收发信机可以结束运行,因此可以关闭该通信装置中的任意一个收发信机,如可以关闭第一收发信机11或者第二收发信机12。可以理解,在基于该通信装置实现多天线技术的应用过程中,由于关闭了该通信装置中的其中一个收发信机,该被关闭的收发信机不再继续产生功耗,也就降低了该通信装置整体的功耗,从而在应用多天线技术时可以降低系统的功耗,达到节能的效果。而且,在关闭通信装置中的电子器件时,是对与功率放大器相连的其中一个收发信机进行关闭,而可以不关闭功率放大器,该功率放大器依然可以从未关闭的收发信机中接收到相应的射频信号进行功率放大以及相应的射频信号发送,这使得系统的信道容量基本保持不变,并且天线增益并没有得到降低,从而使得网络信号的覆盖范围也没有发生降低。
可选的,当上述通信装置应用于图1所示的通信系统中时,如图3所示,射频装置102可以包括第一收发信机11、第二收发信机12,天线装置103可以包括功率放大器13、带通滤波器14(当然,在其它实施方式中,也可以不包括带通滤波器14以及天线15)。其中,第一收发信机11与第二收发信机12分别与功率放大器连接13,功率放大器13与带通滤波器14连接,带通滤波器14与天线15连接。在一些可能的实施方式中,第一收发信机11可以包括电连接的调制器111、上变频器112、振荡器113、下变频器114和解调制器115。其中,调制器111和解调制器115连接一个振荡器113,上变频器112和下变频器114连接一个振荡器113,需要说明的是,这仅仅是一个示例,调制器111和解调制器115可以连接不同的振荡器,上变频器112和下变频器114可以连接不同的振荡器,本申请实施例对此不作限定。基带控制单元发送的基带信号进入第一收发信机11后,依次经过调制器111、上变频器112、功率放大器13和带通滤波器14后,发送给天线装置103。相应的,天线信号从天线装置103依次经过带通滤波器14、功率放大器13、下变频器114和解调制器115后形成基带信号发送给基带控制单元。类似的,第二收发信机12可以包括电连接的调制器121、上变频器122、振荡器123、下变频器124和解调制器125。其中,调制器121和解调制器125连接一个振荡器123,上变频器112和下变频器114连接一个振荡器123。需要说明的是,图3仅仅作为一种示例进行说明,实际应用中,射频装置102中的电子器 件、电子器件的数量以及电子器件之间的连接关系不限于此。
对于图1所示的通信系统,若确定当前网络负载较小,则可以关闭系统中的第一收发信机11(当然,也可以是关闭系统中的第二收发信机12,此处以关闭第一收发信机11为例进行说明),使得系统中第一收发信机11结束运行,而第二收发信机12继续运行并与功率放大器13协同完成射频信号的发送与接收。由于该系统中的第一收发信机11结束运行,该第一收发信机11可以停止产生能耗,从而也就降低了系统的功耗,达到了节能的效果。同时,该系统中的功率放大器13并没有关闭,依然可以从第二收发信机12中接收到数据流进行相应的功率放大以及信号发送,因此,系统的信道容量基本保持不变,并且天线增益并没有得到降低,从而在实现降低系统的功耗的同时,也没有降低网络信号的覆盖范围以及系统的信道容量。
下面具体对本申请中的技术方案进行详细介绍。
如图4所示,为本申请实施例所提供的通信装置。该通信装置所包括的第一收发信机11和第二收发信机12在分别与第一功率放大器13连接的同时,还可以分别与第二功率放大器43连接。其中,图4所示的收发信机以及功率放大器可以与图2所示的收发信机以及功率放大器具有相同或者相似的功能。数据流1在经过第一收发信机11的中射频处理后,可以分别进入第一功率放大器13以及第二功率放大器43中进行功率放大,并经过与第一功率放大器13连接的天线1传输至第一客户端(如传输至用户设备等),经过与第二功率放大器43连接的天线2传输至第二客户端;类似的,数据流2在经过第二收发信机12的中射频处理后,同样可以分别接入第一功率放大器13以及第二功率放大器43中进行功率放大,并分别经过与第一功率放大器13连接的天线1传输至第一客户端,经过与第一功率放大器43连接的天线2传输至第二客户端。进一步的,该第一功率放大器13还可以与第一组天线(图4中未示出)连接,该第一组天线包括第一发射天线以及第一接收天线;该第二功率放大器43还可以与第二组天线(图4中未示出)连接,该第二组天线包括第二发射天线以及第二接收天线。
值得注意的是,基于图4所示的通信装置,天线1或者天线2所发送的射频信号为多路数据流对应的混合射频信号,比如,天线1向第一客户端发送的射频信号,为集成数据流1以及数据流2所得到的混合射频信号,则,第一客户端或者第二客户端在接收到该混合射频信号后,可以对该混合射频信号进行相应解调,分别得到数据流1对应的信号以及数据流2对应的信号。
这样,当确定网络负载较低时,比如,当前仅有第一客户端存在与系统的通信需求时,可以关闭第二客户端对应的第二收发信机12。可以理解,在关闭第二收发信机12后,该第二收发信机12不再产生功耗,相应的,系统的功耗可以得以降低;同时,第一功率放大器13与第二功率放大器43仍然继续运行,从而没有降低系统的网络信号覆盖范围以及系统的信道容量。
进一步的,第一收发信机11以及第二收发信机12可以通过电桥分别与第一功率放大器13以及第二功率放大器43进行连接,如图5所示。具体的,第一收发信机11可以与第 一电桥50的第一端口51连接,第二收发信机12可以与第一电桥50的第二端口52连接,该第一电桥50的第三端口53可以与第一功率放大器13连接,第一电桥50的第四端口54可以与第二功率放大器43连接,并且,该第一电桥50的第一端口51可以分别与第一电桥50的第三端口53以及第四端口54连接,第一电桥50的第二端口52可以分别与第一电桥50的第三端口53以及第四端口54连接。
当第一收发信机11以及第二收发信机12运行时,若系统当前向用户设备(客户端)发送通信数据,则第一收发信机11所接收到的数据流可以通过第一电桥50的第一端口51进入电桥,并分别从第三端口53流入第一功率放大器13,以及从第四端口54流入第二功率放大器43;类似的,第二收发信机12所接收到的数据流可以通过第一电桥50的第二端口52进入电桥,并分别从第三端口53流入第一功率放大器13,以及从第四端口54流入第二功率放大器43。此时,第一电桥50的第一端口51以及第二端口52为输入端,第一电桥50的第三端口53以及第四端口54为输出端。
而若系统当前为接收用户设备发送的通信数据,则第一功率放大器13所接收到的数据流可以第一电桥50的第三端口53流入第一电桥50,并从第一端口51流入第一收发信机11,从第二端口52流入第二收发信机12;类似的,第二功率放大器43所接收到的数据流可以第一电桥50的第四端口54流入第一电桥50,并从第一端口51流入第一收发信机11,从第二端口52流入第二收发信机12。此时,第一电桥50的第一端口51以及第二端口52为输出端,第一电桥50的第三端口53以及第四端口54为输入端。
而当系统确定当前网络负载较低或者系统被通知当前网络负载较低时,可以关闭第一收发信机11或者第二收发信机12。其中,对于具体判决关闭哪个收发信机,可以根据收发信机与用户设备(客户端)之间的配对情况进行确定。比如,若第一收发信机11当前不存在与其配对的用户设备,则可以关闭第一收发信机11,而第二收发信机12可以继续为与其配对的用户设备进行数据处理和传输。这样,在关闭第一收发信机11实现节能的同时,由于第一功率放大器13以及第二功率放大器43并未关闭,因此,系统的信道容量以及网络信号覆盖范围并没有得到降低。
图2以及图5所示的通信装置中,是以包含2个收发信机为了进行示例性说明。实际应用中,该通信装置所包含的收发信机可以N个,N为大于等于1的整数,例如N是64,则,在实现对系统进行节能时,可以通过上述过程,以两个收发信机为单位,关闭64个收发信机中的32个收发信机,而对于剩余的32个收发信机中的每个收发信机,均可以与两个功率放大器进行连接,从而实现系统的节能。当然,所关闭的收发信机不限于32个,比如,也可以是关闭其中的16个、20个收发信机等,其中,在不降低系统信道容量以及网络信号的覆盖范围的情况下,对于包含64个收发信机的系统,其所关闭的收发信机的数量不大于32。
实际应用中,若多个收发信机与同一个功率放大器之间通过电桥进行连接,则在系统向用户设备发送通信数据时,每个功率放大器所接收到的信号混合了多个收发信机所输出信号,比如,当第一收发信机11与第二收发信机同时运行时,第一收发信机11以及第二收发信机12所输出的射频信号均传输至功率放大器13,使得功率放大器所接收到的射频 信号为多个收发信机输出射频信号进行混合所得到的射频信号。为此,本实施例中,还可以为发送给收发信机基站信号进行一定的加权求和处理,以使得收发信机与功率放大器之间建立一一对应的关系。具体的,在图5所示的通信装置的基础上还可以进一步增加第一处理器10,得到如图6所示的系统。在该系统中,第一处理器10可以分别与第一收发信机11以及第二收发信机12连接。其中,第一处理器10,可以利用第一加权矩阵对要传输至第一收发信机11的第一基带信号进行加权求和处理,得到相应的第三基带信号,并利用该第一加权矩阵对要传输至第二收发信机12的第二基带信号进行加权求和处理,得到第四基带信号,而该第一加权矩阵为第一电桥50的电桥矩阵的逆矩阵。然后,第三基带信号输出给第一收发信机11,而第四基带信号输出给第二收发信机12。
例如,第一加权矩阵具体可以是:
Figure PCTCN2020103072-appb-000001
其中,j为复数。
第一电桥50的电桥矩阵为该第一加权矩阵的逆矩阵,为:
Figure PCTCN2020103072-appb-000002
以X0表征第一基带信号,X1表征第二基带信号,Y0和Y1分别表征第一电桥50输出的两路不同射频信号,则:
Figure PCTCN2020103072-appb-000003
可见,通过第一处理器对第一基带信号以及第二基带信号进行加权求和处理后,每个功率放大器所接收到的信号为单个收发信机所输出的射频信号,而可以不是多个射频信号的混合,从而实现了每一路信号的输入以及输出信号的一致性。
类似的,当系统接收用户设备发送的信号时,还可以利用处理器(为便于与第一处理器10区分,以下称之为第四处理器)对收发信机输出的信号进行加权求和处理。具体的,系统可以包括第四处理器,该第四处理器同样分别与第一收发信机11以及第二收发信机12连接,并且,可以利用第四加权矩阵对第一收发信机11输出的第一基带信号进行加权求和处理,得到相应的第三基带信号,并利用该第四加权矩阵对第二收发信机12输出的第二基带信号进行加权求和处理,得到相应的第四基带信号,该第四加权矩阵为该第一电桥50的电桥矩阵的逆矩阵。实际应用中,上述第一处理器10与第四处理器可以是同一处理器。
可选的,在本申请实施例中,处理器可以与存储器耦合,执行存储器中的程序或者指令,完成加权求和的处理,或者存储器可以存储加权矩阵的信息,处理器可以读取存储器中存储的加权矩阵的信息,完成加权求和的处理。在一些可能的实施方式,上述第一处理器具体可以在基带处理单元(Building Base band Unite,BBU)中,而集成该BBU的系统可以是基站等,可选的,BBU中还包括存储器。或者第一处理器可以位于射频装置102中,可选的,射频装置102中还包括存储器。
对于包含64个收发信机的系统,采用上述实施方式,可以将系统由64收发信机运行的状态切换至32个收发信机运行的状态。但是,在另一些可能的实施方式中,还可以进一步将系统由64个收发信机运行的状态切换至16个收发信机运行的状态。具体的,下面以系统包括4个收发信机为例进行举例说明,参阅图5所示的系统。
图7所示的通信装置中,包括4个收发信机,分别为第一收发信机11、第二收发信机12、第三收发信机23、第四收发信机24,还包括4个功率放大器,分别为第一功率放大器13、第二功率放大器43、第三功率放大器130以及第四功率放大器430,还包括4电桥,分别为电桥50、电桥60、电桥70以及电桥80。其中,如图7所示,各个电子器件的相互之间的连接关系为:第一收发信机11与第二电桥60的第一端口61连接,第二电桥60的第三端口63与第一电桥50的第一端口51连接;第二收发信机12与第三电桥70的第一端口71连接,第三电桥70的第三端口73与第一电桥50的第二端口52连接;第三收发信机23与第二电桥60的第二端口62连接,第二电桥60的第四端口64与第四电桥80的第一端口81连接;第四收发信机24与第三电桥70的第二端口72连接,第三电桥70的第四端口74与第四电桥80的第二端口82连接;第四电桥80的第三端口83与第三功率放大器23连接,第四电桥80的第四端口84与第四功率放大器24连接;第二电桥60的第一端口61分别与第二电桥60的第三端口63以及第二电桥60的第四端口64连接,第二电桥60的第二端口62分别与第二电桥60的第三端口63以及第二电桥60的第四端口64连接;第三电桥70的第一端口71分别与第三电桥70的第三端口73以及第三电桥70的第四端口74连接,第三电桥70的第二端口72分别与第三电桥70的第三端口73以及第三电桥70的第四端口74连接;第四电桥80的第一端口81分别与第四电桥80的第三端口83以及第四电桥80的第四端口84连接,第四电桥80的第二端口82分别与第四电桥80的第三端口83以及第四电桥80的第四端口84连接。
进一步的,该第一功率放大器13还可以与第一组天线(图7中未示出)连接该第一组天线包括第一发射天线以及第一接收天线;该第二功率放大器43还可以与第二组天线(图7中未示出)连接该第二组天线包括第二发射天线以及第二接收天线;该第三功率放大器130还可以与第三组天线(图7中未示出)连接该第三组天线包括第三发射天线以及第三接收天线;该第四功率放大器430还可以与第四组天线(图7中未示出)连接该第四组天线包括第四发射天线以及第四接收天线。
当系统中的各个收发信机均处于运行状态时,若系统当前向用户设备发送通信数据,以第三收发信机23为例(其它收发信机类似),第三收发信机23接收到的数据流可以通过第二电桥60的第二端口62流入第二电桥60,由于第二端口62分别与第三端口63和第四 端口64连接,因此,数据流可以从第二端口分别达到第三端口63以及第四端口64;然后,第三端口63与第一电桥50的第一端口51连接,而第一端口51分别与第三端口53以及第四端口54连接,因此,第三端口63处的数据流可以依次经过第一端口51、第三端口53流入第一功率放大器11,经过第一端口51、第三端口53流入第二功率放大器12,并且,第三端口63与第四电桥80的第一端口81连接,而第一端口81分别与第三端口83以及第四端口84连接,因此,第三端口63处的数据流还可以依次经过第一端口81、第三端口83流入第三功率放大器23,经过第一端口81、第四端口84流入第四功率放大器24。即,每个收发信机所接收到的数据流最终都可以分别流入这4个功率放大器,相应的,每个功率放大器所接收到的数据流也即为集成这四个收发信机所接收到的数据流所得到的混合数据流。
此时,第一端口51、第二端口52、第一端口61、第二端口62、第一端口71、第二端口72、第一端口81以及第二端口82均为数据流的输入端,而第三端口53、第四端口54、第三端口63、第四端口64、第三端口73、第四端口74、第三端口83以及第四端口84均为数据流的输出端。
反之,若系统当前接收用户设备发送通信数据时,仍以第一功率放大器13接收到用户设备的通信数据为例(其它功率放大器类似),第一功率放大器13可以将数据流通过第一电桥50的第三端口53流入第一电桥,并依次经过第一端口51、第三端口63以及第一端口61流入第一收发信机11,经过第一端口51、第三端口63以及第二端口62流入第三收发信机23,经过第二端口52、第三端口73以及第一端口71流入第二收发信机12,经过第二端口52、第三端口73以及第二端口72流入第四收发信机24。
此时,第一端口51、第二端口52、第一端口61、第二端口62、第一端口71、第二端口72、第一端口81以及第二端口82均为数据流的输出端,而第三端口53、第四端口54、第三端口63、第四端口64、第三端口73、第四端口74、第三端口83以及第四端口84均为数据流的输入端。
这样,当系统确定网络负载较低或者系统被通知网络负载较低时,可以关闭当前不存在用户设备与之配对的收发信机,比如,假设当前只有第一收发信机11存在用户设备与之配对,则可以关闭第二收发信机12、第三收发信机23以及第四收发信机24。值得注意的是,系统在因第二收发信机12、第三收发信机23以及第四收发信机24被关闭而实现节能的同时,由于第一收发信机11所接收到的数据流可以分别流入四个功率放大器,从而经由各个功率放大器以及相应的天线装置发送出去,这使得系统的信道容量以及网路信号的覆盖范围并没有得到降低。
实际应用中,若系统中包含64个收发信机,则可以采用上述实施方式,关闭64个收发信机中的48个收发信机,将系统由64收发信机运行的状态切换至16个收发信机运行的状态。当然,系统所关闭的收发信机的数量也可以根据实际应用的需要自行判决,比如,也可以是仅仅关闭20个、32个收发信机等。其中,在不降低系统信道容量以及网络信号的覆盖范围的情况下,对于包含64个收发信机的系统,其所关闭的收发信机的数量不大于48。
在一些可能的实施方式中,当图7所示的系统,在实现不降低系统信道容量以及网络信号的覆盖范围的情况下,关闭部分收发信机时,其可以进一步采用图8所示的结构。如图8所示,该系统还可以进一步包括第一开关S1以及第二开关S2。其中,第三电桥70的第三端口73连接第一开关S1的一端,该第一开关S1的另一端与第一电桥50的第二端口连接;同时,第二电桥60的第四端口64连接第二开关S2的一端,该第二开关S2的另一端可以连接第四电桥80的第一端口81,如图7所示。这样,当关闭图8中的第一收发信机11以及第四收发信机24时,可以断开该第一开关S1以及第二开关S2。此时,当系统向用户设备发送通信数据时,第二收发信机12所接收到的数据流可以依次经过第二电桥60的第二端口62、第三端口63、第一端口51以及第三端口53,流入至第一功率放大器13中进行功率放大以及后续的射频信号发送,同时,也依次经过第二电桥60的第二端口62、第三端口63、第一端口51以及第四端口54,流入至第二功率放大器43中进行功率放大以及后续的射频信号发送。即,未关闭的收发信机所接收到的数据流可以分别流入两个功率放大器中进行功率放大以及信号输出。其中,与第二收发信机12类似,第三收发信机23所接收到的数据流可以分别流入第三功率放大器130和第四功率放大器430。值得注意的是,即使关闭第一收发信机11以及第四收发信机24,图8所示的系统中的各个功率放大器仍然继续运行,因此,并没有降低系统的信道容量以及网络信号的覆盖范围。
当然,对于图8所示的系统,当需要关闭收发信机时,也可以是关闭第二收发信机12以及第三收发信机23,并可以断开第一开关S1以及第二开关S2,其与关闭第一收发信机11以及第四收发信机24类似,在此不做赘述。
进一步的,与图6所示的包含第一处理器10的通信装置类似,对于图7或者图8所示的通信装置,在其基础上还可以增加第二处理器20,以使得各路信号的输入和输出的相位一致。具体的,在一种可能的实施方式中,包括第二处理器20的通信装置可以如图9所示。在图9所示的通信装置中,第二处理器20可以分别与第一收发信机11、第二收发信机12、第三收发信机23以及第四收发信机24连接。当系统需要向用户设备发送通信数据时,第二处理器20,可以利用第二加权矩阵对需要传输至第一收发信机11的第一基带信号进行加权求和处理,得到相应的第五基带信号,并且,所得到的第五基带信号输出给第一收发信机11;利用第二加权矩阵对需要传输至第二收发信机12的第二基带信号进行加权求和处理,得到相应的第六基带信号,并且,所得到的第六基带信号输出给第二收发信机12;利用第二加权矩阵对需要传输至第三收发信机23的第三基带信号进行加权求和处理,得到相应的第七基带信号,并且,所得到的第七基带信号输出给第三收发信机23;利用第二加权矩阵对需要传输至第四收发信机24的第四基带信号进行加权求和处理,得到相应的第八基带信号,并且,所得到的第八基带信号输出给第四收发信机24。其中,上述第二加权矩阵为第三加权矩阵的逆矩阵,而第三加权矩阵为根据第一电桥50的电桥矩阵、第二电桥60的电桥矩阵、第三电桥70的电桥矩阵、第四电桥80的电桥矩阵以及各个电桥之间的连接关系进行确定所得到的组合电桥矩阵。
举例来说,第一电桥50、第二电桥60、第三电桥70以及第四电桥80的电桥矩阵依次为:
Figure PCTCN2020103072-appb-000004
以及
Figure PCTCN2020103072-appb-000005
则,根据这四个电桥的电桥矩阵以及各个电桥之间的连接所确定出的组合电桥矩阵(即为上述第三加权矩阵)可以为:
Figure PCTCN2020103072-appb-000006
而第二加权矩阵即为该第三加权矩阵的逆矩阵。
本实施例中,通过第二处理器对第一基带信号至第四基带信号进行加权求和处理后,每个功率放大器所接收到的信号为单个收发信机所输出的射频信号,而可以不是多个射频信号的混合,从而实现了每一路信号的输入以及输出信号的一致性。
类似的,当系统接收用户设备发送的信号时,还可以利用处理器(为便于与第一处理器20区分,以下称之为第五处理器)对收发信机输出的信号进行加权求和处理。具体的,系统可以包括第五处理器,该第五处理器同样分别与第一收发信机11、第二收发信机12、第三收发信机23以及第四收发信机24连接,并且,可以利用第五加权矩阵对第一收发信机11输出的第一基带信号进行加权求和处理,得到相应的第五基带信号,对第二收发信机12输出的第二基带信号进行加权求和处理,得到相应的第六基带信号,对第三收发信机23输出的第三基带信号进行加权求和处理,得到相应的第七基带信号,对第四收发信机24输出的第四基带信号进行加权求和处理,得到相应的第八基带信号。上述第五加权矩阵为第六加权矩阵的逆矩阵,而第六加权矩阵为根据第一电桥50的电桥矩阵、第二电桥60的电桥矩阵、第三电桥70的电桥矩阵、第四电桥80的电桥矩阵以及各个电桥之间的连接关系进行确定所得到的组合电桥矩阵。
图5至图9所示的系统中,收发信机与功率放大器之间是通过电桥进行连接,而在另一些可能的实施方式中,收发信机与功率放大器之间也可以是采用开关进行连接。具体的,在一种示例中,第一收发信机11可以与第一功率放大器13连接,而第二收发信机12可以通过第三开关与该第一功率放大器13连接。这样,当需要关闭第二收发信机12以实现系统节能时,可以闭合该第三开关,使得第二收发信机12与第一功率放大器13连接。这样,第二收发信机12所接收到的数据流可以流入至第一功率放大器13中,使得第一功率放大器13可以继续运行并完成该路的信号发送,从而使得系统的信道容量以及网络信号覆盖范围未得到降低。
为了便于理解,下面对于收发信机与功率放大器之间采用开关连接的具体实现过程进行举例说明。如图10所示的通信装置(以系统发送数据为例),该通信装置中所包括的收发信机以及功率放大器与图4至图9所示的通信装置中的收发信机以及功率放大器具有相同或者相似的功能。其中,第一收发信机11与第一功率放大器13连接,同时,第一收发信机11通过开关S3与第二功率放大器43连接,第二收发信机12与第二功率放大器43连接,第二收发信机12通过开关S4与第一功率放大器13连接。基于如图10所示的结构,通常情况下,当第一收发信机11与第二收发信机12运行时,开关S3以及开关S4可以断开,则第一收发信机11可以仅向第一功率放大器13发送射频信号,而第二收发信机12可 以仅向第二功率放大器43发送射频信号;当需要降低系统的功耗时,可以关闭第一收发信机11,并闭合开关S4,这样第二收发信机12可以同时与第一功率放大器13以及第二功率放大器43连接,以实现系统节能的同时,系统的信道容量以及网络信号的覆盖范围也没有得到降低。同理,当关闭第二收发信机12时,可以闭合开关S3,这样第一收发信机11可以同时与第一功率放大器13以及第二功率放大器43连接。
结合上述图2至图10中任一幅图的描述,本申请实施例提供了以下通信装置:
本申请实施例提供了一种通信装置,该通信装置包括收发信机、电桥和功率放大器。该通信装置可以是RRU、射频单元(radio frequency unit,RFU)或者其他具备能够完成数字信号或者中频信号与射频信号之间的转换的装置。
本申请实施例提供了一种通信装置,该通信装置包括收发信机、电桥、功率放大器和天线装置103。该通信装置可以是AAU或者其他能够将数字信号或者中频信号转换成射频信号兵发射到空中的装置。
本文中,需要说明的是:
本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,“第一”、“第二”并不对其修饰的对象的实际顺序或功能进行限定。例如,“第一天线阵列”和“第二天线阵列”中的“第一”、“第二”,仅仅是为了区分这两者分别是对应第一射频通道和第二射频通道的,“第一”和“第二”本身并不对其实际先后顺序或者功能进行限定。
本申请中出现的“示例性的”,“示例”,“例如”,“在一些可能的实施方式中”或者“一种设计”等表述,仅用于表示举例子、例证或说明。本申请中被描述为“示例性的”,“示例”,“例如”,“在一些可能的实施方式中”或者“一种设计”的任何实施例或设计方案都不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用这些词旨在以具体方式呈现相关概念。
本申请中出现的术语“和/或”,仅仅是一种描述对象之间的关联关系,表示对象间可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,如无特别说明,则一般表示前后对象之间是一种“或”的关系。
本申请中出现的术语“多个”,可以是2个,3个或者更多;以及“以上”、“以下”包括本数。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array, FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
在本申请中可能出现的对各种设备/网元/系统/装置/信号/操作/组件等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请所提供的实施例中,应该理解到,所揭露的系统或者装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种通信装置,其特征在于,所述通信装置包括第一收发信机、第二收发信机和第一功率放大器;
    所述第一收发信机和所述第二收发信机分别与所述第一功率放大器连接。
  2. 根据权利要求1所述的通信装置,其特征在于,所述通信装置还包括一个或者多个电桥,所述第一收发信机和所述第二收发信机通过一个或者多个电桥与所述第一功率放大器连接。
  3. 根据权利要求2所述的通信装置,其特征在于,所述一个或者多个电桥包括第一电桥;
    所述第一收发信机与所述第一电桥的第一端口连接;
    所述第二收发信机与所述第一电桥的第二端口连接;
    所述第一电桥的第三端口与所述第一功率放大器连接;
    所述第一电桥的第四端口与所述第二功率放大器连接;
    所述第一电桥的第一端口分别与所述第一电桥的第三端口以及所述第一电桥的第四端口连接,所述第一电桥的第二端口分别与所述第一电桥的第三端口以及所述第一电桥的第四端口连接。
  4. 根据权利要求3所述的通信装置,其特征在于,所述通信装置还包括第一处理器,所述第一处理器,用于根据第一加权矩阵对第一基带信号和第二基带信号分别进行加权求和处理,得到第三基带信号和第四基带信号,其中,所述第三基带信号输出给所述第一收发信机,所述第四基带信号输出给所述第二收发信机;所述第一加权矩阵为所述第一电桥的电桥矩阵的逆矩阵。
  5. 根据权利要求3所述的通信装置,其特征在于,所述通信装置还包括第三收发信机、第四收发信机、第三功率放大器、第四功率放大器,所述一个或者多个电桥还包括第二电桥、第三电桥和第四电桥;
    所述第一收发信机与第二电桥的第一端口连接,所述第二电桥的第三端口与所述第一电桥的第一端口连接;
    所述第二收发信机与所述第三电桥的第一端口连接,所述第三电桥的第三端口与所述第一电桥的第二端口连接;
    所述第三收发信机与所述第二电桥的第二端口连接,所述第二电桥的第四端口与所述第四电桥的第一端口连接;
    所述第四收发信机与所述第三电桥的第二端口连接,所述第三电桥的第四端口与所述第四电桥的第二端口连接;
    所述第四电桥的第三端口与所述第三功率放大器连接,所述第四电桥的第四端口与所述第四功率放大器连接;
    所述第二电桥的第一端口分别与所述第二电桥的第三端口以及所述第二电桥的第四端口连接,所述第二电桥的第二端口分别与所述第二电桥的第三端口以及所述第二电桥的第四端口连接;
    所述第三电桥的第一端口分别与所述第三电桥的第三端口以及所述第三电桥的第四端口连接,所述第三电桥的第二端口分别与所述第三电桥的第三端口以及所述第三电桥的第四端口连接;
    所述第四电桥的第一端口分别与所述第四电桥的第三端口以及所述第四电桥的第四端口连接,所述第四电桥的第二端口分别与所述第四电桥的第三端口以及所述第四电桥的第四端口连接。
  6. 根据权利要求5所述的通信装置,其特征在于,所述通信装置还包括第一开关和第二开关;
    所述第三电桥的第三端口连接所述第一开关的一端,所述第一开关的另一端连接所述第一电桥的第二端口;
    所述第二电桥的第四端口连接所述第二开关的一端,所述第二开关的另一端连接所述第四电桥的第一端口;
    当所述第二收发信机和所述第三收发信机关闭时,或,当所述第一收发信机和所述第四收发信机关闭时,所述第一开关和所述第二开关断开。
  7. 根据权利要求5或6所述的通信装置,其特征在于,所述通信装置还包括第二处理器;
    所述第二处理器,用于根据第二加权矩阵对第一基带信号、第二基带信号、第三基带信号和第四基带信号分别进行加权求和处理,得到第五基带信号、第六基带信号、第七基带信号和第八基带信号,其中,所述第五基带信号输出给所述第一收发信机,所述第六基带信号输出给所述第二收发信机,所述第七基带信号输出给所述第三收发信机,所述第八基带信号输出给所述第四收发信机;所述第二加权矩阵为第三加权矩阵的逆矩阵,所述第三加权矩阵为根据所述第一电桥的电桥矩阵、所述第二电桥的电桥矩阵、所述第三电桥的电桥矩阵和第四电桥的电桥矩阵以及所述第一电桥、所述第二电桥、所述第三电桥和所述第四电桥的连接关系确定得到的组合电桥矩阵。
  8. 根据权利要求1所述的通信装置,其特征在于,所述通信装置还包括第三开关;
    所述第二收发信机通过所述第三开关与所述第一功率放大器连接。
  9. 根据权利要求1-7任一项所述的通信装置,其特征在于,所述通信装置为远端射频单元RRU。
  10. 根据权利要求1-7任一项所述的通信装置,其特征在于,所述通信装置还包括第一组天线,所述第一功率放大器与第一组天线连接。
  11. 根据权利要求10所述的通信装置,其特征在于,所述通信装置为有源天线单元AAU。
  12. 根据权利要求1-7所述的通信装置,其特征在于,所述通信装置为基站。
PCT/CN2020/103072 2019-09-30 2020-07-20 一种通信装置 WO2021063085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20873058.0A EP4030633A4 (en) 2019-09-30 2020-07-20 COMMUNICATION DEVICE
US17/707,152 US20220224368A1 (en) 2019-09-30 2022-03-29 Communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944620.3A CN112583456B (zh) 2019-09-30 2019-09-30 一种通信装置
CN201910944620.3 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,152 Continuation US20220224368A1 (en) 2019-09-30 2022-03-29 Communication apparatus

Publications (1)

Publication Number Publication Date
WO2021063085A1 true WO2021063085A1 (zh) 2021-04-08

Family

ID=75116682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103072 WO2021063085A1 (zh) 2019-09-30 2020-07-20 一种通信装置

Country Status (4)

Country Link
US (1) US20220224368A1 (zh)
EP (1) EP4030633A4 (zh)
CN (1) CN112583456B (zh)
WO (1) WO2021063085A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060105103A (ko) * 2005-04-01 2006-10-11 주식회사 지티앤티 적응형 무선 중계기 시스템
CN106160758A (zh) * 2016-08-25 2016-11-23 四川泰立科技股份有限公司 基于700MHz‑1100MHz可变频率的无线非视距千兆以太网传输系统及其传输方法
CN205961093U (zh) * 2016-08-25 2017-02-15 四川泰立科技股份有限公司 基于700MHz‑1100MHz可变频率的无线非视距千兆以太网传输系统
CN106506034A (zh) * 2016-12-05 2017-03-15 中国工程物理研究院电子工程研究所 一种低噪声开关双工器
CN106797200A (zh) * 2014-08-01 2017-05-31 高通股份有限公司 多模集成功率放大器
CN107210717A (zh) * 2015-01-28 2017-09-26 高通股份有限公司 双模功率放大器
CN107528964A (zh) * 2016-06-21 2017-12-29 深圳富泰宏精密工业有限公司 通信系统、方法及装置
CN109104214A (zh) * 2018-07-25 2018-12-28 维沃移动通信有限公司 一种信号处理装置、电子设备及信号处理的方法
CN209030443U (zh) * 2018-11-30 2019-06-25 上海麦腾物联网技术有限公司 一种多功能无线网通信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0518340B1 (pt) * 2004-11-19 2018-12-04 Huawei Tech Co Ltd sistema e método de redundância tipo hot standby para amplificador de potência de radiofrequência
US8280325B2 (en) * 2006-06-23 2012-10-02 Broadcom Corporation Configurable transmitter
US9071975B2 (en) * 2011-09-08 2015-06-30 Apple Inc. Radio-frequency power amplifier circuitry with linearity optimization capabilities
US10211861B2 (en) * 2015-03-17 2019-02-19 Skyworks Solutions, Inc. Multi-mode integrated front end module
US10182403B2 (en) * 2015-09-30 2019-01-15 Skyworks Solutions, Inc. Diplexed coupler for carrier aggregation
US10187137B2 (en) * 2016-04-06 2019-01-22 Qualcomm Incorporated High power user equipment (HPUE) using coherently combined power amplifiers
CN106470473A (zh) * 2016-08-25 2017-03-01 乐视控股(北京)有限公司 信号传输的方法及用于信号传输的装置
CN106603129B (zh) * 2016-11-28 2019-12-24 上海华为技术有限公司 一种多天线的mimo系统
WO2019146851A1 (ko) * 2018-01-24 2019-08-01 엘지전자 주식회사 다중 송신 시스템 구조 및 이를 구비하는 이동 단말기
CN110098847B (zh) * 2018-01-31 2020-07-14 上海华为技术有限公司 通信装置
EP3794734A4 (en) * 2018-05-18 2022-03-02 Nanyang Technological University DEVICE AND METHOD FOR WIRELESS COMMUNICATIONS
US10348358B1 (en) * 2018-05-21 2019-07-09 Amazon Technologies, Inc. Transceivers with dual power amplifiers for wireless communications

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060105103A (ko) * 2005-04-01 2006-10-11 주식회사 지티앤티 적응형 무선 중계기 시스템
CN106797200A (zh) * 2014-08-01 2017-05-31 高通股份有限公司 多模集成功率放大器
CN107210717A (zh) * 2015-01-28 2017-09-26 高通股份有限公司 双模功率放大器
CN107528964A (zh) * 2016-06-21 2017-12-29 深圳富泰宏精密工业有限公司 通信系统、方法及装置
CN106160758A (zh) * 2016-08-25 2016-11-23 四川泰立科技股份有限公司 基于700MHz‑1100MHz可变频率的无线非视距千兆以太网传输系统及其传输方法
CN205961093U (zh) * 2016-08-25 2017-02-15 四川泰立科技股份有限公司 基于700MHz‑1100MHz可变频率的无线非视距千兆以太网传输系统
CN106506034A (zh) * 2016-12-05 2017-03-15 中国工程物理研究院电子工程研究所 一种低噪声开关双工器
CN109104214A (zh) * 2018-07-25 2018-12-28 维沃移动通信有限公司 一种信号处理装置、电子设备及信号处理的方法
CN209030443U (zh) * 2018-11-30 2019-06-25 上海麦腾物联网技术有限公司 一种多功能无线网通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4030633A4

Also Published As

Publication number Publication date
CN112583456B (zh) 2022-03-29
CN112583456A (zh) 2021-03-30
EP4030633A1 (en) 2022-07-20
US20220224368A1 (en) 2022-07-14
EP4030633A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US11218286B2 (en) Reducing intermodulation distortion for intra-band dual connectivity
CN108768434B (zh) 一种射频电路、终端及信号发射控制方法
US20230102723A1 (en) Rf front-end architecture, antenna device and communication terminal
CN108390694B (zh) 多路选择开关、射频系统以及无线通信设备
WO2020259665A1 (zh) 一种天线的切换电路和电子设备
US9231524B2 (en) Digital transceiver with switched capacitor sampling mixers and switched capacitor amplifiers
CN112218377A (zh) 支持双连接的电子装置及其功率控制方法
CN111566940B (zh) 一种信号处理电路、射频信号发射机和通信设备
WO2022028303A1 (zh) 射频电路和电子设备
US20140153493A1 (en) Sector-based base station
US20190110256A1 (en) Device and method for a wireless communication system
CN216721325U (zh) 射频模组和通信设备
WO2023197662A1 (zh) 一种双发射频电路及电子设备
CN103972629A (zh) 一种合路器、基站、信号合路系统及信号传输方法
WO2024067406A1 (zh) 射频电路和电子设备
WO2021063085A1 (zh) 一种通信装置
CN217010858U (zh) 一种射频电路和电子设备
US20220303020A1 (en) Central unit, remote unit, small cell system, and communication method
CN216490480U (zh) 射频前端器件和射频系统
WO2023141947A1 (zh) 一种收发电路、收发信机以及相关装置
CN216016858U (zh) 一种用于WiFi无线自组网的射频模块
CN210246745U (zh) 一种射频控制电路及移动终端
CN104269596A (zh) 一种无源宽频合路器
JP2024517375A (ja) ミリ波トランシーバアーキテクチャのためのデジタル前処理チップ
CN206596242U (zh) WiFi天线装置及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020873058

Country of ref document: EP

Effective date: 20220413