WO2021062809A1 - 一种时刻信息的通知方法和装置 - Google Patents

一种时刻信息的通知方法和装置 Download PDF

Info

Publication number
WO2021062809A1
WO2021062809A1 PCT/CN2019/109735 CN2019109735W WO2021062809A1 WO 2021062809 A1 WO2021062809 A1 WO 2021062809A1 CN 2019109735 W CN2019109735 W CN 2019109735W WO 2021062809 A1 WO2021062809 A1 WO 2021062809A1
Authority
WO
WIPO (PCT)
Prior art keywords
sdu
pdu
terminal device
time information
information
Prior art date
Application number
PCT/CN2019/109735
Other languages
English (en)
French (fr)
Inventor
胡星星
张宏平
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980096436.6A priority Critical patent/CN113826337B/zh
Priority to PCT/CN2019/109735 priority patent/WO2021062809A1/zh
Publication of WO2021062809A1 publication Critical patent/WO2021062809A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for notifying time information.
  • ultra-reliable low-latency (URLLC) services require latency within 0.5 ms.
  • URLLC ultra-reliable low-latency
  • the operator needs to know the delay performance of the current network.
  • the network device can calculate the time recorded by the packet data convergence protocol (PDCP) layer of a data packet at the sending end and the time recorded by the PDCP layer of the receiving end.
  • PDCP packet data convergence protocol
  • the network equipment can notify the terminal equipment of the time information of which data packets need to be recorded through a radio resource control (Radio Resource Control, RRC) message, and the terminal equipment feeds back the measured time information to the network equipment through the RRC message, and the terminal
  • RRC Radio Resource Control
  • the device needs to encrypt the RRC message at the PDCP layer, and the network device needs to decrypt the RRC message at the PDCP layer and perform integrity protection processing and verification.
  • the processing complexity of the terminal equipment to process the RRC message is relatively high, which will affect the processing of the service transmission by the terminal equipment.
  • the processing of these RRC messages requires the processing capabilities of terminal devices, which will affect the ability of terminal devices to process services, resulting in longer processing delays for terminal devices and longer data packet delays. long.
  • the embodiments of the present application provide a method and device for notifying time information, which can reduce the processing complexity of the terminal device when the terminal device feeds back the time information of the time delay measurement through the RRC message.
  • a method for notifying time information including: the terminal device determines the time information of the service data unit SDU, the time information indicates the time when the first protocol layer of the terminal device receives the SDU from the upper layer; and the terminal device sends to the network device
  • the first control protocol data unit PDU, the first control PDU indicates the time information of the SDU. Therefore, in the embodiment of the present application, the terminal device notifies the network device to report the time information of the recorded uplink PDCP SDU through the first control PDU, which can avoid the impact on the processing capability of the terminal device caused by notifying the network device through the RRC message.
  • the first control PDU also indicates one or more of the following indication information: information indicating that the terminal device is reporting the time information of the uplink SDU, indicating that the first control PDU is the PDU corresponding to the delay measurement Type information, or information indicating the sequence number of the PDU corresponding to the SDU. such.
  • the network device can learn from the information in the first control PDU whether the terminal device reports the uplink time information or the downlink time information, and the time information corresponding to the SDU for delay measurement. Compared with encrypting and decrypting the RRC message, In this application, the process of exchanging information through the first control PDU is simpler.
  • the method before the terminal device determines the time information of the SDU, the method further includes: the terminal device receives a second control PDU from the network device, and the second control PDU is used to instruct the terminal device to report the first protocol layer slave The time information when the upper layer receives the SDU. That is, this application does not use the RRC message to indicate the SN corresponding to the SDU that the terminal device needs to report, but sends a second control PDU to the terminal device. The second control PDU is used to instruct the terminal device to report the time information of the uplink PDCP layer SDU.
  • the second control PDU indicates one or more of the following indication information: information indicating the time information of the terminal device reporting the uplink SDU, and indicating that the first control PDU is the information of the PDU type corresponding to the delay measurement , Or, information indicating the sequence number of the PDU corresponding to the SDU.
  • the time information includes one or more of frame number, subframe number, slot number, and symbol number.
  • absolute time that is, in the format of a certain year, a certain hour, a certain minute, a second, etc.
  • absolute time synchronization between the network equipment and the terminal equipment is required, which will impose greater requirements on the network and require more bits at the same time
  • To express the absolute time it brings a large bit overhead; while in a wireless network, air interface wireless synchronization is required between network equipment and terminal equipment. This synchronization refers to wireless frames, subframes, time slots, and symbols. Synchronize.
  • this application may use frame number, subframe number, time slot number, and symbol number to feed back time information, and the corresponding time information may be the frame number and subframe number.
  • the frame, the time slot, and the symbol may also only carry part of them, for example, only the frame, subframe, and time slot are carried.
  • the time information is based on a preset or configured subcarrier interval. Since in the communication process, the network device may notify the terminal device to change the corresponding subcarrier interval. In the stage of changing the subcarrier interval, the terminal device will still perform data transmission. Before changing the subcarrier, it needs to feed back the corresponding SDU of the time information. The device has recorded the time information of these SDUs or has generated a control PDU carrying the time information or has put the time information in the RRC message, but the network device may only receive the time information after changing the subcarrier. In this way, When the network device receives the time information reported by the terminal device, the network device cannot know the time slot number used by the time information and which subcarrier interval the symbol number corresponds to.
  • the terminal device can use the preset subcarrier interval as a reference to generate the time information of the SDU. In this way, the terminal device uses the preset subcarrier interval as a reference when setting the time slot number and symbol number. Make settings.
  • the method further includes: the terminal device receives notification information from the network device, and the notification information is used to indicate the subcarrier interval referenced by the time information.
  • the notification information can be sent through RRC messages, or through other types of messages, which is not limited in this application.
  • the network device includes the user plane CU-UP of the centralized unit CU; the terminal device sending the first control protocol data unit PDU to the network device includes: the terminal device sending the first control PDU to the CU-UP.
  • the terminal device receiving the second control PDU from the network device includes: the terminal device receiving the second control PDU from the CU-UP.
  • a method for notifying time information including: the terminal device determines the time information of the service data unit SDU, the time information indicates the time when the first protocol layer of the terminal device sends the SDU to the upper layer; and the terminal device sends the first protocol layer to the network device.
  • a control protocol data unit PDU, the first control PDU indicates the time information of the SDU. Therefore, in the embodiment of the present application, the terminal device notifies the network device to report the time information of the recorded downlink PDCP SDU through the first control PDU, which can avoid the impact on the processing capability of the terminal device caused by notifying the network device through the RRC message.
  • the first control PDU indicates one or more of the following indication information: information indicating that the terminal device is reporting the time information of the downlink SDU, indicating that the first control PDU is the PDU type corresponding to the delay measurement Or, information indicating the sequence number of the PDU corresponding to the SDU. such.
  • the network device can learn from the information in the first control PDU whether the terminal device reports the uplink time information or the downlink time information, and the time information corresponding to the SDU for delay measurement. Compared with encrypting and decrypting the RRC message, In this application, the process of exchanging information through the first control PDU is simpler.
  • the method before the terminal device determines the time information, the method further includes: the terminal device receives a second control PDU from the network device, and the second control PDU is used to instruct the terminal device to report the first protocol layer to the upper layer Time information at SDU. That is, this application does not use the RRC message to indicate the SN corresponding to the SDU that the terminal device needs to report, but sends a second control PDU to the terminal device.
  • the second control PDU is used to instruct the terminal device to report the time information of the downlink PDCP layer SDU.
  • the second control PDU indicates one or more of the following indication information: information indicating the time information of the downlink SDU reported by the terminal device, and indicating that the first control PDU is information of the PDU type corresponding to the delay measurement , Or, information indicating the sequence number of the PDU corresponding to the SDU.
  • the time information includes one or more of frame number, subframe number, slot number, and symbol number.
  • the time information is based on a preset or configured subcarrier interval.
  • the beneficial effects of this design can be seen in the first aspect.
  • the method further includes: the terminal device receives notification information from the network device, and the notification information is used to indicate the subcarrier interval referenced by the time information.
  • the network device includes the user plane CU-UP of the centralized unit CU; the terminal device sending the first control protocol data unit PDU to the network device includes: the terminal device sending the first control PDU to the CU-UP.
  • the terminal device receiving the second control PDU from the network device includes: the terminal device receiving the second control PDU from the CU-UP.
  • a method for notifying time information including: a terminal device receives a first control PDU from a network device, the first control PDU is used to instruct the terminal device to report when the first protocol layer receives a service data unit SDU from an upper layer
  • the first control PDU also indicates one or more of the following indication information: information indicating the time information of the terminal device reporting the uplink SDU, indicating that the first control PDU is the information of the PDU type corresponding to the delay measurement, Or, information indicating the sequence number of the PDU corresponding to the SDU. That is, this application does not indicate the SN corresponding to the SDU that the terminal device needs to report through the RRC message, but sends the first control PDU to the terminal device.
  • the first control PDU is used to instruct the terminal device to report the time information of the uplink PDCP layer SDU. In this way, it is possible to avoid the impact on the processing capability of the terminal device caused by the notification of the terminal device through the RRC message, and avoid the problems of the SN recorded by the terminal device and the network device being misaligned due to the processing delay of the RRC, and the processing complexity of the network device is large.
  • a method for notifying time information including: a terminal device receives a first control PDU from a network device, and the first control PDU is used to instruct the terminal device to report when the first protocol layer sends a service data unit SDU to the upper layer Time information; wherein, the first control PDU also indicates one or more of the following indication information: information indicating the time information of the terminal device to report the downlink SDU, indicating that the first control PDU is information of the PDU type corresponding to the delay measurement, or , Indicating the information of the sequence number of the PDU corresponding to the SDU.
  • this application does not use the RRC message to indicate the SN corresponding to the SDU that the terminal device needs to report, but sends the first control PDU to the terminal device.
  • the first control PDU is used to instruct the terminal device to report the downlink PDCP layer. SDU time information.
  • a method for notifying time information including: a network device receives a first control protocol data unit PDU from a terminal device, the first control PDU indicates the time information of the service data unit SDU, and the time information indicates the first time information of the terminal device.
  • the time when a protocol layer receives the SDU from the upper layer can be referred to the first aspect.
  • the method further includes: the network device obtains the uplink of the network device and the terminal device according to the time information of the SDU indicated by the first control PDU, and the time information of the time when the first protocol layer of the network device sends the SDU to the upper layer. Time delay.
  • the first control PDU indicates one or more of the following indication information: information indicating that the terminal device is reporting the time information of the uplink SDU, indicating that the first control PDU is the PDU type corresponding to the delay measurement Or, information indicating the sequence number of the PDU corresponding to the SDU.
  • the method before the network device receives the first control PDU from the terminal device, the method further includes: the network device sends a second control PDU to the terminal device, and the second control PDU is used to instruct the terminal device to report the first protocol The time information when the layer receives the SDU from the upper layer.
  • the second control PDU indicates one or more of the following indication information: information indicating the time information of the terminal device reporting the uplink SDU, and indicating that the first control PDU is the information of the PDU type corresponding to the delay measurement , Or, information indicating the sequence number of the PDU corresponding to the SDU.
  • the time information includes one or more of frame number, subframe number, slot number, and symbol number.
  • the method before the network device receives the first control protocol data unit PDU from the terminal device, the method further includes: the network device sends notification information to the terminal device, and the notification information is used to instruct the terminal device to refer to when determining the time information The subcarrier spacing.
  • the network device includes the user plane CU-UP of the centralized unit CU and the control plane CU-CP of the CU; the method further includes: the CU-UP receives a notification message from the CU-CP, and the notification message is used for Indicate the subcarrier interval that CU-UP refers to when sending time information; CU-UP uses the subcarrier interval as a reference to determine the time information of the first protocol layer of CU-UP to send SDU to the upper layer; CU-UP sends CU- to CU-CP The first protocol layer of the UP sends the time information of the SDU to the upper layer.
  • the network device includes the user plane CU-UP of the centralized unit CU and the control plane CU-CP of the CU; the network device receiving the first control protocol data unit PDU from the terminal device includes: CU-UP receives from The first control PDU of the terminal device; the CU-UP sends the first control PDU to the CU-CP; the network device according to the time information of the SDU indicated by the first control PDU, and the time information of the time when the first protocol layer of the network device sends the SDU to the upper layer Obtaining the uplink delay between the network device and the terminal device includes: the CU-CP obtains the uplink delay according to the time information of the SDU indicated by the first control PDU, and the time information of the first protocol layer of the CU-UP to send the SDU to the upper layer.
  • a method for notifying time information including: a network device receives a first control protocol data unit PDU from a terminal device, the first control PDU indicates the time information of the service data unit SDU, and the time information indicates the first time information of the terminal device.
  • the time when a protocol layer sends the SDU to the upper layer can be referred to the second aspect.
  • the method further includes: the network device obtains the information of the network device and the terminal device according to the time information of the SDU indicated by the first control PDU, and the time information when the first protocol layer of the network device receives the SDU from the upper layer. Downlink delay.
  • the first control PDU indicates one or more of the following indication information:
  • the method before the network device receives the first control PDU from the terminal device, the method further includes: the network device sends a second control PDU to the terminal device, and the second control PDU is used to instruct the terminal device to report the first protocol The time information when the layer sends the SDU to the upper layer.
  • the second control PDU indicates one or more of the following indication information:
  • the time information includes one or more of frame number, subframe number, slot number, and symbol number.
  • the method before the network device receives the first control protocol data unit PDU from the terminal device, the method further includes: the network device sends notification information to the terminal device, and the notification information is used to instruct the terminal device to refer to when determining the time information The subcarrier spacing.
  • the network device includes the user plane CU-UP of the centralized unit CU and the control plane CU-CP of the CU; the method further includes: the CU-UP receives a notification message from the CU-CP, and the notification message is used to indicate CU-UP refers to the subcarrier interval when sending time information; CU-UP uses the subcarrier interval as a reference to determine the time information when the first protocol layer of CU-UP receives the SDU from the upper layer; CU-UP sends CU- to CU-CP The first protocol layer of the UP receives the time information of the SDU from the upper layer.
  • the network device includes the user plane CU-UP of the centralized unit CU and the control plane CU-CP of the CU; the network device receiving the first control protocol data unit PDU from the terminal device includes: CU-UP receives from The first control PDU of the terminal device; the CU-UP sends the first control PDU to the CU-CP; the network device according to the time information of the SDU indicated by the first control PDU, and the time information of the time when the first protocol layer of the network device sends the SDU to the upper layer Obtaining the uplink delay between the network device and the terminal device includes: the CU-CP obtains the downlink delay according to the time information of the SDU indicated by the first control PDU, and the time information when the first protocol layer of the CU-UP receives the SDU from the upper layer.
  • a method for notifying time information including: a network device sends a first control PDU to a terminal device, where the first control PDU is used to instruct the terminal device to report when the first protocol layer receives the service data unit SDU from the upper layer Time information; wherein, the first control PDU also indicates one or more of the following indication information: information indicating the time information of the terminal device reporting the uplink SDU, indicating that the first control PDU is information of the PDU type corresponding to the delay measurement, or , Indicating the information of the sequence number of the PDU corresponding to the SDU.
  • a method for notifying time information including: a network device sends a first control PDU to a terminal device, where the first control PDU is used to instruct the terminal device to report the time when the first protocol layer sends the service data unit SDU to the upper layer Information; wherein, the first control PDU also indicates one or more of the following indication information: information indicating the time information of the terminal device reporting the downlink SDU, indicating that the first control PDU is information of the PDU type corresponding to the delay measurement, or, Information indicating the sequence number of the PDU corresponding to the SDU.
  • the beneficial effects of the eighth aspect can be referred to the fourth aspect.
  • a method for notifying time information is provided, which is applied to a network device.
  • the network device includes the user plane CU-UP of the centralized unit CU and the control plane CU-CP of the CU, including: the CU-UP sends the first message to the CU-CP.
  • the first notification message is used to indicate the sequence number corresponding to the service data unit SDU of the first protocol layer or the value rule of the sequence number corresponding to the SDU for performing the delay measurement.
  • the first notification message is used to indicate the sequence number corresponding to the service data unit SDU of the first protocol layer for delay measurement or the value rule of the sequence number of the SDU includes: the first notification message is used for Indicate the sequence number of the protocol data unit PDU corresponding to the SDU of the first protocol for uplink delay measurement or the value rule of the sequence number of the PDU; or, the first notification message is used to indicate the first protocol layer for downlink delay measurement The value rule of the sequence number of the protocol data unit PDU or the sequence number of the PDU corresponding to the SDU.
  • the method before the CU-UP sends the first notification message to the CU-CP, the method further includes: the CU-UP receives a second notification message from the CU-CP, and the second notification message includes the delay Period of measurement.
  • a method for notifying time information is provided, which is applied to a network device.
  • the network device includes the user plane CU-UP of the centralized unit CU and the control plane CU-CP of the CU, including: the CU-CP receives the information from the CU-UP
  • the first notification message, the first notification message is used to indicate the sequence number corresponding to the service data unit SDU of the first protocol layer or the value rule of the sequence number corresponding to the SDU for performing the delay measurement.
  • the first notification message is used to indicate the sequence number corresponding to the service data unit SDU of the first protocol layer for delay measurement or the value rule of the sequence number of the SDU includes: the first notification message is used for Indicate the sequence number of the protocol data unit PDU corresponding to the SDU of the first protocol layer for uplink delay measurement or the value rule of the sequence number of the PDU; or, the first notification message is used to indicate the first protocol for downlink delay measurement The value rule of the sequence number of the protocol data unit PDU or the sequence number of the PDU corresponding to the SDU of the layer.
  • the method before the CU-CP receives the first notification message from the CU-UP, the method further includes: the CU-CP sends a second notification message to the CU-UP, and the second notification message includes the delay Period of measurement.
  • a device in an eleventh aspect, has the function of realizing one or more of the network equipment or terminal device behaviors in any one of the possible designs from the first aspect to the tenth aspect and each aspect.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • the foregoing apparatus includes one or more processors, and further, may include a communication unit.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the network device in the above method. For example, determine scheduling information.
  • the communication unit is used to support the device to communicate with other devices, and realize the function of receiving and/or sending. For example, sending the first control PDU.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor and store program instructions and/or data necessary for the network device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a UE, a base station, a gNB or a transmission reception point (Transmission Reception Point, TRP), a DU or a CU, etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a chip.
  • the communication unit may be an input/output circuit or interface of the chip.
  • the above-mentioned device includes a processor and is coupled with a memory.
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the apparatus executes the second aspect, or the method completed by the network device in any possible implementation manner of the second aspect.
  • the device may also include a transceiver, which transmits and/or receives under the control of the processor.
  • the foregoing apparatus includes one or more processors, and further, may include a communication unit.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the terminal device in the foregoing method. For example, determine scheduling information.
  • the communication unit is used to support the device to communicate with other devices, and realize the function of receiving and/or sending. For example, sending the first control PDU or receiving the first control PDU.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device, etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a chip.
  • the communication unit may be an input/output circuit or interface of the chip.
  • the above-mentioned apparatus includes a processor, and the processor is coupled with the memory.
  • the memory is used to store a computer program, and the processor is used to run the computer program in the memory, so that the device executes the first aspect, the second aspect, the third aspect, the fourth aspect, and any possible implementation of the first aspect Mode, any possible implementation manner of the second aspect, any possible implementation manner of the third aspect, or any possible implementation manner of the fourth aspect, the method performed by the terminal device; or, the processor is used for Run the computer program in the memory to make the device execute any possible implementation of the fifth aspect, the sixth aspect, the seventh aspect, the eighth aspect, the fifth aspect, and any possible implementation of the sixth aspect Mode, any possible implementation manner of the seventh aspect or a method completed by a terminal device in any possible implementation manner of the eighth aspect; or, the processor is configured to run the computer program in the memory, so that the apparatus executes
  • a system which includes the above-mentioned terminal equipment and network equipment, or the above-mentioned terminal equipment, CU-UP, and CU-CP.
  • a readable storage medium or program product for storing a program or instruction.
  • the program or instruction includes a program or instruction for executing any one of the first aspect to the tenth aspect, or the first aspect to the tenth aspect.
  • a chip or circuit for executing the method in any one of the first to tenth aspects, or any one of the first to tenth aspects. .
  • a communication method can be provided, which can also be referred to as a delay measurement method or a notification method of time information, in order to notify the terminal device to report the measurement result through the control PDU during the delay measurement process.
  • the terminal device report the measurement result to the network device by controlling the PDU, so as to avoid the processing complexity problem caused by reporting the measurement result through the RRC message.
  • the method, device, system, and readable storage medium provided by the embodiments of the present application can be applied to a network where a base station in LTE is connected to a 5G core network 5GC, and can also be applied to a network where a base station in LTE is connected to a 4G core network EPC. It can also be applied to the network where the base station gNB in 5G is connected to the 5GC.
  • FIG. 1 is a schematic diagram of a protocol layer provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a QoS flow QoS architecture provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a RAN device provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a delay measurement method provided by an embodiment of the application.
  • FIG. 8 is a signaling interaction diagram of a delay measurement method provided by an embodiment of this application.
  • FIG. 9 is a signaling interaction diagram of a delay measurement method provided by an embodiment of this application.
  • FIG. 10 is a signaling interaction diagram of a delay measurement method provided by an embodiment of this application.
  • FIG. 11 is a signaling interaction diagram of a delay measurement method provided by an embodiment of this application.
  • FIG. 12 is a signaling interaction diagram of a delay measurement method provided by an embodiment of this application.
  • FIG. 13 is a signaling interaction diagram of a delay measurement method provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the packet data convergence protocol layer which can perform services such as security, header compression, encryption, and switching.
  • RB radio bearer
  • the PDCP layer can be configured to ensure that the data submitted to the upper layer is in order.
  • RRC layer Radio resource control layer, used to perform broadcast, paging, RRC link establishment, radio bearer control, mobility, user equipment (UE) measurement report control, etc.
  • SDAP Service Data Adaptation Protocol
  • 5G 5th generation core network
  • QoS quality of service flow
  • DRB data radio bearer
  • the SDAP layer is used when the UE is connected to the 5GC, and there is no SDAP layer when it is connected to the 4G core network).
  • the radio link control (RLC) layer performs services such as data segmentation, reassembly, and retransmission. There may be multiple RLC entities in the RLC layer, and each RLC entity provides services for each PDCP entity. The RLC layer can also configure the data submitted to the upper layer to be ordered.
  • RLC radio link control
  • MAC layer Provides data transmission services for services on logical channels, and performs services such as scheduling, hybrid autorepeat request (hybrid autorepeat request, HARQ) confirmation and denial services, etc.
  • MAC Media access control
  • the protocol layers of the terminal device (such as UE) and the network device (such as base station) from top to bottom are respectively: SDAP , PDCP, RLC, MAC and PHY layers.
  • the protocol layers of the terminal equipment and the network equipment from top to bottom are: RRC, PDCP, RLC, MAC, and PHY layers.
  • the data after each layer has processed the data is called a protocol data unit (PDU) in this layer.
  • PDU protocol data unit
  • SDU service data unit
  • the data input from the upper layer becomes the service data unit (SDU) of this layer.
  • PDCP PDU data input by the PDCP layer to the RLC layer
  • RLC SDU for the RLC layer.
  • QoS flow refers to a data flow with the same QoS requirement within a PDU session (PDU session), among which there can be multiple identified flows (internet protocol flow, IP flow) with the same QoS requirement.
  • PDU session PDU session
  • IP flow IP protocol flow
  • the QoS architecture based on QoS flow is shown in Figure 2.
  • This architecture is suitable for new radio (NR) to connect to 5GC, and it is also suitable for evolved universal terrestrial radio access.
  • E-UTRA is connected to 5GC.
  • 5GC For each UE, 5GC establishes one or more PDU sessions for it.
  • an NG-radio access network (NG-RAN) establishes one or more data radio bearers (DRB) for each PDU session.
  • DRB DRB shown in FIG.
  • NG-U NG-user plane
  • UPF user port function
  • PDU session It can be understood as a link between a terminal device and a data network (data network, DN) that provides a PDU link service.
  • DN data network
  • Access layer (access stratum, AS) and non-access stratum (non-access stratum, NAS): The transmission between RAN and terminal equipment is called access stratum (access stratum, AS). The inter-transmission is called non-access stratum (NAS).
  • the QoS architecture based on QoS flow mainly includes the QoS flow mapping between the AS layer and the NAS layer.
  • the NAS layer is mainly responsible for the mapping relationship between IP flow or other types of data packets and QoS flow.
  • the core network user plane function (UPF) generates downlink QoS flow (through packet detection rule (packet detection rule, PDR) to achieve ), the terminal device generates an uplink QoS flow.
  • the AS layer is mainly responsible for the mapping relationship between QoS flow and DRB.
  • the network side (such as the base station) configures the mapping relationship between QoS flow and DRB, and provides QoS services for QoS flow in the DRB of the air interface.
  • the network side configures the mapping relationship between QoS flow and DRB, and provides QoS services for QoS flow in the DRB of the air interface.
  • mapping QoS flows to DRB multiple QoS flows in the same sesison can be mapped to the same DRB. Among them, the QoS flows of different sessions cannot be mapped to the same DRB.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the term example is used to present the concept in a concrete way.
  • the embodiment of this application provides a method for measuring delay, which can be applied to the scenario where the base station gNB in 5G is connected to 5GC, and it can also be applied to the long-term evolution base station (Long Term Evolution evolved NoteB, LTE eNB) connected to 5G in 4G.
  • the 5GC scenario can also be applied to the scenario where the LTE eNB is connected to the 4G core network, Evolved Packet Core (EPC), and can also be applied to the subsequent evolved base stations and core networks (including the subsequent evolved core network) , Or a scenario where a base station (including a subsequently evolved base station) and a subsequently evolved core network are connected, but it is not limited to this.
  • EPC Evolved Packet Core
  • the network architecture of this application may include terminal equipment and network equipment.
  • the terminal equipment may be a UE, the network equipment may be a base station or a relay station or an access point, etc.
  • the base station may be the gNB (also called NG-ENB) in the 5G system shown in FIG. 3, and FIG. 3 also shows the 5G system
  • the base station can also be the eNB in the 4G system shown in Figure 4, and Figure 4 also shows the EPC in the 4G system.
  • gNB is an NR base station connected to 5GC, which can provide wireless access services for terminal devices.
  • 5GC is the 5G core network, which provides 5G core network functions for terminal devices, mainly including user plane function (UPF) entities and authentication management function (authentication management function, AMF) entities.
  • AMF is the control plane network element of 5GC, which is mainly responsible for terminal equipment access and mobility management.
  • UPF is a user plane network element of 5GC, which is mainly responsible for functions such as data packet routing and forwarding and QoS management.
  • the network device in the embodiment of this application refers to a RAN device, which is a device that connects a terminal device to a wireless network, and may be the eNB in FIG. 4 or the gNB in FIG. 3, which is not limited in this application.
  • the RAN device may be a base station (such as gNB) with a separate architecture of a centralized unit (CU) and a distributed unit (DU), or may be a CU, or, It can be DU.
  • the RAN device can be connected to a core network device (for example, it can be an LTE core network or a 5G core network).
  • CU and DU can be understood as the division of base stations from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU, and one DU can also be connected to multiple CUs (not shown in FIG. 5).
  • the CU and DU can be connected through an interface, for example, an F1 interface.
  • the CU and the DU can be divided according to the protocol layers of the wireless network.
  • the functions of the RRC layer, the SDAP layer, and the PDCP layer are set in the CU
  • the functions of the RLC layer, the MAC layer, and the PHY layer are set in the DU.
  • the division of CU and DU processing functions according to this protocol layer is only an example, and the division can also be performed in other ways.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions with the protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer may be set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer may be set in the DU.
  • the functions of the CU or DU can also be divided according to service types or other system requirements. For example, it is divided by time delay, and the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • the function of the CU can be implemented by one entity or by different entities.
  • the functions of the CU can be further divided, for example, CP and UP are separated, that is, the CU control plane (centralized unit-control plane, CU-CP) and the CU user plane (centralized unit-user plane CU-UP) ) Separation.
  • the CU-CP and CU-UP may be implemented by different functional entities, and the CU-CP and CU-UP may be coupled with the DU to jointly complete the function of the base station.
  • the CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C (PDCP-control).
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, data transmission, etc.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U (PDCP-user).
  • SDAP is mainly responsible for processing the data of the core network and mapping the data flow to the bearer.
  • PDCP-U is mainly responsible for data encryption and decryption, integrity protection, header compression, serial number maintenance, and data transmission.
  • CU-CP and CU-UP are connected through the E1 interface.
  • CU-CP represents that gNB is connected to the core network through the Ng interface.
  • CU-UP is connected to DU through F1-U (user plane of F1 interface).
  • PDCP-C is also in CU-UP.
  • the terminal equipment may be a UE, an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE agent, or a UE device.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in the future evolution of the Public Land Mobile Network (PLMN) network, etc. .
  • the terminal device can be implemented by the structure shown in FIG. 6.
  • FIG. 6 shows the general hardware architecture of the mobile phone for description.
  • the mobile phone shown in FIG. 6 may include: a radio frequency (RF) circuit 110, a memory 120, other input devices 130, a display screen 140, a sensor 150, an audio circuit 160, and input/output (I/O) Subsystem 170, processor 180, power supply 190 and other components.
  • RF radio frequency
  • I/O input/output
  • FIG. 6 does not constitute a limitation on the mobile phone, and may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 may include a display panel 141 and a touch panel 142.
  • the mobile phone can include more or fewer components than shown.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, which will not be repeated here.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the network device is the gNB and the terminal device is the UE as an example.
  • the gNB will instruct the UE to record the PDCP layer (UE -PDCP) T1 corresponding to some PDCP PDU, T1 refers to the moment when the PDCP layer of the UE receives the PDCP SDU corresponding to the PDCP PDU from the upper layer (SDAP layer) (the UE will send T1 to the gNB through an RRC message).
  • UE -PDCP PDCP layer
  • T1 refers to the moment when the PDCP layer of the UE receives the PDCP SDU corresponding to the PDCP PDU from the upper layer (SDAP layer) (the UE will send T1 to the gNB through an RRC message).
  • the gNB When the gNB (gNB-PDCP) receives the PDCP PDU, it records the time T4 when the PDCP SDU corresponding to the PDCP PDU is submitted to the upper layer (SDAP layer). The gNB can calculate the transmission delay of the uplink PDCP SDU according to T4-T1.
  • the gNB will instruct the UE to record the T3 corresponding to some PDCP PDUs in the PDCP layer.
  • T3 refers to the moment when the PDCP layer of the UE submits the PDCP SDU corresponding to the PDCP PDU to the upper layer (SDAP layer) (the UE will pass the RRC The message sends the T3 to the gNB.
  • the gNB records the time T2 when the PDCP layer of the gNB receives the PDCP SDU corresponding to the PDCP PDU from the upper layer (SDAP layer).
  • the gNB calculates the transmission delay of the downlink PDCP SDU according to T3-T2.
  • the gNB can independently notify the UE for uplink and downlink.
  • CU-CP Under the CU/DU architecture, CU-CP will notify CU-UP which PDCP PDU T2/T4 is recorded (the method is similar to the method of notifying the UE), and CU-UP will send the T2/T4 of these PDCP PDUs to CU-CP , CU-CP calculates the corresponding time delay.
  • Step 1 The CU-CP informs the CU-UP which UEs and which data packets of the PDCP layer in which DRBs to perform delay measurement.
  • Step 2 The CU-CP informs the UE through a dedicated RRC message to perform delay measurement on which data packets in which DRBs.
  • Step 3 The CU-UP makes relevant preparations in accordance with the requirements of the CU-CP, such as whether to accept the requirements of the CU-CP.
  • Step 4 The UE makes relevant preparations according to the requirements of the CU-CP, such as whether to accept the requirements of the CU-CP.
  • Step 5 The CU-UP responds to the delay measurement required by the CU-CP.
  • CU-UP accepts the corresponding measurement requirements, and then obtains the measurement results.
  • Step 6 The UE responds to the delay measurement required by the CU-CP.
  • the UE accepts the corresponding measurement requirements, and then obtains the measurement results.
  • Step 7 Data transmission between UE and CU-UP.
  • Step 8 The UE notifies the CU-CP of the corresponding measurement result, which carries the SN of the measured data packet corresponding to each measurement DRB and the T1 corresponding to the data packet.
  • Step 9 The CU-UP notifies the CU-CP of the corresponding measurement result, which carries the SN of the measured data packet corresponding to each measurement DRB, and the T4 corresponding to the data packet.
  • Step 10 The CU-CP calculates the uplink delay according to the results reported by the UE and the CP-UP. That is, the uplink time delay (T4-T1) is calculated according to the T1 and T4 corresponding to the SN number of the same data packet.
  • the DRB-level delay can be used as the delay of the QoS flow corresponding to the DRB.
  • the measurement result is carried in the RRC message.
  • the processing complexity of the RRC message is high.
  • the UE is required to encrypt the RRC message at the PDCP layer.
  • the CU-CP also The RRC message needs to be decrypted.
  • the processing of the RRC message needs to consume the processing capabilities of the UE and the CU-CP, which affects the UE's ability to process services, resulting in a long processing delay of the UE.
  • the network side may require the UE to report the corresponding measurement results in time, which will cause a large number of RRC messages to be reported, thereby increasing the processing load on the UE and the network side.
  • a method for notifying time information is provided.
  • the principle may be: for uplink delay, the terminal device determines the time information of the SDU, and the time information indicates that the PDCP layer of the terminal device receives the SDU from the upper layer. The time; the terminal device sends the first control PDU to the network device, and the first control PDU indicates the time information of the SDU.
  • the terminal device determines the time information of the SDU, and the time information indicates the time when the PDCP layer of the terminal device sends the SDU to the upper layer; the terminal device sends the first control PDU to the network device, and the first control PDU indicates the time information of the SDU .
  • the terminal device when the terminal device reports the measurement result to the network device, it does not carry the measurement result through the RRC message, but carries the measurement result through the first control PDU, which can avoid the influence on the processing capability of the terminal device caused by notifying the network device through the RRC message. It also avoids the signaling overhead of RRC messages.
  • an embodiment of the present application provides a method for notifying time information.
  • the method includes:
  • the network device notifies the terminal device to report the time information of the SDU with the uplink delay, and the time information indicates the time when the first protocol layer of the terminal device receives the SDU from the upper layer.
  • each embodiment is described by taking the first protocol layer as the PDCP layer as an example. It is understandable that the method in the embodiments of the present application can be extended to the case where the first protocol layer is other layers. This will not be repeated.
  • the base station may notify the UE to report the time information of the PDCP SDU of the uplink delay.
  • the time information can be understood as the time T1 when the PDCP SDU reaches the PDCP layer of the UE from the upper layer (such as the SDAP layer of the UE) in FIG. 7, that is, the time T1 when the PDCP layer receives the SDU from the upper layer.
  • the base station may indicate to the UE which PDCP and SDU time information to report by sending an RRC message to the UE.
  • the RRC message carries the SN list of the PDCP PDU corresponding to the PDCP SDU to be reported or the value rule of the SN.
  • the terminal device determines the time information of the SDU.
  • the UE may always determine the time information of the PDCP SDU during the process of processing the PDCP SDU. At this time, if the UE determines that it needs to report some time information of the PDCP SDU, the UE can save the time information.
  • the time information T1 of the PDCP SDU that needs to be reported is obtained from the time information of the multiple PDCP SDUs.
  • the UE when the UE receives the RRC message sent by the base station, the RRC message indicates the time information of the PDCP SDU to be reported by the terminal device, the UE starts to record the time information T1 of the PDCP SDU to be reported.
  • the network device also needs to record the time information T4 of the PDCP SDU that instructs the terminal device to report the measurement result, that is, the network device needs to record the time information T4 when the PDCP layer of the network device sends the PDCP SDU to the upper layer, or Time information T4 when the PDCP layer of the network device submits the PDCP SDU to the upper layer (such as the SDAP layer).
  • the network device may start recording T4 when instructing the terminal device to report T1, or it may be that the network device records the time information T4 for all PDCP SDUs processed, and then obtains it from multiple recorded T4s Instructs the terminal equipment to report the PDCP SDU T4 of the measurement result.
  • CU-UP when CU-UP records T4, CU-UP can start recording PDCP SDU T4 only when it receives an instruction from CU-CP. It may be that the CU-UP keeps recording the time information corresponding to the uplink PDCP SDU in the process of processing the uplink PDCP SDU, and then obtains the T4 of the PDCP SDU that instructs the terminal device to report the measurement result from the multiple recorded T4. This application is not limited.
  • the terminal device sends a first control PDU to the network device, where the first control PDU indicates time information of the SDU.
  • the first control PDU For the uplink delay, the first control PDU carries the time information T1 of the PDCP SDU received from the upper layer by the PDCP layer and recorded by the terminal device.
  • the first control PDU may be a PDCP control PDU.
  • the first control PDU indicates one or more of the following indication information:
  • Information indicating that the PDU is a control type PDU or a data type PDU indicating that the terminal device is reporting information about the time information of the uplink SDU, indicating that the first control PDU is information of the PDU type corresponding to the delay measurement, or, indicating Information about the sequence number of the PDU corresponding to the SDU.
  • Table 1 and Table 2 show two formats of the first control PDU.
  • the PDCP SN occupies 12 bits
  • the PDCP SN occupies 18 bits (Table 1 and Table 2 indicate that it carries one SN, and may also carry multiple SNs).
  • C indicates that the first control PDU is a control PDU
  • PDU type indicates that the first control PDU is the PDU type corresponding to the delay measurement
  • U indicates that the terminal device reports the time information of the uplink SDU
  • SN indicates the sequence of the PDU corresponding to the SDU No.
  • TimeStamp indicates the time information T1 when the PDCP layer recorded by the terminal device received the PDCP SDU indicated by the SN from the upper layer.
  • the PDU type may be used to indicate that the first control PDU carries the time information of the uplink SDU, instead of using the U to indicate (that is, the indication is not required), for example, in the PDU type The indication carries the time information of the uplink SDU.
  • the network device can also instruct the terminal device to report the SDU participating in the uplink delay measurement and the SDU participating in the downlink delay measurement at the same time, so that the first control PDU can carry the SN of the PDU corresponding to the SDU with the uplink delay. And time information, it also carries the SN and time information of the PDU corresponding to the SDU with the downlink delay.
  • the network device receives the first control PDU from the terminal device.
  • the network device receives the first control PDU sent by the terminal device.
  • the network device includes CU-UP and CU-CP, it may be that CU-UP receives the first control PDU from the terminal device.
  • the network device obtains the uplink delay between the network device and the terminal device according to the time information of the SDU indicated by the first control PDU and the time information of the first protocol layer of the network device to send the SDU to the upper layer.
  • the network device can calculate the uplink delay according to the time information T1 reported by the terminal device corresponding to the same PDCP SDU and the time information T4 (T4-T1) recorded by the network device.
  • the CU-CP can obtain the uplink delay according to the time information T1 of the SDU indicated by the first control PDU and the time information T4 of the time when the PDCP layer of the CU-UP sends the SDU to the upper layer. (T4-T1).
  • the terminal device notifies the network device to report the time information of the recorded uplink PDCP SDU through the first control PDU, which can avoid the impact on the processing capability of the terminal device caused by notifying the network device through the RRC message.
  • the embodiment of the present application provides a method for notifying time information.
  • the method includes:
  • the network device notifies the terminal device to report the time information of the downlink delayed SDU, and the time information indicates the time when the first protocol layer of the terminal device sends the SDU to the upper layer.
  • the base station may notify the UE to report the time information of the PDCP SDU of the downlink delay.
  • the time information can be understood as the time T3 when the PDCP SDU in Figure 7 is sent from the PDCP layer of the UE to the upper layer (such as the SDAP layer of the UE), that is, the PDCP layer of the UE submits the PDCP SDU to the upper layer (such as the SDAP layer of the UE) Time T3.
  • the base station may indicate to the UE which PDCP and SDU time information to report by sending an RRC message to the UE.
  • the RRC message carries the SN list of the PDCP PDU corresponding to the PDCP SDU to be reported or the value rule of the SN.
  • the terminal device determines the time information of the SDU.
  • the UE may always record the time information of the PDCP SDU during the process of processing the PDCP SDU. At this time, if the UE determines that it needs to report some time information of the PDCP SDU, the UE can retrieve the time information from the saved PDCP SDU. The time information T3 of the PDCP SDU that needs to be reported is obtained from the time information of the multiple PDCP SDUs.
  • the UE when the UE receives the RRC message sent by the base station, and the RRC message indicates the time information of the PDCP SDU to be reported by the terminal device, the UE starts to record the time information T3 of the PDCP SDU to be reported.
  • the network device also needs to record the time information T2 of the PDCP SDU that instructs the terminal device to report the measurement result, that is, the network device needs to record the time information T2 when the PDCP layer of the network device receives the PDCP SDU from the upper layer.
  • the network device may start recording T2 when instructing the terminal device to report T3, or it may be that the network device records time information T2 for all PDCP SDUs processed, and then records multiple T2 Obtain the T2 of the PDCP SDU indicating the terminal device to report the measurement result.
  • CU-UP when CU-UP records T2, CU-UP can start recording PDCP SDU T2 when it receives an instruction from CU-CP. It may be that the CU-UP keeps recording the time information corresponding to the uplink PDCP SDU in the process of processing the uplink PDCP SDU, and then obtains the T2 of the PDCP SDU instructing the terminal device to report the measurement result from the multiple recorded T2.
  • This application is not limited.
  • the terminal device sends a first control PDU to the network device, where the first control PDU indicates time information of the SDU.
  • the first control PDU For the downlink delay, the first control PDU carries the time information T3 at which the PDCP layer sends the PDCP SDU to the upper layer recorded by the terminal device.
  • the first control PDU may be a PDCP control PDU.
  • the first control PDU indicates one or more of the following indication information:
  • Information indicating that the PDU is a control type PDU or a data type PDU indicating that the terminal device is reporting information about the time information of the downlink SDU, indicating that the first control PDU is information of the PDU type corresponding to the delay measurement, or indicating the PDU corresponding to the SDU.
  • Table 3 and Table 4 show two formats of the first control PDU.
  • PDCP SN occupies 12 bits
  • PDCP SN occupies 18 bits (Table 3 and Table 4 indicate that it carries one SN, and may also carry multiple SNs).
  • C indicates that the first control PDU is a control PDU
  • PDU type indicates that the first control PDU is the PDU type corresponding to the delay measurement
  • D indicates that the terminal device reports the time information of the downlink SDU
  • SN indicates the sequence of the PDU corresponding to the SDU No.
  • TimeStamp indicates the time information T3 when the PDCP layer recorded by the terminal device submits the PDCP SDU to the upper layer.
  • the PDU type may be used to indicate that the first control PDU carries the time information of the downlink SDU, instead of using D to indicate (that is, the indication of D is not required), for example, in the PDU type The indication carries the time information of the downlink SDU.
  • the network device receives the first control PDU from the terminal device.
  • the network device receives the first control PDU sent by the terminal device.
  • the network device includes CU-UP and CU-CP, it may be that CU-UP receives the first control PDU from the terminal device.
  • the network device obtains the downlink delay between the network device and the terminal device according to the time information of the SDU indicated by the first control PDU and the time information of the first protocol layer of the network device receiving the SDU sent by the upper layer.
  • the network device can calculate the downlink delay according to the time information T3 reported by the terminal device corresponding to the same PDCP SDU and the time information T2 (T3-T2) recorded by the network device.
  • the CU-CP can obtain the uplink according to the time information T3 of the SDU indicated by the first control PDU, and the time information T2 of the time when the PDCP layer of the CU-UP receives the SDU sent by the upper layer Time delay (T3-T2).
  • the embodiment of the present application does not limit that both the uplink delay and the downlink delay follow the same method in the foregoing embodiment, that is, the measurement method of the uplink delay and the measurement method of the downlink delay may be different.
  • the terminal device notifies the network device to report the time information of the recorded uplink PDCP SDU and/or the time information of the recorded downlink PDCP SDU through the first control PDU, which can avoid notifying the network device through the RRC message to cause the processing capability of the terminal device Impact.
  • the network device notifies the terminal device which PDCP SDUs are reported to participate in the delay measurement.
  • the terminal device is notified through an RRC message.
  • the CU-CP notifies the UE through a dedicated RRC message. Which data packets in the DRB are used for delay measurement.
  • the processing delay of the RRC message is relatively long, which may cause the SN of the data packet measured by the CU-UP and the UE to be different.
  • CU-UP records the time of some data packets, but the UE may have processed these data packets before receiving the RRC message, so the UE cannot record the time of these data packets, and CU-UP may wait forever
  • the UE notifies the time of these data packets, but in fact the UE will not subsequently report the time of these data packets, which will cause the CU-UP and the SN recorded by the UE to be misaligned, which increases the processing complexity of the CU-CP.
  • the embodiments of the present application provide a method for measuring delay.
  • the basic principle may be: instead of instructing the SN corresponding to the SDU that the terminal device needs to report through the RRC message, the present application sends a second control PDU to the terminal device.
  • the second control PDU is used to instruct the terminal equipment to report the time information of the uplink or downlink PDCP layer SDU.
  • the embodiment of the present application provides a delay measurement method, as shown in FIG. 11.
  • This method can be combined with the method shown in FIG. 9 and can also be applied independently of the method shown in FIG. 9 , Such as combining with other methods of reporting uplink delay, which are not limited here.
  • the method can include:
  • the network device sends a second control PDU to the terminal device, where the second control PDU is used to instruct the terminal device to report time information when the first protocol layer receives the SDU from the upper layer.
  • the second control PDU is used to instruct the terminal device to report the time information T1 when the PDCP layer receives the SDU from the upper layer. It can also be understood that the second control PDU is used to instruct the terminal device to report the time information T1 when the PDCP SDU reaches the PDCP layer of the terminal device from the upper layer.
  • the second control PDU indication also includes one or more of the following indication information:
  • Information indicating whether the second control PDU is a data type PDU or a control type PDU information indicating the time information of the uplink SDU reported by the terminal device, and indicating that the first control PDU is information of the PDU type corresponding to the delay measurement, Or, information indicating the sequence number of the PDU corresponding to the SDU.
  • Table 5 and Table 6 show the formats of the two second control PDUs.
  • Table 5 shows the format of the second control PDU when the SN of the PDCP PDU corresponding to the PDCP SDU is 12 bits.
  • Table 6 shows the format of the second control PDU corresponding to the PDCP SDU. The format of the second control PDU when the SN of the PDCP PDU is 18 bits. (Only one SN is shown in Table 5 and Table 6, and may also carry multiple SNs)
  • C indicates that the second control PDU is a control PDU
  • PDU type indicates that the second control PDU is the PDU type corresponding to the delay measurement
  • U indicates the time information of the network device instructing the terminal device to report the uplink SDU
  • SN indicates the network device Indicates the sequence number of the PDU corresponding to the SDU that the terminal device needs to report.
  • the PDU type may be used to indicate that the first control PDU carries the time information of the uplink SDU, instead of using the U to indicate (that is, the indication is not required), for example, in the PDU type The indication carries the time information of the uplink SDU.
  • U represents whether to trigger the uplink delay measurement
  • D represents the triggering of the downlink delay measurement.
  • SN_Uplink represents the SN of the uplink delay measurement
  • SN_Downlink represents the SN of the downlink delay measurement.
  • a network device is a base station and a terminal device is a UE as an example.
  • the base station when the base station receives an instruction from the core network and needs to perform uplink delay measurement, the base station can generate a downlink PDCP control PDU (PDCP control PDU) at the PCDP layer, which is recorded as the second control PDU, and is Delivered at the PDCP layer.
  • the second control PDU may carry an indication information for instructing the UE to report the time information T1 of a certain PDCP SDU, that is, instructing the UE to report the time information T1 when the PDCP layer receives the PDCP SDU from the upper layer.
  • the indication information may be a displayed indication information, the displayed indication information may be, for example, a bit, which is used to indicate the UE to report time information T1; the displayed indication information may also be, for example, a PDU The value in the type.
  • the indication information may also indicate implicitly, for example, when something appears in the second control PDU, instruct the UE to report time information T1; or, for example, the second control PDU carries the SN of the PDCP PDU (It may carry one or more SNs), it indicates that the UE needs to report the time information T1 of the PDCP SDU corresponding to the SN.
  • the implicit indication information may also be a rule that instructs the UE to report the PDCP PDU corresponding to the PDCP SDU.
  • the implicit indication information may be 100 .
  • the terminal device receives a second control PDU from the network device.
  • the terminal device determines the time information of the SDU, and the time information indicates the time when the first protocol layer of the terminal device receives the SDU from the upper layer.
  • step 1103 For the implementation of step 1103, refer to step 902.
  • the UE may report to the base station the time information T1 of a certain PDCP SDU after receiving the second control PDU, for example, the UE Report the time information T1 of the next PDCP SDU received from the upper layer after the second control PDU is received.
  • the terminal device sends to the network device information about the time when the first protocol layer of the terminal device receives the SDU from the upper layer.
  • step 1104 can participate in the above step 903, that is, the terminal device indicates the time information T1 of the SDU by sending the first control PDU to the network device.
  • the terminal device may also send the time information T1 when the PDCP layer of the terminal device receives the SDU from the upper layer through an RRC message or other means.
  • the network device obtains the uplink delay between the network device and the terminal device according to the time information when the first protocol layer sent by the terminal device receives the SDU from the upper layer, and the time information when the first protocol layer of the network device sends the SDU to the upper layer.
  • step 1105 For the implementation of step 1105, refer to step 905.
  • the network device notifies the terminal device to report the time information of the uplink PDCP layer receiving the SDU from the upper layer through the second control PDU, which can avoid notifying the UE to report the time information through the RRC message, which leads to the processing of the terminal device
  • the embodiment of the present application provides a delay measurement method, as shown in FIG. 12, the method can be applied in combination with the method shown in FIG. 10, and can also be applied independently of the method shown in FIG. 10, such as and The combination of other methods for reporting the downlink delay is not limited here.
  • the method can include:
  • a network device sends a second control PDU to a terminal device, where the second control PDU is used to instruct the terminal device to report time information when the first protocol layer sends an SDU to an upper layer.
  • the second control PDU is used to instruct the terminal device to report the time information T3 when the PDCP layer sends the SDU to the upper layer. It can also be understood that the second control PDU is used to instruct the terminal device to report the time information T3 when the PDCP layer submits the PDCP SDU to the upper layer.
  • the second control PDU indicates one or more of the following indication information:
  • the control PDU is the information of the PDU type corresponding to the delay measurement, or the information indicating the sequence number of the PDU corresponding to the SDU.
  • Table 8 and Table 9 show the formats of the two second control PDUs.
  • Table 8 shows the format of the second control PDU when the SN of the PDCP PDU corresponding to the PDCP SDU is 12 bits.
  • Table 9 shows the format of the second control PDU corresponding to the PDCP SDU. The format of the second control PDU when the SN of the PDCP PDU is 18 bits. (Only one SN is shown in Table 8 and Table 9, and may also carry multiple SNs)
  • C represents the time information at which the network device instructs the terminal device to report the downlink SDU.
  • a network device is a base station and a terminal device is a UE as an example.
  • the base station when the base station receives an instruction from the core network and needs to perform downlink delay measurement, the base station can generate a downlink PDCP control PDU (PDCP control PDU) at the PCDP layer, which is recorded as the second control PDU, and the Delivered at the PDCP layer.
  • the second control PDU may carry an indication information for instructing the UE to report the time information T3 of a certain PDCP SDU, that is, instructing the UE to report the time information T3 when the PDCP layer sends the PDCP SDU to the upper layer.
  • the indication information may be a displayed indication information, the displayed indication information may be, for example, a bit, which is used to indicate the UE to report time information T3; the displayed indication information may also be, for example, a PDU The value in the type.
  • the indication information may also indicate implicitly, for example, when something appears in the second control PDU, instruct the UE to report time information T3; or, for example, the second control PDU carries the SN of the PDCP PDU (It may carry one or more SNs), it indicates that the UE needs to report the time information T3 of the PDCP SDU corresponding to the SN.
  • the implicit indication information may also be a rule that instructs the UE to report the PDCP PDU corresponding to the PDCP SDU.
  • the implicit indication information may be 100 .
  • the terminal device receives the second control PDU from the network device.
  • the terminal device determines the time information of the SDU, and the time information indicates the time when the first protocol layer of the terminal device sends the SDU to the upper layer.
  • step 1203 For the implementation of step 1203, refer to step 1002.
  • the UE may report to the base station the time information T3 of a certain PDCP SDU after receiving the second control PDU, for example, the UE Report time information T3 of the next PDCP SDU sent from the PDCP layer to the upper layer after receiving the second control PDU.
  • the terminal device sends to the network device the time information at which the first protocol layer of the terminal device sends the SDU to the upper layer.
  • step 1104 refer to the above step 1003, that is, the terminal device indicates the time information T3 of the SDU by sending the first control PDU to the network device.
  • the terminal device may also send time information T3 when the PDCP layer of the terminal device sends the SDU to the upper layer through an RRC message or other methods.
  • the network device obtains the downlink delay between the network device and the terminal device according to the time information when the first protocol layer sent by the terminal device sends the SDU to the upper layer, and the time information when the first protocol layer of the network device receives the SDU sent by the upper layer.
  • step 1205 For the implementation of step 1205, refer to step 1005.
  • the network device notifies the terminal device to report the time information of the downlink PDCP layer to send the SDU to the upper layer through the second control PDU, which can avoid notifying the UE to report the time information through the RRC message, resulting in the processing capability of the terminal device
  • the impact of the RRC processing delay, and the impact of the SN recorded by the terminal device and the network device is not aligned.
  • step 903 The specific format of the time information at which the terminal device sends the SDU to the network device in step 903, step 1003, step 1104, and step 1204 will be described below.
  • the prior art does not specify how to record the format of time information. If absolute time is used, that is, a certain time, minute, and second of a certain year, certain month, etc., absolute time synchronization between network equipment and terminal equipment is required. Larger requirements will be put on the network, and more bits are required to represent the absolute time, which brings a large bit overhead; while in a wireless network, the air interface wireless synchronization is necessary between the network equipment and the terminal equipment.
  • This synchronization refers to the synchronization of wireless frames, subframes, time slots, and symbols.
  • this application may use frame number, subframe number, time slot number, and symbol number to feed back time information, and the corresponding time information may be the frame number and subframe number.
  • the frame, the time slot, and the symbol may also only carry part of them, for example, only the frame, subframe, and time slot are carried.
  • the time information of the PDCP SDU includes one or more of the frame number, the subframe number, the slot number, and the symbol number.
  • the time information carried in the first control PDU may include one or more of frame number, subframe number, time slot number, and symbol number.
  • the main purpose is to have different delay requirements for different services, and different requirements for sub-carriers in different deployment environments. For example, some services are more sensitive to delay, so large subcarrier spacing can be used. For another example, for the deployment of high-frequency carriers, a large sub-carrier spacing can be used.
  • the number of time slots and the number of symbols corresponding to a radio frame are different. For example, in 5G, a system frame is 10ms in length, and a subframe is 1ms. The number of time slots included in one subframe and the number of symbols included in one subframe correspond to the corresponding subcarrier interval. As shown in Table 10, the value of ⁇ is 0, 1, 2, 3, 4 and the corresponding sub-carrier spacing is 15, 30, 60, 120, 240.
  • represents different sub-carrier spacing
  • Indicates the number of symbols contained in the next time slot of different subcarriers Indicates the number of time slots included in the next radio frame for different subcarriers, Indicates the number of time slots included in the next subframe for different subcarriers.
  • the network device may notify the terminal device to change the corresponding subcarrier interval. In the stage of changing the subcarrier interval, the terminal device will still perform data transmission. Before changing the subcarrier, it needs to feed back the corresponding SDU of the time information. The device has recorded the time information of these SDUs or has generated a control PDU carrying the time information or has put the time information in the RRC message, but the network device may only receive the time information after changing the subcarrier. In this way, When the network device receives the time information reported by the terminal device, the network device cannot know the time slot number used by the time information and which subcarrier interval the symbol number corresponds to.
  • the time information of the SDU is based on the preset or configured subcarrier interval.
  • the time information at which the terminal device determines the SDU may include:
  • the terminal device uses the preset or configured subcarrier interval as a reference to determine the time information of the SDU.
  • the terminal device uses a preset or configured subcarrier interval as a reference to generate time information of the SDU.
  • the preset sub-carrier interval may be, for example, the sub-carrier interval predefined in the protocol, or the sub-carrier interval predefined by the system.
  • the terminal device uses the preset or configured subcarrier interval as a reference to determine the time information of the SDU, which can be performed in step 902, step 1002, step 1103, or step 1203. .
  • the terminal device may notify the network device of the subcarrier interval corresponding to the sent SDU time information. For example, while performing step 903, or performing step 1003, or performing step 1104, or performing step 1204, the terminal device notifies the network device of the subcarrier interval.
  • the method may further include:
  • the network device sends notification information to the terminal device, where the notification information is used to indicate the subcarrier interval referenced by the above-mentioned time information.
  • the network device can notify the terminal device through an RRC message.
  • the network device while performing step 901, or performing step 1001, or performing step 1101, or performing step 1201, or after performing these steps, the network device notifies the terminal device of the subcarrier interval.
  • the notification may be an explicit notification or an implicit notification, for example, notification of another parameter, which has a corresponding relationship with the subcarrier interval.
  • the terminal device learns the other parameter, it can learn the other parameter according to the corresponding relationship between the other parameter and the subcarrier interval predefined by the protocol (for example, preset in the terminal device) or notified by the network device.
  • the subcarrier spacing corresponding to the parameter is not limited to the parameter.
  • the sub-carrier interval is specified to be 240 kHz.
  • the preset subcarrier interval is used as a reference for setting.
  • the Methods can also include:
  • the CU-UP receives the notification message from the CU-CP, and the notification message is used to indicate the subcarrier interval referenced when the CU-UP sends the time information.
  • the CU-UP uses a certain sub-carrier interval as a reference to determine time information, for example, the sub-carrier interval is specified as 240 kHz.
  • the CU-UP uses the subcarrier interval as a reference to determine the time information at which the PDCP layer of the CU-UP sends the SDU to the upper layer; the CU-UP sends the PDCP layer of the CU-UP to the CU-CP and sends it to the upper layer SDU time information.
  • the CU-UP uses the subcarrier interval as a reference to determine the time information when the PDCP layer of the CU-UP receives the SDU from the upper layer; the CU-UP sends the PDCP layer of the CU-UP to the CU-CP when the PDCP layer of the CU-UP receives the SDU from the upper layer. Time information.
  • only the low bits of the frame number may be carried instead of carrying the value of the entire frame number.
  • the frame number is the system frame number (SFN)
  • SFN system frame number
  • the delay of SDU data packet is unlikely to exceed 1024*10ms, so you can only It is only necessary to use the low bits of the SFN for identification, for example, use the low 4-bit identification.
  • one or more of the frame number, subframe number, slot number, and symbol number is used, for example, the frame number, subframe number, slot number, and symbol number, or , Frame number, subframe number, and time slot number to identify the time information recorded by network equipment and terminal equipment, which can reduce the network's requirements for absolute time synchronization, and at the same time save the overhead required for time information.
  • a certain subcarrier interval is used as a reference to indicate the length of the time slot number and the symbol number, it can avoid that the network equipment and the terminal equipment understand the time length corresponding to the time slot number and/or the symbol number at different subcarrier intervals.
  • the embodiment of the present application also provides a delay measurement method, which determines which PDCP SDU to record time information for the RRC layer of the base station in the prior art, whether it is to directly specify the SN or adopt the method of SN value rule.
  • the PDCP SDUs that need to report time information may not be distributed as evenly as possible in time. This is because the RRC layer does not know how long the PDCP layer will receive a PDCP SDU from the upper layer, and the PDCP layer allocates a sequence number for each PDCP SDU that arrives.
  • the SDAP layer may also generate control PDUs, so the RRC layer may decide to measure the delay of the SDAP layer control PDU, and the delay of the SDAP layer control PDU does not reflect the delay of the real service data, that is, the SDAP layer control PDU The time delay cannot represent the time delay of the data PDU of the SDAP layer.
  • an embodiment of the present application provides a delay measurement method. As shown in FIG. 13, it is applied to a CU-CP and CU-UP architecture for network equipment.
  • the method includes:
  • the CU-UP sends a first notification message to the CU-CP, where the first notification message is used to indicate the sequence number corresponding to the SDU of the first protocol layer for performing the delay measurement or the value rule of the sequence number corresponding to the SDU.
  • the first notification message is used to indicate the sequence number of the PDU corresponding to the SDU of the PDCP layer for uplink delay measurement or the value rule of the sequence number of the PDU;
  • the first notification message is used to indicate the sequence number of the PDU corresponding to the SDU of the PDCP layer for performing downlink delay measurement or the value rule of the sequence number of the PDU.
  • the CU-CP receives the first notification message from the CU-UP.
  • step 1302 the execution steps after step 1302 can refer to step 2 and step 2 to step 10 shown in FIG. 8.
  • the process is similar to that of uplink measurement.
  • the process shown in Figure 8 is determined by CU-CP at the RRC layer which data packets (PDCP PDU) to perform delay measurement on, but there will be the above-mentioned decision on which data packets to perform delay measurement on the RRC layer.
  • the CU-UP may decide which data packets to measure at the PDCP layer, and notify the CU-CP through the first notification message. This is because the PDCP layer of CU-UP can sense the arrival time of the data packet and will assign a sequence number to the data packet. In this way, CU-UP can notify the SN of the data packet allocated with the sequence number used to measure the delay. For the CU-CP, the measured PDCP and SDU can be made more uniform in time, and the delay measurement result is more representative.
  • the time information in the RRC message can be indicated by the first control PDU in step 903.
  • the time information in the RRC message may be indicated by the first control PDU in step 1003.
  • the method shown in FIG. 13 may be applied independently of the method shown in FIG. 9 or FIG. 10, or may be applied in combination with one or more of the methods shown in FIG. 9 or FIG.
  • the method may further include:
  • the CU-CP sends a second notification message to the CU-UP, where the second notification message includes the period of time delay measurement.
  • CU-UP When CU-UP knows the period of delay measurement, CU-UP will know the time interval for delay measurement, so that it can obtain the PDCP SDU that needs delay measurement in the period according to the time interval and the data packets arriving at CU-UP.
  • the CU-UP when the CU-UP determines the SN of the PDCP PDU to be measured in the period according to the PDCP PDU generated by the PDCP layer, the CU-UP can generate the control PDU according to the actual data packet transmission and reception interval, so that the PDCP SDU is more uniform in time .
  • the network device may be a network device of various forms, such as a network device including two devices of DU and CU, such as DU, such as CU ( Among them, optionally, the communication between the CU and the terminal device can be transparently transmitted through the DU), such as a network device where the DU and the CU are not separated, such as CU-CP (where, optionally, the communication between the CU-CP and the terminal device can be transmitted through DU transparent transmission), such as CU-UP (optionally, the communication between CU-UP and the terminal device can be transparently transmitted through DU), etc.
  • the CU may include two devices CU-CP and CU-UP, or the CP and UP of the CU are not separated, that is, an integrated device.
  • the form of the specific network equipment is not limited in this application.
  • the communication method according to the embodiment of the present application is described in detail above with reference to FIG. 9, FIG. 10, FIG. 11, FIG. 12, and FIG.
  • the communication device of the embodiment of the present application such as a terminal device, a device for terminal device (such as a processor, circuit or chip), a network device, or a device for a network device (such as Processor, circuit or chip).
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in one or more of FIG. 2, FIG. 3, or FIG. 4 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 14 only shows the main components of the terminal device.
  • the terminal device 14 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the terminal device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program, and process the data of the software program.
  • the processor in FIG. 14 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 1401 of the terminal device 14, for example, to support the terminal device to perform the receiving function and the transmitting function.
  • the processor 1402 with processing functions is regarded as the processing unit 1402 of the terminal device 14.
  • the terminal device 14 includes a transceiving unit 1401 and a processing unit 1402.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1401 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1401 can be regarded as the sending unit, that is, the transceiver unit 1401 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1402 may be used to execute instructions stored in the memory to control the transceiver unit 1401 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiment.
  • the processor 1402 also includes an interface for realizing signal input/output functions.
  • the function of the transceiving unit 1401 may be implemented by a transceiving circuit or a dedicated chip for transceiving.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station. As shown in FIG. 15, the base station may be applied to the system shown in one or more of FIG. 2, FIG. 3, or FIG. 4 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 15 may include one or more DU 1501 and one or more CU 1502. CU1502 can communicate with NGcore (next generation core network, NC), such as 5GC.
  • NC next generation core network
  • the DU 1501 may include at least one radio frequency unit 15012, at least one processor 15013 and at least one memory 15014.
  • the DU1501 may further include at least one antenna 15011.
  • the DU 1501 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1502 may include at least one processor 15022 and at least one memory 15021.
  • CU1502 and DU1501 can communicate through interfaces, where the control plan interface can be Fs-C, such as F1-C, and the user plan interface can be Fs-U, such as F1-U.
  • the CU 1502 part is mainly used for baseband processing, control of base stations, and so on.
  • the DU 1501 and the CU 1502 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU1502 is the control center of the base station, which may also be called a processing unit, and is mainly used to complete baseband processing functions.
  • the CU 1502 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the base station 15 may include one or more antennas, one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor and at least one memory
  • at least one antenna and at least one radio frequency unit may be integrated in one antenna device
  • the CU may include at least one processor and at least one memory.
  • the CU1502 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 15021 and the processor 15022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU701 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), and can also support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 15014 and the processor 15013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 16 shows a schematic diagram of the structure of a communication device 16.
  • the communication device 16 may be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication device 80 may be a chip, a network device (such as a base station), or a terminal device.
  • the communication device 16 includes one or more processors 1601.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations, terminals, or chips, etc.), execute software programs, and process data in the software programs.
  • the device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used in terminal equipment or network equipment (such as a base station).
  • the device may be a terminal device or a network device (such as a base station), and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 16 includes one or more of the processors 1601, and the one or more processors 1601 can implement one or more of the embodiments shown in FIG. 9, FIG. 10, FIG. 11, FIG. 12, and FIG. Multiple network equipment or terminal equipment methods.
  • the communication device 16 includes means for determining time information of the SDU, and means for sending a first control PDU indicating the time information of the SDU.
  • the first control PDU may be sent through a transceiver, or an input/output circuit, or an interface of a chip.
  • the first control PDU reference may be made to the related description in the foregoing method embodiment.
  • the communication device 16 includes means for receiving the first control PDU from the terminal device, and means for determining the uplink delay according to the time information of the SDU indicated by the first PDU. Means.
  • the first PDU may be received through a transceiver, or an input/output circuit, or an interface of a chip, and the uplink delay may be determined by one or more processors.
  • the communication device 16 includes means for sending a second control PDU to the terminal device.
  • the second PDU may be sent through a transceiver, or an input/output circuit, or an interface of a chip.
  • the communication device 16 includes means for receiving a second control PDU from a network device, and means for determining and reporting SDU time information according to the second PDU.
  • Means For details, refer to the relevant description in the above method embodiment.
  • the time information of the second PDU and the SDU may be received through a transceiver, or an input/output circuit, or an interface of a chip, and the time information of the SDU may be determined by one or more processors.
  • the communication device 16 may also include other components (means) to implement one or more of the network devices in the embodiments shown in FIG. 9, FIG. 10, FIG. 11, FIG. 12, and FIG. The method of the terminal equipment will not be repeated here.
  • the processor 1601 may implement other functions in addition to the methods of the embodiments shown in one or more of FIG. 9, FIG. 10, FIG. 11, FIG. 12, and FIG.
  • the processor 1601 may also include an instruction 1603, which may be executed on the processor, so that the communication device 16 executes the method described in the foregoing method embodiment.
  • the communication device 160 may also include a circuit, and the circuit may implement the functions of the network device or the terminal device in the foregoing method embodiment.
  • the communication device 160 may include one or more memories 1602, on which instructions 1604 are stored, and the instructions may be executed on the processor so that the communication device 160 can execute The method described in the above method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1602 may store the time information described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory can be provided separately or integrated together.
  • the communication device 160 may further include a transceiver unit 1605 and an antenna 1606, or include a communication interface.
  • the transceiving unit 1605 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 1606.
  • the communication interface (not shown in the figure) may be used for communication between the core network device and the network device, or between the network device and the network device.
  • the communication interface may be a wired communication interface, such as an optical fiber communication interface.
  • the processor 1601 may be called a processing unit, and controls a device (such as a terminal or a base station).
  • the sending or receiving performed by the transceiver unit 1605 described in the embodiment of the present application is under the control of the processing unit (processor 1601), the sending or receiving action may also be described as processing in the embodiment of the present application.
  • the execution by the unit (processor 1601) does not affect the understanding of the solution by those skilled in the art.
  • the terminal equipment and network equipment in each of the above apparatus embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the case for sending signals to other chips or devices.
  • processors in the embodiments of the present application may be a CPU, and the processor may also be other general-purpose processors, digital signal processing (Digital Signal Processing, DSP), application specific integrated circuit (ASIC), and off-the-shelf Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • DSP Digital Signal Processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the terminal equipment and network equipment in each of the above apparatus embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the case for sending signals to other chips or devices.
  • An embodiment of the present application also provides a communication system, which includes: the above-mentioned network equipment and terminal equipment.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the method performed by the network device and the terminal device in the foregoing method embodiment.
  • the readable medium may be ROM or RAM, which is not limited in the embodiment of the present application.
  • the present application also provides a computer program product, which includes instructions, when the instructions are executed, so that the terminal device and the network device respectively perform the operations of the terminal device and the network device corresponding to the above method.
  • An embodiment of the present application also provides a system chip, which includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions, so that the communication device applied to the chip executes the operations of the terminal device and the network device in the method provided in the foregoing embodiment of the present application.
  • any communication device provided in the foregoing embodiments of the present application may include the system chip.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit in the communication device located outside the chip, such as a ROM, or can store static information and instructions Other types of static storage devices, RAM, etc.
  • the processor mentioned in any of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program for controlling the foregoing feedback information transmission method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the processor in the embodiments of the present application may be a CPU, and the processor may also be other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the foregoing embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, communication device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种时刻信息的通知方法和通信装置,涉及通信领域,能够降低终端设备由于通过RRC消息反馈时延测量的时刻信息时终端设备的处理复杂度。其方法为:终端设备确定服务数据单元SDU的时刻信息,时刻信息指示所终端设备的第一协议层从上层接收到SDU的时刻;终端设备向网络设备发送第一控制协议数据单元PDU,第一控制PDU指示SDU的时刻信息。本申请实施例用于计算网络设备与终端设备之间的上行时延或下行时延。

Description

一种时刻信息的通知方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种时刻信息的通知方法和装置。
背景技术
随着通信需求的发展,越来越多的业务需要保证低时延的性能,比如超可靠低时延(ultra reliable low latency communications,URLLC)业务需要时延在0.5ms之内。为了保证业务的性能,运营商需要知道当前网络的时延性能。
目前的时延统计方法中,网络设备可以根据一个数据包在发送端的包数据汇聚协议(packet data convergence protocol,PDCP)层记录的时刻和接收端的PDCP层记录的时刻计算该数据包在网络设备和终端设备之间的无线传输所耗的上下行时延。
对于上下行时延,网络设备可通过无线资源控制(Radio Resource Control,RRC)消息通知终端设备需要记录哪些数据包的时刻信息,且终端设备通过RRC消息向网络设备反馈测量到的时刻信息,终端设备需要将RRC消息在PDCP层进行加密,网络设备需要将RRC消息在PDCP层进行解密和完整性保护处理和校验。对于终端设备来说,终端设备处理RRC消息的处理复杂度较高,会影响到终端设备对业务传输的处理。例如,对于时延要求较高的业务,由于这些RRC消息处理需要消耗终端设备的处理能力,会影响到终端设备处理业务的能力,导致终端设备的处理时延较长,数据包的时延更长。
发明内容
本申请实施例提供一种时刻信息的通知方法和装置,能够降低终端设备由于通过RRC消息反馈时延测量的时刻信息时终端设备的处理复杂度。
第一方面,提供一种时刻信息的通知方法,包括:终端设备确定服务数据单元SDU的时刻信息,时刻信息指示终端设备的第一协议层从上层接收到SDU的时刻;终端设备向网络设备发送第一控制协议数据单元PDU,第一控制PDU指示SDU的时刻信息。因此,在本申请实施例中,终端设备通过第一控制PDU通知网络设备上报记录的上行PDCP SDU的时刻信息,可以避免通过RRC消息通知网络设备导致对终端设备的处理能力的影响。
在一种可能的设计中,第一控制PDU还指示如下指示信息中的一个或多个:指示终端设备上报的是上行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。这样。网络设备可以根据第一控制PDU中的信息获知终端设备上报的是上行的时刻信息还是下行的时刻信息,以及用于时延测量SDU对应的时刻信息,相比要对RRC消息进行加密和解密,本申请通过第一控制PDU交互信息的过程更为简单。
在一种可能的设计中,在终端设备确定SDU的时刻信息之前,该方法还包括:终端设备接收来自网络设备的第二控制PDU,第二控制PDU用于指示终端设备上报第一协议层从上层接收到SDU时的时刻信息。即,本申请不通过RRC消息指示终端设 备需要上报的SDU对应的SN,而是通过向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报上行PDCP层的SDU的时刻信息。这样,可避免通过RRC消息通知终端设备导致对终端设备的处理能力的影响,以及避免由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐,网络设备处理复杂度大的问题。
在一种可能的设计中,第二控制PDU指示如下指示信息中的一个或多个:指示终端设备上报上行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一种可能的设计中,时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。如果采用绝对时间,即采用某年某月某时某分某秒等格式,则需要网络设备和终端设备之间进行绝对时间同步,这样会对网络提出较大的要求,同时需要比较多的比特来表示该绝对时间,带来较大的比特开销;而无线网络中,网络设备和终端设备之间本就需要进行空口无线的同步,该同步是指无线的帧、子帧、时隙以及符号同步。为了降低网络复杂度以及降低开销,在一些实施例中,本申请可以以帧号、子帧号、时隙号以及符号号来反馈时刻信息,对应的时刻信息可以为第几帧、第几子帧、第几时隙以及第几符号,也可能只携带其中的一部分,例如只携带第几帧、第几子帧以及第几时隙。
在一种可能的设计中,时刻信息以预设的或配置子载波间隔为参考。由于在通信过程中,网络设备可能通知终端设备改变对应的子载波间隔,在改变子载波间隔的阶段,终端设备仍然会进行数据传输,改变子载波之前需要反馈时刻信息对应的SDU而言,终端设备已经记录了这些SDU的时刻信息或已经生成了携带时刻信息的控制PDU或者已经把时刻信息放入到RRC消息中,但网络设备可能是在改变子载波之后才收到这些时刻信息,这样,网络设备接收到终端设备上报的时刻信息时,网络设备无法知道时刻信息采用的时隙号以及符号号对应哪种子载波间隔。而本申请实施例中,终端设备可以以预设的子载波间隔为参考生成SDU的时刻信息,这样,终端设备在设置时隙号,符号号时,都以预设的子载波间隔作为参考继进行设置。
在一种可能的设计中,方法还包括:终端设备接收来自网络设备的通知信息,通知信息用于指示时刻信息所参考的子载波间隔。通知信息可以是通过RRC消息发送,也可以通过其他类型的消息,本申请不做限定。
在一种可能的设计中,网络设备包括集中单元CU的用户面CU-UP;终端设备向网络设备发送第一控制协议数据单元PDU包括:终端设备向CU-UP发送第一控制PDU。终端设备接收来自网络设备的第二控制PDU包括:终端设备接收来自CU-UP的第二控制PDU。这种适用于网络设备为CU-UP和CU-CP分离架构。
第二方面,提供一种时刻信息的通知方法,包括:终端设备确定服务数据单元SDU的时刻信息,时刻信息指示终端设备的第一协议层向上层发送SDU的时刻;终端设备向网络设备发送第一控制协议数据单元PDU,第一控制PDU指示SDU的时刻信息。因此,在本申请实施例中,终端设备通过第一控制PDU通知网络设备上报记录的下行PDCP SDU的时刻信息,可以避免通过RRC消息通知网络设备导致对终端设备的处理能力的影响。
在一种可能的设计中,第一控制PDU指示如下指示信息中的一个或多个:指示终 端设备上报的是下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。这样。网络设备可以根据第一控制PDU中的信息获知终端设备上报的是上行的时刻信息还是下行的时刻信息,以及用于时延测量SDU对应的时刻信息,相比要对RRC消息进行加密和解密,本申请通过第一控制PDU交互信息的过程更为简单。
在一种可能的设计中,在终端设备确定时间信息之前,该方法还包括:终端设备接收来自网络设备的第二控制PDU,第二控制PDU用于指示终端设备上报第一协议层向上层发送SDU时的时刻信息。即,本申请不通过RRC消息指示终端设备需要上报的SDU对应的SN,而是通过向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报下行PDCP层的SDU的时刻信息。这样,可避免通过RRC消息通知终端设备导致对终端设备的处理能力的影响,以及避免由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐,网络设备处理复杂度大的问题。
在一种可能的设计中,第二控制PDU指示如下指示信息中的一个或多个:指示终端设备上报下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一种可能的设计中,时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。这种设计的有益效果可以参见第一方面。
在一种可能的设计中,时刻信息以预设的或配置的子载波间隔为参考。这种设计的有益效果可以参见第一方面。
在一种可能的设计中,该方法还包括:终端设备接收来自网络设备的通知信息,通知信息用于指示时刻信息所参考的子载波间隔。这种设计的有益效果可以参见第一方面。
在一种可能的设计中,网络设备包括集中单元CU的用户面CU-UP;终端设备向网络设备发送第一控制协议数据单元PDU包括:终端设备向CU-UP发送第一控制PDU。终端设备接收来自网络设备的第二控制PDU包括:终端设备接收来自CU-UP的第二控制PDU。
第三方面,提供一种时刻信息的通知方法,包括:终端设备接收来自网络设备的第一控制PDU,第一控制PDU用于指示终端设备上报第一协议层从上层接收到服务数据单元SDU时的时刻信息;其中,第一控制PDU还指示如下指示信息中的一个或多个:指示终端设备上报上行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。即,本申请不通过RRC消息指示终端设备需要上报的SDU对应的SN,而是通过向终端设备发送第一控制PDU,第一控制PDU用于指示终端设备上报上行PDCP层的SDU的时刻信息。这样,可避免通过RRC消息通知终端设备导致对终端设备的处理能力的影响,以及避免由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐,网络设备处理复杂度大的问题。
第四方面,提供一种时刻信息的通知方法,包括:终端设备接收来自网络设备的第一控制PDU,第一控制PDU用于指示终端设备上报第一协议层向上层发送服务数据单元SDU时的时刻信息;其中,第一控制PDU还指示如下指示信息中的一个或多 个:指示终端设备上报下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。与第三方面类似的,本申请不通过RRC消息指示终端设备需要上报的SDU对应的SN,而是通过向终端设备发送第一控制PDU,第一控制PDU用于指示终端设备上报下行PDCP层的SDU的时刻信息。这样,可避免通过RRC消息通知终端设备导致对终端设备的处理能力的影响,以及避免由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐,网络设备处理复杂度大的问题。
第五方面,提供一种时刻信息的通知方法,包括:网络设备接收来自终端设备的第一控制协议数据单元PDU,第一控制PDU指示服务数据单元SDU的时刻信息,时刻信息指示终端设备的第一协议层从上层接收到SDU的时刻。第五方面的有益效果可以参见第一方面。
在一种可能的设计中,该方法还包括:网络设备根据第一控制PDU指示的SDU的时刻信息,以及网络设备的第一协议层向上层发送SDU的时刻信息获取网络设备与终端设备的上行时延。
在一种可能的设计中,第一控制PDU指示如下指示信息中的一个或多个:指示终端设备上报的是上行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一种可能的设计中,在网络设备接收来自终端设备的第一控制PDU之前,方法还包括:网络设备向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报第一协议层从上层接收到SDU时的时刻信息。
在一种可能的设计中,第二控制PDU指示如下指示信息中的一个或多个:指示终端设备上报上行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一种可能的设计中,时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。
在一种可能的设计中,在网络设备接收来自终端设备的第一控制协议数据单元PDU之前,方法还包括:网络设备向终端设备发送通知信息,通知信息用于指示终端设备确定时刻信息时参考的子载波间隔。
在一种可能的设计中,网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;该方法还包括:CU-UP接收来自CU-CP的通知消息,通知消息用于指示CU-UP发送时刻信息时参考的子载波间隔;CU-UP以子载波间隔为参考确定CU-UP的第一协议层向上层发送SDU的时刻信息;CU-UP向CU-CP发送CU-UP的第一协议层向上层发送SDU的时刻信息。
在一种可能的设计中,网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;网络设备接收来自终端设备的第一控制协议数据单元PDU包括:CU-UP接收来自终端设备的第一控制PDU;CU-UP向CU-CP发送第一控制PDU;网络设备根据第一控制PDU指示的SDU的时刻信息,以及网络设备的第一协议层向上层发送SDU的时刻信息获取网络设备与终端设备的上行时延包括:CU-CP根据第一控制PDU指示的SDU的时刻信息,以及CU-UP的第一协议层向上层发送SDU的时刻信息获取 上行时延。
第六方面,提供一种时刻信息的通知方法,包括:网络设备接收来自终端设备的第一控制协议数据单元PDU,第一控制PDU指示服务数据单元SDU的时刻信息,时刻信息指示终端设备的第一协议层向上层发送SDU的时刻。第六方面的有益效果可以参见第二方面。
在一种可能的设计中,该方法还包括:网络设备根据第一控制PDU指示的SDU的时刻信息,以及网络设备的第一协议层从上层接收到SDU的时刻信息获取网络设备与终端设备的下行时延。
在一种可能的设计中,第一控制PDU指示如下指示信息中的一个或多个:
指示终端设备上报的是下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一种可能的设计中,在网络设备接收来自终端设备的第一控制PDU之前,方法还包括:网络设备向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报第一协议层向上层发送SDU时的时刻信息。
在一种可能的设计中,第二控制PDU指示如下指示信息中的一个或多个:
指示终端设备上报下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一种可能的设计中,时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。
在一种可能的设计中,在网络设备接收来自终端设备的第一控制协议数据单元PDU之前,方法还包括:网络设备向终端设备发送通知信息,通知信息用于指示终端设备确定时刻信息时参考的子载波间隔。
在一种可能的设计中,网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;方法还包括:CU-UP接收来自CU-CP的通知消息,通知消息用于指示CU-UP发送时刻信息时参考的子载波间隔;CU-UP以子载波间隔为参考确定CU-UP的第一协议层从上层接收到SDU的时刻信息;CU-UP向CU-CP发送CU-UP的第一协议层从上层接收到SDU的时刻信息。
在一种可能的设计中,网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;网络设备接收来自终端设备的第一控制协议数据单元PDU包括:CU-UP接收来自终端设备的第一控制PDU;CU-UP向CU-CP发送第一控制PDU;网络设备根据第一控制PDU指示的SDU的时刻信息,以及网络设备的第一协议层向上层发送SDU的时刻信息获取网络设备与终端设备的上行时延包括:CU-CP根据第一控制PDU指示的SDU的时刻信息,以及CU-UP的第一协议层从上层接收到SDU的时刻信息获取下行时延。
第七方面,提供一种时刻信息的通知方法,包括:网络设备向终端设备发送第一控制PDU,第一控制PDU用于指示终端设备上报第一协议层从上层接收到服务数据单元SDU时的时刻信息;其中,第一控制PDU还指示如下指示信息中的一个或多个:指示终端设备上报上行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。第七方面的有益效 果可以参见第三方面。
第八方面,提供一种时刻信息的通知方法,包括:网络设备向终端设备发送第一控制PDU,第一控制PDU用于指示终端设备上报第一协议层向上层发送服务数据单元SDU时的时刻信息;其中,第一控制PDU还指示如下指示信息中的一个或多个:指示终端设备上报下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。第八方面的有益效果可以参见第四方面。
第九方面,提供一种时刻信息的通知方法,应用于网络设备,网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP,包括:CU-UP向CU-CP发送第一通知消息,第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU对应的序列号的取值规则。
在一种可能的设计中,第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU的序列号的取值规则包括:第一通知消息用于指示进行上行时延测量的第一协议的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则;或,第一通知消息用于指示进行下行时延测量的第一协议层的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则。
在一种可能的设计中,在CU-UP向CU-CP发送第一通知消息之前,该方法还包括:CU-UP接收来自CU-CP的第二通知消息,第二通知消息包括进行时延测量的周期。
第十方面,提供一种时刻信息的通知方法,应用于网络设备,网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP,包括:CU-CP接收来自CU-UP的第一通知消息,第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU对应的序列号的取值规则。
在一种可能的设计中,第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU的序列号的取值规则包括:第一通知消息用于指示进行上行时延测量的第一协议层的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则;或,第一通知消息用于指示进行下行时延测量的第一协议层的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则。
在一种可能的设计中,在CU-CP接收来自CU-UP的第一通知消息之前,该方法还包括:CU-CP向CU-UP发送第二通知消息,第二通知消息包括进行时延测量的周期。
第十一方面,提供一种装置。本申请提供的装置具有实现上述第一方面至第十方面及各方面的任一种可能的设计中一项或多项中网络设备或终端设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器,进一步的,可以包括通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中网络设备相应的功能。例如,确定调度信息。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送所述第一控制PDU。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为UE、基站,gNB或传输接收点(Transmission Reception Point,TRP),DU或CU等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为芯片。所述通信单元可以为芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括处理器,与存储器耦合。该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面,或,第二方面中任一种可能的实现方式中网络设备完成的方法。进一步的,该装置还可以包括收发器,在处理器的控制下,进行发送和/或接收。
在一种可能的设计中,上述装置包括一个或多个处理器,进一步的,可以包括通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端设备相应的功能。例如,确定调度信息。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送第一控制PDU或接收第一控制PDU。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为芯片。所述通信单元可以为芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括处理器,该处理器与存储器耦合。该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面,第二方面,第三方面,第四方面,第一方面的任一种可能的实现方式,第二方面的任一种可能的实现方式,第三方面的任一种可能的实现方式或第四方面的任一种可能的实现方式中终端设备完成的方法;或者,该处理器用于运行该存储器中的计算机程序,使得该装置执行第五方面,第六方面,第七方面,第八方面,第五方面的任一种可能的实现方式,第六方面的任一种可能的实现方式,第七方面的任一种可能的实现方式或第八方面的任一种可能的实现方式中终端设备完成的方法;或者,该处理器用于运行该存储器中的计算机程序,使得该装置执行第九方面以及第九方面的任一种可能的实现方式中CU-UP完成的方法;或者,该处理器用于运行该存储器中的计算机程序,使得该装置执行第十方面以及第十方面的任一种可能的实现方式中CU-CP完成的方法。
第十二方面,提供一种系统,该系统包括上述终端设备和网络设备,或者包括上述终端设备、CU-UP以及CU-CP。
第十三方面,提供一种可读存储介质或程序产品,用于存储程序或指令,该程序或指令包括用于执行第一方面至第十方面中任一方面,或第一方面至第十方面中任一方面的任一种可能实现方式中的方法的指令。
第十四方面,提供了一种芯片或电路,用于执行第一方面至第十方面中任一方面, 或第一方面至第十方面中任一方面的任一种可能实现方式中的方法。
通过本申请实施例提供的方法,可以提供一种通信方法,也可称为一种时延测量方法或是时刻信息的通知方法,以期在时延测量过程中通过控制PDU通知终端设备上报测量结果,和终端设备通过控制PDU的方式向网络设备上报测量结果,以避免通过RRC消息上报测量结果带来的处理复杂度问题。本申请实施例提供的方法、装置,系统和可读存储介质,可以应用于LTE中的基站连接到5G核心网5GC的网络,也可以应用于LTE中的基站连接到4G核心网EPC的网络,还可以应用于5G中的基站gNB连接到5GC的网络。
附图说明
图1为本申请实施例提供的一种协议层的示意图;
图2为本申请实施例提供的一种QoS flow的QoS架构的示意图;
图3为本申请实施例提供的一种网络架构的示意图;
图4为本申请实施例提供的一种网络架构的示意图;
图5为本申请实施例提供的一种RAN设备的结构示意图;
图6为本申请实施例提供的一种终端设备的结构示意图;
图7为本申请实施例提供的一种时延测量方法的示意图;
图8为本申请实施例提供的一种时延测量方法的信令交互图;
图9为本申请实施例提供的一种时延测量方法的信令交互图;
图10为本申请实施例提供的一种时延测量方法的信令交互图;
图11为本申请实施例提供的一种时延测量方法的信令交互图;
图12为本申请实施例提供的一种时延测量方法的信令交互图;
图13为本申请实施例提供的一种时延测量方法的信令交互图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的一种网络设备的结构示意图;
图16为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了便于理解,示例地给出了部分与本申请相关概念的说明以供参考。如下所示:
PDCP层:包数据汇聚协议层,可执行诸如安全性、头压缩、加密和切换之类的服务。PDCP层可以存在多个PDCP实体,每个实体承载一个无线承载(radio bearer,RB)的数据。PDCP层可以配置保证向上层提交的数据是有序的。
RRC层:无线资源控制层,用于执行广播、寻呼、RRC链接建立、无线承载控制、移动、用户设备(user equipment,UE)测量上报控制等。
服务数据适配协议(service data adaptation protocol,SDAP)层:该层为5G(5-Generation)中引入的一个协议层,负责把第5代核心网(5generation core,5GC)发送的各个服务质量流(quality of service flow,QoS flow)映射到无线接入层的数据无线承载(data radio bearer,DRB),即根据QoS flow对应的业务属性,将QoS flow对应的数据包置于对应的DRB上传输(UE连接到5GC时采用该SDAP层,连接到4G核心网时没有该SDAP层)。
无线链路控制(radio link control,RLC)层:执行诸如数据的分段、重新装配、重 传等服务。RLC层可以存在多个RLC实体,每个RLC实体为每个PDCP实体提供服务。RLC层也可以配置向上层提交的数据是有序的。
媒体介入控制(medium access control,MAC)层:对逻辑信道上的业务提供数据传输服务,执行诸如调度、混合自动重传请求(hybrid auto repeat request,HARQ)的确认和否定服务等。
物理层(physical,PHY)层:对MAC层发送的数据进行编码和传输。
如图1所示,当终端设备连接到5GC时,对于用户面(user plane,UP)而言:终端设备(例如UE)、网络设备(例如基站)的协议层由上至下分别为:SDAP、PDCP、RLC、MAC和PHY层。
对于控制面(control plane,CP)而言:终端设备、网络设备的协议层由上至下分别为:RRC、PDCP、RLC、MAC,和PHY层。
对于发送端,每一层处理完数据之后的数据,在本层称为协议数据单元(protocol data unit,PDU)。对于每一层而言,从上一层输入的数据成为本层的服务数据单元(service data unit,SDU)。比如PDCP层输入给RLC层的数据,对于PDCP层而言,称为PDCP PDU,对于RLC层而言,称为RLC SDU。
QoS架构:QoS flow是指一个PDU session(PDU会话)内,具备相同QoS需求的数据流,其中,可以是多个具有相同QoS需求的标识流(internet protocol flow,IP flow)。在5G场景下,基于QoS flow的QoS架构如图2所示,该架构适用于新空口(new radio,NR)连接到5GC,也适用于演进的通用陆基无线接入(evolved universal terrestrial radio access,E-UTRA)连接到5GC。对于每个UE而言,5GC为其建立一个或多个PDU sessions。对于每个UE而言,NG无线接入网(NG-radio access network,NG-RAN)为每个PDU session建立一个或多个数据无线承载(data radio bearer,DRB)。DRB(图2中示出的RB)可以理解为是基站(Node B,NB)和UE之间的数据承载,该数据承载中的数据包具备相同的转发处理。图2中,NG用户面(NG-user plane,NG-U)接口是NG无线接入网和用户端口功能(user port function,UPF)之间的接口。
PDU session:可以理解为是终端设备和数据网络(data network,DN)之间提供PDU链接服务的链接。
接入层(access stratum,AS)和非接入层(non-access stratum,NAS):将RAN和终端设备之间的传输称为接入层(access stratum,AS),将终端设备和5GC之间的传输称为非接入层(non-access stratum,NAS)。基于QoS flow的QoS架构中,主要包括AS层和NAS层的QoS flow映射。NAS层主要负责IP flow或其它类型数据包和QoS flow的映射关系,由核心网用户面功能(User Plane Function,UPF)产生下行的QoS flow(通过分组检测规则(packet detection rule,PDR)来实现),终端设备产生上行的QoS flow。AS层主要负责QoS flow与DRB的映射关系,其中网络侧(例如基站)配置QoS flow和DRB的映射关系,并在空口的DRB中为QoS flow提供QoS服务。在进行QoS flow到DRB的映射过程中,可将同一sesison内的多个QoS flow映射到同一DRB中。其中,不同session的QoS flow不能映射到同一DRB中。
下面将结合附图,对本申请中的技术方案进行描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或 特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供一种时延测量方法,可以应用于5G中的基站gNB连接到5GC的场景,也可以应用于4G中的长期演进的基站(Long Term Evolution evolved NoteB,LTE eNB)连接到5G的5GC的场景,还可以应用于LTE eNB连接到4G核心网,核心分组网演进(Evolved Packet Core,EPC)的场景,还可以应用于后续演进的基站与核心网(包括后续演进的核心网),或是基站(包括后续演进的基站)与后续演进的核心网之间连接的场景,但并不限于此。
在本申请的网络架构中,可以包括终端设备和网络设备。终端设备可以是UE,网络设备可以是基站或者中继站或者接入点等,基站可以为图3所示的5G系统中的gNB(也称为NG-ENB),图3还示出了5G系统中的5GC;基站也可以是图4所示的4G系统中的eNB,图4中还示出了4G系统中的EPC。
在5G系统中,如图3所示,gNB为连接到5GC的NR基站,可以为终端设备提供无线接入服务。5GC为5G的核心网,为终端设备提供5G核心网的功能,主要包括用户面功能(user plane function,UPF)的实体和认证管理功能(authentication management function,AMF)的实体。AMF为5GC的控制面网元,主要负责终端设备的接入和移动性管理。UPF为5GC的用户面网元,主要负责数据包的路由转发以及QoS管理等功能。
本申请实施例中的网络设备指RAN设备,是一种将终端设备接入到无线网络的设备,可以是图4中的eNB,或者图3中的gNB,本申请不做限定。
在一些实施例中,如图5所示,RAN设备可以是集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离架构的基站(如gNB),或者,可以是CU,或,可以是DU。该RAN设备可以与核心网设备相连(例如可以是LTE的核心网,也可以是5G的核心网)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的,也可以是部署在一起的。多个DU可以共用一个CU,一个DU也可以连接多个CU(图5中未示出)。CU和DU之间可以通过接口连接,例如可以是F1接口。CU和DU可以根据无线网络的协议层进行划分,例如RRC层、SDAP层以及PDCP层的功能设置在CU中,RLC层、MAC层以及PHY层等的功能 设置在DU中。可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,可以将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也可以分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
其中,CU的功能可以由一个实体来实现,也可以由不同的实体实现。例如,可以对CU的功能进行进一步切分,例如,将CP和UP分离,即CU的控制面(centralized unit-control plane,CU-CP)和CU的用户面(centralized unit-user plane CU-UP)分离。例如,CU-CP和CU-UP可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。一种可能的方式中,CU-CP负责控制面功能,主要包含RRC和PDCP-C(PDCP-control)。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP和PDCP-U(PDCP-user)。其中SDAP主要负责将核心网的数据进行处理并将数据流(flow)映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护以及数据传输等。其中CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过Ng接口和核心网连接。通过F1-C(F1接口的控制面)和DU连接。CU-UP通过F1-U(F1接口的用户面)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。
终端设备可以是UE、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端等。
在一个示例中,终端设备可以通过如图6所示的结构实现。以终端设备为手机200为例,图6示出了手机的通用硬件架构进行说明。图6所示的手机可以包括:射频(radio Frequency,RF)电路110、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、输入/输出(input/output,I/O)子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图6所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(user Interface,UI),显示屏140可以包括显示面板141和触摸面板142。且手机可以包括比图示更多或者更少的部件。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在上述网络架构中,目前,在时延测量方法中,以网络设备为gNB,终端设备为UE为例,如图7所示,对于上行时延测量,gNB会指示UE要记录PDCP层(UE-PDCP)中的某些PDCP PDU对应的T1,T1是指UE的PDCP层从上层(SDAP层)接收到该PDCP PDU对应的PDCP SDU的时刻(UE会通过RRC消息将T1发送给gNB)。gNB(gNB-PDCP)接收到该PDCP PDU时,记录将PDCP PDU对应的PDCP SDU提交给上层(SDAP层)的时刻T4。gNB根据T4-T1可计算出该上行PDCP SDU的传输时延。
对于下行时延,gNB会指示UE记录PDCP层中的某些PDCP PDU对应的T3,T3是指UE的PDCP层将PDCP PDU对应的PDCP SDU提交给上层(SDAP层)的时刻(UE会通过RRC消息将该T3发送给gNB。同时gNB会记录gNB的PDCP层从上层(SDAP层)接收到PDCP PDU对应的PDCP SDU的时刻T2。gNB根据T3-T2计算出该下行PDCP SDU的传输时延。
对于上下行,gNB通过RRC消息通知UE需要记录那些PDCP SDU的T1或T3,且通知的是PDCP PDU的序列号(sequence number,SN),或者通知UE对应的SN满足的规则(比如SN%100=0,即对SN对100取模为0的PDCP PDU进行测量,隔100个SN进行测量)。其中,gNB对于上下行可以独立通知UE。
在CU/DU架构下,CU-CP会通知CU-UP记录哪些PDCP PDU的T2/T4(方法类似通知UE的方法),并且CU-UP会将这些PDCP PDU的T2/T4发送给CU-CP,由CU-CP来计算对应的时延。
例如对于上行时延测量而言,以终端设备为UE为例,对应的流程图可如图8所 示:
步骤1、CU-CP通知CU-UP对哪些UE,以及哪些DRB中的PDCP层的哪些数据包进行时延测量。
步骤2、CU-CP通过专用的RRC消息通知UE,对哪些DRB中的哪些数据包进行时延测量。
步骤3、CU-UP按照CU-CP的要求进行相关准备,例如是否接纳CU-CP的要求。
步骤4、UE按照CU-CP的要求进行相关准备,例如是否接纳CU-CP的要求。
步骤5、CU-UP对CU-CP要求的时延测量进行响应。
例如CU-UP接纳对应的测量要求,而后获取测量结果。
步骤6、UE对CU-CP要求的时延测量进行响应。
例如UE接纳对应的测量要求,而后获取测量结果。
步骤7、UE和CU-UP之间的数据传输。
步骤8、UE将对应的测量结果通知给CU-CP,携带了每个测量DRB对应的测量的数据包的SN,以及该数据包对应的T1。
步骤9、CU-UP将对应的测量结果通知给CU-CP,携带了每个测量DRB对应的测量的数据包的SN,以及该数据包对应的T4。
步骤10、CU-CP根据UE和CP-UP上报的结果,计算上行时延。即根据同一个数据包SN号对应的T1和T4计算上行时延(T4-T1)。
当网络侧获得DRB级别的时延之后,可以将该DRB级别的时延作为该DRB对应的QoS flow的时延。
需要说明的是,当网络侧不是CU/DU分离架构时,以上步骤就没有CU-CP和CU-UP之间的交互。
其中,UE在向CU-CP通知测量结果时,是通过RRC消息携带测量结果的,RRC消息的处理复杂度高,例如,需要UE在PDCP层对RRC消息进行加密,相应地,CU-CP也需要对RRC消息进行解密,对于时延要求较高的业务,RRC消息的处理需要消耗UE以及CU-CP的处理能力,影响到UE处理业务的能力,导致UE的处理时延较长。另外,对于时延测量上报而言,网络侧可能要求UE及时上报对应的测量结果,这样就会导致大量的RRC消息进行上报,从而增加UE和网路侧的处理负荷。
因此,在本申请实施例中,提供一种时刻信息的通知方法,其原理可以为:对于上行时延,终端设备确定SDU的时刻信息,时刻信息指示所终端设备的PDCP层从上层接收到SDU的时刻;终端设备向网络设备发送第一控制PDU,第一控制PDU指示SDU的时刻信息。对于下行时延,终端设备确定SDU的时刻信息,时刻信息指示终端设备的PDCP层向上层发送SDU的时刻;终端设备向网络设备发送第一控制PDU,所述第一控制PDU指示SDU的时刻信息。也即,终端设备在向网络设备上报测量结果时,不通过RRC消息携带,而是通过第一控制PDU携带测量结果,这样可避免通过RRC消息通知网络设备导致对终端设备的处理能力的影响,也避免了RRC消息的信令开销。
基于以上原理,本申请实施例提供一种时刻信息的通知方法,对于上行时延,如图9所示,该方法包括:
901、网络设备通知终端设备上报上行时延的SDU的时刻信息,时刻信息指示终端设备的第一协议层从上层接收到SDU的时刻。
在本申请实施例中,各个实施例均以第一协议层为PDCP层为例进行说明,可以理解的是,本申请实施例中的方法可以扩展到第一协议层为其他层的情况,在此不予赘述。
以网络设备为基站,终端设备为UE为例,对于上行时延,基站可通知UE上报上行时延的PDCP SDU的时刻信息。时刻信息可以理解为图7中PDCP SDU从上层(比如UE的SDAP层)到达UE的PDCP层的时刻T1,也即,PDCP层从上层收到该SDU的时刻T1。
在一些实施例中,基站可以通过向UE发送RRC消息向UE指示上报哪些PDCP SDU的时刻信息。RRC消息中携带有需上报的PDCP SDU对应的PDCP PDU的SN的列表或者SN的取值规则。
902、终端设备确定SDU的时刻信息。
对于上行时延,在一些实施例中,UE可能在处理PDCP SDU的过程中一直在确定PDCP SDU的时刻信息,这时,UE若确定需上报一些PDCP SDU的时刻信息,则UE可以从已经保存的多个PDCP SDU的时刻信息中获取需要上报的PDCP SDU的时刻信息T1。
或者,在一些实施例中,UE在接收到基站发送的RRC消息,RRC消息指示终端设备需上报的PDCP SDU的时刻信息时,UE才开始记录这些需上报的PDCP SDU的时刻信息T1。
相应地,对于网络设备侧,网络设备也需要记录指示终端设备上报测量结果的PDCP SDU的时刻信息T4,即网络设备需要记录网络设备的PDCP层向上层发送PDCP SDU时的时刻信息T4,或者说网络设备的PDCP层将PDCP SDU提交给上层(比如SDAP层)的时刻信息T4。在一些实施例中,网络设备可以是在指示终端设备上报T1时,才启动记录T4的,也可以是网络设备对处理的所有PDCP SDU都记录时刻信息T4,而后从记录的多个T4中获取指示终端设备上报测量结果的PDCP SDU的T4。
需要说明的是,如果网络设备为CU-CP和CU-UP分离架构,CU-UP记录T4时,可以是CU-UP在接收到CU-CP的一个指示时才启动记录PDCP SDU的T4,也可以是CU-UP在处理上行PDCP SDU的过程中一直记录上行PDCP SDU对应的时刻信息,而后从记录的多个T4中获取指示终端设备上报测量结果的PDCP SDU的T4。本申请不做限定。
903、终端设备向网络设备发送第一控制PDU,第一控制PDU指示SDU的时刻信息。
对于上行时延,第一控制PDU携带有终端设备记录的PDCP层从上层接收到的PDCP SDU的时刻信息T1。第一控制PDU可以为一个PDCP control PDU。
其中,所述第一控制PDU指示如下指示信息中的一个或多个:
指示PDU为控制类PDU或数据类PDU的信息,指示所述终端设备上报的是上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一些实施例中,如表1和表2所示,表1和表2示出了两种第一控制PDU的格式。表1中,PDCP SN占用12bit,表2中,PDCP SN占用18bit(表1和表2中示意了携带一个SN,可能还携带多个SN)。
表1
Figure PCTCN2019109735-appb-000001
表2
Figure PCTCN2019109735-appb-000002
其中,C表示第一控制PDU为控制类PDU,PDU type指示第一控制PDU为时延测量对应的PDU类型,U指示终端设备上报的是上行SDU的时刻信息,SN指示SDU对应的PDU的序列号,TimeStamp指示终端设备的记录的PDCP层从上层接收到该SN指示的PDCP SDU的时刻信息T1。需要说明的是,在一些实施例中,可能通过PDU type来指示第一控制PDU中携带的是上行SDU的时刻信息,而不用其中的U来指示(即无需U该指示),比如PDU type中指示携带的是上行SDU的时刻信息。
需要说明的是,网络设备也可以指示终端设备同时上报参与上行时延测量的SDU以及参与下行时延测量的SDU,这样第一控制PDU中可以既携带有上行时延的SDU对应的PDU的SN以及时刻信息,还携带有下行时延的SDU对应的PDU的SN以及时刻信息。
904、网络设备接收来自终端设备的第一控制PDU。
与步骤903对应的,网络设备接收终端设备发送的第一控制PDU。
如果网络设备包括CU-UP和CU-CP,可以是CU-UP接收来自终端设备的第一控制PDU。
905、网络设备根据第一控制PDU指示的SDU的时刻信息,以及网络设备的第一协议层向上层发送SDU的时刻信息获取网络设备与终端设备的上行时延。
网络设备可以根据同一个PDCP SDU对应终端设备上报的时刻信息T1和网络设备记录的时刻信息T4(T4-T1),计算得到上行时延。
如果网络设备包括CU-UP和CU-CP,CU-CP可以根据第一控制PDU指示的SDU的时刻信息T1,以及所述CU-UP的PDCP层向上层发送SDU的时刻信息T4获取上行时延(T4-T1)。
由此,终端设备通过第一控制PDU通知网络设备上报记录的上行PDCP SDU的时刻信息,可以避免通过RRC消息通知网络设备导致对终端设备的处理能力的影响。
本申请实施例提供一种时刻信息的通知方法,对于下行时延,如图10所示,该方法包括:
1001、网络设备通知终端设备上报下行时延的SDU的时刻信息,时刻信息指示终端设备的第一协议层向上层发送SDU的时刻。
以网络设备为基站,终端设备为UE为例,对于下行时延,基站可通知UE上报下行时延的PDCP SDU的时刻信息。时刻信息可以理解为图7中PDCP SDU从UE的PDCP层发往上层(比如UE的SDAP层)时的时刻T3,也就是UE的PDCP层将PDCP SDU提交给上层(比如UE的SDAP层)的时刻T3。
在一些实施例中,基站可以通过向UE发送RRC消息向UE指示上报哪些PDCP SDU的时刻信息。RRC消息中携带有需上报的PDCP SDU对应的PDCP PDU的SN的列表或者SN的取值规则。
1002、终端设备确定SDU的时刻信息。
对于下行时延,在一些实施例中,UE可能在处理PDCP SDU的过程中一直记录PDCP SDU的时刻信息,这时,UE若确定需上报一些PDCP SDU的时刻信息,则UE可以从已经保存的多个PDCP SDU的时刻信息中获取需要上报的PDCP SDU的时刻信息T3。
或者,在一些实施例中,UE在接收到基站发送的RRC消息,RRC消息指示终端设备需上报的PDCP SDU的时刻信息时,UE才开始记录这些需上报的PDCP SDU的时刻信息T3。
相应地,对于网络设备侧,网络设备也需要记录指示终端设备上报测量结果的PDCP SDU的时刻信息T2,即网络设备需要记录网络设备的PDCP层从上层接收到PDCP SDU时的时刻信息T2。在一些实施例中,网络设备可以是在指示终端设备上报T3时,才启动记录T2的,也可以是网络设备对处理的所有PDCP SDU都记录有时刻信息T2,而后从记录的多个T2中获取指示终端设备上报测量结果的PDCP SDU的T2。
需要说明的是,如果网络设备为CU-CP和CU-UP分离架构,CU-UP记录T2时,可以是CU-UP在接收到CU-CP的一个指示时才启动记录PDCP SDU的T2,也可以是CU-UP在处理上行PDCP SDU的过程中一直记录上行PDCP SDU对应的时刻信息,而后从记录的多个T2中获取指示终端设备上报测量结果的PDCP SDU的T2。本申请不做限定。
需要说明的是,本申请并不限定网络侧开始记录时刻信息T2的启动时间和步骤1001之间的先后关系。
1003、终端设备向网络设备发送第一控制PDU,第一控制PDU指示SDU的时刻信息。
对于下行时延,第一控制PDU携带有终端设备记录的PDCP层向上层发送PDCP SDU的时刻信息T3。第一控制PDU可以为一个PDCP control PDU。
其中,第一控制PDU指示如下指示信息中的一个或多个:
指示PDU为控制类PDU或数据类PDU的信息,指示终端设备上报的是下行SDU的时刻信息的信息,指示第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
在一些实施例中,如表3和表4所示,表3和表4示出了两种第一控制PDU的格式。表3中,PDCP SN占用12bit,表4中,PDCP SN占用18bit(表3和表4中示意了携带一个SN,可能还携带多个SN)。
表3
Figure PCTCN2019109735-appb-000003
表4
Figure PCTCN2019109735-appb-000004
其中,C表示第一控制PDU为控制类PDU,PDU type指示第一控制PDU为时延测量对应的PDU类型,D指示终端设备上报的是下行SDU的时刻信息,SN指示SDU对应的PDU的序列号,TimeStamp指示终端设备的记录的PDCP层将PDCP SDU提交给上层时的时刻信息T3。需要说明的是,在一些实施例中,可能通过PDU type来指示第一控制PDU中携带的是下行SDU的时刻信息,而不用其中的D来指示(即无需D该指示),比如PDU type中指示携带的是下行SDU的时刻信息。
1004、网络设备接收来自终端设备的第一控制PDU。
与步骤1003对应的,网络设备接收终端设备发送的第一控制PDU。
如果网络设备包括CU-UP和CU-CP,可以是CU-UP接收来自终端设备的第一控制PDU。
1005、网络设备根据第一控制PDU指示的SDU的时刻信息,以及网络设备的第一协议层接收到上层发送的SDU的时刻信息获取网络设备与终端设备的下行时延。
网络设备可以根据同一个PDCP SDU对应终端设备上报的时刻信息T3和网络设备记录的时刻信息T2(T3-T2),计算得到下行时延。
如果网络设备包括CU-UP和CU-CP,CU-CP可以根据第一控制PDU指示的SDU的时刻信息T3,以及所述CU-UP的PDCP层接收到上层发送的SDU的时刻信息T2获取上行时延(T3-T2)。
需要说明的是,本申请实施例并不限定上行时延和下行时延都按照上述实施例中的同一种方法,即上行时延的测量方法和下行时延的测量方法可不同。
由此,终端设备通过第一控制PDU通知网络设备上报记录的上行PDCP SDU的时刻信息和/或上报记录的下行PDCP SDU的时刻信息,可以避免通过RRC消息通知网络设备导致对终端设备的处理能力的影响。
上述步骤901和步骤1001中,网络设备通知终端设备上报哪些PDCP SDU参与 时延测量,一般是通过RRC消息通知终端设备的,例如图8中,CU-CP通过专用的RRC消息通知UE,对哪些DRB中的哪些数据包进行时延测量。但是,RRC消息的处理时延较大,可能导致CU-UP和UE测量的数据包的SN并不完全相同。例如,CU-UP记录了某些数据包的时刻,但是UE可能在接收到RRC消息之前已经处理完这些数据包,这样UE就无法记录到这些数据包的时刻,而CU-UP可能会一直等待UE通知这些数据包的时刻,但是实际上UE后续并不会上报这些数据包的时刻,这将导致CU-UP和UE记录的数据包SN不对齐,增加了CU-CP的处理复杂度。
因此,本申请实施例提供一种时延测量方法,其基本原理可以为:本申请不通过RRC消息指示终端设备需要上报的SDU对应的SN,而是通过向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报上行或下行PDCP层的SDU的时刻信息。这样,可避免通过RRC消息通知终端设备导致对终端设备的处理能力的影响,以及避免由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐,网络设备处理复杂度大的问题。
因此,对于上行时延,本申请实施例提供一种时延测量方法,如图11所示,该方法可以和如图9所示的方法结合应用,也可以独立于图9所示的方法应用,比如和其他上报上行时延的方法进行结合,在此不予限定。该方法可以包括:
1101、网络设备向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报第一协议层从上层接收到SDU时的时刻信息。
第二控制PDU用于指示终端设备上报PDCP层从上层接收到SDU时的时刻信息T1。也可以理解为,第二控制PDU用于指示终端设备上报PDCP SDU从上层到达终端设备的PDCP层的时刻信息T1。
所述第二控制PDU指示还如下指示信息中的一个或多个:
指示第二控制PDU为数据类的PDU还是控制类的PDU的信息,指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
表5和表6示出了两种第二控制PDU的格式,表5示出了PDCP SDU对应的PDCP PDU的SN为12bit时的第二控制PDU的格式,表6示出了PDCP SDU对应的PDCP PDU的SN为18bit时的第二控制PDU的格式。(表5和表6中只示意了一个SN,可能还携带多个SN)
表5
Figure PCTCN2019109735-appb-000005
表6
Figure PCTCN2019109735-appb-000006
其中,C表示第二控制PDU为控制类的PDU,PDU type表示第二控制PDU为时 延测量对应的PDU类型,U表示网络设备指示所述终端设备上报上行SDU的时刻信息,SN表示网络设备指示终端设备需上报的SDU对应的PDU的序列号。需要说明的是,在一些实施例中,可能通过PDU type来指示第一控制PDU中携带的是上行SDU的时刻信息,而不用其中的U来指示(即无需U该指示),比如PDU type中指示携带的是上行SDU的时刻信息。
在一些实施例中,也可能存在第二控制PDU既触发上行时延测量,又触发下行时延测量。如表7所示,以PDCP SDU对应的PDU的SN为12比特为例,U代表是否触发上行时延测量,D代表触发下行时延测量。SN_Uplink表示上行时延测量的SN,SN_Downlink表示下行时延测量的SN。
表7 12bit
Figure PCTCN2019109735-appb-000007
本申请实施例以网络设备为基站,终端设备为UE为例。
在一些实施例中,当基站接收到核心网的指示,需要进行上行时延测量时,基站可以在PCDP层生成一个下行的PDCP控制PDU(PDCP control PDU),记为第二控制PDU,并在PDCP层下发。该第二控制PDU中可以携带一个指示信息,用于指示UE上报某个PDCP SDU的时刻信息T1,即指示UE上报PDCP层从上层接收到PDCP SDU时的时刻信息T1。
在一些实施例中,该指示信息可以为一个显示的指示信息,该显示的指示信息例如可以为一个比特,该比特用于指示UE上报时刻信息T1;该显示的指示信息例如还可以为一个PDU类型中的取值。在一些实施例中,该指示信息还可以隐式指示,例如第二控制PDU中出现了某个内容时,指示UE上报时刻信息T1;或者,例如该第二控制PDU中携带有PDCP PDU的SN(可能携带一个或多个SN)时,则指示UE需要上报该SN对应的PDCP SDU的时刻信息T1。
需要说明的是,隐式的指示信息还可能为指示UE上报PDCP SDU对应的PDCP PDU的SN的规则,例如指示UE上报的规则为PDCP SN%100=0时,隐式的指示信息可以为100。
1102、终端设备接收来自网络设备的第二控制PDU。
1103、终端设备确定SDU的时刻信息,时刻信息指示终端设备的第一协议层从上层接收到SDU的时刻。
步骤1103的实现方式可以参见步骤902。
在一些实施例中,如果第二控制PDU中未指示需上报的PDCP SDU的SN或者SN的规则,UE可以向基站上报接收到第二控制PDU之后的某个PDCP SDU的时刻信息T1,例如UE上报接收到第二控制PDU之后的下一个从上层接收到的PDCP SDU的时刻信息T1。
1104、终端设备向网络设备发送终端设备的第一协议层从上层接收到SDU的时刻信息。
步骤1104的实现方式可以参加上述步骤903,即终端设备通过向网络设备发送第一控制PDU指示SDU的时刻信息T1。
在一些实施例中,终端设备还可以通过RRC消息或者其他方式发送终端设备的PDCP层从上层接收到SDU的时刻信息T1。
1105、网络设备根据终端设备发送的第一协议层从上层接收到SDU的时刻信息,以及网络设备的第一协议层向上层发送SDU的时刻信息获取网络设备与终端设备的上行时延。
步骤1105的实现方式可以参见步骤905。
由此,本申请实施例中,网络设备通过第二控制PDU通知终端设备上报上行的PDCP层从上层接收到SDU的时刻信息,可避免通过RRC消息通知UE上报时刻信息,导致对终端设备的处理能力的影响,以及由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐的影响。
对于下行时延,本申请实施例提供一种时延测量方法,如图12所示,该方法可以和图10所示的方法结合应用,也可以独立于图10所示的方法应用,比如和其他上报下行时延的方法进行结合,在此不予限定。该方法可以包括:
1201、网络设备向终端设备发送第二控制PDU,第二控制PDU用于指示终端设备上报第一协议层向上层发送SDU时的时刻信息。
第二控制PDU用于指示终端设备上报PDCP层向上层发送SDU时的时刻信息T3也可以理解为,第二控制PDU用于指示终端设备上报PDCP层将PDCP SDU提交给上层的时刻信息T3。
所述第二控制PDU指示如下指示信息中的一个或多个:
指示第二控制PDU为控制类的PDU的信息,指示第二控制PDU为数据类的PDU还是控制类的PDU的信息,指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
表8和表9示出了两种第二控制PDU的格式,表8示出了PDCP SDU对应的PDCP PDU的SN为12bit时的第二控制PDU的格式,表9示出了PDCP SDU对应的PDCP PDU的SN为18bit时的第二控制PDU的格式。(表8和表9中只示意了一个SN,可能还携带多个SN)
表8
Figure PCTCN2019109735-appb-000008
表9
Figure PCTCN2019109735-appb-000009
其中,C、PDU type以及SN的意义与表5和表6类似,表8和表9中,D表示 网络设备指示终端设备上报下行SDU的时刻信息。
本申请实施例以网络设备为基站,终端设备为UE为例。
在一些实施例中,当基站接收到核心网的指示,需要进行下行时延测量时,基站可以在PCDP层生成一个下行的PDCP控制PDU(PDCP control PDU),记为第二控制PDU,并在PDCP层下发。该第二控制PDU中可以携带一个指示信息,用于指示UE上报某个PDCP SDU的时刻信息T3,即指示UE上报PDCP层向上层发送PDCP SDU时的时刻信息T3。
在一些实施例中,该指示信息可以为一个显示的指示信息,该显示的指示信息例如可以为一个比特,该比特用于指示UE上报时刻信息T3;该显示的指示信息例如还可以为一个PDU类型中的取值。在一些实施例中,该指示信息还可以隐式指示,例如第二控制PDU中出现了某个内容时,指示UE上报时刻信息T3;或者,例如该第二控制PDU中携带有PDCP PDU的SN(可能携带一个或多个SN)时,则指示UE需要上报该SN对应的PDCP SDU的时刻信息T3。
需要说明的是,隐式的指示信息还可能为指示UE上报PDCP SDU对应的PDCP PDU的SN的规则,例如指示UE上报的规则为PDCP SN%100=0时,隐式的指示信息可以为100。
1202、终端设备接收来自网络设备的第二控制PDU。
1203、终端设备确定SDU的时刻信息,时刻信息指示终端设备的第一协议层向上层发送SDU的时刻。
步骤1203的实现方式可以参见步骤1002。
在一些实施例中,如果第二控制PDU中未指示需上报的PDCP SDU的SN或者SN的规则,UE可以向基站上报接收到第二控制PDU之后的某个PDCP SDU的时刻信息T3,例如UE上报接收到第二控制PDU之后的下一个从PDCP层发送给上层的PDCP SDU的时刻信息T3。
1204、终端设备向网络设备发送终端设备的第一协议层向上层发送SDU的时刻信息。
步骤1104的实现方式可以参见上述步骤1003,即终端设备通过向网络设备发送第一控制PDU指示SDU的时刻信息T3。
在一些实施例中,终端设备还可以通过RRC消息或者其他方式发送终端设备的PDCP层向上层发送SDU的时刻信息T3。
1205、网络设备根据终端设备发送的第一协议层向上层发送SDU的时刻信息,以及网络设备的第一协议层接收到上层发送的SDU的时刻信息获取网络设备与终端设备的下行时延。
步骤1205的实现方式可以参见步骤1005。
由此,本申请实施例中,网络设备通过第二控制PDU通知终端设备上报下行的PDCP层向上层发送SDU的时刻信息,可避免通过RRC消息通知UE上报时刻信息,导致对终端设备的处理能力的影响,以及由于RRC的处理时延导致终端设备和网络设备记录的SN不对齐的影响。
下面对上述步骤903、步骤1003、步骤1104以及步骤1204中,终端设备向网络 设备发送SDU的时刻信息的具体格式进行说明。
现有技术并没有对如何记录时刻信息的格式进行规定,如果采用绝对时间,即采用某年某月某时某分某秒等格式,则需要网络设备和终端设备之间进行绝对时间同步,这样会对网络提出较大的要求,同时需要比较多的比特来表示该绝对时间,带来较大的比特开销;而无线网络中,网络设备和终端设备之间本就需要进行空口无线的同步,该同步是指无线的帧、子帧、时隙以及符号同步。为了降低网络复杂度以及降低开销,在一些实施例中,本申请可以以帧号、子帧号、时隙号以及符号号来反馈时刻信息,对应的时刻信息可以为第几帧、第几子帧、第几时隙以及第几符号,也可能只携带其中的一部分,例如只携带第几帧、第几子帧以及第几时隙。
因此,本申请实施例中,PDCP SDU的时刻信息包括帧号、子帧号、时隙号以及符号号中的一个或多个。例如上述步骤903以及步骤1003中,第一控制PDU中携带的时刻信息可以包括帧号、子帧号、时隙号以及符号号中的一个或多个。
由于在5G系统中,存在多种子载波的概念,主要目的是针对不同的业务具有不同的时延要求,以及不同的部署环境下对子载波的要求不同。例如,有些业务对时延较为敏感,则可以采用大子载波间隔。又例如对于高频载波的部署,则可以采用大子载波间隔。在不同的子载波间隔下,一个无线帧对应的时隙数和符号数不同。例如5G中,一个系统帧长度为10ms,一个子帧为1ms。一个子帧中包含的时隙数目,以及一个子帧中包含的符号数与对应的子载波间隔对应。如表10所示,μ取值为0,1,2,3,4对应的子载波间隔为15,30,60,120,240。
表10
Figure PCTCN2019109735-appb-000010
其中,μ表示不同的子载波间隔,
Figure PCTCN2019109735-appb-000011
表示不同子载波下一个时隙包含的符号数,
Figure PCTCN2019109735-appb-000012
表示不同的子载波下一个无线帧包含的时隙数目,
Figure PCTCN2019109735-appb-000013
表示不同的子载波下一个子帧包含的时隙数目。
由于在通信过程中,网络设备可能通知终端设备改变对应的子载波间隔,在改变子载波间隔的阶段,终端设备仍然会进行数据传输,改变子载波之前需要反馈时刻信息对应的SDU而言,终端设备已经记录了这些SDU的时刻信息或已经生成了携带时刻信息的控制PDU或者已经把时刻信息放入到RRC消息中,但网络设备可能是在改变子载波之后才收到这些时刻信息,这样,网络设备接收到终端设备上报的时刻信息时,网络设备无法知道时刻信息采用的时隙号以及符号号对应哪种子载波间隔。
因此,在本申请实施例中,所述SDU的时刻信息以预设的或配置的子载波间隔为 参考。
比如,在步骤903之前,或在步骤1003之前,或在步骤1104之前,或在步骤1204之前,终端设备确定SDU的时刻信息可以包括:
终端设备以预设的或配置的子载波间隔为参考确定SDU的时刻信息。
比如,终端设备以预设的或配置的子载波间隔为参考生成SDU的时刻信息。
其中,预设的子载波间隔,例如可以是协议中预定义的子载波间隔,也可以是系统预定义的子载波间隔。终端设备以预设的或配置的子载波间隔为参考确定SDU的时刻信息,可以在步骤902中执行,也可以在步骤1002中执行,也可以在步骤1103中执行,也可以在步骤1203中执行。
在一些实施例中,终端设备可以向网络设备通知发送的SDU的时刻信息对应的子载波间隔。比如,在执行步骤903,或执行步骤1003,或执行步骤1104,或执行步骤1204的同时,终端设备向网络设备通知所述子载波间隔。
在一些实施例中,该方法还可以包括:
网络设备向终端设备发送通知信息,该通知信息用于指示上述时刻信息所参考的子载波间隔。比如网络设备可以通过RRC消息通知终端设备。比如,在执行步骤901的同时,或执行步骤1001的同时,或执行步骤1101的同时,或执行步骤1201的同时,或者在执行这些步骤之后,网络设备向终端设备通知所述子载波间隔。
其中,所述通知可以为显式的通知,也可以为隐式的通知,比如,通知另一参数,该另一参数与子载波间隔具有对应关系。终端设备获知该另一参数后,可以根据协议预定义的(比如,预设在终端设备中的)或是网络设备通知的所述另一参数与子载波间隔所具有的对应关系获知该另一参数对应的子载波间隔。
在一些实施例中,也可以在协议中规定以某个子载波间隔作为参考生成SDU的时刻信息,例如规定子载波间隔为240kHz。
这样,终端设备在设置时隙号或符号号中的一项或多项时,都以预设的子载波间隔作为参考进行设置。
如果网络设备包括CU-CP和CU-UP,在执行步骤901的同时,或执行步骤1001的同时,或执行步骤1101的同时,或执行步骤1201的同时,或者在执行这些步骤之前或之后,该方法还可以包括:
CU-UP接收来自CU-CP的通知消息,通知消息用于指示CU-UP发送时刻信息时参考的子载波间隔。或者,也可以在协议中规定CU-UP以某个子载波间隔作为参考确定时刻信息,例如规定子载波间隔为240kHz。对于上行时延,CU-UP以子载波间隔为参考确定CU-UP的PDCP层向上层发送SDU的时刻信息;CU-UP向所述CU-CP发送所述CU-UP的PDCP层向上层发送SDU的时刻信息。对于下行时延,CU-UP以子载波间隔为参考确定CU-UP的PDCP层从上层接收到SDU的时刻信息;CU-UP向CU-CP发送CU-UP的PDCP层从上层接收到SDU的时刻信息。
其中,对于帧号,在一些实施例中,可以只携带帧号的低比特,而不是携带整个帧号的取值。例如帧号为系统帧号(system frame number,SFN)时,这是由于,目前SFN的取值采用10bit,但是实际中,SDU数据包的时延不太可能超过1024*10ms,因此,可以只需采用SFN的低比特来标识即可,例如采用低4比特标识。
由此,在本申请实施例中,通过采用帧号、子帧号、时隙号以及符号号中的一项或多项,比如,帧号、子帧号、时隙号以及符号号,或,帧号、子帧号以及时隙号,来标识网络设备和终端设备记录的时刻信息,可以降低网络对绝对时间同步的要求,同时节省了时间信息所需的开销。进一步的,以某个子载波间隔作为参考来表示时隙号和符号号的长度时,可以避免网络设备和终端设备以不同的子载波间隔理解时隙号和/或符号号对应的时间长度。
此外,本申请实施例还提供一种时延测量方法,针对现有技术中基站的RRC层来决定对哪些PDCP SDU进行记录时刻信息,不管是直接指定SN,还是采用SN取值规则的方式,可能导致需要上报时刻信息的PDCP SDU在时间上并不能尽量均匀分布。这是由于,RRC层并不知道多长时间PDCP层会从上层收到一个PDCP SDU,而PDCP层是针对每到达一个PDCP SDU,分配一个序列号。并且,SDAP层也可能会产生控制PDU,这样RRC层可能决定测量的是SDAP层控制PDU的时延,而SDAP层控制PDU的时延并不能反映真实业务数据的时延,即SDAP层控制PDU的时延不能代表SDAP层的数据PDU的时延。
因此,本申请实施例提供一种时延测量方法,如图13所示,应用于网络设备为CU-CP和CU-UP架构中,该方法包括:
1301、CU-UP向CU-CP发送第一通知消息,第一通知消息用于指示进行时延测量的第一协议层的SDU对应的序列号或SDU对应的序列号的取值规则。
在一些实施例中,第一通知消息用于指示进行上行时延测量的PDCP层的SDU对应的PDU的序列号或PDU的序列号的取值规则;
或,第一通知消息用于指示进行下行时延测量的PDCP层的SDU对应的PDU的序列号或PDU的序列号的取值规则。
1302、CU-CP接收来自CU-UP的第一通知消息。
而后,对于上行测量,步骤1302之后的执行步骤可以参见图8所示的步骤2以及步骤2至步骤10。对于下行测量,与上行测量的过程类似。
对比而言,图8所示的过程是由CU-CP在RRC层决定对哪些数据包(PDCP PDU)进行时延测量的,但是会存在上述通过在RRC层决定对哪些数据包进行时延测量的弊端。而本申请实施例中,CU-UP可以在PDCP层决定对哪些数据包进行测量,并通过第一通知消息通知CU-CP。这是,由于CU-UP的PDCP层能感知数据包到达的时间,并会为数据包分配序列号,这样,CU-UP可以将用于测量时延的分配有序列号的数据包的SN通知给CU-CP,可以使得测量的PDCP SDU在时间上更为均匀,时延测量结果更具有代表意义。
其中,本实施例中,步骤8中UE将对应的测量结果通过RRC消息通知给CU-CP时,RRC消息中的时刻信息可以通过步骤903中的第一控制PDU指示,具体实现方式可以参见步骤903;和/或,RRC消息中的时刻信息可以通过步骤1003中的第一控制PDU指示,具体实现方式可以参见步骤1003。即,图13所示的方法可以独立于图9或图10所示的方法进行应用,也可以与图9或图10所示的方法中的一个或多个进行结合应用。
在一些实施例中,在步骤1301之前,该方法还可以包括:
1303、CU-CP向CU-UP发送第二通知消息,第二通知消息包括进行时延测量的周期。
CU-UP在获知了时延测量的周期时,CU-UP就会知晓进行时延测量的时间间隔,从而可以根据时间间隔以及到达CU-UP的数据包获取周期内需进行时延测量的PDCP SDU的SN的列表或者SN的取值规则。
这样,CU-UP根据PDCP层产生的PDCP PDU决定周期内需测量的PDCP PDU的SN时,CU-UP就可以根据实际数据包的收发时间间隔来产生控制PDU,从而使得PDCP SDU在时间上更均匀。
可以理解的是,以上图8-图13中任一项所述的方法中,网络设备可以为各种形态的网络设备,比如包括DU和CU两个设备的网络设备,比如DU,比如CU(其中,可选的,CU与终端设备的通信可以通过DU透传),比如DU和CU未分离的网络设备,比如CU-CP(其中,可选的,CU-CP与终端设备的通信可以通过DU透传),比如CU-UP(其中,可选的,CU-UP与终端设备的通信可以通过DU透传)等。其中,CU可以包括CU-CP和CU-UP两个设备,或是,CU的CP和UP未分离,即一体设备。具体网络设备的形态,在本申请中不予限定。
以上结合图9、图10、图11、图12和图13详细说明了本申请实施例的通信方法。以下结合图14至图16详细说明本申请实施例的通信装置,比如终端设备,用于终端设备的装置(比如处理器,电路或芯片),网络设备,或,用于网络设备的装置(比如处理器,电路或芯片)。
图14是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图2,图3或图4中的一项或多项所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备14包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
作为一种可选的实现方式,所述终端设备可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备14的收发单元1401,例如,用于支持终端设备执行接收功能和发送功能。将具有处理功能的处理器1402视为终端设备14的处理单元1402。如图14所示,终端设备14包括收发单元1401和处理单元1402。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1401中用于实现接收功能的器件视为接收单元,将收发单元1401中用于实现发送功能的器件视为发送单元,即收发单元1401包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1402可用于执行该存储器存储的指令,以控制收发单元1401接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。所述处理器1402还包括接口,用以实现信号的输入/输出功能。作为一种实现方式,收发单元1401的功能可以考虑通过收发电路或者收发的专用芯片实现。
图15是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图15所示,该基站可应用于如图2,图3或图4中的一项或多项所示的系统中,执行上述方法实施例中网络设备的功能。基站15可包括一个或多个DU 1501和一个或多个CU 1502。CU1502可以与NG core(下一代核心网,NC),比如5GC通信。所述DU1501可以包括至少一个射频单元15012,至少一个处理器15013和至少一个存储器15014。所述DU1501还可以包括至少一个天线15011。所述DU 1501部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1502可以包括至少一个处理器15022和至少一个存储器15021。CU1502和DU1501之间可以通过接口进行通信,其中,控制面(control plan)接口可以为Fs-C,比如F1-C,用户面(user plan)接口可以为Fs-U,比如F1-U。
所述CU 1502部分主要用于进行基带处理,对基站进行控制等。所述DU 1501与CU 1502可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU1502为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1502可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
此外,可选的(图中未示),基站15可以包括一个或多个天线,一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器和至少 一个存储器,至少一个天线和至少一个射频单元可以集成在一个天线装置中,CU可以包括至少一个处理器和至少一个存储器。
在一个实例中,所述CU1502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15021和处理器15022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU701可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15014和处理器15013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图16给出了一种通信装置16的结构示意图。通信装置16可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置80可以是芯片,网络设备(如基站),或,终端设备。
所述通信装置16包括一个或多个处理器1601。所述处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端设备或网络设备(比如基站)。又如,装置可以为终端设备或网络设备(比如基站),所述收发单元可以为收发器,射频芯片等。
所述通信装置16包括一个或多个所述处理器1601,所述一个或多个处理器1601可实现图9、图10、图11、图12、图13所示的实施例中一项或多项网络设备或者终端设备的方法。
在一种可能的设计中,所述通信装置16包括用于确定SDU的时刻信息的部件(means),以及用于发送指示所述SDU的所述时刻信息的第一控制PDU的部件(means)。例如可以通过收发器、或输入/输出电路、或芯片的接口发送所述第一控制PDU。所述第一控制PDU可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置16包括用于接收来自终端设备的第一控制PDU的部件(means),以及用于根据第一PDU所指示的SDU的时刻信息确定上行时延的部件(means)。具体参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述第一PDU,通过一个或多个处理器确定所述上行时延。
在一种可能的设计中,所述通信装置16包括用于向所述终端设备发送第二控制PDU的部件(means)。具体参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口发送第二PDU。
在一种可能的设计中,所述通信装置16包括用于接收来自网络设备的第二控制 PDU的部件(means),以及用于根据所述第二PDU进行SDU的时刻信息的确定和上报的部件(means)。具体参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述第二PDU和所述SDU的时刻信息,通过一个或多个处理器确定所述SDU的时刻信息。
可以理解的是,所述通信装置16还可以包括其他部件(means),来实现上述图9、图10、图11、图12、图13所示的实施例中一项或多项网络设备或者终端设备的方法,在此不予赘述。
可选的,处理器1601除了实现图9、图10、图11、图12、图13中的一项或多项所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1601也可以包括指令1603,所述指令可以在所述处理器上被运行,使得所述通信装置16执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置160也可以包括电路,所述电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中所述通信装置160中可以包括一个或多个存储器1602,其上存有指令1604,所述指令可在所述处理器上被运行,使得所述通信装置160执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1602可以存储上述实施例中所描述的时刻信息,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置160还可以包括收发单元1605以及天线1606,或者,包括通信接口。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于通过天线1606实现装置的收发功能。所述通信接口(图中未示出),可以用于核心网设备和网络设备,或是,网络设备和网络设备之间的通信。可选的,该通信接口可以为有线通信的接口,比如光纤通信的接口。
所述处理器1601可以称为处理单元,对装置(比如终端或者基站)进行控制。
此外,由于本申请实施例中所描述收发单元1605进行的发送或接收是在处理单元(处理器1601)的控制之下,因此,本申请实施例中也可以将发送或接收的动作描述为处理单元(处理器1601)执行的,并不影响本领域技术人员对方案的理解。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
应理解,本申请实施例中的处理器可以为CPU,该处理器还可以是其他通用处理器、数字信号处理(Digital Signal Processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或 可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述的网络设备和终端设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法实施例中网络设备和终端设备所执行方法的指令。该可读介质可以是ROM或RAM,本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该终端设备和网络设备分别执行对应于上述方法的终端设备和网络设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该芯片所应用的通信装置执行上述本申请实施例提供的方法中的终端设备和网络设备的操作。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该系统芯片。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该通信装置内的位于该芯片外部的存储单元,如ROM、或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息传输的方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。应理解,在本申请实施例中的处理器可以是CPU,该处理器还可以 是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、通信装置和方法, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (68)

  1. 一种时刻信息的通知方法,其特征在于,包括:
    终端设备确定服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层从上层接收到SDU的时刻;
    所述终端设备向网络设备发送第一控制协议数据单元PDU,所述第一控制PDU指示SDU的时刻信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报的是上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备确定SDU的时刻信息之前,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二控制PDU,所述第二控制PDU用于指示所述终端设备上报所述第一协议层从上层接收到SDU时的时刻信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第二控制PDU指示如下指示信息中的一个或多个:
    指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述时刻信息以预设的或配置子载波间隔为参考。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的通知信息,所述通知信息用于指示所述时刻信息所参考的子载波间隔。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述网络设备包括集中单元CU的用户面CU-UP;
    所述终端设备向网络设备发送第一控制协议数据单元PDU包括:
    所述终端设备向所述CU-UP发送所述第一控制PDU;
    所述终端设备接收来自所述网络设备的第二控制PDU包括:
    所述终端设备接收来自所述CU-UP的所述第二控制PDU。
  9. 一种时刻信息的通知方法,其特征在于,包括:
    终端设备确定服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层向上层发送SDU的时刻;
    所述终端设备向网络设备发送第一控制协议数据单元PDU,所述第一控制PDU指示SDU的时刻信息。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一控制PDU指示如下指示信息中的一个或多个:
    指示所述终端设备上报的是下行SDU的时刻信息的信息,指示所述第一控制PDU 为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  11. 根据权利要求9或10所述的方法,其特征在于,在所述终端设备确定时间信息之前,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二控制PDU,所述第二控制PDU用于指示所述终端设备上报所述第一协议层向上层发送SDU时的时刻信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第二控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述时刻信息以预设的或配置的子载波间隔为参考。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的通知信息,所述通知信息用于指示所述时刻信息所参考的子载波间隔。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述网络设备包括集中单元CU的用户面CU-UP;
    所述终端设备向网络设备发送第一控制协议数据单元PDU包括:
    所述终端设备向所述CU-UP发送所述第一控制PDU;
    所述终端设备接收来自所述网络设备的第二控制PDU包括:
    所述终端设备接收来自所述CU-UP的所述第二控制PDU。
  17. 一种时刻信息的通知方法,其特征在于,包括:
    终端设备接收来自网络设备的第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层从上层接收到服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  18. 一种时刻信息的通知方法,其特征在于,包括:
    终端设备接收来自网络设备的第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层向上层发送服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  19. 一种时刻信息的通知方法,其特征在于,包括:
    网络设备接收来自终端设备的第一控制协议数据单元PDU,所述第一控制PDU指示服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层从上层接收到SDU的时刻。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一控制PDU指示的SDU的时刻信息,以及所述网络设备的所述第一协议层向上层发送SDU的时刻信息获取所述网络设备与所述终端设备的上行时延。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报的是上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  22. 根据权利要求19-21任一项所述的方法,其特征在于,在所述网络设备接收来自所述终端设备的所述第一控制PDU之前,所述方法还包括:
    所述网络设备向终端设备发送第二控制PDU,所述第二控制PDU用于指示所述终端设备上报所述第一协议层从上层接收到SDU时的时刻信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第二控制PDU指示如下指示信息中的一个或多个:
    指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  24. 根据权利要求19-23任一项所述的方法,其特征在于,
    所述时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。
  25. 根据权利要求19-24任一项所述的方法,其特征在于,在所述网络设备接收来自终端设备的第一控制协议数据单元PDU之前,所述方法还包括:
    所述网络设备向所述终端设备发送通知信息,所述通知信息用于指示所述终端设备确定所述时刻信息时参考的子载波间隔。
  26. 根据权利要求19-25任一项所述的方法,其特征在于,所述网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;
    所述方法还包括:
    所述CU-UP接收来自所述CU-CP的通知消息,所述通知消息用于指示所述CU-UP发送时刻信息时参考的子载波间隔;
    所述CU-UP以所述子载波间隔为参考确定所述CU-UP的所述第一协议层向上层发送SDU的时刻信息;
    所述CU-UP向所述CU-CP发送所述CU-UP的所述第一协议层向上层发送SDU的时刻信息。
  27. 根据权利要求22-26任一项所述的方法,其特征在于,所述网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;
    所述网络设备接收来自终端设备的第一控制协议数据单元PDU包括:
    所述CU-UP接收来自所述终端设备的所述第一控制PDU;
    所述CU-UP向所述CU-CP发送所述第一控制PDU;
    所述网络设备根据所述第一控制PDU指示的SDU的时刻信息,以及所述网络设备的第一协议层向上层发送SDU的时刻信息获取所述网络设备与所述终端设备的上行时延包括:
    所述CU-CP根据所述第一控制PDU指示的SDU的时刻信息,以及所述CU-UP 的所述第一协议层向上层发送SDU的时刻信息获取所述上行时延。
  28. 一种时刻信息的通知方法,其特征在于,包括:
    网络设备接收来自终端设备的第一控制协议数据单元PDU,所述第一控制PDU指示服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层向上层发送SDU的时刻。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一控制PDU指示的SDU的时刻信息,以及所述网络设备的所述第一协议层从上层接收到SDU的时刻信息获取所述网络设备与所述终端设备的下行时延。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报的是下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  31. 根据权利要求28-30任一项所述的方法,其特征在于,在所述网络设备接收来自所述终端设备的所述第一控制PDU之前,所述方法还包括:
    所述网络设备向终端设备发送第二控制PDU,所述第二控制PDU用于指示所述终端设备上报所述第一协议层向上层发送SDU时的时刻信息。
  32. 根据权利要求31所述的方法,其特征在于,所述第二控制PDU指示如下指示信息中的一个或多个:
    指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  33. 根据权利要求28-32任一项所述的方法,其特征在于,
    所述时刻信息包括帧号、子帧号、时隙号以及符号号中的一项或多项。
  34. 根据权利要求28-33任一项所述的方法,其特征在于,在所述网络设备接收来自终端设备的第一控制协议数据单元PDU之前,所述方法还包括:
    所述网络设备向所述终端设备发送通知信息,所述通知信息用于指示所述终端设备确定所述时刻信息时参考的子载波间隔。
  35. 根据权利要求28-34任一项所述的方法,其特征在于,所述网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;
    所述方法还包括:
    所述CU-UP接收来自所述CU-CP的通知消息,所述通知消息用于指示所述CU-UP发送时刻信息时参考的子载波间隔;
    所述CU-UP以所述子载波间隔为参考确定所述CU-UP的所述第一协议层从上层接收到SDU的时刻信息;
    所述CU-UP向所述CU-CP发送所述CU-UP的所述第一协议层从上层接收到SDU的时刻信息。
  36. 根据权利要求29-35任一项所述的方法,其特征在于,所述网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP;
    所述网络设备接收来自终端设备的第一控制协议数据单元PDU包括:
    所述CU-UP接收来自所述终端设备的所述第一控制PDU;
    所述CU-UP向所述CU-CP发送所述第一控制PDU;
    所述网络设备根据所述第一控制PDU指示的SDU的时刻信息,以及所述网络设备的所述第一协议层向上层发送SDU的时刻信息获取所述网络设备与所述终端设备的上行时延包括:
    所述CU-CP根据所述第一控制PDU指示的SDU的时刻信息,以及所述CU-UP的所述第一协议层从上层接收到SDU的时刻信息获取所述下行时延。
  37. 一种时刻信息的通知方法,其特征在于,包括:
    网络设备向终端设备发送第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层从上层接收到服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  38. 一种时刻信息的通知方法,其特征在于,包括:
    网络设备向终端设备发送第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层向上层发送服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  39. 一种通信方法,应用于网络设备,所述网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP,其特征在于,包括:
    所述CU-UP向所述CU-CP发送第一通知消息,所述第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU对应的序列号的取值规则。
  40. 根据权利要求39所述的方法,其特征在于,所述第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU的序列号的取值规则包括:
    所述第一通知消息用于指示进行上行时延测量的所述第一协议的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则;
    或,所述第一通知消息用于指示进行下行时延测量的所述第一协议层的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则。
  41. 根据权利要求39或40所述的方法,其特征在于,在所述CU-UP向所述CU-CP发送所述第一通知消息之前,所述方法还包括:
    所述CU-UP接收来自所述CU-CP的第二通知消息,所述第二通知消息包括进行时延测量的周期。
  42. 一种通信方法,应用于网络设备,所述网络设备包括集中单元CU的用户面CU-UP和CU的控制面CU-CP,其特征在于,包括:
    所述CU-CP接收来自所述CU-UP的第一通知消息,所述第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU对应的序列号 的取值规则。
  43. 根据权利要求42所述的方法,其特征在于,所述第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU的序列号的取值规则包括:
    所述第一通知消息用于指示进行上行时延测量的所述第一协议层的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则;
    或,所述第一通知消息用于指示进行下行时延测量的所述第一协议层的SDU对应的协议数据单元PDU的序列号或PDU的序列号的取值规则。
  44. 根据权利要求42或43所述的方法,其特征在于,在所述CU-CP接收来自所述CU-UP的第一通知消息之前,所述方法还包括:
    所述CU-CP向所述CU-UP发送第二通知消息,所述第二通知消息包括进行时延测量的周期。
  45. 一种通信装置,其特征在于,用于执行如权利要求1-18中任一项所述的方法。
  46. 一种通信装置,其特征在于,用于执行如权利要求19-38中任一项所述的方法。
  47. 一种通信装置,其特征在于,用于执行如权利要求39-41中任一项所述的方法。
  48. 一种通信装置,其特征在于,用于执行如权利要求42-44中任一项所述的方法。
  49. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至18中任一项所述的方法。
  50. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求19至38中任一项所述的方法。
  51. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求39至41中任一项所述的方法。
  52. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求42至44中任一项所述的方法。
  53. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求1至18中任意一项所述的方法被执行。
  54. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求19至38中任意一项所述的方法被执行。
  55. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求39至41中任意一项所述的方法被执行。
  56. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求42至44中任意一项所述的方法被执行。
  57. 一种通信系统,其特征在于,包括如权利要求49所述的装置和权利要求50所述的装置;或者,包括如权利要求49所述的装置、权利要求51所述的装置以及权利要求52所述的装置。
  58. 一种通信装置,其特征在于,包括:
    处理单元,用于确定服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层从上层接收到SDU的时刻;
    收发单元,用于向网络设备发送第一控制协议数据单元PDU,所述第一控制PDU指示SDU的时刻信息。
  59. 一种通信装置,其特征在于,包括:
    处理单元,用于确定服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层向上层发送SDU的时刻;
    收发单元,用于向网络设备发送第一控制协议数据单元PDU,所述第一控制PDU指示SDU的时刻信息。
  60. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层从上层接收到服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  61. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层向上层发送服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  62. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自终端设备的第一控制协议数据单元PDU,所述第一控制PDU指示服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层从上层接收到SDU的时刻。
  63. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自终端设备的第一控制协议数据单元PDU,所述第一控制PDU指示服务数据单元SDU的时刻信息,所述时刻信息指示所述终端设备的第一协议层向上层发送SDU的时刻。
  64. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送第一控制PDU,所述第一控制PDU用于指示所 述终端设备上报第一协议层从上层接收到服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报上行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  65. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送第一控制PDU,所述第一控制PDU用于指示所述终端设备上报第一协议层向上层发送服务数据单元SDU时的时刻信息;
    其中,所述第一控制PDU还指示如下指示信息中的一个或多个:
    指示所述终端设备上报下行SDU的时刻信息的信息,指示所述第一控制PDU为时延测量对应的PDU类型的信息,或,指示SDU对应的PDU的序列号的信息。
  66. 一种通信装置,其特征在于,包括:
    收发单元,用于向所述CU-CP发送第一通知消息,所述第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU对应的序列号的取值规则。
  67. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自所述CU-UP的第一通知消息,所述第一通知消息用于指示进行时延测量的第一协议层的服务数据单元SDU对应的序列号或SDU对应的序列号的取值规则。
  68. 一种通信系统,其特征在于,包括如权利要求58-61任一项所述的通信装置和如权利要求62-65任一项所述的通信装置;或者,包括如权利要求58-61任一项所述的通信装置,和如权利要求66或67所述的通信装置。
PCT/CN2019/109735 2019-09-30 2019-09-30 一种时刻信息的通知方法和装置 WO2021062809A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980096436.6A CN113826337B (zh) 2019-09-30 2019-09-30 一种时刻信息的通知方法和装置
PCT/CN2019/109735 WO2021062809A1 (zh) 2019-09-30 2019-09-30 一种时刻信息的通知方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109735 WO2021062809A1 (zh) 2019-09-30 2019-09-30 一种时刻信息的通知方法和装置

Publications (1)

Publication Number Publication Date
WO2021062809A1 true WO2021062809A1 (zh) 2021-04-08

Family

ID=75336713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109735 WO2021062809A1 (zh) 2019-09-30 2019-09-30 一种时刻信息的通知方法和装置

Country Status (2)

Country Link
CN (1) CN113826337B (zh)
WO (1) WO2021062809A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104459A1 (zh) * 2022-11-18 2024-05-23 展讯通信(上海)有限公司 数据传输方法与装置、终端设备和网络设备
EP4447398A1 (en) * 2023-04-12 2024-10-16 Nokia Technologies Oy Data unit delay measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828344A (zh) * 2007-10-17 2010-09-08 Lg电子株式会社 利用高速下行分组接入hsdpa或者高速上行分组接入hsupa来提供电路交换cs业务的方法
WO2017172937A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Handling user plane in wireless systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0925339A2 (pt) * 2009-04-27 2016-04-26 Huawei Tech Co Ltd método, sistema e equipamento para processamento de informação
CN105635985B (zh) * 2014-11-07 2021-01-26 中兴通讯股份有限公司 确定挂起业务的方法及装置、指示信息处理方法及装置
WO2018165995A1 (zh) * 2017-03-13 2018-09-20 华为技术有限公司 一种数据处理方法及终端设备、基站
CN109150451B (zh) * 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统
CN109392093B (zh) * 2017-08-11 2020-12-04 华为技术有限公司 一种寻呼消息的发送方法及设备
KR102602207B1 (ko) * 2017-09-18 2023-11-15 삼성전자주식회사 무선 통신 시스템에서 헤더 압축 프로토콜을 위한 pdcp 장치 재수립 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828344A (zh) * 2007-10-17 2010-09-08 Lg电子株式会社 利用高速下行分组接入hsdpa或者高速上行分组接入hsupa来提供电路交换cs业务的方法
WO2017172937A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Handling user plane in wireless systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP SA5: "LS on PDCP end user throughput measurements", 3GPP DRAFT; S5-191391 LS ON PDCP END USER THROUGHPUT MEASUREMENTS, vol. SA WG5, 5 February 2019 (2019-02-05), Montreal, Canada, pages 1 - 5, XP051612022 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104459A1 (zh) * 2022-11-18 2024-05-23 展讯通信(上海)有限公司 数据传输方法与装置、终端设备和网络设备
EP4447398A1 (en) * 2023-04-12 2024-10-16 Nokia Technologies Oy Data unit delay measurement

Also Published As

Publication number Publication date
CN113826337A (zh) 2021-12-21
CN113826337B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN104205667B (zh) 用于触发多个无线设备的技术和配置
WO2022075912A1 (en) Group pdcp discard timer for low-latency services
WO2020038181A1 (zh) 上行信息的发送方法及终端
EP3840518A1 (en) Rrc connection method, device, and system
WO2018227555A1 (zh) 用于传输数据的方法、终端设备和网络设备
WO2018205874A1 (zh) 传输方法、终端和网络设备
US20200170073A1 (en) Method for Repeatedly Transmitting Data and Device
CN111567134A (zh) 终端装置、方法以及集成电路
WO2022086387A1 (en) Inter-cell group messages for user equipment operating in multi-connectivity
EP3937565A1 (en) Communication method and apparatus
WO2021062809A1 (zh) 一种时刻信息的通知方法和装置
CN111587607B (zh) 终端装置、基站装置以及方法
WO2019131320A1 (ja) 端末装置、方法、および、集積回路
US20240007846A1 (en) Enhanced Address Changing for Wireless Networking Systems
WO2021062711A1 (zh) 传输上行控制信息的方法和装置
US11245575B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
JP2021057791A (ja) 端末装置、基地局装置、方法、および、集積回路
WO2023000335A1 (zh) 资源处理的方法、终端设备、网络设备及存储介质
WO2021142767A1 (zh) 通信方法和通信装置
WO2023217012A1 (zh) 数据传输方法、信息发送方法、终端及网络侧设备
WO2022205230A1 (zh) 一种分组数据汇聚协议实体的超帧号确定方法及其装置
CN113573357B (zh) 下行数据接收方法、系统、存储介质及终端
WO2024153199A1 (zh) 一种数据传输方法及相关装置
WO2023217009A1 (zh) 数据传输方法、装置及通信设备
WO2022205191A1 (zh) 一种pdcp实体的接收窗口的配置方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947939

Country of ref document: EP

Kind code of ref document: A1