WO2021062761A1 - 确定空间域发送滤波器的方法及装置 - Google Patents
确定空间域发送滤波器的方法及装置 Download PDFInfo
- Publication number
- WO2021062761A1 WO2021062761A1 PCT/CN2019/109682 CN2019109682W WO2021062761A1 WO 2021062761 A1 WO2021062761 A1 WO 2021062761A1 CN 2019109682 W CN2019109682 W CN 2019109682W WO 2021062761 A1 WO2021062761 A1 WO 2021062761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spatial domain
- transmission
- filter
- resource
- reference signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0404—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06966—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
Definitions
- This application relates to the field of communication technologies, and in particular, to a method and device for determining a spatial domain transmission filter.
- the network side will configure the spatial relationship information to instruct the UE (User Equipment, user terminal) to determine the spatial domain filter for uplink transmission.
- This method of determining the spatial domain transmission filter will provide the maximum flexibility for the system in the new wireless system, but at the same time it will also bring greater signaling overhead to the system. Therefore, in order to save signaling overhead, the network side may not Configure spatial relationship information.
- the spatial domain transmission filter for uplink transmission cannot be determined when the spatial relationship information is not configured on the network side. Therefore, it is impossible to determine the spatial domain transmission filter independently of the spatial relationship information.
- the technical problem of the device is not limited to, the spatial domain transmission filter for uplink transmission.
- the present application provides a method and device for determining a spatial domain transmission filter, so as to solve the technical problem that the spatial domain transmission filter cannot be determined independently of spatial relationship information.
- a specific implementation manner of the present application provides a method for determining a spatial domain transmission filter, including:
- the spatial domain transmission filter of the transmission resource is determined.
- the determining module is used to determine the spatial domain transmission filter of the transmission resource according to the transmission configuration indication state TCI-State and/or configuration information and/or transmission status configured on the network side.
- the terminal device includes a processor, a memory, and a transmission program that can be run on the processor is stored in the memory.
- a transmission program that can be run on the processor is stored in the memory.
- the processor executes the program, any one of the above determinations is implemented.
- a chip which includes a processor, configured to call and run a computer program from a memory, and a device installed with the chip executes any one of the foregoing methods for determining a spatial domain transmission filter.
- the spatial domain transmission filter of the transmission resource is determined. Therefore, the spatial domain transmission filter of the transmission resource is determined without relying on the spatial relationship information, which solves the technical problem that the spatial domain transmission filter cannot be determined without relying on the spatial relationship information.
- FIG. 1 is a network architecture diagram of a communication system that may be applied in the specific embodiments of this application;
- Fig. 2 is a flowchart of a method for determining a spatial domain transmission filter according to a specific embodiment of the present application
- FIG. 3 is a flowchart of a method for determining a spatial domain transmission filter according to an embodiment of the present application
- Fig. 4 is a block diagram of an apparatus for implementing a method for determining a spatial domain transmission filter according to various embodiments of the present disclosure
- Fig. 5 is a schematic diagram of the hardware structure of a terminal device for implementing a method for determining a spatial domain transmission filter according to various embodiments of the present disclosure.
- the user terminal may use multiple uplink beams for uplink transmission, and/or use multiple downlink beams for downlink reception.
- a spatial domain transmitting filter or a spatial domain receiving filter may be used to describe the beam on the terminal side.
- Figure 1 is a system architecture of a communication system that may be applied in the following specific implementations of this application.
- the system architecture includes: base station A and user terminal B.
- multiple SRS Sounding Reference Signal
- the network can know which spatial domain transmit filter performs the best transmission effect by measuring the SRS signal. It is also possible that when there is beam correspondence on the user terminal B side, the network obtains the downlink transmission beam with the best effect when transmitting to the user terminal B, and then obtains the spatial domain transmission filter corresponding to the downlink transmission beam according to the beam correspondence.
- the base station A instructs the user terminal B which spatial domain transmission filter (or which uplink beam) to use for transmission, it can indirectly indicate the spatial domain transmission filter corresponding to the signal identifier by indicating the signal identifier.
- SRS resource identifier synchronization signal block (SS/PBCH block, SSB) index
- CSI-RS Channel state information reference signal, channel state information reference signal
- SRS resource identifier can include the uplink broadband where the SRS resource is located Part of the information corresponding to the identifier.
- the network of base station A For the dynamically scheduled PUSCH (Physical Uplink Shared Channel, physical uplink shared channel), if the network of base station A only configures one SRS resource used to indicate the spatial domain transmission filter, user terminal B will follow the network configuration information, such as the corresponding RRC (Radio Resource Control, Radio Resource Control) signaling determines the spatial domain transmission filter used. If the network is configured with multiple SRS resources for indicating the spatial domain transmission filter, the user terminal B determines the spatial domain transmission filter to be used according to the SRS resource indicated by the DCI (Downlink control information) information.
- RRC Radio Resource Control, Radio Resource Control
- the RRC parameter configuredGrantConfig (grant configuration) contains the parameter rrc-ConfiguredUplinkGrant (RRC uplink grant configuration)
- user terminal B determines the spatial domain transmission filter to be used according to the SRS resource identifier indicated in the RRC parameter
- the RRC parameter configuredGrantConfig does not include the parameter rrc-ConfiguredUplinkGrant
- the user terminal B determines the spatial domain transmission filter to be used according to the SRS resource indicated by the DCI information.
- the spatial relationship information can indicate that RRC parameters participate in SRS resource identification or SSB (Synchronization Signal Block, Synchronization signal/PBCH block, synchronization signal block) index or CSI-RS (Channel state) information reference signal, the signaling format of the resource identifier, the SRS resource identifier may include the information corresponding to the identifier of the uplink broadband part where the SRS resource is located. In this way, the corresponding spatial domain transmission filter is indicated according to the identifier of the signal.
- SSB Synchronization Signal Block
- PBCH block Synchronization signal/PBCH block
- CSI-RS Channel state
- the spatial information relationship of PUCCH is configured.
- the spatial information relationship can indicate SRS resource identifier or SSB index or CSI-RS (Channel state information reference signal) through RRC parameters, Channel state information reference signal) resource identifier
- the SRS resource identifier may include information corresponding to the identifier of the uplink broadband part where the SRS resource is located. Therefore, the corresponding spatial domain transmission filter is indicated according to the SRS resource identifier, or the SSB index, or the CSI-RS resource identifier.
- PUCCH For PUCCH, if the network is configured with only one PUCCH spatial relationship information (for example, a PUCCH-SpatialRelationInfo (PUCCH spatial relationship information) is configured), then all PUCCH resources are determined to use the spatial domain transmission filter according to the spatial relationship information .
- the network is configured with multiple PUCCH spatial relationship information, and each PUCCH resource determines the spatial domain transmission filter to be used according to the spatial relationship information indicated by the network's further instructions/configuration/activation information (such as the media access control unit)
- Configuring the spatial relationship information on the network side will provide the system with the greatest flexibility, but at the same time it will also bring greater signaling overhead to the system. Therefore, in order to save signaling overhead, the network side may not configure spatial relationship information.
- the spatial domain transmission filter for uplink transmission cannot be determined when the spatial relationship information is not configured on the network side. The following specific implementation manners of the present application will describe in detail how to determine the spatial domain transmission filter for uplink transmission when the base station A is not configured with spatial relationship information.
- the example communication system can be Global System for Mobile communications (GSM), Code Division Multiple Access (CDMA) system, Time Division Multiple Access (TDMA) ) System, Wideband Code Division Multiple Access (Wireless, WCDMA), Frequency Division Multiple Access (Frequency Division Multiple Addressing, FDMA) system, Orthogonal Frequency-Division Multiple Access (OFDMA) system , Single carrier FDMA (SC-FDMA) system, General Packet Radio Service (GPRS) system, LTE (Long Term Evolution) system, 5G (5th-Generation, fifth-generation mobile communication technology) NR (NR Radio Access, new wireless access) system and other such communication systems.
- GSM Global System for Mobile communications
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- OFDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency-Division Multiple Access
- SC-FDMA Single carrier FDMA
- GPRS General Packet Radio Service
- the communication connection mode can be a single connection mode or Dual connection mode or multiple connection mode, but when the communication connection mode is single connection mode, the network side device can be an LTE base station or an NR base station (also known as a gNB base station).
- the communication mode is dual connection mode (specifically, it can be through carrier aggregation CA technology is implemented, or multiple network-side devices are implemented), and when the terminal is connected to multiple network-side devices, the multiple network-side devices may be the primary base station MCG and the secondary base station SCG, and the base stations perform data return through the backhaul link.
- the primary base station may be an LTE base station
- the secondary base station may be an LTE base station
- the primary base station may be an NR base station
- the secondary base station may be an LTE base station
- the primary base station may be an NR base station and the secondary base station may be an NR base station.
- the receiving-side RLC entity described in the specific embodiments of this application may be a terminal or software (such as a protocol stack) and/or hardware (such as a modem) in the terminal.
- the transmitting-side RLC entity may be a network-side device or a network-side device Software (e.g. protocol stack) and/or hardware (e.g. modem) in the
- the user terminals involved in the specific embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment ( User Equipment (UE), mobile station (Mobile Station, MS), terminal device (terminal device), etc.
- UE User Equipment
- MS Mobile Station
- terminal device terminal device
- B corresponding to A means that B is associated with A, and B can be determined according to A.
- determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
- Fig. 2 is a flowchart of a method for determining a spatial domain transmission filter according to a specific embodiment of the present application. As shown in FIG. 2, the method for determining a spatial domain transmission filter is applied to a user terminal, and it may include the following steps:
- the spatial domain transmission filter of the transmission resource is determined according to the transmission configuration indication state TCI-State and/or configuration information and/or transmission status configured on the network side.
- the characteristics of the transmission environment corresponding to the data transmission can be used to improve the receiving algorithm.
- the statistical characteristics of the channel can be used to optimize the design and parameters of the channel estimator.
- the characteristics of the transmission environment corresponding to the data transmission are represented by QCL (Quasi Co-Location) information.
- the network side is transmitting the downlink channel ( Including downlink control channels and downlink data channels) or downlink signals, the corresponding QCL information will be indicated to the UE through TCI-State (Transmission Configuration Indication-State).
- TCI-State Transmission Configuration Indication-State
- the TCI-State may include the following configurations: an identifier of the TCI-State, used to identify the TCI-State, QCL information 1, QCL information 2 (optional).
- the QCL information may include the following information: QCL type configuration, which may include one of QCL type (type) A, QCL type B, QCL type C, and QCL type D. It may also include the QCL reference signal configuration, including the cell identifier where the reference signal is located, the bandwidth part identifier, and the identifier of the reference signal (which may be the CSI-RS resource identifier or the SSB index). If both QCL information 1 and QCL information 2 are configured, the QCL type of at least one QCL information is one of typeA, typeB, and typeC, and the QCL type of the other QCL information is QCL typeD.
- the UE can assume that the downlink signal and the reference SSB or The large-scale parameters of the reference CSI-RS resources are the same, and the large-scale parameters are determined by the QCL type configuration.
- the UE can use and receive the reference SSB or reference CSI-RS resource , That is, the receiving beam with the same reference signal to receive the downlink signal.
- the downlink channel (or downlink signal) and its reference SSB or reference CSI-RS resource are transmitted by the same TRP or the same panel or the same beam on the network side. If the transmission TRP or transmission panel or transmission beam of the two downlink signals or downlink channels are different, different TCI-States are usually configured.
- the activation of the TCI-State can be indicated by means of RRC signaling or RRC signaling and MAC (Media Access Control) layer signaling.
- the available TCI-State set is indicated by RRC signaling, and some of the TCI-States are activated through MAC layer signaling, and finally indicated from the activated TCI-State through the TCI-State indication field in the DCI
- PDSCH Physical Downlink Shared Channel
- the spatial domain transmission filter is a spatial domain filter for uplink transmission. According to the information contained in the transmission configuration indication state TCI-State configured on the network side, the spatial domain transmission filter of the transmission resource is determined.
- the configuration information and transmission status may not contain spatial relationship information.
- the configuration information is the signal information configured by the UE before the UE determines the spatial domain transmission filter, including: spatial domain transmission filter information for transmitting (transmitting and/or receiving) resources, information about the signal to be transmitted, and the like.
- the transmission status is the status information of the UE before transmission, including: the spatial domain transmission filter of the most recent PUSCH transmission, the spatial domain transmission filter of the most recent PUCCH transmission, and so on. According to the configuration information and/or transmission status of the UE, a spatial domain transmission filter for uplink transmission is determined. Therefore, it does not depend on the spatial relationship information to determine the spatial domain transmission filter.
- This specific implementation mode realizes the determination of the spatial domain transmission filter of the transmission resource according to the transmission configuration indication state TCI-State and/or configuration information and/or transmission status configured on the network side, and solves the inability to determine the spatial domain without relying on the spatial relationship information.
- the technical problem of the transmission filter realizes the determination of the spatial domain transmission filter of the transmission resource according to the transmission configuration indication state TCI-State and/or configuration information and/or transmission status configured on the network side, and solves the inability to determine the spatial domain without relying on the spatial relationship information.
- the resource includes a resource for which no corresponding spatial relationship information is configured. Therefore, the spatial domain transmission filter of the transmission resource can be determined without relying on the spatial relationship information.
- Fig. 3 is a flowchart of a method for determining a spatial domain transmission filter according to an embodiment of the present application. As shown in Figure 3, this step 110 includes:
- step 110 in the specific embodiment corresponding to FIG. 2 includes step 111, step 112, step 113, step 114, step 115, step 116, step 117, and step 118.
- step 111 the spatial domain transmission filter of the transmission resource is determined according to the reference signal corresponding to the type D of the quasi co-located QCL information in the TCI-State corresponding to the control resource set CORESET.
- CORESET control resource set
- NR new wireless
- the CORESET can be the CORESET with the smallest identifier configured in the bandwidth part.
- the CORESET can also be assigned an identifier in the bandwidth part.
- the CORESET with the smallest identifier is greater than 0, thereby excluding the CORESET that is already present when the UE initially accesses.
- the CORESET may also be the CORESET with the smallest identifier among the scheduling carriers, and the scheduling carrier is used to transmit downlink control information (DCI) scheduling information.
- DCI downlink control information
- the CORESET can also be the CORESET with the smallest identifier in the scheduling carrier whose identifier is greater than 0, so as to exclude the initial access of the UE. There is already CORESET.
- the TCI-State is the activated TCI-State corresponding to the CORESET.
- the activated TCI-State can be the only TCI-State corresponding to the CORESET, or it can be one of the multiple TCI-States corresponding to the CORESET, which is accessed by the media.
- Incoming control unit (MAC CE) signaling activated a certain TCI-State.
- the TCI-State is the TCI-state with the smallest identifier corresponding to the CORESET. State.
- the reference signal corresponding to the typeD of the QCL information in the TCI-State corresponding to CORESET includes the channel state information reference signal (CSI-RS) and/or synchronization signal block.
- CSI-RS channel state information reference signal
- the reference signal corresponding to CORESET For the reference signal corresponding to the typeD of the QCL information in the TCI-State, the spatial domain transmitting filter for determining the transmission resource is the same as the spatial domain filter for receiving the reference signal.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the spatial domain transmission filter of the transmission resource is determined according to the most recent physical uplink shared channel PUSCH transmission, and the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PUSCH transmission.
- the UE determines the spatial domain transmission filter of the transmission resource according to the most recent PUSCH transmission.
- the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PUSCH transmission. Therefore, when some SRS resources are configured with spatial relationship information, and When used to support uplink PUSCH transmission, make full use of the uplink beam dynamic indicator to update other uplink beam indicators, and use the same spatial domain filter as the spatial domain transmission filter to increase system flexibility and improve system performance.
- the UE may be a UE that relies on beam correspondence of uplink beam scanning.
- the spatial domain transmission filter of the transmission resource is determined according to the most recent physical uplink control channel PUCCH transmission, and the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PUCCH transmission.
- the UE determines the spatial domain transmission filter of the transmission resource according to the most recent PUCCH transmission.
- the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PUCCH transmission, so that the spatial relationship information is configured for some PUCCH resources. , Using the same spatial domain filter as the spatial domain transmitting filter, reducing the complexity of UE processing.
- the UE may be a UE that relies on beam correspondence of uplink beam scanning.
- the spatial domain transmission filter of the transmission resource is determined according to the PUCCH resource with the smallest identifier, and the spatial domain transmission filter is the same as the spatial domain filter used by the PUCCH resource with the smallest identifier.
- the UE determines the spatial domain transmission filter of the transmission resource according to the PUCCH transmission with the smallest identifier, and the spatial domain transmission filter is the same as the spatial domain filter used for the PUCCH transmission with the smallest identifier, thereby adopting a relatively fixed method to reduce UE processing complexity degree.
- the PUCCH resource with the smallest identifier may also be the PUCCH resource with the smallest identifier among the identifiers greater than 0, so as to ensure that the PUCCH resource is a PUCCH resource dedicated to the UE.
- the UE may be a UE that relies on beam correspondence of uplink beam scanning.
- step 115 the spatial domain transmitting filter of the transmission resource is determined according to the synchronization signal block corresponding to the receiving main system information block, and the spatial domain transmitting filter is the same as the spatial domain filter used for receiving the synchronization signal block.
- the UE determines the spatial domain transmission filter according to the synchronization signal block (SS/PBCH block) corresponding to the received master information block (Master Information Block, MIB).
- SS/PBCH block synchronization signal block
- MIB Master Information Block
- the domain filters are the same, so that a relatively fixed way is adopted to reduce the processing complexity of the UE.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the spatial domain transmitting filter of the transmission resource is determined according to the path loss reference signal configured by the network side for the resource, and the spatial domain transmitting filter is the same as the spatial domain filter used for receiving the path loss reference signal.
- the UE determines the spatial domain transmission filter of the transmission resource according to the path loss reference signal configured by the network side for the resource.
- the spatial domain transmission filter is the same as the spatial domain filter used to receive the path loss reference signal, so that the uplink transmission beam and The beams of the transmission path loss reference signal are kept consistent, which can ensure that the uplink transmission beam and the path loss calculation correspond to each other during transmission, and avoid excessive differences between the two, thereby reducing the uplink interference in the system.
- the path loss reference signal may be a CSI-RS and/or SSB and/or a positioning signal (positioning reference signal). When multiple reference signals are configured, the reference signal with the smallest identifier can be selected as the path loss reference signal.
- the UE may be a UE that relies on beam correspondence of uplink beam scanning.
- step 117 it is determined that the spatial domain transmission filter of the transmission resource is the same as the spatial domain filter used for the uplink transmission of the random access response.
- the spatial domain transmitting filter for determining the transmission resource is the same as the spatial domain filter for random access response (Random Access Response, RAR).
- the UE may be a UE that relies on the beam correspondence of uplink beam scanning.
- the spatial domain transmission filter of the transmission resource is determined according to the most recent physical random access channel PRACH transmission.
- the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PRACH transmission, or according to the success of the most recent PRACH
- the transmission determines the spatial domain transmission filter of the transmission resource, and the spatial domain transmission filter is the same as the spatial domain filter used in the last successful PRACH transmission.
- the spatial domain transmission filter of the transmission resource is determined according to the most recent PRACH (Physical Random Access Channel) transmission.
- the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PRACH transmission.
- a PRACH transmission can be a PRACH transmission that is successfully transmitted or a PRACH transmission that has not been successfully transmitted.
- the spatial domain transmission filter of the transmission resource is determined according to the latest successful transmission of the PRACH, and the spatial domain transmission filter is the same as the spatial domain filter used in the latest successful transmission of the PRACH.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- This specific implementation implements the determination of the spatial domain transmission filter for resource transmission.
- the resources may be SRS resources and/or positioning reference signal resources that support positioning.
- the resource can be transmitted in the millimeter wave frequency band.
- the SRS can be an SRS resource that supports codebook transmission, an SRS resource that supports non-codebook transmission, an SRS resource that supports antenna switching, or an SRS resource that supports positioning.
- SRS resources, where the SRS resources supporting positioning may refer to positioning reference signal resources composed of SRS signals and used to support positioning.
- the positioning reference signal resources that support positioning may be composed of SRS, and therefore may sometimes be referred to as SRS resources that support positioning.
- the spatial domain transmission filter for determining the SRS resource may be determined according to the reference signal corresponding to the typeD of the QCL information in the TCI-State corresponding to CORESET, and the spatial domain transmission filter for determining the transmission resource is the same as the spatial domain filter for receiving the reference signal.
- the spatial domain transmission filter of the transmission resource is the same as the spatial domain filter used by the PUCCH resource with the smallest identifier.
- the spatial domain transmitting filter of the transmission resource according to the synchronization signal block corresponding to the receiving main system information block it is also possible to determine the spatial domain transmitting filter of the transmission resource according to the synchronization signal block corresponding to the receiving main system information block to be the same as the spatial domain filter used to receive the synchronization signal block.
- the spatial domain transmitting filter of the transmission resource is the same as the spatial domain filter used for receiving the path loss reference signal according to the path loss reference signal configured for the resource on the network side.
- the spatial domain transmission filter of the transmission resource is the same as the spatial domain filter used for the uplink transmission of the random access response.
- the spatial domain transmission filter of the transmission resource according to the last physical random access channel PRACH transmission and the spatial domain filter used in the last PRACH transmission or determine the spatial domain transmission filter of the transmission resource according to the last successful PRACH transmission
- the filter is the same as the spatial domain filter used in the last successful PRACH transmission.
- the resource may be an aperiodic SRS resource.
- the resource is an aperiodic SRS resource, if the DCI and the SRS resource that trigger the SRS resource are not on the same carrier, the corresponding spatial information relationship must be configured.
- the CORESET can be the CORESET carrying the DCI that triggers the transmission of the SRS resource.
- the DCI scheduling information can be the DCI that activates the aperiodic SRS resource
- the spatial domain transmission filter for determining the aperiodic SRS resource can be According to the reference signal corresponding to the typeD of the QCL information in the TCI-State corresponding to the CORESET that carries the DCI that triggers the transmission of the SRS resource, it is determined that the spatial domain transmission filter of the transmission resource is the same as the spatial domain filter that receives the reference signal.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the resource may be a PUCCH resource.
- the PUCCH resource may be a PUCCH resource determined according to the dedicated configuration of PUCCH resources on the network side.
- the spatial domain transmission filter for determining the PUCCH resource may be determined according to the reference signal corresponding to typeD of the QCL information in the TCI-State corresponding to CORESET, and the spatial domain transmission filter for determining the transmission resource is the same as the spatial domain filter for receiving the reference signal.
- the spatial domain transmission filter of the transmission resource is the same as the spatial domain filter used by the PUCCH resource with the smallest identifier.
- the spatial domain transmitting filter of the transmission resource according to the synchronization signal block corresponding to the receiving main system information block it is also possible to determine the spatial domain transmitting filter of the transmission resource according to the synchronization signal block corresponding to the receiving main system information block to be the same as the spatial domain filter used to receive the synchronization signal block.
- the spatial domain transmitting filter of the transmission resource is the same as the spatial domain filter used for receiving the path loss reference signal according to the path loss reference signal configured for the resource on the network side.
- the spatial domain transmission filter of the transmission resource is the same as the spatial domain filter used for the uplink transmission of the random access response.
- the spatial domain transmission filter of the transmission resource according to the last physical random access channel PRACH transmission and the spatial domain filter used in the last PRACH transmission or determine the spatial domain transmission filter of the transmission resource according to the last successful PRACH transmission
- the filter is the same as the spatial domain filter used in the last successful PRACH transmission.
- the PUCCH resource may be a hybrid automatic repeat request confirmation HARQ-ACK information and/or downlink semi-persistent scheduling corresponding to the physical downlink shared channel PDSCH carrying aperiodic channel state information reporting and/or DCI scheduling Release the PUCCH resource of the corresponding HARQ-ACK information.
- the PUCCH resource may be carrying aperiodic channel state information reporting (CSI reporting) and/or HARQ-ACK information corresponding to the PDSCH scheduled by DCI and/or HARQ corresponding to the downlink semi-persistent scheduling PDSCH release (Semi-Persistent Scheduling PDSCH release) -PUCCH resource for ACK information.
- the CORESET is the CORESET that carries the DCI signaling that triggers the transmission of the PUCCH resource.
- the space domain transmitting filter of the transmission resource and the space for receiving the reference signal are determined.
- the domain filter is the same.
- the corresponding spatial domain transmission filter is determined by using the downlink transmission beam used by the DCI that triggers the aperiodic PUCCH transmission, thereby dynamically updating the corresponding spatial domain transmission filter according to the flexible downlink transmission beam, which increases system flexibility and improves System performance.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the PUCCH resource may be a PUCCH resource that carries HARQ-ACK information corresponding to the semi-persistent scheduling PDSCH.
- the PUCCH resource may be a PUCCH resource that carries HARQ-ACK information corresponding to a semi-persistent scheduling PDSCH (Semi-Persistent Scheduling PDSCH).
- the CORESET is the CORESET that carries the DCI signaling that activates the semi-persistent PDSCH.
- the space domain transmitting filter of the transmission resource and the space for receiving the reference signal are determined.
- the domain filter is the same. Therefore, the corresponding spatial domain transmission filter can be updated according to the downlink transmission beam, which increases system flexibility and improves system performance.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the PUCCH resource may be a PUCCH resource carrying semi-persistent channel state information reporting.
- the PUCCH resource may be a PUCCH resource carrying semi-persistent CSI reporting.
- the spatial domain transmission filter, the spatial domain transmission filter and the spatial domain filter for receiving the reference signal are determined for the transmission resource
- the same, or the spatial domain transmitting filter is the same as the spatial domain filter for transmitting the reference signal.
- the reference signal includes CSI-RS and/or SSB and/or SRS.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning. It may also be a UE that relies on the beam correspondence of uplink beam scanning.
- the spatial domain filter of the transmission resource is determined, and the spatial domain filter is the same as the spatial domain filter for receiving the reference signal.
- the spatial domain filter for determining the transmission resource is the same as the spatial domain filter for receiving the reference signal.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the spatial domain filter of the transmission resource is determined, and the spatial domain filter is the same as the spatial domain filter for sending the reference signal.
- the spatial domain filter for determining the transmission resource is the same as the spatial domain filter for transmitting the reference signal.
- the UE may be a UE that relies on beam correspondence of uplink beam scanning.
- the UE may be a UE that does not rely on beam correspondence of uplink beam scanning.
- the UE may be a UE that relies on beam correspondence of uplink beam scanning.
- Fig. 4 is a block diagram of an apparatus for implementing a method for determining a spatial domain transmission filter according to various embodiments of the present disclosure.
- the device executes all or part of the steps of any one of the methods for determining a spatial domain transmission filter shown in FIG. 2.
- the device includes but is not limited to: a determining module 210.
- the determining module 210 is configured to determine the spatial domain transmission filter of the transmission resource according to the transmission configuration indication state TCI-State and/or configuration information and/or transmission status configured on the network side.
- the determining module 210 is further configured to:
- the spatial domain transmission filter of the transmission resource is determined.
- the determining module 210 is further configured to:
- the spatial domain transmission filter of the transmission resource is determined according to the most recent physical uplink shared channel PUSCH transmission, and the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PUSCH transmission.
- the determining module 210 is further configured to:
- the spatial domain transmission filter of the transmission resource is determined according to the most recent physical uplink control channel PUCCH transmission, and the spatial domain transmission filter is the same as the spatial domain filter used in the most recent PUCCH transmission.
- the determining module 210 is further configured to:
- the spatial domain transmission filter of the transmission resource is determined according to the PUCCH resource with the smallest identifier, and the spatial domain transmission filter is the same as the spatial domain filter used by the PUCCH resource with the smallest identifier.
- the determining module 210 is further configured to:
- the spatial domain transmitting filter of the transmission resource is determined according to the synchronization signal block corresponding to the receiving main system information block, and the spatial domain transmitting filter is the same as the spatial domain filter used for receiving the synchronization signal block.
- the determining module 210 is further configured to:
- the spatial domain transmitting filter of the transmission resource is determined according to the path loss reference signal configured by the network side for the resource, and the spatial domain transmitting filter is the same as the spatial domain filter used for receiving the path loss reference signal.
- the determining module 210 is further configured to:
- the spatial domain transmission filter for determining the transmission resource is the same as the spatial domain filter used for the uplink transmission of the random access response.
- the determining module 210 is further configured to:
- the spatial domain transmission filter is the same as the spatial domain filter used in the last PRACH transmission, or the transmission resource is determined according to the latest successful PRACH transmission.
- the spatial domain transmission filter, the spatial domain transmission filter is the same as the spatial domain filter used in the last successful PRACH transmission.
- the determining module 210 is further configured to:
- the spatial domain transmission filter is the same as the spatial domain filter receiving the reference signal, or the spatial domain transmission The filter is the same as the spatial domain filter that sends the reference signal.
- the determining module 210 is further configured to:
- the spatial domain filter of the transmission resource is determined, and the spatial domain filter is the same as the spatial domain filter for receiving the reference signal.
- the determining module 210 is further configured to:
- the spatial domain filter of the transmission resource is determined, and the spatial domain filter is the same as the spatial domain filter for sending the reference signal.
- Fig. 5 is a schematic diagram of the hardware structure of a terminal device for implementing a method for determining a spatial domain transmission filter according to various embodiments of the present disclosure.
- the terminal device includes a processor 310 and a memory 320, and the above-mentioned components of the terminal device implement communication connections with each other through a bus system.
- the processor 310 may also be an independent component, or may be a collective name for multiple processing elements. For example, it may be a CPU, an ASIC, or one or more integrated circuits configured to implement the above method, such as at least one microprocessor DSP, or at least one programmable gate FPGA.
- the memory 320 stores a program that can be run on the processor 310, and when the processor 310 executes the program, some or all of the steps of the method for determining the spatial domain transmission filter in the foregoing method specific implementation manner are implemented.
- the specific implementation manner of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed, the determination of the spatial domain is achieved as in the above-mentioned specific implementation of the method. Part or all of the steps in the method of transmitting the filter.
- the specific implementation manner of the present application also provides a computer program product, wherein the computer program product is stored in a non-transitory computer-readable storage medium, and when the computer program is executed, the spatial domain is determined as in the above-mentioned method specific implementation manner. Part or all of the steps of the method of transmitting the filter.
- the computer program product may be a software installation package.
- the specific implementation manner of the present application also provides a chip, including: a processor, configured to call and run a computer program from a memory, and the device installed with the chip executes the determination of the spatial domain transmission filter in the specific implementation manner of the method. Part or all of the steps of the method.
- the specific implementation manner of the present application also provides a computer program that, when executed, realizes part or all of the steps of the method for determining the spatial domain transmission filter in the above-mentioned specific implementation manner of the method.
- the steps of the method or algorithm described in the specific embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
- Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
- the storage medium may also be an integral part of the processor.
- the processor and the storage medium may be located in the ASIC.
- the ASIC may be located in an access network device, a target network device, or a core network device.
- the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
- the functions described in the specific embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software it can be implemented in the form of a computer program product in whole or in part.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)) )Wait.
- the corresponding UE types are described, for example, UEs that rely on the beam correspondence of uplink beam scanning, and/or UEs that do not depend on the beam correspondence of uplink beam scanning.
- all the foregoing methods and embodiments may also be used only for UEs that rely on uplink beam scanning beam correspondence, or all the foregoing methods and embodiments may also be used for UEs that rely on uplink beam scanning at the same time.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请揭示了一种确定空间域发送滤波器的方法及装置。该方法包括:根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。从而在不依赖于空间关系信息的情况下,确定传输资源的空间域发送滤波器,解决了无法不依赖于空间关系信息确定空间域发送滤波器的技术问题
Description
本申请涉及通信技术领域,尤其涉及一种确定空间域发送滤波器的方法及装置。
在新无线系统中,网络侧会通过配置空间关系信息,来指示UE(User Equipment,用户终端)确定进行上行传输的空间域滤波器。这种确定空间域发送滤波器的做法在新无线系统中会为系统提供最大的灵活性,但同时也会为系统带来较大的信令开销,因此为节省信令开销,网络侧可以不配置空间关系信息。
但是,在现有的确定空间域发送滤波器的方法中,网络侧未配置空间关系信息时无法确定上行传输的空间域发送滤波器,因此,存在无法不依赖于空间关系信息确定空间域发送滤波器的技术问题。
发明内容
本申请提供了一种确定空间域发送滤波器的方法及装置,以解决无法不依赖于空间关系信息确定空间域发送滤波器的技术问题。
第一方面,本申请具体实施方式提供一种确定空间域发送滤波器的方法,包括:
根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。
第二方面,本申请具体实施方式提供一种确定空间域发送滤波器的装置,包括:
确定模块,用于根据网络侧配置的传输配置指示状态TCI-State和/或配 置信息和/或传输状况,确定传输资源的空间域发送滤波器。
第三方面,本申请具体实施方式提供一种终端设备,该终端设备包括:处理器,存储器,存储器上存储可在处理器上运行的传输程序,处理器执行程序时,实现上述任意一种确定空间域发送滤波器的方法。
第四方面,本申请具体实施方式提供一种计算机可读存储介质,其存储有计算机程序,其中,计算机程序被执行时实现上述任意一种确定空间域发送滤波器的方法。
第五方面,本申请具体实施方式提供一种计算机程序产品,计算机程序产品存储于非瞬时性计算机可读存储介质,计算机程序被执行时实现上述任意一种确定空间域发送滤波器的方法。
第六方面,本申请具体实施方式提供一种芯片,其包括:处理器,用于从存储器中调用并运行计算机程序,安装有芯片的设备执行上述任意一种确定空间域发送滤波器的方法。
第七方面,本申请具体实施方式提供一种计算机程序,计算机程序被执行时实现上述任意一种确定空间域发送滤波器的方法。
本申请的具体实施方式提供的技术方案可以包括以下有益效果:
根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。从而在不依赖于空间关系信息的情况下,确定传输资源的空间域发送滤波器,解决了无法不依赖于空间关系信息确定空间域发送滤波器的技术问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的具体实施方式,并于说明书一起用于解释本申请的原理。
图1是本申请具体实施方式可能应用的一种通信系统的网络架构图;
图2是根据本申请具体实施方式的一种确定空间域发送滤波器的方法的流程图;
图3是本申请一种实施方式的一种确定空间域发送滤波器的方法的流程图;
图4是用于实现根据本公开的各个实施方式的一种确定空间域发送滤波器的方法的装置框图;
图5是用于实现根据本公开的各个实施方式的一种确定空间域发送滤波器的方法的终端设备的硬件结构示意图。
这里将详细地对示例性具体实施方式执行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性具体实施方式中所描述的实施方式并不代表与本申请的具体实施方式相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的方法和装置的例子。基于本申请中的具体实施方式,本领域技术人员在没有做出创造性劳动前提下获得的所有其他具体实施方式,都属于本申请的保护范围。
用户终端可以使用多个上行波束来进行上行传输,和/或使用多个下行波束来进行下行的接收。在通信系统中,为了避免直接描述物理概念上的波束,可以采用空间域发送滤波器,或者空间域接收滤波器来描述终端侧的波束。
图1为本申请以下具体实施方式可能应用的通信系统的系统架构。该系统架构包括:基站A,用户终端B。
基站A为指示用户终端B进行上行传输时,可以通过基站A的网络配置 多个SRS(Sounding Reference Signal,信道探测参考信号)资源,用户终端B可以使用不同的空间域发送滤波器传输不同的SRS资源对应的信号,网络通过测量SRS信号,可知道哪个空间域发送滤波器进行传输的效果最好。也可以当用户终端B侧存在波束对应性时,网络获取向用户终端B传输时效果最好的下行传输波束,再根据波束对应性获取对应于下行传输波束的空间域发送滤波器。
因此,当基站A指示用户终端B使用哪个空间域发送滤波器(或者哪个上行波束)进行传输时,可以通过指示信号的标识来间接指示信号的标识对应的空间域发送滤波器。包括:SRS资源标识,同步信号块(SS/PBCH block,SSB)索引,CSI-RS(Channel state information reference signal,信道状态信息参考信号)资源标识,SRS资源标识中可包含SRS资源所在的上行宽带部分标识对应的信息。
对于动态调度的PUSCH(Physical Uplink Shared Channel,物理上行共享信道),如果基站A的网络只配置了一个用来指示空间域发送滤波器的SRS资源,则用户终端B根据网络配置信息,例如对应的RRC(Radio Resource Control,无线资源控制)信令,确定使用的空间域发送滤波器。如果网络配置了多个用来指示空间域发送滤波器的SRS资源,则用户终端B根据DCI(Downlink control information,下行控制信息)信息所指示的SRS资源,来确定使用的空间域发送滤波器。对于半持续调度的PUSCH,如果RRC参数configuredGrantConfig(准许配置)中包含参数rrc-ConfiguredUplinkGrant(RRC上行准许配置),用户终端B根据RRC参数中指示的SRS资源标识,确定使用的空间域发送滤波器,如果RRC参数configuredGrantConfig中不包含参数rrc-ConfiguredUplinkGrant,用户终端B根据DCI信息指示的SRS资源,确定使用的空间域发送滤波器。
对于SRS传输,通过配置SRS的空间关系信息,其中空间关系信息中可以指示RRC参数参加SRS资源标识或SSB(Synchronization Signal Block,Synchronization signal/PBCH block,同步信号块)索引或CSI-RS(Channel state information reference signal,信道状态信息参考信号)资源标识的信令格式,SRS资源标识中可包含SRS资源所在的上行宽带部分标识对应的信 息。从而根据信号的标识指示对应的空间域发送滤波器。
对于PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输,通过配置PUCCH的空间信息关系,其中空间信息关系中可以通过RRC参数指示SRS资源标识或SSB索引或CSI-RS(Channel state information reference signal,信道状态信息参考信号)资源标识,SRS资源标识中可包含SRS资源所在的上行宽带部分标识对应的信息。从而根据SRS资源的标识、或SSB索引、或CSI-RS资源标识指示对应的空间域发送滤波器。
针对PUCCH,如果网络只配置了一个PUCCH的空间关系信息(例如,配置了一个PUCCH-SpatialRelationInfo(PUCCH空间关系信息)),则所有的PUCCH资源都根据该空间关系信息确定使用的空间域发送滤波器。网络配置了多个PUCCH空间关系信息,则每个PUCCH资源都根据网络的进一步指示/配置/激活信息(例如媒体接入控制单元)指示的空间关系信息,来确定使用的空间域发送滤波器
网络侧配置空间关系信息会为系统提供最大的灵活性,但同时也会为系统带来较大的信令开销。因此为节省信令开销,网络侧可以不配置空间关系信息。但是,在现有的确定空间域发送滤波器的方法中,网络侧未配置空间关系信息时无法确定上行传输的空间域发送滤波器。本申请以下具体实施方式将详细描述如何在基站A未配置空间关系信息时,确定上行传输的空间域发送滤波器。
在本系统架构中,该示例通信系统可以是全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,LTE(Long Term Evolution,长期演进)系统,5G(5th-Generation,第五代移动通信技术)NR(NR Radio Access,新无线接入)系统以及其他此类通信系统。该示例通信系统具体包括网络 侧设备和终端,终端接入网络侧设备提供的移动通信网络时,终端与网络侧设备之间可以通过无线链路通信连接,该通信连接方式可以是单连接方式或者双连接方式或者多连接方式,但通信连接方式为单连接方式时,网络侧设备可以是LTE基站或者NR基站(又称为gNB基站),当通信方式为双连接方式时(具体可以通过载波聚合CA技术实现,或者多个网络侧设备实现),且终端连接多个网络侧设备时,该多个网络侧设备可以是主基站MCG和辅基站SCG,基站之间通过回程链路backhaul进行数据回传,主基站可以是LTE基站,辅基站可以是LTE基站,或者,主基站可以是NR基站,辅基站可以是LTE基站,或者,主基站可以是NR基站,辅基站可以是NR基站。本申请具体实施方式所描述的接收侧RLC实体可以是终端或终端中的软件(如协议栈)和/或硬件(如调制解调器),同样的,发送侧RLC实体可以是网络侧设备或网络侧设备中的软件(如协议栈)和/或硬件(如调制解调器)。
本申请具体实施方式中,名词“网络”和“系统”经常交替使用,本领域技术人员可以理解其含义。
本申请具体实施方式所涉及到的用户终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文
中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请具体实施方式中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
图2是根据本申请具体实施方式的一种确定空间域发送滤波器的方法的流程图。如图2所示,该确定空间域发送滤波器的方法应用于用户终端,其可以包括以下步骤:
在步骤110中,根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。
其中,UE在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境的特性来改进接收算法。例如可以利用信道的统计特性来优化信道估计器的设计和参数。数据传输所对应的传输环境的特性通过QCL(Quasi Co-Location,准共址)信息来表示。
下行传输如果来自不同的TRP(Transmission and Reception Point,接收点)或panel(天线面板)或波束,则数据传输对应所对应的传输环境的特性可能也会有变化,因此网络侧在传输下行信道(包括下行控制信道和下行数据信道)或下行信号,会通过TCI-State(Transmission Configuration Indication-State,传输配置指示状态)将对应的QCL信息指示给UE。
TCI-State可以包含以下配置:TCI-State的标识,用于标识TCI-State,QCL信息1,QCL信息2(可选)。
QCL信息可以包含以下信息:QCL类型配置,可以包括QCL type(类型)A,QCL typeB,QCL typeC,QCL typeD中的一个。还可以包括QCL参考信号配置,包括参考信号所在的小区标识,带宽部分标识,以及参考信号的标识(可以是CSI-RS资源标识或SSB索引)。如果QCL信息1和QCL信息2都配置了,则至少一个QCL信息的QCL类型为typeA,typeB,typeC中的一个,另一个QCL信息的QCL类型为QCL typeD。
如果网络侧通过TCI-State配置的下行信道或下行信号的QCL参考信号为参考CSI-RS资源,或者参考SSB,且QCL类型配置为typeA或typeB或typeC,则UE可以假设下行信号与参考SSB或参考CSI-RS资源的大尺度参数相同,该大尺度参数通过QCL类型配置来确定。
如果网络侧通过TCI-State配置的下行信道或下行信号的QCL参考信号为参考CSI-RS资源,或者参考SSB,且QCL类型配置为typeD,则UE可以采用与接收参考SSB或参考CSI-RS资源,即参考信号相同的接收波束,来接收 下行信号。下行信道(或下行信号)与它的参考SSB或参考CSI-RS资源在网络侧由同一个TRP或者同一个panel或者相同的波束来传输。如果两个下行信号或下行信道的传输TRP或传输panel或传输波束不同,通常会配置不同的TCI-State。
对于下行控制信道,可以通过RRC信令或者RRC信令和MAC(Media Access Control,媒体接入控制)层信令的方式来指示激活TCI-State。
对于下行数据信道,可用的TCI-State集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI-State,最后通过DCI中的TCI-State指示域从激活的TCI-State中指示一个或两个TCI-State,用于DCI调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。两个TCI-State的情况针对于多个TRP的场景。
空间域发送滤波器为进行上行传输的空间域滤波器。根据网络侧配置的传输配置指示状态TCI-State中包含的信息,确定传输资源的空间域发送滤波器。配置信息和传输状况可以不包含空间关系信息。配置信息为该UE确定空间域发送滤波器的之前,UE配置的信号信息,包括:进行传输(发送和/或接收)资源的空间域发送滤波器信息,进行传输的信号的信息等。传输状况为UE之前进行传输的状态信息,包括:最近一次PUSCH传输的空间域发送滤波器,最近一次PUCCH传输的空间域发送滤波器等。根据UE的配置信息和/或传输状况,确定进行上行传输的空间域发送滤波器。从而不依赖于空间关系信息,确定空间域发送滤波器的。
此具体实施方式实现了根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器,解决无法不依赖于空间关系信息确定空间域发送滤波器的技术问题。
在一个示例性具体实施方式中,资源包括未配置对应的空间关系信息的资源。从而可以不依赖于空间关系信息,确定传输资源的空间域发送滤波器。
图3是本申请一种实施方式的一种确定空间域发送滤波器的的方法的 流程图。如图3所示,该步骤110包括:
则上述图2对应的具体实施方式中的步骤110在一个实施例的具体流程包括步骤111,步骤112,步骤113,步骤114,步骤115,步骤116,步骤117和步骤118。
在步骤111中,根据控制资源集CORESET对应的TCI-State中准共址QCL信息的类型typeD对应的参考信号,确定传输资源的空间域发送滤波器。
其中,CORESET(控制资源集)为新无线(NR)系统中的资源单位,CORESET可以配置有对应的TCI-State,TCI-State中包含有QCL信息的typeD。根据typeD对应参考信号,确定传输资源的空间域发送滤波器。
该CORESET可以为带宽部分中配置的标识最小的CORESET,通过采用相对固定的方式,降低UE对波束变化的跟踪或记录的操作,减少UE处理的复杂度;该CORESET也可以为带宽部分中配标识大于0中标识最小的CORESET,从而排除UE初始接入时就已经有的CORESET。
该CORESET还可以为调度载波中标识最小的CORESET,该调度载波用于传输下行控制信息(DCI)调度信息。通过采用相对固定的方式,降低UE对波束变化的跟踪或记录的操作,减少UE处理的复杂度;该CORESET还可以为调度载波中标识大于0中标识最小的CORESET,从而排除UE初始接入时就已经有的CORESET。
该TCI-State为该CORESET对应的激活的TCI-State,该激活的TCI-State可以是该CORESET对应的唯一一个TCI-State,也可以是该CORESET对应的多个TCI-State中,被媒体接入控制单元(MAC CE)信令激活了的某个TCI-State。
当该CORESET中对应的多个TCI-State未收到MAC CE信令进行激活时,即该CORESET不存在对应的激活的TCI-State,此时该TCI-State为CORESET对应的标识最小的TCI-State。
CORESET对应的TCI-State中QCL信息的typeD对应的参考信号包括信道状态信息参考信号(CSI-RS)和/或同步信号块,当参考信号为CSI-RS和/或SSB时,根据CORESET对应的TCI-State中QCL信息的typeD对应的参考信号,确定传输资源的空间域发送滤波器与接收参考信号的空间域滤波器相 同。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在步骤112中,根据最近一次物理上行共享信道PUSCH传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PUSCH传输使用的空间域滤波器相同。
其中,UE根据最近的一次PUSCH传输来确定传输资源的空间域发送滤波器,该空间域发送滤波器与最近一次PUSCH传输使用的空间域滤波器相同,从而当部分SRS资源配置空间关系信息,并且用来支持上行PUSCH传输时,充分利用上行波束动态指示来更新其他上行波束指示,采用相同的空间域滤波器作为空间域发送滤波器,增加系统灵活性,提高系统性能。
此具体实施方式的具体实现中,UE可以为依赖于上行波束扫描的波束对应性的UE。
在步骤113中,根据最近一次物理上行控制信道PUCCH传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PUCCH传输使用的空间域滤波器相同。
其中,UE根据最近的一次PUCCH传输来确定传输资源的空间域发送滤波器,该空间域发送滤波器与最近一次PUCCH传输使用的空间域滤波器相同,从而针对部分PUCCH资源配置空间关系信息的情况,采用相同的空间域滤波器作为空间域发送滤波器,减少UE处理的复杂度。
此具体实施方式的具体实现中,UE可以为依赖于上行波束扫描的波束对应性的UE。
在步骤114中,根据标识最小的PUCCH资源确定传输资源的空间域发送滤波器,空间域发送滤波器与标识最小的PUCCH资源使用的空间域滤波器相同。
其中,UE根据标识最小的PUCCH传输来确定传输资源的空间域发送滤波器,该空间域发送滤波器与标识最小的PUCCH传输使用的空间域滤波器相同,从而采用相对固定的方式减少UE处理复杂度。该标识最小的PUCCH资源也可以为标识大于0中标识最小的PUCCH资源,从而保证PUCCH资源 为UE专用的PUCCH资源。
此具体实施方式的具体实现中,UE可以为依赖于上行波束扫描的波束对应性的UE。
在步骤115中,根据接收主系统信息块所对应的同步信号块确定传输资源的空间域发送滤波器,空间域发送滤波器与接收同步信号块使用的空间域滤波器相同。
其中,UE根据接收主系统信息块(Master Information Block,MIB)对应的同步信号块(SS/PBCH block)来确定空间域发送滤波器的,该空间域发送滤波器与接收同步信号块使用的空间域滤波器相同,从而采用相对固定的方式减少UE处理复杂度。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在步骤116中,根据网络侧针对资源配置的路损参考信号确定传输资源的空间域发送滤波器,空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同。
其中,UE根据网络侧针对资源配置的路损参考信号确定传输资源的空间域发送滤波器,该空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同,从而使上行传输波束与传输路损参考信号的波束保持一致,可以保证传输时上行传输波束与路损计算对应性较好,避免两者差异过大,进而降低系统内的上行干扰。该路损参考信号可以为CSI-RS和/或SSB和/或定位信号(positioning reference signal)。当参考信号配置有多个时,可以选择标识最小的参考信号作为路损参考信号。
此具体实施方式的具体实现中,UE可以为依赖于上行波束扫描的波束对应性的UE。
在步骤117中,确定传输资源的空间域发送滤波器与随机接入响应的上行传输使用的空间域滤波器相同。
其中,确定传输资源的空间域发送滤波器与随机接入响应(Random Access Response,RAR)的空间域滤波器相同。
此具体实施方式的具体实现中,UE可以为依赖于上行波束扫描的波束 对应性的UE。
在步骤118中,根据最近一次物理随机接入信道PRACH传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PRACH传输使用的空间域滤波器相同,或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PRACH的成功传输使用的空间域滤波器相同。
其中,根据最近一次PRACH(Physical Random Access Channel,物理随机接入信道)传输确定传输资源的空间域发送滤波器,该空间域发送滤波器与最近一次PRACH传输使用的空间域滤波器相同,该最近一次PRACH传输可以为成功传输的PRACH传输,也可以为没有成功传输的PRACH传输。或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器,该空间域发送滤波器与最近一次PRACH的成功传输使用的空间域滤波器相同。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
此具体实施方式实现了确定进行资源传输空间域发送滤波器。
在一个示例性具体实施方式中,资源可以为SRS资源和/或支持定位的定位参考信号资源。其中,该资源可以在毫米波频段传输,SRS可以为支持码本传输的SRS资源,也可以为支持非码本传输的SRS资源,也可以为支持天线切换的SRS资源,还可以为支持定位的SRS资源,其中支持定位的SRS资源可以指的是有SRS信号构成的用于支持定位的定位参考信号资源。支持定位的定位参考信号资源可以是SRS构成,因此有时可以称为支持定位的SRS资源。
确定SRS资源的空间域发送滤波器可以根据CORESET对应的TCI-State中QCL信息的typeD对应的参考信号,确定传输资源的空间域发送滤波器与接收参考信号的空间域滤波器相同。
也可以根据最近一次物理上行共享信道PUSCH传输确定传输资源的空间域发送滤波器与最近一次PUSCH传输使用的空间域滤波器相同。
也可以根据最近一次物理上行控制信道PUCCH传输确定传输资源的空间域发送滤波器与最近一次PUCCH传输使用的空间域滤波器相同。
也可以根据标识最小的PUCCH资源确定传输资源的空间域发送滤波器与标识最小的PUCCH资源使用的空间域滤波器相同。
也可以根据接收主系统信息块所对应的同步信号块确定传输资源的空间域发送滤波器与接收同步信号块使用的空间域滤波器相同。
也可以根据网络侧针对资源配置的路损参考信号确定传输资源的空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同。
也可以确定传输资源的空间域发送滤波器与随机接入响应的上行传输使用的空间域滤波器相同。
也可以根据最近一次物理随机接入信道PRACH传输确定传输资源的空间域发送滤波器与最近一次PRACH传输使用的空间域滤波器相同,或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器与最近一次PRACH的成功传输使用的空间域滤波器相同。
在一个示例性具体实施方式中,资源可以为非周期SRS资源。资源为非周期SRS资源时,如果触发SRS资源的DCI和SRS资源不在一个载波上,则必须配置对应的空间信息关系。当资源为非周期SRS资源时,该CORESET可以为承载触发SRS资源传输的DCI的CORESET,此时DCI调度信息可以为激活非周期SRS资源的DCI,确定非周期SRS资源的空间域发送滤波器可以根据承载触发SRS资源传输的DCI的CORESET对应的TCI-State中QCL信息的typeD对应的参考信号,确定传输资源的空间域发送滤波器与接收该参考信号的空间域滤波器相同。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,资源可以为PUCCH资源。
其中,PUCCH资源可以为根据网络侧的PUCCH资源专用配置确定的PUCCH资源。
确定PUCCH资源的空间域发送滤波器可以根据CORESET对应的TCI-State中QCL信息的typeD对应的参考信号,确定传输资源的空间域发送滤波器与接收参考信号的空间域滤波器相同。
也可以根据最近一次物理上行共享信道PUSCH传输确定传输资源的空间域发送滤波器与最近一次PUSCH传输使用的空间域滤波器相同。
也可以根据最近一次物理上行控制信道PUCCH传输确定传输资源的空间域发送滤波器与最近一次PUCCH传输使用的空间域滤波器相同。
也可以根据标识最小的PUCCH资源确定传输资源的空间域发送滤波器与标识最小的PUCCH资源使用的空间域滤波器相同。
也可以根据接收主系统信息块所对应的同步信号块确定传输资源的空间域发送滤波器与接收同步信号块使用的空间域滤波器相同。
也可以根据网络侧针对资源配置的路损参考信号确定传输资源的空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同。
也可以确定传输资源的空间域发送滤波器与随机接入响应的上行传输使用的空间域滤波器相同。
也可以根据最近一次物理随机接入信道PRACH传输确定传输资源的空间域发送滤波器与最近一次PRACH传输使用的空间域滤波器相同,或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器与最近一次PRACH的成功传输使用的空间域滤波器相同。
在一个示例性具体实施方式中,PUCCH资源可以为承载非周期信道状态信息上报和/或DCI调度的物理下行共享信道PDSCH对应的混合自动重传请求确认HARQ-ACK信息和/或下行半持续调度释放对应的HARQ-ACK信息的PUCCH资源。
其中,PUCCH资源可以为承载非周期信道状态信息上报(CSI reporting)和/或DCI调度的PDSCH对应的HARQ-ACK信息和/或下行半持续调度PDSCH释放(Semi-Persistent Scheduling PDSCH release)对应的HARQ-ACK信息的PUCCH资源。此时该CORESET为承载触发PUCCH资源传输的DCI信令的CORESET,根据该CORESET对应的TCI-State中QCL信息的typeD对 应的参考信号,确定传输资源的空间域发送滤波器与接收参考信号的空间域滤波器相同。通过使用触发该非周期PUCCH传输的DCI所使用的下行传输波束来确定对应的空间域发送滤波器,从而根据灵活的下行传输波束来动态更新对应的空间域发送滤波器,增加系统灵活性,提高系统性能。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,PUCCH资源可以为承载半持续调度PDSCH对应的HARQ-ACK信息的PUCCH资源。
其中,PUCCH资源可以为承载半持续调度PDSCH(Semi-Persistent Scheduling PDSCH)对应的HARQ-ACK信息的PUCCH资源。此时该CORESET为承载激活半持续PDSCH的DCI信令的CORESET,根据该CORESET对应的TCI-State中QCL信息的typeD对应的参考信号,确定传输资源的空间域发送滤波器与接收参考信号的空间域滤波器相同。从而可以根据下行传输波束来更新对应的空间域发送滤波器,增加系统灵活性,提高系统性能。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,PUCCH资源可以为承载半持续信道状态信息上报的PUCCH资源。
其中,PUCCH资源可以为承载半持续信道状态信息上报(semi-persistent CSI reporting)的PUCCH资源。此时根据激活半持续信道状态信息上报的媒体接入控制单元(MAC CE)中指示的参考信号,确定传输资源的空间域发送滤波器,空间域发送滤波器与接收参考信号的空间域滤波器相同,或者空间域发送滤波器与发送参考信号的空间域滤波器相同。参考信号包括CSI-RS和/或SSB和/或SRS。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。也可以为依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,参考信号为信道状态信息参考信号和/或同步信号块时,确定传输资源的空间域滤波器,空间域滤波器与接收参考信号的空间域滤波器相同。
当参考信号为CSI-RS和/或SSB时,确定传输资源的空间域滤波器与接收参考信号的空间域滤波器相同。
此具体实施方式的具体实现中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,参考信号为SRS时,确定传输资源的空间域滤波器,空间域滤波器与发送参考信号的空间域滤波器相同。
当参考信号为SRS时,确定传输资源的空间域滤波器与发送参考信号的空间域滤波器相同。
此具体实施方式的具体实现中,UE可以为依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,UE可以为不依赖于上行波束扫描的波束对应性的UE。
在一个示例性具体实施方式中,UE可以为依赖于上行波束扫描的波束对应性的UE。
图4是用于实现根据本公开的各个实施方式的一种确定空间域发送滤波器的方法的装置框图。该装置执行图2任一所示的确定空间域发送滤波器的方法的全部或者部分步骤,如图4所示,该装置包括但不限于:确定模块210。
确定模块210,用于根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。
在一个示例性具体实施方式中,该确定模块210还用于:
根据控制资源集CORESET对应的TCI-State中准共址QCL信息的类型type D对应的参考信号,确定传输资源的空间域发送滤波器。
在一个示例性具体实施方式中,该确定模块210还用于:
根据最近一次物理上行共享信道PUSCH传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PUSCH传输使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
根据最近一次物理上行控制信道PUCCH传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PUCCH传输使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
根据标识最小的PUCCH资源确定传输资源的空间域发送滤波器,空间域发送滤波器与标识最小的PUCCH资源使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
根据接收主系统信息块所对应的同步信号块确定传输资源的空间域发送滤波器,空间域发送滤波器与接收同步信号块使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
根据网络侧针对资源配置的路损参考信号确定传输资源的空间域发送滤波器,空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
确定传输资源的空间域发送滤波器与随机接入响应的上行传输使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
根据最近一次物理随机接入信道PRACH传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PRACH传输使用的空间域滤波器相同,或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器,空间域发送滤波器与最近一次PRACH的成功传输使用的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
根据激活半持续信道状态信息上报的媒体接入控制单元中指示的参考信号,确定传输资源的空间域发送滤波器,空间域发送滤波器与接收参考信号的空间域滤波器相同,或者空间域发送滤波器与发送参考信号的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
参考信号为信道状态信息参考信号和/或同步信号块时,确定传输资源的空间域滤波器,空间域滤波器与接收参考信号的空间域滤波器相同。
在一个示例性具体实施方式中,该确定模块210还用于:
参考信号为SRS时,确定传输资源的空间域滤波器,空间域滤波器与发送参考信号的空间域滤波器相同。
上述装置中各个模块的功能和作用的实现过程详见上述具体实施方式提供的任意一种确定空间域发送滤波器的方法中对应步骤的实现过程,在此不再赘述。
图5是用于实现根据本公开的各个实施方式的一种确定空间域发送滤波器的方法的终端设备的硬件结构示意图。如图5所示,终端设备包括:处理器310,存储器320,终端设备的上述各组件通过总线系统实现相互之间 的通信连接。
该处理器310也可以是一个独立的元器件,也可以是多个处理元件的统称。例如,可以是CPU,也可以是ASIC,或者被配置成实施以上方法的一个或多个集成电路,如至少一个微处理器DSP,或至少一个可编程门这列FPGA等。
存储器320上存储可在处理器310上运行的程序,处理器310执行程序时,实现上述方法具体实施方式中确定空间域发送滤波器的方法部分或全部步骤。
本申请具体实施方式还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被执行时实现如上述方法具体实施方式中确定空间域发送滤波器的方法部分或全部步骤。
本申请具体实施方式还提供了一种计算机程序产品,其中,所述计算机程序产品存储于非瞬时性计算机可读存储介质,所述计算机程序被执行时实现如上述方法具体实施方式中确定空间域发送滤波器的方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请具体实施方式还提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,安装有所述芯片的设备执行如上述方法具体实施方式中确定空间域发送滤波器的方法的部分或全部步骤。
本申请具体实施方式还提供了一种计算机程序,所述计算机程序被执行时实现如上述方法具体实施方式中确定空间域发送滤波器的方法的部分或全部步骤。
本申请具体实施方式所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介 质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请具体实施方式所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请具体实施方式所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请具体实施方式的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请具体实施方式的具体实施方式而已,并不用于限定本申请具体实施方式的保护范围,凡在本申请具体实施方式的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请具体实施方式的保护范围之内。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精 确结构,并且可以在不脱离其范围执行各种修改和改变。本申请的范围仅由所附的权利要求来限制。
在前面部分方法和部分实施例中,描述了对应的UE类型,例如依赖于上行波束扫描的波束对应性的UE,和/或不依赖于上行波束扫描的波束对应性的UE。除了上述描述的限定以外,前述所有的方法和实施例还可以只用于依赖于上行波束扫描的波束对应性的UE,或者前述所有的方法和实施例还可以同时用于依赖于上行波束扫描的波束对应性的UE和不依赖于上行波束扫描的波束对应性的UE。
Claims (55)
- 一种确定空间域发送滤波器的方法,应用于终端设备,其特征在于,所述方法包括:根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。
- 根据权利要求1所述的方法,其特征在于,所述资源包括:未配置对应的空间关系信息的资源。
- 根据权利要求1或2所述的方法,其特征在于,所述根据网络侧配置的传输配置指示状态TCI-State,确定传输资源的空间域发送滤波器包括:根据控制资源集CORESET对应的TCI-State中准共址QCL信息的类型type D对应的参考信号,确定传输资源的空间域发送滤波器。
- 根据权利要求1至3任一权利要求所述的方法,其特征在于,所述CORESET包括:带宽部分中配置的标识最小的CORESET和/或调度载波中标识最小的CORESET,所述调度载波用于传输下行控制信息DCI调度信息。
- 根据权利要求4所述的方法,其特征在于,所述CORESET包括:所述标识大于0中标识最小的CORESET。
- 根据权利要求1至5任一权利要求所述的方法,其特征在于,所述TCI-State包括:所述CORESET对应的激活的TCI-State。
- 根据权利要求1至6任一权利要求所述的方法,其特征在于,所述TCI-State包括:当所述CORESET不存在对应的激活的TCI-State时,所述CORESET对应的标识最小的TCI-State。
- 根据权利要求1至7任一权利要求所述的方法,其特征在于,所述参考信号包括:信道状态信息参考信号和/或同步信号块。
- 根据权利要求1至8任一权利要求所述的方法,其特征在于,所述确定传输资源的空间域发送滤波器包括:确定传输资源的空间域发送滤波器与接收所述参考信号的空间域滤波器相同。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据最近一次物理上行共享信道PUSCH传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PUSCH传输使用的空间域滤波器相同。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据最近一次物理上行控制信道PUCCH传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PUCCH传输使用的空间域滤波器相同。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据标识最小的PUCCH资源确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述标识最小的PUCCH资源使用的空间域滤波器相同。
- 根据权利要求12所述的方法,其特征在于,所述标识最小的PUCCH资源包括:标识大于0中标识最小的PUCCH资源。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据接收主系统信息块所对应的同步信号块确定传输资源的空间域发送滤波器,所述空间域发送滤波器与接收所述同步信号块使用的空间域滤波器相同。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据网络侧针对所述资源配置的路损参考信号确定传输资源的空间域发送滤波器,所述空间域发送滤波器与接收所述路损参考信号使用的空间域滤波器相同。
- 根据权利要求15所述的方法,其特征在于,所述路损参考信号包括:信道状态信息参考信号和/或同步信号块和/或定位信号。
- 根据权利要求15或16所述的方法,其特征在于,所述路损参考信号包括:当参考信号配置有多个时,标识最小的参考信号。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:确定传输资源的空间域发送滤波器与随机接入响应的上行传输使用的空间域滤波器相同。
- 根据权利要求1或2所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据最近一次物理随机接入信道PRACH传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PRACH传输使用的空间域滤波器相同,或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PRACH的成功传输使用的空间域滤波器相同。
- 根据权利要求1至19任一权利要求所述的方法,其特征在于,所述资源包括:信道探测参考信号SRS资源和/或支持定位的定位参考信号资源。
- 根据权利要求1或20所述的方法,其特征在于,所述资源在毫米波频段传输。
- 根据权利要求20所述的方法,其特征在于,所述SRS资源包括:支持码本传输的SRS资源和/或支持非码本传输的SRS资源和/或支持天线切换的SRS资源和/或支持定位的SRS资源。
- 根据权利要求1至22任一权利要求所述的方法,其特征在于,所述资源包括:非周期SRS资源。
- 根据权利要求3或23任一权利要求所述的方法,其特征在于,所述控制资源集CORESET包括:承载触发所述SRS资源传输的DCI的CORESET。
- 根据权利要求4或23所述的方法,其特征在于,所述DCI调度信息 包括:激活所述非周期SRS资源的DCI。
- 根据权利要求1至19任一权利要求所述的方法,其特征在于,所述资源包括:PUCCH资源。
- 根据权利要求26所述的方法,其特征在于,所述PUCCH资源包括:根据网络侧的PUCCH资源专用配置确定的PUCCH资源。
- 根据权利要求26或27所述的方法,其特征在于,所述PUCCH资源包括:承载非周期信道状态信息上报和/或DCI调度的物理下行共享信道PDSCH对应的混合自动重传请求确认HARQ-ACK信息和/或下行半持续调度PDSCH释放对应的HARQ-ACK信息的PUCCH资源。
- 根据权利要求3或28所述的方法,其特征在于,所述控制资源集CORESET包括:承载触发所述PUCCH资源传输的DCI的CORESET。
- 根据权利要求26或27所述的方法,其特征在于,所述PUCCH资源包括:承载半持续调度PDSCH对应的HARQ-ACK信息的PUCCH资源。
- 根据权利要求3或30所述的方法,其特征在于,所述控制资源集CORESET包括:承载激活半持续PDSCH的DCI的CORESET。
- 根据权利要求26或27所述的方法,其特征在于,所述资源包括:承载半持续信道状态信息上报的PUCCH资源。
- 根据权利要求1或32所述的方法,其特征在于,所述根据配置信息和/或传输状况,确定传输资源的空间域发送滤波器包括:根据激活半持续信道状态信息上报的媒体接入控制单元中指示的参考信号,确定传输资源的空间域发送滤波器,所述空间域发送滤波器与接收所述参考信号的空间域滤波器相同,或者所述空间域发送滤波器与发送所述参考信号的空间域滤波器相同。
- 根据权利要求33所述的方法,其特征在于,所述参考信号包括:信道状态信息参考信号和/或同步信号块和/或SRS。
- 根据权利要求33或34所述的方法,其特征在于,所述根据激活半持续信道状态信息上报的媒体接入控制单元中指示的参考信号,确定传输资源的空间域发送滤波器包括:所述参考信号为信道状态信息参考信号和/或同步信号块时,确定传输资源的空间域滤波器,所述空间域滤波器与接收所述参考信号的空间域滤波器相同。
- 根据权利要求33或34所述的方法,其特征在于,所述根据激活半持续信道状态信息上报的媒体接入控制单元中指示的参考信号,确定传输资源的空间域发送滤波器包括:所述参考信号为SRS时,确定传输资源的空间域滤波器,所述空间域滤波器与发送所述参考信号的空间域滤波器相同。
- 根据权利要求1至36所述的方法,其特征在于,所述终端设备包括:不依赖于上行波束扫描的波束对应性的终端设备。
- 根据权利要求1至36所述的方法,其特征在于,所述终端设备包括:依赖于上行波束扫描的波束对应性的终端设备。
- 一种确定空间域发送滤波器的装置,其特征在于,所述装置包括:确定模块,用于根据网络侧配置的传输配置指示状态TCI-State和/或配置信息和/或传输状况,确定传输资源的空间域发送滤波器。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据控制资源集CORESET对应的TCI-State中准共址QCL信息的类型type D对应的参考信号,确定传输资源的空间域发送滤波器。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据最近一次物理上行共享信道PUSCH传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PUSCH传输使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据最近一次物理上行控制信道PUCCH传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PUCCH传输使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据标识最小的PUCCH资源确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述标识最小的PUCCH资源使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据接收主系统信息块所对应的同步信号块确定传输资源的空间域发送滤波器,所述空间域发送滤波器与接收所述同步信号块使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据网络侧针对所述资源配置的路损参考信号确定传输资源的空间域发送滤波器,所述空间域发送滤波器与接收所述路损参考信号使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:确定传输资源的空间域发送滤波器与随机接入响应的上行传输使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据最近一次物理随机接入信道PRACH传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PRACH传输使用的空间域滤波器相同,或者根据最近一次PRACH的成功传输确定传输资源的空间域发送滤波器,所述空间域发送滤波器与所述最近一次PRACH的成功传输使用的空间域滤波器相同。
- 根据权利要求39所述的装置,其特征在于,所述确定模块还用于:根据激活半持续信道状态信息上报的媒体接入控制单元中指示的参考信号,确定传输资源的空间域发送滤波器,所述空间域发送滤波器与接收所述参考信号的空间域滤波器相同,或者所述空间域发送滤波器与发送所述参考信号的空间域滤波器相同。
- 根据权利要求48所述的装置,其特征在于,所述确定模块还用于:所述参考信号为信道状态信息参考信号和/或同步信号块时,确定传输资源的空间域滤波器,所述空间域滤波器与接收所述参考信号的空间域滤波器相同。
- 根据权利要求48所述的装置,其特征在于,所述确定模块还用于:所述参考信号为SRS时,确定传输资源的空间域滤波器,所述空间域滤波器与发送所述参考信号的空间域滤波器相同。
- 一种终端设备,所述终端设备包括:处理器,存储器,其特征在于,所述存储器上存储可在所述处理器上运行的程序,所述处理器执行所述程序时,实现上述权利要求1至38中任意一项所述的确定空间域发送滤波器的方法。
- 一种计算机可读存储介质,其特征在于,其存储有计算机程序,其中,所述计算机程序被执行时实现如权利要求1至38任一项所述的确定空间域发送滤波器的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品存储于非瞬时性计算机可读存储介质,所述计算机程序被执行时实现如权利要求1至38任一项所述的确定空间域发送滤波器的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,安装有所述芯片的设备执行如权利要求1至38任一项所述的确定空间域发送滤波器的方法。
- 一种计算机程序,其特征在于,所述计算机程序被执行时实现如权利要求1至38任一项所述的确定空间域发送滤波器的方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980095218.0A CN113661662A (zh) | 2019-09-30 | 2019-09-30 | 确定空间域发送滤波器的方法及装置 |
CN202111342395.XA CN114071758B (zh) | 2019-09-30 | 2019-09-30 | 确定空间域发送滤波器的方法及装置 |
EP19948074.0A EP3961936A4 (en) | 2019-09-30 | 2019-09-30 | METHOD AND DEVICE FOR DETERMINING A SPACE-DOMAIN TRANSMISSION FILTER |
PCT/CN2019/109682 WO2021062761A1 (zh) | 2019-09-30 | 2019-09-30 | 确定空间域发送滤波器的方法及装置 |
US17/645,149 US20220116182A1 (en) | 2019-09-30 | 2021-12-20 | Method and apparatus for determining spatial domain transmission filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/109682 WO2021062761A1 (zh) | 2019-09-30 | 2019-09-30 | 确定空间域发送滤波器的方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/645,149 Continuation US20220116182A1 (en) | 2019-09-30 | 2021-12-20 | Method and apparatus for determining spatial domain transmission filter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021062761A1 true WO2021062761A1 (zh) | 2021-04-08 |
Family
ID=75336716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/109682 WO2021062761A1 (zh) | 2019-09-30 | 2019-09-30 | 确定空间域发送滤波器的方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220116182A1 (zh) |
EP (1) | EP3961936A4 (zh) |
CN (2) | CN113661662A (zh) |
WO (1) | WO2021062761A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210337494A1 (en) * | 2020-04-28 | 2021-10-28 | Samsung Electronics Co., Ltd. | Method and apparatus for indication and transmission of downlink signal/channel for initial access |
WO2022244951A1 (ko) * | 2021-05-21 | 2022-11-24 | 엘지전자 주식회사 | 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치 |
WO2023035184A1 (zh) * | 2021-09-09 | 2023-03-16 | Oppo广东移动通信有限公司 | 无线通信的方法和终端设备 |
WO2024031237A1 (zh) * | 2022-08-08 | 2024-02-15 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备和网络设备 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11329791B2 (en) * | 2019-11-01 | 2022-05-10 | Hannibal Ip Llc | Methods and apparatuses for default spatial relation information determination |
US11758556B2 (en) * | 2020-05-22 | 2023-09-12 | Qualcomm Incorporated | Uplink beam refinement based on sounding reference signal (SRS) with dynamic parameters |
WO2023164825A1 (en) * | 2022-03-02 | 2023-09-07 | Qualcomm Incorporated | Techniques for multiple prach transmissions |
CN117322097A (zh) * | 2022-04-28 | 2023-12-29 | 北京小米移动软件有限公司 | 物理上行共享信道配置方法、装置、通信设备和存储介质 |
WO2023236211A1 (en) * | 2022-06-10 | 2023-12-14 | Nec Corporation | Methods, devices, and medium for communication |
WO2023250124A1 (en) * | 2022-06-23 | 2023-12-28 | Ofinno, Llc | Beam indication and application with multiple carriers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190037426A1 (en) * | 2017-07-25 | 2019-01-31 | Mediatek Inc. | Method for Beam Management with Beam Indication in Wireless Communication Systems with Beamforming |
CN110073609A (zh) * | 2017-10-02 | 2019-07-30 | 联发科技股份有限公司 | 用于具有波束成形的无线通信系统的上行链路波束指示方法 |
CN110120862A (zh) * | 2018-02-06 | 2019-08-13 | 英特尔Ip公司 | 用于波束管理的装置和方法 |
CN110224802A (zh) * | 2018-09-28 | 2019-09-10 | 华为技术有限公司 | 传输信号的方法和通信装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109089322B (zh) * | 2017-06-14 | 2021-01-08 | 维沃移动通信有限公司 | 一种上行多波束传输方法、终端及网络设备 |
WO2019061367A1 (zh) * | 2017-09-29 | 2019-04-04 | 华为技术有限公司 | 数据传输的方法、终端设备和网络设备 |
US10917195B2 (en) * | 2018-05-21 | 2021-02-09 | Qualcomm Incorporated | Control channel mother code determination for multi-transmission configuration indication communication |
CA3056500A1 (en) * | 2018-09-24 | 2020-03-24 | Comcast Cable Communications, Llc | Beam failure recovery procedures |
-
2019
- 2019-09-30 EP EP19948074.0A patent/EP3961936A4/en active Pending
- 2019-09-30 CN CN201980095218.0A patent/CN113661662A/zh active Pending
- 2019-09-30 CN CN202111342395.XA patent/CN114071758B/zh active Active
- 2019-09-30 WO PCT/CN2019/109682 patent/WO2021062761A1/zh active Application Filing
-
2021
- 2021-12-20 US US17/645,149 patent/US20220116182A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190037426A1 (en) * | 2017-07-25 | 2019-01-31 | Mediatek Inc. | Method for Beam Management with Beam Indication in Wireless Communication Systems with Beamforming |
CN110073609A (zh) * | 2017-10-02 | 2019-07-30 | 联发科技股份有限公司 | 用于具有波束成形的无线通信系统的上行链路波束指示方法 |
CN110120862A (zh) * | 2018-02-06 | 2019-08-13 | 英特尔Ip公司 | 用于波束管理的装置和方法 |
CN110224802A (zh) * | 2018-09-28 | 2019-09-10 | 华为技术有限公司 | 传输信号的方法和通信装置 |
Non-Patent Citations (1)
Title |
---|
ERICSSON: "Remaining details of beam management", 3GPP DRAFT; R1-1721366 REMAINING DETAILS OF BEAM MANAGEMENT, vol. RAN WG1, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 16, XP051363826 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210337494A1 (en) * | 2020-04-28 | 2021-10-28 | Samsung Electronics Co., Ltd. | Method and apparatus for indication and transmission of downlink signal/channel for initial access |
WO2022244951A1 (ko) * | 2021-05-21 | 2022-11-24 | 엘지전자 주식회사 | 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치 |
US11916832B2 (en) | 2021-05-21 | 2024-02-27 | Lg Electronics Inc. | Method for transmitting and receiving sounding reference signal in wireless communication system, and apparatus therefor |
WO2023035184A1 (zh) * | 2021-09-09 | 2023-03-16 | Oppo广东移动通信有限公司 | 无线通信的方法和终端设备 |
WO2024031237A1 (zh) * | 2022-08-08 | 2024-02-15 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备和网络设备 |
Also Published As
Publication number | Publication date |
---|---|
CN114071758B (zh) | 2023-08-15 |
EP3961936A1 (en) | 2022-03-02 |
CN113661662A (zh) | 2021-11-16 |
CN114071758A (zh) | 2022-02-18 |
US20220116182A1 (en) | 2022-04-14 |
EP3961936A4 (en) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021062761A1 (zh) | 确定空间域发送滤波器的方法及装置 | |
US11569949B2 (en) | Communication method and communications apparatus | |
US20240276385A1 (en) | Channel configuration method and apparatus, power control method and apparatus, user equipment, base station and storage medium | |
US9419740B2 (en) | Access procedures for in-device coexistence interference avoidance | |
US9240846B2 (en) | Random access channel procedures for in-device coexistence interference avoidance | |
WO2020221349A1 (zh) | 波束失败上报的方法和装置 | |
WO2023070390A1 (zh) | 传输配置指示确定方法、装置、终端及存储介质 | |
WO2022079860A1 (ja) | 端末、無線通信方法及び基地局 | |
EP3334078B1 (en) | Pusch transmission method and user equipment in laa-lte system | |
WO2021159497A1 (zh) | 载波调度的方法及装置 | |
WO2021155554A1 (zh) | 信息接收的方法、发送的方法、装置和设备 | |
US20230008664A1 (en) | Terminal and radio communication method | |
WO2021159398A1 (zh) | 波束失败恢复的方法和装置 | |
JP7423782B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2021186701A1 (ja) | 端末、無線通信方法及び基地局 | |
JP7431179B2 (ja) | 端末、無線通信方法及びシステム | |
WO2021205668A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023226047A1 (zh) | 信道传输方法、装置、设备及可读存储介质 | |
JP7355842B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
JP7413403B2 (ja) | 端末、無線通信方法及びシステム | |
US11800322B2 (en) | Signalling for positioning latency control | |
WO2021168673A1 (zh) | 信息传输方法、装置、终端以及存储介质 | |
EP4037430B1 (en) | Channel quality feedback method and apparatus | |
WO2022039163A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022079859A1 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19948074 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19948074.0 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019948074 Country of ref document: EP Effective date: 20211122 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |