WO2023236211A1 - Methods, devices, and medium for communication - Google Patents

Methods, devices, and medium for communication Download PDF

Info

Publication number
WO2023236211A1
WO2023236211A1 PCT/CN2022/098245 CN2022098245W WO2023236211A1 WO 2023236211 A1 WO2023236211 A1 WO 2023236211A1 CN 2022098245 W CN2022098245 W CN 2022098245W WO 2023236211 A1 WO2023236211 A1 WO 2023236211A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
coreset
spatial domain
domain filter
terminal device
Prior art date
Application number
PCT/CN2022/098245
Other languages
French (fr)
Inventor
Yukai GAO
Peng Guan
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/098245 priority Critical patent/WO2023236211A1/en
Publication of WO2023236211A1 publication Critical patent/WO2023236211A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • Example embodiments of the present disclosure generally relate to the field of communication techniques and in particular, to methods, devices, and a computer readable medium for communication.
  • MIMO multiple input multiple output
  • 3GPP 3rd generation partnership project
  • multi-TRP/MTRP multi-transmission and reception point
  • the multi-TRP transmission is enhanced for other physical channels (such as, physical downlink control channel, PDCCH, physical uplink shared channel, PUSCH, and physical uplink control channel, PUCCH) , based on release 15/16 of 3GPP unified transmission configuration indicator (TCI) /spatial relation framework.
  • TCI transmission configuration indicator
  • the unified TCI framework is developed to replace/supplement release 15/16 TCI/spatial relation framework for beam indication. So far, although some proposals about the scenario of multi-TRP have been discussed and some agreements have been reached, there is still a plurality of pending issues needed to be discussed, such that the multi-TRP transmission may be better supported.
  • example embodiments of the present disclosure provide methods, devices and a computer storage medium for communication.
  • a method of communication comprises: receiving, at a terminal device from a network device, at least one configuration for at least one transmission configuration indicator (TCI) state; determining at least one spatial domain filter for a physical uplink control channel (PUCCH) based on a last downlink control information (DCI) of a plurality of DCIs and the at least one configuration; and transmitting, to the network device, the PUCCH with hybrid automatic repeat request (HARQ) information based on the at least one spatial domain filter.
  • TCI transmission configuration indicator
  • HARQ hybrid automatic repeat request
  • a method of communication comprises: transmitting, at a network device to a terminal device, at least one configuration for at least one transmission configuration indicator (TCI) state; transmitting a plurality of downlink control information (DCIs) to the terminal device; and receiving, from the terminal device, PUCCH with hybrid automatic repeat request (HARQ) information.
  • TCI transmission configuration indicator
  • DCIs downlink control information
  • a terminal device comprising a processor and a memory.
  • the memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the terminal device to perform the method according to the first aspect above.
  • a network device comprising a processor and a memory.
  • the memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the network device to perform the method according to the second aspect above.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first aspect or the second aspect above.
  • FIG. 1 illustrates an example communication network in which some embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure
  • FIGS. 3A-3B illustrate some example scenarios in which some embodiments of the present disclosure may be implemented
  • FIG. 4 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure
  • FIG. 5 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure
  • FIGS. 6A-6B illustrate some example scenarios in which some embodiments of the present disclosure may be implemented
  • FIG. 7 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure
  • FIG. 8 illustrates an example scenario in which some embodiments of the present disclosure may be implemented
  • FIG. 9 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure.
  • FIG. 10 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure.
  • FIG. 11 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , 5.5G, 5G-Advanced networks, or the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • Examples of terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also be incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a satellite, a unmanned aerial systems (UAS) platform, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
  • UAS unmanned aerial systems
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • Communications discussed herein may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.85G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , and the sixth (6G) communication protocols.
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • the terminal device or the network device may have Artificial intelligence (AI) or machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal device or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connection with the network device under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • test equipment e.g., signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, or channel emulator.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • transmission and reception point refers to an antenna array (with one or more antenna elements) available to the network device located at a specific geographical location.
  • TRP transmission and reception point
  • one panel refers to one or more antenna elements deployed at a terminal device or a network device.
  • the terms “panel” , “panel type” , “antenna element (s) ” , “antenna array (s) ” , “transmission reception point (s) ” , “TRPs” can be used interchangeably.
  • the terms “multiple TRPs” , “multi-TRP” , “M-TPR” , “MTRP” , “multiple TCI states” , “multi-TCI state” , “multi-TCI” , “M-TCI” and “MTCI” can be used interchangeably.
  • the terms “CORESETs” , “multiple CORESETs” , “multi-CORESET” , “multiple control resource set pools” , “multi-control resource set pool” , and “CORESET pool” can be used interchangeably, and the terms “pool” , “set” , “subset” , “group” and “subgroup” can be used interchangeably.
  • beam In the context of the present disclose, the terms “beam” , “spatial filter” , “spatial relation” , “spatial domain filter” , “UL TCI state” , “joint TCI state” , “UL beam” and “spatial relation information” can be used interchangeably.
  • the terms “transmission occasion” , “transmission” , “repetition” , “reception” , “reception occasion” , “monitoring occasion” , “PDCCH monitoring occasion” , “PDCCH transmission occasion” , “PDCCH transmission” , “PDCCH candidate” , “PDCCH reception occasion” , “PDCCH reception” , “PDCCH detection” , “DCI detection” , “DCI reception” , “search space” , “search space set” , “set of search spaces” , “CORESET” , “multi-chance” and “PDCCH repetition” can be used interchangeably.
  • the terms “PDCCH repetitions” , “repeated PDCCHs” and “repeated PDCCH signals” , “PDCCH candidates configured for same scheduling” can be used interchangeably.
  • the terms “DCI” , “DCI format with information” and “DCI format” can be used interchangeably.
  • the terms “TPC command value” , “TPC command” , “TPC” and “TPC command field” can be used interchangeably.
  • uplink transmission In the context of the present disclose, the terms “uplink transmission” , “uplink transmission occasion” , “uplink” , “PUSCH transmission” , “PUSCH transmission occasion” , “PUCCH transmission” , “PUCCH transmission occasion” , “PUSCH” , “PUCCH” , “SRS transmission” , “SRS transmission occasion” , “SRS” can be used interchangeably.
  • acknowledgement In the context of the present disclose, the terms “acknowledgement” , “positive acknowledgement” , “ACK” , “Hybrid automatic repeat request acknowledgement” , “HARQ-ACK” , “negative acknowledgement” , “NACK” , “NAK” , “ACK/NACK” and “ACK/NAK” can be used interchangeably.
  • a concept of unified TCI has been introduced. Specifically, a unified TCI state indicated in downlink control information (DCI) is to indicate (update) TCI state for future transmission, and the TCI state is applied after application timing.
  • DCI downlink control information
  • multi-beam operation based on unified TCI framework was introduced in release 17.
  • the UE can be configured with a list of up to 128 DLorJointTCIstate configurations, within the higher layer parameter PDSCH-Config for providing a reference signal for the quasi co-location (QCL) for demodulation reference signal (DM-RS) of PDSCH and DM-RS of PDCCH in a component carrier (CC) , for CSI-RS, and to provide a reference, if applicable, for determining uplink transmission (UL TX) spatial filer for dynamic-grant and configured-grant based PUSCH and PUCCH resource in a CC, and sounding reference signal (SRS) .
  • QCL quasi co-location
  • DM-RS demodulation reference signal
  • CC component carrier
  • SRS sounding reference signal
  • the UE can be configured with a list of up to 64 UL-TCIstate configures within the higher layer parameter BWP-UplinkDelicated.
  • Each UL-TCIstate configuration contains a parameter for configuring one reference signal, if applicable, for determining UL TX spatial filter for dynamic-grant and configured-grant based PUSCH and PUCCH resource in a CC, and SRS.
  • the unified TCI framework may be extended to multi-TRP case.
  • the PUCCH transmission with HARQ multiplexing cannot be well supported.
  • Embodiments of the present disclosure provide a solution of communication.
  • at least one spatial domain filter for PUCCH may be determined based on at least one configuration and a last DCI in a plurality of DCIs.
  • the PUCCH transmission with HARQ-ACK multiplexing may be well supported and the communication efficiency may be improved.
  • FIG. 1 illustrates an example communication network 100 in which some embodiments of the present disclosure can be implemented.
  • the communication network 100 includes a network device 110-1 and an optionally network device 110-2 (collectively or individually referred to as network device (s) 110) .
  • the communication network 100 further includes a terminal device 120.
  • the network device 110 can provide services to the terminal device 120.
  • the network device 110-1 is referred to as the first network device 110-1
  • the network device 110-2 is referred to as the second network device 110-2.
  • the first network device 101-1 and the second network device 110-1 can communicate with each other.
  • a link from the network devices 110 (such as, a first network device 110-1 or the second network device 110-2) to the terminal device 120 is referred to as a downlink
  • a link from the terminal device 120 to the network devices 110 is referred to as an uplink
  • the first network device 110-1 or the second network device 110-2 is a transmitting (TX) device (or a transmitter)
  • the terminal device 120 is a receiving (RX) device (or a receiver) .
  • the terminal device 120 is a transmitting TX device (or a transmitter) and the first network device 110-1 or the second network device 110-2 is a RX device (or a receiver) .
  • the network device (s) 110 and the terminal device 120 may communicate with direct links/channels.
  • the terminal device 120 may communicate with two TRPs, i.e., the TRPs 130-1 and 130-2 (collectively or individually referred to as TRP 130) .
  • TRP 130 the TRPs 130-1 and 130-2
  • the TRP 130-1 is referred to as the first TRP 130-1
  • the TRP 130-2 is referred to as the second TRP 130-2.
  • both a single TRP transmission mode and multi-TRP transmission mode are supported by the specific example of FIG. 1.
  • the terminal device 120 communicates with the network via the first TRP 130-1 or the second TRP 130-2.
  • the terminal device 120 communicates with the network via both of the first TRP 130-1 and the second TRP 130-2.
  • the network device 110 may be equipped with one or more TRPs.
  • the network device 110 may be coupled with multiple TRPs in different geographical locations to achieve better coverage.
  • the first network device 110-1 is equipped with the first TRP 130-1 and the second TRP 130-2.
  • the first network device 110-1 and the second network device 110-2 are equipped with the first TRP 130-1 and the second TRP 130-2, respectively.
  • the TRPs 130 may be explicitly associated with different higher-layer configured identities.
  • a higher-layer configured identity can be associated with a CORESET, a group of CORESETs, an RS, a set of RS, a TCI state or a group/set of TCI states.
  • the higher-layer configured identity may be used to differentiate between transmissions between different TRPs and the terminal device 120.
  • the terminal device 120 receives two DCI messages from two CORESETs which are associated with different higher-layer configured identities, the two DCI messages are indicated from different TRPs 130.
  • the TRPs 130 may be implicitly identified by a dedicated configuration to the physical channels or signals.
  • a dedicated CORESET, a RS, and a TCI state which are associated with a TRP 130, are used to identify a transmission from a different TRP 130 to the terminal device 120.
  • the terminal device 120 receives a DCI message from a dedicated CORESET, the DCI message is indicated from the associated TRP dedicated by the corresponding CORESET.
  • the network device 110 may configure a plurality of control resource sets (CORESETs) to the terminal device 120. Additionally, the plurality of CORESETs may be divided into different groups/subsets/pools. In one specific example embodiment, the first TRP 130-1 and the second TRP 130-2 are associated with different CORESET groups/subsets/pools. For example, the first TRP 130-1 is associated with a first CORESET group/subset/pool while the second TRP 130-2 is associated with a second CORESET group/subset/pool.
  • one CORESET may be associated with one or more search space sets.
  • One search space set may include or may be associated with one or more PDCCH candidates.
  • PDCCH monitoring periodicity and/or slot offset and/or symbol index within a slot can be configured per search space set.
  • one PDCCH candidate may be associated with or may correspond to a search space.
  • a procedure may be defined for determining PDCCH candidates for the terminal device 120. That is, determining the control-channel element (CCE) index (es) for each of a plurality of PDCCH candidates that is potentially to be used for PDCCH transmission between the network device 110 and the terminal device 120. With the CCE index for PDCCH candidates determined, the terminal device 120 can perform blind detection on these PDCCH candidates. Once PDCCH transmission is detected or received on a PDCCH candidate, the terminal device 120 may decode it to obtain information such as DCI.
  • CCE control-channel element
  • the network device 110 may pre-configure a plurality of TCI states for the terminal device 120 via such as a radio resource control (RRC) signalling.
  • RRC radio resource control
  • the multi-TRP/single TRP transmission may be scheduled by either a single DCI message or multiple DCI messages (i.e., multi-DCI/M-DCI) .
  • one or more pre-configured TCI states may be indicated by the single/multiple DCI messages.
  • the terminal device 120 when a multi-DCI (M-DCI) mode is applied, the terminal device 120 receives two DCI messages from the first TRP 130-1 and the second TRP 130-2, respectively.
  • the first TRP 130-1 and the second TRP 130-2 may be selectable activated and a directional transmission is achieved.
  • the terminal device 120 receives a single DCI message from the first TRP 130-1. It should be understood that the single DCI message also may be received from the second TRP 130-2.
  • the indicated TCI state may include any of below: a joint downlink/uplink TCI state (i.e., joint DL/UL TCI state or joint TCI state) or a downlink TCI state, and/or an uplink TCI state.
  • a joint DL/UL TCI state (joint TCI state) may be a TCI state for both downlink and uplink.
  • a downlink TCI state may be a TCI state for downlink.
  • an uplink TCI state may be a TCI state for uplink.
  • the network device 110 may communicate data and/or downlink control information and/or RS to the terminal device 120 via a plurality of beams (also referred to as “DL beams or joint beams” ) .
  • the terminal device 120 may also communicate data and/or uplink control information and/or RS to the network device 110 via a plurality of beams (also referred to as “UL beams or joint beams” ) .
  • a beam is also defined and indicated by parameters of a TCI. For example, there may be a TCI field in DCI. A value of the TCI field may be referred to as a “TCI codepoint” .
  • a TCI codepoint may indicate one or more TCI states.
  • Each TCI state contains parameters for configuring a QCL relationship between one or two DL and/or UL reference signals and the DMRS ports of the PDSCH, the DMRS ports of PDCCH, the DMRS ports of PUSCH, the DMRS ports of PUCCH, the SRS ports of a SRS resource or the CSI-RS ports of a CSI-RS resource.
  • a DCI (for example, DCI format 1_1/1_2 with and without downlink assignment) may be used for TCI state (s) indication.
  • a DCI with downlink scheduling or PDSCH scheduling may indicate at least one TCI state, and HARQ or ACK and/or NACK for the PDSCH or downlink scheduling can be used to indicate acknowledgement of the at least one TCI state indication.
  • the indicated TCI state may be applied. For example, be applied to PDSCH and/or PDCCH and/or PUSCH and/or PUCCH and/or downlink RS and/or uplink RS.
  • the terminal device 120 may receive or detect a DCI in a PDCCH, and the DCI may indicate a TCI state for downlink and uplink, or a TCI state for downlink, or a TCI state for uplink, or a pair of a TCI state for downlink and a TCI state for uplink.
  • the indicated TCI state for downlink and uplink or the indicated TCI state for downlink or the indicated TCI state for uplink or the pair of indicated TCI state for downlink and TCI state for uplink may be applied to PDSCH and/or CORESET and/or PUSCH and/or PUCCH and/or uplink RS and/or downlink RS after the application timing.
  • the TCI state for downlink and uplink when a TCI state for downlink and uplink is indicated in the DCI, the TCI state for downlink and uplink may be applied to PDSCH and/or CORESET and/or PUSCH and/or PUCCH and/or uplink RS and/or downlink RS after the application timing. In another specific example embodiment, when a TCI state for downlink is indicated in the DCI, the TCI state for downlink may be applied to PDSCH and/or CORESET and/or downlink RS after the application timing. In a further specific example embodiment, when a TCI state for uplink is indicated in the DCI, the TCI state for uplink may be applied to PUSCH and/or PUCCH and/or uplink RS after the application timing.
  • the TCI state for downlink may be applied to PDSCH and/or CORESET and/or downlink RS after the application timing
  • the TCI state for uplink may be applied to PUSCH and/or PUCCH and/or uplink RS after the application timing.
  • the terminal device 120 may receive an indication to indicate a TCI state for downlink (or a beam or a set of QCL parameters) , and the source RS (s) in the TCI state provides QCL information at least for reception on PDSCH and all of CORESETs in a CC.
  • the PDSCH is dedicated or UE-specific.
  • the terminal device 120 may receive an indication to indicate a TCI state for uplink (or a beam or a spatial relation) , and the source RS (s) in the TCI state provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and all of PUCCH resources in a CC.
  • the PUCCH is dedicated or UE-specific.
  • the terminal device 120 may receive an indication to indicate a TCI state for downlink and uplink (or a beam or a set of QCL parameters) , and the TCI state refers to at least a common source RS used for determining both the downlink QCL information and the uplink transmission spatial filter.
  • the terminal device 120 may receive an indication to indicate a TCI state for downlink (or a beam or a set of QCL parameters) and a TCI state for uplink (or a beam or a spatial relation) , and the source RS (s) in the TCI state for downlink provides QCL information at least for reception on PDSCH and all of CORESETs in a CC, and the source RS (s) in the TCI state for uplink provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and all of PUCCH resources in a CC.
  • the PUCCH is dedicated or UE-specific.
  • the PDSCH is dedicated or UE-specific.
  • the terminal device 120 may be configured with more than one (for example, represented as M, M may be one of ⁇ 1, 2, 3, 4 ⁇ ) TCI states for downlink, and/or the terminal device 120 may receive an indication to indicate one of the M TCI states, and the source RS (s) in the one of the M TCI states or in the indicated one TCI state provides QCL information at least for reception on PDSCH and/or a subset of CORESETs in a CC.
  • the PDSCH is dedicated or UE-specific.
  • the terminal device 120 may be configured with more than one (For example, represented as N, N may be one of ⁇ 1, 2, 3, 4 ⁇ ) TCI states for uplink, and/or the terminal device 120 may receive an indication to indicate one of the N TCI states, and the source RS (s) in the one of the N TCI states or in the indicated one TCI state provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and/or a subset of PUCCH resources in a CC.
  • the PUCCH is dedicated or UE-specific.
  • the terminal device 120 may be configured with more than one (For example, represented as M, M may be one of ⁇ 1, 2, 3, 4 ⁇ ) TCI states for downlink and uplink, and/or receive an indication to indicate one from the M TCI states for downlink and uplink, and each one of the M TCI states or the indicated one TCI state refers to at least a common source reference signal used for determining both the downlink QCL information and the uplink transmission spatial filter.
  • the terminal device 120 may be configured with more than one (For example, represented as M, M may be one of ⁇ 1, 2, 3, 4 ⁇ ) TCI states for downlink and the terminal device 120 may be configured with more than one (For example, represented as N, N may be one of ⁇ 1, 2, 3, 4 ⁇ ) TCI states for uplink, and/or the terminal device 120 may receive an indication to indicate one from the M TCI states for downlink and one from the N TCI states for uplink, and the source RS (s) in each one of the M TCI states for downlink or the indicated one TCI state for downlink provides QCL information at least for reception on PDSCH and/or a subset of CORESETs in a CC, and the source RS (s) in each one of the N TCI states for uplink or in the indicated one TCI state for uplink provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and/or a subset of PUCCH resources in a CC.
  • M may
  • a DCI may be used for indicating a TCI state for downlink and uplink or for indicating at least one of a TCI state for downlink and a TCI state for uplink. Further, the DCI may schedule a PDSCH. In some embodiments, the HARQ of the PDSCH scheduled by the DCI can be used as an ACK for the DCI.
  • a DCI may be used for indicating a TCI state for downlink and uplink or for indicating at least one of a TCI state for downlink and a TCI state for uplink. Further, the DCI may not schedule a PDSCH. In some embodiments, a HARQ of the DCI may be introduced to indicate whether the DCI or the TCI state indication is successful.
  • a DCI may be used for indicating one or more TCI states.
  • the one or more TCI states are for downlink and uplink.
  • one TCI state of the one or more TCI states is for downlink and another TCI state is for uplink.
  • the terminal device 120 may report an ACK. In some embodiments, upon a failed reception/decoding of the DCI, the terminal device 120 may report a NACK. For example, the ACK and/or NACK may be reported in a PUCCH or a PUSCH.
  • the terminal device 120 may be configured with a type of HARQ codebook.
  • the type may be at least one of Type 1 (for example, semi-static) , Type 2 (for example, dynamic) and Type 3 (one shot feedback) .
  • the type may be configured via such as, an RRC, MAC CE or DCI.
  • the DCI is received/detected in a PDCCH.
  • the terminal device 120 for a HARQ-ACK information bit, the terminal device 120 generates a positive ACK if the terminal device 120 detects a DCI format that provides a semi persistent scheduling (SPS) PDSCH release or a beam indication with CS-RNTI scrambled or correctly decodes a transport block, and generates a NACK if the terminal device 120 does not correctly decode the transport block.
  • SPS semi persistent scheduling
  • a HARQ-ACK information bit value of 0 represents a NACK while a HARQ-ACK information bit value of 1 represents an ACK.
  • the terminal device 120 may be configured/indicated with a first TCI state for reception of PDSCH and/or all or a subset of CORESETs. Further, the terminal device 120 may receive or detect a first PDCCH with the first TCI state, and the PDCCH is in a first CORESET. The terminal device 120 may be indicated with a second TCI state in the DCI received or detected in the first PDCCH. In some embodiments, the DCI in the first PDCCH may schedule or may not schedule a first PDSCH or a first PUSCH.
  • the terminal device 120 may report the decoding result or HARQ-ACK information for at least one of the DCI or the first PDCCH or the first PDSCH to the network device 110.
  • the decoding result or the HARQ-ACK information may be transmitted/reported in a PUCCH or in a second PUSCH.
  • the terminal device 120 may receive PDSCH and/or all or the subset of CORESETs with the second TCI state. In one specific example embodiment, the terminal device 120 may receive a second PDCCH with the second TCI state, and the second PDCCH is in a second CORESET. In another specific example embodiment, the terminal device 120 may receive a second PDCCH with the second TCI state, and the second PDCCH is in the first CORESET.
  • the network device (s) 110 may provide one or more serving cells, and the first TRP 130-1 and the second TRP 130-2 may be included in a same serving cell or different serving cells. In other words, both an inter-cell transmission and an intra-cell transmission are supported by the specific example of FIG. 1.
  • Some example embodiments for TCI state updating are provided on unified TCI framework extension for M-DCI based MTRP.
  • it is proposed to use the existing TCI field in the DCI format 1_1/1_2 (with or without DL assignment) associated with one of CORESETPoolIndex values to indicate the joint/DL/UL TCI state (s) corresponding to the same CORESETPoolIndex value.
  • the existing TCI field in any DCI format 1_1/1_2 (with or without DL assignment) to indicate all joint/DL/UL TCI states corresponding to both CORESETPoolIndex values.
  • the association between the indicated joint/DL/UL TCI state (s) and a CORESETPoolIndex value may be studied.
  • mapping/association is based on a fixed mapping/association rule, e.g., the first indicated joint/DL TCI state always applies to PDCCH receptions. And it is noted that these examples may be considered for PDCCH repetition, PDCCH-SFN, PDCCH w/o repetition/SFN, and potential support of dynamic switching between S-TRP and M-TRP for PDCCH.
  • some examples are provided to map/associate an indicated joint/DL TCI state to PDCCH on the CC/BWP.
  • the UE should apply the indicated joint/DL TCI state respective to the CORESETPoolIndex value to PDCCH receptions on the CORESET. For example, it is proposed to further study whether an explicit association between an indicated joint/DL TCI state and a CORESETPoolIndex value is needed, or association can be determined implicitly.
  • RRC configuration other than CORESETPoolIndex per CORESET it is proposed to use RRC configuration other than CORESETPoolIndex per CORESET to inform the UE which indicated joint/DL TCI state should apply to PDCCH receptions on the CORESET.
  • RRC configuration other than CORESETPoolIndex per search space set to inform the UE which indicated joint/DL TCI state should apply to PDCCH receptions on the search space set.
  • it is proposed to study whether the indicated joint/DL TCI state also applies to other channels/signals that are explicitly or implicitly associated with the CORESETPoolIndex value.
  • the communications in the communication environment 100 may conform to any suitable standards including, but not limited to, Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , 5.5G, 5G-Advanced networks, or the sixth generation (6G) communication protocols.
  • the communication network 100 may include any suitable numbers of devices adapted for implementing embodiments of the present disclosure.
  • FIG. 2 illustrates a signalling chart illustrating communication process 200 in accordance with some example embodiments of the present disclosure. Only for the purpose of discussion, the process 200 will be described with reference to FIG. 1.
  • the process 200 may involve the terminal device 120, the network device 110 (either or both of the first network device 110-1 or the second network device 110-2) , and the TRPs 130 (including at least one of the first TRP 130-1 and the second TRP 130-2) .
  • first TRP 130-1 is connected to the first network device 110-1
  • second TRP 130-2 is connected to the first network device 110-1 or the second network device 110-2.
  • first TRP 130-1 and the second TRP 130-2 may be in a same serving cell and in different serving cells.
  • the operations at the terminal device 120 and the network device 110 should be coordinated.
  • the network device 110 and the terminal device 120 should have common understanding about configuration, state, parameters and so on. Such common understanding may be implemented by any suitable interactions between the network device 110 and the terminal device 120 or both the network device 110 and the terminal device 120 applying the same rule/policy.
  • the corresponding operations should be performed by the network device 110.
  • the corresponding operations should be performed by the terminal device 120.
  • some operations are described from a perspective of the network device 110, it is to be understood that the corresponding operations should be performed by the terminal device 120.
  • some of the same or similar contents are omitted here.
  • the interactions are performed among the terminal device 120 and the network device 110. It is to be understood that the interactions may be implemented either in one single signalling/message or multiple signalling/messages, including system information, RRC message, DCI message, uplink control information (UCI) message, media access control (MAC) control element (CE) and so on.
  • system information RRC message, DCI message, uplink control information (UCI) message, media access control (MAC) control element (CE) and so on.
  • the network device 110 transmits 212 at least one configuration 214 to the terminal device 120.
  • the at least one configuration 214 may also be called as at least one indication.
  • a configuration or an indication may indicate a mapping or an association between at least one TCI state and a CORESET or a CORESET group/subset/pool or a search space set.
  • the at least one TCI state may comprise at least one joint TCI state or at least one UL TCI state or at least one DL TCI state.
  • the configuration/indication may indicate mapping/association between a configured or indicated joint/DL TCI state or an UL TCI state and a CORESET or a CORESET group/subset/pool or a search space set.
  • the at least one configuration 214 may be informed by RRC, MAC or DCI.
  • a RRC signalling is transmitted from the network device 110 to the terminal device 120, and the RRC signalling includes the at least one configuration 214.
  • the at least one configuration 214 comprises a first configuration and a second configuration.
  • the network device 110 may transmit the first configuration and the second configuration included in a same signalling/message or included in different signalling/messages.
  • the first configuration may be transmitted from a first TPR 130-1 and the second configuration may be transmitted from a second TRP 130-2.
  • the at least one configuration 214 may indicate the mapping/association between a configured or indicated joint/DL TCI state and a CORESET or a CORESET group/subset/pool or a search space set. In some embodiments, the at least one configuration 214 may also be used to indicate the mapping/association between a configured or indicated joint/UL TCI state and a PUCCH for HARQ-ACK feedback corresponding to DCI or corresponding to PDSCH scheduled by a DCI in PDCCH. It is noted that a PDCCH corresponds to a CORESET or a CORESET group/subset/pool or a search space set.
  • the mapping/association between a configured or indicated joint TCI state and a CORESET or a CORESET group/subset/pool or a search space set may be indicated, and the joint TCI state may be a TCI state for both downlink and uplink.
  • mapping/association between a configured or indicated UL TCI state and a CORESET or a CORESET group/subset/pool or a search space set may be indicated.
  • mapping/association between a configured or indicated DL TCI state and a CORESET or a CORESET group/subset/pool or a search space set may be indicated.
  • a DL TCI state may be associated with one UL TCI state, for example, the DL TCI state and the UL TCI state are in a pair.
  • the at least one configuration may indicate an association of a DL TCI state with an UL TCI state.
  • the mapping/association between an UL TCI state (corresponding to the configured or indicated DL TCI state) and a CORESET or a CORESET group/subset/pool or a search space set may be also indicated.
  • the configuration/indication may be CORESETPoolIndex.
  • a TCI field may comprise CORESETPoolIndex to indicate the mapping/association between a configured or indicated joint/DL TCI state and a CORESET or a CORESET group/subset/pool or a search space set.
  • a value of a configuration may be CORESETPoolIndex. It is to be understood that the value of the configuration may be in other forms and the present disclosure does not limit this aspect.
  • the at least one configuration 214 may indicate at least one of: an association of at least one TCI state with at least one CORESET (including an association of a TCI state with a CORESET) , an association of at least one TCI state with a CORESET group, an association of at least one TCI state with at least one search space set, and an association of a DL TCI state with an UL TCI state.
  • the at least one configuration 214 may indicates an association of two TCI states with a CORESET (or a search space set) , where the two TCI states may include a first TCI state and a second TCI state.
  • the at least one configuration 214 comprises a first configuration and a second configuration, where the first configuration indicates an association of a first TCI state with a first CORESET (or a first search space set) and the second configuration indicates an association of a second TCI state with a second CORESET (or a second search space set) .
  • the first TCI state may be a DL TCI state or a joint TCI state or an UL TCI state
  • the second TCI state may be a DL TCI state or a joint TCI state or an UL TCI state.
  • the following description is based on that the first TCI state is a joint/UL TCI state and the second TCI state is another joint/UL TCI.
  • the terminal device 120 receives 216 the at least one configuration 214.
  • the network device 110 may transmit a plurality of DCIs to the terminal device 120. And accordingly, the terminal device 120 may receive the plurality of DCIs from the network device 110.
  • the plurality of DCIs may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
  • the terminal device 120 determines 220 at least one spatial domain filter for PUCCH based on the at least one configuration 214 and a last DCI of the plurality of DCIs.
  • the spatial domain filter may also be called as spatial relation or transmission scheme, and the present disclosure does not limit this aspect.
  • DCI may also be called as DCI message or DCI format, and accordingly, the last DCI may be called as the last DCI format for example.
  • the plurality of DCIs may have a same value of a feedback timing indicator, exclude semi persistent scheduling (SPS) activation DCIs, and/or indicate a same time unit for PUCCH transmission.
  • the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
  • a last DCI format may be the DCI format that the terminal device 120 detects in a last PDCCH monitoring occasion from the PDCCH monitoring occasions for which the terminal device 120 would provide HARQ-ACK information in a PUCCH in a same slot.
  • detected DCI formats may be first indexed in an ascending order across serving cells indexes for a same PDCCH monitoring occasion and may be then indexed in an ascending order across PDCCH monitoring occasion indexes.
  • detected DCI formats from PDCCH receptions in the first CORESETs are indexed prior to detected DCI formats from PDCCH receptions in the second CORESETs for indexing DCI formats within a serving cell for a same PDCCH monitoring occasion.
  • the terminal device 120 is not provided the at least one configuration or not provided CORESETPoolIndex or is provided the at least one configuration or is provided CORESETPoolIndex with a first value (For example, value 0) for one or more first CORESETs and is provided the at least one configuration or is provided CORESETPoolIndex with a second value (For example, value 1) for one or more second CORESETs on an active DL bandwidth part (BWP) of a serving cell.
  • the terminal device 120 may determine the at least one spatial domain filter based on the at least one configuration and a PDCCH in which the last DCI is detected.
  • the PDCCH in which the last DCI detected may be associated with a CORESET or a search space set. And it may be determined that the CORESET or the search space set is associated with one or more TCI states (a first TCI state and/or a second TCI state) based on the at least one configuration.
  • the terminal device 120 may determine a CORESET or a search space set associated with the PDCCH in which the last DCI is detected; and further determine the at least one spatial domain filter based on the TCI state (s) being determined based on the at least one configuration and the CORESET or the search space set, where the CORESET or the search space set is associated with at least one of the first TCI state and the second TCI state.
  • the terminal device 120 may determine the at least one spatial domain filter based on the first TCI state. In case the CORESET or the search space set is associated with the second TCI state, the terminal device 120 may determine the at least one spatial domain filter based on the second TCI state. In case the CORESET or the search space set is associated with the first TCI state and the second TCI state, the terminal device 120 may determine the at least one spatial domain filter based on the first TCI state and the second TCI state.
  • the terminal device 120 may determine the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, where at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with the PDCCH in which the last DCI is detected.
  • the first TCI state may be applied to the CORESET or the search space set associated with the PDCCH in which the last DCI is detected.
  • the first TCI state and the second TCI state may both be applied to the CORESET or the search space set associated with the PDCCH in which the last DCI is detected.
  • the first TCI state and/or the second TCI sate may be a joint TCI state.
  • the one spatial domain filter for the PUCCH transmission with HARQ-ACK information may be based on the indicated DLorJointTCIState or UL-TCIstate associated with the same value or same configuration of the at least one configuration which is associated with the CORESET or search space set or PDCCH, wherein the last DCI format is detected in the PDCCH or search space set or CORESET.
  • the PDCCH or the occasion/candidate of the PDCCH is in the CORESET or search space set.
  • the terminal device 120 may determine a PUCCH resource on the cell of the PUCCH transmission, after determining a set of PUCCH resources for a plurality of HARQ-ACK information bits.
  • the PUCCH resource determination may be based on a PUCCH resource indicator field, if present, in a last DCI format, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the terminal device 120 detects and for which the terminal device 120 transmits corresponding HARQ-ACK information in the PUCCH.
  • detected DCI formats may be first indexed in an ascending order across serving cells indexes for a same PDCCH monitoring occasion and may be then indexed in an ascending order across PDCCH monitoring occasion indexes.
  • the DCI format does not include a PUCCH resource indicator field, the value of
  • the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated DLorJointTCIState or UL-TCIstate associated with the CORESET or the search space set, wherein the last DCI format is detected in the PDCCH associated with the CORESET or the search space set.
  • the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated UL-TCIstate which is associated with same configuration or same value of the at least one configuration with that associated with the CORESET or the search space set, wherein the last DCI format is detected in the PDCCH associated with the CORESET or the search space set.
  • the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated DLorJointTCIState for the PDCCH reception, wherein the last DCI format is detected.
  • the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated UL-TCIstate which is associated with same configuration or same value of the at least one configuration with that associated with the indicated DLorJointTCIState for the PDCCH reception, wherein the last DCI format is detected.
  • the terminal device 120 may transmit the PUCCH resource using one or more spatial domain filters based on the (one or more) indicated DLorJointTCIState applied to the PDSCH scheduled by the last DCI format.
  • the terminal device 120 may transmit the PUCCH resource using one or more spatial domain filters based on the one or two indicated UL-TCIstate which is associated with same configuration or same value of the at least one configuration with that associated with the one or two indicated DLorJointTCIState for the PDSCH scheduled by the last DCI format.
  • the terminal device 120 may determine the at least one spatial domain filter based on the at least two CORESET or at least two search space sets for PDCCH repetition, where the last DCI is detected in part of or all of the at least two CORESET or the at least two search space sets.
  • a first CORESET (or a first search space set) and second CORESET (or a second search space set) may be determined.
  • the terminal device 120 may determine a first TCI state based on the first CORESET or the first search space set, and determine a second TCI state based on the second CORESET or the second search space set. Further, the terminal device 120 may determine the at least one spatial domain filter based on the first TCI state and the second TCI state.
  • the terminal device 120 may determine the at least one spatial domain filter based on a first TCI state and a second TCI state, where the first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set.
  • the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition.
  • the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search space set and the second search space set.
  • the first TCI state may be applied to the first CORESET or the first search space set, and/or the second TCI state may be applied to the second CORESET or the second search space set.
  • the first TCI state and/or the second TCI sate may be a joint TCI state.
  • the at least one spatial domain filter may be one spatial domain filter, for example, it may be called as a first spatial domain filter. Accordingly, the terminal device 120 may determine the first spatial domain filter based on the first TCI state and/or the second TCI state. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may determine the first spatial domain filter as the one for PUCCH.
  • the terminal device 120 may determine the first spatial domain filter based on a TCI state with a lower identity (ID) from the first TCI state and the second TCI state. For example, if the ID of the first TCI state is lower than the ID of the second TCI state, the terminal device 120 may determine the first spatial domain filter based on the first TCI state. For example, if the ID of the second TCI state is lower than the ID of the first TCI state, the terminal device 120 may determine the first spatial domain filter based on the second TCI state.
  • ID identity
  • the terminal device 120 may determine the first spatial domain filter based on the first TCI state. For example, if the first TCI state is listed (or ordered or sorted) before the second TCI state, the terminal device 120 may determine the first spatial domain filter based on the first TCI state. That is, a TCI state which is the first one of the TCI states may be determined, and may be used for determining the first spatial domain filter.
  • the terminal device 120 may determine the first spatial domain filter based on a TCI state associated with a CORESET (or a search space set) with a lower ID.
  • the at least one configuration may indicate an association of a first TCI state with a first CORESET (or a first search space set) and indicate an association of a second TCI state with a second CORESET (or a second search space set) . If the ID of the first CORESET is lower than the ID of the second CORESET, the terminal device 120 may determine the first spatial domain filter based on the first TCI state associated with the first CORESET. If the ID of the second CORESET is lower than the ID of the first CORESET, the terminal device 120 may determine the first spatial domain filter based on the second TCI state associated with the second CORESET.
  • the terminal device 120 may determine the first spatial domain filter based on the first TCI state associated with the first search space set. If the ID of the second search space set is lower than the ID of the first search space set, the terminal device 120 may determine the first spatial domain filter based on the second TCI state associated with the second search space set.
  • the terminal device 120 may determine the first spatial domain filter based on a TCI state which is determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET, or the terminal device 120 may determine the first spatial domain filter based on a TCI state which is determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
  • the spatial domain filter (such as the first spatial domain filter) for PUCCH may be determined based on the last DCI and the at least one configuration, and further the HARQ-ACK multiplexing may be supported.
  • the at least one spatial domain filter 224 may be more than one spatial domain filter, for example, including a first spatial domain filter and a second spatial domain filter. Accordingly, the terminal device 120 may determine the first spatial domain filter and the second spatial domain filter based on the first TCI state and the second TCI state.
  • the PDCCH in which the last DCI detected is one of a plurality of PDCCH candidates. In some examples, the PDCCH in which the last DCI detected is overlapped with one of the plurality of PDCCH candidates. In some examples, PDCCH in which the last DCI detected is scrambled in a same way as one of the plurality of PDCCH candidates. In some examples, PDCCH in which the last DCI detected is using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the terminal device 120 may determine more than one spatial domain filter. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may determine more than one spatial domain filter. In some examples, the terminal device 120 may determine the first spatial domain filter based on the first TCI state and determine the second spatial domain filter based on the second TCI state.
  • the terminal device 120 transmits 232 PUCCH with HARQ information 234 to the network device 110, based on the at least one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 236 PUCCH with HARQ information 234.
  • the HARQ information may correspond to the plurality of DCIs. In some examples, the HARQ information may correspond to some of the plurality of DCIs. In some examples, the HARQ information may correspond to at least one PDSCHs scheduled by the plurality of DCIs.
  • the terminal device 120 may transmit PUCCH with HARQ information 234 using (or with) the at least one spatial domain filter.
  • the HARQ information may be called as HARQ-ACK information.
  • the at least one spatial domain filter comprises a first spatial domain filter, and the transmission of PUCCH is based on the first spatial domain filter. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may transmit PUCCH using the first spatial domain filter.
  • the at least one spatial domain filter comprises more than one spatial domain filter, for example, including a first spatial domain filter and a second spatial domain filter, and the transmission of PUCCH is based on the first spatial domain filter and the second spatial domain filter.
  • the terminal device 120 may transmit the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
  • the terminal device 120 may transmit PUCCH using the first spatial domain filter and the second spatial domain filter simultaneously.
  • the terminal device 120 may transmit a first set of occasions of the PUCCH based on the first spatial domain filter, and transmit a second set of occasions of the PUCCH based on the second spatial domain filter.
  • the terminal device 120 may transmit PUCCH using the first spatial domain filter, and later may retransmit the PUCCH using the second spatial domain filter. For example, if simultaneous transmission is enabled or configured and then the terminal device 120 may transmit two occasions of the PUCCH using the first spatial domain filter and the second spatial domain filter respectively. That is, the first spatial domain filter and the second spatial domain filter are applied for each PUCCH transmission occasion simultaneously. It is noted that the simultaneous transmission of PUCCH may be based on enabling of simultaneous transmission of PUSCH, the present disclosure does not limit this aspect.
  • the terminal device 120 may determine at least one spatial domain filter for PUCCH based on at least one configuration and a last DCI, thus HARQ-ACK multiplexing may be supported. Thus, there may be no need to transmit feedbacks separately and the communication efficiency may be improved.
  • FIGS. 3A-3B illustrate some example scenarios in which some embodiments of the present disclosure may be implemented.
  • the example scenario 310 in the example scenario 310, there are a first PDCCH 312 associated with a first configuration and a second PDCCH 322 associated with a second configuration. Since the last DCI is detected in the second PDCCH 322, the PUCCH 332 with HARQ information is transmitted based on a spatial domain filter determined based on a second TCI state which is associated with the second configuration.
  • PUCCH 334 with HARQ information is transmitted based on at least one spatial domain filter determined based on a first TCI state and a second TCI state which are associated with the first and the second configurations respectively.
  • FIG. 4 illustrates a signalling chart illustrating communication process 400 in accordance with some example embodiments of the present disclosure. Only for the purpose of discussion, the process 400 will be described with reference to FIG. 1.
  • the network device 110 transmits 412 at least one configuration 414 to the terminal device 120. Accordingly, on the other side of the communication, the terminal device 120 receives 416 the at least one configuration 414. It is to be understood that the description on at least one configuration 214 when referring to FIG. 2 may be applied to the at least one configuration 414 in FIG. 4, and the similar disclosure will not be repeated herein.
  • the network device 110 may transmit 422 a plurality of DCIs 424 to the terminal device 120. Accordingly, the terminal device 120 may receive 426 the plurality of DCIs 424 from the network device 110. In some examples, the plurality of DCIs 424 may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
  • there may be a plurality of CCs/BWPs/cells comprising a first set of CCs/BWPs/cells sharing a first set of TCI state (s) and a second set of CCs/BWPs/cells sharing a second set of TCI state (s) .
  • the plurality of DCIs 424 may comprise a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells. And it is pre-configured or pre-indicated that the PUCCH is to be transmitted in a cell of the first set of cells (or a CC in a first set of CCs) .
  • the cell of the first set of cells may be a Pcell, Pscell, or a PUCCH-scell.
  • the network device 110 may determine 427 whether a last DCI of the plurality of DCIs 424 is associated with the first set of cells.
  • the first set of TCI state (s) may include one or two joint TCI states.
  • the first set of TCI state (s) may include one or two downlink TCI states and/or one or two uplink TCI states.
  • the second set of TCI state (s) may include one or two joint TCI states.
  • the second set of TCI state (s) may include one or two downlink TCI states and/or one or two uplink TCI states.
  • the plurality of DCIs may have a same value of a feedback timing indicator, exclude SPS activation DCIs, and/or indicate a same time unit for PUCCH transmission.
  • the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
  • the terminal device 120 determines 428 at least one spatial domain filter for PUCCH based on the at least one configuration 414 and the determination at 427.
  • the last DCI is associated with the first set of cells.
  • the last DCI is associated with a CORESET or a search space set in the first set of cells.
  • a PDCCH in which the last DCI detected is associated with a CORESET or a search space set in the first set of cells.
  • the last DCI is one of the first set of DCIs in the first set of cells.
  • the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission and associated with a CORESET in the first set of cells, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
  • the terminal device 120 may determine at least one of a first TCI state and a second TCI state (a first TCI state and/or a second TCI state) based on the at least one configuration and the CORESET or the search space set associated with the last DCI or the PDCCH in which the last DCI detected, and the terminal device 120 may determine the at least one spatial domain filter for PUCCH based on at least one of the first TCI state and the second TCI state.
  • the last DCI is not associated with the first set of cells.
  • the last DCI is not associated with a CORESET or search space set in the first set of cells.
  • the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state with a lowest ID among TCI states applied for the first set of cells. In some examples, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state with a lower ID between a first TCI state and a second TCI state, where the first TCI state and the second TCI state are applied for the first set of cells. In some specific examples, the first TCI state and the second TCI state are applied for the cell, in the first set of cells, at which the PUCCH is to be transmitted.
  • the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state associated with a CORESET having a lowest ID among a plurality of CORESETs in the first set of cells. In some examples, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state associated with a CORESET having a same value of the at least one configuration as a CORESET for the last DCI. For example, a CORESET associated with the last DCI may be determined, CORESET 1 for example; a configuration (configuration 1 for example) indicated an association of CORESET 1 with TCI state (s) may be determined and a value of configuration 1 (value 1 for example) may be further determined. CORESET with the same value (CORESET 2 with value 1) may be determined from the plurality of CORESETs in the first set of cells, and the TCI state associated with CORESET 2 may be further determined.
  • a value of a configuration may be represented as CORESETPoolIndex. If the CORESET for the last DCI is not configured with CORESETPoolIndex, the value may be assumed to be 0. The present disclosure does not limit this aspect.
  • the terminal device 120 transmits 432 PUCCH with HARQ information 434 in the cell of the first set of cells to the network device 110, based on the at least one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 436 PUCCH with HARQ information 434. In some examples, the terminal device 120 may transmit the PUCCH in the cell to the network device 110 by using the at least one spatial domain filter.
  • FIG. 5 illustrates a signalling chart illustrating communication process 500 according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 500 will be described with reference to FIG. 1.
  • the network device 110 transmits 512 at least one configuration 514 to the terminal device 120. Accordingly, on the other side of the communication, the terminal device 120 receives 516 the at least one configuration 514.
  • the network device 110 may transmit 522 a plurality of DCIs 524 to the terminal device 120. Accordingly, the terminal device 120 may receive 526 the plurality of DCIs 524 from the network device 110. In some examples, the plurality of DCIs 524 may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
  • the terminal device 120 determines 527 more than one spatial domain filter for PUCCH based on the at least one configuration 514 and the plurality of DCIs 524.
  • the terminal device 120 may determine a plurality of TCI states associated with a plurality of PDCCHs in which the plurality of DCIs 524 are detected respectively, based on the at least one configuration 514.
  • the terminal device 120 may determine more than one spatial domain filter based on the plurality of TCI states.
  • the plurality of DCIs 524 comprises a first DCI in a first PDCCH and a second DCI in a second PDCCH
  • the first PDCCH is associated with a first CORESET or a first search space set
  • the second PDCCH is associated with a second CORESET or a second search space set.
  • the terminal device 120 may determine a first TCI state and a second TCI state based on a first configuration and a second configuration, where the first configuration indicates an association of the first TCI state with the first CORESET or the first search space set, and the second configuration indicates an association of the second TCI state with the second CORESET or the second search space set.
  • the terminal device 120 may determine a first spatial domain filter based on the first TCI state and a second spatial domain filter based on the second TCI state. In this case, as long as there are two TCI states associated with CORESETs for the plurality of DCIs 524, the terminal device 120 may determine two spatial domain filters for PUCCH, without referring to the last DCI.
  • the terminal device 120 may determine a plurality of TCI states associated with at least two CORTESETs or search space sets for PDCCH repetition, based on the at least one configuration 514. In addition, the terminal device 120 may determine more than one spatial domain filter based on the plurality of TCI states.
  • At least one PDCCH related to the plurality of DCIs is one of a plurality of PDCCH candidates, or is overlapped with one of the plurality of PDCCH candidates, or is scrambled in a same way as one of the plurality of PDCCH candidates, or is using a same set of CCEs over same time units as one of the plurality of PDCCH candidates, the terminal device 120 may determine at least two CORTESETs or search space sets linked with each other for PDCCH repetition. In addition, the terminal device 120 may determine the more than one spatial domain filters.
  • the at least two CORTESETs comprise a first CORESET and a second CORESET, the first CORESET is associated with a first TCI state and the second CORESET is associated with a second TCI state.
  • the terminal device 120 may further determine a first spatial domain filter based on the first TCI state and a second spatial domain filter based on the second TCI state.
  • the terminal device 120 transmits 532 PUCCH with HARQ information 534 to the network device 110, based on the more than one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 536 PUCCH with HARQ information 534.
  • the more than one spatial domain filter may comprise a first spatial domain filter and a second spatial domain filter, where the first spatial domain filter is based on the first TCI state and the second spatial domain filter is based on the second TCI state. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may determine one of the first spatial domain filter and the second spatial domain filter for PUCCH.
  • the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state with a lower ID from the first TCI state and the second TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on the first TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state associated with a CORESET (or a search space set) with a lower ID.
  • a CORESET or a search space set
  • the terminal device 120 may transmit PUCCH using the first spatial domain filter and the second spatial domain filter simultaneously. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may transmit PUCCH using the first spatial domain filter, and later may retransmit the PUCCH using the second spatial domain filter.
  • the terminal device 120 may transmit two occasions of the PUCCH using the first spatial domain filter and the second spatial domain filter respectively. That is, the first spatial domain filter and the second spatial domain filter are applied for each PUCCH transmission occasion simultaneously.
  • FIGS. 6A-6B illustrate some example scenarios in which some embodiments of the present disclosure may be implemented.
  • a first PDCCH 612 associated with a first configuration
  • a second PDCCH 622 associated with a second configuration.
  • PUCCH 632 is transmitted based on a spatial domain filter determined based on a second TCI state which is associated with the second configuration
  • PUCCH 634 is transmitted based on another spatial domain filter determined based on a first TCI state which is associated with the first configuration.
  • PUCCH 644 is transmitted based on a spatial domain filter determined based on a TCI state which is associated with the same configuration.
  • FIG. 7 illustrates a signalling chart illustrating communication process 700 according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 700 will be described with reference to FIG. 1.
  • the network device 110 transmits 712 at least one configuration 714 to the terminal device 120. Accordingly, on the other side of the communication, the terminal device 120 receives 716 the at least one configuration 714.
  • the network device 110 may transmit 722 a plurality of DCIs 724 to the terminal device 120. Accordingly, the terminal device 120 may receive 726 the plurality of DCIs 724 from the network device 110. In some examples, the plurality of DCIs 724 may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
  • the terminal device 120 determines 730 TCI state (s) applied to a PDSCH scheduled by a last DCI in the plurality of DCIs 724 based on the at least one configuration 714, where the last DCI is with DL assignment.
  • the plurality of DCIs may have a same value of a feedback timing indicator, exclude semi persistent scheduling (SPS) activation DCIs, and/or indicate a same time unit for PUCCH transmission.
  • the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
  • the terminal device 120 may determine TCI state (s) associated with the last DCI and further determine at least one spatial domain filter, the detailed description may be refer to those described above, with reference to FIG. 2, and thus will not be repeated herein.
  • the terminal device 120 determines 740 at least one spatial domain filter based on the TCI state (s) applied to the PDSCH.
  • there is one TCI state applied to the PDSCH for example a DL/joint TCI state.
  • the terminal device 120 may determine a spatial domain filter based on the joint TCI state applied to the PDSCH, or may determine a spatial domain filter based on an UL TCI state associated with the DL TCI state applied to the PDSCH. In some examples, this case may be referred as a single-TRP case.
  • there are more than one TCI state applied to the PDSCH for example including a first DL/joint TCI state and a second DL/joint TCI state.
  • the terminal device 120 may determine a first spatial domain filter based on the first joint TCI state applied to the PDSCH and a second spatial domain filter based on the second joint TCI state applied to the PDSCH, or may determine a first spatial domain filter based on a first UL TCI state associated with the first DL TCI state applied to the PDSCH and a second spatial domain filter based on the second DL TCI state applied to the PDSCH.
  • the terminal device 120 transmits 752 PUCCH with HARQ information 754 to the network device 110, based on the at least one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 756 PUCCH with HARQ information 534.
  • the terminal device 120 may transmit the PUCCH based on the spatial domain filter.
  • there are more than one determined spatial domain filter for example including a first spatial domain filter and a second spatial domain filter. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may determine one of the first spatial domain filter and the second spatial domain filter for PUCCH.
  • the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state with a lower ID from the first TCI state and the second TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on the first TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state associated with a CORESET (or a search space set) with a lower ID.
  • a CORESET or a search space set
  • the terminal device 120 may transmit PUCCH using the first spatial domain filter and the second spatial domain filter simultaneously. For example, if simultaneous transmission is not enabled or configured and then the terminal device 120 may transmit PUCCH using the first spatial domain filter, and later may retransmit the PUCCH using the second spatial domain filter.
  • the terminal device 120 may transmit two occasions of the PUCCH using the first spatial domain filter and the second spatial domain filter respectively. That is, the first spatial domain filter and the second spatial domain filter are applied for each PUCCH transmission occasion simultaneously.
  • FIG. 8 illustrates an example scenario 800 in which some embodiments of the present disclosure may be implemented.
  • a first PDCCH 810 and a second PDCCH 820. It is assumed that the last DCI is detected in the second PDCCH 820 and the last DCI is with DL assignment, and thus PDSCH 830 scheduled by the last DCI may be determined, and the TCI state (s) applied to the PDSCH 830 may be determined accordingly.
  • PDSCH 830 scheduled by the last DCI may be determined, and the TCI state (s) applied to the PDSCH 830 may be determined accordingly.
  • the PUCCH 840 with HARQ information is transmitted based on at least one spatial domain filter determined based on the TCI state (s) applied to the PDSCH 830 or based on UL TCI state (s) associated with the TCI state (s) applied to the PDSCH 830.
  • the terminal device may determine at least one spatial domain filter based on at least one configuration, and further PUCCH with HARQ information may be transmitted based on the at least one spatial domain filter.
  • HARQ multiplexing may be supported and the communication efficiency may be improved.
  • FIG. 9 illustrates a flowchart of an example method 900 implemented at a terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 900 will be described from the perspective of the terminal device 120 with reference to FIG. 1.
  • the terminal device 120 receives, from the network device 110, at least one configuration for at least one TCI state.
  • the terminal device 120 determines at least one spatial domain filter for a PUCCH based on a last DCI of a plurality of DCIs and the at least one configuration.
  • the terminal device 120 transmits, to the network device 110, the PUCCH with HARQ information based on the at least one spatial domain filter.
  • the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
  • determining the at least one spatial domain filter comprises at least one of: determining the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, where at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a PDCCH in which the last DCI is detected; or determining the at least one spatial domain filter based on the first TCI state and the second TCI state, where first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, where the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search
  • determining the at least one spatial domain filter comprises: determining a first spatial domain filter based on at least one of: a TCI state with a lower ID between the first TCI state and the second TCI state; a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
  • the first TCI state is applied to the CORESET or the search space set; the first TCI state and the second TCI state are applied to the CORESET or the search space set; or the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or the second search space set.
  • the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
  • PDSCH physical downlink shared channel
  • the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter
  • determining at least one spatial domain filter comprises: determining the first spatial domain filter based on the first TCI state; and determining the second spatial domain filter based on the second TCI state.
  • transmitting the PUCCH comprises: transmitting the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
  • transmitting the PUCCH comprises: transmitting a first set of occasions of the PUCCH with the first spatial domain filter; and transmitting a second set of occasions of the PUCCH with the second spatial domain filter.
  • the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells
  • transmitting the PUCCH comprises: transmitting the PUCCH in a cell of the first set of cells.
  • the last DCI is the last one of the first set of DCIs.
  • the method 900 further comprises: in accordance with a determination that the last DCI is not associated with the first set of cells, the terminal device 120 determines the at least one spatial domain filter based on at least one of: a TCI state with a lowest ID among TCI states applied for the first set of cells; a TCI state with a lower ID between a first TCI state and a second TCI state, where the first TCI state and the second TCI state are applied for the first set of cells; a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI; a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
  • the PDCCH in which the last DCI is detected is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the network device 110 comprises multiple transmission and reception points (M-TRP) .
  • FIG. 10 illustrates a flowchart of an example method 1000 implemented at a network device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 1000 will be described from the perspective of the network device 110 with reference to FIG. 1.
  • the network device 110 transmits, to the terminal device 120, at least one configuration for at least one TCI state.
  • the network device 110 transmits a plurality of DCIs to the terminal device 120.
  • the network device 110 receives, from the terminal device 120, PUCCH with HARQ information.
  • the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
  • the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
  • PDSCH physical downlink shared channel
  • the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells
  • receiving the PUCCH comprises: receiving the PUCCH in a cell of the first set of cells.
  • a PDCCH carrying a last DCI of the plurality of DCIs is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the network device comprises multiple transmission and reception points (M-TRP) .
  • FIGS. 1-10 Details of some embodiments according to the present disclosure have been described with reference to FIGS. 1-10. Now an example implementation of the terminal device and the network device will be discussed below.
  • a terminal device comprises circuitry configured to: receive, from a network device, at least one configuration for at least one TCI state; determine at least one spatial domain filter for a PUCCH based on a last DCI of a plurality of DCIs and the at least one configuration; and transmit, to the network device, the PUCCH with HARQ information based on the at least one spatial domain filter.
  • the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
  • the terminal device comprises circuitry configured to: determine the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, where at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a PDCCH in which the last DCI is detected; or determine the at least one spatial domain filter based on the first TCI state and the second TCI state, where first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, where the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search space set and the second search space set set
  • the terminal device comprises circuitry configured to: determine a first spatial domain filter based on at least one of: a TCI state with a lower ID between the first TCI state and the second TCI state; a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
  • the first TCI state is applied to the CORESET or the search space set; the first TCI state and the second TCI state are applied to the CORESET or the search space set; or the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or the second search space set.
  • the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one PDSCH scheduled by the plurality of DCIs.
  • the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter
  • the terminal device comprises circuitry configured to: determine the first spatial domain filter based on the first TCI state; and determine the second spatial domain filter based on the second TCI state.
  • the terminal device comprises circuitry configured to: transmit the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
  • the terminal device comprises circuitry configured to: transmit a first set of occasions of the PUCCH with the first spatial domain filter; and transmit a second set of occasions of the PUCCH with the second spatial domain filter.
  • the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells
  • the terminal device comprises circuitry configured to: transmit the PUCCH in a cell of the first set of cells.
  • the last DCI is the last one of the first set of DCIs.
  • the terminal device comprises circuitry configured to: in accordance with a determination that the last DCI is not associated with the first set of cells, determine the at least one spatial domain filter based on at least one of: a TCI state with a lowest ID among TCI states applied for the first set of cells; a TCI state with a lower ID between a first TCI state and a second TCI state, where the first TCI state and the second TCI state are applied for the first set of cells; a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI; a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
  • the PDCCH in which the last DCI is detected is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the network device comprises multiple transmission and reception points (M-TRP) .
  • a network device comprises circuitry configured to: transmit, to a terminal device, at least one configuration for at least one TCI state; transmit a plurality of DCIs to the terminal device; and receive, from the terminal device PUCCH with HARQ information.
  • the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
  • the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one PDSCH scheduled by the plurality of DCIs.
  • the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells
  • receiving the PUCCH comprises: receiving the PUCCH in a cell of the first set of cells.
  • a PDCCH carrying a last DCI of the plurality of DCIs is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the network device comprises M-TRP.
  • FIG. 11 illustrates a simplified block diagram of a device 1100 that is suitable for implementing embodiments of the present disclosure.
  • the device 1100 can be considered as a further example implementation of the terminal device 120, and the network device 110 as shown in FIG. 1. Accordingly, the device 1100 can be implemented at or as at least a part of the terminal device 120, or the network device 110.
  • the device 1100 includes a processor 1110, a memory 1120 coupled to the processor 1110, a suitable transmitter (TX) and receiver (RX) 1140 coupled to the processor 1110, and a communication interface coupled to the TX/RX 1140.
  • the memory 1110 stores at least a part of a program 1130.
  • the TX/RX 1140 is for bidirectional communications.
  • the TX/RX 1140 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this disclosure may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the eNB and a relay node (RN)
  • Uu interface for communication between the eNB and a terminal device.
  • the program 1130 is assumed to include program instructions that, when executed by the associated processor 1110, enable the device 1100 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 2-10.
  • the embodiments herein may be implemented by computer software executable by the processor 1110 of the device 1100, or by hardware, or by a combination of software and hardware.
  • the processor 1110 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1110 and memory 1120 may form processing means 1150 adapted to implement various embodiments of the present disclosure.
  • the memory 1120 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1120 is shown in the device 1100, there may be several physically distinct memory modules in the device 1100.
  • the processor 1110 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1100 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • embodiments of the present disclosure may provide the following solutions.
  • the present disclosure provides a method of communication, comprises: receiving, at a terminal device from a network device, at least one configuration for at least one transmission configuration indicator (TCI) state; determining at least one spatial domain filter for a physical uplink control channel (PUCCH) based on a last downlink control information (DCI) of a plurality of DCIs and the at least one configuration; and transmitting, to the network device, the PUCCH with hybrid automatic repeat request (HARQ) information based on the at least one spatial domain filter.
  • TCI transmission configuration indicator
  • HARQ hybrid automatic repeat request
  • the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
  • determining the at least one spatial domain filter comprises at least one of: determining the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, wherein at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a PDCCH in which the last DCI is detected; or determining the at least one spatial domain filter based on the first TCI state and the second TCI state, wherein first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, wherein the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at
  • determining the at least one spatial domain filter comprises: determining a first spatial domain filter based on at least one of: a TCI state with a lower ID between the first TCI state and the second TCI state; a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
  • the method as above the first TCI state is applied to the CORESET or the search space set; the first TCI state and the second TCI state are applied to the CORESET or the search space set; or the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or the second search space set.
  • the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
  • PDSCH physical downlink shared channel
  • the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter
  • determining at least one spatial domain filter comprises: determining the first spatial domain filter based on the first TCI state; and determining the second spatial domain filter based on the second TCI state.
  • transmitting the PUCCH comprises: transmitting the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
  • transmitting the PUCCH comprises: transmitting a first set of occasions of the PUCCH with the first spatial domain filter; and transmitting a second set of occasions of the PUCCH with the second spatial domain filter.
  • the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells
  • transmitting the PUCCH comprises: transmitting the PUCCH in a cell of the first set of cells.
  • the last DCI is the last one of the first set of DCIs.
  • the method as above further comprises: in accordance with a determination that the last DCI is not associated with the first set of cells, the terminal device determines the at least one spatial domain filter based on at least one of: a TCI state with a lowest ID among TCI states applied for the first set of cells; a TCI state with a lower ID between a first TCI state and a second TCI state, wherein the first TCI state and the second TCI state are applied for the first set of cells; a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI; a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
  • the PDCCH in which the last DCI is detected is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the method as above at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
  • the network device comprises multiple transmission and reception points (M-TRP) .
  • the present disclosure provides a method of communication, comprises: transmitting, at a network device to a terminal device, at least one configuration for at least one transmission configuration indicator (TCI) state; transmitting a plurality of downlink control information (DCIs) to the terminal device; and receiving, from the terminal device, PUCCH with hybrid automatic repeat request (HARQ) information.
  • TCI transmission configuration indicator
  • DCIs downlink control information
  • HARQ hybrid automatic repeat request
  • the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
  • the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
  • PDSCH physical downlink shared channel
  • the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells
  • receiving the PUCCH comprises: receiving the PUCCH in a cell of the first set of cells.
  • a PDCCH carrying a last DCI of the plurality of DCIs is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
  • the method as above at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
  • the network device comprises multiple transmission and reception points (M-TRP) .
  • the present disclosure provides a terminal device, comprising: a processor; and a memory storing computer program codes; the memory and the computer program codes configured to, with the processor, cause the terminal device to perform the method implemented at the terminal device discussed above.
  • the present disclosure provides a network device, comprising: a processor; and a memory storing computer program codes; the memory and the computer program codes configured to, with the processor, cause the network device to perform the method implemented at the network device discussed above.
  • the present disclosure provides a computer readable medium having instructions stored thereon, the instructions, when executed by a processor of an apparatus, causing the apparatus to perform the method implemented at a terminal device or a network device discussed above.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGS. 6-20.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Example embodiments of the present disclosure relate to methods, devices, and computer storage medium for communication. A terminal device receives, from a network device, at least one configuration for at least one TCI state; determines at least one spatial domain filter for a PUCCH based on a last DCI of a plurality of DCIs and the at least one configuration; and transmits, to the network device, the PUCCH with HARQ information based on the at least one spatial domain filter. In this way, at least one spatial domain filter for PUCCH may be determined based on at least one configuration and a last DCI in a plurality of DCIs. As such, the PUCCH transmission with HARQ-ACK multiplexing may be well supported and the communication efficiency may be improved.

Description

METHODS, DEVICES, AND MEDIUM FOR COMMUNICATION FIELD
Example embodiments of the present disclosure generally relate to the field of communication techniques and in particular, to methods, devices, and a computer readable medium for communication.
BACKGROUND
Technology of multiple input multiple output (MIMO) has been widely used in current wireless communication system, where a large number of antenna elements are used by both of a network device for communicating and a terminal device, for example, for both sub-6 GHz and over-6 GHz frequency bands. Further, in order to improve the reliability and robustness of the communication between the network device and the terminal device, in release 16 of 3rd generation partnership project (3GPP) , technology of multi-transmission and reception point (multi-TRP/MTRP) (as well as multi-panel reception) has been proposed and discussed for downlink data transmission (such as, physical downlink shared channel, PDSCH) .
In release 17, the multi-TRP transmission is enhanced for other physical channels (such as, physical downlink control channel, PDCCH, physical uplink shared channel, PUSCH, and physical uplink control channel, PUCCH) , based on release 15/16 of 3GPP unified transmission configuration indicator (TCI) /spatial relation framework. Meanwhile, in release 17, the unified TCI framework is developed to replace/supplement release 15/16 TCI/spatial relation framework for beam indication. So far, although some proposals about the scenario of multi-TRP have been discussed and some agreements have been reached, there is still a plurality of pending issues needed to be discussed, such that the multi-TRP transmission may be better supported.
SUMMARY
In general, example embodiments of the present disclosure provide methods, devices and a computer storage medium for communication.
In a first aspect, there is provided a method of communication. The method comprises: receiving, at a terminal device from a network device, at least one configuration  for at least one transmission configuration indicator (TCI) state; determining at least one spatial domain filter for a physical uplink control channel (PUCCH) based on a last downlink control information (DCI) of a plurality of DCIs and the at least one configuration; and transmitting, to the network device, the PUCCH with hybrid automatic repeat request (HARQ) information based on the at least one spatial domain filter.
In a second aspect, there is provided a method of communication. The method comprises: transmitting, at a network device to a terminal device, at least one configuration for at least one transmission configuration indicator (TCI) state; transmitting a plurality of downlink control information (DCIs) to the terminal device; and receiving, from the terminal device, PUCCH with hybrid automatic repeat request (HARQ) information.
In a third aspect, there is provided a terminal device. The terminal device comprises a processor and a memory. The memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the terminal device to perform the method according to the first aspect above.
In a fourth aspect, there is provided a network device. The network device comprises a processor and a memory. The memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the network device to perform the method according to the second aspect above.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first aspect or the second aspect above.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some example embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1 illustrates an example communication network in which some embodiments  of the present disclosure can be implemented;
FIG. 2 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure;
FIGS. 3A-3B illustrate some example scenarios in which some embodiments of the present disclosure may be implemented;
FIG. 4 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure;
FIG. 5 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure;
FIGS. 6A-6B illustrate some example scenarios in which some embodiments of the present disclosure may be implemented;
FIG. 7 illustrates a signalling chart illustrating communication process in accordance with some embodiments of the present disclosure;
FIG. 8 illustrates an example scenario in which some embodiments of the present disclosure may be implemented;
FIG. 9 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure; and
FIG. 11 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. Embodiments described herein can be implemented in various manners other than the ones  described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
In some examples, values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , 5.5G, 5G-Advanced networks, or the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “terminal device” refers to any device having wireless or wired communication capabilities. Examples of terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio  services, software delivery over wireless, group communications and IoT applications. It may also be incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
As used herein, the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a satellite, a unmanned aerial systems (UAS) platform, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
Communications discussed herein may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be  performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.85G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , and the sixth (6G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
The terminal device or the network device may have Artificial intelligence (AI) or machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
The terminal device or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connection with the network device under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The embodiments of the present disclosure may be performed in test equipment, e.g., signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, or channel emulator.
The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
In the context of the present disclosure, the term “transmission and reception point (TRP) ” refers to an antenna array (with one or more antenna elements) available to the network device located at a specific geographical location. Although some embodiments of the present disclosure are described with reference to a scenario of multi-TRPs for example, these embodiments are only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the present disclosure. It is to be understood that the present disclosure described herein can be implemented in various manners other than the ones  described below.
In the context of the present disclosure, one panel refers to one or more antenna elements deployed at a terminal device or a network device. In this regard, the terms “panel” , “panel type” , “antenna element (s) ” , “antenna array (s) ” , “transmission reception point (s) ” , “TRPs” can be used interchangeably.
In the context of the present disclosure, the terms “common beam” , “common beam update/indicate/indication” , “unified TCI state” , “unified TCI state update/indicate/indication” , “beam indication” , “joint TCI state” , “TCI state for downlink and uplink” , “TCI state for downlink” , “downlink TCI state” , “TCI state for downlink only” , “TCI state for uplink” , “TCI state for uplink only” , “uplink TCI state” , “separate TCI state” , “separate DL/UL TCI state” , “TCI state (s) indication” , “TCI_state_r17” , “tci_StateId_r17” , “TCI_state_r17 indicating a unified TCI state” , “TCI state shared/applied for all or subset of control resource sets (CORESET) and UE-dedicated reception on PDSCH” , “Rel-17 TCI state” , “TCI state with tci_StateId_r17” , “TCI state configured for TCI state update in unified TCI framework” , “TCI state indicated in DCI for common beam update/indicate/indication” and “TCI state indicated in DCI and to be applied for all/subset of CORESETs and PDSCH” may be used interchangeably.
In the context of the present disclose, the terms “multiple TRPs” , “multi-TRP” , “M-TPR” , “MTRP” , “multiple TCI states” , “multi-TCI state” , “multi-TCI” , “M-TCI” and “MTCI” can be used interchangeably. In the context of the present disclose, the terms “CORESETs” , “multiple CORESETs” , “multi-CORESET” , “multiple control resource set pools” , “multi-control resource set pool” , and “CORESET pool” can be used interchangeably, and the terms “pool” , “set” , “subset” , “group” and “subgroup” can be used interchangeably.
In the context of the present disclose, the terms “beam” , “spatial filter” , “spatial relation” , “spatial domain filter” , “UL TCI state” , “joint TCI state” , “UL beam” and “spatial relation information” can be used interchangeably.
In the context of the present disclose, the terms “transmission occasion” , “transmission” , “repetition” , “reception” , “reception occasion” , “monitoring occasion” , “PDCCH monitoring occasion” , “PDCCH transmission occasion” , “PDCCH transmission” , “PDCCH candidate” , “PDCCH reception occasion” , “PDCCH reception” , “PDCCH detection” , “DCI detection” , “DCI reception” , “search space” , “search space set” , “set of  search spaces” , “CORESET” , “multi-chance” and “PDCCH repetition” can be used interchangeably. In the context of the present disclose, the terms “PDCCH repetitions” , “repeated PDCCHs” and “repeated PDCCH signals” , “PDCCH candidates configured for same scheduling” can be used interchangeably. In the context of the present disclose, the terms “DCI” , “DCI format with information” and “DCI format” can be used interchangeably. In the context of the present disclose, the terms “TPC command value” , “TPC command” , “TPC” and “TPC command field” can be used interchangeably. In the context of the present disclose, the terms “uplink transmission” , “uplink transmission occasion” , “uplink” , “PUSCH transmission” , “PUSCH transmission occasion” , “PUCCH transmission” , “PUCCH transmission occasion” , “PUSCH” , “PUCCH” , “SRS transmission” , “SRS transmission occasion” , “SRS” can be used interchangeably.
In the context of the present disclose, the terms “acknowledgement” , “positive acknowledgement” , “ACK” , “Hybrid automatic repeat request acknowledgement” , “HARQ-ACK” , “negative acknowledgement” , “NACK” , “NAK” , “ACK/NACK” and “ACK/NAK” can be used interchangeably.
In release 17 of 3GPP, a concept of unified TCI has been introduced. Specifically, a unified TCI state indicated in downlink control information (DCI) is to indicate (update) TCI state for future transmission, and the TCI state is applied after application timing. In addition, multi-beam operation based on unified TCI framework was introduced in release 17.
In release 17, in case of unified TCI framework, beam of PUCCH always follows the indicated TCI state. For example, the UE can be configured with a list of up to 128 DLorJointTCIstate configurations, within the higher layer parameter PDSCH-Config for providing a reference signal for the quasi co-location (QCL) for demodulation reference signal (DM-RS) of PDSCH and DM-RS of PDCCH in a component carrier (CC) , for CSI-RS, and to provide a reference, if applicable, for determining uplink transmission (UL TX) spatial filer for dynamic-grant and configured-grant based PUSCH and PUCCH resource in a CC, and sounding reference signal (SRS) . For example, the UE can be configured with a list of up to 64 UL-TCIstate configures within the higher layer parameter BWP-UplinkDelicated. Each UL-TCIstate configuration contains a parameter for configuring one reference signal, if applicable, for determining UL TX spatial filter for dynamic-grant and configured-grant based PUSCH and PUCCH resource in a CC, and SRS.
In release 18, the unified TCI framework may be extended to multi-TRP case. For example, it has been proposed to extend the unified TCI framework for indication of multi DL and UL TCI states focusing on multi-TRP use case. However, when more than one TCI states are indicated for M-DCI based MTRP, the PUCCH transmission with HARQ multiplexing cannot be well supported.
Embodiments of the present disclosure provide a solution of communication. In the solution, at least one spatial domain filter for PUCCH may be determined based on at least one configuration and a last DCI in a plurality of DCIs. As such, the PUCCH transmission with HARQ-ACK multiplexing may be well supported and the communication efficiency may be improved. Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
FIG. 1 illustrates an example communication network 100 in which some embodiments of the present disclosure can be implemented. The communication network 100 includes a network device 110-1 and an optionally network device 110-2 (collectively or individually referred to as network device (s) 110) . The communication network 100 further includes a terminal device 120. The network device 110 can provide services to the terminal device 120. For purpose of discussion, the network device 110-1 is referred to as the first network device 110-1, and the network device 110-2 is referred to as the second network device 110-2. Further, the first network device 101-1 and the second network device 110-1 can communicate with each other.
In the environment 100, a link from the network devices 110 (such as, a first network device 110-1 or the second network device 110-2) to the terminal device 120 is referred to as a downlink, while a link from the terminal device 120 to the network devices 110 (such as, a first network device 110-1 or the second network device 110-2) is referred to as an uplink. In downlink, the first network device 110-1 or the second network device 110-2 is a transmitting (TX) device (or a transmitter) and the terminal device 120 is a receiving (RX) device (or a receiver) . In uplink, the terminal device 120 is a transmitting TX device (or a transmitter) and the first network device 110-1 or the second network device 110-2 is a RX device (or a receiver) . In some embodiments, the network device (s) 110 and the terminal device 120 may communicate with direct links/channels.
Further, in the specific example of FIG. 1, a multi-TRP transmission also is supported. As illustrated in FIG. 1, the terminal device 120 may communicate with two  TRPs, i.e., the TRPs 130-1 and 130-2 (collectively or individually referred to as TRP 130) . For purpose of discussion, the TRP 130-1 is referred to as the first TRP 130-1, and the TRP 130-2 is referred to as the second TRP 130-2.
Further, both a single TRP transmission mode and multi-TRP transmission mode are supported by the specific example of FIG. 1. In case of the single TRP mode, the terminal device 120 communicates with the network via the first TRP 130-1 or the second TRP 130-2. In case of the multi-TRP mode, the terminal device 120 communicates with the network via both of the first TRP 130-1 and the second TRP 130-2.
In addition, in order to support multi-TRP, the network device 110 may be equipped with one or more TRPs. For example, the network device 110 may be coupled with multiple TRPs in different geographical locations to achieve better coverage. In one specific example embodiment, the first network device 110-1 is equipped with the first TRP 130-1 and the second TRP 130-2. Alternatively, in another specific example embodiment, the first network device 110-1 and the second network device 110-2 are equipped with the first TRP 130-1 and the second TRP 130-2, respectively.
In some embodiments, the TRPs 130 may be explicitly associated with different higher-layer configured identities. For example, a higher-layer configured identity can be associated with a CORESET, a group of CORESETs, an RS, a set of RS, a TCI state or a group/set of TCI states. For example, the higher-layer configured identity may be used to differentiate between transmissions between different TRPs and the terminal device 120. In some embodiments, when the terminal device 120 receives two DCI messages from two CORESETs which are associated with different higher-layer configured identities, the two DCI messages are indicated from different TRPs 130.
Alternatively, the TRPs 130 may be implicitly identified by a dedicated configuration to the physical channels or signals. For example, a dedicated CORESET, a RS, and a TCI state, which are associated with a TRP 130, are used to identify a transmission from a different TRP 130 to the terminal device 120. In some embodiments, when the terminal device 120 receives a DCI message from a dedicated CORESET, the DCI message is indicated from the associated TRP dedicated by the corresponding CORESET.
In some embodiments, the network device 110 may configure a plurality of control resource sets (CORESETs) to the terminal device 120. Additionally, the plurality of  CORESETs may be divided into different groups/subsets/pools. In one specific example embodiment, the first TRP 130-1 and the second TRP 130-2 are associated with different CORESET groups/subsets/pools. For example, the first TRP 130-1 is associated with a first CORESET group/subset/pool while the second TRP 130-2 is associated with a second CORESET group/subset/pool.
In some embodiments, one CORESET may be associated with one or more search space sets. One search space set (SSS) may include or may be associated with one or more PDCCH candidates. In some embodiments, PDCCH monitoring periodicity and/or slot offset and/or symbol index within a slot can be configured per search space set. In some embodiments, one PDCCH candidate may be associated with or may correspond to a search space.
In some embodiments, a procedure may be defined for determining PDCCH candidates for the terminal device 120. That is, determining the control-channel element (CCE) index (es) for each of a plurality of PDCCH candidates that is potentially to be used for PDCCH transmission between the network device 110 and the terminal device 120. With the CCE index for PDCCH candidates determined, the terminal device 120 can perform blind detection on these PDCCH candidates. Once PDCCH transmission is detected or received on a PDCCH candidate, the terminal device 120 may decode it to obtain information such as DCI.
Further, the unified TCI framework is supported in the communication network 100. In some embodiments, the network device 110 may pre-configure a plurality of TCI states for the terminal device 120 via such as a radio resource control (RRC) signalling. Next, the multi-TRP/single TRP transmission may be scheduled by either a single DCI message or multiple DCI messages (i.e., multi-DCI/M-DCI) . Specifically, one or more pre-configured TCI states may be indicated by the single/multiple DCI messages.
As illustrated in FIG. 1, when a multi-DCI (M-DCI) mode is applied, the terminal device 120 receives two DCI messages from the first TRP 130-1 and the second TRP 130-2, respectively. By applying the indicated TCI states, the first TRP 130-1 and the second TRP 130-2 may be selectable activated and a directional transmission is achieved. Alternatively, when a single DCI mode is applied, the terminal device 120 receives a single DCI message from the first TRP 130-1. It should be understood that the single DCI message also may be received from the second TRP 130-2.
In some embodiments, the indicated TCI state may include any of below: a joint downlink/uplink TCI state (i.e., joint DL/UL TCI state or joint TCI state) or a downlink TCI state, and/or an uplink TCI state. In some embodiments, a joint DL/UL TCI state (joint TCI state) may be a TCI state for both downlink and uplink. In some embodiments, a downlink TCI state may be a TCI state for downlink. In some embodiments, an uplink TCI state may be a TCI state for uplink.
The network device 110 may communicate data and/or downlink control information and/or RS to the terminal device 120 via a plurality of beams (also referred to as “DL beams or joint beams” ) . The terminal device 120 may also communicate data and/or uplink control information and/or RS to the network device 110 via a plurality of beams (also referred to as “UL beams or joint beams” ) . In 3GPP specifications for NR, a beam is also defined and indicated by parameters of a TCI. For example, there may be a TCI field in DCI. A value of the TCI field may be referred to as a “TCI codepoint” . A TCI codepoint may indicate one or more TCI states. Each TCI state contains parameters for configuring a QCL relationship between one or two DL and/or UL reference signals and the DMRS ports of the PDSCH, the DMRS ports of PDCCH, the DMRS ports of PUSCH, the DMRS ports of PUCCH, the SRS ports of a SRS resource or the CSI-RS ports of a CSI-RS resource. In some embodiments, there may be an application timing for beam indication or TCI state (s) indication.
In some embodiments, a DCI (for example, DCI format 1_1/1_2 with and without downlink assignment) may be used for TCI state (s) indication. In some embodiments, a DCI with downlink scheduling or PDSCH scheduling may indicate at least one TCI state, and HARQ or ACK and/or NACK for the PDSCH or downlink scheduling can be used to indicate acknowledgement of the at least one TCI state indication. Further, after the application timing, the indicated TCI state may be applied. For example, be applied to PDSCH and/or PDCCH and/or PUSCH and/or PUCCH and/or downlink RS and/or uplink RS.
In some embodiments, the terminal device 120 may receive or detect a DCI in a PDCCH, and the DCI may indicate a TCI state for downlink and uplink, or a TCI state for downlink, or a TCI state for uplink, or a pair of a TCI state for downlink and a TCI state for uplink.
In some embodiments, the indicated TCI state for downlink and uplink or the  indicated TCI state for downlink or the indicated TCI state for uplink or the pair of indicated TCI state for downlink and TCI state for uplink may be applied to PDSCH and/or CORESET and/or PUSCH and/or PUCCH and/or uplink RS and/or downlink RS after the application timing.
In one specific example embodiment, when a TCI state for downlink and uplink is indicated in the DCI, the TCI state for downlink and uplink may be applied to PDSCH and/or CORESET and/or PUSCH and/or PUCCH and/or uplink RS and/or downlink RS after the application timing. In another specific example embodiment, when a TCI state for downlink is indicated in the DCI, the TCI state for downlink may be applied to PDSCH and/or CORESET and/or downlink RS after the application timing. In a further specific example embodiment, when a TCI state for uplink is indicated in the DCI, the TCI state for uplink may be applied to PUSCH and/or PUCCH and/or uplink RS after the application timing. In a further specific example embodiment, when a pair of a TCI state for downlink and a TCI state for uplink is indicated in the DCI, the TCI state for downlink may be applied to PDSCH and/or CORESET and/or downlink RS after the application timing, and the TCI state for uplink may be applied to PUSCH and/or PUCCH and/or uplink RS after the application timing.
In some embodiments, the terminal device 120 may receive an indication to indicate a TCI state for downlink (or a beam or a set of QCL parameters) , and the source RS (s) in the TCI state provides QCL information at least for reception on PDSCH and all of CORESETs in a CC. In one specific example embodiment, the PDSCH is dedicated or UE-specific.
In some embodiments, the terminal device 120 may receive an indication to indicate a TCI state for uplink (or a beam or a spatial relation) , and the source RS (s) in the TCI state provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and all of PUCCH resources in a CC. For example, the PUCCH is dedicated or UE-specific.
In some embodiments, the terminal device 120 may receive an indication to indicate a TCI state for downlink and uplink (or a beam or a set of QCL parameters) , and the TCI state refers to at least a common source RS used for determining both the downlink QCL information and the uplink transmission spatial filter.
In some embodiments, the terminal device 120 may receive an indication to  indicate a TCI state for downlink (or a beam or a set of QCL parameters) and a TCI state for uplink (or a beam or a spatial relation) , and the source RS (s) in the TCI state for downlink provides QCL information at least for reception on PDSCH and all of CORESETs in a CC, and the source RS (s) in the TCI state for uplink provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and all of PUCCH resources in a CC. In one specific example embodiment, the PUCCH is dedicated or UE-specific. In another specific example embodiment, the PDSCH is dedicated or UE-specific.
In some embodiments, the terminal device 120 may be configured with more than one (for example, represented as M, M may be one of {1, 2, 3, 4} ) TCI states for downlink, and/or the terminal device 120 may receive an indication to indicate one of the M TCI states, and the source RS (s) in the one of the M TCI states or in the indicated one TCI state provides QCL information at least for reception on PDSCH and/or a subset of CORESETs in a CC. In one specific example embodiment, the PDSCH is dedicated or UE-specific.
In some embodiments, the terminal device 120 may be configured with more than one (For example, represented as N, N may be one of {1, 2, 3, 4} ) TCI states for uplink, and/or the terminal device 120 may receive an indication to indicate one of the N TCI states, and the source RS (s) in the one of the N TCI states or in the indicated one TCI state provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and/or a subset of PUCCH resources in a CC. In one specific example embodiment, the PUCCH is dedicated or UE-specific.
In some embodiments, the terminal device 120 may be configured with more than one (For example, represented as M, M may be one of {1, 2, 3, 4} ) TCI states for downlink and uplink, and/or receive an indication to indicate one from the M TCI states for downlink and uplink, and each one of the M TCI states or the indicated one TCI state refers to at least a common source reference signal used for determining both the downlink QCL information and the uplink transmission spatial filter.
In some embodiments, the terminal device 120 may be configured with more than one (For example, represented as M, M may be one of {1, 2, 3, 4} ) TCI states for downlink and the terminal device 120 may be configured with more than one (For example, represented as N, N may be one of {1, 2, 3, 4} ) TCI states for uplink, and/or the terminal device 120 may receive an indication to indicate one from the M TCI states for downlink  and one from the N TCI states for uplink, and the source RS (s) in each one of the M TCI states for downlink or the indicated one TCI state for downlink provides QCL information at least for reception on PDSCH and/or a subset of CORESETs in a CC, and the source RS (s) in each one of the N TCI states for uplink or in the indicated one TCI state for uplink provides a reference for determining uplink transmission spatial filter at least for dynamic grant or configured grant based PUSCH, and/or a subset of PUCCH resources in a CC. In one specific example embodiment, the PUCCH is dedicated or UE-specific. In another specific example embodiment, the PDSCH is dedicated or UE-specific.
In some embodiments, a DCI may be used for indicating a TCI state for downlink and uplink or for indicating at least one of a TCI state for downlink and a TCI state for uplink. Further, the DCI may schedule a PDSCH. In some embodiments, the HARQ of the PDSCH scheduled by the DCI can be used as an ACK for the DCI.
In some embodiments, a DCI may be used for indicating a TCI state for downlink and uplink or for indicating at least one of a TCI state for downlink and a TCI state for uplink. Further, the DCI may not schedule a PDSCH. In some embodiments, a HARQ of the DCI may be introduced to indicate whether the DCI or the TCI state indication is successful.
In some embodiments, a DCI may be used for indicating one or more TCI states. For example, the one or more TCI states are for downlink and uplink. For example, one TCI state of the one or more TCI states is for downlink and another TCI state is for uplink.
In some embodiments, upon a successful reception/decoding of the DCI, the terminal device 120 may report an ACK. In some embodiments, upon a failed reception/decoding of the DCI, the terminal device 120 may report a NACK. For example, the ACK and/or NACK may be reported in a PUCCH or a PUSCH.
In some embodiments, the terminal device 120 may be configured with a type of HARQ codebook. For example, the type may be at least one of Type 1 (for example, semi-static) , Type 2 (for example, dynamic) and Type 3 (one shot feedback) . Further, the type may be configured via such as, an RRC, MAC CE or DCI. In some embodiments, the DCI is received/detected in a PDCCH.
In some embodiments, for a HARQ-ACK information bit, the terminal device 120 generates a positive ACK if the terminal device 120 detects a DCI format that provides a semi persistent scheduling (SPS) PDSCH release or a beam indication with CS-RNTI  scrambled or correctly decodes a transport block, and generates a NACK if the terminal device 120 does not correctly decode the transport block. In one specific example embodiments, a HARQ-ACK information bit value of 0 represents a NACK while a HARQ-ACK information bit value of 1 represents an ACK.
In some embodiments, the terminal device 120 may be configured/indicated with a first TCI state for reception of PDSCH and/or all or a subset of CORESETs. Further, the terminal device 120 may receive or detect a first PDCCH with the first TCI state, and the PDCCH is in a first CORESET. The terminal device 120 may be indicated with a second TCI state in the DCI received or detected in the first PDCCH. In some embodiments, the DCI in the first PDCCH may schedule or may not schedule a first PDSCH or a first PUSCH.
In some embodiments, the terminal device 120 may report the decoding result or HARQ-ACK information for at least one of the DCI or the first PDCCH or the first PDSCH to the network device 110. In some embodiments, the decoding result or the HARQ-ACK information may be transmitted/reported in a PUCCH or in a second PUSCH.
In some embodiments, after the application timing, the terminal device 120 may receive PDSCH and/or all or the subset of CORESETs with the second TCI state. In one specific example embodiment, the terminal device 120 may receive a second PDCCH with the second TCI state, and the second PDCCH is in a second CORESET. In another specific example embodiment, the terminal device 120 may receive a second PDCCH with the second TCI state, and the second PDCCH is in the first CORESET.
It is to be understood that the network device (s) 110 may provide one or more serving cells, and the first TRP 130-1 and the second TRP 130-2 may be included in a same serving cell or different serving cells. In other words, both an inter-cell transmission and an intra-cell transmission are supported by the specific example of FIG. 1.
Some example embodiments for TCI state updating are provided on unified TCI framework extension for M-DCI based MTRP. In some example embodiments, it is proposed to use the existing TCI field in the DCI format 1_1/1_2 (with or without DL assignment) associated with one of CORESETPoolIndex values to indicate the joint/DL/UL TCI state (s) corresponding to the same CORESETPoolIndex value.
In some example embodiments, it is proposed to use the existing TCI field in any DCI format 1_1/1_2 (with or without DL assignment) to indicate all joint/DL/UL TCI states  corresponding to both CORESETPoolIndex values. For example, the association between the indicated joint/DL/UL TCI state (s) and a CORESETPoolIndex value may be studied.
In some example embodiments, it is proposed to use the existing TCI field in the DCI format 1_1/1_2 (with or without DL assignment) associated with one of CORESETPoolIndex values to indicate joint/DL/UL TCI state (s) corresponding to the same or different CORESETPoolIndex value. For example, whether the indicated joint/DL/UL TCI state (s) applies to the channels/signals associated with the same CORESETPoolIndex value or different CORESETPoolIndex value is indicated by DCI may be studied.
In some example embodiments, it is proposed to reuse the same TCI state update scheme for S-DCI based MTRP. Specifically, some examples are provided to map/associate a joint/DL TCI state to PDCCH reception (s) on unified TCI framework extension for S-DCI based MTRP. In some examples, it is proposed to use RRC configuration to inform the mapping/association between a configured or indicated joint/DL TCI state and a CORESET or a CORESET group. In some examples, it is proposed to use RRC configuration to inform the mapping/association between a configured or indicated joint/DL TCI state and a search space set. In some examples, it is proposed to use MAC-CE to inform the mapping/association between an activated or indicated joint/DL TCI state and a CORESET or a CORESET group. In some examples, it is proposed to use DCI to inform the mapping/association between an indicated joint/DL TCI state and a CORESET or a CORESET group. In some examples, the mapping/association is based on a fixed mapping/association rule, e.g., the first indicated joint/DL TCI state always applies to PDCCH receptions. And it is noted that these examples may be considered for PDCCH repetition, PDCCH-SFN, PDCCH w/o repetition/SFN, and potential support of dynamic switching between S-TRP and M-TRP for PDCCH.
In some other example embodiments, when more than one joint/DL TCI states are indicated in a CC/BWP for M-DCI based MTRP, some examples are provided to map/associate an indicated joint/DL TCI state to PDCCH on the CC/BWP. In some examples, for a CORESET configured/associated with one of CORESETPoolIndex values, the UE should apply the indicated joint/DL TCI state respective to the CORESETPoolIndex value to PDCCH receptions on the CORESET. For example, it is proposed to further study whether an explicit association between an indicated joint/DL TCI state and a CORESETPoolIndex value is needed, or association can be determined implicitly. In some examples, it is proposed to use RRC configuration other than CORESETPoolIndex  per CORESET to inform the UE which indicated joint/DL TCI state should apply to PDCCH receptions on the CORESET. In some examples, it is proposed to use RRC configuration other than CORESETPoolIndex per search space set to inform the UE which indicated joint/DL TCI state should apply to PDCCH receptions on the search space set. In some examples, it is proposed to study whether the indicated joint/DL TCI state also applies to other channels/signals that are explicitly or implicitly associated with the CORESETPoolIndex value. In some examples, it is proposed to study how to map/associate an indicated joint/DL TCI state to channels/signals that don’t have explicit/implicit association with any CORESETPoolIndex value.
The communications in the communication environment 100 may conform to any suitable standards including, but not limited to, Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , 5.5G, 5G-Advanced networks, or the sixth generation (6G) communication protocols.
It is to be understood that the numbers of devices (i.e., the terminal device 120, the network device 110, the TRP 130 and the cell 140) and their connection relationships and types shown in FIG. 1 are only for the purpose of illustration without suggesting any limitation. The communication network 100 may include any suitable numbers of devices adapted for implementing embodiments of the present disclosure.
Embodiments of the present disclosure where the terminal device can determine at least one spatial domain filter for PUCCH. Reference is first made to FIG. 2, which illustrates a signalling chart illustrating communication process 200 in accordance with some example embodiments of the present disclosure. Only for the purpose of discussion, the process 200 will be described with reference to FIG. 1.
The process 200 may involve the terminal device 120, the network device 110 (either or both of the first network device 110-1 or the second network device 110-2) , and the TRPs 130 (including at least one of the first TRP 130-1 and the second TRP 130-2) .
Additionally, the first TRP 130-1 is connected to the first network device 110-1, while the second TRP 130-2 is connected to the first network device 110-1 or the second network device 110-2. In addition, the first TRP 130-1 and the second TRP 130-2 may be in a same serving cell and in different serving cells.
In the following text, although some embodiments of the present disclosure are described with reference to two TRPs, these embodiments are only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the present disclosure. It is to be understood that the present disclosure described herein can be implemented in various manners other than the ones described below.
Further, it is to be understood that the operations at the terminal device 120 and the network device 110 should be coordinated. In other words, the network device 110 and the terminal device 120 should have common understanding about configuration, state, parameters and so on. Such common understanding may be implemented by any suitable interactions between the network device 110 and the terminal device 120 or both the network device 110 and the terminal device 120 applying the same rule/policy. In the following, although some operations are described from a perspective of the terminal device 120, it is to be understood that the corresponding operations should be performed by the network device 110. Similarly, although some operations are described from a perspective of the network device 110, it is to be understood that the corresponding operations should be performed by the terminal device 120. Merely for brevity, some of the same or similar contents are omitted here.
In addition, in the following description, some interactions are performed among the terminal device 120 and the network device 110. It is to be understood that the interactions may be implemented either in one single signalling/message or multiple signalling/messages, including system information, RRC message, DCI message, uplink control information (UCI) message, media access control (MAC) control element (CE) and so on. The present disclosure is not limited in this regard.
Moreover, it should be understood that although feature (s) /operation (s) are discussed in specific example embodiments separately, unless clearly indicated to the contrary, these feature (s) /operation (s) described in different example embodiments may be used in any suitable combination.
As illustrated in Fig. 2, the network device 110 transmits 212 at least one configuration 214 to the terminal device 120.
In some embodiments of the present disclosure, the at least one configuration 214 may also be called as at least one indication. In some embodiments, a configuration or an indication may indicate a mapping or an association between at least one TCI state and a CORESET or a CORESET group/subset/pool or a search space set. The at least one TCI state may comprise at least one joint TCI state or at least one UL TCI state or at least one DL TCI state. For example, the configuration/indication may indicate mapping/association between a configured or indicated joint/DL TCI state or an UL TCI state and a CORESET or a CORESET group/subset/pool or a search space set.
In some examples, the at least one configuration 214 may be informed by RRC, MAC or DCI. For example, a RRC signalling is transmitted from the network device 110 to the terminal device 120, and the RRC signalling includes the at least one configuration 214.
In some examples, the at least one configuration 214 comprises a first configuration and a second configuration. In some examples, the network device 110 may transmit the first configuration and the second configuration included in a same signalling/message or included in different signalling/messages. In some other examples, the first configuration may be transmitted from a first TPR 130-1 and the second configuration may be transmitted from a second TRP 130-2.
In some embodiments, the at least one configuration 214 may indicate the mapping/association between a configured or indicated joint/DL TCI state and a CORESET or a CORESET group/subset/pool or a search space set. In some embodiments, the at least one configuration 214 may also be used to indicate the mapping/association between a configured or indicated joint/UL TCI state and a PUCCH for HARQ-ACK feedback corresponding to DCI or corresponding to PDSCH scheduled by a DCI in PDCCH. It is noted that a PDCCH corresponds to a CORESET or a CORESET group/subset/pool or a search space set.
In some examples, the mapping/association between a configured or indicated joint TCI state and a CORESET or a CORESET group/subset/pool or a search space set may be indicated, and the joint TCI state may be a TCI state for both downlink and uplink.
In some examples, the mapping/association between a configured or indicated UL  TCI state and a CORESET or a CORESET group/subset/pool or a search space set may be indicated. In some examples, the mapping/association between a configured or indicated DL TCI state and a CORESET or a CORESET group/subset/pool or a search space set may be indicated.
In case of separate TCI states, a DL TCI state may be associated with one UL TCI state, for example, the DL TCI state and the UL TCI state are in a pair. For example, the at least one configuration may indicate an association of a DL TCI state with an UL TCI state. Thus, if a DL TCI state is determined, the corresponding UL TCI state can be also determined. In this event, the mapping/association between an UL TCI state (corresponding to the configured or indicated DL TCI state) and a CORESET or a CORESET group/subset/pool or a search space set may be also indicated.
In some examples, the configuration/indication may be CORESETPoolIndex. For example, a TCI field may comprise CORESETPoolIndex to indicate the mapping/association between a configured or indicated joint/DL TCI state and a CORESET or a CORESET group/subset/pool or a search space set. In other words, a value of a configuration may be CORESETPoolIndex. It is to be understood that the value of the configuration may be in other forms and the present disclosure does not limit this aspect.
In some embodiments, the at least one configuration 214 may indicate at least one of: an association of at least one TCI state with at least one CORESET (including an association of a TCI state with a CORESET) , an association of at least one TCI state with a CORESET group, an association of at least one TCI state with at least one search space set, and an association of a DL TCI state with an UL TCI state.
In some specific embodiments, the at least one configuration 214 may indicates an association of two TCI states with a CORESET (or a search space set) , where the two TCI states may include a first TCI state and a second TCI state.
In some specific embodiments, the at least one configuration 214 comprises a first configuration and a second configuration, where the first configuration indicates an association of a first TCI state with a first CORESET (or a first search space set) and the second configuration indicates an association of a second TCI state with a second CORESET (or a second search space set) .
It is noted that the first TCI state may be a DL TCI state or a joint TCI state or an UL TCI state, the second TCI state may be a DL TCI state or a joint TCI state or an UL TCI  state. For ease of description, the following description is based on that the first TCI state is a joint/UL TCI state and the second TCI state is another joint/UL TCI.
On the other side of the communication, the terminal device 120 receives 216 the at least one configuration 214.
Alternatively of additionally, the network device 110 may transmit a plurality of DCIs to the terminal device 120. And accordingly, the terminal device 120 may receive the plurality of DCIs from the network device 110. In some examples, the plurality of DCIs may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
The terminal device 120 determines 220 at least one spatial domain filter for PUCCH based on the at least one configuration 214 and a last DCI of the plurality of DCIs. In some examples, the spatial domain filter may also be called as spatial relation or transmission scheme, and the present disclosure does not limit this aspect.
It is noted that DCI may also be called as DCI message or DCI format, and accordingly, the last DCI may be called as the last DCI format for example.
The plurality of DCIs may have a same value of a feedback timing indicator, exclude semi persistent scheduling (SPS) activation DCIs, and/or indicate a same time unit for PUCCH transmission. For example, the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
In some embodiments, a last DCI format may be the DCI format that the terminal device 120 detects in a last PDCCH monitoring occasion from the PDCCH monitoring occasions for which the terminal device 120 would provide HARQ-ACK information in a PUCCH in a same slot.
In some embodiments, detected DCI formats may be first indexed in an ascending order across serving cells indexes for a same PDCCH monitoring occasion and may be then indexed in an ascending order across PDCCH monitoring occasion indexes. In some embodiments, detected DCI formats from PDCCH receptions in the first CORESETs are  indexed prior to detected DCI formats from PDCCH receptions in the second CORESETs for indexing DCI formats within a serving cell for a same PDCCH monitoring occasion. For example, if the terminal device 120 is not provided the at least one configuration or not provided CORESETPoolIndex or is provided the at least one configuration or is provided CORESETPoolIndex with a first value (For example, value 0) for one or more first CORESETs and is provided the at least one configuration or is provided CORESETPoolIndex with a second value (For example, value 1) for one or more second CORESETs on an active DL bandwidth part (BWP) of a serving cell. For another example, the terminal device 120 may be configured with AckNackFeedbackMode = joint for the active UL BWP.
In some embodiments, the terminal device 120 may determine the at least one spatial domain filter based on the at least one configuration and a PDCCH in which the last DCI is detected. Specifically, the PDCCH in which the last DCI detected may be associated with a CORESET or a search space set. And it may be determined that the CORESET or the search space set is associated with one or more TCI states (a first TCI state and/or a second TCI state) based on the at least one configuration.
The terminal device 120 may determine a CORESET or a search space set associated with the PDCCH in which the last DCI is detected; and further determine the at least one spatial domain filter based on the TCI state (s) being determined based on the at least one configuration and the CORESET or the search space set, where the CORESET or the search space set is associated with at least one of the first TCI state and the second TCI state.
In case the CORESET or the search space set is associated with the first TCI state, the terminal device 120 may determine the at least one spatial domain filter based on the first TCI state. In case the CORESET or the search space set is associated with the second TCI state, the terminal device 120 may determine the at least one spatial domain filter based on the second TCI state. In case the CORESET or the search space set is associated with the first TCI state and the second TCI state, the terminal device 120 may determine the at least one spatial domain filter based on the first TCI state and the second TCI state.
In other words, the terminal device 120 may determine the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, where at least one of the first TCI state and the second TCI state is determined based on the at least one  configuration and a CORESET or a search space set associated with the PDCCH in which the last DCI is detected.
In some examples, the first TCI state may be applied to the CORESET or the search space set associated with the PDCCH in which the last DCI is detected. In some examples, the first TCI state and the second TCI state may both be applied to the CORESET or the search space set associated with the PDCCH in which the last DCI is detected. For example, the first TCI state and/or the second TCI sate may be a joint TCI state.
In some embodiments, the one spatial domain filter for the PUCCH transmission with HARQ-ACK information may be based on the indicated DLorJointTCIState or UL-TCIstate associated with the same value or same configuration of the at least one configuration which is associated with the CORESET or search space set or PDCCH, wherein the last DCI format is detected in the PDCCH or search space set or CORESET. For example, the PDCCH or the occasion/candidate of the PDCCH is in the CORESET or search space set.
In some embodiments, for a PUCCH transmission with HARQ-ACK information, the terminal device 120 may determine a PUCCH resource on the cell of the PUCCH transmission, after determining a set of PUCCH resources for a plurality of HARQ-ACK information bits. In some embodiments, the PUCCH resource determination may be based on a PUCCH resource indicator field, if present, in a last DCI format, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the terminal device 120 detects and for which the terminal device 120 transmits corresponding HARQ-ACK information in the PUCCH. In some embodiments, for PUCCH resource determination, detected DCI formats may be first indexed in an ascending order across serving cells indexes for a same PDCCH monitoring occasion and may be then indexed in an ascending order across PDCCH monitoring occasion indexes. In some embodiments, for indexing DCI formats within a serving cell for a same PDCCH monitoring occasion, if the terminal device 120 is not provided coresetPoolIndex or is provided coresetPoolIndex with value 0 for one or more first CORESETs and is provided coresetPoolIndex with value 1 for one or more second CORESETs on an active DL BWP of a  serving cell, and with ackNackFeedbackMode = joint for the active UL BWP, detected DCI formats from PDCCH receptions in the first CORESETs may be indexed prior to detected DCI formats from PDCCH receptions in the second CORESETs. In some embodiments, if the DCI format does not include a PUCCH resource indicator field, the value of PUCCH resource indicator may be 0.
In some embodiments, the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated DLorJointTCIState or UL-TCIstate associated with the CORESET or the search space set, wherein the last DCI format is detected in the PDCCH associated with the CORESET or the search space set.
In some embodiments, the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated UL-TCIstate which is associated with same configuration or same value of the at least one configuration with that associated with the CORESET or the search space set, wherein the last DCI format is detected in the PDCCH associated with the CORESET or the search space set.
In some embodiments, the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated DLorJointTCIState for the PDCCH reception, wherein the last DCI format is detected.
In some embodiments, the terminal device 120 may transmit the PUCCH resource using a spatial domain filter based on the indicated UL-TCIstate which is associated with same configuration or same value of the at least one configuration with that associated with the indicated DLorJointTCIState for the PDCCH reception, wherein the last DCI format is detected.
In some embodiments, the terminal device 120 may transmit the PUCCH resource using one or more spatial domain filters based on the (one or more) indicated DLorJointTCIState applied to the PDSCH scheduled by the last DCI format.
In some embodiments, the terminal device 120 may transmit the PUCCH resource using one or more spatial domain filters based on the one or two indicated UL-TCIstate which is associated with same configuration or same value of the at least one configuration with that associated with the one or two indicated DLorJointTCIState for the PDSCH scheduled by the last DCI format.
In some embodiments, the terminal device 120 may determine the at least one spatial domain filter based on the at least two CORESET or at least two search space sets  for PDCCH repetition, where the last DCI is detected in part of or all of the at least two CORESET or the at least two search space sets.
Specifically, a first CORESET (or a first search space set) and second CORESET (or a second search space set) may be determined. And the terminal device 120 may determine a first TCI state based on the first CORESET or the first search space set, and determine a second TCI state based on the second CORESET or the second search space set. Further, the terminal device 120 may determine the at least one spatial domain filter based on the first TCI state and the second TCI state.
In other words, the terminal device 120 may determine the at least one spatial domain filter based on a first TCI state and a second TCI state, where the first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set. The first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition. The last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search space set and the second search space set.
In some examples, the first TCI state may be applied to the first CORESET or the first search space set, and/or the second TCI state may be applied to the second CORESET or the second search space set. For example, the first TCI state and/or the second TCI sate may be a joint TCI state.
In some example embodiments, the at least one spatial domain filter may be one spatial domain filter, for example, it may be called as a first spatial domain filter. Accordingly, the terminal device 120 may determine the first spatial domain filter based on the first TCI state and/or the second TCI state. For example, if simultaneous transmission is not enabled or configured and
Figure PCTCN2022098245-appb-000001
then the terminal device 120 may determine the first spatial domain filter as the one for PUCCH.
In some examples, the terminal device 120 may determine the first spatial domain filter based on a TCI state with a lower identity (ID) from the first TCI state and the second TCI state. For example, if the ID of the first TCI state is lower than the ID of the second TCI state, the terminal device 120 may determine the first spatial domain filter based on the first TCI state. For example, if the ID of the second TCI state is lower than the ID of the  first TCI state, the terminal device 120 may determine the first spatial domain filter based on the second TCI state.
In some examples, the terminal device 120 may determine the first spatial domain filter based on the first TCI state. For example, if the first TCI state is listed (or ordered or sorted) before the second TCI state, the terminal device 120 may determine the first spatial domain filter based on the first TCI state. That is, a TCI state which is the first one of the TCI states may be determined, and may be used for determining the first spatial domain filter.
In some examples, the terminal device 120 may determine the first spatial domain filter based on a TCI state associated with a CORESET (or a search space set) with a lower ID. For example, the at least one configuration may indicate an association of a first TCI state with a first CORESET (or a first search space set) and indicate an association of a second TCI state with a second CORESET (or a second search space set) . If the ID of the first CORESET is lower than the ID of the second CORESET, the terminal device 120 may determine the first spatial domain filter based on the first TCI state associated with the first CORESET. If the ID of the second CORESET is lower than the ID of the first CORESET, the terminal device 120 may determine the first spatial domain filter based on the second TCI state associated with the second CORESET.
If the ID of the first search space set is lower than the ID of the second search space set, the terminal device 120 may determine the first spatial domain filter based on the first TCI state associated with the first search space set. If the ID of the second search space set is lower than the ID of the first search space set, the terminal device 120 may determine the first spatial domain filter based on the second TCI state associated with the second search space set. In other words, the terminal device 120 may determine the first spatial domain filter based on a TCI state which is determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET, or the terminal device 120 may determine the first spatial domain filter based on a TCI state which is determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set. As such, the spatial domain filter (such as the first spatial domain filter) for PUCCH may be determined based on the last DCI and the at least one configuration, and further the HARQ-ACK multiplexing may be supported.
In some example embodiments, the at least one spatial domain filter 224 may be more than one spatial domain filter, for example, including a first spatial domain filter and a second spatial domain filter. Accordingly, the terminal device 120 may determine the first spatial domain filter and the second spatial domain filter based on the first TCI state and the second TCI state.
In some examples, the PDCCH in which the last DCI detected is one of a plurality of PDCCH candidates. In some examples, the PDCCH in which the last DCI detected is overlapped with one of the plurality of PDCCH candidates. In some examples, PDCCH in which the last DCI detected is scrambled in a same way as one of the plurality of PDCCH candidates. In some examples, PDCCH in which the last DCI detected is using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
For example, if simultaneous transmission is enabled or configured, such as 
Figure PCTCN2022098245-appb-000002
or
Figure PCTCN2022098245-appb-000003
then the terminal device 120 may determine more than one spatial domain filter. For example, if simultaneous transmission is not enabled or configured and
Figure PCTCN2022098245-appb-000004
then the terminal device 120 may determine more than one spatial domain filter. In some examples, the terminal device 120 may determine the first spatial domain filter based on the first TCI state and determine the second spatial domain filter based on the second TCI state.
Now further referring to FIG. 2, the terminal device 120 transmits 232 PUCCH with HARQ information 234 to the network device 110, based on the at least one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 236 PUCCH with HARQ information 234.
In some examples, the HARQ information may correspond to the plurality of DCIs. In some examples, the HARQ information may correspond to some of the plurality of DCIs. In some examples, the HARQ information may correspond to at least one PDSCHs scheduled by the plurality of DCIs.
In some embodiments, the terminal device 120 may transmit PUCCH with HARQ information 234 using (or with) the at least one spatial domain filter. Alternatively, the HARQ information may be called as HARQ-ACK information.
In some example embodiments, the at least one spatial domain filter comprises a first spatial domain filter, and the transmission of PUCCH is based on the first spatial domain filter. For example, if simultaneous transmission is not enabled or configured and 
Figure PCTCN2022098245-appb-000005
then the terminal device 120 may transmit PUCCH using the first spatial domain filter.
In some example embodiments, the at least one spatial domain filter comprises more than one spatial domain filter, for example, including a first spatial domain filter and a second spatial domain filter, and the transmission of PUCCH is based on the first spatial domain filter and the second spatial domain filter. In some specific examples, the terminal device 120 may transmit the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
For example, if simultaneous transmission is enabled or configured and
Figure PCTCN2022098245-appb-000006
Figure PCTCN2022098245-appb-000007
then the terminal device 120 may transmit PUCCH using the first spatial domain filter and the second spatial domain filter simultaneously. In some specific examples, the terminal device 120 may transmit a first set of occasions of the PUCCH based on the first spatial domain filter, and transmit a second set of occasions of the PUCCH based on the second spatial domain filter.
For example, if simultaneous transmission is not enabled or configured and 
Figure PCTCN2022098245-appb-000008
then the terminal device 120 may transmit PUCCH using the first spatial domain filter, and later may retransmit the PUCCH using the second spatial domain filter. For example, if simultaneous transmission is enabled or configured and
Figure PCTCN2022098245-appb-000009
then the terminal device 120 may transmit two occasions of the PUCCH using the first spatial domain filter and the second spatial domain filter respectively. That is, the first spatial domain filter and the second spatial domain filter are applied for each PUCCH transmission occasion simultaneously. It is noted that the simultaneous transmission of PUCCH may be based on enabling of simultaneous transmission of PUSCH, the present disclosure does not limit this aspect.
As such, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on at least one configuration and a last DCI, thus HARQ-ACK multiplexing may be supported. Thus, there may be no need to transmit feedbacks separately and the communication efficiency may be improved.
For better understanding, reference is now made to FIGS. 3A-3B, which illustrate some example scenarios in which some embodiments of the present disclosure may be implemented. In the example of FIG. 3A, in the example scenario 310, there are a first PDCCH 312 associated with a first configuration and a second PDCCH 322 associated with  a second configuration. Since the last DCI is detected in the second PDCCH 322, the PUCCH 332 with HARQ information is transmitted based on a spatial domain filter determined based on a second TCI state which is associated with the second configuration.
In the example of FIG. 3B, in the example scenario 320, there are a first PDCCH 314 and a second PDCCH 324 in which the last DCI is detected. The second PDCCH 324 in FIG. 3B is associated with the first and the second configurations. Thus PUCCH 334 with HARQ information is transmitted based on at least one spatial domain filter determined based on a first TCI state and a second TCI state which are associated with the first and the second configurations respectively.
Reference is further made to FIG. 4, which illustrates a signalling chart illustrating communication process 400 in accordance with some example embodiments of the present disclosure. Only for the purpose of discussion, the process 400 will be described with reference to FIG. 1.
The network device 110 transmits 412 at least one configuration 414 to the terminal device 120. Accordingly, on the other side of the communication, the terminal device 120 receives 416 the at least one configuration 414. It is to be understood that the description on at least one configuration 214 when referring to FIG. 2 may be applied to the at least one configuration 414 in FIG. 4, and the similar disclosure will not be repeated herein.
Alternatively of additionally, the network device 110 may transmit 422 a plurality of DCIs 424 to the terminal device 120. Accordingly, the terminal device 120 may receive 426 the plurality of DCIs 424 from the network device 110. In some examples, the plurality of DCIs 424 may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
In some embodiments, there may be a plurality of CCs/BWPs/cells comprising a first set of CCs/BWPs/cells sharing a first set of TCI state (s) and a second set of CCs/BWPs/cells sharing a second set of TCI state (s) . For example, the plurality of DCIs 424 may comprise a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells. And it is pre-configured or pre-indicated that the PUCCH is to be transmitted in a cell of the first set of cells (or a CC in a first set of CCs) . For example, the cell of the first set of cells may be a Pcell, Pscell, or a PUCCH-scell. Alternatively of additionally, the network device 110 may determine 427 whether a last DCI of the plurality  of DCIs 424 is associated with the first set of cells. In some embodiments, the first set of TCI state (s) may include one or two joint TCI states. In some embodiments, the first set of TCI state (s) may include one or two downlink TCI states and/or one or two uplink TCI states. In some embodiments, the second set of TCI state (s) may include one or two joint TCI states. In some embodiments, the second set of TCI state (s) may include one or two downlink TCI states and/or one or two uplink TCI states.
In some embodiments, the plurality of DCIs may have a same value of a feedback timing indicator, exclude SPS activation DCIs, and/or indicate a same time unit for PUCCH transmission. For example, the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
In some embodiments, the terminal device 120 determines 428 at least one spatial domain filter for PUCCH based on the at least one configuration 414 and the determination at 427. In some example embodiments, the last DCI is associated with the first set of cells. In some examples, the last DCI is associated with a CORESET or a search space set in the first set of cells. In some examples, a PDCCH in which the last DCI detected is associated with a CORESET or a search space set in the first set of cells. For example, the last DCI is one of the first set of DCIs in the first set of cells.
In other words, the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission and associated with a CORESET in the first set of cells, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
In this case, if the last DCI is associated with the first set of cells, the terminal device 120 may determine at least one of a first TCI state and a second TCI state (a first TCI state and/or a second TCI state) based on the at least one configuration and the  CORESET or the search space set associated with the last DCI or the PDCCH in which the last DCI detected, and the terminal device 120 may determine the at least one spatial domain filter for PUCCH based on at least one of the first TCI state and the second TCI state.
In some example embodiments, the last DCI is not associated with the first set of cells. For example, the last DCI is not associated with a CORESET or search space set in the first set of cells.
In some examples, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state with a lowest ID among TCI states applied for the first set of cells. In some examples, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state with a lower ID between a first TCI state and a second TCI state, where the first TCI state and the second TCI state are applied for the first set of cells. In some specific examples, the first TCI state and the second TCI state are applied for the cell, in the first set of cells, at which the PUCCH is to be transmitted.
In some examples, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state associated with a CORESET having a lowest ID among a plurality of CORESETs in the first set of cells. In some examples, the terminal device 120 may determine at least one spatial domain filter for PUCCH based on a TCI state associated with a CORESET having a same value of the at least one configuration as a CORESET for the last DCI. For example, a CORESET associated with the last DCI may be determined, CORESET 1 for example; a configuration (configuration 1 for example) indicated an association of CORESET 1 with TCI state (s) may be determined and a value of configuration 1 (value 1 for example) may be further determined. CORESET with the same value (CORESET 2 with value 1) may be determined from the plurality of CORESETs in the first set of cells, and the TCI state associated with CORESET 2 may be further determined.
It is to be understood that a value of a configuration may be represented as CORESETPoolIndex. If the CORESET for the last DCI is not configured with CORESETPoolIndex, the value may be assumed to be 0. The present disclosure does not limit this aspect.
Now further referring to FIG. 4, the terminal device 120 transmits 432 PUCCH  with HARQ information 434 in the cell of the first set of cells to the network device 110, based on the at least one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 436 PUCCH with HARQ information 434. In some examples, the terminal device 120 may transmit the PUCCH in the cell to the network device 110 by using the at least one spatial domain filter.
Reference is further made to FIG. 5, which illustrates a signalling chart illustrating communication process 500 according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 500 will be described with reference to FIG. 1.
The network device 110 transmits 512 at least one configuration 514 to the terminal device 120. Accordingly, on the other side of the communication, the terminal device 120 receives 516 the at least one configuration 514.
It is to be understood that the description on at least one configuration 214 when referring to FIG. 2 may be applied to the at least one configuration 514 in FIG. 5, and the similar disclosure will not be repeated herein. Alternatively of additionally, the network device 110 may transmit 522 a plurality of DCIs 524 to the terminal device 120. Accordingly, the terminal device 120 may receive 526 the plurality of DCIs 524 from the network device 110. In some examples, the plurality of DCIs 524 may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
The terminal device 120 determines 527 more than one spatial domain filter for PUCCH based on the at least one configuration 514 and the plurality of DCIs 524. In some example embodiments, the terminal device 120 may determine a plurality of TCI states associated with a plurality of PDCCHs in which the plurality of DCIs 524 are detected respectively, based on the at least one configuration 514. In addition, the terminal device 120 may determine more than one spatial domain filter based on the plurality of TCI states.
For example, the plurality of DCIs 524 comprises a first DCI in a first PDCCH and a second DCI in a second PDCCH, and the first PDCCH is associated with a first CORESET or a first search space set, the second PDCCH is associated with a second CORESET or a second search space set. The terminal device 120 may determine a first TCI state and a second TCI state based on a first configuration and a second configuration, where the first configuration indicates an association of the first TCI state with the first  CORESET or the first search space set, and the second configuration indicates an association of the second TCI state with the second CORESET or the second search space set. Further, the terminal device 120 may determine a first spatial domain filter based on the first TCI state and a second spatial domain filter based on the second TCI state. In this case, as long as there are two TCI states associated with CORESETs for the plurality of DCIs 524, the terminal device 120 may determine two spatial domain filters for PUCCH, without referring to the last DCI.
In some example embodiments, the terminal device 120 may determine a plurality of TCI states associated with at least two CORTESETs or search space sets for PDCCH repetition, based on the at least one configuration 514. In addition, the terminal device 120 may determine more than one spatial domain filter based on the plurality of TCI states.
For example, at least one PDCCH related to the plurality of DCIs is one of a plurality of PDCCH candidates, or is overlapped with one of the plurality of PDCCH candidates, or is scrambled in a same way as one of the plurality of PDCCH candidates, or is using a same set of CCEs over same time units as one of the plurality of PDCCH candidates, the terminal device 120 may determine at least two CORTESETs or search space sets linked with each other for PDCCH repetition. In addition, the terminal device 120 may determine the more than one spatial domain filters.
In some examples, the at least two CORTESETs comprise a first CORESET and a second CORESET, the first CORESET is associated with a first TCI state and the second CORESET is associated with a second TCI state. Thus the terminal device 120 may further determine a first spatial domain filter based on the first TCI state and a second spatial domain filter based on the second TCI state.
Now further referring to FIG. 5, the terminal device 120 transmits 532 PUCCH with HARQ information 534 to the network device 110, based on the more than one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 536 PUCCH with HARQ information 534.
In some embodiments, the more than one spatial domain filter may comprise a first spatial domain filter and a second spatial domain filter, where the first spatial domain filter is based on the first TCI state and the second spatial domain filter is based on the second TCI state. For example, if simultaneous transmission is not enabled or configured and 
Figure PCTCN2022098245-appb-000010
then the terminal device 120 may determine one of the first spatial domain  filter and the second spatial domain filter for PUCCH.
In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state with a lower ID from the first TCI state and the second TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on the first TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state associated with a CORESET (or a search space set) with a lower ID.
For example, if simultaneous transmission is enabled or configured and
Figure PCTCN2022098245-appb-000011
Figure PCTCN2022098245-appb-000012
then the terminal device 120 may transmit PUCCH using the first spatial domain filter and the second spatial domain filter simultaneously. For example, if simultaneous transmission is not enabled or configured and
Figure PCTCN2022098245-appb-000013
then the terminal device 120 may transmit PUCCH using the first spatial domain filter, and later may retransmit the PUCCH using the second spatial domain filter.
For example, if simultaneous transmission is enabled or configured and
Figure PCTCN2022098245-appb-000014
Figure PCTCN2022098245-appb-000015
then the terminal device 120 may transmit two occasions of the PUCCH using the first spatial domain filter and the second spatial domain filter respectively. That is, the first spatial domain filter and the second spatial domain filter are applied for each PUCCH transmission occasion simultaneously.
For better understanding, reference is now made to FIGS. 6A-6B, which illustrate some example scenarios in which some embodiments of the present disclosure may be implemented. In the example of FIG. 6A, in the example scenario 610, there are a first PDCCH 612 associated with a first configuration and a second PDCCH 622 associated with a second configuration. It is assumed that the PUCCH repetition is configured and the last DCI is detected in the second PDCCH 622, referring to FIG. 6A, PUCCH 632 is transmitted based on a spatial domain filter determined based on a second TCI state which is associated with the second configuration, and PUCCH 634 is transmitted based on another spatial domain filter determined based on a first TCI state which is associated with the first configuration.
In the example of FIG. 6B, in the example scenario 620, there are a first PDCCH 614 and a second PDCCH 624 both associated with a same configuration. Thus PUCCH 644 is transmitted based on a spatial domain filter determined based on a TCI state which is  associated with the same configuration.
Reference is further made to FIG. 7, which illustrates a signalling chart illustrating communication process 700 according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 700 will be described with reference to FIG. 1.
The network device 110 transmits 712 at least one configuration 714 to the terminal device 120. Accordingly, on the other side of the communication, the terminal device 120 receives 716 the at least one configuration 714.
It is to be understood that the description on at least one configuration 214 when referring to FIG. 2 may be applied to the at least one configuration 714 in FIG. 7, and the similar disclosure will not be repeated herein.
Alternatively of additionally, the network device 110 may transmit 722 a plurality of DCIs 724 to the terminal device 120. Accordingly, the terminal device 120 may receive 726 the plurality of DCIs 724 from the network device 110. In some examples, the plurality of DCIs 724 may be transmitted through multiple TRPs, for example, the first TPR 130-1 and the second TRP 130-2.
The terminal device 120 determines 730 TCI state (s) applied to a PDSCH scheduled by a last DCI in the plurality of DCIs 724 based on the at least one configuration 714, where the last DCI is with DL assignment.
The plurality of DCIs may have a same value of a feedback timing indicator, exclude semi persistent scheduling (SPS) activation DCIs, and/or indicate a same time unit for PUCCH transmission. For example, the last DCI is a last DCI format that, excluding the SPS activation DCI, among the DCI formats that have a value of a PDSCH-to-HARQ_feedback timing indicator field, if present, or a value of dl-DataToUL-ACK, or dl-DataToUL-ACK-r16, or dl-DataToUL-ACK-DCI-1-2, or dl-DataToUL-ACK-r17, or dl-DataToUL-ACK-MulticastDciFormat4_1, indicating a same slot for the PUCCH transmission, that the UE detects and for which the UE transmits corresponding HARQ-ACK information in the PUCCH.
It is to be understood that if the last DCI is not with DL assignment, the terminal device 120 may determine TCI state (s) associated with the last DCI and further determine at least one spatial domain filter, the detailed description may be refer to those described above, with reference to FIG. 2, and thus will not be repeated herein.
The terminal device 120 determines 740 at least one spatial domain filter based on the TCI state (s) applied to the PDSCH. In some embodiments, there is one TCI state applied to the PDSCH, for example a DL/joint TCI state. The terminal device 120 may determine a spatial domain filter based on the joint TCI state applied to the PDSCH, or may determine a spatial domain filter based on an UL TCI state associated with the DL TCI state applied to the PDSCH. In some examples, this case may be referred as a single-TRP case.
In some embodiment, there are more than one TCI state applied to the PDSCH, for example including a first DL/joint TCI state and a second DL/joint TCI state. The terminal device 120 may determine a first spatial domain filter based on the first joint TCI state applied to the PDSCH and a second spatial domain filter based on the second joint TCI state applied to the PDSCH, or may determine a first spatial domain filter based on a first UL TCI state associated with the first DL TCI state applied to the PDSCH and a second spatial domain filter based on the second DL TCI state applied to the PDSCH.
The terminal device 120 transmits 752 PUCCH with HARQ information 754 to the network device 110, based on the at least one spatial domain filter. Accordingly, on the other side of the communication, the network device 110 receives 756 PUCCH with HARQ information 534.
In some embodiments, there is one determined spatial domain filter, thus the terminal device 120 may transmit the PUCCH based on the spatial domain filter. In some embodiments, there are more than one determined spatial domain filter, for example including a first spatial domain filter and a second spatial domain filter. For example, if simultaneous transmission is not enabled or configured and
Figure PCTCN2022098245-appb-000016
then the terminal device 120 may determine one of the first spatial domain filter and the second spatial domain filter for PUCCH.
In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state with a lower ID from the first TCI state and the second TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on the first TCI state. In some examples, the terminal device 120 may determine the one of the first spatial domain filter and the second spatial domain based on a TCI state associated with a CORESET (or a search space set) with a lower ID.
For example, if simultaneous transmission is enabled or configured and
Figure PCTCN2022098245-appb-000017
Figure PCTCN2022098245-appb-000018
then the terminal device 120 may transmit PUCCH using the first spatial domain filter and the second spatial domain filter simultaneously. For example, if simultaneous transmission is not enabled or configured and
Figure PCTCN2022098245-appb-000019
then the terminal device 120 may transmit PUCCH using the first spatial domain filter, and later may retransmit the PUCCH using the second spatial domain filter.
For example, if simultaneous transmission is enabled or configured and
Figure PCTCN2022098245-appb-000020
Figure PCTCN2022098245-appb-000021
then the terminal device 120 may transmit two occasions of the PUCCH using the first spatial domain filter and the second spatial domain filter respectively. That is, the first spatial domain filter and the second spatial domain filter are applied for each PUCCH transmission occasion simultaneously.
For better understanding, reference is now made to FIG. 8, which illustrates an example scenario 800 in which some embodiments of the present disclosure may be implemented. In the example of FIG. 8, there are a first PDCCH 810 and a second PDCCH 820. It is assumed that the last DCI is detected in the second PDCCH 820 and the last DCI is with DL assignment, and thus PDSCH 830 scheduled by the last DCI may be determined, and the TCI state (s) applied to the PDSCH 830 may be determined accordingly. Referring to FIG. 8, the PUCCH 840 with HARQ information is transmitted based on at least one spatial domain filter determined based on the TCI state (s) applied to the PDSCH 830 or based on UL TCI state (s) associated with the TCI state (s) applied to the PDSCH 830.
According to the embodiments described with reference to FIG. 2 to FIG. 8, the terminal device may determine at least one spatial domain filter based on at least one configuration, and further PUCCH with HARQ information may be transmitted based on the at least one spatial domain filter. As such, HARQ multiplexing may be supported and the communication efficiency may be improved.
FIG. 9 illustrates a flowchart of an example method 900 implemented at a terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 900 will be described from the perspective of the terminal device 120 with reference to FIG. 1.
At block 910, the terminal device 120 receives, from the network device 110, at least one configuration for at least one TCI state. At block 920, the terminal device 120 determines at least one spatial domain filter for a PUCCH based on a last DCI of a plurality  of DCIs and the at least one configuration. At block 930, the terminal device 120 transmits, to the network device 110, the PUCCH with HARQ information based on the at least one spatial domain filter.
In some example embodiments, the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
In some example embodiments, determining the at least one spatial domain filter comprises at least one of: determining the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, where at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a PDCCH in which the last DCI is detected; or determining the at least one spatial domain filter based on the first TCI state and the second TCI state, where first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, where the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search space set and the second search space set.
In some example embodiments, determining the at least one spatial domain filter comprises: determining a first spatial domain filter based on at least one of: a TCI state with a lower ID between the first TCI state and the second TCI state; a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
In some example embodiments, the first TCI state is applied to the CORESET or the search space set; the first TCI state and the second TCI state are applied to the CORESET or the search space set; or the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or  the second search space set.
In some example embodiments, the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
In some example embodiments, the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter, and where determining at least one spatial domain filter comprises: determining the first spatial domain filter based on the first TCI state; and determining the second spatial domain filter based on the second TCI state.
In some example embodiments, transmitting the PUCCH comprises: transmitting the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
In some example embodiments, transmitting the PUCCH comprises: transmitting a first set of occasions of the PUCCH with the first spatial domain filter; and transmitting a second set of occasions of the PUCCH with the second spatial domain filter.
In some example embodiments, the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, and transmitting the PUCCH comprises: transmitting the PUCCH in a cell of the first set of cells.
In some example embodiments, the last DCI is the last one of the first set of DCIs.
In some example embodiments, the method 900 further comprises: in accordance with a determination that the last DCI is not associated with the first set of cells, the terminal device 120 determines the at least one spatial domain filter based on at least one of: a TCI state with a lowest ID among TCI states applied for the first set of cells; a TCI state with a lower ID between a first TCI state and a second TCI state, where the first TCI state and the second TCI state are applied for the first set of cells; a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI; a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
In some example embodiments, the PDCCH in which the last DCI is detected is at  least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
In some example embodiments, at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
In some example embodiments, the network device 110 comprises multiple transmission and reception points (M-TRP) .
FIG. 10 illustrates a flowchart of an example method 1000 implemented at a network device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 1000 will be described from the perspective of the network device 110 with reference to FIG. 1.
At block 1010, the network device 110 transmits, to the terminal device 120, at least one configuration for at least one TCI state. At block 1020, the network device 110 transmits a plurality of DCIs to the terminal device 120. At block 1030, the network device 110 receives, from the terminal device 120, PUCCH with HARQ information.
In some example embodiments, the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
In some example embodiments, the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
In some example embodiments, the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, and receiving the PUCCH comprises: receiving the PUCCH in a cell of the first set of cells.
In some example embodiments, a PDCCH carrying a last DCI of the plurality of DCIs is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH  candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
In some example embodiments, at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
In some example embodiments, the network device comprises multiple transmission and reception points (M-TRP) .
Details of some embodiments according to the present disclosure have been described with reference to FIGS. 1-10. Now an example implementation of the terminal device and the network device will be discussed below.
In some example embodiments, a terminal device comprises circuitry configured to: receive, from a network device, at least one configuration for at least one TCI state; determine at least one spatial domain filter for a PUCCH based on a last DCI of a plurality of DCIs and the at least one configuration; and transmit, to the network device, the PUCCH with HARQ information based on the at least one spatial domain filter.
In some example embodiments, the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
In some example embodiments, the terminal device comprises circuitry configured to: determine the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, where at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a PDCCH in which the last DCI is detected; or determine the at least one spatial domain filter based on the first TCI state and the second TCI state, where first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, where the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search space set and  the second search space set.
In some example embodiments, the terminal device comprises circuitry configured to: determine a first spatial domain filter based on at least one of: a TCI state with a lower ID between the first TCI state and the second TCI state; a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
In some example embodiments, the first TCI state is applied to the CORESET or the search space set; the first TCI state and the second TCI state are applied to the CORESET or the search space set; or the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or the second search space set.
In some example embodiments, the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one PDSCH scheduled by the plurality of DCIs.
In some example embodiments, the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter, and the terminal device comprises circuitry configured to: determine the first spatial domain filter based on the first TCI state; and determine the second spatial domain filter based on the second TCI state.
In some example embodiments, the terminal device comprises circuitry configured to: transmit the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
In some example embodiments, the terminal device comprises circuitry configured to: transmit a first set of occasions of the PUCCH with the first spatial domain filter; and transmit a second set of occasions of the PUCCH with the second spatial domain filter.
In some example embodiments, the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, and the terminal device comprises circuitry configured to: transmit the PUCCH in a cell of the first set of cells.
In some example embodiments, the last DCI is the last one of the first set of DCIs.
In some example embodiments, the terminal device comprises circuitry configured  to: in accordance with a determination that the last DCI is not associated with the first set of cells, determine the at least one spatial domain filter based on at least one of: a TCI state with a lowest ID among TCI states applied for the first set of cells; a TCI state with a lower ID between a first TCI state and a second TCI state, where the first TCI state and the second TCI state are applied for the first set of cells; a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI; a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
In some example embodiments, the PDCCH in which the last DCI is detected is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
In some example embodiments, at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
In some example embodiments, the network device comprises multiple transmission and reception points (M-TRP) .
In some example embodiments, a network device comprises circuitry configured to: transmit, to a terminal device, at least one configuration for at least one TCI state; transmit a plurality of DCIs to the terminal device; and receive, from the terminal device PUCCH with HARQ information.
In some example embodiments, the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
In some example embodiments, the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one PDSCH scheduled by the plurality of DCIs.
In some example embodiments, the plurality of DCIs comprises a first set of DCIs  in a first set of cells and a second set of DCIs in a second set of cells, and receiving the PUCCH comprises: receiving the PUCCH in a cell of the first set of cells.
In some example embodiments, a PDCCH carrying a last DCI of the plurality of DCIs is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
In some example embodiments, at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
In some example embodiments, the network device comprises M-TRP.
FIG. 11 illustrates a simplified block diagram of a device 1100 that is suitable for implementing embodiments of the present disclosure. The device 1100 can be considered as a further example implementation of the terminal device 120, and the network device 110 as shown in FIG. 1. Accordingly, the device 1100 can be implemented at or as at least a part of the terminal device 120, or the network device 110.
As shown, the device 1100 includes a processor 1110, a memory 1120 coupled to the processor 1110, a suitable transmitter (TX) and receiver (RX) 1140 coupled to the processor 1110, and a communication interface coupled to the TX/RX 1140. The memory 1110 stores at least a part of a program 1130. The TX/RX 1140 is for bidirectional communications. The TX/RX 1140 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this disclosure may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 1130 is assumed to include program instructions that, when executed by the associated processor 1110, enable the device 1100 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 2-10. The embodiments herein may be implemented by computer software executable by the  processor 1110 of the device 1100, or by hardware, or by a combination of software and hardware. The processor 1110 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1110 and memory 1120 may form processing means 1150 adapted to implement various embodiments of the present disclosure.
The memory 1120 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1120 is shown in the device 1100, there may be several physically distinct memory modules in the device 1100. The processor 1110 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1100 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In summary, embodiments of the present disclosure may provide the following solutions.
The present disclosure provides a method of communication, comprises: receiving, at a terminal device from a network device, at least one configuration for at least one transmission configuration indicator (TCI) state; determining at least one spatial domain filter for a physical uplink control channel (PUCCH) based on a last downlink control information (DCI) of a plurality of DCIs and the at least one configuration; and transmitting, to the network device, the PUCCH with hybrid automatic repeat request (HARQ) information based on the at least one spatial domain filter.
In one embodiment, the method as above, the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
In one embodiment, the method as above, determining the at least one spatial  domain filter comprises at least one of: determining the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, wherein at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a PDCCH in which the last DCI is detected; or determining the at least one spatial domain filter based on the first TCI state and the second TCI state, wherein first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, wherein the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one of the first search space set and the second search space set.
In one embodiment, the method as above, determining the at least one spatial domain filter comprises: determining a first spatial domain filter based on at least one of: a TCI state with a lower ID between the first TCI state and the second TCI state; a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
In one embodiment, the method as above, the first TCI state is applied to the CORESET or the search space set; the first TCI state and the second TCI state are applied to the CORESET or the search space set; or the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or the second search space set.
In one embodiment, the method as above, the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
In one embodiment, the method as above, the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter, and wherein determining at least one spatial domain filter comprises: determining the first spatial domain filter based on the first TCI state; and determining the second spatial domain filter based on the second TCI state.
In one embodiment, the method as above, transmitting the PUCCH comprises: transmitting the PUCCH based on the first spatial domain filter and the second spatial domain filter simultaneously.
In one embodiment, the method as above, transmitting the PUCCH comprises: transmitting a first set of occasions of the PUCCH with the first spatial domain filter; and transmitting a second set of occasions of the PUCCH with the second spatial domain filter.
In one embodiment, the method as above, the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, and transmitting the PUCCH comprises: transmitting the PUCCH in a cell of the first set of cells.
In one embodiment, the method as above, the last DCI is the last one of the first set of DCIs.
In one embodiment, the method as above, further comprises: in accordance with a determination that the last DCI is not associated with the first set of cells, the terminal device determines the at least one spatial domain filter based on at least one of: a TCI state with a lowest ID among TCI states applied for the first set of cells; a TCI state with a lower ID between a first TCI state and a second TCI state, wherein the first TCI state and the second TCI state are applied for the first set of cells; a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI; a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
In one embodiment, the method as above, the PDCCH in which the last DCI is detected is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
In one embodiment, the method as above, at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
In one embodiment, the method as above, the network device comprises multiple transmission and reception points (M-TRP) .
The present disclosure provides a method of communication, comprises: transmitting, at a network device to a terminal device, at least one configuration for at least one transmission configuration indicator (TCI) state; transmitting a plurality of downlink control information (DCIs) to the terminal device; and receiving, from the terminal device, PUCCH with hybrid automatic repeat request (HARQ) information.
In one embodiment, the method as above, the at least one configuration comprises at least one of: an association of the at least one TCI state with at least one CORESET; an association of a TCI state with a CORESET; an association of the at least one TCI state with a CORESET group; an association of the at least one TCI state with at least one search space set; or an association of a downlink TCI state with an uplink TCI state.
In one embodiment, the method as above, the HARQ information corresponds to at least one of: the plurality of DCIs, or at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
In one embodiment, the method as above, the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, and receiving the PUCCH comprises: receiving the PUCCH in a cell of the first set of cells.
In one embodiment, the method as above, a PDCCH carrying a last DCI of the plurality of DCIs is at least one of: one of a plurality of PDCCH candidates, overlapped with one of the plurality of PDCCH candidates, scrambled in a same way as one of the plurality of PDCCH candidates, or using a same set of CCEs over same time units as one of the plurality of PDCCH candidates.
In one embodiment, the method as above, at least one of: the plurality of DCIs have a same value of a feedback timing indicator, the plurality of DCIs exclude SPS activation DCIs, or the plurality of DCIs indicate a same time unit for PUCCH transmission.
In one embodiment, the method as above, the network device comprises multiple transmission and reception points (M-TRP) .
The present disclosure provides a terminal device, comprising: a processor; and a memory storing computer program codes; the memory and the computer program codes  configured to, with the processor, cause the terminal device to perform the method implemented at the terminal device discussed above.
The present disclosure provides a network device, comprising: a processor; and a memory storing computer program codes; the memory and the computer program codes configured to, with the processor, cause the network device to perform the method implemented at the network device discussed above.
The present disclosure provides a computer readable medium having instructions stored thereon, the instructions, when executed by a processor of an apparatus, causing the apparatus to perform the method implemented at a terminal device or a network device discussed above.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGS. 6-20. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in  any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features  or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

  1. A method of communication, comprising:
    receiving, at a terminal device from a network device, at least one configuration for at least one transmission configuration indicator (TCI) state;
    determining at least one spatial domain filter for a physical uplink control channel (PUCCH) based on a last downlink control information (DCI) of a plurality of DCIs and the at least one configuration; and
    transmitting, to the network device, the PUCCH with hybrid automatic repeat request (HARQ) information based on the at least one spatial domain filter.
  2. The method of claim 1, wherein the at least one configuration comprises at least one of:
    an association of the at least one TCI state with at least one control resource set (CORESET) ;
    an association of a TCI state with a CORESET;
    an association of the at least one TCI state with a CORESET group;
    an association of the at least one TCI state with at least one search space set; or
    an association of a downlink TCI state with an uplink TCI state.
  3. The method of claim 1, wherein determining the at least one spatial domain filter comprises at least one of:
    determining the at least one spatial domain filter based on at least one of a first TCI state and a second TCI state, wherein at least one of the first TCI state and the second TCI state is determined based on the at least one configuration and a CORESET or a search space set associated with a physical downlink control channel (PDCCH) in which the last DCI is detected; or
    determining the at least one spatial domain filter based on the first TCI state and the second TCI state, wherein first TCI state is determined based on the at least one configuration and a first CORESET or a first search space set, and the second TCI state is determined based on the at least one configuration and a second CORESET or a second search space set, wherein the first CORESET or the first search space set is linked with the second CORESET or the second search space set for PDCCH repetition, and the last DCI is detected in at least one of the first CORESET and the second CORESET or in at least one  of the first search space set and the second search space set.
  4. The method of claim 3, wherein determining the at least one spatial domain filter comprises:
    determining a first spatial domain filter based on at least one of:
    a TCI state with a lower identity (ID) between the first TCI state and the second TCI state;
    a TCI state determined based on the at least one configuration and a CORESET with a lower ID in the first CORESET and the second CORESET; or
    a TCI state determined based on the at least one configuration and a search space set with a lower ID in the first search space set and the second search space set.
  5. The method of claim 3, wherein:
    the first TCI state is applied to the CORESET or the search space set;
    the first TCI state and the second TCI state are applied to the CORESET or the search space set; or
    the first TCI state is applied to the first CORESET or the first search space set, and the second TCI state is applied to the second CORESET or the second search space set.
  6. The method of claim 1, wherein the HARQ information corresponds to at least one of:
    the plurality of DCIs, or
    at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
  7. The method of claim 3, wherein the at least one spatial domain filter comprises a first spatial domain filter and a second spatial domain filter, and wherein determining at least one spatial domain filter comprises:
    determining the first spatial domain filter based on the first TCI state; and
    determining the second spatial domain filter based on the second TCI state.
  8. The method of claim 7, wherein transmitting the PUCCH comprises at least one of:
    transmitting the PUCCH based on the first spatial domain filter and the second  spatial domain filter simultaneously;
    transmitting a first set of occasions of the PUCCH with the first spatial domain filter; and
    transmitting a second set of occasions of the PUCCH with the second spatial domain filter.
  9. The method of claim 1, wherein the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, the last DCI is the last one of the first set of DCIs, and wherein transmitting the PUCCH comprises:
    transmitting the PUCCH in a cell of the first set of cells.
  10. The method of claim 9, further comprising:
    in accordance with a determination that the last DCI is not associated with the first set of cells, determining the at least one spatial domain filter based on at least one of:
    a TCI state with a lowest ID among TCI states applied for the first set of cells;
    a TCI state with a lower ID between a first TCI state and a second TCI state, wherein the first TCI state and the second TCI state are applied for the first set of cells;
    a TCI state determined based on a CORESET with a same value of the at least one configuration as a CORESET for the last DCI;
    a TCI state determined based on a CORESET with a lowest ID among a plurality of CORESETs in the first set of cells; or
    a TCI state determined based on a CORESET, among a plurality of CORESETs associated with the first set of cells, with a same value of the at least one configuration as the CORESET for the last DCI.
  11. A method of communication, comprising:
    transmitting, at a network device to a terminal device, at least one configuration for at least one transmission configuration indicator (TCI) state;
    transmitting a plurality of downlink control information (DCIs) to the terminal device; and
    receiving, from the terminal device, PUCCH with hybrid automatic repeat request (HARQ) information.
  12. The method of claim 11, wherein the at least one configuration comprises at  least one of:
    an association of the at least one TCI state with at least one control resource set (CORESET) ;
    an association of a TCI state with a CORESET;
    an association of the at least one TCI state with a CORESET group;
    an association of the at least one TCI state with at least one search space set; or
    an association of a downlink TCI state with an uplink TCI state.
  13. The method of claim 11, wherein the HARQ information corresponds to at least one of:
    the plurality of DCIs, or
    at least one physical downlink shared channel (PDSCH) scheduled by the plurality of DCIs.
  14. The method of claim 11, wherein the plurality of DCIs comprises a first set of DCIs in a first set of cells and a second set of DCIs in a second set of cells, and wherein receiving the PUCCH comprises:
    receiving the PUCCH in a cell of the first set of cells.
  15. The method of claim 11, wherein a physical downlink control channel (PDCCH) carrying a last DCI of the plurality of DCIs is at least one of:
    one of a plurality of PDCCH candidates,
    overlapped with one of the plurality of PDCCH candidates,
    scrambled in a same way as one of the plurality of PDCCH candidates, or
    using a same set of control-channel elements (CCE) over same time units as one of the plurality of PDCCH candidates.
  16. The method of claim 11, wherein at least one of:
    the plurality of DCIs have a same value of a feedback timing indicator,
    the plurality of DCIs exclude semi persistent scheduling (SPS) activation DCIs, or
    the plurality of DCIs indicate a same time unit for PUCCH transmission.
  17. The method of claim 11, wherein the network device comprises multiple transmission and reception points (M-TRP) .
  18. A terminal device comprising:
    a processor; and
    a memory storing computer program codes;
    the memory and the computer program codes configured to, with the processor, cause the terminal device to perform the method according to any of claims 1-10.
  19. A network device comprising:
    a processor; and
    a memory storing computer program codes;
    the memory and the computer program codes configured to, with the processor, cause the network device to perform the method according to any of claims 11-17.
  20. A computer readable medium having instructions stored thereon, the instructions, when executed by a processor of an apparatus, causing the apparatus to perform the method according to any of claims 1-17.
PCT/CN2022/098245 2022-06-10 2022-06-10 Methods, devices, and medium for communication WO2023236211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098245 WO2023236211A1 (en) 2022-06-10 2022-06-10 Methods, devices, and medium for communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098245 WO2023236211A1 (en) 2022-06-10 2022-06-10 Methods, devices, and medium for communication

Publications (1)

Publication Number Publication Date
WO2023236211A1 true WO2023236211A1 (en) 2023-12-14

Family

ID=89117459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098245 WO2023236211A1 (en) 2022-06-10 2022-06-10 Methods, devices, and medium for communication

Country Status (1)

Country Link
WO (1) WO2023236211A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609092A1 (en) * 2018-08-08 2020-02-12 Acer Incorporated Method for downlink reception and user equipment using the same
WO2021063296A1 (en) * 2019-09-30 2021-04-08 中兴通讯股份有限公司 Information determination, acquisition and transmission methods, apparatuses and devices, and storage medium
WO2021068192A1 (en) * 2019-10-11 2021-04-15 Lenovo (Beijing) Limited Determining default spatial relation for ul signals
US20220116182A1 (en) * 2019-09-30 2022-04-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining spatial domain transmission filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609092A1 (en) * 2018-08-08 2020-02-12 Acer Incorporated Method for downlink reception and user equipment using the same
WO2021063296A1 (en) * 2019-09-30 2021-04-08 中兴通讯股份有限公司 Information determination, acquisition and transmission methods, apparatuses and devices, and storage medium
US20220116182A1 (en) * 2019-09-30 2022-04-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining spatial domain transmission filter
WO2021068192A1 (en) * 2019-10-11 2021-04-15 Lenovo (Beijing) Limited Determining default spatial relation for ul signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-TRP for reliability and robustness in Rel-17", 3GPP DRAFT; R1-2100209, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970841 *

Similar Documents

Publication Publication Date Title
US11838916B2 (en) Downlink control information design for multi-component carrier scheduling
EP4091279A1 (en) Frequency division multiplexing mapping of transmission configuration indicator states to a control channel
WO2021022203A1 (en) Transmission batch scheduling and resource management
CN115699666A (en) Downlink control information for scheduling multiple component carriers
CN116436585A (en) Method and apparatus for reference signal configuration
WO2023123379A1 (en) Methods, devices, and computer readable medium for communication
WO2023184273A1 (en) Method, device and computer storage medium of communication
WO2023236211A1 (en) Methods, devices, and medium for communication
WO2023245510A1 (en) Methods, devices, and medium for communication
WO2023150981A1 (en) Methods, devices, and computer readable medium for communication
WO2023115349A1 (en) Methods, devices, and computer readable medium for communication
WO2024007314A1 (en) Methods, devices, and medium for communication
WO2024065771A1 (en) Methods, devices and medium for communication
WO2023050096A1 (en) Method, device and computer readable medium for communication
WO2023123609A1 (en) Methods, devices, and computer readable medium for communication
WO2024011453A1 (en) Method, device and computer storage medium of communication
WO2023123246A1 (en) Method, device and computer storage medium for communication
WO2023173299A1 (en) Methods, devices, and computer readable medium for communication
WO2024000601A1 (en) Methods, devices, and medium for communication
WO2023150984A1 (en) Methods, devices and computer storage media for communication
WO2024060246A1 (en) Method, device and computer storage medium of communication
WO2023115472A1 (en) Methods, devices, and medium for communication
WO2023122992A1 (en) Methods, devices and computer storage media for communication
WO2023173378A1 (en) Method, device and computer readable medium of communication
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945352

Country of ref document: EP

Kind code of ref document: A1