WO2021062573A1 - Load balancing system and method - Google Patents

Load balancing system and method Download PDF

Info

Publication number
WO2021062573A1
WO2021062573A1 PCT/CL2020/050113 CL2020050113W WO2021062573A1 WO 2021062573 A1 WO2021062573 A1 WO 2021062573A1 CL 2020050113 W CL2020050113 W CL 2020050113W WO 2021062573 A1 WO2021062573 A1 WO 2021062573A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical energy
virtual reservoir
control
circuit breakers
electrical
Prior art date
Application number
PCT/CL2020/050113
Other languages
Spanish (es)
French (fr)
Inventor
Javier GIORGIO
Joaquin MELENDEZ
Original Assignee
AES Gener S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AES Gener S.A. filed Critical AES Gener S.A.
Priority to BR112022005284A priority Critical patent/BR112022005284A2/en
Priority to PE2022000545A priority patent/PE20220909A1/en
Publication of WO2021062573A1 publication Critical patent/WO2021062573A1/en
Priority to CONC2022/0004299A priority patent/CO2022004299A2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to the generation of energy in a hydroelectric company and specifically to the generation and storage of electricity through renewable energy sources.
  • pumped hydroelectric energy storage allows energy savings from intermittent sources such as solar and wind, or excess electricity from continuous baseload sources (such as coal or nuclear) for periods of demand. highest.
  • the reservoirs used with pumped storage are quite small when compared to hydroelectric dams with a similar energy capacity and the generation periods are usually less than half a day.
  • a load management system for a hydroelectric power station comprises: a power generator configured to generate electrical power from a water flow for supply to a power grid; a virtual reservoir configured to store the generated electrical energy and dispatch the stored electrical energy to the electrical grid; and a plurality of circuit breakers that connect an outlet of the power generator to the power grid and to the virtual reservoir; a control unit configured to control the operating states of the plurality of circuit breakers in such a way that the electrical energy generated is stored in the virtual reservoir and that at least one of the electrical energy generated and the electrical energy stored is supplied to the power grid.
  • a method for load balancing of a hydroelectric power system includes a power generator, a plurality of sensors, a virtual reservoir, a plurality of interlocked circuit breakers and a control unit, the method comprises : measure, through a plurality of sensors, one or more operating parameters of the hydroelectric power system and control, through the control unit, the operating states of the plurality of interlocked circuit breakers to store the electrical energy emitted by the generator in the virtual reservoir and dispatch the electrical energy stored in the virtual reservoir to the power grid, where the states Operating parameters of the plurality of interlocked circuit breakers are controlled in accordance with at least one set point of operation or one or more measured operating parameters of the power system.
  • a non-transient computer-readable medium is disclosed, the computer-readable medium is encoded with a program code that, when contacted with a computer processor, causes the computer processor to execute a method for load balancing a hydroelectric power system with demands from a power network, the method comprises the steps of receiving a plurality of parameters from the measured power system; and control the operating states of the plurality of interlocked circuit breakers to store the electrical energy emitted by a generator in a virtual reservoir and dispatch the electrical energy stored in the virtual reservoir towards a power network, where the operating states of the plurality of interlocked circuit breakers are controlled in accordance with at least one of a set point of power system operation or one or more of the measured power system parameters.
  • Figure 1 illustrates a load handling system in a hydroelectric power plant according to an embodiment of the present invention.
  • Figure 2 illustrates a control system according to an embodiment of the present invention.
  • Figure 3 is a diagram illustrating a graph to show the maximum allowable tolerance from the high and low dead bands.
  • Figure 4 is a method illustrating a method for handling cargo according to an exemplary embodiment.
  • Some examples of embodiments of the present invention relate to a way of storing energy from a hydroelectric power station for later use.
  • the energy is you can store batteries, such as lithium ion batteries, on a network.
  • the energy storage of the battery network allows energy to be stored without the physical infrastructure necessary for pumping water.
  • a hydroelectric dam is a known structure that defines or is used in combination with a hydroelectric plant (for example, a power generator).
  • HD serves two important functions. First, it includes a reservoir that stores water obtained from a natural resource (for example, a river, a stream, a lake, etc.). Second, the HD gradually releases the stored water or adjusts the flow of water from the reservoir according to demand. The released water passes through a turbine generator to provide power to the power or load network.
  • a HD can generate power throughout the year if sufficient reserves are available by storing the water flowing through a river. In this arrangement, the river normally has enough water flow over time to generate power during peak times.
  • HD requires a larger and relatively expensive investment, as well as a larger surface area for the construction of the reservoir and the plant.
  • a run-of-river (RoR) hydroelectric power plant uses part of a river's flow to generate electricity.
  • the fluent water plant does not have a reservoir and consequently, it works continuously because it does not have the capacity to store water (without reserves).
  • the turbine is limited to its installed capacity because it converts the available water into electrical energy at the moment.
  • the flowing water can provide intermittent levels of electrical energy according to the flow of water that passes through the turbine generator.
  • a pumped hydropower storage is a type of hydropower storage used by electric power systems for daily load balancing.
  • the PHES system stores energy in the form of gravitational potential energy from water pumped from a lower elevation reservoir for storage at a higher elevation.
  • Low-cost surplus off-peak electrical power is typically used to power the pumps.
  • stored water is released through turbines to produce electrical energy.
  • the losses from the pumping process make the plant a net consumer of total energy, the system increases its revenues through from daily electricity sales during peak demand periods, when prices are highest.
  • the Independent System Operator is also an organization formed on the recommendation of the Federal Energy Regulatory Commission (FERC). In areas where it is established, the ISO coordinates, controls, and monitors the operation of an electric power system, usually within a single US state, but sometimes encompasses multiple states.
  • FEC Federal Energy Regulatory Commission
  • Figure 1 illustrates a load handling system for a hydroelectric power plant according to an embodiment of the present invention.
  • the system 100 may include a power station 102 configured to generate electrical power from the river water flow to supply a power grid 104,
  • the power station 102 may be configured as a water flowing, which does not have a physical reservoir to store water for later use in power generation.
  • Power plant 102 can include any combination of power system components such as a water turbine that converts the kinetic potential energy of water into work. mechanical, one or more turbine generators that convert the driving force of the water turbine into electrical energy and any other suitable component as desired.
  • the total amount of electrical energy generated by the power plant is equal to P G.
  • System 100 may include a virtual reservoir 106 configured to store electrical energy and dispatch electrical energy to the utility grid 104.
  • Virtual reservoir 106 may include reusable storage technology such as a battery storage system (BSS) 108 and a power inverter 110.
  • BSS 108 can include a battery network of any existing or future reusable battery technology including lithium ion, flow batteries or any other suitable rechargeable battery as desired, which can store electrical energy for at least five (5) hours for subsequent dispatch to the electricity grid 104.
  • the power inverter 110 switches from alternating current to direct current for storage in the BSS 108 and performs the opposite operation when the energy stored in the BSS 108 is dispatched to the power grid 104.
  • the virtual reservoir 106 may also include a power controller.
  • VR virtual reservoir
  • virtual reservoir 106 may be configured to supplement electrical power supplied to the grid by power plant 102 during periods of high demand.
  • SI virtual reservoir 106 is included in a virtual reservoir 107 circuit that includes one or more transformers 112, 114 configured to condition and / or transform the electrical energy flowing to or from the BSS 108 for storage or dispatch, one or more circuit breakers 116, 118 for the connection or disconnection of the reservoir circuit 107 for the supply to the electrical network 102 and a step-up transformer 115.
  • the current transformers 112, 114 and the circuit breakers 116, 118 are arranged in pairs on either side of the step-up transformer 120.
  • the pairs of transformers or circuit breakers are used to condition the electrical power depending on whether a storage or dispatch operation is being performed by the virtual reservoir 106.
  • a first pair configured to control the dispatch of electrical energy from the virtual reservoir 106 to the electrical grid 104.
  • the first pair includes the current transformer 112 and the circuit breaker 116.
  • the current transformer 112 connects to an output of the power inverter 110 and the Circuit breaker 116 is connected between current transformer 112 and step-up transformer 120.
  • a second pair configured to control the flow of electrical power in virtual reservoir 106 for storage includes current transformer 114 and circuit breaker 118.
  • Current transformer 114 is connected to a circuit outlet of power plant 105 and circuit breaker 118 is connected between current transformer 114 and step-up transformer 120.
  • Total power flow to or from virtual reservoir 106 is PG-
  • the system 100 also includes a third pair of transformers or circuit breakers configured to control the flow of electrical energy from the power plant 102 and / or the virtual reservoir 106 to the electrical network 104.
  • the transformer 126 is connected to the output of the circuit. the power plant 105 and the virtual reservoir circuit outlet 107.
  • a circuit breaker 128 is the main synchronizing circuit breaker for the power plant 100 and is connected between the current transformer 126 and the power grid 104.
  • System 100 also includes a control system 130 configured to monitor operating states of the plurality of circuit breakers 116, 118, 128 in such a way that the electrical energy generated is stored in the virtual reservoir 106 and that at least one of the electrical energy generated or the electrical energy stored is supplied to the electrical network 104.
  • the injection of total active power to the electricity grid 104 is equal to the sum of the active power injection from the running water power plant 102 (P G ) plus the active power from the virtual reservoir 106 (P VD ) or:
  • FIG. 2 illustrates a control system according to an embodiment of the present invention.
  • the control system 130 can include a control unit 200 and a master controller 210.
  • the control unit 200 can include a combination of software and hardware components configured to function as an automation control. of real-time and / or a remote terminal unit.
  • control unit 200 can include one or more processors 203 that are encoded with any number of software modules to execute specific control functions and / or calculations.
  • the control unit 200 may also include a communications infrastructure 202 capable of receiving and transmitting data over a wired or cable network. wireless such as a local area network (LAN) or wide area network (WAN) and establish a connection within the system components through a supervisory control and data acquisition network for data communication and control commands.
  • the control unit may be configured to include memory 205 for storing configuration data and / or information for communication and / or control.
  • the control system 130 may also include a master controller 210.
  • the master controller 210 may be configured to include, but is not limited to, a desktop computer, a group of desktop computers, a server, a group of servers, a set-top box. or other similar type of device capable of obtaining input from an ISO or user, which receives data specifying the operating states and measurement values of one or more components of the system 100 and generates instructions and / or control signals to monitor the operation of one or more components of system 100.
  • System 100 may include one or more sensors 126 for measuring a grid frequency in accordance with an exemplary embodiment.
  • the master controller 210 may include one or more processors 212 encoded with one or more software modules to generate a human-machine interface (HMI) 214.
  • the HMI 214 may be configured to generate a monitor that provides measurement information and / or an operational status of various systems and components in the load handling system 100 that includes one or more components and / or parameters of the control panel. 103 and the virtual reservoir circuit 107.
  • the HMI 214 can generate options to control the operating modes of the management system 100 which includes various components of the power plant circuit 105 and the virtual reservoir circuit 107. For example, Through the HMI 214, an ISO can send commands directly to the central unit 200 through the communication interface device 220.
  • Master controller 210 may also include one or more memory devices 215 for storing data related to virtual reservoir 106, power plant 102, and power grid 103.
  • the system 100 may include a relay interlock 132 configured to interconnect the plurality of circuit breakers 116, 118, 128,
  • the master controller 210 may be configured to generate signals and / or control data to control that the unit control 200 set relay latch 132 based on at least the electrical energy P G generated by power plant 102
  • Relay latch 132 of an intelligent electronic device may include an IEC 61850 process bus solution that enables mapping from measurements made at circuit breakers 116, 118, 128 to protection relays located in control unit 200 and / or master controller 210 using secure communications.
  • the IEC incorporates a hard fiber system designed to reduce the overhead labor associated with designing, documenting, installing and testing protection and control systems.
  • the hard fiber system enables greater utilization and optimization of resources, eliminating the majority of copper cables to make better use of resources for the design, construction, commissioning and maintenance of power system protection and control and employs a robust and simple architecture to deploy the IEC 61850 process bus.
  • the relay interlocking example 132 as described above reduces exposure to cybersecurity threats through sealed communications and improves security by limiting the amount of high energy signals in control facilities.
  • the intelligent electronic device is applied in the multi-terminal line difference where 2 or more terminals are less than 2 km away and in the protection and remote control rooms so that the control substation mitigates the operators' exposure to flash arc risks. Both can be properties of the virtual reservoir circuit 107.
  • the smart electronic device is arranged to protect the generator windings of the power plant 102, since the virtual reservoir is configured to dispatch the stored electrical energy to the power plant when the generator is in service.
  • the HMI 214 of the master controller 210 can directly provide the adjustment of the fixed points of real and reactive power dispatch from virtual reservoir 106.
  • Fixed dispatch points can be specified for each of the members of different operating modes and can only be effective when the generator is running and only when the main synchronizing breaker 12 is closed.
  • the master controller 210 ensures that the virtual reservoir 106 cannot load or unload the generator windings from the generator. power station 102 in a situation where the generator of power station 102 is not running and / or the main timing breaker 128 is open.
  • the HMI 202 of the master controller 210 may include a control interlock associated with the virtual reservoir control system 106.
  • the control interlock is a trigger that informs the virtual reservoir control system 106 when the generator output from the power plant 102 is below P G that specifies a condition in which the BSS of virtual reservoir 106 should not be loaded or unloaded. For example, the following conditions must be met for loading and unloading the BSS
  • the total management system 100 may provide over-generation protection for the virtual reservoir 106.
  • Figure 2 is a block diagram illustrating the block diagram for signal communication and control data of the present invention.
  • the VR 111 controller can be configured to modify the electrical power output of the virtual reservoir 106 such that the total output of the power plant 102 and the virtual reservoir 106 does not exceed a fixed point. defined generation grid 104.
  • the VR controller 111 may include one or more processors 227, memory 227 for storing data related to the virtual reservoir 106 and the virtual reservoir circuit 107, and an HMI 229.
  • the VR controller 111 also includes a communication interface 231 for sending and / or receiving control signals and / or data to virtual reservoir 106 and master controller 210.
  • Communication interface 231 may include a plurality of communication components for connecting and format data signals for communication over LAN, WAN, wireless, RF, SCADA, Bluetooth, or any other desired or specified communication format for control.
  • the electrical output fixed point of the virtual reservoir 106 can be defined through the HMI 212 of the master controller 210, The fixed point can communicate with the control unit
  • the virtual reservoir 106 can be controlled to operate in one of numerous modes of operation. Control of virtual reservoir 106 may be specified by control system 130 generally and more specifically control unit 200 may communicate control signals from master controller 210 through VR controller 111.
  • the VR 111 controller and / or the master controller 210 can provide complete control of the virtual reservoir 106 from a customizable and extensible native touch screen interface (HMI) both locally and remotely.
  • HMI native touch screen interface
  • Manual mode can include a manual dispatch mode.
  • Remote HMI can be implemented through HMI 202 of the master controller
  • the HMI Remote control can be implemented on a mobile computing device such as a smartphone, tablet, laptop or other smart electronic device that has a portable and dynamic connection capability with the wireless network.
  • manual dispatch mode which consists of the dispatch of electrical energy from the virtual reservoir 106
  • the virtual reservoir 106 that includes the virtual reservoir circuit 107 is synchronized with the electrical network 104 and responds to the operator's settings without violating the limits and protections of the power plant generator 102.
  • the manual dispatch mode provides manual control of a dispatch fixed point in which an operator can directly adjust the real and reactive power dispatch fixed points through the HMI 229.
  • the HMI can be accessed through the VR controller 111, the master controller 210, and / or a mobile computing device 240.
  • the load handling system 100 may include an automatic generation control (AGC) mode.
  • AGC mode is used for controlled or remote dispatch of various resources.
  • the control unit In AGC mode, the control unit
  • AGC dispatch mode includes reactive power dispatch with controllable parameters, reactive power dispatch, and ramp charge / discharge ratio.
  • AGC signals are sent to the facility to perform energy trading.
  • AGC signals are sent by control unit 200 to power plant 102 to perform ramp mitigation.
  • BSS 108 of virtual reservoir 106 can be moved to BSS 108 of virtual reservoir 106.
  • a frequency regulation service can be called a tertiary frequency regulation (TFR).
  • TFR can be implemented by AGC control of virtual reservoir 106 from the system operator.
  • the FFR, PER and SFR are frequency contingency services implemented by virtual reservoir 106 from grid frequency measurements at running water power plant 102 and therefore do not need the AGC.
  • the virtual reservoir 106 can also be controlled to operate in one of several frequency control modes.
  • the various types of frequency control modes available are based on selections chosen through the HMI 202, in accordance with the plurality of frequency control modes.
  • the virtual reservoir 106 can operate according to a fast frequency regulation (FFR), which is a contingency service (which means that it must be provided as a priority over any other operation that the virtual reservoir 106 is performing at that time ) in which the virtual reservoir is configured to supply 100% of the commitment reserve to the system operator within the time of 1 second to 10 seconds according to a frequency drop function.
  • FFR fast frequency regulation
  • PER Primary Frequency Regulation
  • a secondary frequency regulation is a frequency control mode that represents a contingency service in which the virtual reservoir is configured to supply 100% of the commitment reserve to the ISO within the time of 5 minutes to 15 minutes. minutes according to the frequency drop function.
  • each of one or more synchronous generators can be adjusted to operate at different speeds, but on the same frequency, in which several synchronous generators can be connected in parallel.
  • TFR Tertiary Frequency Regulation
  • FIG 3 is a diagram illustrating a graph showing the maximum allowable tolerance from the high and low dead bands.
  • the diagram in Figure 3 is fitted in the context of an example of a 60 Hz electrical system.
  • the coordinates (60, 0) of the graph represent a fixed point at frequency (60) and power (0), such that that the bound box represents the range of deviation from the fixed point.
  • the limited box represents a dead band of ⁇ 1% at the fixed point of loading or unloading for the BSS 108.
  • the coordinates of the fixed point can have values according to a main frequency or utility as desired.
  • the main frequency can be 50 Hz which is a fixed point of (50, 0).
  • Figure 3 illustrates a drop rate control technique in which the power output from said one or more generators of power plant 102 is reduced as line frequency increases. Said index of energy produced by the power plant 102 can be controlled based on the frequency of the grid.
  • Graph line 1 in Figure 3 represents the total energy delta frequency, which is the deviation in
  • Graph line 2 of Figure 3 shows the deadband delta frequency, which is the maximum deviation, in Hertz, between the measured system frequency and the desired system frequency, within which the HMI operating in the controller Master 210 or the VR 111 controller is free to load or unload BSS 108 in order to return it to a desired state of charge. Different values of low delta frequency and high delta frequency are allowed.
  • Graph line 3 of Figure 3 shows a dead band charge fixed point, a dead band discharge fixed point, representing a maximum energy dispatch in Kilowatts, in a state in which the battery dispatches electrical energy stored while within the normal frequency deadband setting.
  • the set point of discharge does not allow the BSS 108 to discharge below 2% of the maximum load. That is, at a minimum the BSS 108 is configured to have at least 2% of the load at all times.
  • the set point of the load sets a stop to the
  • Graph line 4 of Figure 3 is the low frequency discharge fixed point, the high frequency charge fixed point, which are parameters that represent a fixed value, in kilowatts, for the deviation when the FFR is being corrected for low frequency or high frequency.
  • Bypass allows the SOC to be managed when the system is following the drop curve of the frequency regulation,
  • Graph line 5 of Figure 3 is the high SOC dead band, the low SOC dead band, which are parameters that represent the maximum tolerance, in percentage points (for example, ⁇ 1%), that the SOC of a BSS 108 battery network can vary from desired value. Outside this range, dispatches deviate to handle the SOC,
  • the reservoir virtual 106 when the line frequency falls below 60 Hz, the reservoir virtual 106 is discharged to inject energy into the system to drive the load. In contrast, when the frequency is above 60 Hz, the system is experiencing more energy than necessary for the load. In this case, the virtual reservoir 106 is charged with energy from the power line.
  • Figure 4 is a method illustrating a method for handling cargo according to an exemplary embodiment.
  • the processing parts of the method can be implemented through the H-MI 202 of said one or more components of the load handling system 100.
  • one or more of the plurality of sensors measure the operating parameters of the hydroelectric power system (400).
  • the operating states of the plurality of interlocked circuit breakers are controlled at one of a set point of operation or one or more measured operating parameters of the power system 100. A amount of electrical energy from the virtual reservoir based on a predefined fixed point of electrical energy that must be supplied to the electrical network (404).
  • said one or more processors of a control unit 200, the master controller 210, or the virtual reservoir controller 111 may be a general-purpose processor device.
  • the hardware processor or memory 205 connected to the hardware processor is encoded with suitable software to carry out the processing.
  • Said one or more processors can be connected to a communication infrastructure, such as an internal bus, a message queue, a network, a multicore message passing model, etc.
  • the network 109 can be any network suitable to fulfill the functions as disclosed herein and can include a configuration of the communications capacity for a local area network (LAN), a wide area network
  • WAN wide area network
  • Wi-Fi wireless network
  • SCADA SCADA network
  • satellite network the internet, an optical fiber, a coaxial cable, infrared, radio frequency (RF) or any combination of them.
  • RF radio frequency
  • the mobile computing device can include a memory 220 (eg, a random access memory, a read-only memory, etc.) and can also include multiple memories.
  • memory 205 may include non-transient computer-readable recording media (eg, ROM, RAM hard disk drive, fast memory, an optical memory, a solid state drive, etc.).
  • a hardware processor device as discussed herein can be a single hardware processor, a plurality of hardware processors, or combinations thereof.
  • the hardware processor device can have one or more processor "cores".
  • the data stored in the master controller, control unit, and / or computing device may include any type of suitable computer-readable medium, such as optical storage (for example, a disk compact, digital versatile disk, magnetic storage (for example, a hard disk drive) or solid state drive, an operating system, and one or more applications.
  • optical storage for example, a disk compact, digital versatile disk
  • magnetic storage for example, a hard disk drive
  • solid state drive an operating system, and one or more applications.
  • said one or more processors can include a communications infrastructure.
  • the control unit 200 may include a communication interface 214 as part of the communication infrastructure.
  • the communication interface 214 to provide the communication capability.
  • Communications interface 204 may be configured to allow software and data to be transferred between the electronic edge device and other external devices as described herein.
  • Some examples of communications interfaces 204 may include a wireless modem (for example, a transmitter and receiver), a network interface (for example, an Ethernet card), a communications port, a PCMCIA communications card and slot, or any other communications chip, etc.
  • Software and data can be transferred through the communication interface or from external devices.
  • the memories may be non-transient computer-readable recording media and may store operating systems and / or computer programs to be executed by the mobile electronic device.
  • Computer programs can also be received through the communications interface. Such computer programs, when run, may allow the mobile electronic edge device to implement its operational functions.
  • the operating system and / or the hardware processor device accesses or operates hardware components such as a camera or any desired sensor device GPS, peripheral interface, USB / Firewire / Thunderbolt interface port and / or monitor (e.g. , an LED screen, a touch screen, etc.).
  • said one or more intelligent edge devices can optionally be interfaced with the cloud and configured with a specially developed kernel of the operating system, although this is not necessarily the case.
  • the software of the invention may be configured on a newly developed operating system (OS) or it may be Provide as a software installation package on a kernel of a pre-existing operating system.
  • OS operating system
  • the functionality as described herein can then be a kernel or it can be an application running on another pre-existing OS.
  • the functionality as described can be software and / or firmware that must be loaded on any of different existing hardware platforms.

Abstract

The invention relates to a load management system for a hydroelectric power plant including a power generator configured to generate electrical power from a flow of water to supply an electrical grid, a virtual reservoir configured to store the generated electrical power and dispatch the stored electrical power to the electrical grid; a plurality of circuit breakers connecting an output of the power generator to the electrical grid and to the virtual reservoir; and a control unit configured to control the operating states of the plurality of circuit breakers such that electrical energy is stored in the virtual reservoir and at least one of either the generated electrical energy or the stored electrical energy is supplied to the electrical grid.

Description

SISTEMA Y MÉTODO PARA EQUILIBRIO DE CARGA SYSTEM AND METHOD FOR LOAD BALANCING
Esta solicitud reivindica la prioridad de la solicitud de patente de los Estados Unidos N° 16/593,380 presentada con fecha 4 de octubre de 2019, cuyo contenido se incorpora aquí como referencias en su totalidad This application claims the priority of United States patent application No. 16 / 593,380 filed on October 4, 2019, the contents of which are incorporated herein by reference in their entirety
Campo Countryside
La presente invención se relaciona con la generación de energía en una compañía hidroeléctrica y específicamente con la generación y el almacenamiento de electricidad mediante fuentes de energía renovables. The present invention relates to the generation of energy in a hydroelectric company and specifically to the generation and storage of electricity through renewable energy sources.
Información sobre antecedentes Background information
Históricamente, las centrales hidroeléctricas con capacidad de reserva del mundo han sido la mayor fuente de energía de la red eléctrica para prevenir y/o mitigar el riesgo de un apagón frente a los fenómenos naturales de alto impacto. Estas centrales han asegurado un funcionamiento robusto y flexible de la red de distribución que por lo tanto reduce su vulnerabilidad en condiciones normales y con contingencias. Historically, the world's reserve capacity hydroelectric plants have been the largest source of energy in the electricity grid to prevent and / or mitigate the risk of a blackout in the face of high-impact natural phenomena. These plants have ensured a robust and flexible operation of the distribution network that therefore reduces its vulnerability under normal conditions and with contingencies.
HOJAS DE SUSTITUCIÓN (REGLA 26) Además, el almacenamiento de energía hidroeléctrica por bombeo (PHES) permite el ahorro de la energía de fuentes intermitentes tales como la solar y eólica o que el exceso de electricidad de fuentes continuas de carga de base (como carbón o nuclear) para períodos de demanda más alta. Los embalses usados con almacenamiento por bombeo son bastante pequeños cuando se los compara con las represas hidroeléctricas con una capacidad de energía similar y los períodos de generación suelen ser menos de la mitad del día. SUBSTITUTE SHEETS (RULE 26) In addition, pumped hydroelectric energy storage (PHES) allows energy savings from intermittent sources such as solar and wind, or excess electricity from continuous baseload sources (such as coal or nuclear) for periods of demand. highest. The reservoirs used with pumped storage are quite small when compared to hydroelectric dams with a similar energy capacity and the generation periods are usually less than half a day.
En la actualidad, más del noventa y seis por ciento (96%) de la capacidad de almacenamiento de energía instalada del mundo proviene de un almacenamiento por bombeo. Capaces de proveer energía renovable precisamente cuando se la necesita, estos proyectos habitualmente consisten en la construcción de embalses superiores e inferiores de agua, con o sin represas que los acompañen. Today, more than ninety-six percent (96%) of the world's installed energy storage capacity comes from pumped storage. Capable of providing renewable energy precisely when it is needed, these projects usually consist of the construction of upper and lower water reservoirs, with or without accompanying dams.
Resumen Resume
Se divulga un sistema de manejo de carga para una central hidroeléctrica, el sistema comprende: un generador de energía configurado para generar energía eléctrica desde un flujo de agua para la provisión a una red de energía; un embalse virtual configurado para almacenar la energía eléctrica generada y despachar la energía eléctrica almacenada hacia la red eléctrica; y una pluralidad de disyuntores que conectan una salida del generador de energía hacia la red de energía y hacia el embalse virtual; una unidad de control configurada para controlar los estados de funcionamiento de la pluralidad de disyuntores de manera tal que la energía eléctrica generada se almacene en el embalse virtual y que por lo menos una de la energía eléctrica generada y la energía eléctrica almacenada se provea a la red de energía. A load management system for a hydroelectric power station is disclosed, the system comprises: a power generator configured to generate electrical power from a water flow for supply to a power grid; a virtual reservoir configured to store the generated electrical energy and dispatch the stored electrical energy to the electrical grid; and a plurality of circuit breakers that connect an outlet of the power generator to the power grid and to the virtual reservoir; a control unit configured to control the operating states of the plurality of circuit breakers in such a way that the electrical energy generated is stored in the virtual reservoir and that at least one of the electrical energy generated and the electrical energy stored is supplied to the power grid.
Se divulga un método para el equilibrio de carga de un sistema de energía hidroeléctrica, el sistema de energía hidroeléctrica incluye un generador de energía, una pluralidad de sensores, un embalse virtual, una pluralidad de disyuntores enclavados y una unidad de control, el método comprende: medir, a través de una pluralidad sensores, uno o más parámetros de funcionamiento del sistema de energía hidroeléctrica y controlar, a través de la unidad de control, los estados de funcionamiento de la pluralidad de disyuntores enclavados para almacenar la energía eléctrica emitida por el generador en el embalse virtual y despachar la energía eléctrica almacenada en el embalse virtual a la red de energía, en donde los estados de funcionamiento de la pluralidad de disyuntores enclavados se controlan de acuerdo con por lo menos un punto fijo de funcionamiento o uno o más parámetros de funcionamiento medidos del sistema de energía. A method for load balancing of a hydroelectric power system is disclosed, the hydroelectric power system includes a power generator, a plurality of sensors, a virtual reservoir, a plurality of interlocked circuit breakers and a control unit, the method comprises : measure, through a plurality of sensors, one or more operating parameters of the hydroelectric power system and control, through the control unit, the operating states of the plurality of interlocked circuit breakers to store the electrical energy emitted by the generator in the virtual reservoir and dispatch the electrical energy stored in the virtual reservoir to the power grid, where the states Operating parameters of the plurality of interlocked circuit breakers are controlled in accordance with at least one set point of operation or one or more measured operating parameters of the power system.
Se divulga un medio legible por computadora no transitorio, el medio legible por computadora está codificado con un código del programa que, cuando se lo pone en contacto con un procesador informático, hace que el procesador informático ejecute un método para el equilibrio de carga de un sistema de energía hidroeléctrica con demandas de una red de energía, el método comprende los pasos de recibir una pluralidad de parámetros del sistema de energía medida; y controlar los estados de funcionamiento de la pluralidad de disyuntores enclavados para almacenar la energía eléctrica emitida por un generador en un embalse virtual y despachar la energía eléctrica almacenada en el embalse virtual hacia una red de energía, en donde los estados de funcionamiento de la pluralidad de disyuntores enclavados se controlan de acuerdo con por lo menos uno de un punto fijo de funcionamiento del sistema de energía o uno o más de los parámetros del sistema de energía medidos. A non-transient computer-readable medium is disclosed, the computer-readable medium is encoded with a program code that, when contacted with a computer processor, causes the computer processor to execute a method for load balancing a hydroelectric power system with demands from a power network, the method comprises the steps of receiving a plurality of parameters from the measured power system; and control the operating states of the plurality of interlocked circuit breakers to store the electrical energy emitted by a generator in a virtual reservoir and dispatch the electrical energy stored in the virtual reservoir towards a power network, where the operating states of the plurality of interlocked circuit breakers are controlled in accordance with at least one of a set point of power system operation or one or more of the measured power system parameters.
Breve descripción de los dibujos Otros objetivos y ventajas de la presente invención se advertirán a partir de la siguiente descripción de ejemplos de realizaciones preferidas cuando se la interpreta en conjunto con los dibujos que se exponen en la presente. Brief description of the drawings Other objects and advantages of the present invention will become apparent from the following description of examples of preferred embodiments when interpreted in conjunction with the drawings set forth herein.
La Figura 1 ilustra un sistema de manejo de carga en una central hidroeléctrica de acuerdo con un ejemplo de realización de la presente invención. Figure 1 illustrates a load handling system in a hydroelectric power plant according to an embodiment of the present invention.
La Figura 2 ilustra un sistema de control de acuerdo con un ejemplo de realización de la presente invención. Figure 2 illustrates a control system according to an embodiment of the present invention.
La Figura 3 es un diagrama que ilustra un gráfico para mostrar la tolerancia máxima permitida desde las bandas muertas altas y bajas. Figure 3 is a diagram illustrating a graph to show the maximum allowable tolerance from the high and low dead bands.
La Figura 4 es un método que ilustra un método para el manejo de la carga de acuerdo con un ejemplo de realización . Figure 4 is a method illustrating a method for handling cargo according to an exemplary embodiment.
Descripción detallada Detailed description
Algunos ejemplos de realizaciones de la presente invención se refieren a una manera de almacenar energía de una central hidroeléctrica para su posterior uso. La energía se puede almacenar en una red baterías, tales como baterías de ion de litio. El almacenamiento de energía de la red de baterías permite almacenar la energía sin la infraestructura física necesaria para el bombeo de agua. Some examples of embodiments of the present invention relate to a way of storing energy from a hydroelectric power station for later use. The energy is you can store batteries, such as lithium ion batteries, on a network. The energy storage of the battery network allows energy to be stored without the physical infrastructure necessary for pumping water.
Una represa hidroeléctrica (HD) es una estructura conocida que define o se usa en combinación con una central hidroeléctrica (por ejemplo, un generador de energía). La HD cumple dos funciones importantes. En primer lugar, incluye un embalse que almacena el agua obtenida de un recurso natural (por ejemplo, un río, un arroyo, un lago, etc.). En segundo lugar, la HD libera gradualmente el agua almacenada o ajusta el flujo de agua desde el embalse según la demanda. El agua liberada pasa a través de un generador de turbinas para proveer energía a la red de energía o carga. Normalmente una HD puede generar energía durante todo el año si hay suficientes reservas disponibles mediante el almacenamiento del agua que fluye a través de un río. En esta disposición, el río normalmente tiene suficiente flujo de agua en el transcurso del tiempo para generar energía en los horarios de alto consumo. La HD necesita una inversión mayor y relativamente costosa, así como una mayor superficie para la construcción del embalse y la central. Una central hidroeléctrica de agua fluyente (RoR) usa una parte del flujo de un rio para generar electricidad. La central de agua fluyente no tiene un embalse y en consecuencia, funciona en forma continua porque no tiene la capacidad de almacenamiento de agua (sin reservas). La turbina está limitada a su capacidad instalada porque convierte el agua disponible en energía eléctrica en el momento. El agua fluyente puede proveer niveles intermitentes de la energía eléctrica de acuerdo con el flujo de agua que pasa a través del generador turbina. A hydroelectric dam (HD) is a known structure that defines or is used in combination with a hydroelectric plant (for example, a power generator). HD serves two important functions. First, it includes a reservoir that stores water obtained from a natural resource (for example, a river, a stream, a lake, etc.). Second, the HD gradually releases the stored water or adjusts the flow of water from the reservoir according to demand. The released water passes through a turbine generator to provide power to the power or load network. Typically a HD can generate power throughout the year if sufficient reserves are available by storing the water flowing through a river. In this arrangement, the river normally has enough water flow over time to generate power during peak times. HD requires a larger and relatively expensive investment, as well as a larger surface area for the construction of the reservoir and the plant. A run-of-river (RoR) hydroelectric power plant uses part of a river's flow to generate electricity. The fluent water plant does not have a reservoir and consequently, it works continuously because it does not have the capacity to store water (without reserves). The turbine is limited to its installed capacity because it converts the available water into electrical energy at the moment. The flowing water can provide intermittent levels of electrical energy according to the flow of water that passes through the turbine generator.
Un almacenamiento de energía hidroeléctrica por bombeo (PHES) es un tipo de almacenamiento de energía hidroeléctrica usado por los sistemas de energía eléctrica para el equilibrio de carga diario. El sistema de PHES almacena la energía en la forma de energía potencial gravitatoria del agua bombeada desde un embalse de elevación más baja para el almacenamiento en una elevación más alta. La energía eléctrica fuera de punta excedente de bajo costo normalmente se usa para hacer funcionar las bombas. Durante los períodos de alta demanda eléctrica, el agua almacenada se libera a través de las turbinas para producir energía eléctrica. Si bien las pérdidas del proceso de bombeo hacen de la central un consumidor neto de la energía total, el sistema aumenta sus ingresos a través de la venta de electricidad diaria durante períodos de demanda pico, cuando los precios son más altos. A pumped hydropower storage (PHES) is a type of hydropower storage used by electric power systems for daily load balancing. The PHES system stores energy in the form of gravitational potential energy from water pumped from a lower elevation reservoir for storage at a higher elevation. Low-cost surplus off-peak electrical power is typically used to power the pumps. During periods of high electrical demand, stored water is released through turbines to produce electrical energy. Although the losses from the pumping process make the plant a net consumer of total energy, the system increases its revenues through from daily electricity sales during peak demand periods, when prices are highest.
El operador de sistema independiente (ISO) es igualmente una organización formada por recomendación de la Comisión Federal Reguladora de Energía (FERC). En las zonas donde se lo establece, el ISO coordina, controla y monitorea el funcionamiento de un sistema de energía eléctrica, habitualmente dentro de un solo estado de Estados Unidos, pero algunas veces comprende a varios estados. The Independent System Operator (ISO) is also an organization formed on the recommendation of the Federal Energy Regulatory Commission (FERC). In areas where it is established, the ISO coordinates, controls, and monitors the operation of an electric power system, usually within a single US state, but sometimes encompasses multiple states.
La Figura 1 ilustra un sistema de manejo de carga para una central hidroeléctrica de acuerdo con un ejemplo de realización de la presente invención. Figure 1 illustrates a load handling system for a hydroelectric power plant according to an embodiment of the present invention.
Como se muestra en la Figura 1, el sistema 100 puede incluir una central de energía 102 configurada para generar energía eléctrica desde el flujo de agua de río para proveer a una red de energía 104, La central de energía 102 puede estar configurada como un agua fluyente, que no tiene un embalse físico para almacenar agua para el uso posterior en la generación de energía. La central de energía 102 puede incluir cualquier combinación de componentes del sistema de energía tal como una turbina de agua que convierte la energía potencial cinética del agua en trabajo mecánico, uno o más generadores de turbinas que convierten la fuerza motriz de la turbina de agua en energía eléctrica y cualquier otro componente adecuado según se desee. La cantidad total de la energía eléctrica generada por la central de energía es igual a PG. As shown in Figure 1, the system 100 may include a power station 102 configured to generate electrical power from the river water flow to supply a power grid 104, The power station 102 may be configured as a water flowing, which does not have a physical reservoir to store water for later use in power generation. Power plant 102 can include any combination of power system components such as a water turbine that converts the kinetic potential energy of water into work. mechanical, one or more turbine generators that convert the driving force of the water turbine into electrical energy and any other suitable component as desired. The total amount of electrical energy generated by the power plant is equal to P G.
El sistema 100 puede incluir un embalse virtual 106 configurado para para almacenar la energía eléctrica y despachar la energía eléctrica a la red eléctrica 104. El embalse virtual 106 puede incluir una tecnología de almacenamiento reutilizable tal como un sistema de almacenamiento de batería (BSS) 108 y un inversor de energía 110. El BSS 108 puede incluir una red de baterías de cualquier tecnología de batería reutilizable existente o futuro que incluye ion de litio, baterías de flujo o cualquier otra batería recargable adecuarla que se desee, que puede almacenar energía eléctrica durante por lo menos cinco (5) horas para el posterior despacho a la red eléctrica 104 . El inversor de energía 110 cambia de corriente alterna a corriente continua para el almacenamiento en el BSS 108 y realiza la operación opuesta cuando la energía almacenada en el BSS 108 se despacha hacia la red eléctrica 104. El embalse virtual 106 también puede incluir un controlador del embalse virtual (VR) 111 configurado para controlar las operaciones de carga y descarga del BSS 108. Como se discute detalladamente a continuación, el embalse virtual 106 puede estar configurado para complementar la energía eléctrica provista a la red por la planta de electricidad 102 durante los periodos de alta demanda. SI embalse virtual 106 está incluido en un circuito de embalse virtual 107 que incluye uno o más transformadores 112, 114 configurados para acondicionar y/o transformar la energía eléctrica que fluye hacia o desde el BSS 108 para el almacenamiento o despacho, uno o más disyuntores 116, 118 para la conexión o desconexión del circuito de embalse 107 para la alimentación a la red eléctrica 102 y un transformador elevador 115. System 100 may include a virtual reservoir 106 configured to store electrical energy and dispatch electrical energy to the utility grid 104. Virtual reservoir 106 may include reusable storage technology such as a battery storage system (BSS) 108 and a power inverter 110. The BSS 108 can include a battery network of any existing or future reusable battery technology including lithium ion, flow batteries or any other suitable rechargeable battery as desired, which can store electrical energy for at least five (5) hours for subsequent dispatch to the electricity grid 104. The power inverter 110 switches from alternating current to direct current for storage in the BSS 108 and performs the opposite operation when the energy stored in the BSS 108 is dispatched to the power grid 104. The virtual reservoir 106 may also include a power controller. virtual reservoir (VR) 111 configured to control loading and discharge from BSS 108. As discussed in detail below, virtual reservoir 106 may be configured to supplement electrical power supplied to the grid by power plant 102 during periods of high demand. SI virtual reservoir 106 is included in a virtual reservoir 107 circuit that includes one or more transformers 112, 114 configured to condition and / or transform the electrical energy flowing to or from the BSS 108 for storage or dispatch, one or more circuit breakers 116, 118 for the connection or disconnection of the reservoir circuit 107 for the supply to the electrical network 102 and a step-up transformer 115.
Los transformadores de corriente 112, 114 y los disyuntores 116, 118 están dispuestos en pares a ambos lados del transformador elevador 120. Los pares de transformadores o disyuntores se usan para acondicionar la energía eléctrica según si una operación de almacenamiento o despacho se está realizando por el embalse virtual 106. Un primer par configurado para controlar el despacho de la energía eléctrica desde el embalse virtual 106 a la red eléctrica 104. El primer par incluye el transformador de corriente 112 y el disyuntor 116. El transformador de corriente 112 se conecta con una salida del inversor de energía 110 y el disyuntor 116 se conecta entre el transformador de corriente 112 y el transformador elevador 120. Un segundo par configurado para controlar el flujo de energía eléctrica en el embalse virtual 106 para el almacenamiento incluye el transformador de corriente 114 y el disyuntor 118. El transformador de corriente 114 está conectado con una salida del circuito de la central eléctrica 105 y el disyuntor 118 está conectado entre el transformador de corriente 114 y el transformador elevador 120. El flujo total de energía hacia o desde el embalse virtual 106 es PG- The current transformers 112, 114 and the circuit breakers 116, 118 are arranged in pairs on either side of the step-up transformer 120. The pairs of transformers or circuit breakers are used to condition the electrical power depending on whether a storage or dispatch operation is being performed by the virtual reservoir 106. A first pair configured to control the dispatch of electrical energy from the virtual reservoir 106 to the electrical grid 104. The first pair includes the current transformer 112 and the circuit breaker 116. The current transformer 112 connects to an output of the power inverter 110 and the Circuit breaker 116 is connected between current transformer 112 and step-up transformer 120. A second pair configured to control the flow of electrical power in virtual reservoir 106 for storage includes current transformer 114 and circuit breaker 118. Current transformer 114 is connected to a circuit outlet of power plant 105 and circuit breaker 118 is connected between current transformer 114 and step-up transformer 120. Total power flow to or from virtual reservoir 106 is PG-
El sistema 100 también incluye un tercer par de transformadores o disyuntores configurado para controlar el flujo de la energía eléctrica desde la central eléctrica 102 y/o el embalse virtual 106 a la red eléctrica 104. El transformador 126 está conectado con la salida del circuito de la central eléctrica 105 y la salida del circuito del embalse virtual 107. Un disyuntor 128 es el disyuntor de sincronización principal para la central eléctrica 100 y está conectado entre el transformador de corriente 126 y la red eléctrica 104. The system 100 also includes a third pair of transformers or circuit breakers configured to control the flow of electrical energy from the power plant 102 and / or the virtual reservoir 106 to the electrical network 104. The transformer 126 is connected to the output of the circuit. the power plant 105 and the virtual reservoir circuit outlet 107. A circuit breaker 128 is the main synchronizing circuit breaker for the power plant 100 and is connected between the current transformer 126 and the power grid 104.
El sistema 100 también incluye un sistema de control 130 configurado para controlar los estados de funcionamiento de la pluralidad de disyuntores 116, 118, 128 de manera tal que la energía eléctrica generada se almacene en el embalse virtual 106 y que por lo menos una de la energía eléctrica generada o la energía eléctrica almacenada se provea a la red eléctrica 104. La inyección de potencia activa total a la red eléctrica 104 (Ptotai) es igual a la suma de la inyección de potencia activa desde la central eléctrica de agua fluyente 102 (PG) más la potencia activa desde el embalse virtual 106 (PVD) o: System 100 also includes a control system 130 configured to monitor operating states of the plurality of circuit breakers 116, 118, 128 in such a way that the electrical energy generated is stored in the virtual reservoir 106 and that at least one of the electrical energy generated or the electrical energy stored is supplied to the electrical network 104. The injection of total active power to the electricity grid 104 (Ptotai) is equal to the sum of the active power injection from the running water power plant 102 (P G ) plus the active power from the virtual reservoir 106 (P VD ) or:
Ptotal - PG + PVD (1) P total - P G + PVD (1)
La Figura 2 ilustra un sistema de control de acuerdo con un ejemplo de realización de la presente invención. Como se muestra en la Figura 2, el sistema de control 130 puede incluir una unidad de control 200 y un controlador maestro 210. La unidad de control 200 puede incluir una combinación de componentes de software y de hardware configurados para funcionar como un control de automatización de en tiempo real y/o una unidad terminal remota. Por ejemplo, la unidad de control 200 puede incluir uno o más procesadores 203 que están codificados con cualquier cantidad de módulos de software para ejecutar funciones y/o cálculos de control específicos. La unidad de control 200 también puede incluir una infraestructura de comunicaciones 202 capaz de recibir y transmitir datos a través de una red por cable o inalámbrica tal como una red de área local (LAN) o una red de área amplia (WAN) y establecer una conexión dentro de los componentes del sistema a través de una red de control supervisor y de adquisición de datos para la comunicación de los datos y comandos de control. La unidad de control puede estar configurada para incluir la memoria 205 para almacenar datos y/o información de la configuración para la comunicación y/o el control. Figure 2 illustrates a control system according to an embodiment of the present invention. As shown in Figure 2, the control system 130 can include a control unit 200 and a master controller 210. The control unit 200 can include a combination of software and hardware components configured to function as an automation control. of real-time and / or a remote terminal unit. For example, control unit 200 can include one or more processors 203 that are encoded with any number of software modules to execute specific control functions and / or calculations. The control unit 200 may also include a communications infrastructure 202 capable of receiving and transmitting data over a wired or cable network. wireless such as a local area network (LAN) or wide area network (WAN) and establish a connection within the system components through a supervisory control and data acquisition network for data communication and control commands. The control unit may be configured to include memory 205 for storing configuration data and / or information for communication and / or control.
El sistema de control 130 también puede incluir un controlador maestro 210. El controlador maestro 210 puede estar configurado para incluir, en forma no taxativa, una computadora de escritorio, un grupo de computadoras de escritorio, un servidor, un grupo de servidores, un decodificador u otro tipo similar de dispositivo capaz de obtener una entrada desde un ISO o un usuario, que recibe datos que especifican los estados de funcionamiento y los valores de medición de uno o más componentes del sistema 100 y generan instrucciones y/o señales de control para controlar el funcionamiento de uno o más componentes del sistema 100. El sistema 100 puede incluir uno o más sensores 126 para medir una frecuencia de red de acuerdo con un ejemplo de realización. Como se muestra en la Figura 2, de acuerdo con un ejemplo de realización de la presente invención, el controlador maestro 210 puede incluir uno o más procesadores 212 codificados con uno o más módulos de software para generar una interfaz hombre-máquina (HMI) 214. La HMI 214 puede estar configurada para generar un monitor que brinda información de medición y/o un estado de funcionamiento de diversos sistemas y componentes en el sistema de manejo de carga 100 que incluye uno o más componentes y/o parámetros del circuito de central eléctrica 103 y el circuito de embalse virtual 107. Ademáis, la HMI 214 puede generar opciones para controlar los modos de funcionamiento del sistema de manejo 100 que incluye diversos componentes del circuito de central eléctrica 105 y el circuito de embalse virtual 107. Por ejemplo, a través del HMI 214, un ISO puede enviar comandos directamente a la unidad central 200 a través del dispositivo de interfaz de comunicación 220. Esos dispositivos de interfaz pueden recibir comandos desde fuentes de control externas a través del protocolo de comunicaciones DNP3. El controlador maestro 210 también puede incluir uno más dispositivos de memoria 215 para almacenar datos relacionados con el embalse virtual 106, la central eléctrica 102 y la red eléctrica 103. Volviendo a la Figura 1, el sistema 100 puede incluir un enclavamiento de relé 132 configurado para interconectar la pluralidad de disyuntores 116, 118, 128, El controlador maestro 210 puede estar configurado para generar señales y/o datos de control para controlar que la unidad de control 200 ajuste el enclavamiento de relé 132 basado en por lo menos la energía eléctrica PG generada por la central eléctrica 102, El enclavamiento de relé 132 de un dispositivo electrónico inteligente puede incluir una solución de bus de proceso IEC 61850 que permite el mapeo de las mediciones hechas en los disyuntores 116, 118, 128 a los relés de protección ubicados en la unidad de control 200 y/o el controlador maestro 210 usando comunicaciones seguras. La IEC incorpora un sistema de fibra dura diseñado para reducir la mano de obra general asociada con las tareas de diseñar, documentar, instalar y ensayar los sistemas de protección y control. Al dirigirse específicamente a los cables de cobre y a la totalidad de la mano de obra necesaria para el embalse virtual 106, el sistema de fibra dura permite un mayor aprovechamiento y optimización de los recursos, elimina la mayoría los cables de cobre para aprovechar mejor los recursos para el diseño, la construcción, la comisión y el mantenimiento de la protección y el control del sistema de energía y emplea una arquitectura robusta y simple para desplegar el bus del proceso IEC 61850. The control system 130 may also include a master controller 210. The master controller 210 may be configured to include, but is not limited to, a desktop computer, a group of desktop computers, a server, a group of servers, a set-top box. or other similar type of device capable of obtaining input from an ISO or user, which receives data specifying the operating states and measurement values of one or more components of the system 100 and generates instructions and / or control signals to monitor the operation of one or more components of system 100. System 100 may include one or more sensors 126 for measuring a grid frequency in accordance with an exemplary embodiment. As shown in Figure 2, according to an embodiment of the present invention, the master controller 210 may include one or more processors 212 encoded with one or more software modules to generate a human-machine interface (HMI) 214. The HMI 214 may be configured to generate a monitor that provides measurement information and / or an operational status of various systems and components in the load handling system 100 that includes one or more components and / or parameters of the control panel. 103 and the virtual reservoir circuit 107. In addition, the HMI 214 can generate options to control the operating modes of the management system 100 which includes various components of the power plant circuit 105 and the virtual reservoir circuit 107. For example, Through the HMI 214, an ISO can send commands directly to the central unit 200 through the communication interface device 220. Those interface devices can They can receive commands from external control sources through the DNP3 communications protocol. Master controller 210 may also include one or more memory devices 215 for storing data related to virtual reservoir 106, power plant 102, and power grid 103. Returning to Figure 1, the system 100 may include a relay interlock 132 configured to interconnect the plurality of circuit breakers 116, 118, 128, The master controller 210 may be configured to generate signals and / or control data to control that the unit control 200 set relay latch 132 based on at least the electrical energy P G generated by power plant 102, Relay latch 132 of an intelligent electronic device may include an IEC 61850 process bus solution that enables mapping from measurements made at circuit breakers 116, 118, 128 to protection relays located in control unit 200 and / or master controller 210 using secure communications. The IEC incorporates a hard fiber system designed to reduce the overhead labor associated with designing, documenting, installing and testing protection and control systems. By specifically targeting copper cables and all of the labor required for virtual reservoir 106, the hard fiber system enables greater utilization and optimization of resources, eliminating the majority of copper cables to make better use of resources for the design, construction, commissioning and maintenance of power system protection and control and employs a robust and simple architecture to deploy the IEC 61850 process bus.
El ejemplo de enclavamiento de relé 132 como se describe anteriormente reduce la exposición a las amenazas a la ciberseguridad a través de comunicaciones selladas y mejora la seguridad limitando la cantidad de señales de energía alta en las instalaciones de control. Además, de acuerdo con ejemplos de realizaciones de la presente invención, el dispositivo electrónico inteligente se aplica en la diferencia de linea de multiterminales donde 2 o más terminales están a menos de 2 km de distancia y en las salas de protección y control remoto para que la subestación de control mitigue la exposición de los operadores a los riesgos de arco de flameo. Ambas pueden ser propiedades del circuito de embalse virtual 107. El dispositivo electrónico inteligente está dispuesto para proteger los arrollamientos del generador de la central de energía 102, ya que el embalse virtual está configurado para despachar la energía eléctrica almacenada a la central eléctrica cuando el generador está en servicio. The relay interlocking example 132 as described above reduces exposure to cybersecurity threats through sealed communications and improves security by limiting the amount of high energy signals in control facilities. Furthermore, according to examples of embodiments of the present invention, the intelligent electronic device is applied in the multi-terminal line difference where 2 or more terminals are less than 2 km away and in the protection and remote control rooms so that the control substation mitigates the operators' exposure to flash arc risks. Both can be properties of the virtual reservoir circuit 107. The smart electronic device is arranged to protect the generator windings of the power plant 102, since the virtual reservoir is configured to dispatch the stored electrical energy to the power plant when the generator is in service.
De acuerdo con un ejemplo de realización de la presente invención, la HMI 214 del controlador maestro 210 puede proporcionar directamente el ajuste de los puntos fijos de despacho de potencia real y reactiva del embalse virtual 106. Los puntos fijos de despacho se pueden especificar piara cada uno de los miembros de diferentes modos de funcionamiento y solo pueden ser efectivos cuando el generador está en funcionamiento y solo cuando el disyuntor de sincronización principal 12 está cerrado. En virtud del enclavamiento de relé 132 entre el disyuntor de sincronización principal 128 y los disyuntores 116 y 118 en el circuito de embalse virtual 107, el controlador maestro 210 asegura que el embalse virtual 106 no pueda cargar o descargar a los arrollamientos del generador de la central eléctrica 102 en una situación en la cual el generador de la central eléctrica 102 no está funcionando y/o el disyuntor de sincronización principal 128 está abierto. La HMI 202 del controlador maestro 210 puede incluir un enclavamiento de control asociado con el sistema de control del embalse virtual 106. El enclavamiento de control es un gatillo que informa al sistema de control del embalse virtual 106 cuando la salida del generador de la central eléctrica 102 está por debajo de PG que especifica una condición en la cual el BSS del embalse virtual 106 no se debe cargar ni descargar. Por ejemplo, se deben cumplir las siguientes condiciones para la carga y descarga del BSSAccording to an exemplary embodiment of the present invention, the HMI 214 of the master controller 210 can directly provide the adjustment of the fixed points of real and reactive power dispatch from virtual reservoir 106. Fixed dispatch points can be specified for each of the members of different operating modes and can only be effective when the generator is running and only when the main synchronizing breaker 12 is closed. By virtue of the relay interlock 132 between the main sync breaker 128 and the breakers 116 and 118 in the virtual reservoir circuit 107, the master controller 210 ensures that the virtual reservoir 106 cannot load or unload the generator windings from the generator. power station 102 in a situation where the generator of power station 102 is not running and / or the main timing breaker 128 is open. The HMI 202 of the master controller 210 may include a control interlock associated with the virtual reservoir control system 106. The control interlock is a trigger that informs the virtual reservoir control system 106 when the generator output from the power plant 102 is below P G that specifies a condition in which the BSS of virtual reservoir 106 should not be loaded or unloaded. For example, the following conditions must be met for loading and unloading the BSS
108: Descarga de baterías Ptotal = PG + PVD. PG > PVD108: Battery discharge total P = PG + PVD. PG> PVD
(2) (two)
Carga de baterías Ptotal = PG - PVD . Ptotal > 0. y PG > PVDBattery charge total P = PG - PVD. Total P> 0. and PG> PVD
(3) (3)
De acuerdo con un ejemplo de realización de la presente invención, el sistema de manejo total 100 puede proporcionar una protección de generación excesiva para el embalse virtual 106. La Figura 2 es un diagrama de bloques que ilustra el diagrama de bloques para la comunicación de señales y datos de control de la presente invención. Como se muestra en la Figura 2, el controlador del VR 111 puede estar configurado para modificar la salida de energía eléctrica del embalse virtual 106 de manera tal que la salida total de la central eléctrica 102 y el embalse virtual 106 no pase de un punto fijo definido de generación en la red eléctrica 104. El controlador del VR 111 puede incluir uno o más procesadores 227, la memoria 227 para almacenar datos relacionados con el embalse virtual 106 y el circuito del embalse virtual 107 y una HMI 229. El controlador del VR 111 también incluye una interfaz de comunicación 231 para enviar y/o recibir señales y/o datos de control al embalse virtual 106 y el controlador maestro 210. La interfaz de comunicación 231 puede incluir una pluralidad de componentes de comunicaciones para conectar y darle un formato a las señales de datos para la comunicación a través de la LAN, la WAN, inalámbrica, RF, SCADA, Bluetooth o cualquier otro formato de comunicación que se desee o se especifique para el control. El punto fijo de salida eléctrica del embalse virtual 106 se puede definir a través de la HMI 212 del controlador maestro 210, El punto fijo se puede comunicar con la unidad de controlIn accordance with an exemplary embodiment of the present invention, the total management system 100 may provide over-generation protection for the virtual reservoir 106. Figure 2 is a block diagram illustrating the block diagram for signal communication and control data of the present invention. As shown in Figure 2, the VR 111 controller can be configured to modify the electrical power output of the virtual reservoir 106 such that the total output of the power plant 102 and the virtual reservoir 106 does not exceed a fixed point. defined generation grid 104. The VR controller 111 may include one or more processors 227, memory 227 for storing data related to the virtual reservoir 106 and the virtual reservoir circuit 107, and an HMI 229. The VR controller 111 also includes a communication interface 231 for sending and / or receiving control signals and / or data to virtual reservoir 106 and master controller 210. Communication interface 231 may include a plurality of communication components for connecting and format data signals for communication over LAN, WAN, wireless, RF, SCADA, Bluetooth, or any other desired or specified communication format for control. The electrical output fixed point of the virtual reservoir 106 can be defined through the HMI 212 of the master controller 210, The fixed point can communicate with the control unit
200 para el control en tiempo real de la salida eléctrica. 200 for real-time control of electrical output.
Se puede controlar que el embalse virtual 106 funcione en uno de numerosos modos de funcionamiento. El control del embalse virtual 106 puede estar especificado por el sistema de control 130 en general y más específicamente la unidad de control 200 puede comunicar señales de control desde el controlador maestro 210 a través del controlador del VR 111. The virtual reservoir 106 can be controlled to operate in one of numerous modes of operation. Control of virtual reservoir 106 may be specified by control system 130 generally and more specifically control unit 200 may communicate control signals from master controller 210 through VR controller 111.
En un modo manual (MM), el controlador del VR 111 y/o el controlador maestro 210 pueden proporcionar el control completo del embalse virtual 106 desde una interfaz (HMI) de pantalla táctil nativa extensíble y personalizable tanto en forma local como en forma remota. El modo manual puede incluir un modo de despacho manual. La HMI remota se puede implementar a través de la HMI 202 del controlador maestroIn a manual (MM) mode, the VR 111 controller and / or the master controller 210 can provide complete control of the virtual reservoir 106 from a customizable and extensible native touch screen interface (HMI) both locally and remotely. . Manual mode can include a manual dispatch mode. Remote HMI can be implemented through HMI 202 of the master controller
210. De acuerdo con otro ejemplo de realización, la HMI remota se puede implementar en un dispositivo informático móvil tal como un teléfono inteligente, una tableta, una computadora portátil u otro dispositivo electrónico inteligente que tiene una capacidad de conexión portátil y dinámica con la red inalámbrica. Para el funcionamiento en el modo de despacho manual, que consiste en el despacho de energía eléctrica desde el embalse virtual 106, el embalse virtual 106 que incluye el circuito de embalse virtual 107 se sincroniza con la red eléctrica 104 y responde a los ajustes del operador sin violar los límites y protecciones del generador de la central eléctrica 102. El modo de despacho manual provee el control manual de un punto fijo de despacho en el cual un operador puede ajustar directamente los puntos fijos de despacho de potencia real y reactiva a través de la HMI 229. Como ya se discutió, se puede acceder a la HMI a través del controlador del VR 111, del controlador maestro 210 y/o de un dispositivo informático móvil 240. 210. According to another embodiment, the HMI Remote control can be implemented on a mobile computing device such as a smartphone, tablet, laptop or other smart electronic device that has a portable and dynamic connection capability with the wireless network. For operation in manual dispatch mode, which consists of the dispatch of electrical energy from the virtual reservoir 106, the virtual reservoir 106 that includes the virtual reservoir circuit 107 is synchronized with the electrical network 104 and responds to the operator's settings without violating the limits and protections of the power plant generator 102. The manual dispatch mode provides manual control of a dispatch fixed point in which an operator can directly adjust the real and reactive power dispatch fixed points through the HMI 229. As already discussed, the HMI can be accessed through the VR controller 111, the master controller 210, and / or a mobile computing device 240.
De acuerdo con un ejemplo de realización de la presente invención, el sistema de manejo de carga 100 puede incluir un modo de control de generación automático (AGC). El modo de AGC se usa para el despacho controlado o remoto de varios recursos. En el modo de AGC, la unidad de controlIn accordance with an exemplary embodiment of the present invention, the load handling system 100 may include an automatic generation control (AGC) mode. AGC mode is used for controlled or remote dispatch of various resources. In AGC mode, the control unit
200 se puede configurar para controlar los parámetros y/o los puntos fijos desde el controlador maestro 210. La unidad de control 200 puede pasar los datos y/o señales recibidas a la red eléctrica 102 a través de un enlace de comunicaciones. El modo de despacho de AGC incluye el despacho de potencia reactiva con parámetros controlables, el despacho de potencia reactiva y el índice de carga o descarga de rampa. 200 can be configured to control parameters and / or the fixed points from the master controller 210. The control unit 200 can pass the received data and / or signals to the power grid 102 via a communication link. AGC dispatch mode includes reactive power dispatch with controllable parameters, reactive power dispatch, and ramp charge / discharge ratio.
En un AGC de modo de comercio de energía las señales se envían a la instalación para realizar el comercio de energía. In an energy trading mode AGC signals are sent to the facility to perform energy trading.
En un modo de mitigación de la rampa en el sistema de red eléctrica, las señales del AGC se envían mediante la unidad de control 200 a la central eléctrica 102 para realizar la mitigación de la rampa. In a ramp mitigation mode in the power grid system, AGC signals are sent by control unit 200 to power plant 102 to perform ramp mitigation.
En un modo de manejo del estado de carga (SOC) (para la restauración del SOC), el BSS 108 del embalse virtual 106 se puede mudar al BSS 108 del embalse virtual 106. In a state of charge (SOC) management mode (for SOC restoration), BSS 108 of virtual reservoir 106 can be moved to BSS 108 of virtual reservoir 106.
Un servicio de regulación de frecuencia se puede denominar una regulación terciaria de frecuencia (TFR). La TFR se puede implementar mediante el control AGC del embalse virtual 106 desde el operador del sistema. La FFR, PER y SFR son servicios de contingencia de la frecuencia que implementa el embalse virtual 106 a partir de las mediciones de la frecuencia de la red en la central eléctrica de agua fluyente 102 y por lo tanto no necesitan el AGC. A frequency regulation service can be called a tertiary frequency regulation (TFR). TFR can be implemented by AGC control of virtual reservoir 106 from the system operator. The FFR, PER and SFR are frequency contingency services implemented by virtual reservoir 106 from grid frequency measurements at running water power plant 102 and therefore do not need the AGC.
También se puede controlar que el embalse virtual 106 funcione en uno de varios modos de control de frecuencia. Los diversos tipos de modos de control de frecuencia disponibles están basados en selecciones elegidas a través de la HMI 202, de acuerdo con la pluralidad de modos de contro1 de frecuencia. The virtual reservoir 106 can also be controlled to operate in one of several frequency control modes. The various types of frequency control modes available are based on selections chosen through the HMI 202, in accordance with the plurality of frequency control modes.
El embalse virtual 106 puede funcionar de acuerdo con una regulación rápida de frecuencia (FFR), que es un servicio de contingencia (lo cual significa que se lo debe proveer en forma prioritaria sobre cualquier otra operación que esté realizando el embalse virtual 106 en ese momento) en el cual el embalse virtual está configurado para suministrar el 100% de la reserva de compromiso al operador del sistema dentro del tiempo de 1 segundo a 10 segundos de acuerdo con una función de caída de frecuencia. The virtual reservoir 106 can operate according to a fast frequency regulation (FFR), which is a contingency service (which means that it must be provided as a priority over any other operation that the virtual reservoir 106 is performing at that time ) in which the virtual reservoir is configured to supply 100% of the commitment reserve to the system operator within the time of 1 second to 10 seconds according to a frequency drop function.
La regulación primaria de frecuencia (PER) es uno de los modos de control de la frecuencia que es un servicio de contingencia (lo cual significa que se lo debe proveer en forma prioritaria sobre cualquier otra operación que esté realizando el embalse virtual 106 en ese momento) en el cual el embalse virtual 135 puede estar configurado para suministrar el 100% de la reserva de compromiso al ISO dentro del tiempo de 10 segundos a 5 minutos de acuerdo con la función de caída de frecuencia. Primary Frequency Regulation (PER) is one of the frequency control modes that is a service of contingency (which means that it must be provided as a priority over any other operation that virtual reservoir 106 is performing at that time) in which virtual reservoir 135 can be configured to supply 100% of the commitment reserve to the ISO within the time from 10 seconds to 5 minutes according to the frequency drop function.
Una regulación secundaria de frecuencia (SFR) es un modo de control de la frecuencia que representa un servicio de contingencia en el cual el embalse virtual está configurado para suministrar el 100% de la reserva de compromiso al ISO dentro del tiempo de 5 minutos a 15 minutos de acuerdo con la función de caída de frecuencia. De acuerdo con un ejemplo realización, durante el modo de SFR, se puede ajustar a cada uno de uno o más generadores sincrónicos para funcionar a diferentes velocidades, pero en una misma frecuencia, en la cual varios generadores sincrónicos se pueden conectar en paralelo. A secondary frequency regulation (SFR) is a frequency control mode that represents a contingency service in which the virtual reservoir is configured to supply 100% of the commitment reserve to the ISO within the time of 5 minutes to 15 minutes. minutes according to the frequency drop function. According to an exemplary embodiment, during the SFR mode, each of one or more synchronous generators can be adjusted to operate at different speeds, but on the same frequency, in which several synchronous generators can be connected in parallel.
La regulación terciaria de frecuencia (TFR) es un modo de control de la frecuencia en el cual el ISO envía una señal de AGC ai embalse virtual 106 para controlar la frecuencia del sistema de la red eléctrica. La Figura 3 es un diagrama que ilustra un gráfico que muestra la tolerancia máxima permitida desde las bandas muertas altas y bajas. El diagrama de la Figura 3 está ajustado en el contexto de un ejemplo de sistema eléctrico de 60 Hz. Las coordenadas (60, 0) del gráfico representan un punto fijo en la frecuencia (60) y la potencia (0), de manera tal que la caja limitada representa el rango de desviación del punto fijo. De acuerdo con un ejemplo de realización, la caja limitada representa una banda muerta de ±1% en el punto fijo de carga o descarga para el BSS 108. Se debe comprender que las coordenadas del punto fijo pueden tener valores de acuerdo con una frecuencia principal o de utilidad según se desee. Por ejemplo, de acuerdo con un ejemplo de realización la frecuencia principal puede ser de 50 Hz que es un punto fijo de (50, 0). La Figura 3 ilustra una técnica de control de la velocidad de calda en la cual la salida de energía de dichos uno o más generadores de la central eléctrica 102 se reduce a medida que aumenta la frecuencia de la línea. Dicho índice de energía producido por la central eléctrica 102 se puede controlar basado en la frecuencia de la red. Tertiary Frequency Regulation (TFR) is a frequency control mode in which the ISO sends an AGC signal to the virtual reservoir 106 to control the frequency of the power grid system. Figure 3 is a diagram illustrating a graph showing the maximum allowable tolerance from the high and low dead bands. The diagram in Figure 3 is fitted in the context of an example of a 60 Hz electrical system. The coordinates (60, 0) of the graph represent a fixed point at frequency (60) and power (0), such that that the bound box represents the range of deviation from the fixed point. According to an exemplary embodiment, the limited box represents a dead band of ± 1% at the fixed point of loading or unloading for the BSS 108. It should be understood that the coordinates of the fixed point can have values according to a main frequency or utility as desired. For example, according to an exemplary embodiment the main frequency can be 50 Hz which is a fixed point of (50, 0). Figure 3 illustrates a drop rate control technique in which the power output from said one or more generators of power plant 102 is reduced as line frequency increases. Said index of energy produced by the power plant 102 can be controlled based on the frequency of the grid.
La linea de gráfico 1 de la Figura 3 representa la frecuencia delta de energía total, que es la desviación enGraph line 1 in Figure 3 represents the total energy delta frequency, which is the deviation in
Hertz de la frecuencia del sistema desde la frecuencia deseada del sistema en la cual el BSS 108 debe estar en la carga o descarga de energía total. Hertz of system frequency from frequency desired system in which the BSS 108 should be at full power charge or discharge.
La linea de gráfico 2 de la Figura 3 muestra la frecuencia delta de banda muerta, que es la desviación máxima, en Hertz, entre la frecuencia medida del sistema y la frecuencia deseada del sistema, dentro de la cual la HMI que funciona en el controlador maestro 210 o el controlador del VR 111 es libre de cargar o descargar el BSS 108 a fin de devolverlo a un estado deseado de carga. Se permiten diferentes valores de frecuencia delta baja y frecuencia delta alta. Graph line 2 of Figure 3 shows the deadband delta frequency, which is the maximum deviation, in Hertz, between the measured system frequency and the desired system frequency, within which the HMI operating in the controller Master 210 or the VR 111 controller is free to load or unload BSS 108 in order to return it to a desired state of charge. Different values of low delta frequency and high delta frequency are allowed.
La línea de gráfico 3 de la Figura 3 muestra un punto fijo de carga de banda muerta, un punto fijo de descarga de banda muerta, que representan un despacho máximo de energía en Kilowatts, en un estado en el cual la batería despacha la energía eléctrica almacenada mientras está dentro de la configuración de la banda muerta normal de la frecuencia. Por ejemplo, el punto fijo de descarga no permite que el BSS 108 descargue por debajo del 2% de la carga máxima. Es decir, como mínimo el BSS 108 está configurado para tener por lo menos el 2% de la carga en todo momento. En forma similar, el punto fijo de la carga ajusta una detención alGraph line 3 of Figure 3 shows a dead band charge fixed point, a dead band discharge fixed point, representing a maximum energy dispatch in Kilowatts, in a state in which the battery dispatches electrical energy stored while within the normal frequency deadband setting. For example, the set point of discharge does not allow the BSS 108 to discharge below 2% of the maximum load. That is, at a minimum the BSS 108 is configured to have at least 2% of the load at all times. Similarly, the set point of the load sets a stop to the
98% del máximo de la carga completa de manera tal que la capacidad de carga del BSS 108 no supere el 98% o el 99%, Como resultado, el SOC se puede manejar cuando la regulación de la frecuencia está inactiva. Un punto fijo más pequeño reduce la desviación desde la frecuencia deseada de la red. 98% of the maximum full load so that the BSS 108's load capacity does not exceed 98% or 99%, As a result, the SOC can be handled when the frequency regulation is idle. A smaller fixed point reduces the deviation from the desired frequency of the network.
La linea de gráfico 4 de la Figura 3 es el punto fijo de descarga de baja frecuencia, el punto fijo de carga de alta frecuencia, que son parámetros que representan un valor fijo, en kilowatts, para el desvio cuando la FFR se está corrigiendo para la baja frecuencia o la alta frecuencia. El desvio permite que el SOC se maneje cuando el sistema está siguiendo la curva de calda de la regulación de la frecuencia , Graph line 4 of Figure 3 is the low frequency discharge fixed point, the high frequency charge fixed point, which are parameters that represent a fixed value, in kilowatts, for the deviation when the FFR is being corrected for low frequency or high frequency. Bypass allows the SOC to be managed when the system is following the drop curve of the frequency regulation,
La linea de gráfico 5 de la Figura 3 es la banda muerta de SOC alto, la banda muerta de SOC bajo, que son parámetros que representan la tolerancia máxima, en puntos porcentuales (por ejemplo, ±1%), que el SOC de una red de baterías del BSS 108 puede variar desde el valor deseado. Fuera de este rango, los despachos se desvían para manejar el SOC, Graph line 5 of Figure 3 is the high SOC dead band, the low SOC dead band, which are parameters that represent the maximum tolerance, in percentage points (for example, ± 1%), that the SOC of a BSS 108 battery network can vary from desired value. Outside this range, dispatches deviate to handle the SOC,
De acuerdo con un ejemplo de realización, cuando la frecuencia de línea cae por debajo de 60 Hz, el embalse virtual 106 se descarga para inyectar energía en el sistema para impulsar la carga. En cambio, cuando la frecuencia está por encima de 60 Hz, el sistema está experimentando más energía que la necesaria para la carga. En este caso, el embalse virtual 106 se carga con la energía desde la linea de energía. According to an exemplary embodiment, when the line frequency falls below 60 Hz, the reservoir virtual 106 is discharged to inject energy into the system to drive the load. In contrast, when the frequency is above 60 Hz, the system is experiencing more energy than necessary for the load. In this case, the virtual reservoir 106 is charged with energy from the power line.
La Figura 4 es un método que ilustra un método para el manejo de la carga de acuerdo con un ejemplo de realización. Las partes de procesamiento del método se pueden implementar a través de la H-MI 202 de dichos uno o más componentes del sistema de manejo de carga 100. Figure 4 is a method illustrating a method for handling cargo according to an exemplary embodiment. The processing parts of the method can be implemented through the H-MI 202 of said one or more components of the load handling system 100.
En un primer paso, uno o más de la pluralidad de sensores miden los parámetros de funcionamiento del sistema de energía hidroeléctrica (400). Los estados de funcionamiento de la pluralidad de los disyuntores enclavados 116, 118,In a first step, one or more of the plurality of sensors measure the operating parameters of the hydroelectric power system (400). The operating states of the plurality of interlocked circuit breakers 116, 118,
128 se controlan de manera tal que la energía eléctrica emitida por el generador en la central eléctrica 102 se almacena en el embalse virtual 106 y la energía eléctrica y que se despache la energía eléctrica almacenada en el embalse virtual 106 hacia una red eléctrica (402). Los estados de funcionamiento de la pluralidad de disyuntores enclavados se controlan en uno de un punto fijo de funcionamiento o uno o más parámetros de funcionamiento medidos del sistema de energía 100. Se despacha una cantidad de energía eléctrica desde el embalse virtual basado en un punto fijo predefinido de energía eléctrica que se debe proveer a la red eléctrica (404). 128 are controlled in such a way that the electrical energy emitted by the generator in the power plant 102 is stored in the virtual reservoir 106 and the electrical energy and that the electrical energy stored in the virtual reservoir 106 is dispatched to an electrical network (402) . The operating states of the plurality of interlocked circuit breakers are controlled at one of a set point of operation or one or more measured operating parameters of the power system 100. A amount of electrical energy from the virtual reservoir based on a predefined fixed point of electrical energy that must be supplied to the electrical network (404).
Hardware del sistema System hardware
Continuando con la referencia a las figuras incluidas en la presente, dichos uno o más procesadores de una unidad de control 200, el controlador maestro 210 o el controlador del embalse virtual 111 pueden ser un dispositivo de procesador de propósito general. De acuerdo con los ejemplos de realizaciones de la presente invención, el procesador o la memoria de hardware 205 conectados al procesador de hardware están codificados con una serie de software adecuada para llevar a cabo el procesamiento. Dichos uno o más procesadores se pueden conectar con una infraestructura de comunicación, tal como un bus interno, una cola de mensajes, una red, un modelo de paso de mensajes multinúcleo, etc. Continuing with reference to the figures included herein, said one or more processors of a control unit 200, the master controller 210, or the virtual reservoir controller 111 may be a general-purpose processor device. In accordance with exemplary embodiments of the present invention, the hardware processor or memory 205 connected to the hardware processor is encoded with suitable software to carry out the processing. Said one or more processors can be connected to a communication infrastructure, such as an internal bus, a message queue, a network, a multicore message passing model, etc.
La red 109 puede ser cualquier red adecuada para cumplir las funciones como se divulga en la presente y puede incluir una configuración de la capacidad de comunicaciones para una red de área local (LAN), una red de área ampliaThe network 109 can be any network suitable to fulfill the functions as disclosed herein and can include a configuration of the communications capacity for a local area network (LAN), a wide area network
(WAN), una red inalámbrica (por ejemplo, Wi-Fi), una red de comunicación móvil, una red SCADA, una red satelital, la internet, una fibra óptica, un cable coaxial, infrarrojo, radio frecuencia (RF) o cualquier combinación de ellos. Otros tipos y configuraciones de redes adecuadas serán evidentes para las personas con conocimientos del arte relevante. (WAN), a wireless network (for example, Wi-Fi), a network of mobile communication, a SCADA network, a satellite network, the internet, an optical fiber, a coaxial cable, infrared, radio frequency (RF) or any combination of them. Other suitable network types and configurations will be apparent to those with knowledge of the relevant art.
El dispositivo informático móvil puede incluir una memoria 220 (por ejemplo, una memoria de acceso aleatorio, una memoria de solo lectura, etc.) y también puede incluir varias memorias. De acuerdo con un ejemplo de realización, la memoria 205 puede incluir medios de registro legibles por computadora no transitorios (por ejemplo, ROM, unidad de disco rígido RAM, memoria rápida, una memoria óptica, una unidad de estado sólido, etc.). Un dispositivo de procesador de hardware como se discute en la presente puede ser un procesador de hardware único, una pluralidad de procesadores de hardware o combinaciones de ellos. El dispositivo de procesador de hardware puede tener uno o más "núcleos" de procesador. The mobile computing device can include a memory 220 (eg, a random access memory, a read-only memory, etc.) and can also include multiple memories. According to an exemplary embodiment, memory 205 may include non-transient computer-readable recording media (eg, ROM, RAM hard disk drive, fast memory, an optical memory, a solid state drive, etc.). A hardware processor device as discussed herein can be a single hardware processor, a plurality of hardware processors, or combinations thereof. The hardware processor device can have one or more processor "cores".
Los datos almacenados en el controlador maestro, la unidad de control y/o el dispositivo informático pueden incluir cualquier tipo de medio legible por computadora adecuado, tal como un almacenamiento óptico (por ejemplo, un disco compacto, un disco versátil digital, un almacenamiento magnético (por ejemplo, una unidad de disco rígido) o una unidad de estado sólido, un sistema operativo y una o más aplicaciones . The data stored in the master controller, control unit, and / or computing device may include any type of suitable computer-readable medium, such as optical storage (for example, a disk compact, digital versatile disk, magnetic storage (for example, a hard disk drive) or solid state drive, an operating system, and one or more applications.
Como ya se discutió, dichos uno o más procesadores pueden incluir una infraestructura de comunicaciones. De acuerdo con un ejemplo de realización, la unidad de control 200 puede incluir una interfaz de comunicaciones 214 como parte de la infraestructura de comunicaciones. La interfaz de comunicaciones 214 para proveer la capacidad de comunicación. La interfaz de comunicaciones 204 puede estar configurada para permitir que el software y los datos se transfieran entre el dispositivo de borde electrónico y otros dispositivos externos como se describe en la presente. Algunos ejemplos de interfaces de comunicaciones 204 pueden incluir un modem inalámbrico (por ejemplo, un transmisor y receptor), una interfaz de red (por ejemplo, una tarjeta de Ethernet), un puerto de comunicaciones, una ranura y tarjeta de comunicaciones PCMCIA o cualquier otro chip de comunicaciones, etc. El software y los datos se pueden transferir a través de la interfaz de comunicaciones o desde los dispositivos externos. Las memorias pueden ser medios de registro legibles por computadora no transitorios y pueden almacenar sistemas operativos y/o programas informáticos que ha de ejecutar el dispositivo electrónico móvil. Los programas informáticos también pueden recibirse a través de la interfaz de comunicaciones. Dichos programas informáticos, cuando se ejecutan, pueden permitir que el dispositivo de borde electrónico móvil implemente sus funciones operativas. Por ejemplo, el sistema operativo y/o el dispositivo de procesador de hardware acceda u opere componentes de hardware tales como una cámara o cualquier dispositivo sensor deseado GPS, interfaz periférica, puerto de interfaz USB/Firewire/Thunderbolt y/o monitor (por ejemplo, una pantalla LED, una pantalla táctil, etc.). As already discussed, said one or more processors can include a communications infrastructure. According to an exemplary embodiment, the control unit 200 may include a communication interface 214 as part of the communication infrastructure. The communication interface 214 to provide the communication capability. Communications interface 204 may be configured to allow software and data to be transferred between the electronic edge device and other external devices as described herein. Some examples of communications interfaces 204 may include a wireless modem (for example, a transmitter and receiver), a network interface (for example, an Ethernet card), a communications port, a PCMCIA communications card and slot, or any other communications chip, etc. Software and data can be transferred through the communication interface or from external devices. The memories may be non-transient computer-readable recording media and may store operating systems and / or computer programs to be executed by the mobile electronic device. Computer programs can also be received through the communications interface. Such computer programs, when run, may allow the mobile electronic edge device to implement its operational functions. For example, the operating system and / or the hardware processor device accesses or operates hardware components such as a camera or any desired sensor device GPS, peripheral interface, USB / Firewire / Thunderbolt interface port and / or monitor (e.g. , an LED screen, a touch screen, etc.).
Numerosas variantes de realizaciones divulgadas en la presente serán evidentes para los expertos en el arte. De acuerdo con ejemplos de realizaciones, dichos uno o más dispositivos de borde inteligentes pueden interconectarse opcionalmente con la nube y configurarse con un núcleo del sistema operativo desarrollado especiaImente, aunque esto no necesariamente es asi. Numerous variant embodiments disclosed herein will be apparent to those skilled in the art. According to exemplary embodiments, said one or more intelligent edge devices can optionally be interfaced with the cloud and configured with a specially developed kernel of the operating system, although this is not necessarily the case.
El software de la invención puede estar configurado en un sistema operativo (OS) recién desarrollado o se puede proveer como un paquete de instalación de software en un núcleo de un sistema operativo prexistente. La funcionalidad como se describe en la presente puede entonces ser un núcleo o puede ser una aplicación que se ejecuta en otro OS prexistente. La funcionalidad como se describe puede ser un software y/o un firmware se que debe cargar en cualquiera de diferentes plataformas de hardware existentes. The software of the invention may be configured on a newly developed operating system (OS) or it may be Provide as a software installation package on a kernel of a pre-existing operating system. The functionality as described herein can then be a kernel or it can be an application running on another pre-existing OS. The functionality as described can be software and / or firmware that must be loaded on any of different existing hardware platforms.
Los expertos en el arte apreciarán que la presente invención se puede realizar en otra forma sin apartarse de su espíritu o de las características esenciales. Las realizaciones divulgadas en la presente en consecuencia se consideran en todos los aspectos como ilustrativas y no taxativas. El alcance de la invención está indicado por las reivindicaciones adjuntas y no por la descripción precedente y todos los cambios que estén dentro de la definición y del alcance y sus equivalentes están comprendidos en la presente. Those skilled in the art will appreciate that the present invention can be made in another way without departing from its spirit or essential features. The embodiments disclosed herein are accordingly considered in all respects as illustrative and not restrictive. The scope of the invention is indicated by the appended claims and not by the preceding description and all changes that are within the definition and scope and their equivalents are understood herein.

Claims

R E IV IN D ICA C IO N E S RE IV IN D ICA T IO NES
1.Un sistema de manejo de carga para una central hidroeléctrica., CARACTERIZADO porque el sistema comprende: un generador de energía configurado para generar energía eléctrica desde un flujo de agua para proveerla a una red eléctrica; un embalse virtual configurado para almacenar la energía eléctrica generada y despachar la energía eléctrica almacenada a la red eléctrica; una pluralidad de disyuntores que conectan una salida del generador con la red eléctrica y con el embalse virtual; y una unidad de control configurada para controlar los estados de funcionamiento de la pluralidad de disyuntores de manera tal que la energía eléctrica generada se almacene en el embalse virtual y por lo menos una de la energía eléctrica generada o la energía eléctrica almacenada se provea a la red eléctrica. 1. A load management system for a hydroelectric power station, CHARACTERIZED in that the system comprises: a power generator configured to generate electrical energy from a flow of water to supply it to an electrical network; a virtual reservoir configured to store the generated electrical energy and dispatch the stored electrical energy to the electrical grid; a plurality of circuit breakers that connect an output of the generator with the electrical network and with the virtual reservoir; and a control unit configured to control the operating states of the plurality of circuit breakers in such a way that the electrical energy generated is stored in the virtual reservoir and at least one of the electrical energy generated or the electrical energy stored is supplied to the electrical network.
2.El sistema de acuerdo con la reivindicación 1,2.The system according to claim 1,
CARACTERIZADO porque la pluralidad de disyuntores comprende : un primer disyuntor conectado con una salida del generador de energía y una salida del embalse virtual; y uno o más segundos disyuntores conectados entre el embalse virtual y el primer disyuntor. CHARACTERIZED because the plurality of circuit breakers comprises: a first circuit breaker connected with an outlet of the power generator and an outlet of the virtual reservoir; and one or more second circuit breakers connected between the virtual reservoir and the first circuit breaker.
3.El sistema de acuerdo con la reivindicación 2,3.The system according to claim 2,
CARACTERIZADO porque comprende: un enclavamiento de relé configurado para interconectar la pluralidad de disyuntores, en donde la unidad de control está configurada para controlar el enclavamiento de relé basado en por lo menos la energía eléctrica generada. CHARACTERIZED because it comprises: a relay interlock configured to interconnect the plurality of circuit breakers, wherein the control unit is configured to control the relay interlock based on at least the electrical energy generated.
4.El sistema de acuerdo con la reivindicación 1,4.The system according to claim 1,
CARACTERIZADO porque el embalse virtual comprende: una red de baterías; un transformador elevador; un primer disyuntor de la pluralidad de disyuntores, el primer disyuntor está dispuesto de un lado de la batería clel transfom ador elevador; un segundo disyuntor de la pluralidad de disyuntores, el segundo disyuntor está dispuesto de un lado de la red eléctrica del transforrnador; un primer transformador de corriente conectado entre el segundo disyuntor y la red eléctrica; un segundo transformador de corriente conectado entre el primer disyuntor y el embalse virtual; y un relé protector digital que incluye un dispositivo electrónico inteligente. CHARACTERIZED because the virtual reservoir comprises: a network of batteries; a step-up transformer; a first circuit breaker of the plurality of circuit breakers, the first circuit breaker is arranged on one side of the battery of the lift transformer; a second circuit breaker of the plurality of circuit breakers, the second circuit breaker is arranged on one side of the electrical network of the transformer; a first current transformer connected between the second circuit breaker and the electrical network; a second current transformer connected between the first circuit breaker and the virtual reservoir; and a digital protective relay that includes an intelligent electronic device.
5.El sistema de acuerdo con la reivindicación 4,5. The system according to claim 4,
CARACTERIZADO porque comprende: un enclavara!ento de relé configurado para interconectar la pluralidad de disyuntores, en donde la unidad de control está configurada para controlar el enclavamiento de relé basado en la energía eléctrica generada. CHARACTERIZED because it comprises: a relay interlock configured to interconnect the plurality of circuit breakers, wherein the control unit is configured to control the relay interlock based on the electrical energy generated.
6.El sistema de acuerdo con la reivindicación 4,6.The system according to claim 4,
CARACTERIZADO porque comprende: un tercer transformador de corriente conectad con una salida del generador de energía, en donde la unidad de control está configurada para monitorear y controlar el primero, segundo y tercer transformadores de corriente. CHARACTERIZED because it comprises: a third current transformer connected to an output of the power generator, where the control unit is configured to monitor and control the first, second and third current transformers.
7.El sistema de acuerdo con la reivindicación 4,The system according to claim 4,
CARACTERIZADO porque comprende: el dispositivo electrónico inteligente para proteger a los arrollamientos del generador, en donde el embalse virtual está configurado para despachar la energía eléctrica almacenada a la red eléctrica cuando el generador está en servicio, CHARACTERIZED because it comprises: the intelligent electronic device to protect the generator windings, where the virtual reservoir is configured to dispatch the stored electrical energy to the electrical grid when the generator is in service,
8.El sistema de acuerdo con la reivindicación 1,The system according to claim 1,
CARACTERIZADO porque la unidad de control está configurada para modificar el despacho de electricidad desde el embalse virtual basado en un punto fijo predefinido de la energía eléctrica que se debe proveer a la red eléctrica. CHARACTERIZED because the control unit is configured to modify the dispatch of electricity from the virtual reservoir based on a predefined fixed point of electrical energy that must be supplied to the electrical network.
9.El sistema de acuerdo con la reivindicación 1,The system according to claim 1,
CARACTERIZADO porque la unidad de control comprende una interfaz gráfica de usuario. CHARACTERIZED because the control unit includes a graphical user interface.
10. El sistema de acuerdo con la reivindicación 1,10. The system according to claim 1,
CARACTERIZADO porque comprende: uno o más sensores configurados para medir la frecuencia de la red en donde la unidad de control está configurada para controlar la pluralidad de disyuntores basado en las mediciones de la frecuencia de la red. CHARACTERIZED because it comprises: one or more sensors configured to measure the frequency of the network wherein the control unit is configured to control the plurality of circuit breakers based on network frequency measurements.
11. El sistema de acuerdo con la reivindicación 10,11. The system according to claim 10,
CARACTERIZADO porque la unidad de control está configurada para controlar el despacho de potencia real, el despacho de potencia reactiva y el índice de carga y/o de descarga de rampa en el embalse virtual. CHARACTERIZED because the control unit is configured to control the real power dispatch, the reactive power dispatch and the ramp load and / or discharge index in the virtual reservoir.
12. El sistema de acuerdo con la reivindicación 10,12. The system according to claim 10,
CARACTERIZADO porque la unidad de control está configurada para controlar, de acuerdo con la función de calda de frecuencia, el despacho de un porcentaje especificado de energía eléctrica almacenado en el embalse virtual a la red eléctrica dentro del intervalo de tiempo especificado. CHARACTERIZED because the control unit is configured to control, according to the frequency drop function, the dispatch of a specified percentage of electrical energy stored in the virtual reservoir to the electrical network within the specified time interval.
13. El sistema de acuerdo con la reivindicación 1,13. The system according to claim 1,
CARACTERIZADO porque la unidad de control está configurada para manejar el embalse virtual a un estado de carga especificado. CHARACTERIZED because the control unit is configured to manage the virtual reservoir at a specified state of charge.
14. ün método para el equilibrio de carga de un sistema de energía hidroeléctrica, el sistema de energía hidroeléctrica incluye un generador de energía, una pluralidad de sensores, un embalse virtual, una pluralidad de disyuntores enclavados y una unidad de control,14. A method for load balancing of a hydropower system, the hydropower system includes a power generator, a plurality of sensors, a virtual reservoir, a plurality of interlocked circuit breakers, and a control unit,
CARACTERIZADO porque el método comprende: medir, a través de la pluralidad de sensores, uno o más parámetros del sistema de energía hidroeléctrica; y controlar, a través de la unidad de control, los estados de funcionamiento de la pluralidad de disyuntores enclavados para almacenar la energía eléctrica emitida por el generador de energía en el embalse virtual y despachar la energía eléctrica almacenada en el embalse virtual hacia la red eléctrica, en donde los estados de funcionamiento de la pluralidad de disyuntores enclavados están controlados basado en uno de los puntos fijos de funcionamiento o uno o más parámetros de funcionamiento medidos del sistema de energía, CHARACTERIZED in that the method comprises: measuring, through the plurality of sensors, one or more parameters of the hydroelectric energy system; and control, through the control unit, the operating states of the plurality of interlocked circuit breakers to store the electrical energy emitted by the power generator in the virtual reservoir and dispatch the electrical energy stored in the virtual reservoir to the electrical network , wherein the operating states of the plurality of interlocked circuit breakers are controlled based on one of the set points of operation or one or more measured operating parameters of the power system,
15, El método de acuerdo con la reivindicación 14,15, The method according to claim 14,
CARACTERIZADO porque el control de los estados de funcionamiento de la pluralidad de disyuntores enclavados está basado en la energía eléctrica emitida por el generador. CHARACTERIZED because the control of the operating states of the plurality of interlocked circuit breakers it is based on the electrical energy emitted by the generator.
16. El método de acuerdo con la reivindicación 14,16. The method according to claim 14,
CARACTERIZADO porque comprende: ajustar una cantidad de energía eléctrica despachada desde el embalse virtual basado en un punto fijo predefinido de la energía eléctrica que se debe proveer a la red eléctrica. CHARACTERIZED because it comprises: adjusting an amount of electrical energy dispatched from the virtual reservoir based on a predefined fixed point of electrical energy that must be supplied to the electrical network.
17. El método de acuerdo con la reivindicación 14,17. The method according to claim 14,
CARACTERIZADO porque el control de los estados de funcionamiento de la pluralidad de disyuntores enclavados está basado en mediciones de la frecuencia de la red. CHARACTERIZED in that the control of the operating states of the plurality of interlocked circuit breakers is based on measurements of the network frequency.
18. El método de acuerdo con la reivindicación 17,18. The method according to claim 17,
CARACTERIZADO porque el control de los estados de funcionamiento de la pluralidad de disyuntores enclavados comprende: controlar un despacho de la potencia real y la potencia reactiva desde el embalse virtual. CHARACTERIZED in that the control of the operating states of the plurality of interlocked circuit breakers comprises: controlling a dispatch of real power and reactive power from the virtual reservoir.
19. El método de acuerdo con la reivindicación 17,19. The method according to claim 17,
CARACTERIZADO porque el control del estado de funcionamiento de la pluralidad de disyuntores enclavados comprende : controlar un índice de rampa de la carga de energía eléctrica y un índice de rampa de la descarga de energía eléctrica en el embalse virtual. CHARACTERIZED in that the control of the operating state of the plurality of interlocked circuit breakers comprises: controlling a ramp rate of the electrical energy load and a ramp rate of the discharge of electrical energy in the virtual reservoir.
20. El método de acuerdo con la reivindicación 17,20. The method according to claim 17,
CARACTERIZADO porque el control de los estados de funcionamiento de la pluralidad de disyuntores enclavados comprende : controlar el embalse virtual para despachar un porcentaje específico de la electricidad almacenada a la red eléctrica dentro del intervalo de tiempo especificado de acuerdo con una función de caída de frecuencia. CHARACTERIZED in that the control of the operating states of the plurality of interlocked circuit breakers comprises: controlling the virtual reservoir to dispatch a specific percentage of the stored electricity to the electrical grid within the specified time interval according to a frequency drop function.
21. Un medio legible por computadora no transitorio codificado con un código de programa que, cuando se lo coloca en contacto comunicable con un procesador informático, hace que el procesador informático ejecute un método para el equilibrio de carga de un sistema de energía hidroeléctrica con la demanda de una red eléctrica, CARACTERIZADO porque comprende los pasos de: recibir una pluralidad de parámetros del sistema de energía medidos; y controlar los estados de funcionamiento de los disyuntores enclavados para almacenar la energía eléctrica emitida por un generador de energía en un embalse virtual y despachar la energía eléctrica almacenada en el embalse virtual hacia una red eléctrica, en donde los estados de funcionamiento de la pluralidad de disyuntores enclavados están controlados basados en por lo menos uno de un punto fijo de funcionamiento del sistema de energía o uno más de los parámetros del sistema de energía medidos. 21. A non-transient computer-readable medium encoded with program code that, when placed in communicable contact with a computer processor, causes the computer processor to perform a method for load balancing a computer system. hydroelectric energy with the demand of an electrical network, CHARACTERIZED because it comprises the steps of: receiving a plurality of parameters of the energy system measured; and control the operating states of the interlocked circuit breakers to store the electrical energy emitted by a power generator in a virtual reservoir and dispatch the electrical energy stored in the virtual reservoir to an electrical network, where the operating states of the plurality of Interlocked circuit breakers are controlled based on at least one of a set point of power system operation or one more of the measured power system parameters.
PCT/CL2020/050113 2019-10-04 2020-10-02 Load balancing system and method WO2021062573A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112022005284A BR112022005284A2 (en) 2019-10-04 2020-10-02 System and method for load balancing
PE2022000545A PE20220909A1 (en) 2019-10-04 2020-10-02 SYSTEM AND METHOD FOR LOAD BALANCING
CONC2022/0004299A CO2022004299A2 (en) 2019-10-04 2022-04-04 System and method for load balancing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/593,380 2019-10-04
US16/593,380 US11070061B2 (en) 2019-10-04 2019-10-04 Virtual reservoir storing energy for a hydroelectric power plant

Publications (1)

Publication Number Publication Date
WO2021062573A1 true WO2021062573A1 (en) 2021-04-08

Family

ID=75275264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050113 WO2021062573A1 (en) 2019-10-04 2020-10-02 Load balancing system and method

Country Status (6)

Country Link
US (1) US11070061B2 (en)
BR (1) BR112022005284A2 (en)
CL (1) CL2022000637A1 (en)
CO (1) CO2022004299A2 (en)
PE (1) PE20220909A1 (en)
WO (1) WO2021062573A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411403B2 (en) * 2020-12-14 2022-08-09 Vestas Wind Systems A/S Controlling power distribution at deadband states

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190237968A1 (en) * 2018-01-29 2019-08-01 S&C Electric Company Energy storage enhanced generator block loading
US10389126B2 (en) * 2012-09-13 2019-08-20 Stem, Inc. Method and apparatus for damping power oscillations on an electrical grid using networked distributed energy storage systems
EP3579369A1 (en) * 2018-06-06 2019-12-11 UPM Energy Oy Method and arrangement for using hydroelectric power as a power reserve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
US9300139B2 (en) * 2010-12-16 2016-03-29 Ashot Nazarian Method and apparatus for integrated electric power generation, storage and supply distributed and networked at the same time
US9893526B2 (en) * 2011-03-25 2018-02-13 Green Charge Networks Llc Networked power management and demand response
WO2014124644A1 (en) * 2013-02-15 2014-08-21 Vestas Wind Systems A/S A method of operating a wind turbine plant
US9559521B1 (en) * 2015-12-09 2017-01-31 King Electric Vehicles Inc. Renewable energy system with integrated home power
US9965016B2 (en) * 2016-03-09 2018-05-08 International Power Supply AD Power asset command and control architecture
US10277035B2 (en) * 2016-09-13 2019-04-30 MidNite Solar, Inc. System and method for controlling and monitoring scalable modular electric devices
US10270252B2 (en) * 2016-09-13 2019-04-23 MidNite Solar, Inc. System and method for scalable modular electric devices with hot-swap capability
US10733901B2 (en) * 2016-10-03 2020-08-04 General Electric Technology Gmbh Dynamic dispatcher training simulator
US10535998B2 (en) * 2017-12-06 2020-01-14 Inventus Holdings, Llc Controlling a behind the meter energy storage and dispatch system to improve power efficiency
US10928794B2 (en) * 2018-01-05 2021-02-23 Emera Technologies LLC Fault detection systems and methods for power grid systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389126B2 (en) * 2012-09-13 2019-08-20 Stem, Inc. Method and apparatus for damping power oscillations on an electrical grid using networked distributed energy storage systems
US20190237968A1 (en) * 2018-01-29 2019-08-01 S&C Electric Company Energy storage enhanced generator block loading
EP3579369A1 (en) * 2018-06-06 2019-12-11 UPM Energy Oy Method and arrangement for using hydroelectric power as a power reserve

Also Published As

Publication number Publication date
US20210104894A1 (en) 2021-04-08
US11070061B2 (en) 2021-07-20
PE20220909A1 (en) 2022-05-30
BR112022005284A2 (en) 2022-06-14
CL2022000637A1 (en) 2022-10-14
CO2022004299A2 (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US10770905B2 (en) Combined power generation system
US9847648B2 (en) Hybrid electric generating power plant that uses a combination of real-time generation facilities and energy storage system
CA2827709C (en) Energy interface system
US20130207591A1 (en) High speed feedback adjustment of power charge/discharge from an energy storage system
AU2017200900B2 (en) Output control and compensation for AC coupled systems
CN107959306B (en) A kind of micro-capacitance sensor monitoring system
JP2012075224A (en) Power storage system for renewable energy
ES2685910T3 (en) Energy storage system
WO2016006254A1 (en) Anti-risk preparation device, anti-risk preparation method, and anti-risk preparation system
JP5576826B2 (en) Wind power generator group control system and control method
AU2015390926A1 (en) Method and system for operating a plurality of photovoltaic (PV) generating facilities connected to an electrical power grid network
KR20150130568A (en) Method of AC charging for electric cars based on demand-responsive and apparatus
WO2021062573A1 (en) Load balancing system and method
Zupančič et al. Advanced peak shaving control strategies for battery storage operation in low voltage distribution network
US11296537B2 (en) Electrical energy supply unit and control therefor
JP6099990B2 (en) Power storage system and control method thereof
KR20170037192A (en) The power conversion device embedded with EMS function and Micro-grid power system having the same
EP3718815A1 (en) Electric power management system
Lim et al. Development of the control system for fast-responding frequency regulation in power systems using large-scale energy storage systems
US9768634B2 (en) Facility for controlling charge current for storage units in electrical energy supply grids connecting distributed generators and distributed storage units, among others
CN204615407U (en) Wind energy turbine set EMS
US20220102982A1 (en) Distributed energy resources communications network and control system
CN204886857U (en) All -weather safety monitoring system of transformer substation
Toliyat Energy storage sizing for low-inertia microgrids, and lessons learned from a potential microgrid
Ellis Integrating XFC at Scale Into the Power System.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873194

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005284

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022005284

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220321

122 Ep: pct application non-entry in european phase

Ref document number: 20873194

Country of ref document: EP

Kind code of ref document: A1