WO2021062500A1 - System and method for capturing movement - Google Patents

System and method for capturing movement Download PDF

Info

Publication number
WO2021062500A1
WO2021062500A1 PCT/BR2019/050431 BR2019050431W WO2021062500A1 WO 2021062500 A1 WO2021062500 A1 WO 2021062500A1 BR 2019050431 W BR2019050431 W BR 2019050431W WO 2021062500 A1 WO2021062500 A1 WO 2021062500A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
fact
capture
beacon
receiver
Prior art date
Application number
PCT/BR2019/050431
Other languages
French (fr)
Portuguese (pt)
Inventor
Flavio DINI ALVES COUTINHO
Original Assignee
Dini Alves Coutinho Flavio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dini Alves Coutinho Flavio filed Critical Dini Alves Coutinho Flavio
Priority to PCT/BR2019/050431 priority Critical patent/WO2021062500A1/en
Publication of WO2021062500A1 publication Critical patent/WO2021062500A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • G06T13/403D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings

Definitions

  • [001] Refers to the present invention for tracking the movement of a composite object or parts of an object in a three-dimensional space.
  • the invention relates to a system designed to track the movements of a human body.
  • An external-internal system uses external sensors to collect data from sources placed in the body. Examples of such systems are camera-based tracking devices, in which cameras are the sensors and reflective markers are the sources.
  • the internal-external systems have sensors placed on the body that collect data from external sources.
  • Electromagnetic systems whose sensors move in an externally generated electromagnetic field, are examples of internal systems.
  • the internal-internal systems have their sources and sensors placed on the body.
  • Examples of such devices are electromechanical suits, in which the sensors are potentiometers and the sources are the actual joints within the body.
  • Optical motion capture systems are very accurate to capture certain movements when used in conjunction with state-of-the-art equipment and means. Its operation takes place in real time, and has some limitations, related to the number of markers and the number of artists and cameras.
  • a typical optical motion capture system is based on a single computer that controls the input of multiple CCD digital cameras. Such cameras contain an array of pixels that typically have resolutions ranging from 128 x 128 image elements to 4096 x 4096 or even higher.
  • Such systems generally employ between 4 and 32 cameras, at a sampling rate ranging from 30 to 1000 samples per second.
  • At cameras are usually equipped with their own light sources that create a reflection of the markers, which are usually spheres covered with a reflective material such as Scotch-Brite tape. Infrared light sources are preferred because they create less visual distortions for the user.
  • the camera views are digitized. Processing of the data captured through the computer begins. The first step in the process is to obtain a clean reproduction that shows only the markers. Different image processing methods are used to minimize noise and isolate the markers, separating them from the rest of the environment, for example, considering only the groups of pixels that exceed a predetermined limit of luminosity.
  • the second step is to determine the two-dimensional coordinates of each marker for each image captured by the camera. These data will later be used in combination with the coordinates of the camera and the rest of the views of the other cameras to obtain the three-dimensional coordinates of each marker.
  • the third step is to monitor the variation of the position of each marker along a sequence of images.
  • This step requires the greatest assistance from the operator, since the initial assignment of each bookmark must be registered manually.
  • the software tries to resolve the rest of the sequence until it loses control of a marker due to blocking the image or crossing with another marker. This requires further intervention by the operator who must reassign the markers in question in order to continue computing. This process continues until the entire sequence is resolved and a file containing positioning data for all markers has been saved.
  • Such a file contains a sequence of global marker positions over time, which means that only the Cartesian coordinates (x, y and z) of each marker are listed by frame and no hierarchy or member rotation is included.
  • Electromagnetic motion capture systems are part of the family of six degrees of freedom electromagnetic measurement systems and consist of a series of receivers that measure their spatial relationship with a nearby transmitter. These receivers or sensors are placed on the body and are connected to an electronic control unit, in most cases by individual cables.
  • HMD helmet mounted displays
  • a typical magnetic tracker consists of a transmitter, 11 to 18 sensors, an electronic control unit and software.
  • To take advantage of the real-time capabilities of a magnetic tracker it must be connected to a powerful computer system that is capable of rendering a large number of polygons in real time. Depending on the needs of the project, the cost of this computer alone may exceed the cost of the magnetic tracker.
  • the transmitter generates a low frequency electromagnetic field which is detected by the receivers and entered into an electronic control unit, where it is filtered and amplified. Then, it is sent to a central computer, where the software resolves the position of each sensor in Cartesian x, y and z coordinates and orientation (yaw, tilt and roll). This data is manipulated using another algorithm that converts the orientation and the global position of each sensor into a hierarchical chain with only one position and multiple rotations. Magnetic trackers have a specification called latency, which indicates the amount of time elapsed between data collection and the display of the resulting performance. This specification can vary from a few milliseconds to a few seconds.
  • AC trackers are very sensitive to aluminum, copper and carbon steel, but not as sensitive to stainless steel or iron, while DC trackers have problems with ferrous metals, such as iron and steel, but not with aluminum and copper.
  • Electromechanical garments use potentiometers or angular measurement devices located in the main human joints. These are devices that use technology that has been used for many years in the electronics industry, in applications such as volume controls on radios and amplifiers. Basically they comprise a cursor that moves along a resistance element, producing at the output a variable voltage that depends on the relative position of the cursor.
  • the potentiometers used in motion capture suits and armor are much more complex versions of the old volume controls. They are usually called angular, analog or digital sensors.
  • a major disadvantage of electromechanical systems based on in pots is the inability to measure global translations.
  • an electromagnetic sensor is added to the set of sensors to solve this problem, which introduces the aforementioned disadvantage of interferences produced by conducting metals in the capture area but which subjects the installation to the same disadvantages as electromagnetic systems, such as sensitivity to nearby metals.
  • most of these devices only work on simple joints, and are not suitable for sensing complex joints, such as the shoulder.
  • RF radio frequency
  • the patent document US2004017313 entitled Motion Tracking System and Method describes a system and method based on radio frequency in which it seeks to correct the drawbacks of known systems.
  • at least 4 sensors 14 are used delimiting the capture zone 20.
  • said sensors are positioned at the vertices of a cube, as illustrated in figures 2-a and 2-b, the latter illustrating a preferred configuration with 8 sensors.
  • a reference tag (not shown) is placed in said capture zone.
  • signals are periodically transmitted in the form of bursts, from the reference tag and the object tags 12. These signals are received at the sensors, the identification code and the carrier and code phases, corresponding to each signal, are extracted. The code and carrier phase are processed to determine the position of the tags in relation to the reference tag.
  • the system described in this document operates in the range of 5.725-5.850 GHz, with a bandwidth of 125 MHz, with the power transmitted by the tags (ERP) limited to 0.25mW.
  • Another objective is to dispense with the need for a reference label.
  • said tags transmit radio frequency signals.
  • said tags transmit ultrasound signals.
  • the receivers that form said fixed base are arranged at the vertices of a triangle with known dimensions.
  • the system comprises additional triangular bases, not coplanar with the first fixed base.
  • the system comprises means of data processing provided with a position tracking algorithm.
  • the method of the invention comprises the reception, by each receiver of the base, of the signals transmitted continuously by each at least one beacon, where the position of said at least one beacon or tag is determined by means of trilateration based on the distance between each said receiver and each said at least one beacon or tag.
  • the determination of said each distance is based on the intensity of the signal received by each receiver.
  • the determination of said each distance is based on the travel time of the signal transmitted by the beacon and its reception by each one of said receivers.
  • Figure 1 illustrates a system known from the state of the art.
  • Figures 2-a and 2-b show the positioning of the sensors delimiting the capture zone in the known system illustrated in the previous figure.
  • Figure 3 exemplifies a suit worn by the user, provided with a plurality of beacons positioned at key points.
  • Figure 4 illustrates the basic configuration of the proposed system of the invention.
  • Figure 5 shows the operation of the position tracking algorithm on which the invention is based.
  • Figure 6 is a general flow chart of the system.
  • Figure 7 exemplifies the spreadsheet with ID x coordinates.
  • the system is composed of two essential physical parts, one being group of transmitters (beacons or tags), and a group of receivers.
  • transmitters 22 are distributed at key points in the user, usually attached to clothing 21, which constitutes a means of distributing transmitters in a standardized and efficient way, however, other methods can be used to said fixation.
  • the A-B-C receptors are arranged on a triangular base, with the sides having 1m. This base must be installed in a fixed position in the space to be used.
  • the transmitters 22 or beacons or tags are radio frequency transmitters, using any type of technology, such as, for example, bluetooth, Wi-Fi, Zig-Bee or any other known and commercially available technology.
  • the method of the invention there are two ways to determine the distances between at least one beacon or tag 22 and each of the A-B-C receptors.
  • the first is based on the signal strength captured by each A-B-C receiver, being able to provide results with millimeter accuracy.
  • the interposition of obstacles between the signal source and the receiver may impair the accuracy of the result, depending on the frequency range of the RF signal used.
  • the second form is based on the signal travel time, and its precision depends on the resolution as the speed of propagation of the electromagnetic wave. Such speed depends on the local atmospheric pressure, temperature and humidity. Its calibration can be done by measuring the travel time between the AB, AC or BC transmitters, since the distance between them is known. Therefore, the accuracy of the measurement of distances 22-A, 22-B and 22-C will depend only on the resolution of the measurement of the propagation time. So, for example, a resolution of 0.1 nanosecond will result in a spatial resolution of 3cm, and 0.01 nano according to a resolution of 3mm.
  • ultrasound signals are used instead of RF signals, it will be possible to determine distances with much greater precision.
  • a resolution of 1 millisecond in the reception time will provide a spatial resolution, the measurement of the distance, of a fraction of a millimeter.
  • the presence of obstructions between the source and the receiver may introduce an error in the aforementioned determination. This can be avoided by using additional bases located in different positions.
  • a variant of the second form is based on the determination of the phase of the received signal, where the burst transmitted by the beacon or tag comprises a standardized preamble, which can be, for example, the already known Neuman-Hofman synchronization code, of 16 bits, namely (0000111011101101), in widespread use due to their excellent self-correlation properties.
  • a standardized preamble which can be, for example, the already known Neuman-Hofman synchronization code, of 16 bits, namely (0000111011101101), in widespread use due to their excellent self-correlation properties.
  • the trilateration method is used to identify the position of the transmission in the x, y, z coordinates.
  • transceivers B and C send signals to the base, which received, having the distance between their points known, makes it possible to calibrate the base in relation to the speed of the wave.
  • the position tracking process starts, where at least one beacon or tag sends a signal to the base containing two pieces of information, namely, its identifier (ID) and the time it was sent .
  • ID its identifier
  • the distances TA, TB and TC are found (these being the distances between the tag and the fixed points of base A, B and C).
  • R.x ((Tda * Tda) - (Tdb * Tdb) + (1 * 1)) / 2;
  • T.x and T.z are numerically equal to R.x and R.z, respectively, determined above.
  • Tda is the relative distance between the tag and point A of the base
  • Tdb the relative distance between the tag and point B of the base
  • Tdc the relative distance between the tag and point C of the base
  • the base calculates the relative wave transit time between AB and AC by defining the wave speed.
  • the base waits for a signal from at least one tag.
  • the base calculates TRxyz; if not, the base waits for a signal.
  • the base stores a vector with tag data calculated according to the spreadsheet in Fig. 7.
  • the receiving program captures vector data and places it in its respective Vxyz.
  • the base must have sufficient processing capacity to determine the reception time with sufficient resolution (minimum of two nanosecond decimal places for radio frequency, defining an accuracy of up to 3 millimeters) and to perform the calculations related to the tags in at least 90 times a second.
  • the base must have sufficient storage capacity to store all arrays of information regarding the tracked tags.
  • a grouping of tags needs sufficient processing capacity to identify the tag in question and its transmission time, with a resolution compatible with the needs of the system (also adding the transit time of the pulse through the conducting medium between processor and tag , this distance being known) taking taking into account that the process is repeated at least 90 times per second.
  • Such repetition rate corresponds to the minimum count of frames per second required so that the virtual reality user does not feel nauseous when using such systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Dentistry (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to movement tracking for an object or parts of an object in a three-dimensional space, in particular of the human body, formed by two sets of essential elements, the first comprising a group of receivers forming a static base and the second comprising one or more "beacon" or "tag" transmitters associated with the object to be tracked. The invention involves the reception by each receiver in the base of the signals transmitted continuously by each at least one beacon or tag, in which the position of said at least one beacon or tag is determined by trilateration, on the basis of the distance between each such receiver and each such at least one beacon or tag. The determination of each such distance can be based on the intensity of the signal received by each receiver or on the travel time of the signal sent by the tag and the receipt thereof by each of said receivers.

Description

SISTEMA E MÉTODO PARA CAPTURA DE MOVIMENTOS SYSTEM AND METHOD FOR MOVING CAPTURE
Campo da invenção Field of invention
[001] Refere-se a presente invenção ao rastreamento de movimento de um objeto composto ou de partes de um objeto em um espaço tridimensional. Em particular, a invenção refere-se a um sistema destinado a rastrear os movimentos de um corpo humano. [001] Refers to the present invention for tracking the movement of a composite object or parts of an object in a three-dimensional space. In particular, the invention relates to a system designed to track the movements of a human body.
Antecedentes da Invenção Background of the Invention
[002] A medição do movimento físico com alta resolução é importante para muitas aplicações médicas, esportivas e ergonómicas. Além disso, no mercado de filmes e jogos de computador, há uma grande necessidade de dados de movimento com a finalidade de animação avançada e efeitos especiais. Finalmente, os dados de movimento são necessários em aplicações de Realidade Virtual (VR) e Realidade Aumentada (AR) para treinamento e simulação. [002] The measurement of physical movement with high resolution is important for many medical, sports and ergonomic applications. In addition, in the film and computer games market, there is a great need for motion data for the purpose of advanced animation and special effects. Finally, motion data is required in Virtual Reality (VR) and Augmented Reality (AR) applications for training and simulation.
[003] São várias as tecnologias atualmente disponíveis para rastrear e registrar dados relacionados a movimento. Dentro de uma visão geral do assunto, os sistemas de captura de movimento existentes podem ser classificados como sistemas externos-internos, internos-externos e internos-internos, nomes esses, indicativos do posicionamento das fontes de captura e dos sensores. [003] There are several technologies currently available to track and record data related to movement. Within an overview of the subject, the existing motion capture systems can be classified as external-internal, internal-external and internal-internal systems, names that are indicative of the positioning of the capture sources and sensors.
[004] Um sistema externo-interno usa sensores externos para coletar dados de fontes colocadas no corpo. Exemplos de tais sistemas são dispositivos de rastreamento baseados em câmeras, nos quais as câmeras são os sensores e os marcadores reflexivos são as fontes. [004] An external-internal system uses external sensors to collect data from sources placed in the body. Examples of such systems are camera-based tracking devices, in which cameras are the sensors and reflective markers are the sources.
[005] Os sistemas internos-externos têm sensores colocados no corpo que coletam dados de fontes externas. Os sistemas eletromagnéticos, cujos sensores se movem em um campo eletromagnético gerado externamente, são exemplos de sistemas internos. [005] The internal-external systems have sensors placed on the body that collect data from external sources. Electromagnetic systems, whose sensors move in an externally generated electromagnetic field, are examples of internal systems.
[006] Os sistemas internos-internos têm suas fontes e sensores colocados no corpo. Exemplos desses dispositivos são os trajes eletromecânicos, nos quais os sensores são potenciômetros e as fontes são as articulações reais dentro do corpo. [006] The internal-internal systems have their sources and sensors placed on the body. Examples of such devices are electromechanical suits, in which the sensors are potentiometers and the sources are the actual joints within the body.
[007] As principais tecnologias usadas hoje que correspondem a essas categorias são sistemas de rastreamento óptico, eletromagnético e eletromecânico. [007] The main technologies used today that correspond to these categories are optical, electromagnetic and electromechanical tracking systems.
[008] Sistemas de captura de movimento óptico são muito precisos para capturar determinados movimentos quando utilizados em conjunto com equipamentos e meios de última geração. Sua operação se processa em tempo real, e apresenta algumas limitações, relacionadas com a quantidade de marcadores e bem como o número de artistas e câmeras. [008] Optical motion capture systems are very accurate to capture certain movements when used in conjunction with state-of-the-art equipment and means. Its operation takes place in real time, and has some limitations, related to the number of markers and the number of artists and cameras.
[009] Um sistema típico de captura de movimento óptico é baseado em um único computador que controla a entrada de várias câmeras digitais CCD. Tais câmeras contém uma matriz de pixels que, normalmente, apresentam resoluções variando de 128 x 128 elementos de imagem até 4096 x 4096 ou mesmo maior. [009] A typical optical motion capture system is based on a single computer that controls the input of multiple CCD digital cameras. Such cameras contain an array of pixels that typically have resolutions ranging from 128 x 128 image elements to 4096 x 4096 or even higher.
[0010] As resoluções maiores resultam em imagens mais nítidas. Todavia, esse resultado é obtido à custa de um maior tempo de processamento: na técnica atual, uma câmera CCD com resolução de 4096 x 4096 produz cerca de um quadro por segundo. [0010] Higher resolutions result in sharper images. However, this result is obtained at the expense of a longer processing time: in the current technique, a CCD camera with a resolution of 4096 x 4096 produces about one frame per second.
[0011] Tais sistemas geralmente empregam entre 4 e 32 câmeras, a uma taxa de amostragem que varia de 30 a 1000 amostras por segundo. As câmeras são normalmente equipadas com suas próprias fontes de luz que criam uma reflexão dos marcadores, que são geralmente esferas cobertas com um material reflexivo como a fita Scotch-Brite. Fontes de luz infravermelha são preferidas porque criam menos distorções visuais para o usuário. [0011] Such systems generally employ between 4 and 32 cameras, at a sampling rate ranging from 30 to 1000 samples per second. At cameras are usually equipped with their own light sources that create a reflection of the markers, which are usually spheres covered with a reflective material such as Scotch-Brite tape. Infrared light sources are preferred because they create less visual distortions for the user.
[0012] Para calibrar o sistema óptico, todas as câmeras devem rastrear um objeto com dimensões conhecidas, facilmente identificado pelo software, tal como um cubo ou uma régua calibrada com marcadores reflexivos. Ao combinar as visualizações de todas as câmeras com as dimensões conhecidas do objeto, a posição exata de cada câmera no espaço pode ser calculada. Toda vez que mudar a posição de uma câmera, devido, por exemplo, a um impacto acidental, uma nova calibração deve ser realizada. [0012] To calibrate the optical system, all cameras must track an object with known dimensions, easily identified by the software, such as a cube or a ruler calibrated with reflective markers. By combining the views of all cameras with the known dimensions of the object, the exact position of each camera in space can be calculated. Every time you change the position of a camera, due, for example, to an accidental impact, a new calibration must be performed.
[0013] Uma vez que as visualizações das câmeras tenham sido calibradas, as mesmas são digitalizadas. Inicia-se o processamento dos dados captados por meio do computador. O primeiro passo do processo é obter uma reprodução limpa que mostre apenas os marcadores. Métodos diferentes de processamento de imagem são usados para minimizar o ruído e isolar os marcadores, separando-os do resto do ambiente, por exemplo, considerando apenas os grupos de pixels que excedem um limite predeterminado de luminosidade. [0013] Once the camera views have been calibrated, they are digitized. Processing of the data captured through the computer begins. The first step in the process is to obtain a clean reproduction that shows only the markers. Different image processing methods are used to minimize noise and isolate the markers, separating them from the rest of the environment, for example, considering only the groups of pixels that exceed a predetermined limit of luminosity.
[0014] O segundo passo consiste em determinar as coordenadas bidimensionais de cada marcador para cada imagem captada pela câmera. Estes dados serão posteriormente usados em combinação com as coordenadas da câmera e o resto das visualizações das demais câmeras para obter as coordenadas tridimensionais de cada marcador. [0014] The second step is to determine the two-dimensional coordinates of each marker for each image captured by the camera. These data will later be used in combination with the coordinates of the camera and the rest of the views of the other cameras to obtain the three-dimensional coordinates of each marker.
[0015] O terceiro passo consiste em acompanhar a variação da posição de cada marcador ao longo de uma sequência de imagens. Esta etapa requer a maior assistência do operador, uma vez que a atribuição inicial de cada marcador deve ser registrada manualmente. Após essa tarefa, o software tenta resolver o resto da sequência até perder o controle de um marcador devido ao bloqueio da imagem ou cruzamento com outro marcador. Isso exige nova intervenção do operador que deve reatribuir os marcadores em questão a fim de dar continuidade à computação. Este processo continua até que toda a sequência seja resolvida e um arquivo contendo dados de posicionamento para todos os marcadores tenha sido salvo. Tal arquivo contém uma sequência de posições globais de marcadores ao longo do tempo, o que significa que somente as coordenadas cartesianas (x, y e z) de cada marcador estão listadas por quadro e nenhuma rotação de hierarquia ou de membro está incluída. [0015] The third step is to monitor the variation of the position of each marker along a sequence of images. This step requires the greatest assistance from the operator, since the initial assignment of each bookmark must be registered manually. After this task, the software tries to resolve the rest of the sequence until it loses control of a marker due to blocking the image or crossing with another marker. This requires further intervention by the operator who must reassign the markers in question in order to continue computing. This process continues until the entire sequence is resolved and a file containing positioning data for all markers has been saved. Such a file contains a sequence of global marker positions over time, which means that only the Cartesian coordinates (x, y and z) of each marker are listed by frame and no hierarchy or member rotation is included.
[0016] Os sistemas de captura de movimento eletromagnético fazem parte da família dos sistemas de medição eletromagnética de seis graus de liberdade e consistem em uma série de receptores que medem sua relação espacial com um transmissor próximo. Estes receptores ou sensores são colocados no corpo e estão conectados a uma unidade de controle eletrónico, na maioria dos casos por cabos individuais. [0016] Electromagnetic motion capture systems are part of the family of six degrees of freedom electromagnetic measurement systems and consist of a series of receivers that measure their spatial relationship with a nearby transmitter. These receivers or sensors are placed on the body and are connected to an electronic control unit, in most cases by individual cables.
[0017] Também chamados de rastreadores magnéticos, esses sistemas emergiram da tecnologia usada em aeronaves militares para visores montados em capacete (HMD - Head Mounted Display). Com HMDs, um piloto pode adquirir um alvo localizando-o visualmente através de um retículo localizado na viseira. Um rastreador magnético típico consiste em um transmissor, 11 a 18 sensores, uma unidade de controle eletrónico e um software. Para aproveitar as capacidades em tempo real de um rastreador magnético, ele deve estar conectado a um sistema de computador poderoso que seja capaz de renderizar um grande número de polígonos em tempo real. Dependendo das necessidades do projeto, o custo deste computador sozinho pode exceder o custo do rastreador magnético. [0017] Also called magnetic trackers, these systems emerged from the technology used in military aircraft for helmet mounted displays (HMD - Head Mounted Display). With HMDs, a pilot can acquire a target by visually locating it through a reticle located on the visor. A typical magnetic tracker consists of a transmitter, 11 to 18 sensors, an electronic control unit and software. To take advantage of the real-time capabilities of a magnetic tracker, it must be connected to a powerful computer system that is capable of rendering a large number of polygons in real time. Depending on the needs of the project, the cost of this computer alone may exceed the cost of the magnetic tracker.
[0018] O transmissor gera um campo eletromagnético de baixa frequência que é detectado pelos receptores e entrada em uma unidade de controle eletrónico, onde é filtrada e amplificada. Em seguida, é enviado para um computador central, onde o software resolve a posição de cada sensor em coordenadas e orientação cartesianas x, y e z (guinada, inclinação e rolagem). Esses dados são manipulados mediante outro algoritmo que converte a orientação e a posição global de cada sensor em uma cadeia hierárquica com apenas uma posição e rotações múltiplas. Os rastreadores magnéticos possuem uma especificação chamada latência, que indica a quantidade de tempo decorrido entre a coleta de dados e a exibição da performance resultante. Esta especificação pode variar de alguns milissegundos a alguns segundos. [0018] The transmitter generates a low frequency electromagnetic field which is detected by the receivers and entered into an electronic control unit, where it is filtered and amplified. Then, it is sent to a central computer, where the software resolves the position of each sensor in Cartesian x, y and z coordinates and orientation (yaw, tilt and roll). This data is manipulated using another algorithm that converts the orientation and the global position of each sensor into a hierarchical chain with only one position and multiple rotations. Magnetic trackers have a specification called latency, which indicates the amount of time elapsed between data collection and the display of the resulting performance. This specification can vary from a few milliseconds to a few seconds.
[0019] Alguns transmissores geram campos eletromagnéticos de corrente contínua (DC), enquanto outros usam campos de corrente alternada (AC). Ambas as tecnologias têm diferentes problemas associados à presença de metais condutores na área de captura. Os rastreadores de CA são muito sensíveis ao alumínio, cobre e aço carbono, mas não tão sensíveis ao aço inoxidável ou ao ferro, enquanto os rastreadores DC têm problemas com metais ferrosos, como ferro e aço, mas não com alumínio e cobre. [0019] Some transmitters generate direct current (DC) electromagnetic fields, while others use alternating current (AC) fields. Both technologies have different problems associated with the presence of conductive metals in the capture area. AC trackers are very sensitive to aluminum, copper and carbon steel, but not as sensitive to stainless steel or iron, while DC trackers have problems with ferrous metals, such as iron and steel, but not with aluminum and copper.
[0020] As vestimentas eletromecânicas utilizam potenciômetros ou dispositivos de medição angular localizados nas principais articulações humanas. Trata-se de dispositivos que utilizam uma tecnologia de há muito usada por muitos anos na indústria eletrónica, em aplicações como controles de volume em rádios e amplificadores. Basicamente compreendem um cursor que se movimenta ao longo de um elemento de resistência, produzindo na saída uma tensão variável que depende da posição relativa do cursor. Os potenciômetros utilizados nas vestimentas e armaduras de captura de movimento são versões muito mais complexas dos antigos controles de volume. Geralmente são chamados de sensores angulares, analógicos ou digitais. [0020] Electromechanical garments use potentiometers or angular measurement devices located in the main human joints. These are devices that use technology that has been used for many years in the electronics industry, in applications such as volume controls on radios and amplifiers. Basically they comprise a cursor that moves along a resistance element, producing at the output a variable voltage that depends on the relative position of the cursor. The potentiometers used in motion capture suits and armor are much more complex versions of the old volume controls. They are usually called angular, analog or digital sensors.
[0021] Uma grande desvantagem dos sistemas eletromecânicos baseados em potenciômetros é a incapacidade de medir translações globais. Na maioria dos casos, um sensor eletromagnético é adicionado ao conjunto de sensores para resolver esse problema, o que introduz a desvantagem já citada de interferências produzidas por metais condutores na área de captura mas que sujeita a instalação às mesmas desvantagens que os sistemas eletromagnéticos, como a sensibilidade aos metais próximos. Além disso, a maioria desses dispositivos apenas funciona nas articulações simples, e não é adequada para o sensoriamento de articulações complexas, tais como o ombro. [0021] A major disadvantage of electromechanical systems based on in pots is the inability to measure global translations. In most cases, an electromagnetic sensor is added to the set of sensors to solve this problem, which introduces the aforementioned disadvantage of interferences produced by conducting metals in the capture area but which subjects the installation to the same disadvantages as electromagnetic systems, such as sensitivity to nearby metals. In addition, most of these devices only work on simple joints, and are not suitable for sensing complex joints, such as the shoulder.
[0022] Existem ainda sistemas de rastreamento de movimento baseados, pelo menos em parte, em radiofrequência (RF). Esses sistemas tipicamente empregam o uso de tags que servem de receptores e transmissores. Os sensores são colocados em torno de uma área de captura e esse sensor também transmite e recebe sinais. Os sensores transmitem sinais que são captados pelas etiquetas nos objetos, produzindo sinais de resposta que permitem seu rastreamento individual. [0022] There are still motion tracking systems based, at least in part, on radio frequency (RF). These systems typically employ the use of tags that serve as receivers and transmitters. The sensors are placed around a capture area and that sensor also transmits and receives signals. The sensors transmit signals that are picked up by the tags on the objects, producing response signals that allow for individual tracking.
[0023] É evidente, para os técnicos no assunto, que a complexidade e o custo de tais sistemas aumentam quando as etiquetas e os sensores são transceptores. Além disso, os sistemas conhecidos exigem sincronização de tempo entre as tags e os sensores, ou, pelo menos, entre os múltiplos sensores, o que aumenta a complexidade do sistema. Além disso, os sistemas que empregam radiofrequência têm precisão limitada a alguns centímetros. [0023] It is evident, for the technicians in the subject, that the complexity and the cost of such systems increase when the tags and the sensors are transceivers. In addition, known systems require time synchronization between tags and sensors, or at least between multiple sensors, which increases the complexity of the system. In addition, systems that employ radio frequency have an accuracy limited to a few centimeters.
[0024] O documento de patente US2004017313, intitulado Motion Tracking System and Method descreve um sistema e método baseados em radiofrequência no qual se procura corrigir os inconvenientes dos sistemas conhecidos. De acordo com esse documento e segundo ilustrado na Fig. 1 e nas figuras 2-a e 2-b, são utilizados pelo menos 4 sensores 14 delimitando a zona de captura 20. Preferencialmente ditos sensores estão posicionados nos vértices de um cubo, como ilustrado nas figuras 2-a e 2-b, esta última ilustrando uma configuração preferencial com 8 sensores. Além das etiquetas (tags) 12 que são colocadas em diversos ponto do objeto 18 a ser rastreado, é colocada na dita zona de captura uma etiqueta de referência (não ilustrada). [0024] The patent document US2004017313, entitled Motion Tracking System and Method describes a system and method based on radio frequency in which it seeks to correct the drawbacks of known systems. According to that document and as illustrated in Fig. 1 and in Figures 2-a and 2-b, at least 4 sensors 14 are used delimiting the capture zone 20. Preferably said sensors are positioned at the vertices of a cube, as illustrated in figures 2-a and 2-b, the latter illustrating a preferred configuration with 8 sensors. In addition to the tags 12 that are placed at various points on the object 18 to be tracked, a reference tag (not shown) is placed in said capture zone.
[0025] De acordo com esse documento, sinais são periodicamente transmitidos sob forma de rajadas, a partir da etiqueta de referência e das tags 12 de objeto. Estes sinais são recebidos nos sensores, o código de identificação e as fases da portadora e do código, correspondentes a cada sinal, são extraídas. A fase do código e da portadora são processadas para determinar a posição das tags em relação à etiqueta de referência. [0025] According to this document, signals are periodically transmitted in the form of bursts, from the reference tag and the object tags 12. These signals are received at the sensors, the identification code and the carrier and code phases, corresponding to each signal, are extracted. The code and carrier phase are processed to determine the position of the tags in relation to the reference tag.
[0026] O sistema descrito nesse documento opera na faixa de 5,725-5,850 GHz, com uma largura de banda de 125 MHz, sendo a potência transmitida pelas etiquetas (ERP) limitada a 0,25mW. [0026] The system described in this document operates in the range of 5.725-5.850 GHz, with a bandwidth of 125 MHz, with the power transmitted by the tags (ERP) limited to 0.25mW.
[0027] Dentre os inconvenientes desse sistema está o fato de requerer uma quantidade relativamente elevada de sensores: no mínimo 4 e, preferencialmente, 8. Outra desvantagem está relacionada à necessidade de uma etiqueta de referência dentro da zona de captura. [0027] Among the drawbacks of this system is the fact that it requires a relatively high number of sensors: at least 4 and, preferably, 8. Another disadvantage is related to the need for a reference tag within the capture zone.
Objetivos da Invenção Objectives of the Invention
[0028] Em vista do exposto, tem a invenção ora proposta o objetivo de prover um sistema de rastreamento de movimento que seja mais simples do que os sistemas conhecidos na técnica atual. [0028] In view of the above, the invention has now been proposed with the objective of providing a movement tracking system that is simpler than the systems known in the current technique.
[0029] Outro objetivo é o de dispensar a necessidade de uma etiqueta de referência. [0029] Another objective is to dispense with the need for a reference label.
Descrição Sumária da Invenção Summary Description of the Invention
[0030] Os objetivos mencionados, bem como outros, são atingidos pela invenção mediante o provimento de um sistema que compreende dois conjuntos de elementos essenciais, o primeiro compreendendo um grupo de receptores formando uma base fixa, e o segundo compreendendo um ou mais transmissores “beacons” ou “tags” associado ao objeto que se deseja rastrear. [0030] The objectives mentioned, as well as others, are achieved by invention by providing a system comprising two sets of essential elements, the first comprising a group of receivers forming a fixed base, and the second comprising one or more transmitters "beacons" or "tags" associated with the object to be tracked.
[0031] De acordo com outra característica da invenção, ditos tags transmitem sinais em radiofrequência. [0031] According to another characteristic of the invention, said tags transmit radio frequency signals.
[0032] De acordo com outra característica da invenção, ditos tags transmitem sinais em ultrassom. [0032] According to another feature of the invention, said tags transmit ultrasound signals.
[0033] De acordo com outra característica da invenção, os receptores que formam a dita base fixa estão dispostos nos vértices de um triângulo com dimensões conhecidas. [0033] According to another characteristic of the invention, the receivers that form said fixed base are arranged at the vertices of a triangle with known dimensions.
[0034] De acordo com outra característica da invenção, o sistema compreende bases adicionais triangulares, não coplanares com a primeira base fixa. [0034] According to another feature of the invention, the system comprises additional triangular bases, not coplanar with the first fixed base.
[0035] De acordo com outra característica da invenção, o sistema compreende meios de processamento de dados providos de um algoritmo de position tracking. [0035] According to another feature of the invention, the system comprises means of data processing provided with a position tracking algorithm.
[0036] De acordo com outra característica da invenção, o método da invenção compreende a recepção, por cada receptor da base, dos sinais transmitidos continuamente por cada pelo menos um beacon, onde a posição de dito pelo menos um beacon ou tag é determinada mediante trilateração tomando por base a distância entre cada dito receptor e cada dito pelo menos um beacon ou tag. [0037] De acordo com outra característica da invenção, a determinação de dita cada distância está baseada na intensidade do sinal recebido por cada receptor. [0038] De acordo com outra característica da invenção, a determinação de dita cada distância está baseada no tempo de percurso do sinal transmitido pelo beacon e sua recepção por cada um dos ditos receptores. [0036] According to another characteristic of the invention, the method of the invention comprises the reception, by each receiver of the base, of the signals transmitted continuously by each at least one beacon, where the position of said at least one beacon or tag is determined by means of trilateration based on the distance between each said receiver and each said at least one beacon or tag. [0037] According to another characteristic of the invention, the determination of said each distance is based on the intensity of the signal received by each receiver. [0038] According to another characteristic of the invention, the determination of said each distance is based on the travel time of the signal transmitted by the beacon and its reception by each one of said receivers.
Descrição das Figuras Description of the Figures
[0039] As demais características da invenção serão melhor entendidas mediante a descrição de uma concretização exemplifícativa não limitativa da mesma, e das figuras que a ela se referem, nas quais: [0039] The other characteristics of the invention will be better understood by describing an exemplary non-limiting embodiment of the same, and the figures that refer to it, in which:
[0040] A figura 1 ilustra um sistema conhecido do estado da técnica. [0040] Figure 1 illustrates a system known from the state of the art.
[0041] As figuras 2-a e 2-b mostram o posicionamento dos sensores delimitando a zona de captura no sistema conhecido ilustrado na figura anterior. [0041] Figures 2-a and 2-b show the positioning of the sensors delimiting the capture zone in the known system illustrated in the previous figure.
[0042] A figura 3 exemplifica um traje utilizado pelo usuário, provido de uma pluralidade de beacons posicionados em pontos chave. [0042] Figure 3 exemplifies a suit worn by the user, provided with a plurality of beacons positioned at key points.
[0043] A figura 4 ilustra a configuração básica do sistema proposto da invenção. [0043] Figure 4 illustrates the basic configuration of the proposed system of the invention.
[0044] A figura 5 mostra o funcionamento do algoritmo position tracking no qual se baseia a invenção. [0044] Figure 5 shows the operation of the position tracking algorithm on which the invention is based.
[0045] A figura 6 é um fíuxograma geral do sistema. [0045] Figure 6 is a general flow chart of the system.
[0046] A figura 7 exemplifica a planilha com ID x coordenadas. [0046] Figure 7 exemplifies the spreadsheet with ID x coordinates.
Descrição Detalhada Detailed Description
[0047] O sistema é composto de duas partes físicas essenciais, sendo um grupo de transmissores ( beacons ou tags), e um grupo de receptores. Segundo mostra a Fig. 3, os transmissores 22 são distribuídos em pontos chave no usuário, geralmente fixados a uma roupa 21, o que constitui um meio de se distribuir os transmissores de forma padronizada e eficiente, podendo, todavia, serem empregados outros métodos para dita fixação. [0047] The system is composed of two essential physical parts, one being group of transmitters (beacons or tags), and a group of receivers. As shown in Fig. 3, transmitters 22 are distributed at key points in the user, usually attached to clothing 21, which constitutes a means of distributing transmitters in a standardized and efficient way, however, other methods can be used to said fixation.
[0048] Segundo mostra a Fig.4, os receptores A-B-C estão dispostos em uma base triangular, com os catetos tendo lm. Esta base deve ser instalada em uma posição fixa no espaço a ser utilizado. [0048] As shown in Fig.4, the A-B-C receptors are arranged on a triangular base, with the sides having 1m. This base must be installed in a fixed position in the space to be used.
[0049] Os transmissores 22 ou beacons ou tags, são transmissores de radiofrequência, utilizando qualquer tipo de tecnologia, tal como, por exemplo, bluetooth, Wi-Fi, Zig-Bee ou qualquer outra tecnologia conhecida e comercialmente disponível. [0049] The transmitters 22 or beacons or tags, are radio frequency transmitters, using any type of technology, such as, for example, bluetooth, Wi-Fi, Zig-Bee or any other known and commercially available technology.
[0050] De acordo com o método da invenção, existem duas formas para determinar as distâncias entre o pelo menos um beacon ou tag 22 e cada um dos receptores A-B-C. A primeira baseia-se na intensidade do sinal captado por cada receptor A-B-C, sendo capaz de fornecer resultados com precisão de milímetros. Todavia, a interposição de obstáculos entre a fonte do sinal e o receptor poderá prejudicar a exatidão do resultado, dependendo da faixa de frequência do sinal de RF utilizado. [0050] According to the method of the invention, there are two ways to determine the distances between at least one beacon or tag 22 and each of the A-B-C receptors. The first is based on the signal strength captured by each A-B-C receiver, being able to provide results with millimeter accuracy. However, the interposition of obstacles between the signal source and the receiver may impair the accuracy of the result, depending on the frequency range of the RF signal used.
[0051] A segunda forma baseia-se no tempo de percurso do sinal, e sua precisão depende da resolução na medida da velocidade de propagação da onda eletromagnética. Tal velocidade depende da pressão atmosférica local, da temperatura e da umidade. A sua calibração pode ser feita mediante a medição do tempo de percurso entre os transmissores A-B, A-C ou B-C, uma vez que a distância entre os mesmos é conhecida. Portanto a precisão da medida das distâncias 22-A, 22-B e 22-C dependerá apenas da resolução da medida do tempo de propagação. Assim, por exemplo, uma resolução de 0,1 nano segundo resultará numa resolução espacial de 3cm, e de 0,01 nano segundo uma resolução de 3mm. [0051] The second form is based on the signal travel time, and its precision depends on the resolution as the speed of propagation of the electromagnetic wave. Such speed depends on the local atmospheric pressure, temperature and humidity. Its calibration can be done by measuring the travel time between the AB, AC or BC transmitters, since the distance between them is known. Therefore, the accuracy of the measurement of distances 22-A, 22-B and 22-C will depend only on the resolution of the measurement of the propagation time. So, for example, a resolution of 0.1 nanosecond will result in a spatial resolution of 3cm, and 0.01 nano according to a resolution of 3mm.
[0052] No caso de serem empregados sinais de ultrassom em vez de sinais de RF, será possível determinar as distancias com precisão muito maior. Assim, por exemplo, uma resolução de 1 milissegundo no tempo de recepção proporcionará uma resolução espacial, a medição da distância, de uma fração de milímetro. Evidentemente, a presença de obstruções entre a fonte emissora e o receptor poderá introduzir erro na citada determinação. Isso pode ser evitado mediante a utilização de bases adicionais situadas em posições diferentes. [0052] If ultrasound signals are used instead of RF signals, it will be possible to determine distances with much greater precision. Thus, for example, a resolution of 1 millisecond in the reception time will provide a spatial resolution, the measurement of the distance, of a fraction of a millimeter. Obviously, the presence of obstructions between the source and the receiver may introduce an error in the aforementioned determination. This can be avoided by using additional bases located in different positions.
[0053] Uma variante da segunda forma está baseada na determinação da fase do sinal recebido, onde a rajada transmitida pelo beacon ou tag compreende um preâmbulo padronizado, que pode ser, por exemplo, o já conhecido código de sincronização Neuman-Hofman, de 16 bits, a saber (0000111011101101), de uso generalizado devido às suas excelentes propriedades de auto correlação. [0053] A variant of the second form is based on the determination of the phase of the received signal, where the burst transmitted by the beacon or tag comprises a standardized preamble, which can be, for example, the already known Neuman-Hofman synchronization code, of 16 bits, namely (0000111011101101), in widespread use due to their excellent self-correlation properties.
[0054] Uma vez determinadas as distâncias entre o pelo menos um beacon ou tag e os receptores A-B-C, utiliza-se o método de trilateração para identificar a posição da transmissão nas coordenadas x, y, z. [0054] Once the distances between the at least one beacon or tag and the A-B-C receivers have been determined, the trilateration method is used to identify the position of the transmission in the x, y, z coordinates.
[0055] Uma vez determinadas as coordenadas reais Rx,y,z as mesmas são comunicadas ao computador que irá calcular as coordenadas virtuais Vx,y,z que são armazenadas numa base de dados. Tal armazenagem utiliza uma planilha com ID x coordenadas, que é constantemente atualizada (updated). Essa planilha é acessada pelo programa que está a utilizar o sistema, a fim de posicionar os marcadores virtuais em suas respectivas posições em Vxz, as quais são utilizadas para construir a imagem avatar. [0056] O funcionamento detalhado do sistema será descrito a seguir, com base no íluxograma da Fig. 6. [0055] Once the real coordinates Rx, y, z are determined, they are communicated to the computer that will calculate the virtual coordinates Vx, y, z that are stored in a database. Such storage uses a spreadsheet with ID x coordinates, which is constantly updated. This spreadsheet is accessed by the program that is using the system, in order to position the virtual markers in their respective positions in Vxz, which are used to build the avatar image. [0056] The detailed operation of the system will be described below, based on the flowchart of Fig. 6.
[0057] Ao se iniciar, os transceptores B e C enviam sinais para a base, que recebidos, tendo a distância entre seus pontos conhecida, torna possível a calibragem da base em relação à velocidade da onda. Com a velocidade da onda calculada para o momento, é iniciado o processo de position tracking, onde o pelo menos um beacon ou tag envia um sinal para a base contendo duas informações, a saber, seu identificador (ID) e hora em que foi enviado. Considerando a velocidade da onda (previa e constantemente calculada a partir da distância entre os pontos da base) e o tempo em que o sinal saiu do tag e foi recebido pelos pontos, são então encontradas as distancias TA, TB e TC (sendo estas as distancias entre o tag e os pontos fixos da base A, B e C). Tais distâncias são então utilizadas no seguinte sistema de equações: [0057] When starting, transceivers B and C send signals to the base, which received, having the distance between their points known, makes it possible to calibrate the base in relation to the speed of the wave. With the wave speed calculated for the moment, the position tracking process starts, where at least one beacon or tag sends a signal to the base containing two pieces of information, namely, its identifier (ID) and the time it was sent . Considering the speed of the wave (previously and constantly calculated from the distance between the points of the base) and the time when the signal left the tag and was received by the points, the distances TA, TB and TC are found (these being the distances between the tag and the fixed points of base A, B and C). Such distances are then used in the following system of equations:
R.x = ((Tda * Tda) - (Tdb * Tdb) + (1 * 1)) / 2; R.x = ((Tda * Tda) - (Tdb * Tdb) + (1 * 1)) / 2;
R.z = ((Tda * Tda) - (Tdc * Tdc) + (1 * 1)) / 2; R.z = ((Tda * Tda) - (Tdc * Tdc) + (1 * 1)) / 2;
De onde vem: Where it comes from:
R.y = Mathf.Sqrt ((Tda * Tda) - (T.x * T.x) - (T.z * T.z)); R.y = Mathf.Sqrt ((Tda * Tda) - (T.x * T.x) - (T.z * T.z));
Sendo que os valores de T.x e T.z são numericamente iguais a R.x e R.z, respectivamente, acima determinados. Since the values of T.x and T.z are numerically equal to R.x and R.z, respectively, determined above.
[0058] Sendo que Tda é a distância relativa entre o tag e o ponto A da base; Tdb, a distância relativa entre o tag e o ponto B da base e Tdc, a distância relativa entre o tag e o ponto C da base. [0058] Since Tda is the relative distance between the tag and point A of the base; Tdb, the relative distance between the tag and point B of the base and Tdc, the relative distance between the tag and point C of the base.
[0059] As equações definem os pontos Rxyz e os posiciona em um vetor (array) que contem quatro colunas, e linhas relativas a quantidade de tags sendo rastreadas, ficando estes dados dispostos da seguinte maneira, para cada identificador: [0059] The equations define the Rxyz points and place them in a vector (array) containing four columns, and lines related to the number of tags being tracked, with these data arranged as follows, for each identifier:
I x I Y I z I x I Y I z
T | Tx | Ty | Tz T | Tx | Ty | Tz
[0060] O programa que utiliza o sistema deve então se atualizar em relação ao vetor e adicionar Txyz em seu respectivo Vxyz. [0061] Todos os passos executados pelo sistema se descrevem através da seguinte sequência: [0060] The program that uses the system must then update itself in relation to the vector and add Txyz to its respective Vxyz. [0061] All steps performed by the system are described using the following sequence:
1 - a base se inicia. 1 - the base starts.
2 - os pontos B e C enviam sinal para ponto A. 2 - points B and C send signal to point A.
3 - a base calcula tempo relativo de trânsito de onda entre AB e AC definindo velocidade da onda. 3 - the base calculates the relative wave transit time between AB and AC by defining the wave speed.
4 - a base aguarda sinal de pelo menos um tag. 4 - the base waits for a signal from at least one tag.
5 - se Tda! = NaN, Tdb! = NaN e Tdc! = NaN (ou seja, se o sinal de identificação de um tag foi recebido por todos os pontos da base, de modo que o valor das três distancias possam ser escritos em forma numérica), a base calcula TRxyz; se não, a base espera por um sinal. 5 - if Tda! = NaN, Tdb! = NaN and Tdc! = NaN (that is, if the tag identification signal was received by all points of the base, so that the value of the three distances can be written in numerical form), the base calculates TRxyz; if not, the base waits for a signal.
6 - tendo TRxyz calculados, a base armazena vetor com dados da tag calculada conforme planilha da Fig. 7. 6 - having TRxyz calculated, the base stores a vector with tag data calculated according to the spreadsheet in Fig. 7.
7 - o programa receptor captura dados de vetor e o posicionam em seu respectivo Vxyz. 7 - the receiving program captures vector data and places it in its respective Vxyz.
[0062] Para o funcionamento do sistema são necessários, no mínimo, 3 pontos de base dispostos de maneira fixa com distancias predefinidas. A base precisa ter capacidade de processamento suficiente para determinar a hora de recepção com resolução suficiente (mínimo de duas casas decimais de nano segundo para radiofrequência, definindo uma precisão de até 3 milímetros) e para executar os cálculos relativos aos tags em, no mínimo, 90 vezes por segundo. A base precisa ter capacidade de armazenamento suficiente para estocar todos os arrays de informação referente aos tags rastreados. [0062] For the system to work, a minimum of 3 base points are required, fixed in a fixed way with predefined distances. The base must have sufficient processing capacity to determine the reception time with sufficient resolution (minimum of two nanosecond decimal places for radio frequency, defining an accuracy of up to 3 millimeters) and to perform the calculations related to the tags in at least 90 times a second. The base must have sufficient storage capacity to store all arrays of information regarding the tracked tags.
[0063] Um agrupamento de tags necessita de suficiente capacidade de processamento para identificar o tag em questão e sua hora de transmissão, com resolução compatível com as necessidades do sistema (também adicionando o tempo de trânsito do pulso através do meio condutor entre processador e tag, sendo essa distância conhecida) levando em conta que o processo é repetido, no mínimo, 90 vezes por segundo. Tal taxa de repetição corresponde à contagem mínima de quadros por segundo necessária para que o usuário de realidade virtual não se sinta nauseado ao utilizar tais sistemas. [0063] A grouping of tags needs sufficient processing capacity to identify the tag in question and its transmission time, with a resolution compatible with the needs of the system (also adding the transit time of the pulse through the conducting medium between processor and tag , this distance being known) taking taking into account that the process is repeated at least 90 times per second. Such repetition rate corresponds to the minimum count of frames per second required so that the virtual reality user does not feel nauseous when using such systems.

Claims

REIVINDICAÇÕES
1. SISTEMA PARA CAPTURA DE MOVIMENTOS destinado ao rastreamento de movimentos de um objeto composto ou de partes de um objeto em um espaço tridimensional caracterizado pelo fato de compreender dois conjuntos de elementos essenciais, o primeiro compreendendo um grupo de receptores formando uma base fixa, e o segundo compreendendo um ou mais transmissores “beacons” ou “tags” associados ao objeto que se deseja rastrear. 1. MOTION CAPTURE SYSTEM designed to track the movement of a composite object or parts of an object in a three-dimensional space characterized by the fact that it comprises two sets of essential elements, the first comprising a group of receivers forming a fixed base, and the second, comprising one or more transmitters "beacons" or "tags" associated with the object to be tracked.
2. SISTEMA PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 1, caracterizado pelo fato de ditos tags transmitirem sinais em radiofrequência. 2. SYSTEM FOR CAPTURE OF MOVEMENTS according to claim 1, characterized by the fact that said tags transmit radio frequency signals.
3. SISTEMA PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 1, caracterizado pelo fato de ditos tags transmitirem sinais em ultrassom. 3. SYSTEM FOR CAPTURE OF MOVEMENTS according to claim 1, characterized by the fact that said tags transmit signals in ultrasound.
4. SISTEMA PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 1, caracterizado pelo fato de os receptores que formam a dita base fixa estarem dispostos nos vértices de um triângulo com dimensões conhecidas. 4. SYSTEM FOR CAPTURE OF MOVEMENTS according to claim 1, characterized by the fact that the receivers that form the said fixed base are arranged at the vertices of a triangle with known dimensions.
5. SISTEMA PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 4, caracterizado pelo fato de compreender bases adicionais triangulares, não coplanares com a primeira base fixa. 5. MOVEMENT CAPTURE SYSTEM according to claim 4, characterized by the fact that it comprises additional triangular bases, not coplanar with the first fixed base.
6. SISTEMA PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 1, caracterizado pelo fato de compreender meios de processamento de dados providos de um algoritmo de position tracking. 6. SYSTEM FOR CAPTURE OF MOVEMENTS according to claim 1, characterized by the fact that it comprises means of data processing provided with a position tracking algorithm.
7. MÉTODO PARA CAPTURA DE MOVIMENTOS utilizando o sistema definido nas reivindicações de 1 a 6, caracterizado pelo fato de compreender a recepção, por cada receptor da base, dos sinais transmitidos continuamente por cada pelo menos um beacon ou tag, onde a posição de dito pelo menos um beacon ou tag é determinada mediante trilateração tomando por base a distância entre cada dito receptor e cada dito pelo menos um beacon ou tag. 7. METHOD FOR CAPTURING MOVEMENTS using the system defined in claims 1 to 6, characterized by the fact that it comprises the reception, by each base receiver, of the signals transmitted continuously by each at least one beacon or tag, where the position of said at least one beacon or tag is determined by means of trilateration based on the distance between each said receiver and each said at least one beacon or tag.
8. MÉTODO PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 7, caracterizado pelo fato de a determinação de dita cada distância estar baseada na intensidade do sinal recebido por cada receptor. 8. METHOD FOR CAPTURING MOVEMENTS according to claim 7, characterized by the fact that the determination of each distance is based on the intensity of the signal received by each receiver.
9. MÉTODO PARA CAPTURA DE MOVIMENTOS de acordo com a reivindicação 7, caracterizado pelo fato de a determinação de dita cada distância estar baseada no tempo de percurso do sinal transmitido pelo tag e sua recepção por cada um dos ditos receptores. 9. METHOD FOR CAPTURE OF MOVEMENTS according to claim 7, characterized by the fact that the determination of each distance is based on the travel time of the signal transmitted by the tag and its reception by each of said receivers.
PCT/BR2019/050431 2019-10-03 2019-10-03 System and method for capturing movement WO2021062500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2019/050431 WO2021062500A1 (en) 2019-10-03 2019-10-03 System and method for capturing movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2019/050431 WO2021062500A1 (en) 2019-10-03 2019-10-03 System and method for capturing movement

Publications (1)

Publication Number Publication Date
WO2021062500A1 true WO2021062500A1 (en) 2021-04-08

Family

ID=75336683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050431 WO2021062500A1 (en) 2019-10-03 2019-10-03 System and method for capturing movement

Country Status (1)

Country Link
WO (1) WO2021062500A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502670B2 (en) * 2006-10-20 2013-08-06 Kt Corporation Real-time RFID positioning system and method, repeater installation method therefor, position confirmation service system using the same
US8905855B2 (en) * 2010-08-26 2014-12-09 Blast Motion Inc. System and method for utilizing motion capture data
US20140378281A1 (en) * 2013-06-21 2014-12-25 Joseph Mazi Robotic Sparring Partner
US9243918B2 (en) * 2011-12-22 2016-01-26 AppLabz, LLC Systems, methods, and apparatus for providing indoor navigation using magnetic sensors
US20180027349A1 (en) * 2011-08-12 2018-01-25 Sony Interactive Entertainment Inc. Sound localization for user in motion
USRE47013E1 (en) * 2007-05-23 2018-08-28 Sk Telecom Co., Ltd. Method for measuring location of radio frequency identification reader by using beacon
BR102018007082A2 (en) * 2018-04-07 2019-10-22 Dini Alves Coutinho Flavio motion capture system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502670B2 (en) * 2006-10-20 2013-08-06 Kt Corporation Real-time RFID positioning system and method, repeater installation method therefor, position confirmation service system using the same
USRE47013E1 (en) * 2007-05-23 2018-08-28 Sk Telecom Co., Ltd. Method for measuring location of radio frequency identification reader by using beacon
US8905855B2 (en) * 2010-08-26 2014-12-09 Blast Motion Inc. System and method for utilizing motion capture data
US20180027349A1 (en) * 2011-08-12 2018-01-25 Sony Interactive Entertainment Inc. Sound localization for user in motion
US9243918B2 (en) * 2011-12-22 2016-01-26 AppLabz, LLC Systems, methods, and apparatus for providing indoor navigation using magnetic sensors
US20140378281A1 (en) * 2013-06-21 2014-12-25 Joseph Mazi Robotic Sparring Partner
BR102018007082A2 (en) * 2018-04-07 2019-10-22 Dini Alves Coutinho Flavio motion capture system and method

Similar Documents

Publication Publication Date Title
Borges et al. HTC vive: Analysis and accuracy improvement
Almalioglu et al. Milli-RIO: Ego-motion estimation with low-cost millimetre-wave radar
Foxlin et al. Flighttracker: A novel optical/inertial tracker for cockpit enhanced vision
EP2350562B1 (en) Positioning interface for spatial query
US8224024B2 (en) Tracking objects with markers
US8320616B2 (en) Image-based system and methods for vehicle guidance and navigation
EP1071369B1 (en) Motion tracking system
US5059789A (en) Optical position and orientation sensor
KR101347838B1 (en) Motion capture device and associated method
US20080084351A1 (en) Device and method for position measurement by means of linear doppler shifts generated
EP3706076B1 (en) Method and device to determine the dimensions and distance of a number of objects in an environment
WO2005119288A9 (en) Method and system for determining the position of an object
CA2694123A1 (en) Instant calibration of multi-sensor 3d motion capture system
JP2017096813A (en) Calibration device, calibration method, and calibration program
US20130188017A1 (en) Instant Calibration of Multi-Sensor 3D Motion Capture System
CN110244263B (en) Robot passive positioning method, system and equipment
BR102018007082A2 (en) motion capture system and method
Knyaz et al. Robust object tracking techniques for vision-based 3D motion analysis applications
WO2021062500A1 (en) System and method for capturing movement
Ribo State of the art report on optical tracking
EP3392748B1 (en) System and method for position tracking in a virtual reality system
CN111522441B (en) Space positioning method, device, electronic equipment and storage medium
Mihaldinec et al. Method for joint flexion angle estimation using UWB ranging with clock model compensation
Singh et al. Performance comparison: optical and magnetic head tracking
Klochko et al. Multiple objects detection and tracking in passive scanning millimeter-wave imaging systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19947658

Country of ref document: EP

Kind code of ref document: A1