WO2021061817A1 - Frittage de céramique - Google Patents

Frittage de céramique Download PDF

Info

Publication number
WO2021061817A1
WO2021061817A1 PCT/US2020/052277 US2020052277W WO2021061817A1 WO 2021061817 A1 WO2021061817 A1 WO 2021061817A1 US 2020052277 W US2020052277 W US 2020052277W WO 2021061817 A1 WO2021061817 A1 WO 2021061817A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
layer
emr
ceramic
intermixed
Prior art date
Application number
PCT/US2020/052277
Other languages
English (en)
Inventor
Matthew Dawson
Nicholas FARANDOS
Jin Dawson
Original Assignee
Utility Global, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/674,580 external-priority patent/US20200176803A1/en
Priority claimed from US16/680,770 external-priority patent/US20200156104A1/en
Priority claimed from US16/684,838 external-priority patent/US20200144654A1/en
Priority claimed from US16/684,864 external-priority patent/US11611097B2/en
Priority claimed from US16/693,270 external-priority patent/US11603324B2/en
Priority claimed from US16/693,271 external-priority patent/US20200144627A1/en
Priority claimed from US16/693,269 external-priority patent/US20200144628A1/en
Priority claimed from US16/693,268 external-priority patent/US20200144653A1/en
Priority claimed from US16/699,453 external-priority patent/US20200144633A1/en
Priority claimed from US16/699,461 external-priority patent/US20200144635A1/en
Priority claimed from US16/707,066 external-priority patent/US20200182549A1/en
Priority claimed from US16/707,084 external-priority patent/US20200235410A1/en
Priority claimed from US16/707,046 external-priority patent/US20200235409A1/en
Priority claimed from US16/739,748 external-priority patent/US11767600B2/en
Priority claimed from US16/739,727 external-priority patent/US11761096B2/en
Priority claimed from US16/739,612 external-priority patent/US11761100B2/en
Priority claimed from US16/739,671 external-priority patent/US20200259186A1/en
Priority claimed from US16/775,176 external-priority patent/US20200227763A1/en
Priority claimed from US15/931,585 external-priority patent/US11539053B2/en
Application filed by Utility Global, Inc. filed Critical Utility Global, Inc.
Priority to EP20867019.0A priority Critical patent/EP4034512A1/fr
Publication of WO2021061817A1 publication Critical patent/WO2021061817A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/12Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/048Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8832Ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention generally relates to sintering of materials. More specifically, this invention relates to ceramic sintering.
  • Ceramics are a category of materials that have found many applications due to their hard, heat-resistant, and corrosion-resistant properties. Before a ceramic is utilized, a sintering process is needed. Sintering is the process of compacting and forming a solid mass of material by heat or pressure without melting it to the point of liquefaction. Ceramic sintering is typically performed by firing the ceramic in a furnace. Some advanced applications of ceramics include bioceramics, gas turbine engines, watch making, and electrochemical devices. For example, solid oxide fuel cell (SOFC) is a type of electrochemical devices that ceramics are useful in. The electrolyte in a SOFC is a necessary and important part of the device, which is often a ceramic material.
  • SOFC solid oxide fuel cell
  • the manufacturing of electrolytes is a complex and expensive process, which includes a sintering step.
  • Sintering of the electrolyte as a ceramic is conventionally performed in a furnace.
  • the method comprises (a) providing an electromagnetic radiation (EMR) source; (b) (i) providing a layer of intermixed ceramic particles and absorber particles, wherein the absorber particles have a volume fraction in the intermixed particles in the range of no less than 3%; or (ii) providing a first layer comprising ceramic particles and a second layer comprising absorber particles in contact with at least a portion of the first layer, wherein the second layer is farther from the EMR source than the first layer; (c) heating (i) the layer of intermixed particles or (ii) the first layer using EMR; and (d) controlling the EMR such that at least a portion of the ceramic particles are sintered wherein (i) the layer of intermixed particles becomes impermeable or (ii) the first layer becomes impermeable, wherein the absorber particles have greater EMR absorption than the ceramic particles.
  • EMR electromagnetic radiation
  • the ceramic particles comprise lanthanum strontium cobalt ferrite (LSCF), lanthanum strontium manganite (LSM), yttria-stabilized zirconia (YSZ), gadolinia- doped ceria (CGO), samaria-doped ceria (SDC), scandia-stabilized zirconia (SSZ), lanthanum strontium gallium magnesium oxide (LSGM), ceria-yttria stabilized zirconia (CYZ), ceria- scandia stabilized zirconia (CSZ), zirconia, lanthanum chromite, doped lanthanum chromite, or combinations thereof.
  • the absorber particles comprise NiO, CuO,
  • colored zirconia includes zirconia that is treated via high temperature, oxidation, or reduction.
  • Such zirconia may be doped with various oxides, such as magnesia (MgO), calcia (CaO), ceria (Ce02), yttria (Y203), or iron oxide (Fe203).
  • doped YSZ includes YSZ that is doped with Ce02 or Fe203. Doped YSZ also includes pigment doped YSZ.
  • doped lanthanum chromite includes lanthanum calcium chromite, lanthanum strontium chromite, iron and strontium doped lanthanum chromite, such as (LaySr (i-y) ) z Cr (i -z ) Fe (i -z ) 03-x.
  • the method comprises providing an insulator layer that supports at least a portion of (i) the layer of the intermixed particles or (ii) the second layer, wherein the insulator layer is farther from the EMR source than the layer of the intermixed particles or the second layer.
  • the insulator comprises wood, wool, tile, foam, ceramic, alumina, felt, alumina felt, or combinations thereof.
  • controlling the EMR comprises controlling exposure duration, exposure frequency, number of exposures, exposure distance, capacitor voltage, or combinations thereof.
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave, or combinations thereof.
  • the absorber particles transfer heat to the ceramic particles.
  • the EMR source comprises a xenon lamp.
  • the thickness of the layer of intermixed particles is no greater than 500 microns.
  • the thickness of the first layer is no greater than 10 microns.
  • the absorber particles have a volume fraction in the intermixed particles in the range of no less than 5% or no less than 10% or no less than 20% or no less than 30% or no less than 50%.
  • (b) providing comprises depositing the intermixed particles, the ceramic particles, or the absorber particles on a substrate, wherein depositing comprises material jetting, binder jetting, ultrasonic jetting, ultrasonic spraying, inkjet printing, aerosol jetting, aerosol jet printing, ultrasonic inkjet printing, or combinations thereof.
  • the absorber particles do not exceed their melting temperature for greater than 10 consecutive seconds, or greater than 1 consecutive second, or greater than 100 consecutive milliseconds, or greater than 10 consecutive milliseconds.
  • the ceramic particles have a size distribution that has at least one of the following characteristics: the size distribution comprises D10 and D90, wherein 10% of the particles have a diameter no greater than D10 and 90% of the particles have a diameter no greater than D90, wherein D90/D10 is in the range of from 1.5 to 100; or the size distribution is bimodal such that the average particle size in the first mode is at least 5 times the average particle size in the second mode; or the size distribution comprises D50, wherein 50% of the particles have a diameter no greater than D50, wherein D50 is no greater than 400 nm.
  • D10 is in the range of from 5 nm to 50 nm or from 5 nm to 100 nm or from 5 nm to 200 nm
  • D90 is in the range of from 50 nm to 500 nm or from 50 nm to 1000 nm
  • D90/D10 is in the range of from 2 to 100 or from 4 to 100 or from 2 to 20 or from 2 to 10 or from 4 to 20 or from 4 to 10.
  • a first 10 wt% or more of the ceramic particles have an average diameter of d
  • a second 10 wt% or more of the ceramic particles have an average diameter of at least 5 x d
  • a third 10 wt% or more of the ceramic particles have an average diameter of at least 20 x d.
  • d is in the range of from 1 nm to 100 nm or from 5 nm to 50 nm or from 10 nm to 30 nm.
  • the third 10 wt% or more of the ceramic particles have an average of diameter of at least 36 x d or at least 50 x d or at least 100 x d.
  • the second 10 wt% or more of the ceramic particles have an average of diameter of at least 6 x d or at least 7 x d or at least 8 x d or at least 10 x d.
  • Figure 1 A illustrates (not to scale) ceramic sintering using EMR, wherein ceramic particles are intermixed with absorber particles, according to an embodiment of this disclosure.
  • Figure IB illustrates (not to scale) ceramic sintering using EMR, wherein ceramic particles are in contact with absorber particles and absorber particles are in contact with an insulator, according to an embodiment of this disclosure.
  • Figure 2 illustrates a fuel cell stack having two repeat units (or two fuel cells), according to an embodiment of this disclosure.
  • FIG. 3 illustrates a method and system of integrated deposition and heating using electromagnetic radiation (EMR), according to an embodiment of this disclosure.
  • EMR electromagnetic radiation
  • Figure 4 is a scanning electron microscopy image (side view) illustrating an electrolyte (YSZ) printed and sintered on an electrode (NiO-YSZ), according to an embodiment of this disclosure.
  • compositions and materials are used interchangeably unless otherwise specified. Each composition/material may have multiple elements, phases, and components. Heating as used herein refers to actively adding energy to the compositions or materials.
  • in situ in this disclosure refers to the treatment (e.g., heating) process being performed either at the same location or in the same device of the forming process of the compositions or materials.
  • the deposition process and the heating process are performed in the same device and at the same location, in other words, without changing the device and without changing the location within the device.
  • the deposition process and the heating process are performed in the same device at different locations, which is also considered in situ.
  • lateral refers to the direction that is perpendicular to the stacking direction of the layers in a non-SIS type fuel cell.
  • lateral direction refers to the direction that is perpendicular to the stacking direction of the layers in a fuel cell or the stacking direction of the slices to form an object during deposition.
  • Lateral also refers to the direction that is the spread of deposition process.
  • absorbance is a measure of the capacity of a substance to absorb electromagnetic radiation (EMR) of a wavelength.
  • EMR electromagnetic radiation
  • An impermeable layer or being impermeable as used herein refers to a layer or property that is impermeable to fluid flow.
  • an impermeable layer has a permeability of no greater than 10 micro darcy, or no greater than 10 nano darcy.
  • being impermeable refers to a permeability of no greater than 10 micro darcy, or no greater than 10 nano darcy.
  • sintering refers to a process to form a solid mass of material by heat or pressure or combination thereof without melting the material to the extent of liquefaction.
  • material particles are coalesced into a solid or porous mass by being heated, wherein atoms in the material particles diffuse across the boundaries of the particles, causing the particles to fuse together and form one solid piece.
  • Tsinter refers to the temperature at which this phenomenon begins to take place.
  • the term “absorber particles” refer to particles that have greater absorption of energy than ceramic particles for a given electromagnetic radiation (EMR) spectrum.
  • EMR electromagnetic radiation
  • the ceramic particles are CGO
  • absorber particles are copper oxide particles or LSCF particles.
  • absorber particles are copper oxide particles or LSCF particles or CuO-CGO particles or colored zirconia particles or doped YSZ particles.
  • the absorber particles having no appreciable flow if they are melted means that the layer comprising the absorber particles has a change in one dimension (length, width, height) by no more than 10% or by no more than 5% or by no more than 1%.
  • an insulator such as that used in the insulator layer refers to a substance that does not readily allow the passage of heat.
  • an insulator has a thermal conductivity of no greater than 1 W/(m K).
  • the insulator has a thermal conductivity of no greater than 0.1 W/(m K).
  • SOFCs solid oxide fuel cells
  • electrochemical device include electrochemical (EC) gas producer, electrochemical (EC) compressor, and batteries.
  • EC electrochemical
  • EC electrochemical
  • EC electrochemical
  • batteries batteries
  • Ceramics are a category of materials that have high melting temperatures. Existing sintering technologies require large amounts of energy expenditure of an energy source to sinter ceramics. Contrary to conventional wisdom, we have unexpectedly discovered ceramic sintering processes that require much less energy expenditure and much less time than what is traditionally needed. Such processes utilize electromagnetic radiation (EMR). For example, without the processes as disclosed herein, an EMR source just sufficient to sinter a ceramic material has power capacity P. With the processes as disclosed herein, the ceramic material is sintered with EMR sources having much less power capacity, e.g., 50% P or less, 40% P or less, 30% P or less, 20% P or less, 10% P or less, 5% P or less.
  • EMR electromagnetic radiation
  • 1401 represents an EMR source (e.g., a xenon lamp); 1402 represent a substrate; 1403 represents ceramic particles; 1404 represents absorber particles that are intermixed with the ceramic particles, according to an embodiment of this disclosure.
  • 1401 represents an EMR source (e.g., a xenon lamp); 1402 represent a substrate; 1403 represents ceramic particles; 1404 represents absorber particles; 1405 represents an insulator or insulator layer. In this embodiment, the ceramic particles are in contact with the absorber particles and the absorber particles are in contact with the insulator.
  • a method of sintering a ceramic comprising (a) providing an electromagnetic radiation (EMR) source; (b) (i) providing a layer of intermixed ceramic particles and absorber particles, wherein the absorber particles have a volume fraction in the intermixed particles in the range of no less than 3%; or (ii) providing a first layer comprising ceramic particles and a second layer comprising absorber particles in contact with at least a portion of the first layer, wherein the second layer is farther from the EMR source than the first layer; (c) heating (i) the layer of intermixed particles or (ii) the first layer using EMR; and (d) controlling the EMR such that at least a portion of the ceramic particles are sintered wherein (i) the layer of intermixed particles becomes impermeable or (ii) the first layer becomes impermeable, wherein the absorber particles have greater EMR absorption than the ceramic particles.
  • EMR electromagnetic radiation
  • the ceramic particles comprise lanthanum strontium cobalt ferrite (LSCF), lanthanum strontium manganite (LSM), yttria-stabilized zirconia (YSZ), gadolinia- doped ceria (CGO), samaria-doped ceria (SDC), scandia-stabilized zirconia (SSZ), lanthanum strontium gallium magnesium oxide (LSGM), ceria-yttria stabilized zirconia (CYZ), ceria- scandia stabilized zirconia (CSZ), zirconia, lanthanum chromite, doped lanthanum chromite, or combinations thereof.
  • the absorber particles comprise NiO, CuO,
  • the absorber particles have a volume fraction in the intermixed particles in the range of no less than 5% or no less than 10% or no less than 20% or no less than 30% or no less than 50%.
  • colored zirconia includes zirconia that is treated via high temperature, oxidation, or reduction.
  • Such zirconia may be doped with various oxides, such as magnesia (MgO), calcia (CaO), ceria (Ce02), yttria (Y203), or iron oxide (Fe203).
  • doped YSZ includes YSZ that is doped with Ce02 or Fe203. Doped YSZ also includes pigment doped YSZ.
  • doped lanthanum chromite includes lanthanum calcium chromite, lanthanum strontium chromite, iron and strontium doped lanthanum chromite, such as (LaySr (i-y) ) z Cr (i -z ) Fe (i -z ) 03-x.
  • the method comprises providing an insulator layer that supports at least a portion of (i) the layer of the intermixed particles or (ii) the second layer, wherein the insulator layer is farther from the EMR source than the layer of the intermixed particles or the second layer.
  • the insulator comprises wood, wool, tile, foam, ceramic, alumina, felt, alumina felt, or combinations thereof.
  • the insulator layer is in contact with at least a portion of (i) the layer of the intermixed particles or (ii) the second layer. In some cases, the insulator layer is not in contact with (i) the layer of the intermixed particles or (ii) the second layer.
  • controlling the EMR comprises controlling exposure duration, exposure frequency, number of exposures, exposure distance, capacitor voltage, or combinations thereof.
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave, or combinations thereof.
  • the absorber particles transfer heat to the ceramic particles.
  • (b) providing comprises depositing the intermixed particles, the ceramic particles, or the absorber particles on a substrate.
  • depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • the thickness of the layer is no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or 10 microns or 5 microns; or around 1 micron or around 500 nm.
  • the thickness of the layer of intermixed particles is no greater than 500 microns.
  • the thickness of the first layer is no greater than 10 microns.
  • the EMR source comprises a xenon lamp.
  • the EMR consists of one exposure, or no greater than 10 exposures, or no greater than 100 exposures, or no greater than 1000 exposures, or no greater than 10,000 exposures.
  • the EMR has an exposure frequency of 1 O 4 - 1000 Hz or 1-1000 Hz or 10-1000 Hz.
  • the EMR has an exposure distance of no greater than 50 mm.
  • the EMR has an exposure duration no less than 0.1 ms or 1 ms.
  • the EMR is applied with a capacitor voltage of no less than 100 V.
  • the absorber particles contain metal or ceramic. In an embodiment, the absorber particles are not ceramic. In an embodiment, the absorber particles do not exceed their melting temperature for greater than 10 consecutive seconds, or greater than 1 consecutive second, or greater than 100 consecutive milliseconds, or greater than 10 consecutive milliseconds. In an embodiment, the absorber particles do not have appreciable flow if they are melted.
  • the ceramic particles have a size distribution that has at least one of the following characteristics: the size distribution comprises D10 and D90, wherein 10% of the particles have a diameter no greater than D10 and 90% of the particles have a diameter no greater than D90, wherein D90/D10 is in the range of from 1.5 to 100; or the size distribution is bimodal such that the average particle size in the first mode is at least 5 times the average particle size in the second mode; or the size distribution comprises D50, wherein 50% of the particles have a diameter no greater than D50, wherein D50 is no greater than 400 nm. In an embodiment, D50 is no greater than 100 nm.
  • D10 is in the range of from 5 nm to 50 nm or from 5 nm to 100 nm or from 5 nm to 200 nm
  • D90 is in the range of from 50 nm to 500 nm or from 50 nm to 1000 nm
  • D90/D10 is in the range of from 2 to 100 or from 4 to 100 or from 2 to 20 or from 2 to 10 or from 4 to 20 or from 4 to 10.
  • D50 is no greater than 50 nm, or no greater than 30 nm, or no greater than 20 nm, or no greater than 10 nm, or no greater than 5 nm.
  • the average particle size in the first mode is at least 10 times or 15 times or 20 times the average particle size in the second mode.
  • the particles have a diameter in the range of from 1 nm to 1000 nm, wherein D10 is in the range of from 1 nm to 10 nm and D90 is in the range of from 50 nm to 500 nm. Such size distribution is also contemplated for the absorber particles.
  • a first 10 wt% or more of the ceramic particles have an average diameter of d
  • a second 10 wt% or more of the ceramic particles have an average diameter of at least 5 x d
  • a third 10 wt% or more of the ceramic particles have an average diameter of at least 20 x d.
  • d is in the range of from 1 nm to 100 nm or from 5 nm to 50 nm or from 10 nm to 30 nm.
  • the third 10 wt% or more of the ceramic particles have an average of diameter of at least 36 x d or at least 50 x d or at least 100 x d.
  • the second 10 wt% or more of the ceramic particles have an average of diameter of at least 6 x d or at least 7 x d or at least 8 x d or at least 10 x d.
  • a first 20 wt% or more of the particles have an average diameter of d
  • a second 20 wt% or more of the particles have an average diameter of at least 5 x d
  • a third 20 wt% or more of the particles have an average diameter of at least 20 x d
  • a first 30 wt% or more of the particles have an average diameter of d
  • a second 30 wt% or more of the particles have an average diameter of at least 5 x d
  • a third 30 wt% or more of the particles have an average diameter of at least 20 x d.
  • the second 10 wt% or more of the particles have an average of diameter of at least 6 x d and the third 10 wt% or more of the particles have an average of diameter of at least 36 x d. In an embodiment, the second 10 wt% or more of the particles have an average of diameter of at least 7 x d or 8 x d and the third 10 wt% or more of the particles have an average of diameter of at least 50 x d. In an embodiment, the second 10 wt% or more of the particles have an average of diameter of at least 10 x d and the third 10 wt% or more of the particles have an average of diameter of at least 100 x d. Such size distribution is also contemplated for the absorber particles.
  • a fuel cell is an electrochemical apparatus that converts the chemical energy from a fuel into electricity through an electrochemical reaction.
  • fuel cells e.g., proton-exchange membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs).
  • a fuel cell typically comprises an anode, a cathode, an electrolyte, an interconnect, optionally a barrier layer and/or optionally a catalyst.
  • the various layers of the SOFC often contain a ceramic material. As such, SOFC is used as an application example for ceramic sintering. The method and system of this disclosure are applicable in other fields where sintered ceramics are utilized.
  • Both the anode and the cathode are electrodes.
  • the listings of material for the electrodes, the electrolyte, and the interconnect in a fuel cell are applicable in other electrochemical devices, such as gas producer or compressor. These listings are only examples and not limiting.
  • the designations of anode material and cathode material are also not limiting because the function of the material during operation (e.g., whether it is oxidizing or reducing) determines whether the material is used as an anode or a cathode.
  • FIG. 2 depicts two fuel cells in a fuel cell stack.
  • the anode, cathode, electrolyte, and interconnect are cuboids or rectangular prisms.
  • Item 501 schematically represents the anode; 502 represents the cathode; 503 represents the electrolyte; 504 represents the barrier layers; 505 represents the catalyst; and 506 represents the interconnect.
  • Two fuel cell repeat units or two fuel cells form a stack as illustrated. As is seen, on one side the interconnect is in contact with the largest surface of the cathode of the top fuel cell (or fuel cell repeat unit) and on the opposite side the interconnect is in contact with the largest surface of the catalyst (optional) or the anode of the bottom fuel cell (or fuel cell repeat unit).
  • These repeat units or fuel cells are connected in parallel by being stacked atop one another and sharing an interconnect in between via direct contact with the interconnect rather than via electrical wiring. This kind of configuration is in contrast to segmented-in-series (SIS) type fuel cells.
  • the cathode comprises perovskites, such as LSC, LSCF, LSM.
  • the cathode comprises lanthanum, cobalt, strontium, manganite.
  • the cathode is porous.
  • the cathode comprises YSZ, Nitrogen, Nitrogen Boron doped Graphene, LaO.6SrO.4CoO.2FeO.803, SrCoO.5ScO.503, BaFe0.75Ta0.25O3, BaFe0.875Re0.12503, Ba0.5La0.125Zn0.375Ni03,
  • the cathode comprises LSCo, LCo, LSF, LSCoF. In an embodiment, the cathode comprises perovskites LaCo03, LaFe03, LaMn03, (La,Sr)Mn03, LSM-GDC, LSCF-GDC, LSC-GDC. Cathodes containing LSCF are suitable for intermediate-temperature fuel cell operation.
  • the cathode comprises a material selected from the group consisting of lanthanum strontium manganite, lanthanum strontium ferrite, and lanthanum strontium cobalt ferrite. In an embodiment, the cathode comprises lanthanum strontium manganite.
  • the anode comprises Copper, Nickle-Oxide, Nickle- Oxide-YSZ, NiO-GDC, NiO-SDC, Aluminum doped Zinc Oxide, Molybdenum Oxide, Lanthanum, strontium, chromite, ceria, perovskites (such as, LSCF [La ⁇ l-x ⁇ Sr ⁇ x ⁇ Co ⁇ l- y ⁇ Fe ⁇ y ⁇ 03] or LSM [La ⁇ l-x ⁇ Sr ⁇ x ⁇ Mn03], where x is usually 0.15-0.2 and y is 0.7 to 0.8).
  • the anode comprises SDC or BZCYYb coating or barrier layer to reduce coking and sulfur poisoning.
  • the anode is porous.
  • the anode comprises combination of electrolyte material and electrochemically active material, combination of electrolyte material and electrically conductive material.
  • the anode comprises nickel and yttria stabilized zirconia. In an embodiment, the anode is formed by reduction of a material comprising nickel oxide and yttria stabilized zirconia. In an embodiment, the anode comprises nickel and gadolinium stabilized ceria. In an embodiment, the anode is formed by reduction of a material comprising nickel oxide and gadolinium stabilized ceria.
  • the electrolyte in a fuel cell comprises stabilized zirconia e.g., YSZ, YSZ-8, Y0.16Zr0.8402.
  • the electrolyte comprises doped LaGa03, e.g., LSGM, La0.9Sr0.1Ga0.8Mg0.203.
  • the electrolyte comprises doped ceria, e.g., GDC, Gd0.2Ce0.8O2.
  • the electrolyte comprises stabilized bismuth oxide e.g., BVCO, Bi2V0.9Cu0.105.35.
  • the electrolyte comprises zirconium oxide, yttria stabilized zirconium oxide (also known as YSZ, YSZ8 (8mole% YSZ)), ceria, gadolinia, scandia, magnesia, calcia.
  • the electrolyte is sufficiently impermeable to prevent significant gas transport and prevent significant electrical conduction; and allow ion conductivity.
  • the electrolyte comprises doped oxide such as cerium oxide, yttrium oxide, bismuth oxide, lead oxide, lanthanum oxide.
  • the electrolyte comprises perovskite, such as, LaCoFe03 or LaCo03 or CeO.9GdO.102 (GDC) or CeO.9SmO.102 (SDC or samaria doped ceria) or scandia stabilized zirconia.
  • perovskite such as, LaCoFe03 or LaCo03 or CeO.9GdO.102 (GDC) or CeO.9SmO.102 (SDC or samaria doped ceria) or scandia stabilized zirconia.
  • the electrolyte comprises a material selected from the group consisting of zirconia, ceria, and gallia.
  • the material is stabilized with a stabilizing material selected from the group consisting of scandium, samarium, gadolinium, and yttrium.
  • the material comprises yttria stabilized zirconia.
  • Interconnect comprises silver, gold, platinum, AISI441, ferritic stainless steel, stainless steel, Lanthanum, Chromium, Chromium Oxide, Chromite, Cobalt, Cesium, Cr203.
  • the anode comprises LaCr03 coating on Cr203 or NiCo204 or MnCo204 coatings.
  • the interconnect surface is coated with Cobalt and/or Cesium.
  • the interconnect comprises ceramics.
  • the interconnect comprises Lanthanum Chromite or doped Lanthanum Chromite.
  • the interconnect is made of a material comprising metal, stainless steel, ferritic steel, crofer, lanthanum chromite, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene.
  • the fuel cell comprises a catalyst, such as, platinum, palladium, scandia, chromium, cobalt, cesium, Ce02, nickel, nickel oxide, zine, copper, titantia, ruthenium, rhodium, MoS2, molybdenum, rhenium, vanadium, manganese, magnesium, iron.
  • the catalyst promotes methane reforming reactions to generate hydrogen and carbon monoxide for them to be oxidized in the fuel cell.
  • the catalyst is part of the anode, especially nickel anode has inherent methane reforming properties.
  • the catalyst is between l%-5%, or 0.1% to 10% by mass.
  • the catalyst is used on the anode surface or in the anode. In various embodiments, such anode catalysts reduce harmful coking reactions and carbon deposits.
  • simple oxide version of catalysts is used or perovskite.
  • 2% mass Ce02 catalyst is used for methane-powered fuel cells.
  • the catalyst is dipped or coated on the anode.
  • the catalyst is made by additive manufacturing.
  • a method comprising depositing a composition on a substrate slice by slice to form an object; heating in situ the object using electromagnetic radiation (EMR); wherein said composition comprises a first material and a second material.
  • EMR electromagnetic radiation
  • the first material contains ceramic particles
  • the second material contains absorber particles.
  • heating causes an effect comprising drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming, or combinations thereof.
  • the EMR has a peak wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm 2 , wherein the peak wavelength is on the basis of relative irradiance with respect to wavelength.
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave, or combinations thereof.
  • the EMR has a peak wavelength no less than 200 nm, or 250 nm, or 300 nm, or 400 nm, or 500 nm.
  • said depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • the object does not change location between depositing and heating. In another embodiment, the object changes location between depositing and heating.
  • the EMR has a power output of no less than 1 W, or 10 W, or 100 W, or 1000 W.
  • a system comprising at least one deposition nozzle, an electromagnetic radiation (EMR) source, and a deposition receiver, wherein the deposition receiver is configured to receive EMR exposure and deposition at the same location.
  • the receiver is configured such that it receives deposition for a first time period, moves to a different location in the system to receive EMR exposure for a second time period.
  • 601 represents deposition nozzles or material jetting nozzles
  • 602 represents EMR source, e.g., a xenon lamp
  • 603 represents object being formed
  • 604 represents chamber as a part of an additive manufacturing machine (AMM).
  • the chamber or receiver 604 is configured to receive both deposition from nozzles and radiation from an EMR source.
  • deposition nozzles 601 are movable.
  • the chamber or receiver 604 is movable.
  • the EMR source 602 is movable.
  • the object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
  • a method of forming an object comprises providing a first material as a first layer; depositing a second material on the first layer to form a second layer, wherein the second layer is in contact with the first layer; heating the second layer using an electromagnetic radiation (EMR) source, wherein the second layer is between the first layer and the EMR source; wherein the first material has a density p and a thermal conductivity k, wherein p*k is no less than 345,000 (W kg) / (m 4 K) at 300 K.
  • EMR electromagnetic radiation
  • p*k is no less than 400,000 (W kg) / (m 4 K), or no less than 500,000 (W kg) / (m 4 K), or no less than 600,000 (W kg) / (m 4 K), or no less than 800,000 (W kg) / (m 4 K) at 300 K.
  • said second material is the same as the first material.
  • the second layer has a thickness of no greater than 10 microns, or 8 microns, or 6 microns, or 5 microns, or 4 microns, or 3 microns, or 2 microns, or 1 micron. In an embodiment, depositing the second material and heating the second layer take place without the first layer changing in position.
  • Example 1 Making a fuel cell stack.
  • the method uses an AMM model no. 0012323 from Ceradrop and an EMR model no. 092309423 from Xenon Corp. An interconnect substrate is put down to start the print.
  • an anode layer is made by the AMM.
  • This layer is deposited by the AMM as a slurry A, having the composition as shown in the table below.
  • This layer is allowed to dry by applying heat via an infrared lamp.
  • This anode layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 1 second.
  • An electrolyte layer is formed on top of the anode layer by the AMM depositing a slurry B, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This electrolyte layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 60 seconds.
  • a cathode layer is formed on top of the electrolyte layer by the AMM depositing a slurry C, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This cathode layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 1/2 second.
  • An interconnect layer is formed on top of the cathode layer by the AMM depositing a slurry D, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This interconnect layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 30 seconds.
  • an electrolyte 1201 (YSZ) is printed and sintered on an electrode 1202 (NiO-YSZ).
  • the scanning electron microscopy image shows the side view of the sintered structures, which demonstrates gas-tight contact between the electrolyte and the electrode, full densification of the electrolyte, and sintered and porous electrode microstructures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne un procédé de frittage d'une céramique comprenant (a) la fourniture d'une source de rayonnement électromagnétique (REM) ; (b) (i) la fourniture d'une couche de particules de céramique et de particules d'absorbeur mélangées, les particules d'absorbeur présentant une fraction volumique dans les particules mélangées comprise dans la plage non inférieure à 3 % ; ou (ii) la fourniture d'une première couche comprenant des particules de céramique et d'une seconde couche comprenant des particules d'absorbeur en contact avec au moins une partie de la première couche, la seconde couche étant plus éloignée de la source de REM que la première couche ; (c) le chauffage (i) de la couche de particules mélangées ou (ii) de la première couche à l'aide du REM ; et (d) la commande du REM de sorte qu'au moins une partie des particules de céramique soit frittée. (i) La couche de particules mélangées devient imperméable ou (ii) la première couche devient imperméable, les particules d'absorbeur présentant une absorption du REM supérieure à celle des particules de céramique.
PCT/US2020/052277 2019-09-24 2020-09-23 Frittage de céramique WO2021061817A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20867019.0A EP4034512A1 (fr) 2019-09-24 2020-09-23 Frittage de céramique

Applications Claiming Priority (76)

Application Number Priority Date Filing Date Title
US62/939,531 2018-11-22
US201962904683P 2019-09-24 2019-09-24
US62/904,683 2019-09-24
US201962912626P 2019-10-08 2019-10-08
US62/912,626 2019-10-08
US201962925210P 2019-10-23 2019-10-23
US62/925,210 2019-10-23
US201962927627P 2019-10-29 2019-10-29
US62/927,627 2019-10-29
US201962928326P 2019-10-30 2019-10-30
US62/928,326 2019-10-30
US16/674,580 US20200176803A1 (en) 2018-11-06 2019-11-05 Method of Making Fuel Cells and a Fuel Cell Stack
US16/674,629 2019-11-05
US16/674,580 2019-11-05
US16/674,657 US11575142B2 (en) 2018-11-06 2019-11-05 Method and system for making a fuel cell
US16/674,695 2019-11-05
US16/674,695 US11735755B2 (en) 2018-11-06 2019-11-05 System and method for integrated deposition and heating
US16/674,629 US11557784B2 (en) 2018-11-06 2019-11-05 Method of making a fuel cell and treating a component thereof
US16/674,657 2019-11-05
US16/680,770 US20200156104A1 (en) 2018-11-06 2019-11-12 Manufacturing Method with Particle Size Control
US16/680,770 2019-11-12
US201962934808P 2019-11-13 2019-11-13
US62/934,808 2019-11-13
US16/684,864 US11611097B2 (en) 2018-11-06 2019-11-15 Method of making an electrochemical reactor via sintering inorganic dry particles
US16/684,864 2019-11-15
US16/684,838 US20200144654A1 (en) 2018-11-06 2019-11-15 Compact Electrochemical Reactors
US16/684,838 2019-11-15
US201962939531P 2019-11-22 2019-11-22
US16/693,271 US20200144627A1 (en) 2018-11-06 2019-11-23 Method of Making Channeled Electrodes
US16/693,268 2019-11-23
US16/693,269 US20200144628A1 (en) 2018-11-06 2019-11-23 Dual Porosity Electrodes and Method of Making
US16/693,270 2019-11-23
US16/693,269 2019-11-23
US16/693,268 US20200144653A1 (en) 2018-11-06 2019-11-23 Electrochemical Reactors with Fluid Dispersing Components
US16/693,270 US11603324B2 (en) 2018-11-06 2019-11-23 Channeled electrodes and method of making
US16/693,271 2019-11-23
US201962941358P 2019-11-27 2019-11-27
US62/941,358 2019-11-27
US16/699,453 US20200144633A1 (en) 2018-11-06 2019-11-29 Interconnect with Microchannels and Method of Making
US16/699,461 2019-11-29
US16/699,461 US20200144635A1 (en) 2018-11-06 2019-11-29 Method of Making an Interconnect
US16/699,453 2019-11-29
US201962944259P 2019-12-05 2019-12-05
US62/944,259 2019-12-05
US201962944756P 2019-12-06 2019-12-06
US62/944,756 2019-12-06
US16/707,046 2019-12-09
US16/707,084 2019-12-09
US16/707,066 US20200182549A1 (en) 2018-11-06 2019-12-09 Multi-Fluid Heat Exchanger and Methods of Making and Using
US16/707,066 2019-12-09
US16/707,084 US20200235410A1 (en) 2018-11-06 2019-12-09 Heat Exchanger for an Electrochemical Reactor and Method of Making
US16/707,046 US20200235409A1 (en) 2018-11-06 2019-12-09 Balance of Plant for Electrochemical Reactors
US201962948759P 2019-12-16 2019-12-16
US62/948,759 2019-12-16
US201962955443P 2019-12-31 2019-12-31
US62/955,443 2019-12-31
US16/739,748 2020-01-10
US16/739,748 US11767600B2 (en) 2018-11-06 2020-01-10 Hydrogen production system
US16/739,727 US11761096B2 (en) 2018-11-06 2020-01-10 Method of producing hydrogen
US16/739,671 2020-01-10
US16/739,612 US11761100B2 (en) 2018-11-06 2020-01-10 Electrochemical device and method of making
US16/739,612 2020-01-10
US16/739,727 2020-01-10
US16/739,671 US20200259186A1 (en) 2018-11-06 2020-01-10 Methods of Making Gas Producer
US16/775,176 US20200227763A1 (en) 2018-11-06 2020-01-28 Electrochemical Reactor Systems
US16/775,176 2020-01-28
US202062970655P 2020-02-05 2020-02-05
US62/970,655 2020-02-05
US202062982919P 2020-02-28 2020-02-28
US62/982,919 2020-02-28
US202062987706P 2020-03-10 2020-03-10
US62/987,706 2020-03-10
US202062994645P 2020-03-25 2020-03-25
US62/994,645 2020-03-25
US15/931,585 2020-05-14
US15/931,585 US11539053B2 (en) 2018-11-12 2020-05-14 Method of making copper electrode

Publications (1)

Publication Number Publication Date
WO2021061817A1 true WO2021061817A1 (fr) 2021-04-01

Family

ID=75166085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/052277 WO2021061817A1 (fr) 2019-09-24 2020-09-23 Frittage de céramique

Country Status (2)

Country Link
EP (1) EP4034512A1 (fr)
WO (1) WO2021061817A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799936A (en) * 1987-06-19 1989-01-24 Combustion Engineering, Inc. Process of forming conductive oxide layers in solid oxide fuel cells
US20060016805A1 (en) * 2003-10-27 2006-01-26 Alfred University Susceptor for hybrid microwave sintering system, hybrid microwave sintering system including same and method for sintering ceramic members using the hybrid microwave sintering system
KR20060024244A (ko) * 2004-09-13 2006-03-16 주식회사 포스코 고체산화물 연료전지용 단위 셀 소결방법
US20120329659A1 (en) * 2011-06-23 2012-12-27 Grid Logic Incorporated Sintering method and apparatus
KR20140050093A (ko) * 2011-08-05 2014-04-28 로프보로우 유니버시티 선택적으로 미립자 물질을 결합하기 위한 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799936A (en) * 1987-06-19 1989-01-24 Combustion Engineering, Inc. Process of forming conductive oxide layers in solid oxide fuel cells
US20060016805A1 (en) * 2003-10-27 2006-01-26 Alfred University Susceptor for hybrid microwave sintering system, hybrid microwave sintering system including same and method for sintering ceramic members using the hybrid microwave sintering system
KR20060024244A (ko) * 2004-09-13 2006-03-16 주식회사 포스코 고체산화물 연료전지용 단위 셀 소결방법
US20120329659A1 (en) * 2011-06-23 2012-12-27 Grid Logic Incorporated Sintering method and apparatus
KR20140050093A (ko) * 2011-08-05 2014-04-28 로프보로우 유니버시티 선택적으로 미립자 물질을 결합하기 위한 장치 및 방법

Also Published As

Publication number Publication date
EP4034512A1 (fr) 2022-08-03

Similar Documents

Publication Publication Date Title
EP3092673B1 (fr) Dispositifs et cellules de conversion d'énergie électrochimique et matériaux côté électrode négative qui leur sont destinés
WO2018181922A1 (fr) Élément électrochimique, module électrochimique, dispositif électrochimique, système énergétique, pile à combustible à oxyde solide, et procédé de fabrication d'élément électrochimique
JPWO2016157566A1 (ja) プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
US20210344018A1 (en) Methods of fabricating solid oxide fuel cells
CN107112564B (zh) 电池结构体及其制造方法以及燃料电池
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
JP6573243B2 (ja) 空気極組成物、空気極およびこれを含む燃料電池
Dayaghi et al. Thermal cycling and electrochemical characteristics of solid oxide fuel cell supported on stainless steel with a new 3-phase composite anode
US20080299436A1 (en) Composite ceramic electrolyte structure and method of forming; and related articles
US11594748B2 (en) Setter plates and manufacturing methods for ceramic-anode solid oxide fuel cells
US11453618B2 (en) Ceramic sintering
KR20240024311A (ko) 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법
WO2021061817A1 (fr) Frittage de céramique
US11684977B2 (en) Advanced heating method and system
US11539053B2 (en) Method of making copper electrode
Kesler et al. 6 Processing
WO2023203875A1 (fr) Cellule électrochimique
WO2023203870A1 (fr) Cellule électrochimique
WO2021231846A1 (fr) Électrode de cuivre et son procédé de fabrication
US11677080B2 (en) Electrochemical element, electrochemical module, solid oxide fuel cell and manufacturing method
Zhou Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867019

Country of ref document: EP

Effective date: 20220425