WO2021060699A1 - Socket-type fluid distribution apparatus - Google Patents

Socket-type fluid distribution apparatus Download PDF

Info

Publication number
WO2021060699A1
WO2021060699A1 PCT/KR2020/010681 KR2020010681W WO2021060699A1 WO 2021060699 A1 WO2021060699 A1 WO 2021060699A1 KR 2020010681 W KR2020010681 W KR 2020010681W WO 2021060699 A1 WO2021060699 A1 WO 2021060699A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
socket
fluid distribution
distribution device
type fluid
Prior art date
Application number
PCT/KR2020/010681
Other languages
French (fr)
Korean (ko)
Inventor
천주영
고동현
강전한
한상진
조현진
정재권
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200063701A external-priority patent/KR102524372B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005157.7A priority Critical patent/CN112867558B/en
Priority to EP20855891.6A priority patent/EP3831473A4/en
Priority to US17/274,737 priority patent/US11446622B2/en
Publication of WO2021060699A1 publication Critical patent/WO2021060699A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Definitions

  • the present invention relates to a fluid distribution device for distributing and introducing a raw material fluid to a plurality of reactor bodies in a multi-tubular reactor, and more particularly, to a socket-type indwelling distribution device for a multi-tubular trickle-bed.
  • the trickle-bed type reactor is generally a fixed bed reactor having a diameter of at least a certain level, and has a type of supplying a liquid reactant and a gaseous reactant to the reactor.
  • a multi-tubular reactor in which unit reactors are arranged in parallel rather than a single-tube reactor with a large diameter is applied.
  • Such a multi-tubular reactor has an advantage in that it provides a large heat exchange area compared to a single-tube reactor having a large diameter.
  • such a conventional multi-tubular reactor has a problem in that it is difficult to evenly distribute the reactants to each unit reactor.
  • the conventional multi-tubular reactor is configured to overflow when the liquid reactants in the trays of each layer (step) are filled to a certain level or more, so that when a differential pressure occurs due to the non-uniformity of the catalyst layer for each unit reactor, even distribution is achieved. There was a problem that was difficult to lose.
  • the present invention is to solve the problems of the prior art as described above, the distribution device can be aligned at the correct position, offset the differential pressure generated by the catalyst filling for each unit reactor, and according to the flow rate ratio of the liquid reactant and the gaseous reactant
  • An object of the present invention is to provide a socket-type fluid distribution device capable of supplying droplets of various sizes to a catalyst bed in the form of airflow or spray.
  • a socket-type fluid distribution device for achieving the above object is a socket-type fluid distribution device for distributing and supplying a reactant of gas and/or liquid into a reactor body, wherein a partial region is inserted into the reactor body.
  • a body portion formed in a structure;
  • a mixing passage formed in the center of the body portion and formed through the body portion;
  • a gas reactant input unit disposed on the upper portion of the body and having a gas flow path;
  • a liquid reactant input portion disposed between the body portion and the gaseous reactant input portion and having a liquid flow path;
  • a flow control unit formed in the mixing flow path.
  • the socket-type fluid distribution device further includes a locking protrusion formed on one side of an outer circumferential surface of the body portion.
  • the socket-type fluid distribution device further includes a sealing portion formed along an outer circumferential surface of a lower end of the body portion.
  • the socket-type fluid distribution device is characterized in that it includes a plurality of body parts provided on the same line.
  • the gaseous reactant and the liquid reactant are mixed and moved in the mixing flow path.
  • the mixed reactant mixed in the mixing flow path is characterized in that the shape of the mixed reactant supplied into the reactor body is controlled according to the flow rate of the gaseous reactant relative to the liquid reactant.
  • the flow rate of the gaseous reactant relative to the flow rate of the liquid reactant is 1 to 100.
  • the form of the mixed reactant supplied to the reactor body is characterized in that it is in the form of droplets, airflow, or spray.
  • the flow control unit is configured to increase the pressure of the mixed reactant mixed in the mixing flow path.
  • the socket-type fluid distribution device is located inside the reactor body and includes a catalyst filling unit made of solid catalysts, and the flow control unit includes a pressure of the mixed reactant passing through the flow control unit. It is characterized in that it is configured to be greater than the differential pressure generated in the catalyst filling portion.
  • the flow control unit may include: a first inclined portion whose diameter of the mixing flow path is narrowed along a length direction of the mixing flow path; A retaining part whose diameter is maintained; And a second inclined portion in which the diameter of the mixing flow path is widened.
  • the inclination of the first inclined portion is 0° to 90°
  • the length of the holding portion is 1 mm to 20 mm
  • the inclination of the second inclined portion is 0° to 90°.
  • the socket-type fluid distribution device since it is configured in a socket type, since it is inserted into each reactor body provided in a unit reactor of a multi-tubular reactor, it is possible to align the fluid distribution device in an accurate position.
  • the gas reactant input unit and the liquid reactant input unit are separately configured, so that the reactants mixed in the fluid distribution device include droplets of a certain size or more according to the flow rate ratio of the liquid reactant and the gas reactant, It can be supplied to the catalyst packing unit in the form of airflow or spray.
  • the socket-type fluid distribution device constitutes a flow control unit configured to generate a certain flow resistance, thereby offsetting the differential pressure caused by catalyst filling that occurs differently for each catalyst filling portion in the reactor body, thereby reducing the distribution of reactants. It is possible to eliminate the effect of the differential pressure of the catalyst filling causing unevenness.
  • FIG. 1 is a schematic diagram of a socket-type fluid distribution device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a state in which a socket-type fluid distribution device according to an embodiment of the present invention is inserted into a reactor body.
  • socket-type fluid distribution device 100 according to the present invention will be described in more detail with reference to FIGS. 1 and 2 to aid in understanding the present invention.
  • the socket-type fluid distribution device 100 is a device for distributing and supplying a reactant of gas and/or liquid into the reactor body 200, and has a structure in which a partial region is inserted into the reactor body 200.
  • a body portion 10 formed;
  • a mixing passage 20 formed in the center of the body portion 10 and formed through the body portion 10;
  • a gas reactant input part 30 disposed above the body part 10 and having a gas flow path 40 formed therein;
  • a liquid reactant input unit 50 disposed between the body 10 and the gas reactant input unit 30 and having a liquid flow path 60 formed therein;
  • a flow control unit 70 formed in the mixing flow path 20.
  • the socket-type fluid distribution device 100 is for distributing and supplying gas and/or liquid reactants to the reactor body 200 provided in the unit reactor of the multi-tubular trickle-bed reactor.
  • the multi-tubular trickle-bed reactor may be composed of a plurality of unit reactors, and the unit reactor is a reactor body 200 and a catalyst filling unit (not shown) located inside the reactor body 200 and made of solid catalysts. It may include.
  • the multi-tubular trickle-bed reactor is a downstream catalytic reactor, in which a raw material fluid composed of reactants of gas and/or liquid in a catalytic process is introduced into each reactor body 200 provided in a unit reactor, and the reactor body 200 As it passes through the internal catalyst filling part, a series of chemical reactions are performed.
  • the socket-type fluid distribution device 100 according to the present invention is installed at the top of each reactor body 200 provided in the unit reactor of the multi-tubular trickle-bed reactor to distribute gas and/or liquid reactants as raw material fluids. And it can play a role of injecting.
  • the raw material fluid In the multi-tubular trickle-bed reactor, the raw material fluid must be introduced into the center of the uppermost end of the reactor body 200. If the raw material fluid is not injected into the center of the uppermost part of the reactor body 200, the raw material fluid flows along the inner wall of the reactor (wall flow phenomenon) and does not react with the catalyst or reacts with a part of the catalyst, resulting in a large reaction efficiency.
  • Deteriorate a wall flow phenomenon
  • the conventional multi-tubular trickle-bed reactor has a problem in that it is difficult to evenly distribute the reactants to each unit reactor.
  • the conventional multi-tubular trickle-bed reactor is configured to overflow when the liquid reactants in the trays of each layer (step) are filled to a certain level or higher, so when a differential pressure occurs due to non-uniformity of the filling of the catalyst in each unit reactor. There was a problem that it was difficult to achieve even distribution.
  • the socket-type fluid distribution device 100 is configured in a socket type that can be inserted and fixed in the reactor body 200, so that each reactor body provided in the unit reactor of the multi-tubular trickle-bed reactor ( Since it is inserted on top of 200) it can enable the fluid dispensing device to be aligned in the correct position.
  • some regions of the socket-type fluid distribution device 100 according to the present invention are inserted and fixed at the top of each reactor body 200 provided in the unit reactor of the multi-tubular trickle-bed reactor, and accordingly, the socket Since the reactant can be injected into the center of the uppermost end of the reactor body 200 through the type fluid distribution device 100, the problem that occurs when the reactant flows along the inner wall of the unit reactor can be solved when a conventional fluid distribution device is used.
  • the socket-type fluid distribution device 100 has a differential pressure due to filling of a catalyst for each unit reactor of a conventional multi-tubular trickle-bet reactor through a flow control unit 70 formed in the mixing flow path 20 to be described later. When this occurs, it is possible to solve the problem that it is difficult to achieve even distribution of the reactants.
  • the socket-type fluid distribution device 100 includes a plurality of body parts 10 provided on the same line in order to be inserted and fixed in each reactor body 200 provided in a unit reactor of a multi-tubular trickle-bed reactor arranged in parallel. It may include. Specifically, the plurality of body portions 10 may be formed to correspond to positions corresponding to the unit reactors of the multi-tubular trickle-bed reactor. The body portion 10 may be configured to be inserted and fixed to the uppermost end of the reactor body 200, and there is no limitation on the specific structure and method thereof. For example, the outer diameter of the body portion 10 is the same as the inner diameter of the reactor body 200, the body portion 10 may be inserted and fixed to the uppermost end of the reactor body 200.
  • the socket-type fluid distribution device 100 may be located at the center of the uppermost end of each reactor body 200.
  • the socket-type fluid distribution device 100 may include a locking protrusion 12 formed on one side of the outer circumferential surface of the body 10.
  • the engaging protrusion 12 is a reactor from the lower end of the body 10 to an arbitrary height. When inserted into the upper end of the main body 200 is formed to be caught in the reactor main body 200.
  • the lower region may be a predetermined region into which the body portion is inserted into the reactor body 200, that is, an insertion region (b), based on the engaging protrusion 12
  • the upper region may be a predetermined region of the socket-type fluid distribution device 100 that is not inserted into the reactor body 200, that is, an uninserted region (a).
  • the non-inserted area (a) compared to the inner diameter (T inner diameter) of the reactor body may be 0.5 to 1
  • the length (b/T inner diameter) of the insertion region (b) compared to the inner diameter (T inner diameter ) of the cylinder may be 0.5 or more and less than 2.
  • the insertion region (b) may be inserted and fixed in a form that is spaced apart from the top layer of the catalyst filling portion in the reactor body 200 by a predetermined distance, abuts the top layer of the catalyst filling portion, or inserted into the catalyst filling portion. have.
  • the body portion 10 may have a structure that is detachable from the upper end of the reactor body 200.
  • the socket-type fluid distribution device 100 according to the present invention, if necessary, by inserting the body portion 10 into the upper end of the reactor body 200, binding, or detaching from the upper end of the reactor body 200 It can be easy. Therefore, in the case of exchanging the catalyst in the reactor body 200 or washing the reactor body 200, the body portion 10 can be easily detached from the reactor body 200.
  • the socket-type fluid distribution device 100 may include a sealing portion 14 formed along an outer circumferential surface of the lower end of the body portion 10.
  • the sealing part 14 may serve to fix the socket-type fluid distribution device 100 to each reactor body 200 provided in a unit reactor of a multi-tubular trickle-bed reactor.
  • the socket-type It may serve to airtight to prevent the reactants from moving to a region not passing through the fluid distribution device 100, that is, a region between the reactor body 200 and the socket-type fluid distribution device 100.
  • the mixing passage 20 is formed in the center of the body portion 10 and may be formed through the body portion 10. In this way, in the mixing passage 20 formed through the body portion 10 in the center of the body portion 10, the gaseous reactant and the liquid reactant supplied through the gas passage 40 and the liquid passage 60 to be described later are Can be mixed.
  • the mixed reactant in which the gaseous reactant and the liquid reactant are mixed in the mixing passage 20 may move from the top to the bottom of the socket-type fluid distribution device 100. Specifically, the gaseous reactant and the liquid reactant are mixed in the mixing flow path 20 and flow from the top to the bottom of the socket-type fluid distribution device 100, and are discharged through the lowermost end of the mixing flow path 20 to the reactor main body 200. ) Can be supplied to the central part.
  • the gas reactant input unit 30 may be disposed above the body 10, and a gas flow path 40 may be formed. Specifically, the gas reactant input unit 30 is formed on the upper portion of the body portion 10, and the gas flow path 40 passes through the gas reactant input unit 30 in the center of the gas reactant input unit 30. Can be formed.
  • the gas flow path 40 may be connected to the mixing flow path 20.
  • the gaseous reactant may flow from top to bottom along the gas flow path 40, and may pass through the gas flow path 40 and be supplied to the mixing flow path 20.
  • the front end of the gas flow path 40 may include a pipe for supplying the gas reactant to the gas flow path 40, and in supplying the gas reactant to the gas flow path 40, controlling the supply flow rate of the gas reactant Additional devices such as valves and pumps may be installed.
  • the flow rate of the gaseous reactant supplied through the gas flow path 40 may be 25 ml/min to 5000 ml/min.
  • the flow rate of the gaseous reactant transferred to the mixing flow path 20 through the gas flow path 40 may be 25 ml/min to 4000 ml/min or 500 ml/min to 3000 ml/min.
  • the flow rate of the liquid reactant supplied to the liquid flow path 60 is fixed at 10 to 25 ml/min
  • the flow rate of the gas reactant supplied through the gas flow path 40 is 1000 ml/min to In the case of 2500 ml/min
  • the mixed reactant formed by mixing the gaseous reactant and the liquid reactant in the mixing passage 20 may be in the form of a spray.
  • a mixed reactant formed by mixing a gaseous reactant and a liquid reactant in the mixing flow path 20 May be in the form of airflow.
  • the flow rate of the gaseous reactant supplied through the gas flow path 40 is 25 ml/min to 1000 ml/min
  • the mixture formed by mixing the gaseous reactant and the liquid reactant in the mixing flow path 20 The reactants may be in the form of droplets.
  • the droplet size of the mixed reactant may be controlled.
  • the average size of droplets in the mixed reactant may be 10 mm 3 to 17 mm 3
  • the average size of droplets in the mixed reactant may be 3 mm 3 to 10 mm 3
  • the gas flow path When the flow rate of the gaseous reactant supplied through 40) is 500 ml/min to 1000 ml/min, the average size of droplets in the mixed reactant may be 0.6 mm 3 to 3 mm 3.
  • the liquid reactant input portion 50 is disposed between the body portion 10 and the gas reactant input portion 30, and a liquid flow path 60 may be formed.
  • the liquid reactant input unit 50 is formed at a predetermined height in a region between the body portion 10 and the gaseous reactant input unit 30, and a liquid flow path ( 60) can be formed.
  • the liquid flow path 60 is formed in the form of a plurality of holes at a predetermined interval along the outer surface of the liquid reactant input unit 50, or is connected to the mixing flow path 20 from the outer surface of the liquid reactant input unit 50. It can be formed in the form of a pipe.
  • the liquid flow path 60 may be formed at a position lower than the liquid level made of the liquid reactant in the multi-tubular trickle-bed reactor so that the liquid reactant can flow along the liquid flow path 60.
  • the liquid flow path 60 may be formed in plural along the outer surface of the liquid reactant input unit 50.
  • a plurality of the liquid flow paths 60 may be formed at regular intervals along the outer surface of the liquid reactant input unit 50, and the number of the liquid flow paths 60 is supplied to the mixing flow path 20. It can be appropriately adjusted according to the flow rate of the liquid reactant to be.
  • the flow rate of the liquid reactant transferred to the mixing flow path 20 through the liquid flow path 60 may be 0.25 ml/min to 250 ml/min.
  • the flow rate of the liquid reactant transferred to the mixing flow path 20 through the liquid flow path 60 is 0.25 ml/min to 2.5 ml/min, 2.5 ml/min to 50 ml/min, or 50 ml/min. It can be 250 ml/min.
  • the flow rate of the gaseous reactant supplied through the gas flow path 40 compared to the flow rate of the liquid reactant supplied through the liquid flow path 60 may be 1 to 100.
  • the flow rate of the gaseous reactant relative to the flow rate of the liquid reactant may be 10 to 100, 20 to 100, or 40 to 100.
  • the gas reactant input unit 30 and the liquid reactant input unit 50 are separately configured, so that the mixed reactant mixed in the mixing flow path 20 inside the socket-type fluid distribution device 100 is gas compared to the flow rate of the liquid reactant.
  • the reactant may be supplied to each reactor body 200 of the unit reactors of the multi-tubular trickle-bed reactor in the form of droplets, air flows, or sprays of a predetermined size or more.
  • the flow control unit 70 is formed in an arbitrary region of the mixing channel 20 to increase the pressure of the mixed reactant in which the gaseous reactant and the liquid reactant are mixed in the mixing channel 20.
  • the flow control unit 70 may be configured such that the pressure of the mixed reactant passing through the flow control unit 70 is greater than the differential pressure generated in the catalyst filling unit (not shown).
  • the differential pressure generated in the catalyst filling unit (not shown).
  • differential pressure due to catalyst filling occurs differently for each catalyst total charging unit.
  • a differential pressure is generated due to flow resistance to the stream passing through the catalyst packing part.
  • a differential pressure is generated according to a minute difference in size of the catalysts filled in the catalyst filling part, or the density, shape, etc. to be filled.
  • the socket-type fluid distribution device 100 is configured such that the pressure of the mixed reactant is greater than the differential pressure generated in the catalyst filling portion, thereby offsetting the differential pressure caused by catalyst filling that occurs differently for each catalyst filling portion.
  • the flow control unit 70 includes: a first inclined portion 72 in which a diameter of the mixing flow path 20 becomes narrower along the length direction of the mixing flow path 20; A holding portion 74 whose diameter is maintained; And a second inclined portion 76 in which the diameter of the mixing flow path is widened.
  • Specific values such as the angle of the first inclined portion 72, the length of the holding portion 74, and the angle of the second inclined portion 76 are determined by the pressure of the mixed reactant passing through the flow controller 70 to the catalyst filling. It can be set so that a pressure increase large enough to offset the differential pressure caused by it can be generated. According to the angle adjustment of the first inclined portion 72 and the second inclined portion 76 and the length of the holding portion 74, the flow controller 70 of various shapes may be formed.
  • the inclination of the first inclined portion 72 is 0° to 90°
  • the length of the holding portion 74 is 1 mm to 20 mm
  • the inclination of the second inclined portion 76 may be 0° to 90°. have.
  • the inclination of the first inclined portion 72 may be 10° to 90°, 30° to 90°, or 30° to 45°. By adjusting the inclination of the first inclined portion 72 within the above range, artificial flow resistance can be generated at the front end of the mixing flow path 20.
  • the length of the holding part 74 may be 1 mm to 15 mm, 5 mm to 15 mm, or 10 mm to 15 mm. By adjusting the length of the holding part 74 within the above range, the flowability of the mixed reactant can be controlled.
  • the inclination of the second inclined portion 76 may be 10° to 90°, 30° to 90°, or 30° to 45°.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

A socket-type fluid distribution apparatus according to the present invention is a socket-type fluid distribution apparatus for distributing and supplying a gas and/or liquid reactant into a reactor main body. The socket-type fluid distribution apparatus comprises: a body part formed to have a structure in which a part of the body part is inserted into the reactor main body; a mixing fluid channel formed at the center of the body part and extending through the body part; a gas reactant input part disposed above the body part and having a gas fluid channel formed therein; a liquid reactant input part disposed between the body part and the gas reactant input part and having a liquid fluid channel formed therein; and a flow control part formed at the mixing fluid channel.

Description

소켓형 유체 분배 장치Socket type fluid dispensing device
관련출원과의 상호인용Mutual citation with related applications
본 출원은 2019년 09월 24일자 한국특허출원 제10-2019-0117210호 및 2020년 05월 27일자 한국특허출원 제10-2020-0063701호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0117210 filed on September 24, 2019 and Korean Patent Application No. 10-2020-0063701 filed on May 27, 2020. All contents disclosed in the literature are included as part of this specification.
기술분야Technical field
본 발명은 원료 유체를 다관형 반응기 내의 복수 개의 반응기 본체로 분배 및 투입하기 위한 유체 분배 장치에 관한 것으로, 보다 상세하게는 다관형 트리클-베드용 소켓형 유치 분배 장치에 관한 것이다.The present invention relates to a fluid distribution device for distributing and introducing a raw material fluid to a plurality of reactor bodies in a multi-tubular reactor, and more particularly, to a socket-type indwelling distribution device for a multi-tubular trickle-bed.
현재까지 알려진 다관형 반응기의 분배 장치 설계와 적용은 반응기에 투입되는 반응물의 상(phase)에 따라 그 형태가 결정된다.The design and application of a distribution device for a multi-tubular reactor known to date depends on the phase of the reactants introduced into the reactor.
트리클-베드 형태의 반응기는 일반적으로 일정 수준 이상의 직경을 갖는 고정층 반응기로써, 액상의 반응물과 기상의 반응물을 반응기로 공급하는 형태를 갖는다. 트리클-베드 반응기에 적용하고자 하는 반응이 과도한 열량을 발생시키거나, 반응성으로 공정 운전에 안정성 확보가 필요할 경우, 직경이 큰 단관형 반응기 보다는 단위 반응기가 병렬로 배치된 다관형 반응기를 적용하게 된다. 이러한 다관형 반응기는 직경이 큰 단관형 반응기에 비해 큰 열교환 면적을 제공하는 점에서 장점이 있다.The trickle-bed type reactor is generally a fixed bed reactor having a diameter of at least a certain level, and has a type of supplying a liquid reactant and a gaseous reactant to the reactor. When the reaction to be applied to the trickle-bed reactor generates an excessive amount of heat, or when it is necessary to ensure stability in the process operation due to reactivity, a multi-tubular reactor in which unit reactors are arranged in parallel rather than a single-tube reactor with a large diameter is applied. Such a multi-tubular reactor has an advantage in that it provides a large heat exchange area compared to a single-tube reactor having a large diameter.
그러나 이러한 종래의 다관형 반응기는 각 단위 반응기로의 반응물의 균등 분배가 어려운 문제점이 있었다. 또한, 종래의 다관형 반응기는 각 층(단계)의 트레이에 액상의 반응물이 일정 수위 이상 차게 되면 넘쳐 흐르는 형태로 이루어져 있어, 각 단위 반응기마다 촉매층의 불균일에 따른 차압이 발생할 경우 균등한 분배가 이루어지기 어려운 문제점이 있었다.However, such a conventional multi-tubular reactor has a problem in that it is difficult to evenly distribute the reactants to each unit reactor. In addition, the conventional multi-tubular reactor is configured to overflow when the liquid reactants in the trays of each layer (step) are filled to a certain level or more, so that when a differential pressure occurs due to the non-uniformity of the catalyst layer for each unit reactor, even distribution is achieved. There was a problem that was difficult to lose.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 분배 장치가 정확한 위치에 정렬될 수 있으며, 단위 반응기마다 촉매 충진에 의해 발생하는 차압을 상쇄하고, 액상 반응물과 기상 반응물의 유량비에 따라 다양한 크기의 액적과 기류 또는 분무 형태로 촉매층에 공급할 수 있는 소켓형 유체 분배 장치를 제공하는 데 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, the distribution device can be aligned at the correct position, offset the differential pressure generated by the catalyst filling for each unit reactor, and according to the flow rate ratio of the liquid reactant and the gaseous reactant An object of the present invention is to provide a socket-type fluid distribution device capable of supplying droplets of various sizes to a catalyst bed in the form of airflow or spray.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 소켓형 유체 분배 장치는, 기체 및/또는 액체의 반응물을 반응기 본체 내로 분배 공급하기 위한 소켓형 유체 분배 장치로서, 상기 반응기 본체에 일부 영역이 삽입되는 구조로 형성되는 몸체부; 상기 몸체부의 중심부에 형성되며, 몸체부를 관통하여 형성되는 혼합 유로; 상기 몸체부의 상부에 배치되며, 기체 유로가 형성된 기체 반응물 투입부; 상기 몸체부와 상기 기체 반응물 투입부 사이에 배치되며, 액체 유로가 형성된 액체 반응물 투입부; 및 상기 혼합 유로에 형성되는 흐름 제어부를 포함할 수 있다.A socket-type fluid distribution device according to the present invention for achieving the above object is a socket-type fluid distribution device for distributing and supplying a reactant of gas and/or liquid into a reactor body, wherein a partial region is inserted into the reactor body. A body portion formed in a structure; A mixing passage formed in the center of the body portion and formed through the body portion; A gas reactant input unit disposed on the upper portion of the body and having a gas flow path; A liquid reactant input portion disposed between the body portion and the gaseous reactant input portion and having a liquid flow path; And a flow control unit formed in the mixing flow path.
본 발명의 일 실시예에 따르면, 상기 소켓형 유체 분배 장치는, 상기 몸체부의 외주면 일 측에 형성되는 걸림용 돌출부를 더 포함하는 것을 특징으로 한다.According to an embodiment of the present invention, the socket-type fluid distribution device further includes a locking protrusion formed on one side of an outer circumferential surface of the body portion.
본 발명의 일 실시예에 따르면, 상기 소켓형 유체 분배 장치는, 상기 몸체부 하단의 외주면을 따라 형성되는 실링부를 더 포함하는 것을 특징으로 한다.According to an embodiment of the present invention, the socket-type fluid distribution device further includes a sealing portion formed along an outer circumferential surface of a lower end of the body portion.
본 발명의 일 실시예에 따르면, 상기 소켓형 유체 분배 장치는, 동일 선상에 구비된 복수 개의 몸체부를 포함하는 것을 특징으로 한다.According to an embodiment of the present invention, the socket-type fluid distribution device is characterized in that it includes a plurality of body parts provided on the same line.
본 발명의 일 실시예에 따르면, 상기 기체 반응물과 액체 반응물은 상기 혼합 유로에서 혼합되어 이동되는 것을 특징으로 한다.According to an embodiment of the present invention, the gaseous reactant and the liquid reactant are mixed and moved in the mixing flow path.
본 발명의 일 실시예에 따르면, 상기 혼합 유로에서 혼합되는 혼합 반응물은, 상기 액체 반응물 대비 기체 반응물의 유량에 따라 상기 반응기 본체 내로 공급되는 혼합 반응물의 형태가 제어되는 것을 특징으로 한다.According to an embodiment of the present invention, the mixed reactant mixed in the mixing flow path is characterized in that the shape of the mixed reactant supplied into the reactor body is controlled according to the flow rate of the gaseous reactant relative to the liquid reactant.
본 발명의 일 실시예에 따르면, 상기 액체 반응물의 유량 대비 기체 반응물의 유량은 1 내지 100인 것을 특징으로 한다. According to an embodiment of the present invention, the flow rate of the gaseous reactant relative to the flow rate of the liquid reactant is 1 to 100.
본 발명의 일 실시예에 따르면, 상기 반응기 본체로 공급되는 혼합 반응물의 형태는 액적, 기류 또는 분무 형태인 것을 특징으로 한다.According to an embodiment of the present invention, The form of the mixed reactant supplied to the reactor body is characterized in that it is in the form of droplets, airflow, or spray.
본 발명의 일 실시예에 따르면, 상기 흐름 제어부는, 상기 혼합 유로에서 혼합되는 혼합 반응물의 압력을 증가시키도록 구성되는 것을 특징으로 한다.According to an embodiment of the present invention, the flow control unit is configured to increase the pressure of the mixed reactant mixed in the mixing flow path.
본 발명의 일 실시예에 따르면, 상기 소켓형 유체 분배 장치는 상기 반응기 본체 내부에 위치하며 고체 촉매들로 이루어진 촉매 충진부를 포함하고, 상기 흐름 제어부는, 상기 흐름 제어부를 통과한 혼합 반응물의 압력이 상기 촉매 충진부에서 발생하는 차압보다 크게 되도록 구성되는 것을 특징으로 한다.According to an embodiment of the present invention, the socket-type fluid distribution device is located inside the reactor body and includes a catalyst filling unit made of solid catalysts, and the flow control unit includes a pressure of the mixed reactant passing through the flow control unit. It is characterized in that it is configured to be greater than the differential pressure generated in the catalyst filling portion.
본 발명의 일 실시예에 따르면, 상기 흐름 제어부는, 상기 혼합 유로의 길이방향을 따라서, 상기 혼합 유로의 직경이 좁아지는 제1 경사부; 직경이 유지되는 유지부; 및 상기 혼합 유로의 직경이 넓어지는 제2 경사부를 포함하는 것을 특징으로 한다.According to an embodiment of the present invention, the flow control unit may include: a first inclined portion whose diameter of the mixing flow path is narrowed along a length direction of the mixing flow path; A retaining part whose diameter is maintained; And a second inclined portion in which the diameter of the mixing flow path is widened.
본 발명의 일 실시예에 따르면, 상기 제1 경사부의 경사도는 0° 내지 90°이고, 유지부의 길이는 1 mm 내지 20 mm이며, 제2 경사부의 경사도는 0° 내지 90°인 것을 특징으로 한다.According to an embodiment of the present invention, the inclination of the first inclined portion is 0° to 90°, the length of the holding portion is 1 mm to 20 mm, and the inclination of the second inclined portion is 0° to 90°. .
본 발명에 따른 소켓형 유체 분배 장치에 의하면, 소켓형으로 구성되어 있어, 다관형 반응기의 단위 반응기에 구비된 각 반응기 본체마다 삽입되기 때문에 유체 분배 장치가 정확한 위치에 정렬되는 것을 가능하게 한다.According to the socket-type fluid distribution device according to the present invention, since it is configured in a socket type, since it is inserted into each reactor body provided in a unit reactor of a multi-tubular reactor, it is possible to align the fluid distribution device in an accurate position.
또한, 본 발명에 따른 소켓형 유체 분배 장치에 의하면, 기체 반응물 투입부와 액체 반응물 투입부를 별도로 구성하여, 유체 분배 장치 내부에서 혼합된 반응물은 액체 반응물과 기체 반응물의 유량비에 따라 일정 크기 이상의 액적, 기류 또는 분무 형태로 촉매 충진부에 공급될 수 있다.In addition, according to the socket-type fluid distribution device according to the present invention, the gas reactant input unit and the liquid reactant input unit are separately configured, so that the reactants mixed in the fluid distribution device include droplets of a certain size or more according to the flow rate ratio of the liquid reactant and the gas reactant, It can be supplied to the catalyst packing unit in the form of airflow or spray.
또한, 본 발명에 따른 소켓형 유체 분배 장치는 일정 흐름 저항이 발생하게 구성되는 흐름 제어부를 구성하여, 반응기 본체 내의 촉매 충진부마다 다르게 발생하는 촉매 충진에 의한 차압을 상쇄할 수 있어, 반응물 분배의 불균등을 야기하는 촉매 충진 차압에 의한 영향을 해소할 수 있다.In addition, the socket-type fluid distribution device according to the present invention constitutes a flow control unit configured to generate a certain flow resistance, thereby offsetting the differential pressure caused by catalyst filling that occurs differently for each catalyst filling portion in the reactor body, thereby reducing the distribution of reactants. It is possible to eliminate the effect of the differential pressure of the catalyst filling causing unevenness.
도 1은 본 발명의 일 실시예에 따른 소켓형 유체 분배 장치의 개략도이다.1 is a schematic diagram of a socket-type fluid distribution device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 소켓형 유체 분배 장치가 반응기 본체에 삽입된 상태를 나타내는 개략도이다.2 is a schematic diagram showing a state in which a socket-type fluid distribution device according to an embodiment of the present invention is inserted into a reactor body.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선을 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the description and claims of the present invention should not be construed as being limited to a conventional or dictionary meaning, and the inventors appropriately explain the concept of terms in order to explain their own invention in the best way. Based on the principle that it can be defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 도 1 및 도 2를 참조하여 본 발명에 따른 소켓형 유체 분배 장치(100)를 더욱 상세하게 설명한다.Hereinafter, the socket-type fluid distribution device 100 according to the present invention will be described in more detail with reference to FIGS. 1 and 2 to aid in understanding the present invention.
본 발명에 따르면, 상기 소켓형 유체 분배 장치(100)는, 기체 및/또는 액체의 반응물을 반응기 본체(200) 내로 분배 공급하기 위한 장치로서, 반응기 본체(200)에 일부 영역이 삽입되는 구조로 형성되는 몸체부(10); 몸체부(10)의 중심부에 형성되며, 몸체부(10)를 관통하여 형성되는 혼합 유로(20); 몸체부(10)의 상부에 배치되며, 기체 유로(40)가 형성된 기체 반응물 투입부(30); 몸체부(10)와 기체 반응물 투입부(30) 사이에 배치되며, 액체 유로(60)가 형성된 액체 반응물 투입부(50); 및 혼합 유로(20)에 형성되는 흐름 제어부(70)를 포함할 수 있다.According to the present invention, the socket-type fluid distribution device 100 is a device for distributing and supplying a reactant of gas and/or liquid into the reactor body 200, and has a structure in which a partial region is inserted into the reactor body 200. A body portion 10 formed; A mixing passage 20 formed in the center of the body portion 10 and formed through the body portion 10; A gas reactant input part 30 disposed above the body part 10 and having a gas flow path 40 formed therein; A liquid reactant input unit 50 disposed between the body 10 and the gas reactant input unit 30 and having a liquid flow path 60 formed therein; And a flow control unit 70 formed in the mixing flow path 20.
본 발명의 일 실시예에 따르면, 상기 소켓형 유체 분배 장치(100)는 다관형 트리클-베드 반응기의 단위 반응기에 구비된 반응기 본체(200)에 기체 및/또는 액체의 반응물을 분배 공급하기 위한 것일 수 있다. 상기 다관형 트리클-베드 반응기는 복수의 단위 반응기로 구성될 수 있고, 상기 단위 반응기는 반응기 본체(200)와, 반응기 본체(200) 내부에 위치하며 고체 촉매들로 이루어진 촉매 충진부(미도시)를 포함할 수 있다. According to an embodiment of the present invention, the socket-type fluid distribution device 100 is for distributing and supplying gas and/or liquid reactants to the reactor body 200 provided in the unit reactor of the multi-tubular trickle-bed reactor. I can. The multi-tubular trickle-bed reactor may be composed of a plurality of unit reactors, and the unit reactor is a reactor body 200 and a catalyst filling unit (not shown) located inside the reactor body 200 and made of solid catalysts. It may include.
상기 다관형 트리클-베드 반응기는 하향류 촉매 반응기로서, 촉매 프로세스에서 기체 및/또는 액체의 반응물로 이루어진 원료 유체가 단위 반응기에 구비된 각 반응기 본체(200)로 유입되고, 상기 반응기 본체(200) 내부의 촉매 충진부를 통과하면서 일련의 화학 반응을 거치게 된다. 이에, 본 발명에 따른 소켓형 유체 분배 장치(100)는 다관형 트리클-베드 반응기의 단위 반응기에 구비된 각 반응기 본체(200)의 최상단에 설치되어 원료 유체로서 기체 및/또는 액체의 반응물을 분배 및 투입하는 역할을 할 수 있다.The multi-tubular trickle-bed reactor is a downstream catalytic reactor, in which a raw material fluid composed of reactants of gas and/or liquid in a catalytic process is introduced into each reactor body 200 provided in a unit reactor, and the reactor body 200 As it passes through the internal catalyst filling part, a series of chemical reactions are performed. Accordingly, the socket-type fluid distribution device 100 according to the present invention is installed at the top of each reactor body 200 provided in the unit reactor of the multi-tubular trickle-bed reactor to distribute gas and/or liquid reactants as raw material fluids. And it can play a role of injecting.
상기 다관형 트리클-베드 반응기에서 원료 유체는 반응기 본체(200) 최상단의 중앙부에 투입되어야 한다. 반응기 본체(200) 최상단의 중앙부로 원료 유체가 투입되지 않으면 원료 유체는 반응기의 내벽을 타고 흘러(wall flow 현상) 촉매와 반응하지 않거나 촉매의 일부와 반응하여 반응 편차가 발생하는 등 반응 효율이 크게 저하된다In the multi-tubular trickle-bed reactor, the raw material fluid must be introduced into the center of the uppermost end of the reactor body 200. If the raw material fluid is not injected into the center of the uppermost part of the reactor body 200, the raw material fluid flows along the inner wall of the reactor (wall flow phenomenon) and does not react with the catalyst or reacts with a part of the catalyst, resulting in a large reaction efficiency. Deteriorate
그러나 종래의 다관형 트리클-베드 반응기는 각 단위 반응기로 반응물의 균등 분배가 어려운 문제점이 있었다. 또한, 종래의 다관형 트리클-베드 반응기는 각 층(단계)의 트레이에 액상의 반응물이 일정 수위 이상 차게 되면 넘쳐 흐르는 형태로 이루어져 있어, 각 단위 반응기마다 촉매의 충진의 불균일에 따른 차압이 발생할 경우 균등한 분배가 이루어지기 어려운 문제점이 있었다.However, the conventional multi-tubular trickle-bed reactor has a problem in that it is difficult to evenly distribute the reactants to each unit reactor. In addition, the conventional multi-tubular trickle-bed reactor is configured to overflow when the liquid reactants in the trays of each layer (step) are filled to a certain level or higher, so when a differential pressure occurs due to non-uniformity of the filling of the catalyst in each unit reactor. There was a problem that it was difficult to achieve even distribution.
이에 대해, 본 발명에 따른 소켓형 유체 분배 장치(100)는 반응기 본체(200)에 삽입 고정될 수 있는 소켓형으로 구성되어 있어, 다관형 트리클-베드 반응기의 단위 반응기에 구비된 각 반응기 본체(200)의 상부에 삽입되기 때문에 유체 분배 장치가 정확한 위치에 정렬되는 것을 가능하게 할 수 있다. 구체적으로, 본 발명에 따른 소켓형 유체 분배 장치(100)의 일부 영역은 다관형 트리클-베드 반응기의 단위 반응기에 구비된 각 반응기 본체(200)의 최상단에 삽입되어 고정되고, 이에 따라, 상기 소켓형 유체 분배 장치(100)를 통해 반응기 본체(200) 최상단의 중앙부로 반응물을 투입할 수 있어, 종래의 유체 분배 장치를 사용할 때, 반응물이 단위 반응기 내벽을 타고 흐르면서 발생하는 문제점을 해결할 수 있다.On the other hand, the socket-type fluid distribution device 100 according to the present invention is configured in a socket type that can be inserted and fixed in the reactor body 200, so that each reactor body provided in the unit reactor of the multi-tubular trickle-bed reactor ( Since it is inserted on top of 200) it can enable the fluid dispensing device to be aligned in the correct position. Specifically, some regions of the socket-type fluid distribution device 100 according to the present invention are inserted and fixed at the top of each reactor body 200 provided in the unit reactor of the multi-tubular trickle-bed reactor, and accordingly, the socket Since the reactant can be injected into the center of the uppermost end of the reactor body 200 through the type fluid distribution device 100, the problem that occurs when the reactant flows along the inner wall of the unit reactor can be solved when a conventional fluid distribution device is used.
또한, 본 발명에 따른 소켓형 유체 분배 장치(100)는 후술할 혼합 유로(20)에 형성되는 흐름 제어부(70)를 통해 종래의 다관형 트리클-베트 반응기의 단위 반응기마다 촉매의 충진에 의한 차압이 발생할 경우 반응물의 균등한 분배가 이루어지기 어려운 문제점을 해결할 수 있다.In addition, the socket-type fluid distribution device 100 according to the present invention has a differential pressure due to filling of a catalyst for each unit reactor of a conventional multi-tubular trickle-bet reactor through a flow control unit 70 formed in the mixing flow path 20 to be described later. When this occurs, it is possible to solve the problem that it is difficult to achieve even distribution of the reactants.
상기 소켓형 유체 분배 장치(100)는 병렬로 배치된 다관형 트리클-베드 반응기의 단위 반응기에 구비된 각 반응기 본체(200)에 삽입 고정하기 위하여, 동일 선상에 구비된 복수 개의 몸체부(10)를 포함할 수 있다. 구체적으로, 상기 복수 개의 몸체부(10)는 다관형 트리클-베드 반응기의 단위 반응기들에 대응되는 위치에 대응되도록 형성될 수 있다. 상기 몸체부(10)는 반응기 본체(200)의 최상단에 삽입 고정 가능하게 구성되면 되고, 그 구체적인 구조 및 방식에는 제한이 없다. 예를 들어, 상기 몸체부(10)의 외경은 반응기 본체(200)의 내경과 동일하여, 몸체부(10)가 반응기 본체(200)의 최상단에 삽입 고정될 수 있다. The socket-type fluid distribution device 100 includes a plurality of body parts 10 provided on the same line in order to be inserted and fixed in each reactor body 200 provided in a unit reactor of a multi-tubular trickle-bed reactor arranged in parallel. It may include. Specifically, the plurality of body portions 10 may be formed to correspond to positions corresponding to the unit reactors of the multi-tubular trickle-bed reactor. The body portion 10 may be configured to be inserted and fixed to the uppermost end of the reactor body 200, and there is no limitation on the specific structure and method thereof. For example, the outer diameter of the body portion 10 is the same as the inner diameter of the reactor body 200, the body portion 10 may be inserted and fixed to the uppermost end of the reactor body 200.
또한, 상기 몸체부(10)의 하단으로부터 임의의 높이까지 반응기 본체(200)의 상단에 삽입 고정될 수 있다. 구체적으로, 상기 반응기 본체(200)의 최상단은 촉매 투입을 위한 개구부가 존재하고, 상기 개구부에 본 발명에 따른 소켓형 유체 분배 장치(100)의 몸체부(10)의 일부 영역을 삽입 고정함으로써, 반응기 본체부(200)와 결착시킬 수 있다. 이와 같이, 본 발명에 따른 소켓형 유체 분배 장치(100)는 반응기 본체(200)와 결착 작업이 용이하고, 각 반응기 본체(200) 최상단의 중앙부에 혼합 유로(20)가 위치할 수 있다.In addition, it may be inserted and fixed to the upper end of the reactor body 200 from the lower end of the body portion 10 to an arbitrary height. Specifically, the uppermost end of the reactor body 200 has an opening for introducing a catalyst, and by inserting and fixing a partial region of the body portion 10 of the socket-type fluid distribution device 100 according to the present invention in the opening, It can be bonded to the reactor body portion 200. In this way, the socket-type fluid distribution device 100 according to the present invention facilitates a binding operation with the reactor body 200, and the mixing flow path 20 may be located at the center of the uppermost end of each reactor body 200.
상기 소켓형 유체 분배 장치(100)는 상기 몸체부(10)의 외주면 일 측에 형성되는 걸림용 돌출부(12)를 포함할 수 있다. 상기 걸림용 돌출부(12)는 소켓형 유체 분배 장치(100) 전체가 길이 방향에 따라 반응기 본체(200) 내부로 완전히 삽입되는 것을 방지하기 위해, 몸체부(10)의 하단으로부터 임의의 높이까지 반응기 본체(200)의 상단에 삽입된 경우 반응기 본체(200)에 걸리도록 형성되어 있다. The socket-type fluid distribution device 100 may include a locking protrusion 12 formed on one side of the outer circumferential surface of the body 10. In order to prevent the entire socket-type fluid distribution device 100 from being completely inserted into the reactor body 200 along the length direction, the engaging protrusion 12 is a reactor from the lower end of the body 10 to an arbitrary height. When inserted into the upper end of the main body 200 is formed to be caught in the reactor main body 200.
구체적으로, 상기 걸림용 돌출부(12)를 기준으로, 그 하부 영역은 반응기 본체(200)에 몸체부가 삽입되는 소정 영역, 즉 삽입 영역(b)일 수 있고, 상기 걸림용 돌출부(12)를 기준으로, 그 상부 영역은 반응기 본체(200)로 삽입되지 않은 소켓형 유체 분배 장치(100)의 소정 영역, 즉 미삽입 영역(a)일 수 있다.Specifically, based on the engaging protrusion 12, the lower region may be a predetermined region into which the body portion is inserted into the reactor body 200, that is, an insertion region (b), based on the engaging protrusion 12 As such, the upper region may be a predetermined region of the socket-type fluid distribution device 100 that is not inserted into the reactor body 200, that is, an uninserted region (a).
상기 몸체부(10)의 구체적인 구조나 크기가 제한은 없으나, 예를 들어, 상기 몸체부(10)는 원통 형태인 경우, 상기 반응기 본체의 내경(T 내경) 대비 상기 미삽입 영역(a)의 길이(a/T 내경)는 0.5 내지 1일 수 있고, 상기 원통의 내경(T 내경) 대비 상기 삽입 영역(b)의 길이(b/T 내경)는 0.5 이상 및 2 미만일 수 있다.Although the specific structure or size of the body portion 10 is not limited, for example, when the body portion 10 has a cylindrical shape, the non-inserted area (a) compared to the inner diameter (T inner diameter) of the reactor body The length (a/T inner diameter ) may be 0.5 to 1, and the length (b/T inner diameter) of the insertion region (b) compared to the inner diameter (T inner diameter ) of the cylinder may be 0.5 or more and less than 2.
상기 a/T 내경의 수치를 상기 범위로 제어함으로써, 반응기 본체에 체류하는 액체 반응물의 적체 허용량 기준(적체 액상 부피 = 반응기 본체 횡단면 총 면적 * a)을 형성하여 각 단위 반응기마다 반응물의 균등한 분배가 용이한 효과가 있고, 상기 b/T 내경의 수치를 상기 범위로 제어함으로써, 기체 및 액체가 혼합된 혼합 반응물이 분사되는 구간에 각 단위 반응기별 촉매 충진에 의한 차압 상쇄 효과를 제공할 수 있다.By controlling the value of the a/T inner diameter within the above range, the amount of accumulated liquid reactants remaining in the reactor body is formed based on the allowable accumulation of liquid reactants (stacked liquid volume = total cross-sectional area of the reactor body * a) and equally distributed for each unit reactor. Is easily effective, and by controlling the value of the b/T inner diameter within the above range, it is possible to provide an effect of offsetting the differential pressure by filling the catalyst for each unit reactor in the section in which the mixed reactant in which the gas and liquid are mixed is sprayed. .
상기 삽입 영역(b)은 반응기 본체(200) 내 촉매 충진부의 최상단 층과 소정 거리 이격되거나, 상기 촉매 충진부의 최상단 층과 맞닿아 있거나, 또는 상기 촉매 충진부 내부로 삽입된 형태로 삽입 고정될 수 있다.The insertion region (b) may be inserted and fixed in a form that is spaced apart from the top layer of the catalyst filling portion in the reactor body 200 by a predetermined distance, abuts the top layer of the catalyst filling portion, or inserted into the catalyst filling portion. have.
상기 몸체부(10)는 반응기 본체(200)의 상단으로부터 탈착이 가능한 구조일 수 있다. 구체적으로, 본 발명에 따른 소켓형 유체 분배 장치(100)는 필요에 따라, 몸체부(10)를 반응기 본체(200)의 상단에 삽입하여 결착시키거나, 반응기 본체(200)의 상단으로부터 탈착시키는 것이 용이할 수 있다. 따라서, 반응기 본체(200) 내 촉매를 교환하거나, 반응기 본체(200)를 세척하는 등의 경우에는 반응기 본체(200)로부터 몸체부(10)를 용이하게 탈착시킬 수 있다.The body portion 10 may have a structure that is detachable from the upper end of the reactor body 200. Specifically, the socket-type fluid distribution device 100 according to the present invention, if necessary, by inserting the body portion 10 into the upper end of the reactor body 200, binding, or detaching from the upper end of the reactor body 200 It can be easy. Therefore, in the case of exchanging the catalyst in the reactor body 200 or washing the reactor body 200, the body portion 10 can be easily detached from the reactor body 200.
상기 소켓형 유체 분배 장치(100)는 상기 몸체부(10) 하단의 외주면을 따라 형성되는 실링부(14)를 포함할 수 있다. 상기 실링부(14)는 소켓형 유체 분배 장치(100)를 다관형 트리클-베드 반응기의 단위 반응기에 구비된 각 반응기 본체(200)에 고정시키는 역할을 할 수 있다.The socket-type fluid distribution device 100 may include a sealing portion 14 formed along an outer circumferential surface of the lower end of the body portion 10. The sealing part 14 may serve to fix the socket-type fluid distribution device 100 to each reactor body 200 provided in a unit reactor of a multi-tubular trickle-bed reactor.
또한, 상기 실링부(14)는 소켓형 유체 분배 장치(100)를 이용하여 다관형 트리클-베드 반응기의 단위 반응기에 구비된 각 반응기 본체(200)에 기체 반응물 및 액체 반응물을 공급할 때, 소켓형 유체 분배 장치(100)를 통하지 않는 영역, 즉, 상기 반응기 본체(200)와 소켓형 유체 분배 장치(100) 사이의 영역으로 반응물이 이동하지 못하도록 기밀하는 역할을 할 수 있다.In addition, when the sealing unit 14 supplies gaseous reactants and liquid reactants to each reactor body 200 provided in a unit reactor of a multi-tubular trickle-bed reactor using the socket-type fluid distribution device 100, the socket-type It may serve to airtight to prevent the reactants from moving to a region not passing through the fluid distribution device 100, that is, a region between the reactor body 200 and the socket-type fluid distribution device 100.
본 발명의 일 실시예에 따르면, 상기 혼합 유로(20)는 몸체부(10)의 중심부에 형성되며, 몸체부(10)를 관통하여 형성될 수 있다. 이와 같이, 몸체부(10)의 중심부에 몸체부(10)를 관통하여 형성된 혼합 유로(20)에서, 후술할 기체 유로(40) 및 액체 유로(60)를 통해 공급되는 기체 반응물과 액체 반응물이 혼합될 수 있다. According to an embodiment of the present invention, the mixing passage 20 is formed in the center of the body portion 10 and may be formed through the body portion 10. In this way, in the mixing passage 20 formed through the body portion 10 in the center of the body portion 10, the gaseous reactant and the liquid reactant supplied through the gas passage 40 and the liquid passage 60 to be described later are Can be mixed.
상기 혼합 유로(20)에서 기체 반응물과 액체 반응물이 혼합된 혼합 반응물은 소켓형 유체 분배 장치(100)의 상부에서 하부로 이동할 수 있다. 구체적으로, 상기 기체 반응물과 액체 반응물은 혼합 유로(20)에서 혼합되어 소켓형 유체 분배 장치(100)의 상부에서 하부로 흐르게 되며, 상기 혼합 유로(20)의 최하단을 통해 배출되어 반응기 본체(200)의 중앙부로 공급될 수 있다.The mixed reactant in which the gaseous reactant and the liquid reactant are mixed in the mixing passage 20 may move from the top to the bottom of the socket-type fluid distribution device 100. Specifically, the gaseous reactant and the liquid reactant are mixed in the mixing flow path 20 and flow from the top to the bottom of the socket-type fluid distribution device 100, and are discharged through the lowermost end of the mixing flow path 20 to the reactor main body 200. ) Can be supplied to the central part.
본 발명의 일 실시예에 따르면, 상기 기체 반응물 투입부(30)는 몸체부(10)의 상부에 배치되며, 기체 유로(40)가 형성되어 있을 수 있다. 구체적으로, 상기 기체 반응물 투입부(30)는 몸체부(10)의 상부에 형성되며, 상기 기체 반응물 투입부(30)의 중심부에 기체 반응물 투입부(30)를 관통하여 기체 유로(40)가 형성될 수 있다.According to an embodiment of the present invention, the gas reactant input unit 30 may be disposed above the body 10, and a gas flow path 40 may be formed. Specifically, the gas reactant input unit 30 is formed on the upper portion of the body portion 10, and the gas flow path 40 passes through the gas reactant input unit 30 in the center of the gas reactant input unit 30. Can be formed.
상기 기체 유로(40)는 혼합 유로(20)와 연결될 수 있다. 예를 들어, 기체 반응물은 상기 기체 유로(40)를 따라 상부에서 하부로 흐를 수 있으며, 상기 기체 유로(40)를 통과하여 혼합 유로(20)로 공급될 수 있다.The gas flow path 40 may be connected to the mixing flow path 20. For example, the gaseous reactant may flow from top to bottom along the gas flow path 40, and may pass through the gas flow path 40 and be supplied to the mixing flow path 20.
상기 기체 유로(40)의 전단에는, 기체 반응물을 기체 유로(40)까지 공급하는 배관을 포함할 수 있고, 상기 기체 유로(40)로 기체 반응물을 공급하는데 있어, 기체 반응물의 공급 유량을 조절하기 위한 밸브 및 펌프 등의 추가적인 장치가 설치될 수 있다. The front end of the gas flow path 40 may include a pipe for supplying the gas reactant to the gas flow path 40, and in supplying the gas reactant to the gas flow path 40, controlling the supply flow rate of the gas reactant Additional devices such as valves and pumps may be installed.
상기 기체 유로(40)를 통해 공급되는 기체 반응물의 유량은 25 ml/min 내지 5000 ml/min일 수 있다. 예를 들어, 상기 기체 유로(40)를 통해 혼합 유로(20)로 이송되는 기체 반응물의 유량은 25 ml/min 내지 4000 ml/min 또는 500 ml/min 내지 3000 ml/min일 수 있다.The flow rate of the gaseous reactant supplied through the gas flow path 40 may be 25 ml/min to 5000 ml/min. For example, the flow rate of the gaseous reactant transferred to the mixing flow path 20 through the gas flow path 40 may be 25 ml/min to 4000 ml/min or 500 ml/min to 3000 ml/min.
하나의 예로서, 상기 액체 유로(60)로 공급되는 액체 반응물의 유량이 10 내지 25 ml/min으로 고정되어 있을 때, 기체 유로(40)를 통해 공급되는 기체 반응물의 유량이 1000 ml/min 내지 2500 ml/min인 경우, 혼합 유로(20)에서 기체 반응물과 액체 반응물이 혼합되어 형성된 혼합 반응물은 분무 형태일 수 있다.As an example, when the flow rate of the liquid reactant supplied to the liquid flow path 60 is fixed at 10 to 25 ml/min, the flow rate of the gas reactant supplied through the gas flow path 40 is 1000 ml/min to In the case of 2500 ml/min, the mixed reactant formed by mixing the gaseous reactant and the liquid reactant in the mixing passage 20 may be in the form of a spray.
다른 하나의 예로서, 상기 기체 유로(40)를 통해 공급되는 기체 반응물의 유량이 2500 ml/min 내지 5000 ml/min인 경우, 혼합 유로(20)에서 기체 반응물과 액체 반응물이 혼합되어 형성된 혼합 반응물은 기류 형태일 수 있다.As another example, when the flow rate of the gaseous reactant supplied through the gas flow path 40 is 2500 ml/min to 5000 ml/min, a mixed reactant formed by mixing a gaseous reactant and a liquid reactant in the mixing flow path 20 May be in the form of airflow.
또 다른 하나의 예로서, 상기 기체 유로(40)를 통해 공급되는 기체 반응물의 유량이 25 ml/min 내지 1000 ml/min인 경우, 혼합 유로(20)에서 기체 반응물과 액체 반응물이 혼합되어 형성된 혼합 반응물은 액적 형태일 수 있다. 상기 범위 내에서 기체 반응물의 유량을 조절하는 경우, 혼합 반응물의 액적 크기를 제어할 수 있다. 예를 들어, 상기 기체 유로(40)를 통해 공급되는 기체 반응물의 유량이 25 ml/min 내지 250 ml/min인 경우, 혼합 반응물 내 액적의 평균 크기는 10 mm 3 내지 17 mm 3일 수 있고, 상기 기체 유로(40)를 통해 공급되는 기체 반응물의 유량이 300 ml/min 내지 500 ml/min인 경우, 혼합 반응물 내 액적의 평균 크기는 3 mm 3 내지 10 mm 3일 수 있으며, 상기 기체 유로(40)를 통해 공급되는 기체 반응물의 유량이 500 ml/min 내지 1000 ml/min인 경우, 혼합 반응물 내 액적의 평균 크기는 0.6 mm 3 내지 3 mm 3일 수 있다.As another example, when the flow rate of the gaseous reactant supplied through the gas flow path 40 is 25 ml/min to 1000 ml/min, the mixture formed by mixing the gaseous reactant and the liquid reactant in the mixing flow path 20 The reactants may be in the form of droplets. When controlling the flow rate of the gaseous reactant within the above range, the droplet size of the mixed reactant may be controlled. For example, when the flow rate of the gaseous reactant supplied through the gas flow path 40 is 25 ml/min to 250 ml/min, the average size of droplets in the mixed reactant may be 10 mm 3 to 17 mm 3 , When the flow rate of the gaseous reactant supplied through the gas flow path 40 is 300 ml/min to 500 ml/min, the average size of droplets in the mixed reactant may be 3 mm 3 to 10 mm 3 , and the gas flow path ( When the flow rate of the gaseous reactant supplied through 40) is 500 ml/min to 1000 ml/min, the average size of droplets in the mixed reactant may be 0.6 mm 3 to 3 mm 3.
본 발명의 일 실시예에 따르면, 상기 액체 반응물 투입부(50)는 몸체부(10)와 기체 반응물 투입부(30) 사이에 배치되며, 액체 유로(60)가 형성되어 있을 수 있다. 구체적으로, 상기 액체 반응물 투입부(50)는 몸체부(10)와 기체 반응물 투입부(30) 사이의 영역에 일정 높이로 형성되며, 상기 액체 반응물 투입부(50)의 외측면에 액체 유로(60)가 형성될 수 있다.According to an embodiment of the present invention, the liquid reactant input portion 50 is disposed between the body portion 10 and the gas reactant input portion 30, and a liquid flow path 60 may be formed. Specifically, the liquid reactant input unit 50 is formed at a predetermined height in a region between the body portion 10 and the gaseous reactant input unit 30, and a liquid flow path ( 60) can be formed.
상기 액체 유로(60)는 액체 반응물 투입부(50)의 외측면을 따라 일정 간격을 두고 복수의 홀 형태로 형성되거나, 액체 반응물 투입부(50)의 외측면으로부터 혼합 유로(20)로 연결되는 배관 형태로 형성될 수 있다. The liquid flow path 60 is formed in the form of a plurality of holes at a predetermined interval along the outer surface of the liquid reactant input unit 50, or is connected to the mixing flow path 20 from the outer surface of the liquid reactant input unit 50. It can be formed in the form of a pipe.
상기 액체 유로(60)는, 다관형 트리클-베드 반응기 내 액체 반응물로 이루어진 액면보다 낮은 위치에 형성되어 액체 반응물이 액체 유로(60)를 따라 흐를 수 있도록 할 수 있다.The liquid flow path 60 may be formed at a position lower than the liquid level made of the liquid reactant in the multi-tubular trickle-bed reactor so that the liquid reactant can flow along the liquid flow path 60.
상기 액체 유로(60)는 액체 반응물 투입부(50)의 외측면을 따라서 복수 개로 형성될 수 있다. 예를 들어, 상기 액체 유로(60)가 액체 반응물 투입부(50)의 외측면을 따라서 일정 간격을 두고 복수 개로 형성될 수 있으며, 상기 액체 유로(60)의 개수는 혼합 유로(20)로 공급되는 액체 반응물의 유량에 따라 적절하게 조절될 수 있다.The liquid flow path 60 may be formed in plural along the outer surface of the liquid reactant input unit 50. For example, a plurality of the liquid flow paths 60 may be formed at regular intervals along the outer surface of the liquid reactant input unit 50, and the number of the liquid flow paths 60 is supplied to the mixing flow path 20. It can be appropriately adjusted according to the flow rate of the liquid reactant to be.
상기 액체 유로(60)를 통해 혼합 유로(20)로 이송되는 액체 반응물의 유량은 0.25 ml/min 내지 250 ml/min일 수 있다. 예를 들어, 상기 액체 유로(60)를 통해 혼합 유로(20)로 이송되는 액체 반응물의 유량은 0.25 ml/min 내지 2.5 ml/min, 2.5 ml/min 내지 50 ml/min 또는 50 ml/min 내지 250 ml/min일 수 있다.The flow rate of the liquid reactant transferred to the mixing flow path 20 through the liquid flow path 60 may be 0.25 ml/min to 250 ml/min. For example, the flow rate of the liquid reactant transferred to the mixing flow path 20 through the liquid flow path 60 is 0.25 ml/min to 2.5 ml/min, 2.5 ml/min to 50 ml/min, or 50 ml/min. It can be 250 ml/min.
본 발명의 일 실시예에 따르면, 상기 액체 유로(60)를 통해 공급되는 액체 반응물의 유량 대비 기체 유로(40)를 통해 공급되는 기체 반응물의 유량은 1 내지 100일 수 있다. 예를 들어, 상기 액체 반응물의 유량 대비 기체 반응물의 유량은 10 내지 100, 20 내지 100 또는 40 내지 100일 수 있다. 액체 반응물의 유량 대비 기체 반응물의 유량을 상기 범위로 제어함으로써, 혼합 유로(20)에서 기체 반응물과 액체 반응물이 혼합되어 형성된 혼합 반응물의 형태를 요구에 따라서 분무, 기류 또는 액적 형태로 조절할 수 있다.According to an embodiment of the present invention, the flow rate of the gaseous reactant supplied through the gas flow path 40 compared to the flow rate of the liquid reactant supplied through the liquid flow path 60 may be 1 to 100. For example, the flow rate of the gaseous reactant relative to the flow rate of the liquid reactant may be 10 to 100, 20 to 100, or 40 to 100. By controlling the flow rate of the gaseous reactant relative to the flow rate of the liquid reactant within the above range, the form of the mixed reactant formed by mixing the gaseous reactant and the liquid reactant in the mixing flow path 20 can be adjusted in the form of spray, airflow, or droplets as required.
이와 같이, 기체 반응물 투입부(30)와 액체 반응물 투입부(50)를 별도로 구성하여, 소켓형 유체 분배 장치(100) 내부의 혼합 유로(20)에서 혼합되는 혼합 반응물은 액체 반응물의 유량 대비 기체 반응물의 유량에 따라 일정 크기 이상의 액적, 기류 또는 분무 형태로 다관형 트리클-베드 반응기의 단위 반응기들의 각 반응기 본체(200)로 공급될 수 있다. In this way, the gas reactant input unit 30 and the liquid reactant input unit 50 are separately configured, so that the mixed reactant mixed in the mixing flow path 20 inside the socket-type fluid distribution device 100 is gas compared to the flow rate of the liquid reactant. Depending on the flow rate of the reactant, it may be supplied to each reactor body 200 of the unit reactors of the multi-tubular trickle-bed reactor in the form of droplets, air flows, or sprays of a predetermined size or more.
본 발명의 일 실시예에 따르면, 상기 흐름 제어부(70)는 혼합 유로(20)의 임의의 영역에 형성되어, 혼합 유로(20)에서 기체 반응물 및 액체 반응물이 혼합된 혼합 반응물의 압력을 증가시키도록 구성될 수 있다.According to an embodiment of the present invention, the flow control unit 70 is formed in an arbitrary region of the mixing channel 20 to increase the pressure of the mixed reactant in which the gaseous reactant and the liquid reactant are mixed in the mixing channel 20. Can be configured to
상기 흐름 제어부(70)는, 흐름 제어부(70)를 통과한 혼합 반응물의 압력이 촉매 충진부(미도시)에서 발생하는 차압보다 크게 되도록 구성될 수 있다. 구체적으로, 다관형 트리클-베드 반응기에 있어서, 복수의 단위 반응기 내의 각 반응기 본체(200)에 촉매를 충진하는 경우, 각각의 촉매 총진부 마다 다르게 발생하는 촉매 충진에 의한 차압이 발생하게 된다. 구체적으로, 촉매 충진부에 촉매를 충진하는 경우, 상기 촉매 충진부를 통과하는 스트림에 대한 흐름 저항으로 인해 차압이 발생하게 된다. 또한, 상기 촉매 충진부에 충진된 촉매들의 미세한 크기 차이 또는 충진되는 밀도, 형태 등에 따라서 차압이 발생하게 된다. 이에 대해 본 발명에 따른 소켓형 유체 분배 장치(100)는 혼합 반응물의 압력을 촉매 충진부에서 발생하는 차압보다 크게 되도록 구성함으로써, 촉매 충진부 마다 다르게 발생하는 촉매 충진에 의한 차압을 상쇄할 수 있어, 반응물 분배의 불균등을 야기하는 촉매 충진 차압에 의한 영향을 해소할 수 있다.The flow control unit 70 may be configured such that the pressure of the mixed reactant passing through the flow control unit 70 is greater than the differential pressure generated in the catalyst filling unit (not shown). Specifically, in a multi-tubular trickle-bed reactor, when the catalyst is filled in each reactor body 200 in a plurality of unit reactors, differential pressure due to catalyst filling occurs differently for each catalyst total charging unit. Specifically, when the catalyst is filled in the catalyst packing part, a differential pressure is generated due to flow resistance to the stream passing through the catalyst packing part. In addition, a differential pressure is generated according to a minute difference in size of the catalysts filled in the catalyst filling part, or the density, shape, etc. to be filled. On the other hand, the socket-type fluid distribution device 100 according to the present invention is configured such that the pressure of the mixed reactant is greater than the differential pressure generated in the catalyst filling portion, thereby offsetting the differential pressure caused by catalyst filling that occurs differently for each catalyst filling portion. In addition, it is possible to eliminate the influence of the differential pressure of the catalyst filling, which causes the uneven distribution of the reactants.
상기 흐름 제어부(70)는, 혼합 유로(20)의 길이 방향을 따라서, 혼합 유로(20)의 직경이 좁아지는 제1 경사부(72); 직경이 유지되는 유지부(74); 및 혼합 유로의 직경이 넓어지는 제2 경사부(76)를 포함할 수 있다.The flow control unit 70 includes: a first inclined portion 72 in which a diameter of the mixing flow path 20 becomes narrower along the length direction of the mixing flow path 20; A holding portion 74 whose diameter is maintained; And a second inclined portion 76 in which the diameter of the mixing flow path is widened.
상기 제1 경사부(72)의 각도, 유지부(74)의 길이, 제2 경사부(76)의 각도 등의 구체적인 수치는, 흐름 제어부(70)를 통과한 혼합 반응물의 압력이 촉매 충진에 의한 차압을 상쇄할 수 있기에 충분히 큰 압력 증가가 발생될 수 있도록 설정될 수 있다. 제1 경사부(72) 및 제2 경사부(76)의 각도 조절 및 유지부(74)의 길이에 따라, 다양한 형상의 흐름 제어부(70)가 형성될 수 있다.Specific values such as the angle of the first inclined portion 72, the length of the holding portion 74, and the angle of the second inclined portion 76 are determined by the pressure of the mixed reactant passing through the flow controller 70 to the catalyst filling. It can be set so that a pressure increase large enough to offset the differential pressure caused by it can be generated. According to the angle adjustment of the first inclined portion 72 and the second inclined portion 76 and the length of the holding portion 74, the flow controller 70 of various shapes may be formed.
상기 제1 경사부(72)의 경사도는 0° 내지 90°이고, 유지부(74)의 길이는 1 mm 내지 20 mm이며, 제2 경사부(76)의 경사도는 0° 내지 90°일 수 있다.The inclination of the first inclined portion 72 is 0° to 90°, the length of the holding portion 74 is 1 mm to 20 mm, and the inclination of the second inclined portion 76 may be 0° to 90°. have.
예를 들어, 상기 제1 경사부(72)의 경사도는 10° 내지 90°, 30° 내지 90° 또는 30° 내지 45°일 수 있다. 상기 범위 내로 제1 경사부(72)의 경사도를 조절함으로써, 혼합 유로(20) 전단에서 인위적인 흐름 저항을 발생시킬 수 있다.For example, the inclination of the first inclined portion 72 may be 10° to 90°, 30° to 90°, or 30° to 45°. By adjusting the inclination of the first inclined portion 72 within the above range, artificial flow resistance can be generated at the front end of the mixing flow path 20.
또한, 상기 유지부(74)의 길이는 1 mm 내지 15 mm, 5 mm 내지 15 mm 또는 10 mm 내지 15 mm일 수 있다. 상기 범위 내로 유지부(74)의 길이를 조절함으로써, 혼합 반응물의 흐름성을 제어할 수 있다.In addition, the length of the holding part 74 may be 1 mm to 15 mm, 5 mm to 15 mm, or 10 mm to 15 mm. By adjusting the length of the holding part 74 within the above range, the flowability of the mixed reactant can be controlled.
또한, 상기 제2 경사부(76)의 경사도는 10° 내지 90°, 30°내지 90° 또는 30° 내지 45°일 수 있다. 상기 범위 내로 제2 경사부(76)의 경사도를 조절함으로써, 혼합 반응물이 혼합 유로(20)를 통과한 후 기체와 액체 혼합 상의 비산 차이를 만들 수 있다.In addition, the inclination of the second inclined portion 76 may be 10° to 90°, 30° to 90°, or 30° to 45°. By adjusting the inclination of the second inclined portion 76 within the above range, a difference in scattering of the gas-liquid mixture after the mixed reactant passes through the mixing flow path 20 can be made.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those of ordinary skill in the art to which the present invention pertains will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain the technical idea, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (12)

  1. 기체 및/또는 액체의 반응물을 반응기 본체 내로 분배 공급하기 위한 소켓형 유체 분배 장치로서,A socket-type fluid distribution device for distributing and supplying a reactant of gas and/or liquid into a reactor body,
    상기 반응기 본체에 일부 영역이 삽입되는 구조로 형성되는 몸체부;A body portion formed in a structure in which a partial region is inserted into the reactor body;
    상기 몸체부의 중심부에 형성되며, 몸체부를 관통하여 형성되는 혼합 유로;A mixing passage formed in the center of the body portion and formed through the body portion;
    상기 몸체부의 상부에 배치되며, 기체 유로가 형성된 기체 반응물 투입부;A gas reactant input unit disposed on the upper portion of the body and having a gas flow path;
    상기 몸체부와 상기 기체 반응물 투입부 사이에 배치되며, 액체 유로가 형성된 액체 반응물 투입부; 및A liquid reactant input portion disposed between the body portion and the gaseous reactant input portion and having a liquid flow path; And
    상기 혼합 유로에 형성되는 흐름 제어부를 포함하는 것인 소켓형 유체 분배 장치.Socket-type fluid distribution device comprising a flow control unit formed in the mixing flow path.
  2. 제1항에 있어서,The method of claim 1,
    상기 소켓형 유체 분배 장치는, 상기 몸체부의 외주면 일 측에 형성되는 걸림용 돌출부를 더 포함하는 소켓형 유체 분배 장치.The socket-type fluid distribution device further comprises a locking protrusion formed on one side of the outer circumferential surface of the body.
  3. 제1항에 있어서,The method of claim 1,
    상기 소켓형 유체 분배 장치는, 상기 몸체부 하단의 외주면을 따라 형성되는 실링부를 더 포함하는 소켓형 유체 분배 장치.The socket-type fluid distribution device further comprises a sealing portion formed along an outer circumferential surface of a lower end of the body portion.
  4. 제1항에 있어서,The method of claim 1,
    상기 소켓형 유체 분배 장치는, 동일 선상에 구비된 복수 개의 몸체부를 포함하는 것인 소켓형 유체 분배 장치.The socket-type fluid distribution device, wherein the socket-type fluid distribution device includes a plurality of body portions provided on the same line.
  5. 제1항에 있어서,The method of claim 1,
    상기 기체 반응물과 액체 반응물은 상기 혼합 유로에서 혼합되어 이동하는 것인 소켓형 유체 분배 장치.A socket-type fluid distribution device wherein the gaseous reactant and the liquid reactant are mixed and moved in the mixing flow path.
  6. 제1항에 있어서,The method of claim 1,
    상기 혼합 유로에서 혼합되는 혼합 반응물은, 상기 액체 반응물의 유량 대비 기체 반응물의 유량에 따라 상기 반응기 본체 내로 공급되는 혼합 반응물의 형태가 제어되는 것인 소켓형 유체 분배 장치.The mixed reactant mixed in the mixing flow path is a socket type fluid distribution device in which the shape of the mixed reactant supplied into the reactor body is controlled according to the flow rate of the gaseous reactant relative to the flow rate of the liquid reactant.
  7. 제6항에 있어서,The method of claim 6,
    상기 액체 반응물의 유량 대비 기체 반응물의 유량은 1 내지 100인 소켓형 유체 분배 장치.The flow rate of the gaseous reactant relative to the flow rate of the liquid reactant is 1 to 100 socket-type fluid distribution device.
  8. 제6항에 있어서,The method of claim 6,
    상기 액체 반응물의 유량은 0.25 ml/min 내지 250 ml/min인 소켓형 유체 분배 장치.The flow rate of the liquid reactant is 0.25 ml / min to 250 ml / min socket type fluid distribution device.
  9. 제1항에 있어서,The method of claim 1,
    상기 흐름 제어부는, 상기 혼합 유로에서 혼합되는 혼합 반응물의 압력을 증가시키도록 구성되는 소켓형 유체 분배 장치.The flow control unit is a socket-type fluid distribution device configured to increase the pressure of the mixed reactant mixed in the mixing flow path.
  10. 제1항에 있어서,The method of claim 1,
    상기 소켓형 유체 분배 장치는 상기 반응기 본체 내부에 위치하며 고체 촉매들로 이루어진 촉매 충진부를 포함하고,The socket-type fluid distribution device is located inside the reactor body and includes a catalyst filling unit made of solid catalysts,
    상기 흐름 제어부는, 상기 흐름 제어부를 통과한 혼합 반응물의 압력이 상기 촉매 충진부에서 발생하는 차압보다 크게 되도록 구성되는 소켓형 유체 분배 장치.The flow control unit is a socket-type fluid distribution device configured such that the pressure of the mixed reactant passing through the flow control unit is greater than the differential pressure generated in the catalyst filling unit.
  11. 제1항에 있어서,The method of claim 1,
    상기 흐름 제어부는, 상기 혼합 유로의 길이방향을 따라서, 상기 혼합 유로의 직경이 좁아지는 제1 경사부; 직경이 유지되는 유지부; 및 상기 혼합 유로의 직경이 넓어지는 제2 경사부를 포함하는 것인 소켓형 유체 분배 장치.The flow control unit may include: a first inclined portion whose diameter of the mixing flow path is narrowed along a length direction of the mixing flow path; A retaining part whose diameter is maintained; And a second inclined portion in which the diameter of the mixing flow path becomes wider.
  12. 제11항에 있어서,The method of claim 11,
    상기 제1 경사부의 경사도는 0° 내지 90°이고, 유지부의 길이는 1 mm 내지 20 mm이며, 제2 경사부의 경사도는 0° 내지 90°인 소켓형 유체 분배 장치.The inclination of the first inclined portion is 0° to 90°, the length of the holding portion is 1 mm to 20 mm, and the inclination of the second inclined portion is 0° to 90°.
PCT/KR2020/010681 2019-09-24 2020-08-12 Socket-type fluid distribution apparatus WO2021060699A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080005157.7A CN112867558B (en) 2019-09-24 2020-08-12 Socket type fluid distributor
EP20855891.6A EP3831473A4 (en) 2019-09-24 2020-08-12 Socket-type fluid distribution apparatus
US17/274,737 US11446622B2 (en) 2019-09-24 2020-08-12 Socket-type fluid distributor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0117210 2019-09-24
KR20190117210 2019-09-24
KR1020200063701A KR102524372B1 (en) 2019-09-24 2020-05-27 Soket type fluid distributing device
KR10-2020-0063701 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021060699A1 true WO2021060699A1 (en) 2021-04-01

Family

ID=75166710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010681 WO2021060699A1 (en) 2019-09-24 2020-08-12 Socket-type fluid distribution apparatus

Country Status (1)

Country Link
WO (1) WO2021060699A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078483A1 (en) * 2004-10-13 2006-04-13 Chevron U.S.A. Inc. Fluid distribution apparatus for downflow multibed poly-phase catalytic reactor
US20080244974A1 (en) * 2005-10-21 2008-10-09 Eni S.P.A. Fluid Mixing Device Inserted in or Combined With a Reactor
KR20150080869A (en) * 2014-01-02 2015-07-10 한화케미칼 주식회사 Fluid distributor and multi trickle-bed catalytic reactors with the same
KR101732409B1 (en) * 2009-10-07 2017-05-24 셰브런 유.에스.에이.인크. Flow distribution device for downflow catalytic reactors
US20190176119A1 (en) * 2017-12-11 2019-06-13 Axens System for distributing a liquid and/or gas phase into a reaction vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078483A1 (en) * 2004-10-13 2006-04-13 Chevron U.S.A. Inc. Fluid distribution apparatus for downflow multibed poly-phase catalytic reactor
US20080244974A1 (en) * 2005-10-21 2008-10-09 Eni S.P.A. Fluid Mixing Device Inserted in or Combined With a Reactor
KR101732409B1 (en) * 2009-10-07 2017-05-24 셰브런 유.에스.에이.인크. Flow distribution device for downflow catalytic reactors
KR20150080869A (en) * 2014-01-02 2015-07-10 한화케미칼 주식회사 Fluid distributor and multi trickle-bed catalytic reactors with the same
US20190176119A1 (en) * 2017-12-11 2019-06-13 Axens System for distributing a liquid and/or gas phase into a reaction vessel

Similar Documents

Publication Publication Date Title
US10350566B2 (en) Reactor apparatus for dehydrogenating a carrier medium
CN101517704B (en) Apparatus of chemical vapor deposition with a showerhead regulating injection velocity of reactive gases positively and method thereof
WO2013176357A1 (en) Liquid distribution device
WO2014178634A1 (en) Quantitative catalyst supply device
WO2011136492A2 (en) Gas-phase polymerization of alpha-olefins
WO2013100462A1 (en) Substrate processing device
WO2021060699A1 (en) Socket-type fluid distribution apparatus
JP2004214669A (en) Reaction container for thin film deposition
EP0828543A1 (en) Horizontal tray and column for contacting gas and liquid
FI92521C (en) Method and apparatus for utilizing a fluidized bed reactor
CN102776489B (en) Gas inlet ring, gas inlet assembly, process chamber apparatus and CVD equipment
WO2017061747A1 (en) Two-liquid mixing tip capable of reducing waste liquid material
WO2014007482A1 (en) Dipping bath
WO2011068279A1 (en) Quenching apparatus for a reactor
WO2022035121A1 (en) Gas supply method using gas distribution unit
WO2015137611A1 (en) Substrate processing apparatus
WO2014073806A1 (en) Shower head, and thin film deposition apparatus including same
WO2018009034A2 (en) Reactor for metallocene-based solution polymerization process of polyolefins
KR20210035717A (en) Soket type fluid distributing device
WO2020040524A1 (en) Dispersing apparatus and defoaming apparatus comprising same
WO2017039206A1 (en) Distributor and down flow catalytic reactor comprising same
WO2021002590A1 (en) Gas supply device for substrate processing device, and substrate processing device
WO2016060429A1 (en) Reaction chamber for chemical vapor apparatus
CN115786881A (en) Chemical vapor deposition equipment and gas mixing device thereof
CN209752638U (en) Gas mixing device and coating system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020855891

Country of ref document: EP

Effective date: 20210305

NENP Non-entry into the national phase

Ref country code: DE