WO2021060415A1 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
WO2021060415A1
WO2021060415A1 PCT/JP2020/036133 JP2020036133W WO2021060415A1 WO 2021060415 A1 WO2021060415 A1 WO 2021060415A1 JP 2020036133 W JP2020036133 W JP 2020036133W WO 2021060415 A1 WO2021060415 A1 WO 2021060415A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
carbon atoms
group
structural unit
Prior art date
Application number
PCT/JP2020/036133
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 砂原
翔一郎 藤田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2021060415A1 publication Critical patent/WO2021060415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index

Definitions

  • the present invention relates to a lubricating oil composition.
  • Patent Document 1 describes a lubricating oil composition which maintains the HTHS viscosity at 150 ° C. and has low kinematic viscosities at 40 ° C. and 100 ° C. and low HTHS viscosity at 100 ° C., resulting in excellent fuel efficiency. ing.
  • the lubricating oil composition used in the engine is used in a wide temperature range from about ⁇ 20 ° C., which is the temperature before starting the engine in winter, to about 100 ° C. after starting the engine.
  • ⁇ 20 ° C. which is the temperature before starting the engine in winter
  • 100 ° C. after starting the engine the demand for fuel efficiency is increasing year by year. Therefore, in order to achieve further fuel efficiency, it is required to reduce the torque loss caused by the rotation of the engine in the above-mentioned wide temperature range.
  • Patent Document 1 examines torque loss at 80 ° C. However, Patent Document 1 does not consider any torque loss in a wide temperature range including the above-mentioned lower temperature.
  • the present invention has been made in view of such a demand, and an object of the present invention is to provide a lubricating oil composition that reduces torque loss in a wide temperature range.
  • the present inventors have found through diligent studies that a lubricating oil composition satisfying a specific requirement can solve the above-mentioned problems, and have completed the present invention.
  • the present invention relates to the following [1] to [12].
  • a lubricating oil composition that satisfies the following requirements (1) to (4).
  • the poly (meth) acrylate contains a structural unit derived from a macromonomer ( ⁇ ) and a structural unit derived from a monomer (A1) represented by the following general formula (a1).
  • R 11 is a hydrogen atom or a methyl group.
  • R 12 represents a single bond, -O-, or -NH-.
  • R 13 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms.
  • m1 represents an integer from 0 to 20. When m1 is an integer of 2 or more, the plurality of R 13s may be the same or different, and the (R 13 O) m1 portion may be a random copolymerization or a block copolymerization.
  • R 14 is a non-cyclic alkyl group having 4 to 5 carbon atoms or a group having 6 to 8 carbon atoms having a cyclic alkyl group.
  • the macromonomer ( ⁇ ) has a (meth) acryloyl group at one end and has a structural unit derived from a monomer ( ⁇ 1) selected from butadiene and hydrogenated butadiene.
  • m2 represents an integer from 1 to 20.
  • the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
  • R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms.
  • the comb-shaped polymer (A) further contains a structural unit derived from an alkyl (meth) acrylate (A3) having a linear alkyl group having 10 to 30 carbon atoms or a branched chain alkyl group having 10 to 30 carbon atoms.
  • the lubricating oil composition according to any one of the above [2] to [4].
  • the content of the structural unit derived from the alkyl (meth) acrylate (A3) having the linear alkyl group having 10 to 30 carbon atoms or the branched chain alkyl group having 10 to 30 carbon atoms is based on all the structural units.
  • the content of the structural unit derived from the monomer (A1) is 75 mol% or more based on the total amount of the structural unit of the comb polymer (A).
  • R 21 is a hydrogen atom or a methyl group.
  • R 22 represents a single bond, -O-, or -NH-.
  • R 23 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms.
  • m2 represents an integer from 1 to 20.
  • R 23 When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
  • R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms.
  • a suitable range for example, a range in which a lower limit value and an upper limit value independently selected such as "10 or more and 70 or less", “30 or more and 70 or less", and "40 or more and 80 or less" are combined is selected. You can also do it.
  • kinematic viscosity at 40 ° C is also referred to as “40 ° C kinematic viscosity”.
  • kinematic viscosity at 100 ° C is also referred to as “100 ° C. kinematic viscosity”.
  • (meth) acrylate means both “acrylate” and “methacrylate”, and the same applies to other similar terms.
  • (meth) acryloyl group indicates both “acryloyl group” and “methacryloyl group”.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) of each component are values in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically, Examples. Means the value measured by the method described in.
  • the lubricating oil composition of the present invention contains a base oil and a poly (meth) acrylate, and the content of the poly (meth) acrylate in terms of resin content is 0.1 mass based on the total amount of the lubricating oil composition. % Or more and 2.0% by mass or less, and satisfy the following requirements (1) to (4).
  • -Requirement (1) The kinematic viscosity at 100 ° C. is 4.0 mm 2 / s or more and 7.5 mm 2 / s or less.
  • kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100 ) is 3.95 or less.
  • -Requirement (4) The ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100 ) is 0.96 or less.
  • the lubricating oil composition of the present invention has a kinematic viscosity at 100 ° C. of 4.0 mm 2 / s or more and 7.5 mm 2 / s or less.
  • the lubricating oil composition of the present invention satisfies the requirement (1), the amount of Noack evaporation can satisfy the requirement (2), and the viscosity of the lubricating oil composition is lowered, so that fuel efficiency is excellent. If the kinematic viscosity at 100 ° C. is less than 4.0 mm 2 / s, the amount of Noack evaporation cannot satisfy the requirement (2), and the loss of the lubricating oil composition due to evaporation increases.
  • the lubricating oil composition of the present invention has a kinematic viscosity of 5.0 mm 2 / s or more at 100 ° C. from the viewpoint that the amount of Noack evaporation satisfies the requirement (2) and the viscosity of the lubricating oil composition is further lowered.
  • 7.4mm is preferably from 2 / s, more preferably not more than 5.5 mm 2 / s or more 7.3 mm 2 / s, more preferably not more than 6.0 mm 2 / s or more 7.2 mm 2 / s.
  • the lubricating oil composition of the present invention has a Noack evaporation amount of 30.0% by mass or less.
  • the loss of the lubricating oil composition due to evaporation can be reduced. If the amount of Noack evaporation exceeds 30.0% by mass, the amount of loss of the lubricating oil composition due to evaporation increases.
  • the amount of Noack evaporation is measured according to ASTM D 5800.
  • the lubricating oil composition of the present invention preferably has a Noack evaporation amount of 25.0% by mass or less, more preferably 20.0% by mass or less.
  • the lubricating oil composition of the present invention has a ratio (KV 40 / KV 100 ) of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 of 3.95 or less. .. Further, as specified in the requirement (4), the lubricating oil composition of the present invention has a ratio (HTHS 80 / KV 100 ) of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 of 0.96 or less. Is. The 40 ° C.
  • kinematic viscosity KV 40 and the 100 ° C. kinematic viscosity KV 100 can be measured in accordance with JIS K2283: 2000. 80 ° C.
  • HTHS viscosity HTHS 80 can be measured according to JPI-5S-36-03. If at least one of the requirements (3) and (4) is not satisfied, the torque loss cannot be reduced in a wide temperature range.
  • the lubricating oil composition of the present invention has a ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100) from the viewpoint of reducing torque loss in a wide temperature range. ) Is 3.95 or less, preferably 3.93 or less, more preferably 3.90 or less, and further preferably 3.86 or less. Further, from the viewpoint of reducing torque loss in a wide temperature range, the ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100 ) is preferably 3.70 or more, which is more preferable. Is 3.75 or more, more preferably 3.78 or more, and even more preferably 3.83 or more.
  • the lubricating oil composition of the present invention has a ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100) from the viewpoint of reducing torque loss in a wide temperature range. ) Is 0.96 or less. Further, in the lubricating oil composition of the present invention, the ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100 ) is preferable from the viewpoint of reducing torque loss in a wide temperature range.
  • the lubricating oil composition of the present invention has a ratio of 100 ° C. HTHS viscosity HTHS 100 to 100 ° C. kinematic viscosity KV 100 (HTHS 100 /) from the viewpoint of reducing torque loss and improving fuel efficiency in a wide temperature range.
  • KV 100 is preferably 0.64 or less, more preferably 0.63 or less.
  • the lubricating oil composition of the present invention contains a base oil and a poly (meth) acrylate.
  • the wide temperature range means an effective temperature range assumed in the engine of a vehicle such as an automobile.
  • the effective temperature range shall mean a temperature range of 30 ° C. to 100 ° C.
  • the content of the poly (meth) acrylate in the lubricating oil composition in terms of resin content is 0.1% by mass or more and 2.0% by mass or less, preferably 0.3, based on the total amount of the lubricating oil composition. It is by mass% or more and 1.9% by mass or less, and more preferably 0.5% by mass or more and 1.8% by mass or less.
  • the base oil is not particularly limited, and any mineral oil or synthetic oil conventionally used as a base oil for lubricating oil can be appropriately selected and used.
  • the mineral oil for example, the lubricating oil distillate obtained by vacuum distillation of the atmospheric residual oil obtained by atmospheric distillation of crude oil is subjected to solvent removal treatment; at least one treatment of solvent extraction or hydrocracking. At least one dewaxing treatment for solvent dewaxing or catalytic dewaxing; hydrorefining treatment; one or more treatments, preferably all treatments, and refined oils or mineral oil-based waxes of the opposite sex Examples thereof include oil produced by refining. Of these, oils treated by hydrorefining are preferred.
  • Examples of the synthetic oil include poly ⁇ -olefins such as copolymers such as polybutene, ⁇ -olefin homopolymer, and ethylene- ⁇ -olefin copolymer; various types such as polyol ester, dibasic acid ester, and phosphoric acid ester. Esters; various ethers such as polyphenyl ethers; polyglycols; alkylbenzenes; alkylnaphthalene; GTL base oils produced by hydroisomerizing and dewaxing residual WAX (gast liquid wax) in the GTL process. Be done. These base oils may be used alone or in combination of two or more.
  • 100 ° C. kinematic viscosity is preferably 2.0mm 2 /s ⁇ 6.0mm 2 / s, more preferably 2.0mm 2 /s ⁇ 5.5mm 2 / s, more preferably from 2.0mm 2 /s ⁇ 5.0mm 2 / s.
  • 100 ° C. kinematic viscosity is 2.0 mm 2 / s or more, evaporation loss can be easily suppressed, and when it is 6.0 mm 2 / s or less, power loss due to viscous resistance is suppressed, and a fuel efficiency improving effect can be obtained. ..
  • the viscosity index of the base oil is preferably 50 or more, more preferably 80 or more, still more preferably 100 or more, and even more preferably 105 or more. When the viscosity index of the base oil is in this range, it becomes easy to improve the viscosity characteristics of the lubricating oil composition.
  • the values of the kinematic viscosity and the viscosity index of the base oil at 100 ° C. are measured and calculated by the methods described in Examples described later.
  • the poly (meth) acrylate preferably contains the comb-shaped polymer (A) described below.
  • the poly (meth) acrylate of one aspect of the present invention may consist only of the comb-shaped polymer (A). That is, the poly (meth) acrylate of one aspect of the present invention may contain the comb-shaped polymer (A) in an amount of 100% by mass based on the total amount (100% by mass) of the poly (meth) acrylate.
  • the comb-shaped polymer (A) preferably contains a structural unit derived from the macromonomer ( ⁇ ) and a structural unit derived from the monomer (A1) represented by the following general formula (a1).
  • R 11 is a hydrogen atom or a methyl group.
  • R 12 represents a single bond, -O-, or -NH-.
  • R 13 represents a linear alkylene group or a branched chain alkylene group having 2 to 4 carbon atoms.
  • m1 represents an integer from 0 to 20.
  • the plurality of R 13s may be the same or different, and the (R 13 O) m1 portion may be a random copolymerization or a block copolymerization.
  • R 14 is a non-cyclic alkyl group having 4 to 5 carbon atoms or a group having 6 to 8 carbon atoms having a cyclic alkyl group.
  • the macromonomer ( ⁇ ) has a (meth) acryloyl group at one end and has a structural unit derived from a monomer ( ⁇ 1) selected from butadiene and hydrogenated butadiene.
  • R 14 is a carbon having an acyclic alkyl group or a cyclic alkyl group having 4 to 5 carbon atoms. It is preferably a group of numbers 6-8.
  • the carbon number of the group having a cyclic alkyl group means the total number of carbon atoms contained in the group having a cyclic alkyl group.
  • R 14 in the general formula (a1) has 6 carbon atoms having a cyclic alkyl group. ⁇ 8 groups are preferred.
  • the acyclic alkyl group having 4 to 5 carbon atoms preferably has a tertiary carbon or a quaternary carbon from the viewpoint of making it easier to satisfy both the above requirements (3) and (4), and preferably has a tertiary carbon. Is more preferable.
  • Specific examples of the acyclic alkyl group having 4 to 5 carbon atoms include n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, isopentyl group, sec-pentyl group, and the like. Examples thereof include a tert-pentyl group and a 3-pentyl group.
  • an isobutyl group a sec-butyl group, a tert-butyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, and a tert-pentyl group.
  • Groups are preferred, isobutyl groups are more preferred.
  • the group having a cyclic alkyl group having 6 to 8 carbon atoms include a cyclohexyl group, a methylcyclohexyl group, an ethylcyclohexyl group, a dimethylcyclohexyl group, a cyclohexylmethyl group, a methylcyclohexylmethyl group, a cyclohexylethyl group and the like. Be done.
  • a cyclohexyl group is preferable from the viewpoint of facilitating both of the above requirements (3) and (4) and further facilitating the above requirement (4).
  • R 11 is preferably a methyl group from the viewpoint of facilitating both of the above requirements (3) and (4). From the same viewpoint, it is preferable that R 12 is ⁇ O ⁇ independently of each other. That is, the monomer (A1) preferably has an acryloyl group or a methacryloyl group as a polymerizable functional group, and more preferably has a methacryloyl group. From the same viewpoint, m1 is preferably 0 to 5, more preferably 0 to 2, and even more preferably 0.
  • the content of the structural unit derived from the monomer (A1) is preferably 75 mol% or more, more preferably 76 mol% or more. , More preferably 77 mol% or more.
  • the upper limit of the content of the constituent unit derived from the monomer (A1) is not particularly limited as long as the solubility of the lubricating oil composition in the base oil can be ensured, but is preferably 90 mol% or less. , More preferably 87 mol% or less, still more preferably 85 mol% or less.
  • the structural unit derived from the monomer (A1) contained in the comb-shaped polymer (A) may be one kind alone or two or more kinds. For example, by preparing a comb-shaped polymer (A) containing a plurality of structural units having different R 14s in the general formula (a1), it is easy to adjust the HTHS viscosity within a desired range.
  • the macromonomer ( ⁇ ) preferably has a (meth) acryloyl group at one end and has a structural unit derived from a monomer ( ⁇ 1) selected from butadiene and hydrogenated butadiene. That is, the polymer having a structural unit derived from the monomer ( ⁇ 1) in the macromonomer ( ⁇ ) corresponds to the above-mentioned “high molecular weight side chain”.
  • the above-mentioned "macromonomer” means a high molecular weight monomer having a polymerizable functional group, and the polymerizable functional group is a (meth) acryloyl group.
  • the main chain of the comb-shaped polymer (A) has a structural unit derived from the (meth) acryloyl group, which is a polymerizable functional group of the macromonomer ( ⁇ ).
  • the polymerizable functional group is preferably a methacryloyl group.
  • the number average molecular weight (Mn) of the macromonomer ( ⁇ ) is preferably 300 or more, more preferably 500 or more, still more preferably 1,000 or more, still more preferably 2,000 or more, still more preferably 4,000 or more. Is. Further, it is preferably 100,000 or less, more preferably 50,000 or less, still more preferably 20,000 or less, still more preferably 10,000 or less.
  • the macromonomer ( ⁇ ) has, for example, one or more repeating units represented by the following general formulas (bi) to (biii) in addition to the structural unit derived from the monomer ( ⁇ 1). You may be.
  • the macromonomer ( ⁇ ) is a copolymer
  • the form of copolymerization may be a block copolymer or a random copolymer.
  • R b1 represents a linear alkylene group or a branched chain alkylene group having 1 to 10 carbon atoms. Specifically, methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, 2-ethylhexylene group and the like. Can be mentioned.
  • R b2 represents a linear alkylene group or a branched chain alkylene group having 2 to 4 carbon atoms.
  • R b3 represents a hydrogen atom or a methyl group.
  • R b4 represents a linear or branched-chain alkyl group having 1 to 10 carbon atoms.
  • R b1 , R b2 , R b3 , and R b4 may be the same. , May be different from each other.
  • the content of the structural unit derived from the macromonomer ( ⁇ ) in the comb-shaped polymer (A) is based on the total structural unit of the comb-shaped polymer (A). It is preferably 0.1 mol% to 5 mol%, more preferably 0.3 mol% to 3 mol%, and further preferably 0.5 mol% to 2 mol%.
  • constituent unit derived from the macromonomer ( ⁇ ) contained in the comb-shaped polymer (A) may be one kind alone or two or more kinds.
  • the comb polymer (A) preferably further contains a structural unit derived from the monomer (A2) represented by the following general formula (a2).
  • R 21 is a hydrogen atom or a methyl group.
  • R 22 represents a single bond, -O-, or -NH-.
  • R 23 represents a linear alkylene group or a branched chain alkylene group having 2 to 4 carbon atoms.
  • m2 represents an integer from 1 to 20.
  • R 23 When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
  • R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms.
  • the comb-shaped polymer (A) further contains a structural unit derived from the monomer (A2) represented by the above general formula (a2), whereby the comb-shaped polymer (A) to the base oil contained in the lubricating oil composition can be prepared.
  • the viscosity index can be improved more easily. Therefore, the content of the structural unit derived from the monomer (A1) represented by the general formula (a1) in the comb-shaped polymer (A) and the content derived from the monomer (A2) represented by the general formula (a2).
  • the ratio [(A1) / (A2)] of the content of the structural unit derived from the monomer (A1) to the content of the structural unit derived from the monomer (A2) is a molar ratio. It is preferably 5.0 to 15.0, more preferably 6.0 to 13.0, and even more preferably 7.0 to 12.0.
  • R 21 is preferably a methyl group from the viewpoint of facilitating both of the above requirements (3) and (4). From the same viewpoint, it is preferable that R 22 is ⁇ O ⁇ independently of each other. That is, the monomer (A2) preferably has an acryloyl group or a methacryloyl group as a polymerizable functional group, and more preferably has a methacryloyl group. From the same viewpoint, m2 is preferably 1 to 5, more preferably 1 to 2, and even more preferably 1. From the same viewpoint, R 23 is preferably a linear alkylene group having 2 to 3 carbon atoms, and more preferably a linear alkylene group having 2 carbon atoms.
  • R 24 is preferably a linear alkyl group having 1 to 12 carbon atoms, more preferably a linear alkyl group having 2 to 8 carbon atoms, having 2 to 6 carbon atoms It is more preferably a straight chain alkyl group, and even more preferably an n-butyl group.
  • the content of the structural unit derived from the monomer (A2) in the comb polymer (A) is preferably 0 mol% to 15 mol%, more preferably 3 mol, based on all the structural units of the comb polymer (A). % To 15 mol%, more preferably 5 mol% to 12 mol%.
  • the structural unit derived from the monomer (A2) contained in the comb-shaped polymer (A) may be one kind alone or two or more kinds.
  • the comb polymer (A) preferably further contains a structural unit derived from an alkyl (meth) acrylate (A3) having a linear alkyl group having 10 to 30 carbon atoms or a branched chain alkyl group having 10 to 30 carbon atoms.
  • the alkyl (meth) acrylate (A3) is preferably an alkyl methacrylate.
  • the alkyl group of the alkyl (meth) acrylate (A3) has preferably 10 to 24 carbon atoms, more preferably 11 to 22 carbon atoms, and even more preferably 12 to 20 carbon atoms. Further, the alkyl group is preferably a linear alkyl group.
  • the content of the structural unit derived from the alkyl (meth) acrylate (A3) having an alkyl group having 10 to 30 carbon atoms is preferably 0 mol% or more and 30 mol% or less, more preferably 3 on the basis of all structural units. It is mol% or more and 25 mol% or less, more preferably 5 mol% or more and 20 mol% or less.
  • constituent unit derived from the monomer (A3) in the comb-shaped polymer (A) may be one kind alone or two or more kinds.
  • the total content of the structural unit derived from the macromonomer ( ⁇ ) and the structural unit derived from the monomer (A1) in the comb polymer (A) is preferably 76 mol% or more, more preferably 77 mol% or more, and further. It is preferably 78 mol% or more.
  • the comb-shaped polymer (A) may contain one or more structural units selected from the structural unit derived from the monomer (A2) and the structural unit derived from the monomer (A3).
  • the amount is preferably 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, still more preferably 95 mol% to 100 mol%.
  • the comb-shaped polymer (A) contains a macromonomer ( ⁇ ), a monomer (A1), a monomer (A2), and a monomer (A3) within a range that does not significantly impair the effects of the present invention. ) May contain structural units derived from other monomers. Examples of the other monomer include one or more selected from styrene, N-alkyl (meth) acrylamide and the like.
  • the comb-shaped polymer (A) preferably has a mass average molecular weight (Mw) of 300,000 or more and 1.5 million or less from the viewpoint of facilitating both of the above requirements (3) and (4).
  • the mass average molecular weight (Mw) of the comb-shaped polymer (A) is preferably 300,000 or more and 900,000 or less, more preferably 400,000. It is 850,000 or less, more preferably 500,000 or more and 800,000 or less, and even more preferably 590,000 or more and 800,000 or less.
  • the molecular weight distribution (Mw / Mn) of the comb-shaped polymer (A) is preferably 1.2 or more and 3.7 or less, more preferably 1. It is .2 or more and 2.0 or less, more preferably 1.25 or more and 1.95 or less, and even more preferably 1.30 or more and 1.90 or less.
  • Mw mass average molecular weight
  • Mn number average molecular weight
  • the comb-shaped polymer (A) contains a structural unit derived from the monomer (A1) represented by the above general formula (a1).
  • the glass transition temperature (Tg) of the homopolymer composed of the structural unit derived from the monomer (A1) represented by the general formula (a1) is based on the HTHS viscosity of the lubricating oil composition in the effective temperature range. From the viewpoint of facilitating adjustment in a low range, the glass transition temperature (Tg) is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, still more preferably 40 ° C. or higher, still more preferably 50 ° C. or higher. In the present specification, the glass transition temperature (Tg) of the homopolymer can be measured by differential scanning calorimetry (DSC) or dynamic viscoelasticity measurement (DMA).
  • DSC differential scanning calorimetry
  • DMA dynamic viscoelasticity measurement
  • the comb polymer (A) can be obtained, for example, by radical polymerization of the macromonomer ( ⁇ ) and the monomer (A1).
  • the comb-shaped polymer (A) is preferably selected from the monomer (A2), the monomer (A3), and other monomers together with the macromonomer ( ⁇ ) and the monomer (A1). It can be obtained by radical polymerization with one or more kinds of monomers.
  • the polymerization method conventionally known methods such as a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, a reverse phase suspension polymerization method, a thin film polymerization method, and a spray polymerization method can be used. Of these, the solution polymerization method is preferable.
  • the comb polymer (A) is produced by solution polymerization, the comb polymer (A) can be obtained by radical polymerization of the macromonomer ( ⁇ ) and the monomer (A1) in a solvent using a polymerization initiator. it can.
  • a polymerization initiator is used to select from the monomer (A2), the monomer (A3), and other monomers along with the macromonomer ( ⁇ ) and the monomer (A1).
  • the comb-shaped polymer (A) can be obtained by radical polymerization with one or more kinds of monomers.
  • the solvent may be any solvent in which the monomer dissolves, and is, for example, an aromatic hydrocarbon solvent such as toluene, xylene, alkylbenzene having 9 to 10 carbon atoms; pentane, hexane, heptane, cyclohexane, octane and the like.
  • An aliphatic hydrocarbon solvent having 5 to 18 carbon atoms; an alcohol solvent having 3 to 8 carbon atoms such as 2-propanol, 1-butanol, 2-butanol, and 1-octanol; and a ketone solvent such as methyl isobutyl ketone and methyl ethyl ketone.
  • Solvents Solvents; amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ether solvents such as diethyl ether, methyl tert-butyl ether and tetrahydrofuran; and described below.
  • Solvent oil or synthetic oil; etc. can be used. Among these, mineral oil or synthetic oil described later is preferable, and mineral oil is more preferable.
  • polymerization initiator examples include one or more selected from the group consisting of an azo-based initiator, a peroxide-based initiator, a redox-based initiator, and an organic halogen compound initiator.
  • an azo-based initiator a peroxide-based initiator
  • a redox-based initiator a redox-based initiator
  • an organic halogen compound initiator one or more selected from the azo-based initiator and the peroxide-based initiator is preferable, one or more selected from the azo-based initiator and the organic peroxide-based initiator is more preferable, and the organic peroxide is further preferable. preferable.
  • Examples of the azo-based polymerization initiator include 2,2'-azobis (isobutyronitrile) (abbreviation: AIBN), 2,2'-azobis (2-methylbutyronitrile) (abbreviation: AMBN), 2, 2'-azobis (2,4-dimethylvaleronitrile) (abbreviation: ADVN), 4,4'-azobis (4-cyanovaleric acid) (abbreviation: ACVA) and salts thereof (eg, hydrochloride, etc.), dimethyl 2, Examples thereof include 2'-azobisisobutyrate, 2,2'-azobis (2-amidinopropane) hydrochloride, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and the like.
  • AIBN 2,2'-azobis (isobutyronitrile)
  • AMBN 2,2'-azobis (2-methylbutyronitrile)
  • ADVN 2, 2'-azobis (2,4-dimethylvaleronit
  • Examples of the peroxide-based initiator include inorganic peroxides and organic peroxides.
  • Examples of the inorganic peroxide include hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate and the like.
  • Examples of the organic peroxide include benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, succinate peroxide, di (2-ethoxyethyl) peroxydicarbonate, and tert-butylperoxypivalate.
  • redox-based initiator examples include reducing agents such as alkali metal sulfites or sulfites (for example, ammonium sulfite, ammonium persulfate, etc.), ferrous chloride, ferrous sulfate, ascorbic acid, and alkali metals.
  • alkali metal sulfites or sulfites for example, ammonium sulfite, ammonium persulfate, etc.
  • ferrous chloride ferrous sulfate
  • ascorbic acid examples of the redox-based initiator
  • alkali metals examples include those composed of a combination with an oxidizing agent such as sulfite, ammonium persulfate, hydrogen peroxide, and organic peroxide.
  • a known chain transfer agent may be used, if necessary, for the purpose of adjusting physical properties such as the molecular weight of the comb-shaped polymer (A).
  • the chain transfer agent include secondary alcohols such as mercaptans, thiocarboxylic acids and isopropanol, amines such as dibutylamine, hypophosphates such as sodium hypophosphate, chlorine-containing compounds and alkylbenzene compounds. ..
  • Examples of the mercaptans include alkyl groups having 2 to 20 carbon atoms such as n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-butyl mercaptan, tert-butyl mercaptan, and tert-dodecyl mercaptan.
  • Examples thereof include alkyl mercaptan compounds having mercaptan compounds; hydroxyl group-containing mercaptan compounds such as mercaptoethanol and mercaptopropanol; and the like.
  • Examples of thiocarboxylic acids include thioglycolic acid and thioapple acid.
  • the amount of the polymerization initiator and chain transfer agent used can be appropriately selected in consideration of the physical characteristics of the desired polymer (for example, adjustment of the molecular weight, etc.).
  • Examples of the polymerization control method include an adiabatic polymerization method and a temperature control polymerization method.
  • the reaction temperature during polymerization is preferably 30 to 140 ° C, more preferably 50 to 130 ° C, and even more preferably 70 ° C to 120 ° C.
  • a method of initiating polymerization by irradiating radiation, an electron beam, ultraviolet rays, or the like can also be adopted.
  • a temperature-controlled polymerization method is preferable, and a temperature-controlled solution polymerization method is more preferable.
  • the copolymerization When the copolymerization is carried out, either random addition polymerization or alternate copolymerization may be used, and either graft copolymerization or block copolymerization may be used.
  • the obtained polymer may be further dissolved and diluted in a diluent for use from the viewpoint of facilitating dissolution in the base oil contained in the lubricating oil composition.
  • a diluent a solvent that can be used during the above-mentioned polymerization can be used, preferably mineral oil or synthetic oil, and more preferably mineral oil. These diluents may be used alone or in combination of two or more from the above-mentioned ones.
  • the lubricating oil composition according to one aspect of the present invention further contains other components other than the poly (meth) acrylate and the base oil, if necessary, as long as the effects of the present invention are not impaired. May be good.
  • other components include commonly used additives for lubricating oils, and examples of the additives for lubricating oils include metal-based detergents, abrasion-resistant agents, ashless dispersants, and polymers other than the above-mentioned polymers.
  • viscosity index improvers From the group consisting of viscosity index improvers, extreme pressure agents, pour point lowering agents, antioxidants, defoamers, surfactants, anti-emulsifiers, friction modifiers, oiliness improvers, rust inhibitors and metal inactivating agents.
  • lubricant additives may be used alone or in combination of two or more.
  • each of these additives for lubricating oil can be appropriately adjusted within a range that does not impair the effects of the present invention.
  • the content of each of the additives for lubricating oil is, for example, preferably 0.001 to 15% by mass, more preferably 0.005 to 12% by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 0.01 to 11% by mass.
  • the total content thereof is preferably more than 0% by mass and 30% by mass based on the total amount (100% by mass) of the lubricating oil composition. % Or less, more preferably 0.001 to 25% by mass, still more preferably 0.001 to 20% by mass, still more preferably 0.001 to 15% by mass.
  • Metal-based cleaning agent examples include organic acid metal salt compounds containing metal atoms selected from alkali metals and alkaline earth metals, and specifically, metal atoms selected from alkali metals and alkaline earth metals. Examples thereof include metal salicylates, metal phenates, and metal sulfonates containing.
  • alkali metal refers to lithium, sodium, potassium, rubidium, cesium, and francium.
  • alkaline earth metal refers to beryllium, magnesium, calcium, strontium, and barium.
  • sodium, calcium, magnesium, or barium is preferable, and calcium is more preferable, from the viewpoint of improving the cleanliness at high temperature.
  • the metal salicylate is preferably a compound represented by the following general formula (3)
  • the metal phenate is preferably a compound represented by the following general formula (4)
  • the metal sulfonate is preferably the following general formula (5). ) Is preferable.
  • M is a metal atom selected from alkali metals and alkaline earth metals, and sodium, calcium, magnesium, or barium is preferable, and calcium is more preferable. Further, ME is an alkaline earth metal, and calcium, magnesium, or barium is preferable, and calcium is more preferable.
  • q is the valence of M, which is 1 or 2.
  • R 31 and R 32 are independently hydrogen atoms or hydrocarbon groups having 1 to 18 carbon atoms. S represents a sulfur atom.
  • r is an integer of 0 or more, preferably an integer of 0 to 3.
  • Hydrocarbon groups that can be selected as R 31 and R 32 include, for example, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 ring-forming carbon atoms, and a ring-forming carbon. Examples thereof include an aryl group having 6 to 18, an alkylaryl group having 7 to 18 carbon atoms, and an arylalkyl group having 7 to 18 carbon atoms.
  • metal-based cleaning agents may be used alone or in combination of two or more.
  • at least one selected from calcium salicylate, calcium phenate, and calcium sulfonate is preferable from the viewpoint of improving cleanliness at high temperature and from the viewpoint of solubility in base oil.
  • These metal-based cleaning agents may be any of a neutral salt, a basic salt, a hyperbasic salt, and a mixture thereof.
  • the total base value of the metal-based cleaning agent is preferably 0 to 600 mgKOH / g.
  • the total base value of the metal-based cleaning agent is preferably 10 to 600 mgKOH / g, more preferably 20 to 500 mgKOH / g. ..
  • the term "base value” refers to JIS K2501: 2003 "Petroleum products and lubricating oil-neutralization value test method”. It means the base value by the perchloric acid method measured according to.
  • the content of the metal-based cleaning agent is preferably 0.01 to 10% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • the metal-based cleaning agent may be used alone or in combination of two or more.
  • the suitable total content when two or more kinds are used is also the same as the above-mentioned content.
  • abrasion resistant agent examples include sulfur-containing compounds such as zinc dialkyldithiophosphate (ZnDTP), zinc phosphate, disulfides, olefins sulfide, oils and fats sulfide, sulfide esters, thiocarbonates, thiocarbamates, and polysulfides. Phosphate esters, phosphoric acid esters, phosphonic acid esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; thio-sulfuric acid esters, thiophosphoric acid esters, thiophosphonic acid esters, and these.
  • ZnDTP zinc dialkyldithiophosphate
  • ZnDTP zinc dialkyldithiophosphate
  • disulfides disulfides
  • olefins sulfide oils and fats sulfide
  • sulfide esters thiocarbonates
  • thiocarbamates thioc
  • Sulfur and phosphorus-containing abrasion resistant agents such as amine salts or metal salts of the above can be mentioned.
  • zinc dialkyldithiophosphate (ZnDTP) is preferable.
  • the content of the abrasion resistant agent is preferably 0.05 to 5.0% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • the wear resistant agent may be used alone or in combination of two or more. The suitable total content when two or more kinds are used is also the same as the above-mentioned content.
  • ashless dispersant examples include succinate imide, benzylamine, succinate ester, and boron-modified products thereof, and alkenyl succinate imide and boron-modified alkenyl succinate imide are preferable.
  • alkenyl succinate imide examples include alkenyl succinate monoimide represented by the following general formula (i) and alkenyl succinate bisimide represented by the following general formula (ii).
  • the alkenyl succinate imide is a compound represented by the following general formula (i) or (ii), and one or more selected from alcohols, aldehydes, ketones, alkylphenols, cyclic carbonates, epoxy compounds, organic acids and the like. May be used as a modified alkenyl succinate imide reacted with.
  • Examples of the boron-modified alkenyl succinate imide include boron-modified products of compounds represented by the following general formulas (i) or (ii).
  • RA , RA1 and RA2 have independent mass average molecular weights (Mw) of 500 to 3,000 (preferably 1,000 to 3,000). It is an alkenyl group, preferably a polybutenyl group or a polyisobutenyl group.
  • R B, R B1 and R B2 are each independently an alkylene group having 2 to 5 carbon atoms.
  • x1 is an integer of 1 to 10, preferably an integer of 2 to 5, and more preferably 3 or 4.
  • x2 is an integer of 0 to 10, preferably an integer of 1 to 4, and more preferably 2 or 3.
  • the ratio [B / N] of the boron atom to the nitrogen atom constituting the boron-modified alkenyl succinate imide is preferably 0.5 or more, more preferably 0.6 or more, and further preferably 0.6 or more from the viewpoint of improving cleanliness. It is 0.8 or more, more preferably 0.9 or more.
  • the content of the ash-free dispersant is preferably 0.1 to 20% by mass based on the total amount (100% by mass) of the lubricating oil composition. ..
  • extreme pressure agents include sulfur-based extreme pressure agents such as sulfides, sulfoxides, sulfones, and thiophosphinates, halogen-based extreme pressure agents such as chlorinated hydrocarbons, and organometallic extreme pressure agents. Be done. Further, among the above-mentioned wear resistant agents, a compound having a function as an extreme pressure agent can also be used. These extreme pressure agents may be used alone or in combination of two or more. When an extreme pressure agent is contained as another component, the content of the extreme pressure agent is preferably 0.1 to 10% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • antioxidant any known antioxidant that has been conventionally used as an antioxidant for lubricating oil can be appropriately selected and used.
  • an amine-based antioxidant or a phenol-based antioxidant can be used.
  • examples thereof include antioxidants, molybdenum-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like.
  • the amine-based antioxidant include diphenylamine and diphenylamine-based antioxidants such as alkylated diphenylamine having an alkyl group having 3 to 20 carbon atoms; ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, and alkyl having 3 to 20 carbon atoms.
  • Examples include naphthylamine-based antioxidants having a group such as substituted phenyl- ⁇ -naphthylamine; and the like.
  • Examples of the phenolic antioxidant include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,6-di-tert-butyl-4-ethylphenol.
  • Monophenolic antioxidants such as isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate Agents; diphenolic antioxidants such as 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol); hinderedphenols Antioxidants; etc.
  • the molybdenum-based antioxidant include a molybdenum amine complex formed by reacting molybdenum trioxide and / or molybdic acid with an amine compound.
  • sulfur-based antioxidant examples include dilauryl-3,3'-thiodipropionate and the like.
  • phosphorus-based antioxidant include phosphite and the like. These antioxidants can be contained alone or in any combination of two or more, and are preferably phenolic antioxidants and / or amine-based antioxidants. When an antioxidant is contained as the other component, the content of the antioxidant is preferably 0.05 to 7% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • Examples of the flow point lowering agent include an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, and a polymethacrylate type (PMA type; polyalkyl (meth)).
  • PMA type polyalkyl (meth)
  • polyvinyl acetate, polybutene, polyalkylstyrene, etc., and polymethacrylate-based polymethacrylates are preferably used.
  • These pour point lowering agents may be used alone or in combination of two or more.
  • the content of the pour point lowering agent is preferably 0.01 to 10% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • defoaming agent examples include silicone oils such as dimethylpolysiloxane, fluorosilicone oils and fluoroalkyl ethers. These antifoaming agents may be used alone or in combination of two or more.
  • the content of the defoaming agent is preferably 0.005 to 5% by mass, more preferably 0.%, based on the total amount (100% by mass) of the lubricating oil composition. It is 005 to 0.5% by mass.
  • surfactant or emulsifier examples include polyalkylene glycol-based nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl naphthyl ether. These surfactants or anti-emulsifiers can be contained alone or in any combination of two or more. When a surfactant or an anti-emulsifier is contained as the other component, the content of the surfactant or the anti-emulsifier is independently based on the total amount (100% by mass) of the lubricating oil composition, preferably 0.01. ⁇ 3% by mass.
  • the friction modifier examples include molybdenum-based friction modifiers such as molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), and amine salts of molybthenoic acid; alkyl groups or alkenyl groups having 6 to 30 carbon atoms are contained in the molecule.
  • Ash-free friction modifiers such as aliphatic amines, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, and aliphatic ethers having at least one; fats and oils, amines, amides, sulfide esters, phosphate esters, phosphite esters. , Phosphate ester amine salt and the like.
  • the content of the friction modifier is preferably 0.05 to 4% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • oiliness improver examples include aliphatic saturated or unsaturated monocarboxylic acids such as stearic acid and oleic acid; polymerized fatty acids such as dimer acid and hydrogenated dimer acid; hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid; lauryl alcohol.
  • Fatty acid saturated or unsaturated monoalcohols such as oleic acid; aliphatic saturated or unsaturated monoamines such as stearylamine and oleylamine; aliphatic saturated or unsaturated monocarboxylic acid amides such as laurate amide and oleic acid amide; glycerin, Partial esters of polyvalent alcohols such as sorbitol and aliphatic saturated or unsaturated monocarboxylic acids; and the like.
  • the content of the oily improver is preferably 0.01 to 5% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • rust preventive examples include fatty acids, alkenyl succinic acid half esters, fatty acid sequels, alkyl sulfonates, polyhydric alcohol fatty acid esters, fatty acid amines, oxidized paraffins, and alkyl polyoxyethylene ethers.
  • the content of the rust preventive is preferably 0.01 to 3% by mass based on the total amount (100% by mass) of the lubricating oil composition.
  • Metal inactivating agent examples include benzotriazole-based compounds, tolyltriazole-based compounds, thiazizol-based compounds, imidazole-based compounds, pyrimidine-based compounds and the like.
  • the content of the metal inactivating agent is preferably 0.01 to 5% by mass based on the total amount (100% by mass) of the lubricating oil composition. ..
  • the 40 ° C. kinematic viscosity (KV 40 ) of the lubricating oil composition according to one aspect of the present invention is preferably 50 mm 2 / s or less, more preferably 40 mm 2 / s or less, and further preferably 30 mm 2 / s. It is as follows.
  • kinematic viscosity (KV 80 ) of the lubricating oil composition according to one aspect of the present invention is preferably 40 mm 2 / s or less, more preferably 30 mm 2 / s or less, and further preferably 20 mm 2 / s. It is as follows. 100 ° C.
  • the kinematic viscosity of the lubricating oil composition which is one embodiment of the present invention (KV 100) is not more than 7.5 mm 2 / s, or less preferably 7.4 mm 2 / s, more preferably 7.3mm It is 2 / s or less , more preferably 7.1 mm 2 / s or less, and even more preferably 7.0 mm 2 / s or less.
  • the 40 ° C. kinematic viscosity (KV 40 ), 80 ° C. kinematic viscosity (KV 80 ), and 100 ° C. kinematic viscosity (KV 100 ) of the lubricating oil composition according to one aspect of the present invention are measured according to JIS K2283: 2000. it can.
  • the viscosity index of the lubricating oil composition according to one aspect of the present invention is preferably 238 or more, more preferably 240 or more, still more preferably 241 or more.
  • the viscosity index of the lubricating oil composition is preferably 300 or less, more preferably 290 or less, and even more preferably 280 or less.
  • the viscosity index of the lubricating oil composition of one aspect of the present invention can be measured and calculated in accordance with JIS K2283: 2000.
  • the 80 ° C. HTHS viscosity (HTHS 80 ) of the lubricating oil composition according to one aspect of the present invention is preferably 6.7 mPa ⁇ s or less, more preferably 6.6 mPa ⁇ s or less, and further preferably 6. It is 5 mPa ⁇ s or less.
  • viscosity HTHS viscosity (HTHS 100 ) of the lubricating oil composition according to one aspect of the present invention is preferably 4.4 mPa ⁇ s or less, and more preferably 4.3 mPa ⁇ s or less.
  • the 150 ° C. HTHS viscosity (HTHS 150 ) of the lubricating oil composition according to one aspect of the present invention is preferably 2.0 mPa ⁇ s or more.
  • the 150 ° C. HTHS viscosity (HTHS 150 ) of the lubricating oil composition of one aspect of the present invention is preferably less than 2.6 mPa ⁇ s, more preferably less than 2.5 mPa ⁇ s, and even more preferably 2.
  • the 80 ° C. HTHS viscosity (HTHS 80 ), 100 ° C. HTHS viscosity (HTHS 100 ), and 150 ° C. HTHS viscosity (HTHS 150 ) of the lubricating oil composition according to one aspect of the present invention conform to ASTM D4683 and are TBS high temperature. using viscometer (Tapered Bearing Simulator viscometer), it can be measured at a shear rate of 10 6 / s.
  • PSSI Permanent Shear Stability Index
  • Fuel efficiency can be evaluated by the average drive torque improvement rate described in Examples described later. As a method of obtaining the average drive torque improvement rate, the method described in Examples described later can be used. From the viewpoint of fuel efficiency, the lubricating oil composition according to one aspect of the present invention has an average drive torque improvement rate of preferably 0.2 or more, more preferably 0.3 or more.
  • the method for producing a lubricating oil composition includes a step of blending the base oil and the poly (meth) acrylate. Further, in the production method, the base oil and poly are required. Other components other than (meth) acrylate may be further blended. Each of the base oil, the poly (meth) acrylate, and the other components is the same as that described for the lubricating oil composition, and the preferred embodiments thereof are also the same, and the lubricating oil composition obtained by the production method is also the same. Since the objects are also as described above, their description is omitted. In the production method, the base oil, the poly (meth) acrylate, and other components added as necessary may be blended by any method, and the method is not limited.
  • the lubricating oil composition of the present invention can exhibit excellent fuel efficiency when used in an effective temperature range. Therefore, the lubricating oil composition of the present invention is preferably used as an engine oil, and more preferably used as a gasoline engine oil. Examples of an engine suitable for use of the lubricating oil composition of the present invention include an engine for vehicles such as automobiles, but an engine for automobiles is preferable, and a gasoline engine for automobiles is more preferable. Further, it can be suitably used for an automobile engine equipped with a hybrid mechanism.
  • the lubricating oil composition according to one aspect of the present invention is suitable for use as a lubricating oil composition for internal combustion engines (engine oil for internal combustion engines) used in automobiles and the like, but is also applicable to other uses. Can be done.
  • the present invention also provides an engine containing the above-mentioned lubricating oil composition of the present invention.
  • the engine include an engine for a vehicle such as an automobile, but an engine for an automobile is preferable, and a gasoline engine for an automobile is more preferable.
  • An automobile engine equipped with a hybrid mechanism is also preferable.
  • the lubricating oil composition of the present invention can exhibit excellent fuel efficiency even when used in an effective temperature range. Therefore, according to the engine of the present invention, excellent fuel efficiency can be exhibited in the effective temperature range.
  • the present invention also provides an engine lubrication method for lubricating an engine using the above-mentioned lubricating oil composition of the present invention.
  • the engine include an engine for a vehicle such as an automobile, but an engine for an automobile is preferable, and a gasoline engine for an automobile is more preferable.
  • An automobile engine equipped with a hybrid mechanism is also preferable.
  • the lubricating oil composition of the present invention can exhibit excellent fuel efficiency even when used in an effective temperature range. Therefore, according to the engine lubrication method of the present invention, excellent fuel efficiency can be imparted to the engine in the effective temperature range.
  • HTHS Viscosity HTHS 80
  • 100 ° C. HTHS Viscosity HTHS 100
  • HTHS Viscosity HTHS 150
  • Viscosity ratio Each viscosity ratio of the lubricating oil composition was calculated by dividing the obtained kinematic viscosity or HTHS viscosity at each temperature by the kinematic viscosity at a predetermined temperature.
  • Mass average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn)] "1515 Isocratic HPLC Pump” and “2414 Differential Refractometer (RI) Detector” manufactured by Waters, one column “TSKgradecon SuperHZ-L” manufactured by Tosoh, and two “TSKSuperMultipore HZ-M” The book was attached in this order from the upstream side, measured under the conditions of measurement temperature: 40 ° C., mobile phase: tetrahydrofuran, flow velocity: 0.35 mL / min, and sample concentration 1.0 mg / mL, and determined by standard polystyrene conversion.
  • PSSI Permanent Shear Stability Index
  • Kv 0 is a value of 100 ° C. kinematic viscosity of the mixture (before shearing) in which the polymer is added to the base oil.
  • Kv 1 is a value of 100 ° C. kinematic viscosity (after shearing) measured in accordance with ASTM D-6278 for a mixture of base oil plus polyalkyl (meth) acrylate.
  • Kv oil is the value of the kinematic viscosity of the base oil at 100 ° C., and Kv 0 is adjusted to 7.5 mm 2 / s.
  • ⁇ Macromonomer ( ⁇ )> (One-ended methacrylicated hydrogenated polybutadiene)
  • the monomer ( ⁇ 1) one-ended methacrylicated hydrogenated polybutadiene (Kraton Liquid (registered trademark) L-1253, manufactured by Kuraray Co., Ltd.) having a structural unit derived from hydrogenated butadiene having a methacrylate at one end is used. There was. The mass average molecular weight is about 7,000 and the number average molecular weight is about 6,800.
  • ⁇ Polymer (A1)> N-Butyl methacrylate, manufactured by Alfa Aesar
  • R 11 is a methyl group
  • R 12 is —O—
  • m1 0,
  • R 14 is an n-butyl group.
  • the glass transition temperature (Tg) of the homopolymer is 20 ° C. (catalog value). In the following description, it is also referred to as "nC4MA”.
  • nC4MA is an isobutyl group.
  • the glass transition temperature (Tg) of the homopolymer is 80 ° C. (catalog value). In the following description, it is also referred to as "cC6MA".
  • nC1213MA n-dodecyl methacrylate and n-tridecyl methacrylate
  • Production Example 1 (Polymer 1) 7.70 g of macromonomer ( ⁇ ), 5.60 g of n-butoxyethyl methacrylate, nC1213MA in a 4-port separable flask equipped with a thermometer, Dimroth condenser, vacuum seal stirring blade, nitrogen inlet and nitrogen outlet. 11.20 g, n-butyl methacrylate (45.50 g), base oil for polymerization solvent (23.7 g), andsawtra A (0.40 g) were charged and subjected to nitrogen substitution. The mixture was heated and stirred under a nitrogen stream (nitrogen gas: 50 mL / min) at a bath temperature of 95 to 105 ° C.
  • nitrogen gas 50 mL / min
  • Comb-shaped polymer A It is a comb-shaped polymer containing 74 mol% of n-butyl methacrylate, 11 mol% of butoxyethyl methacrylate, 14 mol% of nC1213MA, and 1 mol% of macromonomer ( ⁇ ).
  • Comb-shaped polymer B It is a comb-shaped polymer containing 85 mol% of n-butyl methacrylate, 14 mol% of nC1213MA, and 1 mol% of macromonomer ( ⁇ ).
  • Examples 1 to 3, Comparative Examples 1 to 3 Polymers 1 to 4 or comb-shaped polymers A to B and a base oil were blended in the formulation shown in Table 1 to obtain lubricating oil compositions of Examples 1 to 3 and Comparative Examples 1 to 3.
  • the content in Table 1 is the content in terms of resin content.
  • the glass transition temperature (Tg) in Table 1 is the glass transition temperature of the homopolymer of the monomer (A1).
  • the lubricating oil compositions of Examples 1 to 3 satisfying all the configurations of the present invention have a high average drive torque improvement rate and are excellent in fuel efficiency.
  • the lubricating oil compositions of Comparative Examples 1 and 2 have the evaluation results of the motoring torque tests at 60 ° C., 80 ° C., and 100 ° C., and the average drive torque improvement rate, all of which are the lubrications of Examples 1 to 3. It is lower and inferior to the oil composition.
  • the lubricating oil composition of Comparative Example 3 had an evaluation result of ⁇ 0.62% in the motoring torque test at 60 ° C. and 1,500 rpm, which was the same as the evaluation result of the lubricating oil composition of Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is a lubricating oil composition that reduces torque losses over a broad temperature range. The lubricating oil composition comprises a base oil and poly(meth)acrylate, wherein the poly(meth)acrylate content as the resin fraction is 0.1-2.0 mass% with reference to the total amount of the lubricating oil composition. The lubricating oil composition has a kinematic viscosity at 100°C of 4.0 mm2/s to 7.5 mm2/s, a Noack evaporation loss of not more than 15.0 mass%, a ratio (KV40/KV100) between the kinematic viscosity at 40°C KV40 and the kinematic viscosity at 100°C KV100 of not more than 3.95, and a ratio (HTHS80/KV100) between the HTHS viscosity at 80°C HTHS80 and the kinematic viscosity at 100°C KV100 of not more than 0.96.

Description

潤滑油組成物Lubricating oil composition
 本発明は、潤滑油組成物に関する。 The present invention relates to a lubricating oil composition.
 近年、石油資源の有効活用及びCOの排出削減の観点から、自動車等の車両の省燃費化が強く求められている。そのため、自動車等の車両のエンジンに用いられる潤滑油組成物に対しても、省燃費化への要求が強くなってきている。
 省燃費化するための方法の一つとして、潤滑油組成物を低粘度化することにより粘性抵抗を低減する方法が挙げられる。
In recent years, from the viewpoint of effective utilization of petroleum resources and reduction of CO 2 emissions, fuel efficiency of vehicles such as automobiles has been strongly demanded. Therefore, there is an increasing demand for fuel efficiency of lubricating oil compositions used in the engines of vehicles such as automobiles.
As one of the methods for reducing fuel consumption, there is a method of reducing the viscous resistance by lowering the viscosity of the lubricating oil composition.
 例えば、特許文献1には、150℃におけるHTHS粘度を維持しつつ、40℃及び100℃における動粘度や100℃におけるHTHS粘度が低く、その結果、省燃費性に優れる潤滑油組成物が記載されている。 For example, Patent Document 1 describes a lubricating oil composition which maintains the HTHS viscosity at 150 ° C. and has low kinematic viscosities at 40 ° C. and 100 ° C. and low HTHS viscosity at 100 ° C., resulting in excellent fuel efficiency. ing.
特開2014-196518号公報Japanese Unexamined Patent Publication No. 2014-196518
 エンジンに用いられる潤滑油組成物は、冬場のエンジン始動前の温度である-20℃程度からエンジン始動後100℃程度まで、幅広い温度範囲で使用される。
 ここで、省燃費化への要求は、年々高まりつつある。そのため、さらなる省燃費化を達成すべく、上記のような幅広い温度域において、エンジンの回転によって生じるトルク損失の低減が要求されている。
 特許文献1では、80℃におけるトルク損失について検討されている。しかしながら、上記のようなより低い温度を含む、幅広い温度域におけるトルク損失に関し、特許文献1では何ら検討されていない。
The lubricating oil composition used in the engine is used in a wide temperature range from about −20 ° C., which is the temperature before starting the engine in winter, to about 100 ° C. after starting the engine.
Here, the demand for fuel efficiency is increasing year by year. Therefore, in order to achieve further fuel efficiency, it is required to reduce the torque loss caused by the rotation of the engine in the above-mentioned wide temperature range.
Patent Document 1 examines torque loss at 80 ° C. However, Patent Document 1 does not consider any torque loss in a wide temperature range including the above-mentioned lower temperature.
 本発明は、かかる要望に鑑みてなされたものであって、幅広い温度域においてトルクの損失を低減させる潤滑油組成物を提供することを課題とする。 The present invention has been made in view of such a demand, and an object of the present invention is to provide a lubricating oil composition that reduces torque loss in a wide temperature range.
 本発明者らは、鋭意検討により、特定の要件を満たす潤滑油組成物が、上記課題を解決し得ることを見出し、本発明を完成させた。 The present inventors have found through diligent studies that a lubricating oil composition satisfying a specific requirement can solve the above-mentioned problems, and have completed the present invention.
 すなわち、本発明は、下記[1]~[12]に関する。
 [1] 基油と、ポリ(メタ)アクリレートとを含有し、
 樹脂分換算の前記ポリ(メタ)アクリレートの含有量が、潤滑油組成物全量基準で、0.1質量%以上2.0質量%以下であり、
 下記の要件(1)~(4)を満たす、潤滑油組成物。
  ・要件(1):100℃動粘度が、4.0mm/s以上7.5mm/s以下である。
  ・要件(2):Noack蒸発量が、30質量%以下である。
  ・要件(3):40℃動粘度KV40と100℃動粘度KV100との比(KV40/KV100)が、3.95以下である。
  ・要件(4):80℃HTHS粘度HTHS80と100℃動粘度KV100との比(HTHS80/KV100)が、0.96以下である。
 [2] 前記ポリ(メタ)アクリレートが、マクロモノマー(α)由来の構成単位と、下記一般式(a1)で表される単量体(A1)由来の構成単位と、を含み、
Figure JPOXMLDOC01-appb-C000004

[上記一般式(a1)中、R11は、水素原子又はメチル基である。
 R12は、単結合、-O-、又は-NH-を示す。
 R13は、炭素数2~4の直鎖アルキレン基もしくは炭素数2~4の分岐鎖アルキレン基を示す。m1は、0~20の整数を示す。m1が2以上の整数の場合の複数のR13は、同一であっても異なっていてもよく、(R13O)m1部分はランダム共重合でもブロック共重合でもよい。
 R14は、炭素数4~5の非環状アルキル基、又は環状アルキル基を有する炭素数6~8の基である。]
 前記マクロモノマー(α)は、(メタ)アクリロイル基を片末端に有すると共に、ブタジエン及び水素化ブタジエンから選ばれる単量体(α1)に由来する構成単位を有し、
 前記単量体(A1)由来の構成単位の含有量が、全構成単位基準で、75モル%以上である櫛形ポリマー(A)を含有する、前記[1]に記載の潤滑油組成物。
 [3] 前記炭素数4~5の非環状アルキル基が、第3級炭素を有する、前記[2]に記載の潤滑油組成物。
 [4] 前記櫛形ポリマー(A)が、下記一般式(a2)で表される単量体(A2)由来の構成単位をさらに含む、前記[2]又は[3]に記載の潤滑油組成物。
Figure JPOXMLDOC01-appb-C000005

[上記一般式(a2)中、R21は水素原子又はメチル基である。
 R22は、単結合、-O-、又は-NH-を示す。
 R23は、炭素数2~4の直鎖アルキレン基又は炭素数2~4の分岐鎖アルキレン基を示す。m2は、1~20の整数を示す。m2が2以上の整数の場合の複数のR23は、同一であっても異なっていてもよく、(R23O)m2部分はランダム共重合でもブロック共重合でもよい。
 R24は、炭素数1~12の直鎖アルキル基又は炭素数1~12の分岐鎖アルキル基である。]
 [5] 前記櫛形ポリマー(A)が、炭素数10~30の直鎖アルキル基又は炭素数10~30の分岐鎖アルキル基を有するアルキル(メタ)アクリレート(A3)由来の構成単位をさらに含む、前記[2]~[4]のいずれか1つに記載の潤滑油組成物。
 [6] 前記炭素数10~30の直鎖アルキル基又は炭素数10~30の分岐鎖アルキル基を有するアルキル(メタ)アクリレート(A3)由来の構成単位の含有量が、全構成単位基準で、0.1モル%以上10モル%以下である、前記[5]に記載の潤滑油組成物。
 [7] 前記単量体(A1)由来の構成単位の含有量が、櫛形ポリマー(A)の構成単位の全量基準で、75モル%以上であり、
 かつ、下記一般式(a2)で表される単量体(A2)由来の構成単位をさらに含む、前記[2]又は[3]に記載の潤滑油組成物。
Figure JPOXMLDOC01-appb-C000006

[上記一般式(a2)中、R21は水素原子又はメチル基である。
 R22は、単結合、-O-、又は-NH-を示す。
 R23は、炭素数2~4の直鎖アルキレン基又は炭素数2~4の分岐鎖アルキレン基を示す。m2は、1~20の整数を示す。m2が2以上の整数の場合の複数のR23は、同一であっても異なっていてもよく、(R23O)m2部分はランダム共重合でもブロック共重合でもよい。
 R24は、炭素数1~12の直鎖アルキル基又は炭素数1~12の分岐鎖アルキル基である。]
 [8] 前記櫛形ポリマー(A)の質量平均分子量(Mw)が、30万以上150万以下である、前記[2]~[7]のいずれか1つに記載の潤滑油組成物。
 [9] 前記櫛形ポリマー(A)の分子量分布(Mw/Mn)が、1.2以上3.7以下である、前記[2]~[8]のいずれか1つに記載の潤滑油組成物。
 [10] 前記一般式(a1)で表される単量体(A1)由来の構成単位からなるホモポリマーのガラス転移温度(Tg)が、20℃以上である、前記[2]~[9]のいずれか1つに記載の潤滑油組成物。
 [11] 自動車の内燃機関に用いられる、前記[1]~[10]のいずれか1つに記載の潤滑油組成物。
 [12] ハイブリッド機構を搭載した自動車の内燃機関に用いられる、前記[1]~[10]のいずれか1つに記載の潤滑油組成物。
That is, the present invention relates to the following [1] to [12].
[1] Containing a base oil and a poly (meth) acrylate,
The content of the poly (meth) acrylate in terms of resin content is 0.1% by mass or more and 2.0% by mass or less based on the total amount of the lubricating oil composition.
A lubricating oil composition that satisfies the following requirements (1) to (4).
-Requirement (1): The kinematic viscosity at 100 ° C. is 4.0 mm 2 / s or more and 7.5 mm 2 / s or less.
-Requirement (2): Noack evaporation amount is 30% by mass or less.
-Requirement (3): The ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100 ) is 3.95 or less.
-Requirement (4): The ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100 ) is 0.96 or less.
[2] The poly (meth) acrylate contains a structural unit derived from a macromonomer (α) and a structural unit derived from a monomer (A1) represented by the following general formula (a1).
Figure JPOXMLDOC01-appb-C000004

[In the above general formula (a1), R 11 is a hydrogen atom or a methyl group.
R 12 represents a single bond, -O-, or -NH-.
R 13 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms. m1 represents an integer from 0 to 20. When m1 is an integer of 2 or more, the plurality of R 13s may be the same or different, and the (R 13 O) m1 portion may be a random copolymerization or a block copolymerization.
R 14 is a non-cyclic alkyl group having 4 to 5 carbon atoms or a group having 6 to 8 carbon atoms having a cyclic alkyl group. ]
The macromonomer (α) has a (meth) acryloyl group at one end and has a structural unit derived from a monomer (α1) selected from butadiene and hydrogenated butadiene.
The lubricating oil composition according to the above [1], which contains the comb-shaped polymer (A) in which the content of the structural unit derived from the monomer (A1) is 75 mol% or more based on the total structural unit.
[3] The lubricating oil composition according to the above [2], wherein the acyclic alkyl group having 4 to 5 carbon atoms has a tertiary carbon.
[4] The lubricating oil composition according to the above [2] or [3], wherein the comb-shaped polymer (A) further contains a structural unit derived from the monomer (A2) represented by the following general formula (a2). ..
Figure JPOXMLDOC01-appb-C000005

[In the above general formula (a2), R 21 is a hydrogen atom or a methyl group.
R 22 represents a single bond, -O-, or -NH-.
R 23 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms. m2 represents an integer from 1 to 20. When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms. ]
[5] The comb-shaped polymer (A) further contains a structural unit derived from an alkyl (meth) acrylate (A3) having a linear alkyl group having 10 to 30 carbon atoms or a branched chain alkyl group having 10 to 30 carbon atoms. The lubricating oil composition according to any one of the above [2] to [4].
[6] The content of the structural unit derived from the alkyl (meth) acrylate (A3) having the linear alkyl group having 10 to 30 carbon atoms or the branched chain alkyl group having 10 to 30 carbon atoms is based on all the structural units. The lubricating oil composition according to the above [5], which is 0.1 mol% or more and 10 mol% or less.
[7] The content of the structural unit derived from the monomer (A1) is 75 mol% or more based on the total amount of the structural unit of the comb polymer (A).
The lubricating oil composition according to the above [2] or [3], further comprising a structural unit derived from the monomer (A2) represented by the following general formula (a2).
Figure JPOXMLDOC01-appb-C000006

[In the above general formula (a2), R 21 is a hydrogen atom or a methyl group.
R 22 represents a single bond, -O-, or -NH-.
R 23 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms. m2 represents an integer from 1 to 20. When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms. ]
[8] The lubricating oil composition according to any one of the above [2] to [7], wherein the mass average molecular weight (Mw) of the comb-shaped polymer (A) is 300,000 or more and 1.5 million or less.
[9] The lubricating oil composition according to any one of the above [2] to [8], wherein the molecular weight distribution (Mw / Mn) of the comb-shaped polymer (A) is 1.2 or more and 3.7 or less. ..
[10] The above [2] to [9], wherein the glass transition temperature (Tg) of the homopolymer composed of the structural unit derived from the monomer (A1) represented by the general formula (a1) is 20 ° C. or higher. The lubricating oil composition according to any one of the above.
[11] The lubricating oil composition according to any one of the above [1] to [10], which is used for an internal combustion engine of an automobile.
[12] The lubricating oil composition according to any one of the above [1] to [10], which is used for an internal combustion engine of an automobile equipped with a hybrid mechanism.
 本発明によれば、幅広い温度域においてトルクの損失を低減させる潤滑油組成物を提供することが可能となる。 According to the present invention, it is possible to provide a lubricating oil composition that reduces torque loss in a wide temperature range.
 以下、本発明を実施するための形態について、詳細に説明する。 Hereinafter, a mode for carrying out the present invention will be described in detail.
 本明細書中、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10以上、より好ましくは30以上、更に好ましくは40以上」という下限値の記載と、「好ましくは90以下、より好ましくは80以下、更に好ましくは70以下である」という上限値の記載とから、好適範囲として、例えば、「10以上70以下」、「30以上70以下」、「40以上80以下」といったそれぞれ独立に選択した下限値と上限値とを組み合わせた範囲を選択することもできる。また、同様の記載から、例えば、単に、「40以上」又は「70以下」といった下限値又は上限値の一方を規定した範囲を選択することもできる。また、例えば、「好ましくは10以上90以下、より好ましくは30以上80以下、更に好ましくは40以上70以下である」、「好ましくは10~90、より好ましくは30~80、更に好ましくは40~70である」といった記載から選択可能な好適範囲についても同様である。なお、本明細書中、数値範囲の記載において、例えば、「10~90」という記載は「10以上90以下」と同義である。なお、数値範囲の記載に関する「以上」、「以下」、「未満」、「超」の数値もまた、任意に組み合わせることができる。 In the present specification, with respect to a preferable numerical range (for example, a range such as content), the lower limit value and the upper limit value described stepwise can be combined independently. For example, a description of a lower limit value of "preferably 10 or more, more preferably 30 or more, still more preferably 40 or more" and an upper limit value of "preferably 90 or less, more preferably 80 or less, still more preferably 70 or less". From the description of the above, as a suitable range, for example, a range in which a lower limit value and an upper limit value independently selected such as "10 or more and 70 or less", "30 or more and 70 or less", and "40 or more and 80 or less" are combined is selected. You can also do it. Further, from the same description, for example, it is possible to simply select a range in which either the lower limit value or the upper limit value such as "40 or more" or "70 or less" is defined. Further, for example, "preferably 10 or more and 90 or less, more preferably 30 or more and 80 or less, still more preferably 40 or more and 70 or less", "preferably 10 to 90, more preferably 30 to 80, still more preferably 40 to 40 to". The same applies to the preferable range that can be selected from the description such as "70". In the description of the numerical range in the present specification, for example, the description "10 to 90" is synonymous with "10 or more and 90 or less". It should be noted that the numerical values of "greater than or equal to", "less than or equal to", "less than", and "super" regarding the description of the numerical range can also be arbitrarily combined.
 本明細書において、「40℃における動粘度」のことを「40℃動粘度」ともいう。同様に、「100℃における動粘度」のことを「100℃動粘度」ともいう。 In the present specification, "kinematic viscosity at 40 ° C" is also referred to as "40 ° C kinematic viscosity". Similarly, "kinematic viscosity at 100 ° C." is also referred to as "100 ° C. kinematic viscosity".
 本明細書において、「(メタ)アクリレート」とは、「アクリレート」と「メタクリレート」の双方を示し、他の類似用語も同様である。例えば、「(メタ)アクリロイル基」は、「アクリロイル基」と「メタクリロイル基」の双方を示す。 In the present specification, "(meth) acrylate" means both "acrylate" and "methacrylate", and the same applies to other similar terms. For example, "(meth) acryloyl group" indicates both "acryloyl group" and "methacryloyl group".
 本明細書において、各成分の質量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法により測定された値を意味する。 In the present specification, the mass average molecular weight (Mw) and the number average molecular weight (Mn) of each component are values in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically, Examples. Means the value measured by the method described in.
 以下、本発明の態様について詳細に説明する。 Hereinafter, aspects of the present invention will be described in detail.
[潤滑油組成物の態様]
 本発明の潤滑油組成物は、基油と、ポリ(メタ)アクリレートとを含有し、樹脂分換算の前記ポリ(メタ)アクリレートの含有量が、潤滑油組成物全量基準で、0.1質量%以上2.0質量%以下であり、下記の要件(1)~(4)を満たす。
  ・要件(1):100℃動粘度が、4.0mm/s以上7.5mm/s以下である。
  ・要件(2):Noack蒸発量が、30.0質量%以下である。
  ・要件(3):40℃動粘度KV40と100℃動粘度KV100との比(KV40/KV100)が、3.95以下である。
  ・要件(4):80℃HTHS粘度HTHS80と100℃動粘度KV100との比(HTHS80/KV100)が、0.96以下である。
 本発明の潤滑油組成物が要件(1)~(4)を満たすことにより、幅広い温度域においてトルクの損失を低減させる潤滑油組成物とすることができる。
[Aspects of lubricating oil composition]
The lubricating oil composition of the present invention contains a base oil and a poly (meth) acrylate, and the content of the poly (meth) acrylate in terms of resin content is 0.1 mass based on the total amount of the lubricating oil composition. % Or more and 2.0% by mass or less, and satisfy the following requirements (1) to (4).
-Requirement (1): The kinematic viscosity at 100 ° C. is 4.0 mm 2 / s or more and 7.5 mm 2 / s or less.
-Requirement (2): Noack evaporation amount is 30.0% by mass or less.
-Requirement (3): The ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100 ) is 3.95 or less.
-Requirement (4): The ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100 ) is 0.96 or less.
When the lubricating oil composition of the present invention satisfies the requirements (1) to (4), it is possible to obtain a lubricating oil composition that reduces torque loss in a wide temperature range.
<要件(1)>
 本発明の潤滑油組成物は、100℃動粘度が、4.0mm/s以上7.5mm/s以下である。
 本発明の潤滑油組成物が要件(1)を満たすことにより、Noack蒸発量が要件(2)を満たすことができ、かつ、潤滑油組成物の粘度が低くなるため、省燃費性に優れる。
 なお、100℃動粘度が4.0mm/s未満である場合、Noack蒸発量が要件(2)を満たすことができず、蒸発による潤滑油組成物の損失が多くなる。また、100℃動粘度が7.5mm/s超である場合、潤滑油組成物の粘度を低くすることができないため、省燃費性が不十分となる。
 また、本発明の潤滑油組成物は、Noack蒸発量が要件(2)を満たし、かつ、潤滑油組成物の粘度をより低くする観点から、100℃動粘度が、5.0mm/s以上7.4mm/s以下が好ましく、5.5mm/s以上7.3mm/s以下がより好ましく、更に好ましくは6.0mm/s以上7.2mm/s以下である。
<Requirement (1)>
The lubricating oil composition of the present invention has a kinematic viscosity at 100 ° C. of 4.0 mm 2 / s or more and 7.5 mm 2 / s or less.
When the lubricating oil composition of the present invention satisfies the requirement (1), the amount of Noack evaporation can satisfy the requirement (2), and the viscosity of the lubricating oil composition is lowered, so that fuel efficiency is excellent.
If the kinematic viscosity at 100 ° C. is less than 4.0 mm 2 / s, the amount of Noack evaporation cannot satisfy the requirement (2), and the loss of the lubricating oil composition due to evaporation increases. Further, when the kinematic viscosity at 100 ° C. is more than 7.5 mm 2 / s, the viscosity of the lubricating oil composition cannot be lowered, so that the fuel efficiency becomes insufficient.
Further, the lubricating oil composition of the present invention has a kinematic viscosity of 5.0 mm 2 / s or more at 100 ° C. from the viewpoint that the amount of Noack evaporation satisfies the requirement (2) and the viscosity of the lubricating oil composition is further lowered. 7.4mm is preferably from 2 / s, more preferably not more than 5.5 mm 2 / s or more 7.3 mm 2 / s, more preferably not more than 6.0 mm 2 / s or more 7.2 mm 2 / s.
<要件(2)>
 本発明の潤滑油組成物は、Noack蒸発量が、30.0質量%以下である。
 本発明の潤滑油組成物が要件(2)を満たすことにより、蒸発による潤滑油組成物の損失を低減させることができる。
 なお、Noack蒸発量が30.0質量%を超えると、蒸発による潤滑油組成物の損失量が多くなる。
 前記Noack蒸発量は、ASTM D 5800に準拠して測定される。
 本発明の潤滑油組成物は、蒸発による潤滑油組成物の損失量を更に低減させる観点から、Noack蒸発量が、25.0質量%以下が好ましく、20.0質量%以下がより好ましい。
<Requirement (2)>
The lubricating oil composition of the present invention has a Noack evaporation amount of 30.0% by mass or less.
When the lubricating oil composition of the present invention satisfies the requirement (2), the loss of the lubricating oil composition due to evaporation can be reduced.
If the amount of Noack evaporation exceeds 30.0% by mass, the amount of loss of the lubricating oil composition due to evaporation increases.
The amount of Noack evaporation is measured according to ASTM D 5800.
From the viewpoint of further reducing the amount of loss of the lubricating oil composition due to evaporation, the lubricating oil composition of the present invention preferably has a Noack evaporation amount of 25.0% by mass or less, more preferably 20.0% by mass or less.
<要件(3)、要件(4)>
 本発明の潤滑油組成物は、要件(3)に規定するように、40℃動粘度KV40と100℃動粘度KV100との比(KV40/KV100)が、3.95以下である。
 また、本発明の潤滑油組成物は、要件(4)に規定するように、80℃HTHS粘度HTHS80と100℃動粘度KV100との比(HTHS80/KV100)が、0.96以下である。
 40℃動粘度KV40及び100℃動粘度KV100は、JIS K2283:2000に準拠して測定することができる。
 80℃HTHS粘度HTHS80は、JPI-5S-36―03に準拠して測定することができる。
 要件(3)及び要件(4)の少なくともいずれかを満たさない場合、幅広い温度域においてトルクの損失を低減させることができない。
<Requirements (3), Requirements (4)>
As specified in the requirement (3), the lubricating oil composition of the present invention has a ratio (KV 40 / KV 100 ) of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 of 3.95 or less. ..
Further, as specified in the requirement (4), the lubricating oil composition of the present invention has a ratio (HTHS 80 / KV 100 ) of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 of 0.96 or less. Is.
The 40 ° C. kinematic viscosity KV 40 and the 100 ° C. kinematic viscosity KV 100 can be measured in accordance with JIS K2283: 2000.
80 ° C. HTHS viscosity HTHS 80 can be measured according to JPI-5S-36-03.
If at least one of the requirements (3) and (4) is not satisfied, the torque loss cannot be reduced in a wide temperature range.
 要件(3)に関し、本発明の潤滑油組成物は、幅広い温度域においてトルクの損失を低減させる観点から、40℃動粘度KV40と100℃動粘度KV100との比(KV40/KV100)は3.95以下であり、好ましくは3.93以下であり、より好ましくは3.90以下であり、更に好ましくは3.86以下である。また、幅広い温度域においてトルクの損失を低減させる観点から、40℃動粘度KV40と100℃動粘度KV100との比(KV40/KV100)は好ましくは3.70以上であり、より好ましくは3.75以上であり、更に好ましくは3.78以上であり、より更に好ましくは3.83以上である。 Regarding the requirement (3), the lubricating oil composition of the present invention has a ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100) from the viewpoint of reducing torque loss in a wide temperature range. ) Is 3.95 or less, preferably 3.93 or less, more preferably 3.90 or less, and further preferably 3.86 or less. Further, from the viewpoint of reducing torque loss in a wide temperature range, the ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100 ) is preferably 3.70 or more, which is more preferable. Is 3.75 or more, more preferably 3.78 or more, and even more preferably 3.83 or more.
 要件(4)に関し、本発明の潤滑油組成物は、幅広い温度域においてトルクの損失を低減させる観点から、80℃HTHS粘度HTHS80と100℃動粘度KV100との比(HTHS80/KV100)が、0.96以下である。また、本発明の潤滑油組成物は、幅広い温度域においてトルクの損失を低減させる観点から、80℃HTHS粘度HTHS80と100℃動粘度KV100との比(HTHS80/KV100)が、好ましくは0.90以上であり、より好ましくは0.92以上であり、更に好ましくは0.93以上であり、より更に好ましくは0.95以上である。
 また、本発明の潤滑油組成物は、幅広い温度域においてトルクの損失を低減させ、省燃費性を高める観点から、100℃HTHS粘度HTHS100と100℃動粘度KV100との比(HTHS100/KV100)は0.64以下が好ましく、0.63以下がより好ましい。
Regarding the requirement (4), the lubricating oil composition of the present invention has a ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100) from the viewpoint of reducing torque loss in a wide temperature range. ) Is 0.96 or less. Further, in the lubricating oil composition of the present invention, the ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100 ) is preferable from the viewpoint of reducing torque loss in a wide temperature range. Is 0.90 or more, more preferably 0.92 or more, still more preferably 0.93 or more, and even more preferably 0.95 or more.
Further, the lubricating oil composition of the present invention has a ratio of 100 ° C. HTHS viscosity HTHS 100 to 100 ° C. kinematic viscosity KV 100 (HTHS 100 /) from the viewpoint of reducing torque loss and improving fuel efficiency in a wide temperature range. KV 100 ) is preferably 0.64 or less, more preferably 0.63 or less.
 本発明の潤滑油組成物は、基油と、ポリ(メタ)アクリレートとを含有する。
 潤滑油組成物が、基油と、ポリ(メタ)アクリレートとを含有し、所定の条件を満たすことにより、幅広い温度域においてトルクの損失を低減させ、省燃費性を向上させることができる。ここで、幅広い温度域とは、自動車等の車両のエンジンにおいて想定される実効温度域を意味する。
 当該実効温度域とは、30℃~100℃の温度領域を意味するものとする。
The lubricating oil composition of the present invention contains a base oil and a poly (meth) acrylate.
When the lubricating oil composition contains a base oil and a poly (meth) acrylate and satisfies a predetermined condition, torque loss can be reduced in a wide temperature range and fuel efficiency can be improved. Here, the wide temperature range means an effective temperature range assumed in the engine of a vehicle such as an automobile.
The effective temperature range shall mean a temperature range of 30 ° C. to 100 ° C.
 前記潤滑油組成物中、樹脂分換算の前記ポリ(メタ)アクリレートの含有量は、潤滑油組成物全量基準で、0.1質量%以上2.0質量%以下であり、好ましくは0.3質量%以上1.9質量%以下であり、より好ましくは0.5質量%以上1.8質量%以下である。 The content of the poly (meth) acrylate in the lubricating oil composition in terms of resin content is 0.1% by mass or more and 2.0% by mass or less, preferably 0.3, based on the total amount of the lubricating oil composition. It is by mass% or more and 1.9% by mass or less, and more preferably 0.5% by mass or more and 1.8% by mass or less.
[基油]
 基油としては、特に制限はなく、従来、潤滑油の基油として使用されている鉱油及び合成油の中から任意のものを適宜選択して用いることができる。
 鉱油としては、例えば、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき処理;溶剤抽出又は水素化分解の少なくとも1種の処理;溶剤脱ろう又は接触脱ろうの少なくとも1種の脱ろう処理;水素化精製処理;等のうちの1種以上の処理、好ましくは全ての処理を行って精製した油、又は鉱油系ワックスを異性化することによって製造される油等が挙げられる。これらのうち水素化精製により処理した油が好ましい。
 合成油としては、例えば、ポリブテン、α-オレフィン単独重合体、エチレン-α-オレフィン共重合体等の共重合体などのポリα-オレフィン;ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種のエステル;ポリフェニルエーテル等の各種のエーテル;ポリグリコール;アルキルベンゼン;アルキルナフタレン;GTLプロセスにおける残渣WAX(ガストゥリキッド ワックス)を水素化異性化脱ろうすることによって製造されるGTL基油等が挙げられる。
 これらの基油は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
[Base oil]
The base oil is not particularly limited, and any mineral oil or synthetic oil conventionally used as a base oil for lubricating oil can be appropriately selected and used.
As the mineral oil, for example, the lubricating oil distillate obtained by vacuum distillation of the atmospheric residual oil obtained by atmospheric distillation of crude oil is subjected to solvent removal treatment; at least one treatment of solvent extraction or hydrocracking. At least one dewaxing treatment for solvent dewaxing or catalytic dewaxing; hydrorefining treatment; one or more treatments, preferably all treatments, and refined oils or mineral oil-based waxes of the opposite sex Examples thereof include oil produced by refining. Of these, oils treated by hydrorefining are preferred.
Examples of the synthetic oil include polyα-olefins such as copolymers such as polybutene, α-olefin homopolymer, and ethylene-α-olefin copolymer; various types such as polyol ester, dibasic acid ester, and phosphoric acid ester. Esters; various ethers such as polyphenyl ethers; polyglycols; alkylbenzenes; alkylnaphthalene; GTL base oils produced by hydroisomerizing and dewaxing residual WAX (gast liquid wax) in the GTL process. Be done.
These base oils may be used alone or in combination of two or more.
 前記基油の粘度については特に制限はないが、100℃動粘度が、好ましくは2.0mm/s~6.0mm/s、より好ましくは2.0mm/s~5.5mm/s、更に好ましくは2.0mm/s~5.0mm/sである。100℃動粘度が2.0mm/s以上であると、蒸発損失を抑えやすく、また、6.0mm/s以下であると、粘性抵抗による動力損失が抑制され、燃費改善効果が得られる。
 また、前記基油の粘度指数は、好ましくは50以上、より好ましくは80以上、更に好ましくは100以上、より更に好ましくは105以上である。前記基油の粘度指数が当該範囲であることで、潤滑油組成物の粘度特性を良好にしやすくなる。
 基油の100℃における動粘度及び粘度指数の値は、後述する実施例に記載された方法により測定及び算出されるものである。
No particular limitation is imposed on the viscosity of the base oil, 100 ° C. kinematic viscosity is preferably 2.0mm 2 /s~6.0mm 2 / s, more preferably 2.0mm 2 /s~5.5mm 2 / s, more preferably from 2.0mm 2 /s~5.0mm 2 / s. When the 100 ° C. kinematic viscosity is 2.0 mm 2 / s or more, evaporation loss can be easily suppressed, and when it is 6.0 mm 2 / s or less, power loss due to viscous resistance is suppressed, and a fuel efficiency improving effect can be obtained. ..
The viscosity index of the base oil is preferably 50 or more, more preferably 80 or more, still more preferably 100 or more, and even more preferably 105 or more. When the viscosity index of the base oil is in this range, it becomes easy to improve the viscosity characteristics of the lubricating oil composition.
The values of the kinematic viscosity and the viscosity index of the base oil at 100 ° C. are measured and calculated by the methods described in Examples described later.
[ポリ(メタ)アクリレート]
 ポリ(メタ)アクリレートは、以下に説明する櫛形ポリマー(A)を含有することが好ましい。
 本発明の一態様のポリ(メタ)アクリレートは、櫛形ポリマー(A)のみからなるものであってもよい。すなわち、本発明の一態様のポリ(メタ)アクリレートは、櫛形ポリマー(A)を、ポリ(メタ)アクリレートの全量(100質量%)基準で、100質量%含有していてもよい。
[Poly (meth) acrylate]
The poly (meth) acrylate preferably contains the comb-shaped polymer (A) described below.
The poly (meth) acrylate of one aspect of the present invention may consist only of the comb-shaped polymer (A). That is, the poly (meth) acrylate of one aspect of the present invention may contain the comb-shaped polymer (A) in an amount of 100% by mass based on the total amount (100% by mass) of the poly (meth) acrylate.
 以下、櫛形ポリマー(A)について、詳細に説明する。 Hereinafter, the comb-shaped polymer (A) will be described in detail.
<櫛形ポリマー(A)の態様:マクロモノマー(α)、単量体(A1)>
 櫛形ポリマー(A)は、マクロモノマー(α)由来の構成単位と、下記一般式(a1)で表される単量体(A1)由来の構成単位と、含有することが好ましい。
Figure JPOXMLDOC01-appb-C000007

[上記一般式(a1)中、R11は、水素原子又はメチル基である。
 R12は、単結合、-O-、又は-NH-を示す。
 R13は、炭素数2~4の直鎖アルキレン基もしくは分岐鎖アルキレン基を示す。m1は、0~20の整数を示す。m1が2以上の整数の場合の複数のR13は、同一であっても異なっていてもよく、(R13O)m1部分はランダム共重合でもブロック共重合でもよい。
 R14は、炭素数4~5の非環状アルキル基、又は環状アルキル基を有する炭素数6~8の基である。]
 マクロモノマー(α)は、(メタ)アクリロイル基を片末端に有すると共に、ブタジエン及び水素化ブタジエンから選ばれる単量体(α1)に由来する構成単位を有する。
<Aspects of comb-shaped polymer (A): macromonomer (α), monomer (A1)>
The comb-shaped polymer (A) preferably contains a structural unit derived from the macromonomer (α) and a structural unit derived from the monomer (A1) represented by the following general formula (a1).
Figure JPOXMLDOC01-appb-C000007

[In the above general formula (a1), R 11 is a hydrogen atom or a methyl group.
R 12 represents a single bond, -O-, or -NH-.
R 13 represents a linear alkylene group or a branched chain alkylene group having 2 to 4 carbon atoms. m1 represents an integer from 0 to 20. When m1 is an integer of 2 or more, the plurality of R 13s may be the same or different, and the (R 13 O) m1 portion may be a random copolymerization or a block copolymerization.
R 14 is a non-cyclic alkyl group having 4 to 5 carbon atoms or a group having 6 to 8 carbon atoms having a cyclic alkyl group. ]
The macromonomer (α) has a (meth) acryloyl group at one end and has a structural unit derived from a monomer (α1) selected from butadiene and hydrogenated butadiene.
 ここで、上記要件(3)及び(4)の双方を満たしやすくする観点から、上記一般式(a1)中、R14は、炭素数4~5の非環状アルキル基又は環状アルキル基を有する炭素数6~8の基であることが好ましい。なお、環状アルキル基を有する基の炭素数は、環状アルキル基を有する基に含まれる炭素原子の総数を意味する。
 上記要件(3)及び(4)の双方を満たしやすくし、且つ上記要件(4)をより満たしやすくする観点から、上記一般式(a1)中のR14は、環状アルキル基を有する炭素数6~8の基が好ましい。
Here, from the viewpoint of facilitating both of the above requirements (3) and (4), in the above general formula (a1), R 14 is a carbon having an acyclic alkyl group or a cyclic alkyl group having 4 to 5 carbon atoms. It is preferably a group of numbers 6-8. The carbon number of the group having a cyclic alkyl group means the total number of carbon atoms contained in the group having a cyclic alkyl group.
From the viewpoint of making it easier to satisfy both the above requirements (3) and (4) and more easily satisfying the above requirement (4), R 14 in the general formula (a1) has 6 carbon atoms having a cyclic alkyl group. ~ 8 groups are preferred.
 炭素数4~5の非環状アルキル基は、上記要件(3)及び(4)の双方をより満たしやすくする観点から、3級炭素又は4級炭素を有することが好ましく、3級炭素を有することがより好ましい。
 炭素数4~5の非環状アルキル基の具体例としては、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、3-ペンチル基等が挙げられる。これらの中でも、上記要件(3)及び(4)の双方をさらに満たしやすくする観点から、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基が好ましく、イソブチル基がより好ましい。
The acyclic alkyl group having 4 to 5 carbon atoms preferably has a tertiary carbon or a quaternary carbon from the viewpoint of making it easier to satisfy both the above requirements (3) and (4), and preferably has a tertiary carbon. Is more preferable.
Specific examples of the acyclic alkyl group having 4 to 5 carbon atoms include n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, isopentyl group, sec-pentyl group, and the like. Examples thereof include a tert-pentyl group and a 3-pentyl group. Among these, from the viewpoint of making it easier to satisfy both the above requirements (3) and (4), an isobutyl group, a sec-butyl group, a tert-butyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, and a tert-pentyl group. Groups are preferred, isobutyl groups are more preferred.
 環状アルキル基を有する炭素数6~8の基は、具体例を挙げると、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基、ジメチルシクロヘキシル基、シクロヘキシルメチル基、メチルシクロヘキシルメチル基、シクロヘキシルエチル基等が挙げられる。これらの中でも、上記要件(3)及び(4)の双方を満たしやすくし、且つ上記要件(4)をさらに満たしやすくする観点から、シクロヘキシル基が好ましい。 Specific examples of the group having a cyclic alkyl group having 6 to 8 carbon atoms include a cyclohexyl group, a methylcyclohexyl group, an ethylcyclohexyl group, a dimethylcyclohexyl group, a cyclohexylmethyl group, a methylcyclohexylmethyl group, a cyclohexylethyl group and the like. Be done. Among these, a cyclohexyl group is preferable from the viewpoint of facilitating both of the above requirements (3) and (4) and further facilitating the above requirement (4).
 なお、上記一般式(a1)中、上記要件(3)及び(4)の双方を満たしやすくする観点から、R11は、メチル基であることが好ましい。
 また、同様の観点から、R12は、各々独立に、-О-であることが好ましい。
 すなわち、単量体(A1)は、重合性官能基として、アクリロイル基又はメタクリロイル基を有することが好ましく、メタクリロイル基を有することがより好ましい。
 また、同様の観点から、m1は0~5であることが好ましく、0~2であることがより好ましく、0であることが更に好ましい。
In the general formula (a1), R 11 is preferably a methyl group from the viewpoint of facilitating both of the above requirements (3) and (4).
From the same viewpoint, it is preferable that R 12 is −O− independently of each other.
That is, the monomer (A1) preferably has an acryloyl group or a methacryloyl group as a polymerizable functional group, and more preferably has a methacryloyl group.
From the same viewpoint, m1 is preferably 0 to 5, more preferably 0 to 2, and even more preferably 0.
 ここで、上記要件(3)及び(4)の双方を満たしやすくする観点から、単量体(A1)由来の構成単位の含有量は、好ましくは75モル%以上、より好ましくは76モル%以上、更に好ましくは77モル%以上である。
 なお、単量体(A1)由来の構成単位の含有量の上限値は、潤滑油組成物が有する基油への溶解性が確保できる範囲であれば特に限定されないが、好ましくは90モル%以下、より好ましくは87モル%以下、更に好ましくは85モル%以下である。
Here, from the viewpoint of facilitating both of the above requirements (3) and (4), the content of the structural unit derived from the monomer (A1) is preferably 75 mol% or more, more preferably 76 mol% or more. , More preferably 77 mol% or more.
The upper limit of the content of the constituent unit derived from the monomer (A1) is not particularly limited as long as the solubility of the lubricating oil composition in the base oil can be ensured, but is preferably 90 mol% or less. , More preferably 87 mol% or less, still more preferably 85 mol% or less.
 櫛形ポリマー(A)に含まれる単量体(A1)由来の構成単位は、1種単独であってもよいし、2種以上であってもよい。例えば、上記一般式(a1)中のR14が異なる複数種の構成単位を含有する櫛形ポリマー(A)を調製することで、HTHS粘度を所望の範囲に調整しやすい。 The structural unit derived from the monomer (A1) contained in the comb-shaped polymer (A) may be one kind alone or two or more kinds. For example, by preparing a comb-shaped polymer (A) containing a plurality of structural units having different R 14s in the general formula (a1), it is easy to adjust the HTHS viscosity within a desired range.
 次に、マクロモノマー(α)は、(メタ)アクリロイル基を片末端に有すると共に、ブタジエン及び水素化ブタジエンから選ばれる単量体(α1)に由来する構成単位を有することが好ましい。
 つまり、マクロモノマー(α)中における、単量体(α1)に由来する構成単位を有する重合体が、上述の「高分子量の側鎖」に該当する。なお、本発明において、上記の「マクロモノマー」とは、重合性官能基を有する高分子量モノマーのことを意味し、重合性官能基は(メタ)アクリロイル基である。つまり、櫛形ポリマー(A)の主鎖は、マクロモノマー(α)が有する重合性官能基である(メタ)アクリロイル基に由来する構成単位を有する。上記要件(3)及び(4)の双方を満たしやすくする観点から、重合性官能基は、メタクリロイル基であることが好ましい。
Next, the macromonomer (α) preferably has a (meth) acryloyl group at one end and has a structural unit derived from a monomer (α1) selected from butadiene and hydrogenated butadiene.
That is, the polymer having a structural unit derived from the monomer (α1) in the macromonomer (α) corresponds to the above-mentioned “high molecular weight side chain”. In the present invention, the above-mentioned "macromonomer" means a high molecular weight monomer having a polymerizable functional group, and the polymerizable functional group is a (meth) acryloyl group. That is, the main chain of the comb-shaped polymer (A) has a structural unit derived from the (meth) acryloyl group, which is a polymerizable functional group of the macromonomer (α). From the viewpoint of facilitating the satisfaction of both the above requirements (3) and (4), the polymerizable functional group is preferably a methacryloyl group.
 マクロモノマー(α)の数平均分子量(Mn)は、好ましくは300以上、より好ましくは500以上、更に好ましくは1,000以上、より更に好ましくは2,000以上、更になお好ましくは4,000以上である。また、好ましくは100,000以下、より好ましくは50,000以下、更に好ましくは20,000以下、より更に好ましくは10,000以下である。 The number average molecular weight (Mn) of the macromonomer (α) is preferably 300 or more, more preferably 500 or more, still more preferably 1,000 or more, still more preferably 2,000 or more, still more preferably 4,000 or more. Is. Further, it is preferably 100,000 or less, more preferably 50,000 or less, still more preferably 20,000 or less, still more preferably 10,000 or less.
 マクロモノマー(α)は、単量体(α1)に由来する構成単位以外に、例えば、以下の一般式(b-i)~(b-iii)で表される繰り返し単位を1種以上有していてもよい。
 なお、マクロモノマー(α)が共重合体である場合、共重合の形態としては、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
The macromonomer (α) has, for example, one or more repeating units represented by the following general formulas (bi) to (biii) in addition to the structural unit derived from the monomer (α1). You may be.
When the macromonomer (α) is a copolymer, the form of copolymerization may be a block copolymer or a random copolymer.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(b-i)中、Rb1は、炭素数1~10の直鎖アルキレン基又は分岐鎖アルキレン基を示す。具体的には、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、2-エチルヘキシレン基等が挙げられる。
 上記一般式(b-ii)中、Rb2は、炭素数2~4の直鎖アルキレン基又は分岐鎖アルキレン基を示す。具体的には、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基等が挙げられる。
 上記一般式(b-iii)中、Rb3は、水素原子又はメチル基を示す。
 また、Rb4は炭素数1~10の直鎖又は分岐鎖アルキル基を示す。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、イソヘキシル基、tert-ヘキシル基、イソヘプチル基、tert-ヘプチル基、2-エチルヘキシル基、イソオクチル基、イソノニル基、イソデシル基等が挙げられる。
 なお、上記一般式(b-i)~(b-iii)で表される繰り返し単位をそれぞれ複数有する場合には、Rb1、Rb2、Rb3、Rb4は、それぞれ同一であってもよく、互いに異なっていてもよい。
In the above general formula (bi), R b1 represents a linear alkylene group or a branched chain alkylene group having 1 to 10 carbon atoms. Specifically, methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, 2-ethylhexylene group and the like. Can be mentioned.
In the above general formula (b-ii), R b2 represents a linear alkylene group or a branched chain alkylene group having 2 to 4 carbon atoms. Specific examples thereof include an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, a 1,3-butylene group and a 1,4-butylene group.
In the above general formula (b-iii), R b3 represents a hydrogen atom or a methyl group.
Further, R b4 represents a linear or branched-chain alkyl group having 1 to 10 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group. , Isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, tert-pentyl group, isohexyl group, tert-hexyl group, isoheptyl group, tert-heptyl group, 2-ethylhexyl group, isooctyl group, isononyl Groups, isodecyl groups and the like can be mentioned.
When each of a plurality of repeating units represented by the above general formulas (bi) to (biii) is provided, R b1 , R b2 , R b3 , and R b4 may be the same. , May be different from each other.
 また、上記要件(3)及び(4)の双方を満たしやすくする観点から、櫛形ポリマー(A)におけるマクロモノマー(α)由来の構成単位の含有量は、櫛形ポリマー(A)の全構成単位基準で、好ましくは0.1モル%~5モル%、より好ましくは0.3モル%~3モル%、更に好ましくは0.5モル%~2モル%である。 Further, from the viewpoint of facilitating both of the above requirements (3) and (4), the content of the structural unit derived from the macromonomer (α) in the comb-shaped polymer (A) is based on the total structural unit of the comb-shaped polymer (A). It is preferably 0.1 mol% to 5 mol%, more preferably 0.3 mol% to 3 mol%, and further preferably 0.5 mol% to 2 mol%.
 また、櫛形ポリマー(A)に含まれるマクロモノマー(α)由来の構成単位は、1種単独であってもよいし、2種以上であってもよい。 Further, the constituent unit derived from the macromonomer (α) contained in the comb-shaped polymer (A) may be one kind alone or two or more kinds.
<櫛形ポリマー(A)の態様:単量体(A2)>
 櫛形ポリマー(A)は、下記一般式(a2)で表される単量体(A2)由来の構成単位をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009

[上記一般式(a2)中、R21は水素原子又はメチル基である。
 R22は、単結合、-O-、又は-NH-を示す。
 R23は、炭素数2~4の直鎖アルキレン基もしくは分岐鎖アルキレン基を示す。m2は、1~20の整数を示す。m2が2以上の整数の場合の複数のR23は、同一であっても異なっていてもよく、(R23O)m2部分はランダム共重合でもブロック共重合でもよい。
 R24は、炭素数1~12の直鎖アルキル基又は炭素数1~12の分岐鎖アルキル基である。]
<Aspect of comb-shaped polymer (A): monomer (A2)>
The comb polymer (A) preferably further contains a structural unit derived from the monomer (A2) represented by the following general formula (a2).
Figure JPOXMLDOC01-appb-C000009

[In the above general formula (a2), R 21 is a hydrogen atom or a methyl group.
R 22 represents a single bond, -O-, or -NH-.
R 23 represents a linear alkylene group or a branched chain alkylene group having 2 to 4 carbon atoms. m2 represents an integer from 1 to 20. When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms. ]
 櫛形ポリマー(A)が、上記一般式(a2)で表される単量体(A2)由来の構成単位をさらに含むことによって、潤滑油組成物が含有する基油への櫛形ポリマー(A)の粘度指数をより向上させやすくできる。そのため、櫛形ポリマー(A)における上記一般式(a1)で表される単量体(A1)由来の構成単位の含有量と、上記一般式(a2)で表される単量体(A2)由来の構成単位の含有量とを、適切に調整することで、本発明の効果をより発揮させやすくすることができる。具体的には、単量体(A1)由来の構成単位の含有量と単量体(A2)由来の構成単位の含有量との比[(A1)/(A2)]が、モル比で、好ましくは5.0~15.0、より好ましくは6.0~13.0、更に好ましくは7.0~12.0である。 The comb-shaped polymer (A) further contains a structural unit derived from the monomer (A2) represented by the above general formula (a2), whereby the comb-shaped polymer (A) to the base oil contained in the lubricating oil composition can be prepared. The viscosity index can be improved more easily. Therefore, the content of the structural unit derived from the monomer (A1) represented by the general formula (a1) in the comb-shaped polymer (A) and the content derived from the monomer (A2) represented by the general formula (a2). By appropriately adjusting the content of the constituent unit of the above, the effect of the present invention can be more easily exerted. Specifically, the ratio [(A1) / (A2)] of the content of the structural unit derived from the monomer (A1) to the content of the structural unit derived from the monomer (A2) is a molar ratio. It is preferably 5.0 to 15.0, more preferably 6.0 to 13.0, and even more preferably 7.0 to 12.0.
 なお、上記一般式(a2)中、上記要件(3)及び(4)の双方を満たしやすくする観点から、R21は、メチル基であることが好ましい。
 また、同様の観点から、R22は、各々独立に、-О-であることが好ましい。
 すなわち、単量体(A2)は、重合性官能基として、アクリロイル基又はメタクリロイル基を有することが好ましく、メタクリロイル基を有することがより好ましい。
 また、同様の観点から、m2は1~5であることが好ましく、1~2であることがより好ましく、1であることが更に好ましい。
 また、同様の観点から、R23は、炭素数2~3の直鎖アルキレン基であることが好ましく、炭素数2の直鎖アルキレン基であることがより好ましい。
 また、同様の観点から、R24は、炭素数1~12の直鎖アルキル基であることが好ましく、炭素数2~8の直鎖アルキル基であることがより好ましく、炭素数2~6の直鎖アルキル基であることが更に好ましく、n-ブチル基であることがより更に好ましい。
In the general formula (a2), R 21 is preferably a methyl group from the viewpoint of facilitating both of the above requirements (3) and (4).
From the same viewpoint, it is preferable that R 22 is −O− independently of each other.
That is, the monomer (A2) preferably has an acryloyl group or a methacryloyl group as a polymerizable functional group, and more preferably has a methacryloyl group.
From the same viewpoint, m2 is preferably 1 to 5, more preferably 1 to 2, and even more preferably 1.
From the same viewpoint, R 23 is preferably a linear alkylene group having 2 to 3 carbon atoms, and more preferably a linear alkylene group having 2 carbon atoms.
From the same viewpoint, R 24 is preferably a linear alkyl group having 1 to 12 carbon atoms, more preferably a linear alkyl group having 2 to 8 carbon atoms, having 2 to 6 carbon atoms It is more preferably a straight chain alkyl group, and even more preferably an n-butyl group.
 また、櫛形ポリマー(A)における単量体(A2)由来の構成単位の含有量は、櫛形ポリマー(A)の全構成単位基準で、好ましくは0モル%~15モル%、より好ましくは3モル%~15モル%、更に好ましくは5モル%~12モル%である。 The content of the structural unit derived from the monomer (A2) in the comb polymer (A) is preferably 0 mol% to 15 mol%, more preferably 3 mol, based on all the structural units of the comb polymer (A). % To 15 mol%, more preferably 5 mol% to 12 mol%.
 また、櫛形ポリマー(A)に含まれる単量体(A2)由来の構成単位は、1種単独であってもよいし、2種以上であってもよい。 Further, the structural unit derived from the monomer (A2) contained in the comb-shaped polymer (A) may be one kind alone or two or more kinds.
<櫛形ポリマー(A)の態様:単量体(A3)>
 櫛形ポリマー(A)は、炭素数10~30の直鎖アルキル基又は炭素数10~30の分岐鎖アルキル基を有するアルキル(メタ)アクリレート(A3)由来の構成単位をさらに含むことが好ましい。
<Aspect of comb-shaped polymer (A): monomer (A3)>
The comb polymer (A) preferably further contains a structural unit derived from an alkyl (meth) acrylate (A3) having a linear alkyl group having 10 to 30 carbon atoms or a branched chain alkyl group having 10 to 30 carbon atoms.
 櫛形ポリマー(A)が、単量体(A3)由来の構成単位をさらに含むことによって、基油への溶解性を向上させやすくすることができ、本発明の効果がより発揮されやすくなる。
 なお、上記要件(3)及び(4)の双方を満たしやすくする観点から、アルキル(メタ)アクリレート(A3)は、アルキルメタクリレートであることが好ましい。
 また、アルキル(メタ)アクリレート(A3)が有するアルキル基の炭素数は、好ましくは10~24、より好ましくは11~22、更に好ましくは12~20である。また、当該アルキル基は、直鎖アルキル基であることが好ましい。
By further containing the structural unit derived from the monomer (A3), the comb-shaped polymer (A) can easily improve the solubility in the base oil, and the effect of the present invention can be more easily exhibited.
From the viewpoint of facilitating the satisfaction of both the above requirements (3) and (4), the alkyl (meth) acrylate (A3) is preferably an alkyl methacrylate.
The alkyl group of the alkyl (meth) acrylate (A3) has preferably 10 to 24 carbon atoms, more preferably 11 to 22 carbon atoms, and even more preferably 12 to 20 carbon atoms. Further, the alkyl group is preferably a linear alkyl group.
 前記炭素数10~30のアルキル基を有するアルキル(メタ)アクリレート(A3)由来の構成単位の含有量としては、全構成単位基準で、好ましくは0モル%以上30モル%以下、より好ましくは3モル%以上25モル%以下、更に好ましくは5モル%以上20モル%以下である。 The content of the structural unit derived from the alkyl (meth) acrylate (A3) having an alkyl group having 10 to 30 carbon atoms is preferably 0 mol% or more and 30 mol% or less, more preferably 3 on the basis of all structural units. It is mol% or more and 25 mol% or less, more preferably 5 mol% or more and 20 mol% or less.
 また、櫛形ポリマー(A)における単量体(A3)由来の構成単位は、1種単独であってもよいし、2種以上であってもよい。 Further, the constituent unit derived from the monomer (A3) in the comb-shaped polymer (A) may be one kind alone or two or more kinds.
<櫛形ポリマー(A)の態様:他の単量体>
 櫛形ポリマー(A)中の、マクロモノマー(α)由来の構成単位及び単量体(A1)由来の構成単位の合計含有量は、好ましくは76モル%以上、より好ましくは77モル%以上、更に好ましくは78モル%以上である。
 また、櫛形ポリマー(A)中には、単量体(A2)由来の構成単位及び単量体(A3)由来の構成単位から選択される1種以上の構成単位が含まれていてもよい。この場合の、マクロモノマー(α)由来の構成単位、単量体(A1)由来の構成単位、単量体(A2)由来の構成単位、及び単量体(A3)由来の構成単位の合計含有量は、好ましくは85モル%~100モル%、より好ましくは90モル%~100モル%、更に好ましくは95モル%~100モル%である。
 なお、櫛形ポリマー(A)は、本発明の効果を大きく阻害することのない範囲内で、マクロモノマー(α)、単量体(A1)、単量体(A2)、及び単量体(A3)以外の他の単量体に由来する構成単位が含まれていてもよい。
 他の単量体としては、スチレン及びN-アルキル(メタ)アクリルアミド等から選択される1種以上が挙げられる。
<Aspect of comb-shaped polymer (A): other monomer>
The total content of the structural unit derived from the macromonomer (α) and the structural unit derived from the monomer (A1) in the comb polymer (A) is preferably 76 mol% or more, more preferably 77 mol% or more, and further. It is preferably 78 mol% or more.
Further, the comb-shaped polymer (A) may contain one or more structural units selected from the structural unit derived from the monomer (A2) and the structural unit derived from the monomer (A3). In this case, the total content of the structural unit derived from the macromonomer (α), the structural unit derived from the monomer (A1), the structural unit derived from the monomer (A2), and the structural unit derived from the monomer (A3). The amount is preferably 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, still more preferably 95 mol% to 100 mol%.
The comb-shaped polymer (A) contains a macromonomer (α), a monomer (A1), a monomer (A2), and a monomer (A3) within a range that does not significantly impair the effects of the present invention. ) May contain structural units derived from other monomers.
Examples of the other monomer include one or more selected from styrene, N-alkyl (meth) acrylamide and the like.
<櫛形ポリマー(A)の物性値>
(櫛形ポリマー(A)の質量平均分子量(Mw)及び分子量分布(Mw/Mn))
 櫛形ポリマー(A)は、上記要件(3)及び(4)の双方を満たしやすくする観点から、質量平均分子量(Mw)が、30万以上150万以下であることが好ましい。
 ここで、上記要件(3)及び(4)の双方をより満たしやすくする観点から、櫛形ポリマー(A)の質量平均分子量(Mw)は、好ましくは30万以上90万以下、より好ましくは40万以上85万以下、更に好ましくは50万以上80万以下、より更に好ましくは59万以上80万以下である。
<Physical characteristics of comb-shaped polymer (A)>
(Mass average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of comb-shaped polymer (A))
The comb-shaped polymer (A) preferably has a mass average molecular weight (Mw) of 300,000 or more and 1.5 million or less from the viewpoint of facilitating both of the above requirements (3) and (4).
Here, from the viewpoint of making it easier to satisfy both the above requirements (3) and (4), the mass average molecular weight (Mw) of the comb-shaped polymer (A) is preferably 300,000 or more and 900,000 or less, more preferably 400,000. It is 850,000 or less, more preferably 500,000 or more and 800,000 or less, and even more preferably 590,000 or more and 800,000 or less.
 また、上記要件(3)及び(4)の双方を満たしやすくする観点から、櫛形ポリマー(A)の分子量分布(Mw/Mn)は、好ましくは1.2以上3.7以下、より好ましくは1.2以上2.0以下、更に好ましくは1.25以上1.95以下、より更に好ましくは1.30以上1.90以下である。
 なお、本明細書において、櫛形ポリマー(A)の質量平均分子量(Mw)及び数平均分子量(Mn)は、後述する実施例に記載の方法で測定することができる。
Further, from the viewpoint of facilitating both of the above requirements (3) and (4), the molecular weight distribution (Mw / Mn) of the comb-shaped polymer (A) is preferably 1.2 or more and 3.7 or less, more preferably 1. It is .2 or more and 2.0 or less, more preferably 1.25 or more and 1.95 or less, and even more preferably 1.30 or more and 1.90 or less.
In this specification, the mass average molecular weight (Mw) and the number average molecular weight (Mn) of the comb-shaped polymer (A) can be measured by the methods described in Examples described later.
(単量体(A1)由来の構成単位のホモポリマーのガラス転移温度)
 櫛形ポリマー(A)は、上記一般式(a1)で表される単量体(A1)由来の構成単位を含む。
 ここで、上記一般式(a1)で表される単量体(A1)由来の構成単位からなるホモポリマーのガラス転移温度(Tg)は、実効温度域での潤滑油組成物のHTHS粘度をより低い範囲で調整しやすくする観点から、前記ガラス転移温度(Tg)は、好ましくは20℃以上、より好ましくは30℃以上、更に好ましくは40℃以上、より更に好ましくは50℃以上である。
 なお、本明細書において、前記ホモポリマーのガラス転移温度(Tg)は、示差走査熱量測定(DSC)又は動的粘弾性測定(DMA)により測定することができる。
(Glass transition temperature of homopolymer of constituent unit derived from monomer (A1))
The comb-shaped polymer (A) contains a structural unit derived from the monomer (A1) represented by the above general formula (a1).
Here, the glass transition temperature (Tg) of the homopolymer composed of the structural unit derived from the monomer (A1) represented by the general formula (a1) is based on the HTHS viscosity of the lubricating oil composition in the effective temperature range. From the viewpoint of facilitating adjustment in a low range, the glass transition temperature (Tg) is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, still more preferably 40 ° C. or higher, still more preferably 50 ° C. or higher.
In the present specification, the glass transition temperature (Tg) of the homopolymer can be measured by differential scanning calorimetry (DSC) or dynamic viscoelasticity measurement (DMA).
<櫛形ポリマー(A)の合成方法>
 櫛形ポリマー(A)は、例えば、マクロモノマー(α)及び単量体(A1)をラジカル重合することで得ることができる。また、櫛形ポリマー(A)は、好ましくは、マクロモノマー(α)及び単量体(A1)と共に、単量体(A2)、単量体(A3)、及び他の単量体から選択される1種以上の単量体とをラジカル重合することで得ることができる。
<Synthesis method of comb-shaped polymer (A)>
The comb polymer (A) can be obtained, for example, by radical polymerization of the macromonomer (α) and the monomer (A1). The comb-shaped polymer (A) is preferably selected from the monomer (A2), the monomer (A3), and other monomers together with the macromonomer (α) and the monomer (A1). It can be obtained by radical polymerization with one or more kinds of monomers.
 重合方法としては、溶液重合法、乳化重合法、懸濁重合法、逆相懸濁重合法、薄膜重合法、及び噴霧重合法等、従来公知の方法を用いることができる。これらの中では、溶液重合法が好ましい。
 櫛形ポリマー(A)を溶液重合により製造する場合、溶剤中において、重合開始剤を用いて、マクロモノマー(α)及び単量体(A1)をラジカル重合することで櫛形ポリマー(A)得ることができる。好ましくは、溶剤中において、重合開始剤を用いて、マクロモノマー(α)及び単量体(A1)と共に、単量体(A2)、単量体(A3)、及び他の単量体から選択される1種以上の単量体とをラジカル重合することで櫛形ポリマー(A)を得ることができる。
As the polymerization method, conventionally known methods such as a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, a reverse phase suspension polymerization method, a thin film polymerization method, and a spray polymerization method can be used. Of these, the solution polymerization method is preferable.
When the comb polymer (A) is produced by solution polymerization, the comb polymer (A) can be obtained by radical polymerization of the macromonomer (α) and the monomer (A1) in a solvent using a polymerization initiator. it can. Preferably, in a solvent, a polymerization initiator is used to select from the monomer (A2), the monomer (A3), and other monomers along with the macromonomer (α) and the monomer (A1). The comb-shaped polymer (A) can be obtained by radical polymerization with one or more kinds of monomers.
 前記溶剤としては、前記単量体が溶解する溶剤であればよく、例えば、トルエン、キシレン、炭素数9~10のアルキルベンゼン等の芳香族炭化水素系溶剤;ペンタン、ヘキサン、ヘプタン、シクロヘキサン、オクタン等の炭素数5~18の脂肪族炭化水素系溶剤;2-プロパノール、1-ブタノール、2-ブタノール、1-オクタノール等の炭素数3~8のアルコール系溶剤;メチルイソブチルケトン、メチルエチルケトン等のケトン系溶剤;N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶剤;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤;ジエチルエーテル、メチルtert-ブチルエーテル、テトラヒドロフラン等のエーテル系溶剤;及び後述する鉱油又は合成油;等を用いることができる。これらの中では、後述する鉱油又は合成油が好ましく、鉱油がより好ましい。 The solvent may be any solvent in which the monomer dissolves, and is, for example, an aromatic hydrocarbon solvent such as toluene, xylene, alkylbenzene having 9 to 10 carbon atoms; pentane, hexane, heptane, cyclohexane, octane and the like. An aliphatic hydrocarbon solvent having 5 to 18 carbon atoms; an alcohol solvent having 3 to 8 carbon atoms such as 2-propanol, 1-butanol, 2-butanol, and 1-octanol; and a ketone solvent such as methyl isobutyl ketone and methyl ethyl ketone. Solvents; amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ether solvents such as diethyl ether, methyl tert-butyl ether and tetrahydrofuran; and described below. Solvent oil or synthetic oil; etc. can be used. Among these, mineral oil or synthetic oil described later is preferable, and mineral oil is more preferable.
 前記重合開始剤としては、例えば、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤、及び有機ハロゲン化合物開始剤からなる群より選ばれる1種以上が挙げられる。これらの中では、アゾ系開始剤及び過酸化物系開始剤から選ばれる1種以上が好ましく、アゾ系開始剤及び有機過酸化物から選ばれる1種以上がより好ましく、有機過酸化物が更に好ましい。
 アゾ系重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)(略称:AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(略称:AMBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(略称:ADVN)、4,4’-アゾビス(4-シアノ吉草酸)(略称:ACVA)及びその塩(例えば塩酸塩等)、ジメチル2,2’-アゾビスイソブチレート、2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等が挙げられる。
 過酸化物系開始剤としては、例えば、無機過酸化物及び有機過酸化物等が挙げられる。
 無機過酸化物としては、例えば、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、及び過硫酸ナトリウム等が挙げられる。
 有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド、ジ(2-エトキシエチル)パーオキシジカーボネート、tert-ブチルパーオキシピバレート、tert-ヘキシルパーオキシピバレート、tert-ブチルパーオキシネオヘプタノエート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシ2-エチルヘキサノエート、tert-ブチルパーオキシイソブチレート、tert-アミルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、ジブチルパーオキシトリメチルアジペート、2,2-ビス(4,4-ジ-tert-ブチルパーオキシシクロヘキシル)プロパン、及びラウリルパーオキシド等が挙げられる。
 レドックス系開始剤としては、例えば、アルカリ金属の亜硫酸塩若しくは重亜硫酸塩(例えば、亜硫酸アンモニウム、重亜硫酸アンモニウム等)、塩化第一鉄、硫酸第一鉄、アスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素、有機過酸化物等の酸化剤との組合せよりなるものなどが挙げられる。
Examples of the polymerization initiator include one or more selected from the group consisting of an azo-based initiator, a peroxide-based initiator, a redox-based initiator, and an organic halogen compound initiator. Among these, one or more selected from the azo-based initiator and the peroxide-based initiator is preferable, one or more selected from the azo-based initiator and the organic peroxide-based initiator is more preferable, and the organic peroxide is further preferable. preferable.
Examples of the azo-based polymerization initiator include 2,2'-azobis (isobutyronitrile) (abbreviation: AIBN), 2,2'-azobis (2-methylbutyronitrile) (abbreviation: AMBN), 2, 2'-azobis (2,4-dimethylvaleronitrile) (abbreviation: ADVN), 4,4'-azobis (4-cyanovaleric acid) (abbreviation: ACVA) and salts thereof (eg, hydrochloride, etc.), dimethyl 2, Examples thereof include 2'-azobisisobutyrate, 2,2'-azobis (2-amidinopropane) hydrochloride, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and the like. ..
Examples of the peroxide-based initiator include inorganic peroxides and organic peroxides.
Examples of the inorganic peroxide include hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate and the like.
Examples of the organic peroxide include benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, succinate peroxide, di (2-ethoxyethyl) peroxydicarbonate, and tert-butylperoxypivalate. , Tert-Hexylperoxypivalate, tert-butylperoxyneoheptanoate, tert-butylperoxyneodecanoate, tert-butylperoxy2-ethylhexanoate, tert-butylperoxyisobutyrate, tert-Amilperoxy2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy2-ethylhexanoate, dibutylperoxytrimethyl adipate, 2,2-bis (4,5-di-) Examples thereof include tert-butylperoxycyclohexyl) propane and laurylperoxide.
Examples of the redox-based initiator include reducing agents such as alkali metal sulfites or sulfites (for example, ammonium sulfite, ammonium persulfate, etc.), ferrous chloride, ferrous sulfate, ascorbic acid, and alkali metals. Examples thereof include those composed of a combination with an oxidizing agent such as sulfite, ammonium persulfate, hydrogen peroxide, and organic peroxide.
 ここで、前記ラジカル重合では、櫛形ポリマー(A)の分子量等の物性を調整する目的等、必要に応じて、公知の連鎖移動剤を用いてもよい。
 連鎖移動剤としては、例えば、メルカプタン類、チオカルボン酸類、イソプロパノール等の2級アルコール類、ジブチルアミン等のアミン類、次亜燐酸ナトリウム等の次亜燐酸塩類、塩素含有化合物、アルキルベンゼン化合物等が挙げられる。
 メルカプタン類としては、例えば、n-ブチルメルカプタン、イソブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、sec-ブチルメルカプタン、tert-ブチルメルカプタン、tert-ドデシルメルカプタン等の炭素数2~20のアルキル基を有するアルキルメルカプタン化合物;メルカプトエタノール、メルカプトプロパノール等の水酸基含有メルカプタン化合物;等が挙げられる。
 チオカルボン酸類としては、例えば、チオグリコール酸、チオリンゴ酸等が挙げられる。
Here, in the radical polymerization, a known chain transfer agent may be used, if necessary, for the purpose of adjusting physical properties such as the molecular weight of the comb-shaped polymer (A).
Examples of the chain transfer agent include secondary alcohols such as mercaptans, thiocarboxylic acids and isopropanol, amines such as dibutylamine, hypophosphates such as sodium hypophosphate, chlorine-containing compounds and alkylbenzene compounds. ..
Examples of the mercaptans include alkyl groups having 2 to 20 carbon atoms such as n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, sec-butyl mercaptan, tert-butyl mercaptan, and tert-dodecyl mercaptan. Examples thereof include alkyl mercaptan compounds having mercaptan compounds; hydroxyl group-containing mercaptan compounds such as mercaptoethanol and mercaptopropanol; and the like.
Examples of thiocarboxylic acids include thioglycolic acid and thioapple acid.
 前記重合開始剤及び連鎖移動剤の使用量は、所望の重合体の物性を考慮して(例えば、分子量の調整等)、適宜選定することができる。
 重合制御の方法としては、例えば、断熱重合法、温度制御重合法が挙げられる。重合時の反応温度としては、好ましくは30~140℃、より好ましくは50~130℃、更に好ましくは70℃~120℃である。
 また、熱による重合開始の方法の他に、放射線、電子線、紫外線などを照射して重合を開始させる方法を採ることもできる。なお、好ましいのは温度制御重合法であり、より好ましくは温度制御した溶液重合法である。
 共重合を行う場合は、ランダム付加重合又は交互共重合のいずれでもよく、また、グラフト共重合又はブロック共重合のいずれでもよい。
 得られた重合体は、潤滑油組成物が含む基油への溶解を容易にする観点から、更に、希釈剤に溶解及び希釈して用いてもよい。
 希釈剤としては、前述した重合時に用いることができる溶剤を用いることができ、好ましくは鉱油又は合成油であり、より好ましくは鉱油である。これらの希釈剤は、前述したものから1種単独で又は2種以上を組み合わせて用いてもよい。
The amount of the polymerization initiator and chain transfer agent used can be appropriately selected in consideration of the physical characteristics of the desired polymer (for example, adjustment of the molecular weight, etc.).
Examples of the polymerization control method include an adiabatic polymerization method and a temperature control polymerization method. The reaction temperature during polymerization is preferably 30 to 140 ° C, more preferably 50 to 130 ° C, and even more preferably 70 ° C to 120 ° C.
Further, in addition to the method of initiating polymerization by heat, a method of initiating polymerization by irradiating radiation, an electron beam, ultraviolet rays, or the like can also be adopted. A temperature-controlled polymerization method is preferable, and a temperature-controlled solution polymerization method is more preferable.
When the copolymerization is carried out, either random addition polymerization or alternate copolymerization may be used, and either graft copolymerization or block copolymerization may be used.
The obtained polymer may be further dissolved and diluted in a diluent for use from the viewpoint of facilitating dissolution in the base oil contained in the lubricating oil composition.
As the diluent, a solvent that can be used during the above-mentioned polymerization can be used, preferably mineral oil or synthetic oil, and more preferably mineral oil. These diluents may be used alone or in combination of two or more from the above-mentioned ones.
<その他成分>
 本発明の一態様である潤滑油組成物は、本発明の効果を損なわない範囲で、必要に応じて、前記ポリ(メタ)アクリレート及び基油以外のその他成分を、更に含有したものであってもよい。
 その他成分としては、一般的に用いられる潤滑油用添加剤が挙げられ、当該潤滑油用添加剤としては、例えば、金属系清浄剤、耐摩耗剤、無灰系分散剤、前記重合体以外の粘度指数向上剤、極圧剤、流動点降下剤、酸化防止剤、消泡剤、界面活性剤、抗乳化剤、摩擦調整剤、油性向上剤、防錆剤及び金属不活性化剤からなる群から選ばれる1種以上が挙げられる。
 これらの潤滑油用添加剤は、それぞれ、1種単独で又は2種以上を組み合わせて用いてもよい。
<Other ingredients>
The lubricating oil composition according to one aspect of the present invention further contains other components other than the poly (meth) acrylate and the base oil, if necessary, as long as the effects of the present invention are not impaired. May be good.
Examples of other components include commonly used additives for lubricating oils, and examples of the additives for lubricating oils include metal-based detergents, abrasion-resistant agents, ashless dispersants, and polymers other than the above-mentioned polymers. From the group consisting of viscosity index improvers, extreme pressure agents, pour point lowering agents, antioxidants, defoamers, surfactants, anti-emulsifiers, friction modifiers, oiliness improvers, rust inhibitors and metal inactivating agents. One or more selected types can be mentioned.
These lubricant additives may be used alone or in combination of two or more.
 これらの潤滑油用添加剤のそれぞれの含有量は、本発明の効果を損なわない範囲内で、適宜調整することができる。潤滑油用添加剤のそれぞれの含有量としては、例えば、潤滑油組成物の全量(100質量%)基準で、好ましくは0.001~15質量%、より好ましくは0.005~12質量%、更に好ましくは0.01~11質量%である。
 また、前記ポリ(メタ)アクリレート以外のこれらの潤滑油用添加剤を含有する場合、その合計含有量は、潤滑油組成物の全量(100質量%)基準で、好ましくは0質量%超30質量%以下、より好ましくは0.001~25質量%、更に好ましくは0.001~20質量%、より更に好ましくは0.001~15質量%である。
The content of each of these additives for lubricating oil can be appropriately adjusted within a range that does not impair the effects of the present invention. The content of each of the additives for lubricating oil is, for example, preferably 0.001 to 15% by mass, more preferably 0.005 to 12% by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 0.01 to 11% by mass.
When these additives for lubricating oil other than the poly (meth) acrylate are contained, the total content thereof is preferably more than 0% by mass and 30% by mass based on the total amount (100% by mass) of the lubricating oil composition. % Or less, more preferably 0.001 to 25% by mass, still more preferably 0.001 to 20% by mass, still more preferably 0.001 to 15% by mass.
(金属系清浄剤)
 金属系清浄剤としては、例えば、アルカリ金属及びアルカリ土類金属から選ばれる金属原子を含有する有機酸金属塩化合物が挙げられ、具体的には、アルカリ金属及びアルカリ土類金属から選ばれる金属原子を含有する、金属サリシレート、金属フェネート、及び金属スルホネート等が挙げられる。
 なお、本明細書において、「アルカリ金属」としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、及びフランシウムを指す。
 また、「アルカリ土類金属」としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、及びバリウムを指す。
 金属系清浄剤に含まれる金属原子としては、高温での清浄性の向上の観点から、ナトリウム、カルシウム、マグネシウム、又はバリウムが好ましく、カルシウムがより好ましい。
(Metal-based cleaning agent)
Examples of the metal-based cleaning agent include organic acid metal salt compounds containing metal atoms selected from alkali metals and alkaline earth metals, and specifically, metal atoms selected from alkali metals and alkaline earth metals. Examples thereof include metal salicylates, metal phenates, and metal sulfonates containing.
In addition, in this specification, "alkali metal" refers to lithium, sodium, potassium, rubidium, cesium, and francium.
The "alkaline earth metal" refers to beryllium, magnesium, calcium, strontium, and barium.
As the metal atom contained in the metal-based cleaning agent, sodium, calcium, magnesium, or barium is preferable, and calcium is more preferable, from the viewpoint of improving the cleanliness at high temperature.
 金属サリシレートとしては、下記一般式(3)で表される化合物が好ましく、当該金属フェネートとしては、下記一般式(4)で表される化合物が好ましく、当該金属スルホネートとしては、下記一般式(5)で表される化合物が好ましい。 The metal salicylate is preferably a compound represented by the following general formula (3), the metal phenate is preferably a compound represented by the following general formula (4), and the metal sulfonate is preferably the following general formula (5). ) Is preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記一般式(3)~(5)中、Mは、アルカリ金属及びアルカリ土類金属から選ばれる金属原子であり、ナトリウム、カルシウム、マグネシウム、又はバリウムが好ましく、カルシウムがより好ましい。また、Mは、アルカリ土類金属であり、カルシウム、マグネシウム、又はバリウムが好ましく、カルシウムがより好ましい。qはMの価数であり、1又は2である。R31及びR32は、それぞれ独立して、水素原子又は炭素数1~18の炭化水素基である。Sは硫黄原子を表す。rは、0以上の整数であり、好ましくは0~3の整数である。
 R31及びR32として選択し得る炭化水素基としては、例えば、炭素数1~18のアルキル基、炭素数1~18のアルケニル基、環形成炭素数3~18のシクロアルキル基、環形成炭素数6~18のアリール基、炭素数7~18のアルキルアリール基、炭素数7~18のアリールアルキル基等が挙げられる。
In the above general formulas (3) to (5), M is a metal atom selected from alkali metals and alkaline earth metals, and sodium, calcium, magnesium, or barium is preferable, and calcium is more preferable. Further, ME is an alkaline earth metal, and calcium, magnesium, or barium is preferable, and calcium is more preferable. q is the valence of M, which is 1 or 2. R 31 and R 32 are independently hydrogen atoms or hydrocarbon groups having 1 to 18 carbon atoms. S represents a sulfur atom. r is an integer of 0 or more, preferably an integer of 0 to 3.
Hydrocarbon groups that can be selected as R 31 and R 32 include, for example, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 ring-forming carbon atoms, and a ring-forming carbon. Examples thereof include an aryl group having 6 to 18, an alkylaryl group having 7 to 18 carbon atoms, and an arylalkyl group having 7 to 18 carbon atoms.
 これらの金属系清浄剤は、単独で又は2種以上を併用してもよい。これらの中でも、高温での清浄性の向上の観点、及び基油への溶解性の観点から、カルシウムサリシレート、カルシウムフェネート、及びカルシウムスルホネートから選ばれる1種以上であることが好ましい。 These metal-based cleaning agents may be used alone or in combination of two or more. Among these, at least one selected from calcium salicylate, calcium phenate, and calcium sulfonate is preferable from the viewpoint of improving cleanliness at high temperature and from the viewpoint of solubility in base oil.
 これらの金属系清浄剤は、中性塩、塩基性塩、過塩基性塩及びこれらの混合物のいずれであってもよい。
 前記金属系清浄剤の全塩基価としては、好ましくは0~600mgKOH/gである。
 前記金属系清浄剤が塩基性塩又は過塩基性塩である場合には、当該金属系清浄剤の全塩基価としては、好ましくは10~600mgKOH/g、より好ましくは20~500mgKOH/gである。
 なお、本明細書において、「塩基価」とは、JIS K2501:2003「石油製品および潤滑油-中和価試験方法」の7.に準拠して測定される過塩素酸法による塩基価を意味する。
These metal-based cleaning agents may be any of a neutral salt, a basic salt, a hyperbasic salt, and a mixture thereof.
The total base value of the metal-based cleaning agent is preferably 0 to 600 mgKOH / g.
When the metal-based cleaning agent is a basic salt or a hyperbasic salt, the total base value of the metal-based cleaning agent is preferably 10 to 600 mgKOH / g, more preferably 20 to 500 mgKOH / g. ..
In this specification, the term "base value" refers to JIS K2501: 2003 "Petroleum products and lubricating oil-neutralization value test method". It means the base value by the perchloric acid method measured according to.
 その他成分として、金属系清浄剤を含有する場合、金属系清浄剤の含有量は、潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~10質量%である。
 なお、前記金属系清浄剤は、単独で用いてもよく、2種以上を併用してもよい。2種以上用いる場合の好適な合計含有量も、前述した含有量と同じである。
When a metal-based cleaning agent is contained as the other component, the content of the metal-based cleaning agent is preferably 0.01 to 10% by mass based on the total amount (100% by mass) of the lubricating oil composition.
The metal-based cleaning agent may be used alone or in combination of two or more. The suitable total content when two or more kinds are used is also the same as the above-mentioned content.
(耐摩耗剤)
 耐摩耗剤としては、例えば、ジアルキルジチオリン酸亜鉛(ZnDTP)、リン酸亜鉛、ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類、チオカーバメート類、ポリサルファイド類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、及びこれらのアミン塩又は金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオリン酸エステル類、チオホスホン酸エステル類、及びこれらのアミン塩又は金属塩等の硫黄及びリン含有耐摩耗剤が挙げられる。
 これらの中でも、ジアルキルジチオリン酸亜鉛(ZnDTP)が好ましい。
 その他成分として、耐摩耗剤を含有する場合、耐摩耗剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.05~5.0質量%である。
 なお、前記耐摩耗剤は、単独で用いてもよく、2種以上を併用してもよい。2種以上用いる場合の好適な合計含有量も、前述した含有量と同じである。
(Abrasion resistant agent)
Examples of the abrasion resistant agent include sulfur-containing compounds such as zinc dialkyldithiophosphate (ZnDTP), zinc phosphate, disulfides, olefins sulfide, oils and fats sulfide, sulfide esters, thiocarbonates, thiocarbamates, and polysulfides. Phosphate esters, phosphoric acid esters, phosphonic acid esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; thio-sulfuric acid esters, thiophosphoric acid esters, thiophosphonic acid esters, and these. Sulfur and phosphorus-containing abrasion resistant agents such as amine salts or metal salts of the above can be mentioned.
Among these, zinc dialkyldithiophosphate (ZnDTP) is preferable.
When an abrasion resistant agent is contained as another component, the content of the abrasion resistant agent is preferably 0.05 to 5.0% by mass based on the total amount (100% by mass) of the lubricating oil composition.
The wear resistant agent may be used alone or in combination of two or more. The suitable total content when two or more kinds are used is also the same as the above-mentioned content.
(無灰系分散剤)
 無灰系分散剤としては、例えば、コハク酸イミド、ベンジルアミン、コハク酸エステル又はこれらのホウ素変性物等が挙げられるが、アルケニルコハク酸イミド及びホウ素変性アルケニルコハク酸イミドが好ましい。
(Ashes-free dispersant)
Examples of the ashless dispersant include succinate imide, benzylamine, succinate ester, and boron-modified products thereof, and alkenyl succinate imide and boron-modified alkenyl succinate imide are preferable.
 アルケニルコハク酸イミドとしては、下記一般式(i)で表されるアルケニルコハク酸モノイミド、もしくは下記一般式(ii)で表されるアルケニルコハク酸ビスイミドが挙げられる。
 なお、当該アルケニルコハク酸イミドは、下記一般式(i)又は(ii)で示される化合物と、アルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネート、エポキシ化合物、及び有機酸等から選ばれる1種以上とを反応させた変性アルケニルコハク酸イミドとしてもよい。
 また、ホウ素変性アルケニルコハク酸イミドとしては、下記一般式(i)又は(ii)で表される化合物のホウ素変性物が挙げられる。
Examples of the alkenyl succinate imide include alkenyl succinate monoimide represented by the following general formula (i) and alkenyl succinate bisimide represented by the following general formula (ii).
The alkenyl succinate imide is a compound represented by the following general formula (i) or (ii), and one or more selected from alcohols, aldehydes, ketones, alkylphenols, cyclic carbonates, epoxy compounds, organic acids and the like. May be used as a modified alkenyl succinate imide reacted with.
Examples of the boron-modified alkenyl succinate imide include boron-modified products of compounds represented by the following general formulas (i) or (ii).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(i)、(ii)中、R、RA1及びRA2は、それぞれ独立に、質量平均分子量(Mw)が500~3,000(好ましくは1,000~3,000)のアルケニル基であり、ポリブテニル基又はポリイソブテニル基が好ましい。
 R、RB1及びRB2は、それぞれ独立に、炭素数2~5のアルキレン基である。
 x1は1~10の整数であり、好ましくは2~5の整数、より好ましくは3又は4である。
 x2は0~10の整数であり、好ましくは1~4の整数、より好ましくは2又は3である。
In the general formulas (i) and (ii), RA , RA1 and RA2 have independent mass average molecular weights (Mw) of 500 to 3,000 (preferably 1,000 to 3,000). It is an alkenyl group, preferably a polybutenyl group or a polyisobutenyl group.
R B, R B1 and R B2 are each independently an alkylene group having 2 to 5 carbon atoms.
x1 is an integer of 1 to 10, preferably an integer of 2 to 5, and more preferably 3 or 4.
x2 is an integer of 0 to 10, preferably an integer of 1 to 4, and more preferably 2 or 3.
 ホウ素変性アルケニルコハク酸イミドを構成するホウ素原子と窒素原子の比率〔B/N〕としては、清浄性を向上させる観点から、好ましくは0.5以上、より好ましくは0.6以上、更に好ましくは0.8以上、より更に好ましくは0.9以上である。
 その他成分として、無灰系分散剤を含有する場合、無灰系分散剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.1~20質量%である。
The ratio [B / N] of the boron atom to the nitrogen atom constituting the boron-modified alkenyl succinate imide is preferably 0.5 or more, more preferably 0.6 or more, and further preferably 0.6 or more from the viewpoint of improving cleanliness. It is 0.8 or more, more preferably 0.9 or more.
When an ash-free dispersant is contained as the other component, the content of the ash-free dispersant is preferably 0.1 to 20% by mass based on the total amount (100% by mass) of the lubricating oil composition. ..
(極圧剤)
 極圧剤としては、例えば、スルフィド類、スルフォキシド類、スルフォン類、チオホスフィネート類等の硫黄系極圧剤、塩素化炭化水素等のハロゲン系極圧剤、有機金属系極圧剤等が挙げられる。また、上述の耐摩耗剤の内、極圧剤としての機能を有する化合物を用いることもできる。
 これらの極圧剤は、単独で又は2種以上を併用してもよい。
 その他成分として、極圧剤を含有する場合、極圧剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.1~10質量%である。
(Extreme pressure agent)
Examples of extreme pressure agents include sulfur-based extreme pressure agents such as sulfides, sulfoxides, sulfones, and thiophosphinates, halogen-based extreme pressure agents such as chlorinated hydrocarbons, and organometallic extreme pressure agents. Be done. Further, among the above-mentioned wear resistant agents, a compound having a function as an extreme pressure agent can also be used.
These extreme pressure agents may be used alone or in combination of two or more.
When an extreme pressure agent is contained as another component, the content of the extreme pressure agent is preferably 0.1 to 10% by mass based on the total amount (100% by mass) of the lubricating oil composition.
(酸化防止剤)
 酸化防止剤としては、従来潤滑油の酸化防止剤として使用されている公知の酸化防止剤の中から、任意のものを適宜選択して用いることができ、例えば、アミン系酸化防止剤、フェノール系酸化防止剤、モリブデン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等が挙げられる。
 アミン系酸化防止剤としては、例えば、ジフェニルアミン、炭素数3~20のアルキル基を有するアルキル化ジフェニルアミン等のジフェニルアミン系酸化防止剤;α-ナフチルアミン、フェニル-α-ナフチルアミン、炭素数3~20のアルキル基を有する置換フェニル-α-ナフチルアミン等のナフチルアミン系酸化防止剤;等が挙げられる。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール系酸化防止剤;4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)等のジフェノール系酸化防止剤;ヒンダードフェノール系酸化防止剤;等を挙げられる。
 モリブデン系酸化防止剤としては、例えば、三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるモリブデンアミン錯体等が挙げられる。
 硫黄系酸化防止剤としては、例えば、ジラウリル-3,3’-チオジプロピオネイト等が挙げられる。
 リン系酸化防止剤としては、例えば、ホスファイト等が挙げられる。
 これらの酸化防止剤は単独で又は2種以上を任意に組合せて含有させることができ、好ましくはフェノール系酸化防止剤及び/又はアミン系酸化防止剤である。
 その他成分として、酸化防止剤を含有する場合、酸化防止剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.05~7質量%である。
(Antioxidant)
As the antioxidant, any known antioxidant that has been conventionally used as an antioxidant for lubricating oil can be appropriately selected and used. For example, an amine-based antioxidant or a phenol-based antioxidant can be used. Examples thereof include antioxidants, molybdenum-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like.
Examples of the amine-based antioxidant include diphenylamine and diphenylamine-based antioxidants such as alkylated diphenylamine having an alkyl group having 3 to 20 carbon atoms; α-naphthylamine, phenyl-α-naphthylamine, and alkyl having 3 to 20 carbon atoms. Examples include naphthylamine-based antioxidants having a group such as substituted phenyl-α-naphthylamine; and the like.
Examples of the phenolic antioxidant include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,6-di-tert-butyl-4-ethylphenol. Monophenolic antioxidants such as isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate Agents; diphenolic antioxidants such as 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol); hinderedphenols Antioxidants; etc.
Examples of the molybdenum-based antioxidant include a molybdenum amine complex formed by reacting molybdenum trioxide and / or molybdic acid with an amine compound.
Examples of the sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate and the like.
Examples of the phosphorus-based antioxidant include phosphite and the like.
These antioxidants can be contained alone or in any combination of two or more, and are preferably phenolic antioxidants and / or amine-based antioxidants.
When an antioxidant is contained as the other component, the content of the antioxidant is preferably 0.05 to 7% by mass based on the total amount (100% by mass) of the lubricating oil composition.
(流動点降下剤)
 前記流動点降下剤としては、例えば、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート系(PMA系;ポリアルキル(メタ)アクリレート等)、ポリビニルアセテート、ポリブテン、ポリアルキルスチレン等が挙げられ、ポリメタクリレート系が好ましく用いられる。これらの流動点降下剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 その他成分として、流動点降下剤を含有する場合、流動点降下剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~10質量%である。
(Pour point depressant)
Examples of the flow point lowering agent include an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, and a polymethacrylate type (PMA type; polyalkyl (meth)). (Acrylate, etc.), polyvinyl acetate, polybutene, polyalkylstyrene, etc., and polymethacrylate-based polymethacrylates are preferably used. These pour point lowering agents may be used alone or in combination of two or more.
When a pour point lowering agent is contained as another component, the content of the pour point lowering agent is preferably 0.01 to 10% by mass based on the total amount (100% by mass) of the lubricating oil composition.
(消泡剤)
 消泡剤としては、例えば、ジメチルポリシロキサン等のシリコーン油、フルオロシリコーン油及びフルオロアルキルエーテル等が挙げられる。これら消泡剤は、単独で又は2種以上を組合せて用いてもよい。
 その他成分として、消泡剤を含有する場合、消泡剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.005~5質量%、より好ましくは0.005~0.5質量%である。
(Defoamer)
Examples of the defoaming agent include silicone oils such as dimethylpolysiloxane, fluorosilicone oils and fluoroalkyl ethers. These antifoaming agents may be used alone or in combination of two or more.
When a defoaming agent is contained as another component, the content of the defoaming agent is preferably 0.005 to 5% by mass, more preferably 0.%, based on the total amount (100% by mass) of the lubricating oil composition. It is 005 to 0.5% by mass.
(界面活性剤又は乳化剤)
 界面活性剤又は抗乳化剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル及びポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン性界面活性剤等が挙げられる。これら界面活性剤又は抗乳化剤は、単独で又は2種以上を任意に組合せて含有させることができる。
 その他成分として、界面活性剤又は抗乳化剤を含有する場合、界面活性剤又は抗乳化剤の含有量は、それぞれ独立に、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~3質量%である。
(Surfactant or emulsifier)
Examples of the surfactant or anti-emulsifier include polyalkylene glycol-based nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl naphthyl ether. These surfactants or anti-emulsifiers can be contained alone or in any combination of two or more.
When a surfactant or an anti-emulsifier is contained as the other component, the content of the surfactant or the anti-emulsifier is independently based on the total amount (100% by mass) of the lubricating oil composition, preferably 0.01. ~ 3% by mass.
(摩擦調整剤)
 摩擦調整剤としては、例えば、ジチオカルバミン酸モリブデン(MoDTC)、ジチオリン酸モリブデン(MoDTP)、モリブテン酸のアミン塩等のモリブデン系摩擦調整剤;炭素数6~30のアルキル基又はアルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル等の無灰摩擦調整剤;油脂類、アミン、アミド、硫化エステル、リン酸エステル、亜リン酸エステル、リン酸エステルアミン塩等が挙げられる。
 その他成分として、摩擦調整剤を含有する場合、摩擦調整剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.05~4質量%である。
(Friction modifier)
Examples of the friction modifier include molybdenum-based friction modifiers such as molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), and amine salts of molybthenoic acid; alkyl groups or alkenyl groups having 6 to 30 carbon atoms are contained in the molecule. Ash-free friction modifiers such as aliphatic amines, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, and aliphatic ethers having at least one; fats and oils, amines, amides, sulfide esters, phosphate esters, phosphite esters. , Phosphate ester amine salt and the like.
When a friction modifier is contained as another component, the content of the friction modifier is preferably 0.05 to 4% by mass based on the total amount (100% by mass) of the lubricating oil composition.
(油性向上剤)
 油性向上剤としては、ステアリン酸、オレイン酸等の脂肪族飽和又は不飽和モノカルボン酸;ダイマー酸、水添ダイマー酸等の重合脂肪酸;リシノレイン酸、12-ヒドロキシステアリン酸等のヒドロキシ脂肪酸;ラウリルアルコール、オレイルアルコール等の脂肪族飽和又は不飽和モノアルコール;ステアリルアミン、オレイルアミン等の脂肪族飽和又は不飽和モノアミン;ラウリン酸アミド、オレイン酸アミド等の脂肪族飽和又は不飽和モノカルボン酸アミド;グリセリン、ソルビトール等の多価アルコールと脂肪族飽和又は不飽和モノカルボン酸との部分エステル;等が挙げられる。
 その他成分として、油性向上剤を含有する場合、油性向上剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~5質量%である。
(Oil improver)
Examples of the oiliness improver include aliphatic saturated or unsaturated monocarboxylic acids such as stearic acid and oleic acid; polymerized fatty acids such as dimer acid and hydrogenated dimer acid; hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid; lauryl alcohol. , Fatty acid saturated or unsaturated monoalcohols such as oleic acid; aliphatic saturated or unsaturated monoamines such as stearylamine and oleylamine; aliphatic saturated or unsaturated monocarboxylic acid amides such as laurate amide and oleic acid amide; glycerin, Partial esters of polyvalent alcohols such as sorbitol and aliphatic saturated or unsaturated monocarboxylic acids; and the like.
When an oily improver is contained as the other component, the content of the oily improver is preferably 0.01 to 5% by mass based on the total amount (100% by mass) of the lubricating oil composition.
(防錆剤)
 防錆剤としては、例えば、脂肪酸、アルケニルコハク酸ハーフエステル、脂肪酸セッケン、アルキルスルホン酸塩、多価アルコール脂肪酸エステル、脂肪酸アミン、酸化パラフィン、アルキルポリオキシエチレンエーテル等が挙げられる。
 その他成分として、防錆剤を含有する場合、防錆剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~3質量%である。
(anti-rust)
Examples of the rust preventive include fatty acids, alkenyl succinic acid half esters, fatty acid sequels, alkyl sulfonates, polyhydric alcohol fatty acid esters, fatty acid amines, oxidized paraffins, and alkyl polyoxyethylene ethers.
When a rust preventive is contained as another component, the content of the rust preventive is preferably 0.01 to 3% by mass based on the total amount (100% by mass) of the lubricating oil composition.
(金属不活化剤)
 金属不活性化剤としては、例えば、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピリミジン系化合物等が挙げられる。
 その他成分として、金属不活性化剤を含有する場合、金属不活性化剤の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~5質量%である。
(Metal inactivating agent)
Examples of the metal inactivating agent include benzotriazole-based compounds, tolyltriazole-based compounds, thiazizol-based compounds, imidazole-based compounds, pyrimidine-based compounds and the like.
When the metal inactivating agent is contained as the other component, the content of the metal inactivating agent is preferably 0.01 to 5% by mass based on the total amount (100% by mass) of the lubricating oil composition. ..
[物性値]
<40℃動粘度(KV40)、80℃動粘度(KV80)、100℃動粘度(KV100)>
 本発明の一態様である潤滑油組成物の40℃動粘度(KV40)は、好ましくは50mm/s以下であり、より好ましくは40mm/s以下であり、更に好ましくは30mm/s以下である。
 本発明の一態様である潤滑油組成物の80℃動粘度(KV80)は、好ましくは40mm/s以下であり、より好ましくは30mm/s以下であり、更に好ましくは20mm/s以下である。
 本発明の一態様である潤滑油組成物の100℃動粘度(KV100)は、7.5mm/s以下であり、好ましくは7.4mm/s以下であり、より好ましくは7.3mm/s以下であり、更に好ましくは7.1mm/s以下であり、より更に好ましくは7.0mm/s以下である。
 本発明の一態様である潤滑油組成物の40℃動粘度(KV40)、80℃動粘度(KV80)、及び100℃動粘度(KV100)は、JIS K2283:2000に準拠して測定できる。
[Physical characteristics]
<40 ° C. kinematic viscosity (KV 40 ), 80 ° C. kinematic viscosity (KV 80 ), 100 ° C. kinematic viscosity (KV 100 )>
The 40 ° C. kinematic viscosity (KV 40 ) of the lubricating oil composition according to one aspect of the present invention is preferably 50 mm 2 / s or less, more preferably 40 mm 2 / s or less, and further preferably 30 mm 2 / s. It is as follows.
The 80 ° C. kinematic viscosity (KV 80 ) of the lubricating oil composition according to one aspect of the present invention is preferably 40 mm 2 / s or less, more preferably 30 mm 2 / s or less, and further preferably 20 mm 2 / s. It is as follows.
100 ° C. The kinematic viscosity of the lubricating oil composition which is one embodiment of the present invention (KV 100) is not more than 7.5 mm 2 / s, or less preferably 7.4 mm 2 / s, more preferably 7.3mm It is 2 / s or less , more preferably 7.1 mm 2 / s or less, and even more preferably 7.0 mm 2 / s or less.
The 40 ° C. kinematic viscosity (KV 40 ), 80 ° C. kinematic viscosity (KV 80 ), and 100 ° C. kinematic viscosity (KV 100 ) of the lubricating oil composition according to one aspect of the present invention are measured according to JIS K2283: 2000. it can.
<粘度指数>
 本発明の一態様である潤滑油組成物の粘度指数は、好ましくは238以上、より好ましくは、240以上、更に好ましくは241以上である。また、潤滑油組成物の粘度指数は、300以下が好ましく、より好ましくは290以下、更に好ましくは280以下である。
 本発明の一態様の潤滑油組成物の粘度指数は、JIS K2283:2000に準拠して測定及び算出できる。
<Viscosity index>
The viscosity index of the lubricating oil composition according to one aspect of the present invention is preferably 238 or more, more preferably 240 or more, still more preferably 241 or more. The viscosity index of the lubricating oil composition is preferably 300 or less, more preferably 290 or less, and even more preferably 280 or less.
The viscosity index of the lubricating oil composition of one aspect of the present invention can be measured and calculated in accordance with JIS K2283: 2000.
<80℃HTHS粘度(HTHS80)、100℃粘度HTHS粘度(HTHS100)、150℃HTHS粘度(HTHS150)>
 本発明の一態様である潤滑油組成物の80℃HTHS粘度(HTHS80)は、好ましくは6.7mPa・s以下であり、より好ましくは6.6mPa・s以下であり、更に好ましくは6.5mPa・s以下である。
 本発明の一態様である潤滑油組成物の100℃粘度HTHS粘度(HTHS100)は、好ましくは4.4mPa・s以下であり、より好ましくは4.3mPa・s以下である。
 本発明の一態様である潤滑油組成物の150℃HTHS粘度(HTHS150)は、好ましくは2.0mPa・s以上である。また、本発明の一態様の潤滑油組成物の150℃HTHS粘度(HTHS150)は、好ましくは2.6mPa・s未満であり、より好ましくは2.5mPa・s未満であり、更に好ましくは2.4mPa・s未満であり、より更に好ましくは2.3mPa・s未満であり、更になお好ましくは2.2mPa・s以下である。
 本発明の一態様である潤滑油組成物の80℃HTHS粘度(HTHS80)、100℃粘度HTHS粘度(HTHS100)、及び150℃HTHS粘度(HTHS150)は、ASTM D4683に準拠し、TBS高温粘度計(Tapered Bearing Simulator Viscometer)を用いて、せん断速度10/sにて測定できる。
<80 ° C. HTHS viscosity (HTHS 80 ), 100 ° C. viscosity HTHS viscosity (HTHS 100 ), 150 ° C. HTHS viscosity (HTHS 150 )>
The 80 ° C. HTHS viscosity (HTHS 80 ) of the lubricating oil composition according to one aspect of the present invention is preferably 6.7 mPa · s or less, more preferably 6.6 mPa · s or less, and further preferably 6. It is 5 mPa · s or less.
The 100 ° C. viscosity HTHS viscosity (HTHS 100 ) of the lubricating oil composition according to one aspect of the present invention is preferably 4.4 mPa · s or less, and more preferably 4.3 mPa · s or less.
The 150 ° C. HTHS viscosity (HTHS 150 ) of the lubricating oil composition according to one aspect of the present invention is preferably 2.0 mPa · s or more. The 150 ° C. HTHS viscosity (HTHS 150 ) of the lubricating oil composition of one aspect of the present invention is preferably less than 2.6 mPa · s, more preferably less than 2.5 mPa · s, and even more preferably 2. It is less than .4 mPa · s, more preferably less than 2.3 mPa · s, and even more preferably 2.2 mPa · s or less.
The 80 ° C. HTHS viscosity (HTHS 80 ), 100 ° C. HTHS viscosity (HTHS 100 ), and 150 ° C. HTHS viscosity (HTHS 150 ) of the lubricating oil composition according to one aspect of the present invention conform to ASTM D4683 and are TBS high temperature. using viscometer (Tapered Bearing Simulator viscometer), it can be measured at a shear rate of 10 6 / s.
[永久せん断安定性指数(PSSI)]
 PSSIは、重合体に由来するせん断による粘度低下をパーセンテージで示すものであり、ASTM D6022-06(2012)で規定される計算式により算出することができる。
 PSSIの具体的な求め方としては、後述する実施例に記載の方法を用いることができる。
 PSSI値としては、省燃費性の観点から、好ましくは6以下であり、より好ましくは2以下である。
[Permanent Shear Stability Index (PSSI)]
PSSI indicates the decrease in viscosity due to shearing derived from the polymer as a percentage, and can be calculated by the calculation formula specified in ASTM D6022-06 (2012).
As a specific method for obtaining PSSI, the method described in Examples described later can be used.
The PSSI value is preferably 6 or less, and more preferably 2 or less, from the viewpoint of fuel efficiency.
[省燃費性]
 省燃費性は、後述する実施例に記載の平均駆動トルク改善率により評価することができる。平均駆動トルク改善率の求め方としては、後述する実施例に記載の方法を用いることができる。
 本発明の一態様の潤滑油組成物は、省燃費性の観点から、平均駆動トルク改善率が、好ましくは0.2以上であり、より好ましくは0.3以上である。
[Fuel efficiency]
Fuel efficiency can be evaluated by the average drive torque improvement rate described in Examples described later. As a method of obtaining the average drive torque improvement rate, the method described in Examples described later can be used.
From the viewpoint of fuel efficiency, the lubricating oil composition according to one aspect of the present invention has an average drive torque improvement rate of preferably 0.2 or more, more preferably 0.3 or more.
[潤滑油組成物の製造方法]
 本発明の一態様である潤滑油組成物の製造方法は、前記基油と、前記ポリ(メタ)アクリレートとを配合する工程を含む
 また、当該製造方法では、必要に応じて、基油及びポリ(メタ)アクリレート以外のその他成分を更に配合してもよい。
 基油、ポリ(メタ)アクリレート、及びその他成分のそれぞれは、前記潤滑油組成物について説明したものと同様であるとともに、それぞれの好適な態様も同様であり、当該製造方法で得られる潤滑油組成物も前述した通りであるため、それらの記載は省略する。
 当該製造方法では、基油及びポリ(メタ)アクリレート、並びに必要に応じて添加されるその他成分は、いかなる方法で配合されてもよく、その手法は限定されない。
[Manufacturing method of lubricating oil composition]
The method for producing a lubricating oil composition, which is one aspect of the present invention, includes a step of blending the base oil and the poly (meth) acrylate. Further, in the production method, the base oil and poly are required. Other components other than (meth) acrylate may be further blended.
Each of the base oil, the poly (meth) acrylate, and the other components is the same as that described for the lubricating oil composition, and the preferred embodiments thereof are also the same, and the lubricating oil composition obtained by the production method is also the same. Since the objects are also as described above, their description is omitted.
In the production method, the base oil, the poly (meth) acrylate, and other components added as necessary may be blended by any method, and the method is not limited.
[潤滑油組成物の用途]
 本発明の潤滑油組成物は、実効温度域における使用において、優れた省燃費性を発現することができる。
 そのため、本発明の潤滑油組成物は、エンジン油として使用されることが好ましく、ガソリンエンジン油として使用されることがより好ましい。
 本発明の潤滑油組成物の使用に適したエンジンとしては、自動車等の車両用エンジン等が挙げられるが、自動車用エンジンが好ましく、自動車用ガソリンエンジンがより好ましい。また、ハイブリッド機構を搭載した自動車用エンジンにも好適に使用することができる。
 なお、本発明の一態様である潤滑油組成物は、自動車等に使用される内燃機関用潤滑油組成物(内燃機関用エンジンオイル)としての用途が好適であるが、他の用途にも適用し得る。
[Use of lubricating oil composition]
The lubricating oil composition of the present invention can exhibit excellent fuel efficiency when used in an effective temperature range.
Therefore, the lubricating oil composition of the present invention is preferably used as an engine oil, and more preferably used as a gasoline engine oil.
Examples of an engine suitable for use of the lubricating oil composition of the present invention include an engine for vehicles such as automobiles, but an engine for automobiles is preferable, and a gasoline engine for automobiles is more preferable. Further, it can be suitably used for an automobile engine equipped with a hybrid mechanism.
The lubricating oil composition according to one aspect of the present invention is suitable for use as a lubricating oil composition for internal combustion engines (engine oil for internal combustion engines) used in automobiles and the like, but is also applicable to other uses. Can be done.
[エンジン]
 本発明は、上述の本発明の潤滑油組成物を含むエンジンも提供する。
 当該エンジンとしては、上述のとおり、自動車等の車両用エンジン等が挙げられるが、自動車用エンジンが好ましく、自動車用ガソリンエンジンがより好ましい。また、ハイブリッド機構を搭載した自動車用エンジンも好ましい。
 本発明の潤滑油組成物は、実効温度域における使用においても、優れた省燃費性を発現することができる。したがって、本発明のエンジンによれば、実効温度域において、優れた省燃費性を発現し得る。
[engine]
The present invention also provides an engine containing the above-mentioned lubricating oil composition of the present invention.
As described above, examples of the engine include an engine for a vehicle such as an automobile, but an engine for an automobile is preferable, and a gasoline engine for an automobile is more preferable. An automobile engine equipped with a hybrid mechanism is also preferable.
The lubricating oil composition of the present invention can exhibit excellent fuel efficiency even when used in an effective temperature range. Therefore, according to the engine of the present invention, excellent fuel efficiency can be exhibited in the effective temperature range.
[エンジンの潤滑方法]
 本発明は、上述の本発明の潤滑油組成物を用いて、エンジンを潤滑する、エンジンの潤滑方法も提供する。
 当該エンジンとしては、上述のとおり、自動車等の車両用エンジン等が挙げられるが、自動車用エンジンが好ましく、自動車用ガソリンエンジンがより好ましい。また、ハイブリッド機構を搭載した自動車用エンジンも好ましい。
 本発明の潤滑油組成物は、実効温度域における使用においても、優れた省燃費性を発現することができる。したがって、本発明のエンジンの潤滑方法によれば、実効温度域において、優れた省燃費性をエンジンに付与し得る。
[Engine lubrication method]
The present invention also provides an engine lubrication method for lubricating an engine using the above-mentioned lubricating oil composition of the present invention.
As described above, examples of the engine include an engine for a vehicle such as an automobile, but an engine for an automobile is preferable, and a gasoline engine for an automobile is more preferable. An automobile engine equipped with a hybrid mechanism is also preferable.
The lubricating oil composition of the present invention can exhibit excellent fuel efficiency even when used in an effective temperature range. Therefore, according to the engine lubrication method of the present invention, excellent fuel efficiency can be imparted to the engine in the effective temperature range.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples.
[各種物性値]
 実施例及び比較例で用いた各成分及び得られた潤滑油組成物の各種物性値は、下記方法によって測定した。
[Various physical property values]
Various physical property values of each component used in Examples and Comparative Examples and the obtained lubricating oil composition were measured by the following methods.
<40℃動粘度(KV40)、80℃動粘度(KV80)、100℃動粘度(KV100)、及び粘度指数>
 潤滑油組成物の40℃動粘度(KV40)、80℃動粘度(KV80)、100℃動粘度(KV100)、及び粘度指数を、JIS K2283:2000に準拠して測定及び算出した。
<40 ° C. kinematic viscosity (KV 40 ), 80 ° C. kinematic viscosity (KV 80 ), 100 ° C. kinematic viscosity (KV 100 ), and viscosity index>
The 40 ° C. kinematic viscosity (KV 40 ), 80 ° C. kinematic viscosity (KV 80 ), 100 ° C. kinematic viscosity (KV 100 ), and viscosity index of the lubricating oil composition were measured and calculated in accordance with JIS K2283: 2000.
<80℃HTHS粘度(HTHS80)、100℃粘度HTHS粘度(HTHS100)、及び150℃HTHS粘度(HTHS150)>
 ASTM D4683に準拠し、TBS高温粘度計(Tapered Bearing Simulator Viscometer)を用いて、せん断速度10/sにて、潤滑油組成物の80℃HTHS粘度(HTHS80)、100℃粘度HTHS粘度(HTHS100)、及び150℃HTHS粘度(HTHS150)を測定又は算出した。
<80 ° C. HTHS Viscosity (HTHS 80 ), 100 ° C. HTHS Viscosity (HTHS 100 ), and 150 ° C. HTHS Viscosity (HTHS 150 )>
Conforming to ASTM D4683, using TBS hot viscometer (Tapered Bearing Simulator Viscometer), at a shear rate of 10 6 / s, 80 ℃ HTHS viscosity (HTHS 80) of the lubricating oil composition, 100 ° C. Viscosity HTHS viscosity (HTHS 100 ) and 150 ° C. HTHS viscosity (HTHS 150 ) were measured or calculated.
[粘度比率]
 潤滑油組成物の各粘度比率は、求めた各温度における動粘度又はHTHS粘度を、所定の温度の動粘度で除することにより算出した。
[Viscosity ratio]
Each viscosity ratio of the lubricating oil composition was calculated by dividing the obtained kinematic viscosity or HTHS viscosity at each temperature by the kinematic viscosity at a predetermined temperature.
[質量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)]
 Waters社製の「1515アイソクラティックHPLCポンプ」、「2414示差屈折率(RI)検出器」に、東ソー社製のカラム「TSKguardcolumn SuperHZ-L」を1本、及び「TSKSuperMultipore HZ-M」を2本、上流側からこの順で取り付け、測定温度:40℃、移動相:テトラヒドロフラン、流速:0.35mL/分、試料濃度1.0mg/mLの条件で測定し、標準ポリスチレン換算にて求めた。
[Mass average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn)]
"1515 Isocratic HPLC Pump" and "2414 Differential Refractometer (RI) Detector" manufactured by Waters, one column "TSKgradecon SuperHZ-L" manufactured by Tosoh, and two "TSKSuperMultipore HZ-M" The book was attached in this order from the upstream side, measured under the conditions of measurement temperature: 40 ° C., mobile phase: tetrahydrofuran, flow velocity: 0.35 mL / min, and sample concentration 1.0 mg / mL, and determined by standard polystyrene conversion.
[Noack蒸発量]
 ASTM D 5800(Noack試験:250℃、1時間)に準拠して測定した。
[Noack evaporation amount]
Measured according to ASTM D 5800 (Noack test: 250 ° C., 1 hour).
[永久せん断安定性指数(PSSI)]
 PSSIは、重合体に由来するせん断による粘度低下をパーセンテージで示すものであり、ASTM D6022-06(2012)で規定される下記計算式により算出した。
[Permanent Shear Stability Index (PSSI)]
PSSI indicates the decrease in viscosity due to shearing derived from the polymer as a percentage, and was calculated by the following formula defined by ASTM D6022-06 (2012).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 当該計算式中、Kvは、基油に重合体を加えた(せん断前の)混合物の100℃動粘度の値である。Kv1は、基油にポリアルキル(メタ)アクリレートを加えた混合物を、ASTM D-6278に準拠して測定される(せん断後の)100℃動粘度の値である。また、Kvoilは、基油の100℃動粘度の値であり、Kvは、7.5mm/sに調整した。 In the calculation formula, Kv 0 is a value of 100 ° C. kinematic viscosity of the mixture (before shearing) in which the polymer is added to the base oil. Kv 1 is a value of 100 ° C. kinematic viscosity (after shearing) measured in accordance with ASTM D-6278 for a mixture of base oil plus polyalkyl (meth) acrylate. Kv oil is the value of the kinematic viscosity of the base oil at 100 ° C., and Kv 0 is adjusted to 7.5 mm 2 / s.
[製造例]
 本製造例において使用した原料を以下に示す。
[Manufacturing example]
The raw materials used in this production example are shown below.
<マクロモノマー(α)>
(片末端メタクリル化水添ポリブタジエン)
 単量体(α1)として、片末端をメタクリレート化した水素化ブタジエンに由来する構成単位を有する、片末端メタクリル化水添ポリブタジエン(株式会社クラレ製、Kraton Liquid(登録商標) L-1253)を用いた。質量平均分子量は約7,000、数平均分子量は約6,800である。
<Macromonomer (α)>
(One-ended methacrylicated hydrogenated polybutadiene)
As the monomer (α1), one-ended methacrylicated hydrogenated polybutadiene (Kraton Liquid (registered trademark) L-1253, manufactured by Kuraray Co., Ltd.) having a structural unit derived from hydrogenated butadiene having a methacrylate at one end is used. There was. The mass average molecular weight is about 7,000 and the number average molecular weight is about 6,800.
<単量体(A1)>
(n-ブチルメタクリレート、Alfa Aesar社製)
 上記一般式(a1)において、R11がメチル基であり、R12が-O-であり、m1=0であり、R14がn-ブチル基である単量体である。ホモポリマーのガラス転移温度(Tg)は20℃(カタログ値)である。以降の説明では、「nC4MA」ともいう。
(イソブチルメタクリレート、富士フィルム和光純薬株式会社製)
 上記一般式(a1)において、R11がメチル基であり、R12が-O-であり、m1=0であり、R14がイソブチル基である単量体である。ホモポリマーのガラス転移温度(Tg)は53℃(カタログ値)である。以降の説明では、「iC4MA」ともいう。
(シクロヘキシルメタクリレート、富士フィルム和光純薬株式会社製)
 上記一般式(a1)において、R11がメチル基であり、R12が-O-であり、m1=0であり、R14がシクロヘキシル基である単量体である。ホモポリマーのガラス転移温度(Tg)は80℃(カタログ値)である。以降の説明では、「cC6MA」ともいう。
(n-ヘキシルメタクリレート、Aldrich社製)
 上記一般式(a1)において、R11がメチル基であり、R12が-O-であり、m1=0であり、R14がn-ヘキシル基である単量体である。ホモポリマーのガラス転移温度(Tg)は10℃(カタログ値)である。以降の説明では、「nC6MA」ともいう。
<Polymer (A1)>
(N-Butyl methacrylate, manufactured by Alfa Aesar)
In the above general formula (a1), R 11 is a methyl group, R 12 is —O—, m1 = 0, and R 14 is an n-butyl group. The glass transition temperature (Tg) of the homopolymer is 20 ° C. (catalog value). In the following description, it is also referred to as "nC4MA".
(Isobutyl methacrylate, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
In the above general formula (a1), R 11 is a methyl group, R 12 is —O—, m1 = 0, and R 14 is an isobutyl group. The glass transition temperature (Tg) of the homopolymer is 53 ° C. (catalog value). In the following description, it is also referred to as "iC4MA".
(Cyclohexyl methacrylate, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
In the above general formula (a1), R 11 is a methyl group, R 12 is —O—, m1 = 0, and R 14 is a cyclohexyl group monomer. The glass transition temperature (Tg) of the homopolymer is 80 ° C. (catalog value). In the following description, it is also referred to as "cC6MA".
(N-hexyl methacrylate, manufactured by Aldrich)
In the above general formula (a1), R 11 is a methyl group, R 12 is —O—, m1 = 0, and R 14 is an n-hexyl group. The glass transition temperature (Tg) of the homopolymer is 10 ° C. (catalog value). In the following description, it is also referred to as "nC6MA".
<単量体(A2)>
(ブトキシエチルメタクリレート、共栄社化学株式会社製)
 ライトエステルBOを用いた。ライトエステルBOは、上記一般式(a2)において、R21がメチル基であり、R22が-O-であり、R23が炭素数2の直鎖アルキレン基であり、m2=1であり、R24がn-C基である単量体である。以降の説明では、「BOEMA」ともいう。
<Polymer (A2)>
(Butylethyl methacrylate, manufactured by Kyoeisha Chemical Co., Ltd.)
Light ester BO was used. In the light ester BO, in the above general formula (a2), R 21 is a methyl group, R 22 is −O—, R 23 is a linear alkylene group having 2 carbon atoms, and m2 = 1. R 24 is a monomer having 9 n—C 4 H groups. In the following description, it is also referred to as "BOEMA".
<単量体(A3)>
 n-ドデシルメタクリレートとn-トリデシルメタクリレートとの混合物(C12/C13=45/55%)であり、ライトエステルL-7(共栄社化学株式会社製)を用いた。以降の説明では、「nC1213MA」ともいう。
<Polymer (A3)>
It was a mixture of n-dodecyl methacrylate and n-tridecyl methacrylate (C12 / C13 = 45/55%), and light ester L-7 (manufactured by Kyoeisha Chemical Co., Ltd.) was used. In the following description, it is also referred to as "nC1213MA".
<ラジカル重合開始剤>
・パーテトラA:2,2-ビス(4,4-ジ-tert-ブチルパーオキシシクロヘキシル)プロパン(日油株式会社製)
<Radical polymerization initiator>
-Pertetra A: 2,2-bis (4,5-di-tert-butylperoxycyclohexyl) propane (manufactured by NOF CORPORATION)
<重合溶剤用基油>
 100℃動粘度:4.2mm/s、粘度指数:123の鉱油を用いた。
<Base oil for polymerization solvent>
Mineral oil with 100 ° C. kinematic viscosity: 4.2 mm 2 / s and viscosity index: 123 was used.
 上記原料を表1に示す配合で用い、櫛形ポリマー(A)として、重合体1、2、3、4を重合した。 The above raw materials were used in the formulations shown in Table 1, and polymers 1, 2, 3 and 4 were polymerized as the comb-shaped polymer (A).
(1)製造例1(重合体1)
 温度計、ジムロート冷却器、バキュームシール撹拌翼、窒素流入口及び窒素流出口を備えた4口セパラブルフラスコに、マクロモノマー(α)を7.70g、n-ブトキシエチルメタクリレートを5.60g、nC1213MAを11.20g、n-ブチルメタクリレートを45.50g、重合溶剤用基油を23.7g、パーテトラAを0.40g仕込み、窒素置換を行った。窒素気流下(窒素ガス:50mL/分)、バス温95~105℃にて、加熱撹拌した。2時間後、重合溶剤用基油を46.3g加え、7時間反応させた。次いで、重合溶剤用基油を70g加え、更に1時間加熱撹拌した。一晩放置し、バス温95~105℃にて3時間加熱撹拌し、重合溶剤用基油を140g加えた。1時間加熱撹拌後、重合溶剤用基油を350g加え、2時間加熱撹拌した。減圧下(0.02MPa以下)、バス温120~130℃まで昇温し、2時間かけて未反応のモノマーを留去し、重合体1を得た。
(1) Production Example 1 (Polymer 1)
7.70 g of macromonomer (α), 5.60 g of n-butoxyethyl methacrylate, nC1213MA in a 4-port separable flask equipped with a thermometer, Dimroth condenser, vacuum seal stirring blade, nitrogen inlet and nitrogen outlet. 11.20 g, n-butyl methacrylate (45.50 g), base oil for polymerization solvent (23.7 g), and pertetra A (0.40 g) were charged and subjected to nitrogen substitution. The mixture was heated and stirred under a nitrogen stream (nitrogen gas: 50 mL / min) at a bath temperature of 95 to 105 ° C. After 2 hours, 46.3 g of a base oil for a polymerization solvent was added, and the mixture was reacted for 7 hours. Next, 70 g of the base oil for a polymerization solvent was added, and the mixture was further heated and stirred for 1 hour. The mixture was left to stand overnight, heated and stirred at a bath temperature of 95 to 105 ° C. for 3 hours, and 140 g of a base oil for a polymerization solvent was added. After heating and stirring for 1 hour, 350 g of a base oil for a polymerization solvent was added, and the mixture was heated and stirred for 2 hours. Under reduced pressure (0.02 MPa or less), the bath temperature was raised to 120 to 130 ° C., and the unreacted monomer was distilled off over 2 hours to obtain polymer 1.
(2)製造例2(重合体2)
 温度計、ジムロート冷却器、バキュームシール撹拌翼、窒素流入口、及び窒素流出口を備えた4口セパラブルフラスコに、マクロモノマー(α)を4.95g、n-ブトキシエチルメタクリレートを3.60g、nC1213MAを7.20g、イソブチルメタクリレートを29.25g、重合溶剤用基油15g、パーテトラAを0.26g仕込み、当該仕込組成で窒素置換を行った。窒素気流下(窒素ガス:50mL/分)、バス温95~105℃にて、加熱撹拌した。1時間後、重合溶剤用基油を30g加えた。更に、3時間後、重合溶剤用基油を135g加え、2時間撹拌した。次いで、バス温75~85℃に冷却し、テトラヒドロフランを150mL加え、65~70℃にて2時間加熱撹拌した。一晩放置し、65~70℃にて8時間加熱撹拌し、重合溶剤用基油を225g加え、バス温を120~130℃まで昇温しながら、ディーンスタークを用いて、テトラヒドロフランを留去した。更に、減圧下(0.02MPa以下)、120~130℃にて、2時間かけて未反応のモノマーを留去し、重合体2を得た。
(2) Production Example 2 (Polymer 2)
4.95 g of macromonomer (α) and 3.60 g of n-butoxyethyl methacrylate in a 4-port separable flask equipped with a thermometer, a Dimroth condenser, a vacuum seal stirring blade, a nitrogen inlet, and a nitrogen outlet. 7.20 g of nC1213MA, 29.25 g of isobutyl methacrylate, 15 g of base oil for a polymerization solvent, and 0.26 g of pertetra A were charged, and nitrogen substitution was performed with the charged composition. The mixture was heated and stirred under a nitrogen stream (nitrogen gas: 50 mL / min) at a bath temperature of 95 to 105 ° C. After 1 hour, 30 g of a base oil for a polymerization solvent was added. Further, after 3 hours, 135 g of the base oil for a polymerization solvent was added, and the mixture was stirred for 2 hours. Then, the bath temperature was cooled to 75 to 85 ° C., 150 mL of tetrahydrofuran was added, and the mixture was heated and stirred at 65 to 70 ° C. for 2 hours. The mixture was left to stand overnight, heated and stirred at 65 to 70 ° C. for 8 hours, 225 g of a base oil for a polymerization solvent was added, and tetrahydrofuran was distilled off using Dean Stark while raising the bath temperature to 120 to 130 ° C. .. Further, the unreacted monomer was distilled off under reduced pressure (0.02 MPa or less) at 120 to 130 ° C. over 2 hours to obtain a polymer 2.
(3)製造例3(重合体3)
 製造例2の仕込組成について、イソブチルメタクリレートをシクロヘキシルメタクリレートに変更し、パーテトラAの仕込量を0.23gに変更して、製造例2と同様の方法で、重合体3を得た。
(3) Production Example 3 (Polymer 3)
Regarding the charged composition of Production Example 2, isobutyl methacrylate was changed to cyclohexyl methacrylate, the charged amount of pertetra A was changed to 0.23 g, and the polymer 3 was obtained in the same manner as in Production Example 2.
(4)製造例4(重合体4)
 製造例2の仕込組成について、イソブチルメタクリレートをn-ヘキシルメタクリレートに変更し、パーテトラAの仕込量を0.22gに変更して、窒素置換を行った。窒素気流下(窒素ガス:50mL/分)、バス温95~105℃にて、加熱撹拌した。2時間後、重合溶剤用基油を30g加え、7時間反応させた。一晩放置し、更に、バス温95~105℃にて3時間加熱撹拌し、重合溶剤用基油を135g加えた。減圧下(0.02MPa以下)、バス温120~130℃まで昇温し、2時間かけて未反応のモノマーを留去し、重合体4を得た。
(4) Production Example 4 (Polymer 4)
Regarding the charged composition of Production Example 2, isobutyl methacrylate was changed to n-hexyl methacrylate, the charged amount of pertetra A was changed to 0.22 g, and nitrogen substitution was performed. The mixture was heated and stirred under a nitrogen stream (nitrogen gas: 50 mL / min) at a bath temperature of 95 to 105 ° C. After 2 hours, 30 g of a base oil for a polymerization solvent was added, and the mixture was reacted for 7 hours. The mixture was left to stand overnight, further heated and stirred at a bath temperature of 95 to 105 ° C. for 3 hours, and 135 g of a base oil for a polymerization solvent was added. Under reduced pressure (0.02 MPa or less), the bath temperature was raised to 120 to 130 ° C., and the unreacted monomer was distilled off over 2 hours to obtain a polymer 4.
(5)くし形ポリマーA
 n-ブチルメタクリレートを74モル%、ブトキシエチルメタクリレートを11モル%、nC1213MAを14モル%、マクロモノマー(α)を1モル%含有するくし形ポリマーである。
(6)くし形ポリマーB
 n-ブチルメタクリレートを85モル%、nC1213MAを14モル%、マクロモノマー(α)を1モル%含有するくし形ポリマーである。
(5) Comb-shaped polymer A
It is a comb-shaped polymer containing 74 mol% of n-butyl methacrylate, 11 mol% of butoxyethyl methacrylate, 14 mol% of nC1213MA, and 1 mol% of macromonomer (α).
(6) Comb-shaped polymer B
It is a comb-shaped polymer containing 85 mol% of n-butyl methacrylate, 14 mol% of nC1213MA, and 1 mol% of macromonomer (α).
[実施例1~3、比較例1~3]
 表1に示す配合で重合体1~4又はくし形ポリマーA~Bと基油とを配合し、実施例1~3及び、比較例1~3の潤滑油組成物を得た。
 なお、表1中の含有量は、樹脂分換算の含有量である。また、表1中のガラス転移温度(Tg)は、単量体(A1)のホモポリマーのガラス転移温度である。
[Examples 1 to 3, Comparative Examples 1 to 3]
Polymers 1 to 4 or comb-shaped polymers A to B and a base oil were blended in the formulation shown in Table 1 to obtain lubricating oil compositions of Examples 1 to 3 and Comparative Examples 1 to 3.
The content in Table 1 is the content in terms of resin content. The glass transition temperature (Tg) in Table 1 is the glass transition temperature of the homopolymer of the monomer (A1).
<基油>
 100N鉱油(API基油カテゴリーでの分類:グループIII、40℃動粘度:19.6mm/s、100℃動粘度:4.2mm/s、粘度指数:122)
<Base oil>
100N mineral oil (Classification in API base oil category: Group III, 40 ° C. kinematic viscosity: 19.6 mm 2 / s, 100 ° C. kinematic viscosity: 4.2 mm 2 / s, viscosity index: 122)
<他の潤滑油用添加剤>
 流動点降下剤、フェノール系酸化防止剤、アミン系酸化防止剤、ホウ素非含有コハク酸イミド類、ホウ素含有コハク酸イミド類、金属不活性化剤、消泡剤、金属系清浄剤等
<Additives for other lubricating oils>
Flow point depressants, phenolic antioxidants, amine antioxidants, boron-free succinic acid imides, boron-containing succinate imides, metal inactivating agents, defoamers, metal cleaning agents, etc.
[省燃費性の評価]
 以下のような仕様のエンジンに潤滑油組成物を充填して、以下に示す試験条件でモータリングトルク試験を行い、所定回転数におけるトルク(dB)を測定した。また、各油温におけるそれぞれのエンジン回転数でのトルクの平均値を算出することにより、平均駆動トルク改善率を求めた。なお、各実施例、比較例のトルクの値は、比較例1のトルクの値に対する変化率を、比較例1を0としたときの値として算出した。結果を表1に示す。
-試験条件-
  ・使用装置:エンジンモータリング装置
  ・エンジン:四輪車用水冷1,500CC 直列4気筒エンジン
  ・動弁形式:DOHC(ローラー)
  ・エンジン回転数:1,500rpm、2,000rpm、及び2,500rpm
  ・オイルパン油温:60℃、80℃、及び100℃
[Evaluation of fuel efficiency]
An engine having the following specifications was filled with a lubricating oil composition, a motoring torque test was performed under the test conditions shown below, and the torque (dB) at a predetermined rotation speed was measured. In addition, the average drive torque improvement rate was obtained by calculating the average value of the torque at each engine speed at each oil temperature. The torque values of each Example and Comparative Example were calculated as values when the rate of change with respect to the torque value of Comparative Example 1 was set to 0 in Comparative Example 1. The results are shown in Table 1.
-Test conditions-
・ Equipment used: Engine motoring equipment ・ Engine: Water-cooled 1,500CC in-line 4-cylinder engine for four-wheeled vehicles ・ Valve type: DOHC (roller)
-Engine speed: 1,500 rpm, 2,000 rpm, and 2,500 rpm
-Oil pan Oil temperature: 60 ° C, 80 ° C, and 100 ° C
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1からわかるように、本発明の構成を全て満たす実施例1~3の潤滑油組成物は、平均駆動トルク改善率が高く、省燃費性に優れていることがわかる。
 一方、比較例1~2の潤滑油組成物は、60℃、80℃、及び100℃のモータリングトルク試験の評価結果、並びに、平均駆動トルク改善率が、いずれも実施例1~3の潤滑油組成物よりも低く、劣る数値となっている。また、比較例3の潤滑油組成物は、60℃、1,500rpmでのモータリングトルク試験の評価結果が-0.62%であり、実施例1~3の潤滑油組成物の評価結果と比較して低く、劣る数値となっている。即ち、本発明の要件(1)~(4)の少なくともいずれかを満たさない比較例1~3の潤滑油組成物は、トルク損失を低減できておらず、幅広い温度域におけるトルクの損失を低減させる効果が得られないことがわかる。
As can be seen from Table 1, the lubricating oil compositions of Examples 1 to 3 satisfying all the configurations of the present invention have a high average drive torque improvement rate and are excellent in fuel efficiency.
On the other hand, the lubricating oil compositions of Comparative Examples 1 and 2 have the evaluation results of the motoring torque tests at 60 ° C., 80 ° C., and 100 ° C., and the average drive torque improvement rate, all of which are the lubrications of Examples 1 to 3. It is lower and inferior to the oil composition. Further, the lubricating oil composition of Comparative Example 3 had an evaluation result of −0.62% in the motoring torque test at 60 ° C. and 1,500 rpm, which was the same as the evaluation result of the lubricating oil composition of Examples 1 to 3. It is low and inferior in comparison. That is, the lubricating oil compositions of Comparative Examples 1 to 3 that do not satisfy at least one of the requirements (1) to (4) of the present invention cannot reduce the torque loss and reduce the torque loss in a wide temperature range. It can be seen that the effect of making it is not obtained.

Claims (12)

  1.  基油と、ポリ(メタ)アクリレートとを含有し、
     樹脂分換算の前記ポリ(メタ)アクリレートの含有量が、潤滑油組成物全量基準で、0.1質量%以上2.0質量%以下であり、
     下記の要件(1)~(4)を満たす、潤滑油組成物。
      ・要件(1):100℃動粘度が、4.0mm/s以上7.5mm/s以下である。
      ・要件(2):Noack蒸発量が、30質量%以下である。
      ・要件(3):40℃動粘度KV40と100℃動粘度KV100との比(KV40/KV100)が、3.95以下である。
      ・要件(4):80℃HTHS粘度HTHS80と100℃動粘度KV100との比(HTHS80/KV100)が、0.96以下である。
    Contains base oil and poly (meth) acrylate,
    The content of the poly (meth) acrylate in terms of resin content is 0.1% by mass or more and 2.0% by mass or less based on the total amount of the lubricating oil composition.
    A lubricating oil composition that satisfies the following requirements (1) to (4).
    -Requirement (1): The kinematic viscosity at 100 ° C. is 4.0 mm 2 / s or more and 7.5 mm 2 / s or less.
    -Requirement (2): Noack evaporation amount is 30% by mass or less.
    -Requirement (3): The ratio of 40 ° C. kinematic viscosity KV 40 to 100 ° C. kinematic viscosity KV 100 (KV 40 / KV 100 ) is 3.95 or less.
    -Requirement (4): The ratio of 80 ° C. HTHS viscosity HTHS 80 to 100 ° C. kinematic viscosity KV 100 (HTHS 80 / KV 100 ) is 0.96 or less.
  2.  前記ポリ(メタ)アクリレートが、マクロモノマー(α)由来の構成単位と、下記一般式(a1)で表される単量体(A1)由来の構成単位と、を含み、
    Figure JPOXMLDOC01-appb-C000001

    [上記一般式(a1)中、R11は、水素原子又はメチル基である。
     R12は、単結合、-O-、又は-NH-を示す。
     R13は、炭素数2~4の直鎖アルキレン基もしくは炭素数2~4の分岐鎖アルキレン基を示す。m1は、0~20の整数を示す。m1が2以上の整数の場合の複数のR13は、同一であっても異なっていてもよく、(R13O)m1部分はランダム共重合でもブロック共重合でもよい。
     R14は、炭素数4~5の非環状アルキル基、又は環状アルキル基を有する炭素数6~8の基である。]
     前記マクロモノマー(α)は、(メタ)アクリロイル基を片末端に有すると共に、ブタジエン及び水素化ブタジエンから選ばれる単量体(α1)に由来する構成単位を有し、
     前記単量体(A1)由来の構成単位の含有量が、全構成単位基準で、75モル%以上である櫛形ポリマー(A)を含有する、請求項1に記載の潤滑油組成物。
    The poly (meth) acrylate contains a structural unit derived from a macromonomer (α) and a structural unit derived from a monomer (A1) represented by the following general formula (a1).
    Figure JPOXMLDOC01-appb-C000001

    [In the above general formula (a1), R 11 is a hydrogen atom or a methyl group.
    R 12 represents a single bond, -O-, or -NH-.
    R 13 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms. m1 represents an integer from 0 to 20. When m1 is an integer of 2 or more, the plurality of R 13s may be the same or different, and the (R 13 O) m1 portion may be a random copolymerization or a block copolymerization.
    R 14 is a non-cyclic alkyl group having 4 to 5 carbon atoms or a group having 6 to 8 carbon atoms having a cyclic alkyl group. ]
    The macromonomer (α) has a (meth) acryloyl group at one end and has a structural unit derived from a monomer (α1) selected from butadiene and hydrogenated butadiene.
    The lubricating oil composition according to claim 1, wherein the content of the structural unit derived from the monomer (A1) is 75 mol% or more based on all the structural units, and the comb-shaped polymer (A) is contained.
  3.  前記炭素数4~5の非環状アルキル基が、第3級炭素を有する、請求項2に記載の潤滑油組成物。 The lubricating oil composition according to claim 2, wherein the acyclic alkyl group having 4 to 5 carbon atoms has a tertiary carbon.
  4.  前記櫛形ポリマー(A)が、下記一般式(a2)で表される単量体(A2)由来の構成単位をさらに含む、請求項2又は3に記載の潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000002

    [上記一般式(a2)中、R21は水素原子又はメチル基である。
     R22は、単結合、-O-、又は-NH-を示す。
     R23は、炭素数2~4の直鎖アルキレン基又は炭素数2~4の分岐鎖アルキレン基を示す。m2は、1~20の整数を示す。m2が2以上の整数の場合の複数のR23は、同一であっても異なっていてもよく、(R23O)m2部分はランダム共重合でもブロック共重合でもよい。
     R24は、炭素数1~12の直鎖アルキル基又は炭素数1~12の分岐鎖アルキル基である。]
    The lubricating oil composition according to claim 2 or 3, wherein the comb-shaped polymer (A) further contains a structural unit derived from the monomer (A2) represented by the following general formula (a2).
    Figure JPOXMLDOC01-appb-C000002

    [In the above general formula (a2), R 21 is a hydrogen atom or a methyl group.
    R 22 represents a single bond, -O-, or -NH-.
    R 23 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms. m2 represents an integer from 1 to 20. When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
    R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms. ]
  5.  前記櫛形ポリマー(A)が、炭素数10~30の直鎖アルキル基又は炭素数10~30の分岐鎖アルキル基を有するアルキル(メタ)アクリレート(A3)由来の構成単位をさらに含む、請求項2~4のいずれか一項に記載の潤滑油組成物。 2. The comb-shaped polymer (A) further contains a structural unit derived from an alkyl (meth) acrylate (A3) having a linear alkyl group having 10 to 30 carbon atoms or a branched chain alkyl group having 10 to 30 carbon atoms. The lubricating oil composition according to any one of 4 to 4.
  6.  前記炭素数10~30の直鎖アルキル基又は炭素数10~30の分岐鎖アルキル基を有するアルキル(メタ)アクリレート(A3)由来の構成単位の含有量が、全構成単位基準で、30モル%以下である、請求項5に記載の潤滑油組成物。 The content of the structural unit derived from the alkyl (meth) acrylate (A3) having the linear alkyl group having 10 to 30 carbon atoms or the branched chain alkyl group having 10 to 30 carbon atoms is 30 mol% based on the total structural unit. The lubricating oil composition according to claim 5, which is as follows.
  7.  前記単量体(A1)由来の構成単位の含有量が、櫛形ポリマー(A)の構成単位の全量基準で、75モル%以上であり、
     かつ、下記一般式(a2)で表される単量体(A2)由来の構成単位をさらに含む、請求項2又は3に記載の潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000003

    [上記一般式(a2)中、R21は水素原子又はメチル基である。
     R22は、単結合、-O-、又は-NH-を示す。
     R23は、炭素数2~4の直鎖アルキレン基又は炭素数2~4の分岐鎖アルキレン基を示す。m2は、1~20の整数を示す。m2が2以上の整数の場合の複数のR23は、同一であっても異なっていてもよく、(R23O)m2部分はランダム共重合でもブロック共重合でもよい。
     R24は、炭素数1~12の直鎖アルキル基又は炭素数1~12の分岐鎖アルキル基である。]
    The content of the structural unit derived from the monomer (A1) is 75 mol% or more based on the total amount of the structural unit of the comb polymer (A).
    The lubricating oil composition according to claim 2 or 3, further comprising a structural unit derived from the monomer (A2) represented by the following general formula (a2).
    Figure JPOXMLDOC01-appb-C000003

    [In the above general formula (a2), R 21 is a hydrogen atom or a methyl group.
    R 22 represents a single bond, -O-, or -NH-.
    R 23 represents a linear alkylene group having 2 to 4 carbon atoms or a branched chain alkylene group having 2 to 4 carbon atoms. m2 represents an integer from 1 to 20. When m2 is an integer of 2 or more, the plurality of R 23s may be the same or different, and the (R 23 O) m2 portion may be a random copolymerization or a block copolymerization.
    R 24 is a linear alkyl group having 1 to 12 carbon atoms or a branched chain alkyl group having 1 to 12 carbon atoms. ]
  8.  前記櫛形ポリマー(A)の質量平均分子量(Mw)が、30万以上150万以下である、請求項2~7のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 2 to 7, wherein the mass average molecular weight (Mw) of the comb-shaped polymer (A) is 300,000 or more and 1.5 million or less.
  9.  前記櫛形ポリマー(A)の分子量分布(Mw/Mn)が、1.2以上3.7以下である、請求項2~8のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 2 to 8, wherein the molecular weight distribution (Mw / Mn) of the comb-shaped polymer (A) is 1.2 or more and 3.7 or less.
  10.  前記一般式(a1)で表される単量体(A1)由来の構成単位からなるホモポリマーのガラス転移温度(Tg)が、20℃以上である、請求項2~9のいずれか一項に記載の潤滑油組成物。 According to any one of claims 2 to 9, the glass transition temperature (Tg) of the homopolymer composed of the structural unit derived from the monomer (A1) represented by the general formula (a1) is 20 ° C. or higher. The lubricating oil composition described.
  11.  自動車の内燃機関に用いられる、請求項1~10のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 10, which is used for an internal combustion engine of an automobile.
  12.  ハイブリッド機構を搭載した自動車の内燃機関に用いられる、請求項1~10のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 10, which is used for an internal combustion engine of an automobile equipped with a hybrid mechanism.
PCT/JP2020/036133 2019-09-24 2020-09-24 Lubricating oil composition WO2021060415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173573 2019-09-24
JP2019-173573 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021060415A1 true WO2021060415A1 (en) 2021-04-01

Family

ID=75166192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036133 WO2021060415A1 (en) 2019-09-24 2020-09-24 Lubricating oil composition

Country Status (1)

Country Link
WO (1) WO2021060415A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053154A (en) * 2014-09-01 2016-04-14 三洋化成工業株式会社 Viscosity index improver composition and lubricant composition
JP2018159011A (en) * 2017-03-23 2018-10-11 出光興産株式会社 Lubricant composition
WO2019031404A1 (en) * 2017-08-10 2019-02-14 出光興産株式会社 Lubricating oil composition, internal combustion engine, and lubrication method for internal combustion engine
JP2020084066A (en) * 2018-11-28 2020-06-04 Emgルブリカンツ合同会社 Lubricant base oil composition
JP2020105347A (en) * 2018-12-27 2020-07-09 Emgルブリカンツ合同会社 Lubricant composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053154A (en) * 2014-09-01 2016-04-14 三洋化成工業株式会社 Viscosity index improver composition and lubricant composition
JP2018159011A (en) * 2017-03-23 2018-10-11 出光興産株式会社 Lubricant composition
WO2019031404A1 (en) * 2017-08-10 2019-02-14 出光興産株式会社 Lubricating oil composition, internal combustion engine, and lubrication method for internal combustion engine
JP2020084066A (en) * 2018-11-28 2020-06-04 Emgルブリカンツ合同会社 Lubricant base oil composition
JP2020105347A (en) * 2018-12-27 2020-07-09 Emgルブリカンツ合同会社 Lubricant composition

Similar Documents

Publication Publication Date Title
KR102303476B1 (en) Comb Polymers to Improve Noark Evaporative Loss of Engine Oil Formulations
CN106459821B (en) Lubricating oil composition
RU2747727C2 (en) Lubricating composition with improved viscosity characteristics at low operating temperature
JP5822706B2 (en) Friction and wear reducing agent for lubricating oil and lubricating oil composition containing the same
KR20190026607A (en) New viscosity index improvers with defined molecular weight distributions
JP5584049B2 (en) Extreme pressure agent for lubricating oil and lubricating oil composition containing the same
WO2019012031A1 (en) Comb polymers comprising imide functionality
JP2020502344A (en) Lubricating oil composition containing dispersant comb polymer
JP5374028B2 (en) Lubricating oil composition
JP7014552B2 (en) Viscosity index improver and lubricating oil composition
JP2020164497A (en) New compound, viscosity index improver, and lubricant composition
JP2021008540A (en) Lubricant composition for internal combustion engine
WO2021060422A1 (en) Viscosity index improver composition and lubricating oil composition
WO2021060415A1 (en) Lubricating oil composition
JP7281426B2 (en) lubricating oil composition
JP2020105295A (en) Viscosity index improver and lubricant composition
JP2020050754A (en) Pour-point depressant and lubricant composition containing the same
WO2022210709A1 (en) Lubricant composition
WO2022209449A1 (en) Polymer composition, lubricating oil additive composition, and lubricating oil composition
WO2023120716A1 (en) Viscosity index enhancer composition, additive composition for lubricating oil, and lubricating oil composition
JP2020132698A (en) Viscosity index improving agent and lubrication oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP