WO2021060282A1 - Optical sheet, liquid crystal display device, and optical sheet testing method and manufacturing method - Google Patents

Optical sheet, liquid crystal display device, and optical sheet testing method and manufacturing method Download PDF

Info

Publication number
WO2021060282A1
WO2021060282A1 PCT/JP2020/035812 JP2020035812W WO2021060282A1 WO 2021060282 A1 WO2021060282 A1 WO 2021060282A1 JP 2020035812 W JP2020035812 W JP 2020035812W WO 2021060282 A1 WO2021060282 A1 WO 2021060282A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sheet
light
optical
base material
liquid crystal
Prior art date
Application number
PCT/JP2020/035812
Other languages
French (fr)
Japanese (ja)
Inventor
柏木 剛
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020141435A external-priority patent/JP2021056497A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2021060282A1 publication Critical patent/WO2021060282A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to an optical sheet arranged on the observer side of a light source, a liquid crystal display device using the optical sheet, and a test method and a manufacturing method of the optical sheet.
  • Liquid crystal display devices such as in-vehicle displays and liquid crystal televisions are equipped with optical sheets having various functions in order to control the light emitted from the light source and provide high-quality light to the observer.
  • Patent Document 1 a layer in which a prism portion (referred to as a light transmitting portion in the present specification) and a light absorbing portion (referred to as a louver portion in the present specification) are alternately arranged on one surface of a base film layer.
  • a prism portion referred to as a light transmitting portion in the present specification
  • a light absorbing portion referred to as a louver portion in the present specification
  • each module of the liquid crystal display device and this optical sheet are combined and mounted on a housing of the liquid crystal display device.
  • fixing is performed by adhesion or tightening with a frame of a housing, but depending on the fixing method, bending may occur due to the weight of the optical sheet or the like. Therefore, there is a problem that unevenness of light transmitted through the optical sheet occurs due to this bending.
  • the optical sheet described in Patent Document 1 suppresses bending by providing sufficient rigidity at the time of use, but further consideration may be required depending on the usage environment of the optical sheet.
  • a car navigation system including a liquid crystal display device having an optical sheet when mounted on an automobile and used, changes in the vehicle interior environment may affect the optical sheet.
  • the optical sheet of the liquid crystal display device may be deformed (bent) as the temperature and humidity rise (particularly due to moisture absorption of the optical sheet). Due to such deformation (deflection) of the optical sheet, there is a problem that unevenness of light transmitted through the optical sheet occurs.
  • the present invention has been made to solve any or all of the above-mentioned problems, and the optical sheet selected to be particularly suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device.
  • An object of the present invention is to provide a liquid crystal display device using this optical sheet, and a test method and a manufacturing method of the optical sheet.
  • the present invention is an optical sheet provided between a reflective polarizing plate of a liquid crystal display device and a liquid crystal panel, and is an optical sheet laminated on a base material layer and the base material layer.
  • a functional layer a plurality of light transmitting portions arranged along the base material layer at predetermined intervals to transmit light, and a louver portion arranged between adjacent light transmitting portions to reflect or absorb light.
  • the optical sheet comprises, and the optical sheet comprises, along the direction in which the plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged.
  • the amount of sagging when one end of the sheet is projected 100 mm from the end of the support base is 10 mm or less, and the optical sheet has a direction in which a plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged.
  • the optical sheet is bent so as to be wound around a mandrel having a diameter of 150 mm along the direction orthogonal to the surface of the optical sheet, no cracks occur, and / or the optical sheet absorbs water according to a water absorption rate test based on JIS K 7209. It has a configuration of an optical sheet having a water absorption rate of 1.33% or less.
  • the optical sheet may further have a second base material layer arranged so as to face the base material layer with the optical functional layer interposed therebetween.
  • the coefficient of linear thermal expansion of the material of the base material layer of the optical sheet may be 4.9 to 5.6 ( ⁇ 10 -5 / ° C.).
  • another aspect of the present invention for achieving the above-mentioned object is a liquid crystal comprising the above-mentioned optical sheet, a liquid crystal display device arranged so as to face each other across the optical sheet, and a reflective polarizing plate. It is a display device.
  • another aspect of the present invention for achieving the above-mentioned object is a base material layer and an optical functional layer laminated on the base material layer, which are spaced apart from each other along the base material layer. It is a test method of an optical sheet including an optical functional layer having a plurality of light transmitting portions arranged in an array to transmit light and a louver portion arranged between adjacent light transmitting portions to reflect or absorb light. The optical sheet is arranged on the support base, and one end of the optical sheet is projected 100 mm from the end portion of the support base along the direction in which the plurality of light transmitting portions and the louver portions of the optical functional layer are alternately arranged.
  • the sagging amount determination step for determining whether or not the sagging amount at the time is 10 mm or less, and the optical sheet are optical in the direction in which a plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged.
  • the crack determination step of determining whether or not cracks occur by bending so as to wind around a mandrel having a diameter of 150 mm along the direction orthogonal to the sheet surface, and / or the water absorption rate of the optical sheet is based on JIS K 7209.
  • the water absorption rate measurement step measured by the water absorption rate test and the water absorption rate measured by the water absorption rate step are 1.33% or less, it is passed, and if the water absorption rate of the optical sheet is larger than 1.33%, it is rejected.
  • the configuration of the optical sheet and / or the water absorption which includes the water absorption rate determination step, and is determined in the sag amount determination step that the sag amount is 10 mm or less and that no crack is generated in the crack determination step.
  • the optical sheet is manufactured by adopting the structure of the optical sheet determined to be an appropriate structure by the above-mentioned test method of the optical sheet. , A method for manufacturing an optical sheet.
  • an optical sheet and a liquid crystal display device that suppress light unevenness without lowering the manufacturing efficiency, and / or the optical sheet is less bent even in a high temperature and high humidity environment, and the optical sheet. It is possible to provide an optical sheet and a liquid crystal display device that suppress unevenness of light transmitted through the light. Further, it is possible to carry out a test for finding a configuration of an optical sheet that suppresses such light unevenness, and to manufacture an optical sheet that suppresses light unevenness based on the result of the test.
  • FIG. 1 is an exploded perspective view of the liquid crystal display device 10 according to the embodiment.
  • 2 and 3 are exploded views of the liquid crystal display device 10.
  • FIG. 2 shows the liquid crystal display device 10 from the direction along the horizontal direction
  • FIG. 3 shows the liquid crystal display device 10.
  • the liquid crystal display device 10 is shown from the direction along the vertical direction.
  • FIG. 4 shows an enlarged view of the optical sheet 30 shown in FIG.
  • FIG. 5 is a diagram corresponding to FIG. 4 with respect to the optical sheet according to another embodiment.
  • a liquid crystal display device 10 operates as a liquid crystal display device 10 in a housing (not shown), such as a power source for operating the liquid crystal display device 10 and an electronic circuit for controlling the liquid crystal display device 10. It is a liquid crystal display device that is housed together with the usual equipment required to do so. The liquid crystal display device 10 will be described below.
  • the liquid crystal display device 10 is housed in a housing (not shown) together with a power supply, an electronic circuit, and the like.
  • the liquid crystal display device 10 is provided in the passenger compartment of an automobile (not shown) and operates as a part of the navigation device.
  • the liquid crystal display device 10 includes a liquid crystal panel 15, a surface light source device 20, and a functional film 40.
  • the liquid crystal panel 15 has a liquid crystal layer 12, an upper polarizing plate 13, and a lower polarizing plate 14.
  • the upper polarizing plate 13 is arranged on the observer side, and the lower polarizing plate 14 is arranged on the surface light source device 20 side.
  • the liquid crystal layer 12 is arranged between the upper polarizing plate 13 and the lower polarizing plate 14.
  • the upper polarizing plate 13 and the lower polarizing plate 14 decompose the incident light into two orthogonal polarizing components (P wave and S wave), and the polarizing component in one direction (direction parallel to the transmission axis) (for example, P). It has a function of transmitting a (wave) and absorbing a polarizing component (for example, an S wave) in the other direction (direction parallel to the absorption axis) orthogonal to the one direction.
  • the lower polarizing plate 14 is an example of a polarizing film.
  • a plurality of pixels are arranged vertically and horizontally along the layer surface.
  • the orientation of the pixels in the region changes.
  • the polarized light component for example, P wave
  • the polarization direction is rotated by 90 °, while maintaining the polarization direction as it passes through the pixels to which no electric field is applied.
  • the polarizing component for example, P wave
  • the polarizing component transmitted through the lower polarizing plate 14 further transmits through the upper polarizing plate 13 arranged on the light emitting side, or the upper polarizing plate 13 is further transmitted. It is possible to control whether it is absorbed and blocked by.
  • the liquid crystal panel 15 is configured to control the transmission or blocking of light from the surface light source device 20 for each pixel and provide an image to the observer. Therefore, when irradiating light from the back surface side of the liquid crystal panel 15, a large amount of light having a polarization component parallel to the transmission axis of the lower polarizing plate 14 is allowed to reach, so that the lower polarizing plate 14 is transmitted and the light is used. Efficiency can be increased.
  • the contrast and efficiency (transmittance) of the emitted light are excellent with respect to the incident light from the normal direction of the liquid crystal panel 15.
  • the incident light is oblique to the normal direction of the liquid crystal panel 15 and the observer observes the light from an oblique direction
  • there are problems such as a decrease in contrast and low efficiency (transmittance). That is, in order to improve the light utilization efficiency, it is also effective to increase the incident light from the normal direction of the liquid crystal panel 15.
  • the type of the liquid crystal panel 15 is not particularly limited, and a known type of liquid crystal panel can be used.
  • a known type of liquid crystal panel can be used.
  • TN, STN, VA, MVA, IPS, OCB and the like can be used as the liquid crystal panel 15.
  • the surface light source device 20 is an illumination device that emits planar light to the liquid crystal panel 15.
  • the surface light source device 20 is arranged on the side opposite to the observer side with respect to the liquid crystal panel 15.
  • the surface light source device 20 is configured as an edge light type surface light source device, and includes a light guide plate 21, a light source 25, a light diffusion plate 26, a prism layer 27, a reflective polarizing plate 28, an optical sheet 30, and a reflective sheet 39. are doing.
  • the light guide plate 21 has a base 22 and an optical element 23.
  • the base 22 has a plate shape having a predetermined thickness.
  • the base portion 22 guides light and is a base portion of the optical element 23.
  • polymer resins having an alicyclic structure methacrylic resins, polycarbonate resins, polystyrene resins, acrylonitrile-styrene copolymers, methyl methacrylate-styrene copolymers, ABS resins, polyether sulfone and other thermoplastic resins.
  • Epoxy acrylate, styrene acrylate-based reactive resin (ionized radiation curable resin, etc.) and the like can be mentioned.
  • the optical element 23 is formed on the back surface side of the base portion 22 (the side opposite to the side on which the reflective polarizing plate 28 is arranged).
  • the optical element 23 protrudes from the base 22 and has a triangular prism shape.
  • the optical element 23 is formed so that the ridgeline of the protruding top extends in the horizontal direction.
  • the optical element 23 has a triangular cross section, but is not limited to this, and may have any shape such as a polygon, a hemisphere, a part of a sphere, and a lens shape.
  • the arrangement direction of the plurality of optical elements 23 is preferably the light guide direction. That is, they are arranged in a direction away from the light source 25, and the ridgeline of each optical element 23 extends in the direction in which the light source 25 is arranged, or in the direction in which the light source extends
  • triangular shape in the present specification includes not only a triangular shape in a strict sense but also a substantially triangular shape including limits in manufacturing technology and errors during molding.
  • other terms that specify shape and geometric conditions used herein, such as “parallel,” “orthogonal,” “ellipse,” and “circle,” are also bound in a strict sense. It shall be interpreted including an error to the extent that the same optical function can be expected.
  • the light guide plate 21 having such a configuration can be manufactured by extrusion molding or by molding the optical element 23 on the base 22.
  • the base portion 22 and the optical element 23 can be integrally formed.
  • the optical element 23 may be the same resin material as the base 22 or a different material.
  • the light source 25 is arranged on one side of the side surface of the base 22 of the light guide plate 21 in the direction in which the plurality of optical elements 23 are arranged.
  • the light source 25 is composed of a plurality of LEDs (light emitting diodes).
  • the light source 25 is configured so that the lighting and extinguishing of each LED and / or the brightness at the time of lighting of each LED can be individually and independently adjusted by a control device (not shown).
  • the type of the light source is not particularly limited, and in addition to the LED, it can be configured in various modes such as a fluorescent lamp such as a linear cold cathode tube and an incandescent lamp.
  • the light source 25 is arranged on one side surface as described above, but the light source may be arranged on the side surface opposite to this side surface.
  • the shape of the optical element is also formed according to a known example.
  • the light diffusing plate 26 has a function of diffusing and emitting incident light.
  • the light diffusing plate 26 is provided on the light emitting side of the light guide plate 21.
  • the uniformity of the light emitted from the light guide plate 21 can be further enhanced, and the scratches existing on the light guide plate 21 can be made inconspicuous.
  • the light diffusing plate 26 functions as a support for the prism layer 27.
  • a known light diffusing plate can be used, and examples thereof include a form in which a light diffusing agent is dispersed in a base material.
  • the prism layer 27 is provided on the liquid crystal panel 15 side of the light diffusing plate 26, and has a plurality of unit prisms 27a.
  • the unit prism 27a projects toward the liquid crystal panel 15 side, has a predetermined cross section, and has a direction different from the light guide direction of the light guide plate 21 (in this embodiment, a direction orthogonal to the light guide direction in a plan view). It has an extending form.
  • a plurality of unit prisms 27a are arranged in the light guide direction.
  • As the cross-sectional shape of the unit prism of such a prism layer a known shape can be applied according to a required function. Depending on the shape, light can be further diffused or condensed. As a result, the light can be collected in the direction in which the light is controlled by the optical function layer 32 (vertical direction in the present embodiment), and the light can be efficiently totally reflected by the optical function layer 32, and the light utilization efficiency can be improved. ..
  • the reflective polarizing plate (film) 28 decomposes the incident light into two orthogonal polarizing components (P wave and S wave), and the polarizing component in one direction (direction parallel to the transmission axis) (for example, P wave). ), And has a function of reflecting a polarizing component (for example, an S wave) in the other direction (direction parallel to the reflection axis) orthogonal to the one direction.
  • a polarizing component for example, an S wave
  • the optical sheet 30 includes a base material layer 31a formed in a sheet shape and an optical functional layer 32 laminated on one surface of the base material layer 31a (the surface on the light guide plate 21 side in this embodiment). There is.
  • the optical sheet 30 is basically formed by the combination of the base material layer 31a and the optical functional layer 32, but in addition to this, a second group is formed so as to face the base material layer 31a with the optical functional layer 32 interposed therebetween.
  • the material layer 31b may be arranged.
  • the embodiments shown in FIGS. 1 to 4 include both a base material layer 31a and a second base material layer 31b (hereinafter, referred to as “the present embodiment”).
  • the rigidity of the optical sheet 30 is increased as compared with the case where the base material layer 31a is used alone, the occurrence of bending at the time of mounting on the liquid crystal display device 10 is suppressed, and unevenness of light is suppressed.
  • the embodiment shown in FIG. 5 shows an optical sheet 30'composed of a combination of a base material layer 31a and an optical functional layer 32, and the optical sheet 30' includes a second base material layer 31b. Not. It is also possible to use such an optical sheet 30'if it has sufficient rigidity.
  • a protective layer (not shown) that protects the optical functional layer 32 may be further laminated on the second base material layer 31b.
  • the protective layer By laminating the protective layer, it is possible to impart an effect of protecting the optical functional layer 32 from external damage and the like, and an effect of suppressing warpage when the optical sheet 30 is produced.
  • the material used for the protective layer a known material such as an ultraviolet curable urethane acrylate can be used.
  • the protective layer may be subjected to antireflection treatment, antiglare treatment, antistatic treatment, hard coat treatment and the like.
  • the thickness of the protective layer is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the haze of the protective layer is preferably 5% or more and 50% or less. If the haze of the protective layer is less than 5%, it may adhere to the film arranged on the surface of the protective layer (for example, the reflective polarizing plate 28 in FIGS. 1 to 3). On the other hand, when the haze of the protective layer exceeds 50%, the light transmitted through the protective layer is diffused too much, so that the front luminance tends to decrease.
  • the optical sheet 30 and the optical sheet 30' change the traveling direction of the light incident from the incoming light side and emit the light from the outgoing light side in the front direction. It has a function (condensing function) to intensively improve the brightness (in the normal direction). In that case, changes in the polarizing component are suppressed, and these functions can improve the efficiency of light utilization. Further, it has a function of absorbing light traveling at a large angle with respect to the front direction (light absorption function).
  • the base material layer 31a and the second base material layer 31b are flat plate-shaped members that support the optical functional layer 32.
  • Various materials can be used as the material forming the base material layer 31a and the second base material layer 31b, but in the present embodiment, the base material layer 31a and the second base material layer 31b are both polyesters. Although it is said to be a film, for example, a polycarbonate resin can also be used.
  • the thickness of the base material layer is not particularly limited as long as the value of the water absorption rate of the optical sheet is 0.00% or more and 1.33% or less as described later, but it is preferable depending on the material. Is 60 ⁇ m or more and 250 ⁇ m or less.
  • the optical sheet 30 is prevented from bending by having a predetermined base material layer, in this embodiment, at least a part of the optical sheet 30 and the liquid crystal panel 15 are not adhered to each other. It may have a portion, and the entire surface may not be adhered. Further, since the intensity of the light transmitted through the optical sheet 30 is greatly affected by the incident angle and the exit angle with respect to the optical sheet 30, the bending of the optical sheet 30 is suppressed, so that the light transmitted through the optical sheet 30 is uneven. In particular, uneven brightness can be suppressed.
  • various materials can be used as the material forming the base material layer 31a and the second base material layer 31b.
  • a material that is widely used as a material for an optical sheet incorporated in a display device has excellent mechanical properties, optical properties, stability, workability, and the like, and can be obtained at low cost.
  • Examples thereof include polyethylene terephthalate resin (PET), methacrylic resin, polycarbonate resin and the like.
  • PET polyethylene terephthalate resin
  • methacrylic resin polycarbonate resin
  • a polycarbonate resin having a high glass transition point is desirable.
  • the glass transition point of the polycarbonate resin is 143 ° C, and it is suitable for in-vehicle applications where durability at 105 ° C is generally required.
  • the optical functional layer 32 has a light transmitting portion 33 and a louver portion 34.
  • the light transmitting portion 33 is a portion whose main function is to transmit light, and has a substantially trapezoidal cross-sectional shape in the cross sections shown in FIGS. 1, 2 and 4. As shown enlarged in FIG. 4, the light transmitting portion 33 extends in the horizontal direction while maintaining the cross section along the layer surfaces of the base material layer 31a and the second base material layer 31b, and is predetermined in the vertical direction. Are arranged at intervals of.
  • a groove 33a (see FIG. 7) having a substantially trapezoidal cross section is initially formed between the adjacent light transmitting portions 33, and the groove 33a is filled with a material described later to form the louver portion 34. Will be done.
  • the structure shown in FIG. 4 is a schematic structure and does not necessarily match the dimensions of the actual product. In various embodiments, as described below, the thickness of each layer may differ from the dimensional relationships shown. The method of forming the louver portion 34 will be described later with reference to
  • the light transmitting portion 33 maintains the cross section along the layer surface of the base material layer 31 and extends in the front-back direction of the paper surface of FIG. 4, and at a predetermined interval in a direction perpendicular to the front-back direction (horizontal direction of FIG. 4). Arranged at (pitch: Pk).
  • a groove having a substantially trapezoidal cross section is initially formed between the adjacent light transmitting portions 33, and the groove has a long lower bottom on the upper bottom side (light guide plate 21 side) of the light transmitting portion 33 and emits light.
  • the transmission portion 33 has a trapezoidal cross section having a short upper bottom on the lower bottom side (liquid crystal panel side), and the louver portion 34 is formed by filling the transmission portion 33 with a necessary material described later.
  • the adjacent light transmitting portions 33 are connected by a long lower bottom side.
  • the following parameters are mainly used for the louver portion 34.
  • the width of the short upper base is We
  • the width of the long lower base is Wb.
  • Dk be the thickness of the louver portion 34 (corresponding to the height of a substantially trapezoid).
  • the pitch of the light transmitting portion 33 described above (that is, the pitch of the louver portion 34) Pk is preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the angle formed by the interface between the louver portion 34 and the light transmitting portion 33 shown by ⁇ k in FIG. 4 and the normal of the layer surface of the optical functional layer 32 is preferably 1 ° or more and 10 ° or less. .. However, the angle may be outside this range, and may be, for example, 0 ° (that is, the hypotenuse coincides with the normal of the layer surface of the optical functional layer 32).
  • the louver portion 34 shown in FIG. 4 has a substantially isosceles trapezoidal shape, but the length of one leg and the length of the other leg may be different.
  • the thickness Dk of the louver portion 34 is preferably 50 ⁇ m or more and 150 ⁇ m or less, and more preferably 60 ⁇ m or more and 150 ⁇ m or less.
  • the width We of the upper base and the width Wb of the lower base of the substantially trapezoidal portion of the louver portion 34 are appropriately selected so as to satisfy the relationship between the thickness Dk, the pitch Pk, and the angle ⁇ k of the louver portion 34 described above. By setting these parameters within a preferable range, the balance between light transmission and light absorption is often appropriate.
  • the interface between the light transmitting portion 33 and the louver portion 34 is a straight line in the cross section, but the present invention is not limited to this, and the interface may be a polygonal line, a convex curved surface, a concave curved surface, or the like. Good. Further, the plurality of light transmitting portions 33 and the louver portion 34 may have the same cross-sectional shape, or may have different cross-sectional shapes with predetermined regularity.
  • the light transmitting portion 33 has a refractive index of Nt.
  • a light transmitting portion 33 can be formed by curing a predetermined composition, as will be described later.
  • the value of the refractive index Nt is not particularly limited, but a material having an excessively high refractive index is often fragile, and light is appropriately reflected at the interface with the louver portion 34 on the slope of the trapezoidal cross section (total reflection). From the viewpoint of including), the refractive index is preferably 1.47 to 1.65, more preferably 1.49 to 1.57.
  • the louver portion 34 is formed by filling a groove 33a initially provided between adjacent light transmitting portions 33 with a material described later, and finally has a cross-sectional shape similar to the cross-sectional shape of the groove 33a before filling. It becomes.
  • the louver portion 34 has a refractive index of Nr and is configured to be able to absorb light. Specifically, the light absorbing particles are dispersed in a transparent resin having a refractive index of Nr.
  • the refractive index Nr is lower than the refractive index Nt of the light transmitting portion 33.
  • the refractive index of the louver portion 34 is not particularly limited, but a material having an excessively high refractive index is often fragile, and 1.47 to 1.65 is preferable and more preferable from the viewpoint of appropriately performing the total reflection. Is 1.49 to 1.57.
  • the difference between the refractive index Nt of the light transmitting portion 33 and the refractive index Nr of the louver portion 34 is not particularly limited, but is preferably greater than 0 and 0.14 or less, and 0.05 or more and 0.14 or less. Is even more preferable. By increasing the difference in refractive index, more light can be totally reflected.
  • the reflective sheet 39 is a member for reflecting the light emitted from the back surface of the light guide plate 21 and causing the light to enter the light guide plate 21 again.
  • the reflective sheet 39 is a sheet that enables so-called specular reflection, such as a sheet made of a material having a high reflectance such as metal and a sheet containing a thin film (for example, a metal thin film) made of a material having a high reflectance as a surface layer. It can be preferably applied.
  • the functional film 40 is provided on the light emitting side of the liquid crystal panel 15 and has a function of improving the quality of image light and protecting the liquid crystal display device 10.
  • the functional film 40 an antireflection film, an antiglare film, a hard coat film, a color tone correction film, a light diffusion film and the like can be used. Further, the functional film 40 may be formed by using a plurality of these films in combination.
  • the operation of the liquid crystal display device 10 having the above configuration will be described with an example of an optical path.
  • the optical path example is conceptual for explanation, and does not strictly represent the degree of reflection or refraction.
  • FIG. 2 shows, as an example, an optical path example of the light L21 and L22 incident on the light guide plate 21 from the light source 25.
  • the lights L21 and L22 incident on the light guide plate 21 are repeatedly totally reflected by the difference in refractive index with air on the light emitting side surface of the light guide plate 21 and the back surface on the opposite side thereof, and are in the light guide direction (FIG. Proceed to (2) downward on the page).
  • the optical element 23 is arranged on the back surface of the light guide plate 21. Therefore, as shown in FIG. 2, the light L21 and L22 traveling in the light guide plate 21 change their traveling directions depending on the optical element 23, and may be incident on the light emitting surface and the back surface at an incident angle less than the total reflection critical angle. is there. In this case, the light can be emitted from the light emitting surface of the light guide plate 21 and the back surface on the opposite side thereof.
  • the light emitted from the back surface is reflected by the reflective sheet 39 arranged on the back surface of the light guide plate 21, enters the light guide plate 21 again, and travels in the light guide plate 21.
  • the light traveling in the light guide plate 21 and the light that is turned by the optical element 23 and reaches the light emitting surface at an incident angle less than the total reflection critical angle are generated in each area in the light guide plate 21 along the light guide direction. .. Therefore, the light traveling in the light guide plate 21 is gradually emitted from the light emitting surface. As a result, the light amount distribution of the light emitted from the light emitting surface of the light guide plate 21 along the light guide direction can be made uniform.
  • the light emitted from the light guide plate 21 then reaches the light diffusing plate 26 to improve the uniformity. Then, the light diffused or condensed by the prism layer 27 as needed and emitted from the prism layer 27 reaches the reflective polarizing plate 28.
  • the light in the polarization direction along the transmission axis of the reflective polarizing plate 28 passes through the reflective polarizing plate 28 and heads toward the optical sheet 30.
  • the light in the polarization direction along the reflection axis of the reflective polarizing plate 28 is reflected as shown by the dotted arrows L21'and L22' in FIG. 2 and returned to the light guide plate 21 side.
  • the returned light is reflected by the light guide plate 21, the optical element 23, or the reflective sheet 39, and travels to the side of the reflective polarizing plate 28 again.
  • the polarization direction of a part of the light is changed, and a part of the light is transmitted through the reflective polarizing plate 28.
  • the other light is returned to the light guide plate side again.
  • the light reflected by the reflective polarizing plate 28 can be transmitted through the reflective polarizing plate 28 by repeating the reflection. As a result, the utilization rate of the light from the light source 25 is increased.
  • the light emitted from the reflective polarizing plate 28 has its polarization direction along the transmission axis of the lower polarizing plate 14, and is polarized light transmitted through the lower polarizing plate 14.
  • the light emitted from the reflective polarizing plate 28 is incident on the optical functional layer 32.
  • the light incident on the optical functional layer 32 is polarized light that passes through the lower polarizing plate 14, and travels with the following optical paths. That is, for example, as shown by L41 in FIG. 5, the light transmitting portion 33 is transmitted without reaching the interface with the louver portion 34. Alternatively, as shown by L42 in FIG. 5, it reaches the interface with the louver portion 34 and is totally reflected to pass through the light transmitting portion 33.
  • the reflected at the interface is brought closer to the direction parallel to the normal line of the liquid crystal panel 15.
  • the light incident on the optical functional layer 32 at a large angle with respect to the sheet surface normal is absorbed by the louver portion 34 and is not provided to the liquid crystal panel 15. Therefore, it is possible to absorb light that causes problems such as a decrease in contrast and color inversion.
  • the light from the light guide plate 21 is efficiently collected, and the light that is not collected is absorbed by the louver portion, so that appropriate light can be efficiently provided to the liquid crystal panel. It is possible to greatly improve the efficiency of light utilization.
  • the light emitted from the surface light source device 20 as described above is incident on the lower polarizing plate 14 of the liquid crystal panel 15.
  • the lower polarizing plate 14 transmits one of the polarized light components of the incident light and absorbs the other polarized light component.
  • the light transmitted through the lower polarizing plate 14 selectively transmits through the upper polarizing plate 13 according to the state in which the electric field is applied to each pixel.
  • the liquid crystal panel 15 selectively transmits the light from the surface light source device 20 for each pixel, so that the observer of the liquid crystal display device can observe the image. At that time, the image light is provided to the observer via the functional film 40, and the quality of the image is improved.
  • the optical functional layer 32 has the short upper bottom of the light transmitting portion 33 facing the light guide plate 21 side and the long lower bottom facing the liquid crystal panel 15 side, but this may be inverted. That is, the short upper bottom of the light transmitting portion may be oriented toward the liquid crystal panel side, and the long lower bottom may be oriented toward the light guide plate side. In this case, it does not have a light condensing action, but it can maintain the polarization direction transmitted through the lower polarizing plate and provide light to the lower polarizing plate, so that the light absorbed by the lower polarizing plate can be suppressed to a small extent. It is possible to improve the light utilization efficiency (transmittance).
  • the deflection in the direction perpendicular to the surface of the optical sheet 30, that is, the direction shown as the thickness direction in FIGS. 2 and 3 is , Affects the occurrence of light unevenness when viewed from the user (observer).
  • bending directions of the optical sheet 30 in particular, bending in the thickness direction of the optical sheet 30 shown in FIG. 2, that is, a plurality of light transmitting portions 33 and louver portions 34 of the optical functional layer 32 are alternately arranged.
  • the deflection in the direction orthogonal to the direction (the direction designated as the "vertical direction" in FIG. 2) in the paper surface of FIG. 2 causes unevenness of light when viewed from the user (observer). It has a big influence.
  • FIGS. 6 to 8. 6 to 8 are explanatory views of a manufacturing process of the optical sheet 30.
  • the base material layer 31a of the optical sheet 30 and the optional second base material layer 31b are both made of polyester film.
  • the polyester film can be obtained by condensing an arbitrary dicarboxylic acid with a diol.
  • the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid.
  • Acid diphenoxyetanedicarboxylic acid, diphenylsulfoncarboxylic acid, anthracendicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimeric acid, sebacic acid, suberic acid, dodecadicarboxylic acid and the like can be used.
  • diol examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, and 1,4.
  • -Butandiol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like can be used.
  • the dicarboxylic acid component and the diol component constituting the polyester film may be used alone or in combination of two or more.
  • the polyester resin constituting the polyester film for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like can be used, preferably polyethylene terephthalate and polyethylene naphthalate, and preferably polyethylene terephthalate. it can.
  • the polyester resin may contain other copolymerization components. From the viewpoint of mechanical strength, the proportion of the copolymerization component is preferably 3 mol% or less, preferably 2 mol% or less, and more preferably 1.5 mol% or less. These resins are excellent in transparency as well as thermal and mechanical properties. In addition, these resins can easily control the retardation Re by stretching.
  • the polyester film can be obtained according to a general manufacturing method. Specifically, a non-oriented polyester obtained by melting a polyester resin and extruding it into a sheet is stretched in the vertical direction at a temperature equal to or higher than the glass transition temperature by utilizing the speed difference of rolls, and then laterally stretched by a tenter.
  • a stretched polyester film can be obtained by stretching, heat-treating, and if necessary, relaxing treatment.
  • the stretched polyester film may be a uniaxially stretched film or a biaxially stretched film.
  • the polyester film used in Example 1 described later is stretched in the vertical direction and then in the horizontal direction at a temperature of 90 to 120 ° C., and the stretching ratio in the vertical direction is 2.0 times and the horizontal direction.
  • the draw ratio in the direction is 4.5 times. Further, it is known that as the draw ratio increases, the breaking strength in that direction increases.
  • the thickness of the polyester film is arbitrary, and can be appropriately set in the range of, for example, 15 to 300 ⁇ m, preferably 30 to 200 ⁇ m.
  • the light transmitting portion 33 is formed on one surface of the base material layer 31a which is the polyester film formed as described above.
  • a base material layer is formed between a mold roll R1 having a shape (groove) on which the shape of the light transmitting portion 33 can be transferred and a nip roll R2 arranged so as to face the mold roll R1.
  • the polyester film 310 to be 31a is inserted.
  • the mold roll R1 and the nip roll R2 are shown in FIG. Rotate in the direction indicated by the arrow in 6.
  • the groove formed on the surface of the mold roll R1 (the shape obtained by reversing the shape of the light transmitting portion 33) is filled with the composition 330, and the composition 330 conforms to the surface shape of the mold roll R1. Become.
  • composition 330 constituting the light transmitting portion 33 for example, an ionizing radiation curable resin such as an epoxy acrylate type, a urethane acrylate type, a polyether acrylate type, a polyester acrylate type, or a polythiol type can be used.
  • an ionizing radiation curable resin such as an epoxy acrylate type, a urethane acrylate type, a polyether acrylate type, a polyester acrylate type, or a polythiol type can be used.
  • the composition 330 sandwiched between the mold roll R1 and the polyester film 310 and filled therein is irradiated with light rays (ultraviolet rays, etc.) from the polyester film 310 side by the light irradiating device 61. As a result, the composition 330 is cured. Then, the mold roll R3 is used to release the pre-filling sheet 36a composed of the polyester film 310 and the molded light transmitting portion 33 from the mold roll R1.
  • the louver portion 34 is formed.
  • the composition 340 constituting the louver portion 34 is excessively supplied to the groove 33a between the adjacent light transmitting portions 33 of the pre-filling sheet 36a. Then, the excess composition 340 is scraped off by a blade 62 or the like. Then, the composition 340 remaining so as to fill the groove 33a is irradiated with light rays (ultraviolet rays or the like) from a light source (not shown). As a result, the composition 340 is cured, the louver portion 34 is formed, and the intermediate sheet 36b is obtained.
  • the intermediate sheet 36b becomes the optical sheet 30 as it is.
  • the optical sheet 30 is wound on a roll (not shown). When the optical sheet 30 is wound by a predetermined length, the optical sheet 30 is cut, and the wound roll is replaced with a new roll to start the next winding.
  • composition 340 constituting the louver portion 34 for example, a photocurable resin such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and butadiene (meth) acrylate can be used. Further, those resins in which colored light absorbing particles are dispersed can also be used.
  • the entire louver part can be colored with a pigment or dye.
  • light absorbing particles when light absorbing particles are used, light absorbing colored particles such as carbon black are preferably used, but the present invention is not limited to these, and specific wavelengths are selectively absorbed according to the characteristics of image light.
  • Colored particles may be used. Specific examples thereof include organic fine particles colored with metal salts such as carbon black, graphite and black iron oxide, dyes and pigments, and colored glass beads. In particular, colored organic fine particles are preferably used from the viewpoints of cost, quality, availability, and the like.
  • the average particle size of the colored particles is preferably 1.0 ⁇ m or more and 20 ⁇ m or less.
  • the "average particle size" means an arithmetically averaged diameter obtained by observing 100 light absorbing particles with an electron microscope and measuring their diameters.
  • the second base material layer 31b is further attached to the intermediate sheet 36b.
  • the intermediate sheet 36b is sent out from the roll R4, and the polyester film 310 serving as the second base material layer 31b is sent out from the roll R5 in the same direction.
  • the disturbance of polarization based on the phase difference and the accompanying color unevenness are caused. It is possible to prevent the occurrence and decrease in transmittance.
  • the intermediate sheet 36b and the polyester film 310 are guided by rollers 380 so as to approach each other and are integrated.
  • the polyester film 310 is arranged so as to face the base material layer 31a with the light transmitting portion 33 and the louver portion 34 interposed therebetween.
  • an adhesive layer (not shown) made of an adhesive such as an acrylic adhesive between the intermediate sheet 36b and the polyester film 310, both can be bonded together.
  • the optical sheet 30 completed by bonding is wound around the roll R6.
  • the optical sheet 30 is wound by a predetermined length, the optical sheet 30 is cut, and the wound roll R6 is replaced with a new roll R6 to start the next winding.
  • a protective layer (not shown) is provided in place of the second base material layer 31b in the optical functional layer 32, a sheet serving as a protective layer instead of the polyester film 310 described above is bonded to each other using a roll, a UV adhesive, or the like. It is possible. Further, when an additional protective layer is provided, it is possible to bond them together using a roll, a UV adhesive, or the like to further laminate them.
  • the first test method is a test by a combination of a sagging amount test and a flexibility test.
  • the second test method is a water absorption test. Each will be described as follows.
  • Example 1 The specific shape of the optical sheet according to the first embodiment is as follows.
  • ⁇ Base layer> -Material: Polyester film-Thickness: 80 ⁇ m ⁇ Optical functional layer> -Pitch (see FIG. 4): Pk 39 ⁇ m ⁇ Louver upper bottom width: 4 ⁇ m (Wa in Fig. 4) ⁇ Lower bottom width of louver: 10 ⁇ m (Wb in FIG. 4) -Slope angle: 0 ° on one side and 3 ° on the other ( ⁇ k in Fig. 4) -Thickness of the louver (see FIG. 4)
  • Example 2 In the optical sheet according to Example 1, the materials of the base material layer and the second base material layer are changed to cellulose triacetate (TAC) resin, respectively, and the thickness of the base material layer and the second base material layer is 60 ⁇ m, respectively.
  • TAC cellulose triacetate
  • Example 3 In the optical sheet according to Example 1, the materials of the base material layer and the second base material layer are changed to polycarbonate (PC) resin, respectively, and the thicknesses of the base material layer and the second base material layer are changed to 130 ⁇ m, respectively. And bonded together to prepare an optical sheet according to Example 3.
  • PC polycarbonate
  • Comparative Example 2 In the optical sheet according to Example 1, the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 250 ⁇ m, and the second base material layer was not bonded to Comparative Example 2. Such an optical sheet was produced.
  • Comparative Example 3 In the optical sheet according to Example 1, the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 500 ⁇ m, and the second base material layer was not bonded to the optical sheet in Comparative Example 3. Such an optical sheet was produced.
  • the configuration of the optical functional layer 32, and the adhesive, and the completed optical sheet 30 varies.
  • those that are suitable for use in liquid crystal display devices and in-vehicle liquid crystal display devices and that do not reduce the manufacturing efficiency are determined by the tests described below.
  • FIG. 9 shows an outline of the sagging amount test of the optical sheet 30.
  • FIG. 9 is a side view of the state of performing this sagging amount test.
  • a support base 50 having a flat upper surface is prepared, and an optical sheet 30 to be tested is placed flat on the upper surface of the support base 50.
  • an optical sheet 30 to be tested is placed flat on the upper surface of the support base 50.
  • One end of the optical sheet 30 is projected by 100 mm.
  • a temporary support portion (not shown) may be used to place one end of the optical sheet 30 on the temporary support portion and project it by 100 mm, and then remove the temporary support portion.) In the projected state, before hanging down.
  • the optical sheet 30 of the above is shown by a broken line.
  • bending in a direction that has a large effect on the occurrence of light unevenness that is, a direction in which a plurality of light transmitting portions 33 and louver portions 34 of the optical functional layer 32 are alternately arranged (in FIG. 2).
  • the easiness of bending can be measured by the sagging amount test.
  • the direction in which the plurality of light transmitting portions 33 and the louver portions 34 of the optical functional layer 32 of the optical sheet 30 are alternately arranged is the width direction orthogonal to the flow direction of the optical sheet 30 in the manufacturing process shown in FIG. Correspond.
  • the length of the protruding portion of the optical sheet 30 is 100 mm, whereas the length of the portion of the optical sheet 30 arranged on the upper surface of the support base 50 (that is, the portion not protruding from the support base 50) is , 100 mm or more is preferable.
  • the plate-shaped sheet retainer 51 is placed on the optical sheet 30 so as to press the portion of the optical sheet 30 arranged on the upper surface of the support base 50 from above, and the optical sheet 30 is placed on the support base 50. Hold on.
  • the weight of the sheet retainer 51 is appropriately selected so that the optical sheet 30 does not rise from the upper surface of the support base 50 during the test, as will be described later.
  • This weight depends on the size of the optical sheet 30, but can be selected from the range of several hundred grams to several kilograms.
  • the optical sheet 30 projecting 100 mm from the end of the support base 50 hangs downward due to its own weight.
  • the hanging optical sheet 30 is shown by a solid line.
  • the difference between the height of the optical sheet 30 arranged on the upper surface of the support base 50 and the height of the end portion of the hanging optical sheet 30 is taken, and this value is defined as the hanging amount F. If the rigidity of the optical sheet 30 is high, the amount of sagging F is small, and if the rigidity is low, the amount of sagging F is large.
  • a flexibility test is performed to determine whether or not the target optical sheet 30 can be manufactured by a manufacturing method involving a roll-to-roll step.
  • the flexibility test is a test for confirming the flexibility of the optical sheet 30, and is performed based on JIS K 5600-5-1.
  • JIS K 5600-5 is a standard relating to a general coating test method, and in particular, a standard relating to a test method relating to the mechanical properties of a coating film.
  • JIS K 5600-5-1 relates to bending resistance (cylindrical mandrel method) among the mechanical properties of the coating film, but in the present invention, this is used for the bending test of the optical sheet. It is an application.
  • the flexibility test in the present invention uses a type 2 test device out of the two types of test devices specified in JIS K 5600-5-1.
  • the standard stipulates that the type 2 test equipment is used in combination with one of the mandrel diameters of 6, 10, and 13 mm, but the type 2 test equipment uses a mandrel of another diameter. It is noted in the standard that it is also good.
  • the flexibility of the optical sheet was tested using a cylindrical mandrel having a diameter of 150 mm with a type 2 test apparatus.
  • the flexibility test was performed by bending the optical sheet 30 so as to be wound around the mandrel of the test device and visually confirming whether or not the optical sheet 30 was cracked.
  • the plurality of light transmitting portions 33 and louver portions 34 of the optical functional layer 32 of the optical sheet 30 are alternately arranged along the flow direction at the time of manufacturing the optical sheet 30 shown in FIG. 8 (shown in FIG. 8).
  • the optical sheet 30 was bent so as to be wound around the mandrel along a direction orthogonal to the direction (not shown) in the plane of the optical sheet 30. This is for making the state of the optical sheet 30 at the time of the flexibility test correspond to the roll-to-roll process at the time of manufacturing the optical sheet 30. If there was no crack, it was judged as "pass”, and if it was cracked, it was judged as "cracked”.
  • Table 1 shows the measurement results of the sagging amount test, the judgment result of the flexibility test, and the confirmation result of light unevenness for each Example and Comparative Example.
  • the optical sheet having a predetermined configuration is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device, and can secure a predetermined manufacturing efficiency. It can be determined. That is, first, an optical sheet as a candidate for use is prepared, and the amount of sagging of this optical sheet is measured by the above-mentioned method to determine whether or not the amount of sagging is 10 mm or less. Further, as described above, the optical sheet is bent so as to be wound around a mandrel having a diameter of 150 mm, and it is determined whether or not cracks occur.
  • Example 1' The same optical sheet as in Example 1 in the first test method described above was used as the optical sheet according to Example 1'.
  • Example 2' In the optical sheet according to Example 1', the material of the base material layer is changed to polycarbonate (PC) resin, the thickness of the base material layer is changed to 130 ⁇ m, and the second base material layer is not bonded. An optical sheet according to Example 2'was produced.
  • PC polycarbonate
  • Example 3' In the optical sheet according to Example 1', the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 130 ⁇ m, and the material of the second base material layer was changed to polycarbonate resin. The thickness of the second base material layer was changed to 100 ⁇ m and bonded to prepare an optical sheet according to Example 3'.
  • Example 4' In the optical sheet according to Example 1', the material of the base material layer is changed to polycarbonate resin, the thickness of the base material layer is changed to 250 ⁇ m, and the second base material layer is not bonded. An optical sheet according to ‘’ was produced.
  • the water absorption rate of the optical sheet having the above-described configuration and which can be used in the liquid crystal display device is measured as follows. This measurement is made based on JIS K 7209. The outline of the two measurements performed on the samples of each example and comparative example is shown below.
  • (1) Water absorption rate when submerged at 23 ° C for 24 hours After measuring the weight of a sufficiently dried sample as a reference value, completely immerse it in distilled water at 23.0 ° C and leave it for 24 hours. After that, the sample is taken out from water, the weight thereof is measured, and the water absorption rate is determined based on the weight difference between the sample before and after immersion in water and the reference value.
  • Table 2 shows the measurement results of the water absorption rate and the confirmation results of light unevenness for each Example and Comparative Example.
  • the linear expansion coefficients of polyethylene terephthalate resin, polycarbonate resin, and cellulose triacetate resin, which are the materials of the base material, are also shown for each of the Examples and Comparative Examples in Table 2.
  • the deformation of the optical sheet due to water absorption of the optical sheet contributes to the occurrence of light unevenness.
  • the thermal expansion of the optical sheet (the contribution of the base material layer is considered to be dominant) can also be taken into consideration, and the base material layer of the optical sheet can be considered. It was found that it is more preferable that the coefficient of linear thermal expansion of the above is in the range of 4.9 to 5.6 ( ⁇ 10 -5 / ° C.).
  • the optical sheet having a predetermined configuration is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device. That is, first, an optical sheet as a candidate for use is prepared, and the water absorption rate of this optical sheet is measured by a water absorption rate test based on JIS K7209. Next, it is compared whether or not the measured water absorption rate is 1.33% or less, which is the threshold value. As a result of this comparison, if the water absorption rate of the optical sheet is 1.33% or less, it is judged as acceptable, and if the water absorption rate of the optical sheet is larger than 1.33%, it is judged as rejected.
  • the structure (material, structure, etc.) of the optical sheet judged to be acceptable it is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device, according to the above-mentioned manufacturing method of the optical sheet.
  • Optical sheets can be manufactured.
  • the first test method (hanging amount test and flexibility test) or the second test method (water absorption rate test) described above, it is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device.
  • a liquid crystal display device particularly an in-vehicle liquid crystal display device.
  • each optical sheet can be easily discriminated, it is possible to further discriminate a more suitable optical sheet by combining these tests.
  • Example 1 of the above-mentioned first test method (hanging amount test and flexibility test) and Example 1'of the second test method (water absorption rate test) are optical sheets having the same configuration. When confirming the unevenness of light accompanying any of the tests, the unevenness does not occur, and it can be determined that the optical sheet is suitable. Further, Comparative Example 1'of Example 2 of the first test method (hanging amount test and flexibility test) and the second test method (water absorption rate test) are optical sheets having the same configuration, and the hanging amount test and the hanging amount test and No unevenness occurred when confirming the light unevenness accompanying the flexibility test, but unevenness occurred when confirming the light unevenness accompanying the water absorption test.
  • Comparative Example 1 of the first test method is an optical sheet corresponding to Example 2'of the second test method (water absorption rate test).
  • this optical sheet unevenness did not occur when confirming the unevenness of light accompanying the water absorption test, but unevenness occurred when confirming the unevenness of light accompanying the sagging amount test and the flexibility test. It is probable that these were caused by the difference between the environmental conditions for confirming the light unevenness associated with the sagging amount test and the flexibility test and the environmental conditions for confirming the light unevenness associated with the water absorption rate test. It is suggested that the suitability of adopting these optical sheets should be examined according to the humidity conditions of the environment.
  • the configuration of the optical sheet of Example 1 (Example 1') is configured.
  • the configuration is particularly suitable for use in an in-vehicle liquid crystal display device and does not reduce the manufacturing efficiency.
  • the optical sheet can be manufactured by the above-mentioned manufacturing method by adopting the structure of the optical sheet found by this test method.
  • Liquid crystal display device 14
  • Lower polarizing plate (polarizing film) 30
  • Optical sheet 31a
  • Base material layer 31b
  • Second base material layer 32
  • Optical functional layer 33
  • Light transmitting part 34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention provides an optical sheet with which light unevenness is suppressed, a liquid crystal display device, and an optical sheet testing method and manufacturing method. This optical sheet is provided with a base material layer, and an optical functional layer having a plurality of light transmitting parts arranged with a predetermined interval therebetween along the base material layer, and a louver part disposed between the light transmitting parts adjacent to each other. The optical sheet has a hanging amount of 10 mm or less when being disposed on a support base with one end thereof being protruded by 100 mm from an end part of the support base along a direction in which the plurality of light transmitting parts and the louver parts of the optical functional layer are alternately arranged, and the optical sheet is not cracked when being bent so as to be wound around a mandrel with a diameter of 150 mm along a direction orthogonal in the surface of the optical sheet to the direction in which the plurality of light transmitting parts and the louver parts of the optical functional layer are alternately arranged, and/or the optical sheet has a water absorption of 1.33% or less in a water absorption test based on JIS K 7209.

Description

光学シート、液晶表示装置、及び光学シートの試験方法と製造方法Optical sheet, liquid crystal display device, and test method and manufacturing method of optical sheet
 本発明は、光源の観察者側に配置される光学シート、光学シートを用いた液晶表示装置、及び光学シートの試験方法と製造方法に関する。 The present invention relates to an optical sheet arranged on the observer side of a light source, a liquid crystal display device using the optical sheet, and a test method and a manufacturing method of the optical sheet.
 車載ディスプレイや液晶テレビ等の液晶表示装置には、光源から出射される光を制御して、質の高い光を観察者に提供するために、各種機能を有する光学シートが備えられている。 Liquid crystal display devices such as in-vehicle displays and liquid crystal televisions are equipped with optical sheets having various functions in order to control the light emitted from the light source and provide high-quality light to the observer.
 特許文献1には、基材フィルム層の一方の面にプリズム部(本明細書では光透過部と称する)と光吸収部(本明細書ではルーバ部と称する)とが交互に配列された層を有し、薄くしても撓むことを抑制することができる光学シートが開示されている。 In Patent Document 1, a layer in which a prism portion (referred to as a light transmitting portion in the present specification) and a light absorbing portion (referred to as a louver portion in the present specification) are alternately arranged on one surface of a base film layer. There is disclosed an optical sheet which has the above and can suppress bending even if it is made thin.
特開2017-198735号公報Japanese Unexamined Patent Publication No. 2017-198735
 特許文献1に記載されたような光学シートを液晶表示装置に使用するとき、液晶表示装置の各モジュール及びこの光学シートを組み合わせて液晶表示装置の筐体に実装する。特許文献1に記載されたような光学シートを実装する際、接着や筐体の枠による締め付け等で固定を行うが、その固定方法によっては光学シートの自重等に由来して、撓みが生じ得るため、この撓みに由来して光学シートを透過する光のムラが生じてしまうといった課題があった。 When an optical sheet as described in Patent Document 1 is used for a liquid crystal display device, each module of the liquid crystal display device and this optical sheet are combined and mounted on a housing of the liquid crystal display device. When mounting an optical sheet as described in Patent Document 1, fixing is performed by adhesion or tightening with a frame of a housing, but depending on the fixing method, bending may occur due to the weight of the optical sheet or the like. Therefore, there is a problem that unevenness of light transmitted through the optical sheet occurs due to this bending.
 このような光のムラを抑制すべく、光学シートが撓みにくいように光学シートの剛性を高めることが考えられる。その一方で、このような光学シートを、複数のロールを使用することによって製造効率を高めた製造方法で製造することが知られている。このような複数のロールを使用した製造工程において、ロール間での光学シートの受け渡し、いわゆるロールトゥロール工程の際に、光学シートの剛性が高すぎると、光学シートがロールに追従できずに割れてしまうことがある。よって、光のムラの発生を抑制しながら、製造効率の低下を抑制することが可能な光学シートの開発が望まれている。 In order to suppress such unevenness of light, it is conceivable to increase the rigidity of the optical sheet so that the optical sheet does not easily bend. On the other hand, it is known that such an optical sheet is manufactured by a manufacturing method in which the manufacturing efficiency is improved by using a plurality of rolls. In the manufacturing process using a plurality of rolls, if the rigidity of the optical sheet is too high during the transfer of the optical sheet between the rolls, that is, the so-called roll-to-roll process, the optical sheet cannot follow the roll and cracks. It may end up. Therefore, it is desired to develop an optical sheet capable of suppressing a decrease in manufacturing efficiency while suppressing the occurrence of uneven light.
 また、特許文献1に記載された光学シートは、使用時に十分な剛性を備えることにより撓みを抑制しているが、光学シートの使用環境によっては、更なる配慮が必要となることがある。例えば、光学シートを有する液晶表示装置を含むカーナビゲーションシステムを自動車に搭載して使用する場合、車内環境の変化が光学シートに影響を及ぼすことがある。特に車内が高温多湿の環境となったとき、液晶表示装置の光学シートについて、温度・湿度の上昇に伴い(特に光学シートの吸湿により)、変形(撓み)が生じ得る。このような光学シートの変形(撓み)により、光学シートを透過する光のムラが生じてしまうといった課題があった。 Further, the optical sheet described in Patent Document 1 suppresses bending by providing sufficient rigidity at the time of use, but further consideration may be required depending on the usage environment of the optical sheet. For example, when a car navigation system including a liquid crystal display device having an optical sheet is mounted on an automobile and used, changes in the vehicle interior environment may affect the optical sheet. In particular, when the inside of the vehicle is in a hot and humid environment, the optical sheet of the liquid crystal display device may be deformed (bent) as the temperature and humidity rise (particularly due to moisture absorption of the optical sheet). Due to such deformation (deflection) of the optical sheet, there is a problem that unevenness of light transmitted through the optical sheet occurs.
 本発明は、上述した課題のいずれか又は全てを解決するためになされたものであり、液晶表示装置、特に車載型の液晶表示装置での使用に特に好適であるように選択された光学シートと、この光学シートを用いた液晶表示装置、そして、光学シートの試験方法と製造方法を提供することを目的とする。 The present invention has been made to solve any or all of the above-mentioned problems, and the optical sheet selected to be particularly suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device. , An object of the present invention is to provide a liquid crystal display device using this optical sheet, and a test method and a manufacturing method of the optical sheet.
 上述した目的を達成するために、本発明は、液晶表示装置の反射型偏光板と液晶パネルとの間に設けられる光学シートであって、基材層と、基材層上に積層される光学機能層であって、基材層に沿って互いに所定間隔を空けて配列され光を透過させる複数の光透過部と、隣り合う光透過部の間に配置され光を反射若しくは吸収するルーバ部と、を有する光学機能層と、を備え、光学シートは、光学シートを支持台上に配置して、光学機能層の複数の光透過部とルーバ部が交互に配列される方向に沿って、光学シートの一端を支持台の端部から100mm突出させたときの垂れ下がり量が10mm以下であり、かつ光学シートは、光学機能層の複数の光透過部とルーバ部が交互に配列される方向に対して光学シート面内で直交する方向に沿って、光学シートを直径150mmのマンドレルに巻き付けるように折り曲げたときに割れを生じない、及び/又は光学シートは、JIS K 7209に基づく吸水率試験による吸水率で、1.33%以下の吸水率を有する、光学シートという構成を備える。 In order to achieve the above-mentioned object, the present invention is an optical sheet provided between a reflective polarizing plate of a liquid crystal display device and a liquid crystal panel, and is an optical sheet laminated on a base material layer and the base material layer. A functional layer, a plurality of light transmitting portions arranged along the base material layer at predetermined intervals to transmit light, and a louver portion arranged between adjacent light transmitting portions to reflect or absorb light. The optical sheet comprises, and the optical sheet comprises, along the direction in which the plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged. The amount of sagging when one end of the sheet is projected 100 mm from the end of the support base is 10 mm or less, and the optical sheet has a direction in which a plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged. When the optical sheet is bent so as to be wound around a mandrel having a diameter of 150 mm along the direction orthogonal to the surface of the optical sheet, no cracks occur, and / or the optical sheet absorbs water according to a water absorption rate test based on JIS K 7209. It has a configuration of an optical sheet having a water absorption rate of 1.33% or less.
 また、光学シートは更に、光学機能層を挟んで基材層に対向するように配置された第2の基材層を有してもよい。 Further, the optical sheet may further have a second base material layer arranged so as to face the base material layer with the optical functional layer interposed therebetween.
 また、光学シートの基材層の材料の線熱膨張係数が4.9~5.6(×10-5/℃)であってもよい。 Further, the coefficient of linear thermal expansion of the material of the base material layer of the optical sheet may be 4.9 to 5.6 (× 10 -5 / ° C.).
 また、上述した目的を達成するための、本発明の他の態様は、上述した光学シートと、光学シートを挟んで対向するように配置される液晶表示装置及び反射型偏光板と、を備える液晶表示装置である。 In addition, another aspect of the present invention for achieving the above-mentioned object is a liquid crystal comprising the above-mentioned optical sheet, a liquid crystal display device arranged so as to face each other across the optical sheet, and a reflective polarizing plate. It is a display device.
 また、上述した目的を達成するための、本発明の他の態様は、基材層と、基材層上に積層される光学機能層であって、基材層に沿って互いに所定間隔を空けて配列され光を透過させる複数の光透過部と、隣り合う光透過部の間に配置され光を反射若しくは吸収するルーバ部と、を有する光学機能層と、を備える光学シートの試験方法であって、光学シートを支持台上に配置して、光学機能層の複数の光透過部とルーバ部が交互に配列される方向に沿って、光学シートの一端を支持台の端部から100mm突出させたときの垂れ下がり量が10mm以下であるか否かを判定する、垂れ下がり量判定ステップと、光学シートを、光学機能層の複数の光透過部とルーバ部が交互に配列される方向に対して光学シート面内で直交する方向に沿って、直径150mmのマンドレルに巻き付けるように折り曲げて、割れを生じるか否かを判定する割れ判定ステップと、及び/又は光学シートの吸水率をJIS K 7209に基づく吸水率試験により測定する吸水率測定ステップと、吸水率ステップにより測定された吸水率が1.33%以下であれば合格とし、光学シートの吸水率が1.33%よりも大きければ不合格とする、吸水率判定ステップと、を含み、垂れ下がり量判定ステップにおいて垂れ下がり量が10mm以下であると判定され、かつ割れ判定ステップにおいて割れを生じなかったと判定された光学シートの構成、及び/又は前記吸水率判定ステップにおいて合格と判定された光学シートの構成を適切な構成と判定する、光学シートの試験方法である。 In addition, another aspect of the present invention for achieving the above-mentioned object is a base material layer and an optical functional layer laminated on the base material layer, which are spaced apart from each other along the base material layer. It is a test method of an optical sheet including an optical functional layer having a plurality of light transmitting portions arranged in an array to transmit light and a louver portion arranged between adjacent light transmitting portions to reflect or absorb light. The optical sheet is arranged on the support base, and one end of the optical sheet is projected 100 mm from the end portion of the support base along the direction in which the plurality of light transmitting portions and the louver portions of the optical functional layer are alternately arranged. The sagging amount determination step for determining whether or not the sagging amount at the time is 10 mm or less, and the optical sheet are optical in the direction in which a plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged. The crack determination step of determining whether or not cracks occur by bending so as to wind around a mandrel having a diameter of 150 mm along the direction orthogonal to the sheet surface, and / or the water absorption rate of the optical sheet is based on JIS K 7209. If the water absorption rate measurement step measured by the water absorption rate test and the water absorption rate measured by the water absorption rate step are 1.33% or less, it is passed, and if the water absorption rate of the optical sheet is larger than 1.33%, it is rejected. The configuration of the optical sheet and / or the water absorption, which includes the water absorption rate determination step, and is determined in the sag amount determination step that the sag amount is 10 mm or less and that no crack is generated in the crack determination step. This is an optical sheet test method in which the configuration of an optical sheet determined to pass in the rate determination step is determined to be an appropriate configuration.
 また、上述した目的を達成するための、本発明の他の態様は、上述した光学シートの試験方法により、適切な構成と判定された前記光学シートの構成を採用して、光学シートを製造する、光学シートの製造方法である。 Further, in another aspect of the present invention for achieving the above-mentioned object, the optical sheet is manufactured by adopting the structure of the optical sheet determined to be an appropriate structure by the above-mentioned test method of the optical sheet. , A method for manufacturing an optical sheet.
 本発明によれば、製造効率を下げることなく、光のムラを抑制する光学シート及び液晶表示装置を提供することが可能となり、及び/又は高温多湿環境下でも光学シートの撓みが小さく、光学シートを透過する光のムラを抑制する光学シート及び液晶表示装置を提供することが可能となる。また、そのような光のムラを抑制する光学シートの構成を見出すための試験を行うことや、試験の結果に基づいて光のムラを抑制する光学シートを製造することが可能となる。 According to the present invention, it is possible to provide an optical sheet and a liquid crystal display device that suppress light unevenness without lowering the manufacturing efficiency, and / or the optical sheet is less bent even in a high temperature and high humidity environment, and the optical sheet. It is possible to provide an optical sheet and a liquid crystal display device that suppress unevenness of light transmitted through the light. Further, it is possible to carry out a test for finding a configuration of an optical sheet that suppresses such light unevenness, and to manufacture an optical sheet that suppresses light unevenness based on the result of the test.
実施形態に係る液晶表示装置の分解斜視図である。It is an exploded perspective view of the liquid crystal display device which concerns on embodiment. 図1の液晶表示装置の分解図である。It is an exploded view of the liquid crystal display device of FIG. 図1の液晶表示装置の分解図である。It is an exploded view of the liquid crystal display device of FIG. 図2の光学シートに注目して拡大した図である。It is an enlarged view paying attention to the optical sheet of FIG. 他の実施形態に係る光学シートを示した図である。It is a figure which showed the optical sheet which concerns on other embodiment. 図1の光学シートの作製工程の説明図である。It is explanatory drawing of the manufacturing process of the optical sheet of FIG. 図1の光学シートの作製工程の説明図である。It is explanatory drawing of the manufacturing process of the optical sheet of FIG. 図1の光学シートの作製工程の説明図である。It is explanatory drawing of the manufacturing process of the optical sheet of FIG. 垂れ下がり量試験の概要を示す図である。It is a figure which shows the outline of the sagging amount test.
 以下、添付図面を参照して、実施形態に係る光学シート及び液晶表示装置について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the optical sheet and the liquid crystal display device according to the embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
[構成]
 まず、図1から図4を参照しながら、実施形態に係る光学シート30及びそれを含む液晶表示装置10の構成について説明する。図1は、実施形態に係る液晶表示装置10の分解斜視図である。図2及び図3は、液晶表示装置10の分解図である。説明の簡便のため、図1に示されるように水平方向、厚さ方向、及び鉛直方向を定めた場合、図2は、水平方向に沿う方向から液晶表示装置10を示しており、図3は、鉛直方向に沿う方向から液晶表示装置10を示している。図4は、図2等に示した光学シート30の構成を示すため、図2に示した光学シート30を断面方向から見て反時計回りに90度回転させて拡大したものを示している。図5は他の実施形態に係る光学シートに関し、図4に対応する図である。このような液晶表示装置10は、説明は省略するが、不図示の筐体に、該液晶表示装置10を作動させる電源、及び液晶表示装置10を制御する電子回路等、液晶表示装置10として動作するために必要とされる通常の機器とともに納められて液晶表示装置とされている。以下液晶表示装置10について説明する。
[Constitution]
First, the configuration of the optical sheet 30 and the liquid crystal display device 10 including the optical sheet 30 according to the embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 is an exploded perspective view of the liquid crystal display device 10 according to the embodiment. 2 and 3 are exploded views of the liquid crystal display device 10. For the sake of simplicity, when the horizontal direction, the thickness direction, and the vertical direction are defined as shown in FIG. 1, FIG. 2 shows the liquid crystal display device 10 from the direction along the horizontal direction, and FIG. 3 shows the liquid crystal display device 10. , The liquid crystal display device 10 is shown from the direction along the vertical direction. FIG. 4 shows an enlarged view of the optical sheet 30 shown in FIG. 2 rotated 90 degrees counterclockwise when viewed from the cross-sectional direction in order to show the configuration of the optical sheet 30 shown in FIG. 2 and the like. FIG. 5 is a diagram corresponding to FIG. 4 with respect to the optical sheet according to another embodiment. Although description is omitted, such a liquid crystal display device 10 operates as a liquid crystal display device 10 in a housing (not shown), such as a power source for operating the liquid crystal display device 10 and an electronic circuit for controlling the liquid crystal display device 10. It is a liquid crystal display device that is housed together with the usual equipment required to do so. The liquid crystal display device 10 will be described below.
 液晶表示装置10は、不図示の筐体に、電源や電子回路等とともに納められている。液晶表示装置10は、不図示の自動車の車室内に設けられ、ナビゲーション装置の一部として動作する。液晶表示装置10は、液晶パネル15、面光源装置20、及び機能性フィルム40を備えている。 The liquid crystal display device 10 is housed in a housing (not shown) together with a power supply, an electronic circuit, and the like. The liquid crystal display device 10 is provided in the passenger compartment of an automobile (not shown) and operates as a part of the navigation device. The liquid crystal display device 10 includes a liquid crystal panel 15, a surface light source device 20, and a functional film 40.
 液晶パネル15は、液晶層12と、上偏光板13と、下偏光板14と、を有している。上偏光板13は、観察者側に配置され、下偏光板14は、面光源装置20側に配置されている。液晶層12は、上偏光板13と下偏光板14との間に配置されている。 The liquid crystal panel 15 has a liquid crystal layer 12, an upper polarizing plate 13, and a lower polarizing plate 14. The upper polarizing plate 13 is arranged on the observer side, and the lower polarizing plate 14 is arranged on the surface light source device 20 side. The liquid crystal layer 12 is arranged between the upper polarizing plate 13 and the lower polarizing plate 14.
 上偏光板13及び下偏光板14は、入射した光を直交する二つの偏光成分(P波およびS波)に分解し、一方の方向(透過軸に平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(吸収軸に平行な方向)の偏光成分(例えば、S波)を吸収する機能を有している。下偏光板14は、偏光フィルムの一例である。 The upper polarizing plate 13 and the lower polarizing plate 14 decompose the incident light into two orthogonal polarizing components (P wave and S wave), and the polarizing component in one direction (direction parallel to the transmission axis) (for example, P). It has a function of transmitting a (wave) and absorbing a polarizing component (for example, an S wave) in the other direction (direction parallel to the absorption axis) orthogonal to the one direction. The lower polarizing plate 14 is an example of a polarizing film.
 液晶層12は、複数の画素が層面に沿った方向に縦横に配列されている。一つの画素を形成する領域毎に電界印加することにより、当該領域の画素の配向が変化する。これにより、面光源装置20側(すなわち入光側)に配置された下偏光板14を透過した透過軸に平行な偏光成分(例えばP波)は、電界印加された画素を通過する際にその偏光方向を90°回転させ、その一方で、電界印加されていない画素を通過する際にその偏光方向を維持する。このため、画素への電界印加の有無によって、下偏光板14を透過した偏光成分(例えばP波)が、出光側に配置された上偏光板13をさらに透過するか、あるいは、上偏光板13で吸収されて遮断されるか、を制御することができる。 In the liquid crystal layer 12, a plurality of pixels are arranged vertically and horizontally along the layer surface. By applying an electric field to each region forming one pixel, the orientation of the pixels in the region changes. As a result, the polarized light component (for example, P wave) parallel to the transmission axis transmitted through the lower polarizing plate 14 arranged on the surface light source device 20 side (that is, the light input side) is transmitted when passing through the pixel to which the electric field is applied. The polarization direction is rotated by 90 °, while maintaining the polarization direction as it passes through the pixels to which no electric field is applied. Therefore, depending on whether or not an electric field is applied to the pixels, the polarizing component (for example, P wave) transmitted through the lower polarizing plate 14 further transmits through the upper polarizing plate 13 arranged on the light emitting side, or the upper polarizing plate 13 is further transmitted. It is possible to control whether it is absorbed and blocked by.
 このように、液晶パネル15は、面光源装置20からの光の透過または遮断を画素毎に制御し、観察者に映像を提供することができるように構成されている。したがって、液晶パネル15の背面側から光を照射する際には、下偏光板14の透過軸に平行な偏光成分を有する光を多く到達させることにより、下偏光板14を透過させて光の利用効率を高めることができる。 As described above, the liquid crystal panel 15 is configured to control the transmission or blocking of light from the surface light source device 20 for each pixel and provide an image to the observer. Therefore, when irradiating light from the back surface side of the liquid crystal panel 15, a large amount of light having a polarization component parallel to the transmission axis of the lower polarizing plate 14 is allowed to reach, so that the lower polarizing plate 14 is transmitted and the light is used. Efficiency can be increased.
 さらに、液晶パネル15は、その性質上、該液晶パネル15の法線方向からの入射光に対しては、出射光のコントラスト、及び効率(透過率)は優れている。しかしながら、液晶パネル15の法線方向に対して斜めからの入射光、および観察者による斜め方向からの観察についてはコントラストの低下や効率(透過率)の低さが問題となる。すなわち、光の利用効率を高めるためには液晶パネル15の法線方向からの入射光を多くすることも有効である。 Further, due to the nature of the liquid crystal panel 15, the contrast and efficiency (transmittance) of the emitted light are excellent with respect to the incident light from the normal direction of the liquid crystal panel 15. However, when the incident light is oblique to the normal direction of the liquid crystal panel 15 and the observer observes the light from an oblique direction, there are problems such as a decrease in contrast and low efficiency (transmittance). That is, in order to improve the light utilization efficiency, it is also effective to increase the incident light from the normal direction of the liquid crystal panel 15.
 液晶パネル15の種類は特に限定されることはなく、公知の型の液晶パネルを用いることができる。例えば、液晶パネル15として、TN、STN、VA、MVA、IPS、OCB等を用いることができる。 The type of the liquid crystal panel 15 is not particularly limited, and a known type of liquid crystal panel can be used. For example, as the liquid crystal panel 15, TN, STN, VA, MVA, IPS, OCB and the like can be used.
 面光源装置20は、液晶パネル15に対して面状の光を出射する照明装置である。面光源装置20は、液晶パネル15に対して観察者側とは反対側に配置されている。面光源装置20は、エッジライト型の面光源装置として構成されており、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光学シート30及び反射シート39を有している。 The surface light source device 20 is an illumination device that emits planar light to the liquid crystal panel 15. The surface light source device 20 is arranged on the side opposite to the observer side with respect to the liquid crystal panel 15. The surface light source device 20 is configured as an edge light type surface light source device, and includes a light guide plate 21, a light source 25, a light diffusion plate 26, a prism layer 27, a reflective polarizing plate 28, an optical sheet 30, and a reflective sheet 39. are doing.
 導光板21は、基部22及び光学要素23を有している。基部22は、所定の厚さを有する板形状を呈している。基部22は、光を案内するとともに、光学要素23のベースとなる部位である。基部22、光学要素23をなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料を用いることができる。これには例えば脂環式構造を有する重合体樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン共重合体、メタクリル酸メチル-スチレン共重合体、ABS樹脂、ポリエーテルスルホン等の熱可塑性樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)等を挙げることができる。 The light guide plate 21 has a base 22 and an optical element 23. The base 22 has a plate shape having a predetermined thickness. The base portion 22 guides light and is a base portion of the optical element 23. As the material forming the base 22 and the optical element 23, various materials can be used. However, a material that is widely used as a material for an optical sheet incorporated in a display device, has excellent mechanical properties, optical properties, stability, workability, and the like, and can be obtained at low cost can be used. This includes, for example, polymer resins having an alicyclic structure, methacrylic resins, polycarbonate resins, polystyrene resins, acrylonitrile-styrene copolymers, methyl methacrylate-styrene copolymers, ABS resins, polyether sulfone and other thermoplastic resins. , Epoxy acrylate, styrene acrylate-based reactive resin (ionized radiation curable resin, etc.) and the like can be mentioned.
 光学要素23は、基部22の裏面側(反射型偏光板28が配置される側とは反対側)に形成されている。光学要素23は、基部22から突出しており、三角柱形状を呈している。光学要素23は、突出した頂部の稜線が水平方向に延びるように形成されている。基部22の裏面側には、複数の光学要素23が、鉛直方向に所定のピッチで並べて配列されている。光学要素23は断面が三角形状であるがこれに限定されることはなく、多角形、半球状、球の一部、レンズ形状等いずれの形状の断面であってもよい。複数の光学要素23の配列方向は導光方向であることが好ましい。すなわち、光源25から離隔する方向に配列され、光源25が配列される方向、又は1つの長い光源であれば該光源が延びる方向に平行に各光学要素23の稜線が延びている。 The optical element 23 is formed on the back surface side of the base portion 22 (the side opposite to the side on which the reflective polarizing plate 28 is arranged). The optical element 23 protrudes from the base 22 and has a triangular prism shape. The optical element 23 is formed so that the ridgeline of the protruding top extends in the horizontal direction. On the back surface side of the base portion 22, a plurality of optical elements 23 are arranged side by side at a predetermined pitch in the vertical direction. The optical element 23 has a triangular cross section, but is not limited to this, and may have any shape such as a polygon, a hemisphere, a part of a sphere, and a lens shape. The arrangement direction of the plurality of optical elements 23 is preferably the light guide direction. That is, they are arranged in a direction away from the light source 25, and the ridgeline of each optical element 23 extends in the direction in which the light source 25 is arranged, or in the direction in which the light source extends in the case of one long light source.
 なお、本件明細書における「三角形状」とは、厳密な意味での三角形の形状のみでなく、製造技術における限界や成型時の誤差等を含む略三角形形状を含む。また同様に、本件明細書において用いる、その他の形状や幾何学的条件を特定する用語、例えば、「平行」、「直交」、「楕円」、「円」等の用語も、厳密な意味に縛られることなく、同様の光学的機能を期待し得る程度の誤差を含めて解釈することとする。 Note that the "triangular shape" in the present specification includes not only a triangular shape in a strict sense but also a substantially triangular shape including limits in manufacturing technology and errors during molding. Similarly, other terms that specify shape and geometric conditions used herein, such as "parallel," "orthogonal," "ellipse," and "circle," are also bound in a strict sense. It shall be interpreted including an error to the extent that the same optical function can be expected.
 このような構成を有する導光板21は、押し出し成形により、又は、基部22上に光学要素23を賦型することにより製造することができる。なお、押し出し成形で製造された導光板21においては、基部22、及び光学要素23が一体的に形成され得る。また、賦型によって導光板21を製造する場合、光学要素23が、基部22と同一の樹脂材料であっても、異なる材料であってもよい。 The light guide plate 21 having such a configuration can be manufactured by extrusion molding or by molding the optical element 23 on the base 22. In the light guide plate 21 manufactured by extrusion molding, the base portion 22 and the optical element 23 can be integrally formed. Further, when the light guide plate 21 is manufactured by molding, the optical element 23 may be the same resin material as the base 22 or a different material.
 光源25は、導光板21の基部22の側面のうち、複数の光学要素23が配列される方向における一方側の側面に配置される。光源25は複数のLED(発光ダイオード)からなる。光源25は、不図示の制御装置により、各LEDの点灯および消灯、並びに/又は、各LEDの点灯時の明るさを個別に独立して調節できるように構成されている。光源の種類は特に限定されるものではなく、LEDの他にも、線状の冷陰極管等の蛍光灯や白熱電球等の種々の態様で構成できる。なお、本形態では上記のように光源25は一方側の側面に配置される例を示したが、さらにこの側面とは反対側となる側面にも光源が配置される形態であってもよい。なお、この場合には光学要素の形状も公知の例に倣って形成する。 The light source 25 is arranged on one side of the side surface of the base 22 of the light guide plate 21 in the direction in which the plurality of optical elements 23 are arranged. The light source 25 is composed of a plurality of LEDs (light emitting diodes). The light source 25 is configured so that the lighting and extinguishing of each LED and / or the brightness at the time of lighting of each LED can be individually and independently adjusted by a control device (not shown). The type of the light source is not particularly limited, and in addition to the LED, it can be configured in various modes such as a fluorescent lamp such as a linear cold cathode tube and an incandescent lamp. In this embodiment, the light source 25 is arranged on one side surface as described above, but the light source may be arranged on the side surface opposite to this side surface. In this case, the shape of the optical element is also formed according to a known example.
 光拡散板26は、入射した光を拡散させて出射する機能を有する。光拡散板26は、導光板21よりも出光側に設けられている。これにより、導光板21から出射した光の均一性をさらに高め、導光板21に存在する傷を目立たなくすることができる。また、光拡散板26は、プリズム層27の支持体として機能している。光拡散板の具体的態様は、公知の光拡散板を用いることができ、例えば母材の中に光拡散剤を分散させた形態を挙げることができる。 The light diffusing plate 26 has a function of diffusing and emitting incident light. The light diffusing plate 26 is provided on the light emitting side of the light guide plate 21. As a result, the uniformity of the light emitted from the light guide plate 21 can be further enhanced, and the scratches existing on the light guide plate 21 can be made inconspicuous. Further, the light diffusing plate 26 functions as a support for the prism layer 27. As a specific embodiment of the light diffusing plate, a known light diffusing plate can be used, and examples thereof include a form in which a light diffusing agent is dispersed in a base material.
 プリズム層27は、光拡散板26よりも液晶パネル15側に設けられ、複数の単位プリズム27aを有している。単位プリズム27aは、液晶パネル15側に向けて突出しており、所定の断面を有して導光板21の導光方向とは異なる方向(本形態では平面視で導光方向に直交する方向)に延びる形態を有している。そして、複数の単位プリズム27aが導光方向に配列されている。このようなプリズム層の単位プリズムの断面形状は、必要とする機能に応じて公知の形状を適用することができる。当該形状により光をさらに拡散させることもできるし、集光させることもできる。これにより光学機能層32で光を制御する方向(本実施形態では鉛直方向)において集光し、光学機能層32で光を効率よく全反射させることができ、光の利用効率を高めることができる。 The prism layer 27 is provided on the liquid crystal panel 15 side of the light diffusing plate 26, and has a plurality of unit prisms 27a. The unit prism 27a projects toward the liquid crystal panel 15 side, has a predetermined cross section, and has a direction different from the light guide direction of the light guide plate 21 (in this embodiment, a direction orthogonal to the light guide direction in a plan view). It has an extending form. A plurality of unit prisms 27a are arranged in the light guide direction. As the cross-sectional shape of the unit prism of such a prism layer, a known shape can be applied according to a required function. Depending on the shape, light can be further diffused or condensed. As a result, the light can be collected in the direction in which the light is controlled by the optical function layer 32 (vertical direction in the present embodiment), and the light can be efficiently totally reflected by the optical function layer 32, and the light utilization efficiency can be improved. ..
 反射型偏光板(フィルム)28は、入射した光を直交する二つの偏光成分(P波およびS波)に分解し、一方の方向(透過軸に平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(反射軸に平行な方向)の偏光成分(例えば、S波)を反射する機能を有している。このような反射型偏光板28の構造は公知のものを用いることができる。 The reflective polarizing plate (film) 28 decomposes the incident light into two orthogonal polarizing components (P wave and S wave), and the polarizing component in one direction (direction parallel to the transmission axis) (for example, P wave). ), And has a function of reflecting a polarizing component (for example, an S wave) in the other direction (direction parallel to the reflection axis) orthogonal to the one direction. A known structure of such a reflective polarizing plate 28 can be used.
 光学シート30は、シート状に形成された基材層31aと、基材層31aの一方の面(本形態では導光板21側の面)上に積層された光学機能層32と、を備えている。基材層31aと光学機能層32の組み合わせにより基本的に光学シート30が形成されるが、これに加えて、光学機能層32を挟んで基材層31aと対向するように、第2の基材層31bを配置してもよい。図1~図4に示した実施形態(特に図4参照)は基材層31a、第2の基材層31bの両方を備えている(以下、「本形態」と称する)。これにより、基材層31aが単独で用いられた場合に比べて光学シート30の剛性を高め、液晶表示装置10への実装の際の撓みの発生を抑制して、光のムラを抑制することが可能になる。また、図5に示した実施形態は、基材層31aと光学機能層32の組み合わせにより構成された光学シート30’を示しており、この光学シート30’は第2の基材層31bを備えていない。十分な剛性を有している場合、このような光学シート30’を使用することも可能である。 The optical sheet 30 includes a base material layer 31a formed in a sheet shape and an optical functional layer 32 laminated on one surface of the base material layer 31a (the surface on the light guide plate 21 side in this embodiment). There is. The optical sheet 30 is basically formed by the combination of the base material layer 31a and the optical functional layer 32, but in addition to this, a second group is formed so as to face the base material layer 31a with the optical functional layer 32 interposed therebetween. The material layer 31b may be arranged. The embodiments shown in FIGS. 1 to 4 (particularly refer to FIG. 4) include both a base material layer 31a and a second base material layer 31b (hereinafter, referred to as “the present embodiment”). As a result, the rigidity of the optical sheet 30 is increased as compared with the case where the base material layer 31a is used alone, the occurrence of bending at the time of mounting on the liquid crystal display device 10 is suppressed, and unevenness of light is suppressed. Becomes possible. Further, the embodiment shown in FIG. 5 shows an optical sheet 30'composed of a combination of a base material layer 31a and an optical functional layer 32, and the optical sheet 30' includes a second base material layer 31b. Not. It is also possible to use such an optical sheet 30'if it has sufficient rigidity.
 また、本形態では、第2の基材層31bの上に光学機能層32を保護する、図示しない保護層をさらに積層してもよい。保護層を積層することにより、光学機能層32への外部からの傷害等を保護する効果、及び、光学シート30を作製する際にそりを抑制する効果を付与することができる。保護層に用いられる材料としては、紫外線硬化型ウレタンアクリレート等の公知の材料を使用することができる。また、保護層には、反射防止処理、防眩処理、帯電防止処理、ハードコート処理等の処理を施してもよい。保護層の厚みは、5μm以上30μm以下が好ましい。保護層の厚みが5μmより薄いと、安定的に塗工することが困難となり、30μmより厚いと、使用する材料のコストが増加する。保護層のヘイズは5%以上50%以下が好ましい。保護層のヘイズが5%未満であると、保護層の表面に配置されるフィルム(例えば、図1~3における反射型偏光板28)と貼り付く虞がある。一方、保護層のヘイズが50%を超えると、保護層を透過する光が拡散されすぎるため、正面輝度が低下する傾向にある。 Further, in the present embodiment, a protective layer (not shown) that protects the optical functional layer 32 may be further laminated on the second base material layer 31b. By laminating the protective layer, it is possible to impart an effect of protecting the optical functional layer 32 from external damage and the like, and an effect of suppressing warpage when the optical sheet 30 is produced. As the material used for the protective layer, a known material such as an ultraviolet curable urethane acrylate can be used. Further, the protective layer may be subjected to antireflection treatment, antiglare treatment, antistatic treatment, hard coat treatment and the like. The thickness of the protective layer is preferably 5 μm or more and 30 μm or less. If the thickness of the protective layer is less than 5 μm, it becomes difficult to apply the coating stably, and if it is thicker than 30 μm, the cost of the material used increases. The haze of the protective layer is preferably 5% or more and 50% or less. If the haze of the protective layer is less than 5%, it may adhere to the film arranged on the surface of the protective layer (for example, the reflective polarizing plate 28 in FIGS. 1 to 3). On the other hand, when the haze of the protective layer exceeds 50%, the light transmitted through the protective layer is diffused too much, so that the front luminance tends to decrease.
 この光学シート30及び光学シート30’(以下、「光学シート30」と総称する)は、後述するように、入光側から入射した光の進行方向を変化させて出光側から出射させ、正面方向(法線方向)の輝度を集中的に向上させる機能(集光機能)を有している。またその際には偏光成分の変化が抑制され、これら機能により光の利用効率を高めることができる。さらに、当該正面方向に対して大きな角度で進行した光を吸収する機能(光吸収機能)を備えている。 As will be described later, the optical sheet 30 and the optical sheet 30'(hereinafter collectively referred to as "optical sheet 30") change the traveling direction of the light incident from the incoming light side and emit the light from the outgoing light side in the front direction. It has a function (condensing function) to intensively improve the brightness (in the normal direction). In that case, changes in the polarizing component are suppressed, and these functions can improve the efficiency of light utilization. Further, it has a function of absorbing light traveling at a large angle with respect to the front direction (light absorption function).
 基材層31a、第2の基材層31bは、光学機能層32を支持する平板形状の部材である。基材層31a、第2の基材層31bをなす材料としては、種々の材料を使用することができるが、本実施形態では、基材層31a、第2の基材層31bはいずれもポリエステルフィルムとされているが、例えばポリカーボネート樹脂を使用することも可能である。なお、基材層の厚みは、後述するように光学シートの吸水率の値が0.00%以上1.33%以下となるようなものであれば特に限定されないが、材料に応じて、好ましくは60μm以上250μm以下である。 The base material layer 31a and the second base material layer 31b are flat plate-shaped members that support the optical functional layer 32. Various materials can be used as the material forming the base material layer 31a and the second base material layer 31b, but in the present embodiment, the base material layer 31a and the second base material layer 31b are both polyesters. Although it is said to be a film, for example, a polycarbonate resin can also be used. The thickness of the base material layer is not particularly limited as long as the value of the water absorption rate of the optical sheet is 0.00% or more and 1.33% or less as described later, but it is preferable depending on the material. Is 60 μm or more and 250 μm or less.
 このように光学シート30は、所定の基材層を有することにより撓むことが抑制されているため、本形態においては、光学シート30と液晶パネル15とは、少なくとも一部を接着していない部位を有してもよく、全面を接着していなくてもよい。また、光学シート30を透過する光の強度は、光学シート30に対する入射角及び出射角の影響を大きく受けるため、光学シート30の撓みが抑制されることにより、光学シート30を透過する光のムラ、特に明暗ムラを抑制することができる。 As described above, since the optical sheet 30 is prevented from bending by having a predetermined base material layer, in this embodiment, at least a part of the optical sheet 30 and the liquid crystal panel 15 are not adhered to each other. It may have a portion, and the entire surface may not be adhered. Further, since the intensity of the light transmitted through the optical sheet 30 is greatly affected by the incident angle and the exit angle with respect to the optical sheet 30, the bending of the optical sheet 30 is suppressed, so that the light transmitted through the optical sheet 30 is uneven. In particular, uneven brightness can be suppressed.
 上述したように、基材層31a、第2の基材層31bをなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料を用いることが好ましい。これには例えばポリエチレンテレフタレート樹脂(PET)、メタクリル樹脂、ポリカーボネート樹脂等を挙げることができる。この中でも面光源装置20と下偏光板14との組み合わせを考慮して複屈折(リタデーション)の少ないメタクリル樹脂、ポリカーボネート樹脂を用いることが好ましい。さらには、車載用途などのように高い耐熱性が求められる用途では、ガラス転移点が高いポリカーボネート樹脂が望ましい。具体的にはポリカーボネート樹脂のガラス転移点は143℃であり、一般に105℃での耐久性が求められる車載用途に適している。 As described above, various materials can be used as the material forming the base material layer 31a and the second base material layer 31b. However, it is preferable to use a material that is widely used as a material for an optical sheet incorporated in a display device, has excellent mechanical properties, optical properties, stability, workability, and the like, and can be obtained at low cost. Examples thereof include polyethylene terephthalate resin (PET), methacrylic resin, polycarbonate resin and the like. Among these, it is preferable to use a methacrylic resin or a polycarbonate resin having less birefringence in consideration of the combination of the surface light source device 20 and the lower polarizing plate 14. Further, in applications requiring high heat resistance such as in-vehicle applications, a polycarbonate resin having a high glass transition point is desirable. Specifically, the glass transition point of the polycarbonate resin is 143 ° C, and it is suitable for in-vehicle applications where durability at 105 ° C is generally required.
 光学機能層32は、光透過部33と、ルーバ部34と、を有している。光透過部33は、光を透過させることを主要な機能とする部位であり、図1、図2及び図4に表れる断面において、略台形の断面形状を有している。図4に拡大して示すように、光透過部33は、基材層31a、第2の基材層31bの層面に沿って当該断面を維持して水平方向に延びるとともに、この鉛直方向に所定の間隔で配列される。そして、隣り合う光透過部33の間には、当初は略台形断面を有する溝33a(図7参照)が形成され、当該溝33aに後述する材料が充填されることにより、ルーバ部34が形成される。なお、図4に示された構造は概略的なものであって、必ずしも実際の製品の寸法と一致するものではない。後述するような、様々な実施例において、各層の厚さが図示された寸法の関係と異なることもある。また、ルーバ部34の形成方法については、図7を参照して後述する。 The optical functional layer 32 has a light transmitting portion 33 and a louver portion 34. The light transmitting portion 33 is a portion whose main function is to transmit light, and has a substantially trapezoidal cross-sectional shape in the cross sections shown in FIGS. 1, 2 and 4. As shown enlarged in FIG. 4, the light transmitting portion 33 extends in the horizontal direction while maintaining the cross section along the layer surfaces of the base material layer 31a and the second base material layer 31b, and is predetermined in the vertical direction. Are arranged at intervals of. A groove 33a (see FIG. 7) having a substantially trapezoidal cross section is initially formed between the adjacent light transmitting portions 33, and the groove 33a is filled with a material described later to form the louver portion 34. Will be done. The structure shown in FIG. 4 is a schematic structure and does not necessarily match the dimensions of the actual product. In various embodiments, as described below, the thickness of each layer may differ from the dimensional relationships shown. The method of forming the louver portion 34 will be described later with reference to FIG. 7.
 光透過部33は、基材層31の層面に沿って当該断面を維持して図4の紙面の手前-奥方向に延びるとともに、これに直行する方向(図4の水平方向)に所定の間隔(ピッチ:Pk)で配列される。そして、隣り合う光透過部33の間には、略台形断面を有する溝が当初形成され、当該溝は光透過部33の上底側(導光板21側)に長い下底を有し、光透過部33の下底側(液晶パネル側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることでルーバ部34が形成されている。なお、本形態では隣り合う光透過部33は長い下底側で連結されている。光学機能層32の構造を特定するために、主にルーバ部34に関して以下のようなパラメータを用いる。略台形断面を有するルーバ部34の略台形形状に関して、短い上底の幅をWeとし、長い下底の幅をWbとする。ルーバ部34の厚み(略台形の高さに相当する)をDkとする。 The light transmitting portion 33 maintains the cross section along the layer surface of the base material layer 31 and extends in the front-back direction of the paper surface of FIG. 4, and at a predetermined interval in a direction perpendicular to the front-back direction (horizontal direction of FIG. 4). Arranged at (pitch: Pk). A groove having a substantially trapezoidal cross section is initially formed between the adjacent light transmitting portions 33, and the groove has a long lower bottom on the upper bottom side (light guide plate 21 side) of the light transmitting portion 33 and emits light. The transmission portion 33 has a trapezoidal cross section having a short upper bottom on the lower bottom side (liquid crystal panel side), and the louver portion 34 is formed by filling the transmission portion 33 with a necessary material described later. In this embodiment, the adjacent light transmitting portions 33 are connected by a long lower bottom side. In order to specify the structure of the optical functional layer 32, the following parameters are mainly used for the louver portion 34. Regarding the substantially trapezoidal shape of the louver portion 34 having a substantially trapezoidal cross section, the width of the short upper base is We, and the width of the long lower base is Wb. Let Dk be the thickness of the louver portion 34 (corresponding to the height of a substantially trapezoid).
 上述した光透過部33のピッチ(すなわちルーバ部34のピッチでもある)Pkは30μm以上100μm以下であることが好ましい。さらに、図4にθkで示したルーバ部34と光透過部33との斜辺における界面と、光学機能層32の層面の法線と、の成す角は1°以上10°以下であることが好ましい。ただし、この範囲外の角でもよく、例えば0°(すなわち、斜辺が光学機能層32の層面の法線と一致するもの)であってもよい。また、図4に示したルーバ部34は、ほぼ等脚台形の形状を有するが、一方の脚の長さと他方の脚の長さとが異なっても良い。そしてルーバ部34の厚さDkは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。ルーバ部34の略台形部の上底の幅Weと下底の幅Wbは、上述したルーバ部34の厚さDk、ピッチPk及び角θkとの関係を満たすように適宜選択される。これらのパラメータを好ましい範囲内とすることにより、光の透過と光の吸収とのバランスが適切になることが多い。 The pitch of the light transmitting portion 33 described above (that is, the pitch of the louver portion 34) Pk is preferably 30 μm or more and 100 μm or less. Further, the angle formed by the interface between the louver portion 34 and the light transmitting portion 33 shown by θk in FIG. 4 and the normal of the layer surface of the optical functional layer 32 is preferably 1 ° or more and 10 ° or less. .. However, the angle may be outside this range, and may be, for example, 0 ° (that is, the hypotenuse coincides with the normal of the layer surface of the optical functional layer 32). The louver portion 34 shown in FIG. 4 has a substantially isosceles trapezoidal shape, but the length of one leg and the length of the other leg may be different. The thickness Dk of the louver portion 34 is preferably 50 μm or more and 150 μm or less, and more preferably 60 μm or more and 150 μm or less. The width We of the upper base and the width Wb of the lower base of the substantially trapezoidal portion of the louver portion 34 are appropriately selected so as to satisfy the relationship between the thickness Dk, the pitch Pk, and the angle θk of the louver portion 34 described above. By setting these parameters within a preferable range, the balance between light transmission and light absorption is often appropriate.
 本形態では光透過部33とルーバ部34との界面が断面において一直線状となる例を示したが、これに限らず折れ線状、凸である曲面状、凹である曲面状等であってもよい。また、複数の光透過部33及びルーバ部34で断面形状が同じであってもよいし、所定の規則性を有して異なる断面形状であってもよい。 In this embodiment, an example is shown in which the interface between the light transmitting portion 33 and the louver portion 34 is a straight line in the cross section, but the present invention is not limited to this, and the interface may be a polygonal line, a convex curved surface, a concave curved surface, or the like. Good. Further, the plurality of light transmitting portions 33 and the louver portion 34 may have the same cross-sectional shape, or may have different cross-sectional shapes with predetermined regularity.
 光透過部33は、屈折率がNtとされている。このような光透過部33は、後述するように、所定の組成物を硬化させることにより形成することができる。屈折率Ntの値は特に限定されることはないが、屈折率が高すぎる材料は割れやすい場合が多く、また台形断面の斜面におけるルーバ部34との界面で適切に光を反射(全反射を含む。)する観点から屈折率は1.47から1.65が好ましく、より好ましくは1.49から1.57である。 The light transmitting portion 33 has a refractive index of Nt. Such a light transmitting portion 33 can be formed by curing a predetermined composition, as will be described later. The value of the refractive index Nt is not particularly limited, but a material having an excessively high refractive index is often fragile, and light is appropriately reflected at the interface with the louver portion 34 on the slope of the trapezoidal cross section (total reflection). From the viewpoint of including), the refractive index is preferably 1.47 to 1.65, more preferably 1.49 to 1.57.
 ルーバ部34は、隣り合う光透過部33の間に当初設けられていた溝33aに後述する材料を充填することで形成され、最終的には充填前の溝33aの断面形状と同様の断面形状となる。そしてルーバ部34は、屈折率がNrとされるとともに、光を吸収することができるように構成されている。具体的には屈折率がNrである透明樹脂に光吸収粒子が分散される。屈折率Nrは、光透過部33の屈折率Ntよりも低い屈折率とされる。このように、ルーバ部34の屈折率を光透過部33の屈折率より小さくすることにより、所定の条件で光透過部33に入射した光をルーバ部34との界面で適切に全反射させることができる。また、全反射条件を満たさない場合にも一部の光は当該界面で反射する。屈折率Nrの値は特に限定されることはないが、屈折率が高すぎる材料は割れやすい場合が多く、また当該全反射を適切に行う観点から1.47から1.65が好ましく、より好ましくは、1.49から1.57である。 The louver portion 34 is formed by filling a groove 33a initially provided between adjacent light transmitting portions 33 with a material described later, and finally has a cross-sectional shape similar to the cross-sectional shape of the groove 33a before filling. It becomes. The louver portion 34 has a refractive index of Nr and is configured to be able to absorb light. Specifically, the light absorbing particles are dispersed in a transparent resin having a refractive index of Nr. The refractive index Nr is lower than the refractive index Nt of the light transmitting portion 33. In this way, by making the refractive index of the louver portion 34 smaller than the refractive index of the light transmitting portion 33, the light incident on the light transmitting portion 33 under predetermined conditions is appropriately totally reflected at the interface with the louver portion 34. Can be done. Further, even if the total reflection condition is not satisfied, some light is reflected at the interface. The value of the refractive index Nr is not particularly limited, but a material having an excessively high refractive index is often fragile, and 1.47 to 1.65 is preferable and more preferable from the viewpoint of appropriately performing the total reflection. Is 1.49 to 1.57.
 光透過部33の屈折率Ntとルーバ部34の屈折率Nrとの差は特に限定されるものではないが、0より大きく0.14以下が好ましく、0.05以上0.14以下であることがさらに好ましい。屈折率差を大きくすることにより、より多くの光を全反射させることができる。 The difference between the refractive index Nt of the light transmitting portion 33 and the refractive index Nr of the louver portion 34 is not particularly limited, but is preferably greater than 0 and 0.14 or less, and 0.05 or more and 0.14 or less. Is even more preferable. By increasing the difference in refractive index, more light can be totally reflected.
 図1~図3を参照して液晶表示装置10の構成についてさらに説明する。反射シート39は、導光板21の裏面から出射した光を反射して、再び導光板21内に光を入射させるための部材である。反射シート39は、金属等の高い反射率を有する材料からなるシート、高い反射率を有する材料からなる薄膜(例えば金属薄膜)を表面層として含んだシート等のいわゆる鏡面反射を可能とするものを好ましく適用することができる。 The configuration of the liquid crystal display device 10 will be further described with reference to FIGS. 1 to 3. The reflective sheet 39 is a member for reflecting the light emitted from the back surface of the light guide plate 21 and causing the light to enter the light guide plate 21 again. The reflective sheet 39 is a sheet that enables so-called specular reflection, such as a sheet made of a material having a high reflectance such as metal and a sheet containing a thin film (for example, a metal thin film) made of a material having a high reflectance as a surface layer. It can be preferably applied.
 機能性フィルム40は、液晶パネル15よりも出光側に設けられ、映像光の質を向上させたり、液晶表示装置10を保護したりする機能を有する。例えば、機能性フィルム40として、反射防止フィルム、防眩フィルム、ハードコートフィルム、色調補正フィルム、光拡散フィルム等を用いることができる。また、これらのフィルムを複数組み合わせて用いて機能性フィルム40を構成してもよい。 The functional film 40 is provided on the light emitting side of the liquid crystal panel 15 and has a function of improving the quality of image light and protecting the liquid crystal display device 10. For example, as the functional film 40, an antireflection film, an antiglare film, a hard coat film, a color tone correction film, a light diffusion film and the like can be used. Further, the functional film 40 may be formed by using a plurality of these films in combination.
 次に、以上のような構成を備える液晶表示装置10の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。 Next, the operation of the liquid crystal display device 10 having the above configuration will be described with an example of an optical path. However, the optical path example is conceptual for explanation, and does not strictly represent the degree of reflection or refraction.
 まず、図2に示すように、光源25から出射した光は、導光板21の側面の入光面を介して導光板21内に入射する。図2には、一例として、光源25から導光板21に入射した光L21、L22の光路例が示されている。 First, as shown in FIG. 2, the light emitted from the light source 25 enters the light guide plate 21 via the light entering surface on the side surface of the light guide plate 21. FIG. 2 shows, as an example, an optical path example of the light L21 and L22 incident on the light guide plate 21 from the light source 25.
 図2に示すように、導光板21に入射した光L21、L22は、導光板21の出光側面及びその反対側の裏面において、空気との屈折率差による全反射を繰り返し、導光方向(図2の紙面下方向)へ進んでいく。 As shown in FIG. 2, the lights L21 and L22 incident on the light guide plate 21 are repeatedly totally reflected by the difference in refractive index with air on the light emitting side surface of the light guide plate 21 and the back surface on the opposite side thereof, and are in the light guide direction (FIG. Proceed to (2) downward on the page).
 ただし、導光板21の裏面には光学要素23が配置されている。このため、図2に示すように、導光板21内を進む光L21、L22は、光学要素23によって進行方向が変わり、全反射臨界角未満の入射角度で出光面、及び裏面に入射することもある。この場合に当該光は、導光板21の出光面及びその反対側の裏面から出射し得る。 However, the optical element 23 is arranged on the back surface of the light guide plate 21. Therefore, as shown in FIG. 2, the light L21 and L22 traveling in the light guide plate 21 change their traveling directions depending on the optical element 23, and may be incident on the light emitting surface and the back surface at an incident angle less than the total reflection critical angle. is there. In this case, the light can be emitted from the light emitting surface of the light guide plate 21 and the back surface on the opposite side thereof.
 出光面から出射した光L21、L22は、導光板21の出光側に配置された反射型偏光板28の側へと向かう。一方、裏面から出射した光は、導光板21の背面に配置された反射シート39で反射され、再び導光板21内に入射して導光板21内を進むことになる。 The lights L21 and L22 emitted from the light emitting surface head toward the reflective polarizing plate 28 arranged on the light emitting side of the light guide plate 21. On the other hand, the light emitted from the back surface is reflected by the reflective sheet 39 arranged on the back surface of the light guide plate 21, enters the light guide plate 21 again, and travels in the light guide plate 21.
 導光板21内を進行する光と、光学要素23で向きを変えられて全反射臨界角未満の入射角度で出光面に達する光は、導光板21内の導光方向に沿った各区域において生じる。このため、導光板21内を進んでいる光は、少しずつ、出光面から出射するようになる。これにより、導光板21の出光面から出射する光の導光方向に沿った光量分布を均一化させることができる。 The light traveling in the light guide plate 21 and the light that is turned by the optical element 23 and reaches the light emitting surface at an incident angle less than the total reflection critical angle are generated in each area in the light guide plate 21 along the light guide direction. .. Therefore, the light traveling in the light guide plate 21 is gradually emitted from the light emitting surface. As a result, the light amount distribution of the light emitted from the light emitting surface of the light guide plate 21 along the light guide direction can be made uniform.
 導光板21から出射した光は、その後、光拡散板26に達し均一性が高められる。そしてプリズム層27により必要に応じて拡散又は集光されプリズム層27を出光した光は次に反射型偏光板28に達する。ここでは、反射型偏光板28の透過軸に沿った偏光方向の光は反射型偏光板28を透過し光学シート30に向かう。一方、反射型偏光板28の反射軸に沿った偏光方向の光は図2に点線矢印L21’、L22’で示したように反射して導光板21側に戻される。戻された光は、導光板21、光学要素23、又は反射シート39で反射して再び反射型偏光板28の側に進行する。この反射の際に一部の光の偏光方向が変化しておりその一部は反射型偏光板28を透過する。他の光は再び導光板側に戻される。このように反射型偏光板28で反射した光も反射を繰り返すことで反射型偏光板28を透過できるようになる。これにより光源25からの光の利用率が高められる。ここで、反射型偏光板28を出射した光は、その偏光方向が下偏光板14の透過軸に沿った方向になっており、下偏光板14を透過する偏光光となっている。 The light emitted from the light guide plate 21 then reaches the light diffusing plate 26 to improve the uniformity. Then, the light diffused or condensed by the prism layer 27 as needed and emitted from the prism layer 27 reaches the reflective polarizing plate 28. Here, the light in the polarization direction along the transmission axis of the reflective polarizing plate 28 passes through the reflective polarizing plate 28 and heads toward the optical sheet 30. On the other hand, the light in the polarization direction along the reflection axis of the reflective polarizing plate 28 is reflected as shown by the dotted arrows L21'and L22' in FIG. 2 and returned to the light guide plate 21 side. The returned light is reflected by the light guide plate 21, the optical element 23, or the reflective sheet 39, and travels to the side of the reflective polarizing plate 28 again. At the time of this reflection, the polarization direction of a part of the light is changed, and a part of the light is transmitted through the reflective polarizing plate 28. The other light is returned to the light guide plate side again. The light reflected by the reflective polarizing plate 28 can be transmitted through the reflective polarizing plate 28 by repeating the reflection. As a result, the utilization rate of the light from the light source 25 is increased. Here, the light emitted from the reflective polarizing plate 28 has its polarization direction along the transmission axis of the lower polarizing plate 14, and is polarized light transmitted through the lower polarizing plate 14.
 反射型偏光板28を出射した光は光学機能層32に入射する。光学機能層32に入射する光は下偏光板14を透過する偏光光となっているが、次のような光路を有して進行する。すなわち、例えば図5にL41で示したように、ルーバ部34との界面に達することなく光透過部33を透過する。または、図5にL42で示したようにルーバ部34との界面に達して全反射して光透過部33を透過する。このとき、本形態では当該界面の傾斜角度(θk)の作用により、界面で反射した光は液晶パネル15の法線に平行な方向に近づけられる。また、全反射臨界角より小さい角度のため全反射しない光であってもそのうちの一部は当該界面で反射するものもある。このような光も同様に光透過部33を透過する。これにより液晶パネル15を透過した際に、コントラスト低下や色の反転等の不具合が起こらない光を液晶パネル15に対して効果的に提供することができる。 The light emitted from the reflective polarizing plate 28 is incident on the optical functional layer 32. The light incident on the optical functional layer 32 is polarized light that passes through the lower polarizing plate 14, and travels with the following optical paths. That is, for example, as shown by L41 in FIG. 5, the light transmitting portion 33 is transmitted without reaching the interface with the louver portion 34. Alternatively, as shown by L42 in FIG. 5, it reaches the interface with the louver portion 34 and is totally reflected to pass through the light transmitting portion 33. At this time, in the present embodiment, due to the action of the inclination angle (θk) of the interface, the light reflected at the interface is brought closer to the direction parallel to the normal line of the liquid crystal panel 15. Further, even if the light is not totally reflected because the angle is smaller than the total reflection critical angle, some of the light is reflected at the interface. Such light also passes through the light transmitting portion 33 in the same manner. As a result, it is possible to effectively provide the liquid crystal panel 15 with light that does not cause problems such as a decrease in contrast and color inversion when the light is transmitted through the liquid crystal panel 15.
 一方、図5にL43で示したようにシート面法線に対して大きな角度で光学機能層32に入射した光はルーバ部34に吸収され、液晶パネル15には提供されない。従って、コントラスト低下や色の反転を生じるような不具合を生じる光を吸収することができる。 On the other hand, as shown by L43 in FIG. 5, the light incident on the optical functional layer 32 at a large angle with respect to the sheet surface normal is absorbed by the louver portion 34 and is not provided to the liquid crystal panel 15. Therefore, it is possible to absorb light that causes problems such as a decrease in contrast and color inversion.
 このような光学シート30により、導光板21からの光を効率よく集光し、集光しなかった光はルーバ部で吸収するため、適切な光を効率よく液晶パネルに提供することができ、光の利用効率を大幅に向上させることが可能となる。 With such an optical sheet 30, the light from the light guide plate 21 is efficiently collected, and the light that is not collected is absorbed by the louver portion, so that appropriate light can be efficiently provided to the liquid crystal panel. It is possible to greatly improve the efficiency of light utilization.
 さらに光路について説明する。上記のように面光源装置20を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置20からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。 Further explain the optical path. The light emitted from the surface light source device 20 as described above is incident on the lower polarizing plate 14 of the liquid crystal panel 15. The lower polarizing plate 14 transmits one of the polarized light components of the incident light and absorbs the other polarized light component. The light transmitted through the lower polarizing plate 14 selectively transmits through the upper polarizing plate 13 according to the state in which the electric field is applied to each pixel. In this way, the liquid crystal panel 15 selectively transmits the light from the surface light source device 20 for each pixel, so that the observer of the liquid crystal display device can observe the image. At that time, the image light is provided to the observer via the functional film 40, and the quality of the image is improved.
 上記した形態では、光学機能層32は、光透過部33の短い上底が導光板21側、長い下底が液晶パネル15側となる向きとしたが、これを反転した形態としてもよい。すなわち光透過部の短い上底が液晶パネル側、長い下底が導光板側となる向きとしてもよい。この場合には光の集光作用は有しないが、下偏光板を透過する偏光方向を維持して下偏光板に光を提供し、下偏光板で吸収される光を少なく抑えることができ、光の利用効率(透過率)を向上させることは可能である。 In the above-described form, the optical functional layer 32 has the short upper bottom of the light transmitting portion 33 facing the light guide plate 21 side and the long lower bottom facing the liquid crystal panel 15 side, but this may be inverted. That is, the short upper bottom of the light transmitting portion may be oriented toward the liquid crystal panel side, and the long lower bottom may be oriented toward the light guide plate side. In this case, it does not have a light condensing action, but it can maintain the polarization direction transmitted through the lower polarizing plate and provide light to the lower polarizing plate, so that the light absorbed by the lower polarizing plate can be suppressed to a small extent. It is possible to improve the light utilization efficiency (transmittance).
 上述したような構成を備える光学機能層32を含む光学シート30が撓むと、ユーザ(観察者)から見たときの光のムラが発生し得る。具体的には、図2、図3に示された光学シート30において、光学シート30の面に対して垂直な方向、すなわち図2、図3に厚さ方向として示している方向への撓みが、ユーザ(観察者)から見たときの光のムラの発生に影響を及ぼす。このような光学シート30の撓みの方向のうち、特に図2に示した光学シート30の厚さ方向への撓み、すなわち光学機能層32の複数の光透過部33とルーバ部34が交互に配列される方向(図2で「鉛直方向」とされている方向)に対して図2の紙面内で直交する方向への撓みが、ユーザ(観察者)から見たときの光のムラの発生に大きく影響する。 When the optical sheet 30 including the optical functional layer 32 having the above-described configuration is bent, unevenness of light when viewed from the user (observer) may occur. Specifically, in the optical sheet 30 shown in FIGS. 2 and 3, the deflection in the direction perpendicular to the surface of the optical sheet 30, that is, the direction shown as the thickness direction in FIGS. 2 and 3 is , Affects the occurrence of light unevenness when viewed from the user (observer). Among such bending directions of the optical sheet 30, in particular, bending in the thickness direction of the optical sheet 30 shown in FIG. 2, that is, a plurality of light transmitting portions 33 and louver portions 34 of the optical functional layer 32 are alternately arranged. The deflection in the direction orthogonal to the direction (the direction designated as the "vertical direction" in FIG. 2) in the paper surface of FIG. 2 causes unevenness of light when viewed from the user (observer). It has a big influence.
[光学シートの作製方法]
 次に、図6から図8を参照しながら、光学シート30の作製方法について説明する。図6から図8は、光学シート30の作製工程の説明図である。
[Method of manufacturing optical sheet]
Next, a method of manufacturing the optical sheet 30 will be described with reference to FIGS. 6 to 8. 6 to 8 are explanatory views of a manufacturing process of the optical sheet 30.
 上述したように、光学シート30の基材層31a、及び任意的に設けられる第2の基材層31bは、いずれもポリエステルフィルムとされている。ポリエステルフィルムは、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を用いることができる。 As described above, the base material layer 31a of the optical sheet 30 and the optional second base material layer 31b are both made of polyester film. The polyester film can be obtained by condensing an arbitrary dicarboxylic acid with a diol. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid. Acid, diphenoxyetanedicarboxylic acid, diphenylsulfoncarboxylic acid, anthracendicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimeric acid, sebacic acid, suberic acid, dodecadicarboxylic acid and the like can be used.
 ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等を用いることができる。 Examples of the diol include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, and 1,4. -Butandiol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like can be used.
 ポリエステルフィルムを構成するジカルボン酸成分とジオール成分は、それぞれ1種又は2種以上を用いてもよい。ポリエステルフィルムを構成するポリエステル樹脂として、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が用いることができ、好ましくはポリエチレンテレフタレート及びポリエチレンナフタレートであり、好ましくはポリエチレンテレフタレートを用いることができる。ポリエステル樹脂は他の共重合成分を含んでもよい。機械強度の点から、共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、更に好ましくは1.5モル%以下である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れる。また、これらの樹脂は、延伸加工によって容易にリタデーションReを制御することができる。 The dicarboxylic acid component and the diol component constituting the polyester film may be used alone or in combination of two or more. As the polyester resin constituting the polyester film, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like can be used, preferably polyethylene terephthalate and polyethylene naphthalate, and preferably polyethylene terephthalate. it can. The polyester resin may contain other copolymerization components. From the viewpoint of mechanical strength, the proportion of the copolymerization component is preferably 3 mol% or less, preferably 2 mol% or less, and more preferably 1.5 mol% or less. These resins are excellent in transparency as well as thermal and mechanical properties. In addition, these resins can easily control the retardation Re by stretching.
 ポリエステルフィルムは、一般的な製造方法に従って得ることができる。具体的には、ポリエステル樹脂を溶融し、シート状に押し出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理及び必要に応じて弛緩処理を施すことにより、延伸ポリエステルフィルムを得ることができる。延伸ポリエステルフィルムは、一軸延伸フィルムであってもよいし、二軸延伸フィルムであってもよい。例えば後述する実施例1で使用されるポリエステルフィルムは、90~120℃の温度において、縦方向に延伸し、次に横方向に延伸しており、縦方向の延伸倍率は2.0倍、横方向の延伸倍率は4.5倍である。また、延伸倍率が大きくなると、その方向における破断強度が強くなることが知られている。 The polyester film can be obtained according to a general manufacturing method. Specifically, a non-oriented polyester obtained by melting a polyester resin and extruding it into a sheet is stretched in the vertical direction at a temperature equal to or higher than the glass transition temperature by utilizing the speed difference of rolls, and then laterally stretched by a tenter. A stretched polyester film can be obtained by stretching, heat-treating, and if necessary, relaxing treatment. The stretched polyester film may be a uniaxially stretched film or a biaxially stretched film. For example, the polyester film used in Example 1 described later is stretched in the vertical direction and then in the horizontal direction at a temperature of 90 to 120 ° C., and the stretching ratio in the vertical direction is 2.0 times and the horizontal direction. The draw ratio in the direction is 4.5 times. Further, it is known that as the draw ratio increases, the breaking strength in that direction increases.
 ポリエステルフィルムの厚みは任意であり、例えば、15~300μmの範囲、好ましくは30~200μmの範囲で適宜設定できる。 The thickness of the polyester film is arbitrary, and can be appropriately set in the range of, for example, 15 to 300 μm, preferably 30 to 200 μm.
 以上のように形成されたポリエステルフィルムである基材層31aの一方の面に、光透過部33を形成する。図6に示されるように、光透過部33の形状が転写できる形状(溝)を表面に有する金型ロールR1と、これに対向するように配置されたニップロールR2との間に、基材層31aとなるポリエステルフィルム310を挿入する。このとき、ポリエステルフィルム310と金型ロールR1との間に、光透過部33(図1、図4等参照)を構成する組成物330を供給しながら、金型ロールR1及びニップロールR2を、図6に矢印で示される方向に回転させる。これにより金型ロールR1の表面に形成された溝(光透過部33の形状を反転した形状)に組成物330が充填され、該組成物330が金型ロールR1の表面形状に沿ったものとなる。 The light transmitting portion 33 is formed on one surface of the base material layer 31a which is the polyester film formed as described above. As shown in FIG. 6, a base material layer is formed between a mold roll R1 having a shape (groove) on which the shape of the light transmitting portion 33 can be transferred and a nip roll R2 arranged so as to face the mold roll R1. The polyester film 310 to be 31a is inserted. At this time, while supplying the composition 330 constituting the light transmitting portion 33 (see FIGS. 1, 4, etc.) between the polyester film 310 and the mold roll R1, the mold roll R1 and the nip roll R2 are shown in FIG. Rotate in the direction indicated by the arrow in 6. As a result, the groove formed on the surface of the mold roll R1 (the shape obtained by reversing the shape of the light transmitting portion 33) is filled with the composition 330, and the composition 330 conforms to the surface shape of the mold roll R1. Become.
 光透過部33を構成する組成物330として、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、ポリチオール系等の電離放射線硬化型の樹脂を用いることができる。 As the composition 330 constituting the light transmitting portion 33, for example, an ionizing radiation curable resin such as an epoxy acrylate type, a urethane acrylate type, a polyether acrylate type, a polyester acrylate type, or a polythiol type can be used.
 金型ロールR1とポリエステルフィルム310との間に挟まれ、ここに充填された組成物330に対し、ポリエステルフィルム310側から光照射装置61によって光線(紫外線等)を照射する。これにより、組成物330が硬化する。そして、離型ロールR3によって、金型ロールR1からポリエステルフィルム310および成形された光透過部33からなる充填前シート36aを離型させる。 The composition 330 sandwiched between the mold roll R1 and the polyester film 310 and filled therein is irradiated with light rays (ultraviolet rays, etc.) from the polyester film 310 side by the light irradiating device 61. As a result, the composition 330 is cured. Then, the mold roll R3 is used to release the pre-filling sheet 36a composed of the polyester film 310 and the molded light transmitting portion 33 from the mold roll R1.
 次に、ルーバ部34を形成する。ルーバ部34を形成するには、図7に示されるように、充填前シート36aの隣り合う光透過部33の間の溝33aに、ルーバ部34を構成する組成物340を過剰に供給する。その後、余剰分の当該組成物340を、ブレード62等によって掻き落とす。そして、溝33aを充填するようにして残った組成物340に光源(図示せず)から光線(紫外線等)を照射する。これにより、組成物340が硬化し、ルーバ部34が形成され、中間シート36bが得られる。後述する第2の基材層31bを貼り合わせないタイプの光学シートについては、この中間シート36bがそのまま光学シート30となる。この光学シート30は、図示しないロールに巻き取られる。所定長さだけ巻き取られると、光学シート30は切断され、巻き取り済のロールは新たなロールに交換されて次の巻き取りを開始する。 Next, the louver portion 34 is formed. In order to form the louver portion 34, as shown in FIG. 7, the composition 340 constituting the louver portion 34 is excessively supplied to the groove 33a between the adjacent light transmitting portions 33 of the pre-filling sheet 36a. Then, the excess composition 340 is scraped off by a blade 62 or the like. Then, the composition 340 remaining so as to fill the groove 33a is irradiated with light rays (ultraviolet rays or the like) from a light source (not shown). As a result, the composition 340 is cured, the louver portion 34 is formed, and the intermediate sheet 36b is obtained. For an optical sheet of a type in which the second base material layer 31b, which will be described later, is not bonded, the intermediate sheet 36b becomes the optical sheet 30 as it is. The optical sheet 30 is wound on a roll (not shown). When the optical sheet 30 is wound by a predetermined length, the optical sheet 30 is cut, and the wound roll is replaced with a new roll to start the next winding.
 ルーバ部34を構成する組成物340として、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、およびブタジエン(メタ)アクリレート等の光硬化型樹脂を用いることができる。また、これらの樹脂に、着色された光吸収粒子が分散しているものを用いることもできる。 As the composition 340 constituting the louver portion 34, for example, a photocurable resin such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and butadiene (meth) acrylate can be used. Further, those resins in which colored light absorbing particles are dispersed can also be used.
 また光吸収粒子を分散させる代わりに顔料や染料によりルーバ部全体を着色することもできる。光吸収粒子を用いる場合には、カーボンブラック等の光吸収性の着色粒子が好ましく用いられるが、これらに限定されるものではなく、映像光の特性に合わせて特定の波長を選択的に吸収する着色粒子を使用してもよい。具体的には、カーボンブラック、グラファイト、黒色酸化鉄等の金属塩、染料、顔料等で着色した有機微粒子や着色したガラスビーズ等を挙げることができる。特に、着色した有機微粒子が、コスト面、品質面、入手の容易さ等の観点から好ましく用いられる。着色粒子の平均粒子径は1.0μm以上20μm以下であることが好ましい。ここで「平均粒子径」とは、光吸収粒子を100個電子顕微鏡で観察してその直径を計り、算術平均した直径を意味する。 Also, instead of dispersing the light absorbing particles, the entire louver part can be colored with a pigment or dye. When light absorbing particles are used, light absorbing colored particles such as carbon black are preferably used, but the present invention is not limited to these, and specific wavelengths are selectively absorbed according to the characteristics of image light. Colored particles may be used. Specific examples thereof include organic fine particles colored with metal salts such as carbon black, graphite and black iron oxide, dyes and pigments, and colored glass beads. In particular, colored organic fine particles are preferably used from the viewpoints of cost, quality, availability, and the like. The average particle size of the colored particles is preferably 1.0 μm or more and 20 μm or less. Here, the "average particle size" means an arithmetically averaged diameter obtained by observing 100 light absorbing particles with an electron microscope and measuring their diameters.
 基材層31a、第2の基材層31bの両方を備えるタイプの光学シートを製造する場合は、中間シート36bに、さらに第2の基材層31bを貼り合わせる。具体的には、図8に示されるように、ロールR4から、中間シート36bを送り出すとともに、ロールR5から、同方向に第2の基材層31bとなるポリエステルフィルム310を送り出す。この際、中間シート36bの基材層31aと第2の基材層31b(ポリエステルフィルム310)の流れ方向を一致させて貼り合わせることにより、位相差に基づく偏光の乱れや、それに伴う色彩ムラの発生や透過率の低下を防止することができる。中間シート36b及びポリエステルフィルム310は、ローラ380によって互いに接近するように案内され、一体化する。このとき、ポリエステルフィルム310は、光透過部33やルーバ部34を挟んで基材層31aと対向するように配置される。中間シート36bとポリエステルフィルム310との間に、アクリル粘着剤等の粘着剤から成る不図示の接着層を配置することにより、両者を貼り合わせることができる。そして貼り合わせにより完成した光学シート30は、ロールR6に巻き取られる。所定長さだけ巻き取られると、光学シート30は切断され、巻き取り済のロールR6は新たなロールR6に交換されて次の巻き取りを開始する。 When manufacturing an optical sheet of a type including both the base material layer 31a and the second base material layer 31b, the second base material layer 31b is further attached to the intermediate sheet 36b. Specifically, as shown in FIG. 8, the intermediate sheet 36b is sent out from the roll R4, and the polyester film 310 serving as the second base material layer 31b is sent out from the roll R5 in the same direction. At this time, by matching the flow directions of the base material layer 31a of the intermediate sheet 36b and the second base material layer 31b (polyester film 310) and sticking them together, the disturbance of polarization based on the phase difference and the accompanying color unevenness are caused. It is possible to prevent the occurrence and decrease in transmittance. The intermediate sheet 36b and the polyester film 310 are guided by rollers 380 so as to approach each other and are integrated. At this time, the polyester film 310 is arranged so as to face the base material layer 31a with the light transmitting portion 33 and the louver portion 34 interposed therebetween. By arranging an adhesive layer (not shown) made of an adhesive such as an acrylic adhesive between the intermediate sheet 36b and the polyester film 310, both can be bonded together. Then, the optical sheet 30 completed by bonding is wound around the roll R6. When the optical sheet 30 is wound by a predetermined length, the optical sheet 30 is cut, and the wound roll R6 is replaced with a new roll R6 to start the next winding.
 光学機能層32において、第2の基材層31bの代わりに図示しない保護層を設ける場合は、上述したポリエステルフィルム310代わりに保護層となるシートを、ロールやUV接着剤等を用いて貼り合わせることが可能である。また、追加的に保護層を設ける場合も、ロールやUV接着剤等を用いて貼り合わせて更に積層することが可能である。 When a protective layer (not shown) is provided in place of the second base material layer 31b in the optical functional layer 32, a sheet serving as a protective layer instead of the polyester film 310 described above is bonded to each other using a roll, a UV adhesive, or the like. It is possible. Further, when an additional protective layer is provided, it is possible to bond them together using a roll, a UV adhesive, or the like to further laminate them.
 このように、光学シートを製造するにあたって、複数のロール間での光学シートの受け渡し、すなわちロールトゥロール工程が存在し、最終的にまたロールに巻き取られることになる。 In this way, in manufacturing the optical sheet, there is a transfer of the optical sheet between a plurality of rolls, that is, a roll-to-roll process, and the optical sheet is finally wound up on the roll again.
 このように製造された光学シートに関し、2通りの試験方法について説明する。第1の試験方法は垂れ下がり量試験と屈曲性試験の組み合わせによる試験である。第2の試験方法は吸水率試験による試験である。それぞれ以下の通り説明する。 Regarding the optical sheet manufactured in this way, two test methods will be described. The first test method is a test by a combination of a sagging amount test and a flexibility test. The second test method is a water absorption test. Each will be described as follows.
[第1の試験方法(垂れ下がり量試験及び屈曲性試験)]
以下に説明する光学シートを用いて試験を行う。
[First test method (hanging amount test and flexibility test)]
The test is performed using the optical sheet described below.
(実施例1)
 実施例1に係る光学シートの具体的な形状は次のとおりである。
(Example 1)
The specific shape of the optical sheet according to the first embodiment is as follows.
 <基材層>
・材料:ポリエステルフィルム
・厚み:80μm
 <光学機能層>
・ピッチ(図4参照):Pk=39μm
・ルーバ部上底幅:4μm(図4のWa)
・ルーバ部下底幅:10μm(図4のWb)
・斜面角度:一方が0°、もう一方が3°(図4のθk)
・ルーバ部の厚み(図4参照):Dk=102μm
・光学機能層の厚み:127μm
・光透過部の材料及び屈折率:屈折率1.57の紫外線硬化型ウレタンアクリレート
・ルーバ部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレートに平均粒径4μmのアクリルビーズの表層にカーボンブラックを含有させた黒ビーズを20質量%分散
 <第2の基材層>
 上記光学機能層の上記基材層と反対側の面に更に以下のような第2の基材層をアクリル粘着剤によって貼り合わせた。
・材料:ポリエステルフィルム
・厚み:80μm
<Base layer>
-Material: Polyester film-Thickness: 80 μm
<Optical functional layer>
-Pitch (see FIG. 4): Pk = 39 μm
・ Louver upper bottom width: 4 μm (Wa in Fig. 4)
・ Lower bottom width of louver: 10 μm (Wb in FIG. 4)
-Slope angle: 0 ° on one side and 3 ° on the other (θk in Fig. 4)
-Thickness of the louver (see FIG. 4): Dk = 102 μm
-Thickness of optical functional layer: 127 μm
-Material and refractive index of the light transmitting part: UV-curable urethane acrylate with a refractive index of 1.57-Material and refractive index of the louver part: UV-curable urethane acrylate with a refractive index of 1.49 and acrylic beads with an average particle size of 4 μm 20% by mass of black beads containing carbon black on the surface layer <second base material layer>
The following second base material layer was further bonded to the surface of the optical functional layer opposite to the base material layer with an acrylic pressure-sensitive adhesive.
-Material: Polyester film-Thickness: 80 μm
(実施例2)
 実施例1に係る光学シートにおいて、基材層及び第2の基材層の材料をそれぞれセルローストリアセテート(TAC)樹脂に変更して、基材層及び第2の基材層の厚みをそれぞれ60μmに変更して貼り合わせて、実施例2に係る光学シートを作製した。
(Example 2)
In the optical sheet according to Example 1, the materials of the base material layer and the second base material layer are changed to cellulose triacetate (TAC) resin, respectively, and the thickness of the base material layer and the second base material layer is 60 μm, respectively. The optical sheet according to Example 2 was prepared by changing and laminating.
(実施例3)
 実施例1に係る光学シートにおいて、基材層及び第2の基材層の材料をそれぞれポリカーボネート(PC)樹脂に変更して、基材層及び第2の基材層の厚みをそれぞれ130μmに変更して貼り合わせて、実施例3に係る光学シートを作製した。
(Example 3)
In the optical sheet according to Example 1, the materials of the base material layer and the second base material layer are changed to polycarbonate (PC) resin, respectively, and the thicknesses of the base material layer and the second base material layer are changed to 130 μm, respectively. And bonded together to prepare an optical sheet according to Example 3.
(比較例1)
 実施例1に係る光学シートにおいて、基材層の材料をポリカーボネート樹脂に変更して、基材層の厚みを130μmに変更し、さらに第2の基材層を貼り合わせずに、比較例1に係る光学シートを作製した。
(Comparative Example 1)
In the optical sheet according to Example 1, the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 130 μm, and the second base material layer was not bonded to the optical sheet. Such an optical sheet was produced.
(比較例2)
 実施例1に係る光学シートにおいて、基材層の材料をポリカーボネート樹脂に変更して、基材層の厚みを250μmに変更し、さらに第2の基材層を貼り合わせずに、比較例2に係る光学シートを作製した。
(Comparative Example 2)
In the optical sheet according to Example 1, the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 250 μm, and the second base material layer was not bonded to Comparative Example 2. Such an optical sheet was produced.
(比較例3)
 実施例1に係る光学シートにおいて、基材層の材料をポリカーボネート樹脂に変更して、基材層の厚みを500μmに変更し、さらに第2の基材層を貼り合わせずに、比較例3に係る光学シートを作製した。
(Comparative Example 3)
In the optical sheet according to Example 1, the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 500 μm, and the second base material layer was not bonded to the optical sheet in Comparative Example 3. Such an optical sheet was produced.
 上述したように、光学シート30の基材層31a、第2の基材層31bの材質や、光学機能層32の構成、そして粘着剤には様々な組み合わせがあり、完成した光学シート30は様々な物理的特性を有し得る。そのような種々の光学シート30のうち、液晶表示装置、車載用の液晶表示装置への使用に適し、かつ製造効率を下げないようなものを、以下に述べる試験により判定する。 As described above, there are various combinations of the materials of the base material layer 31a and the second base material layer 31b of the optical sheet 30, the configuration of the optical functional layer 32, and the adhesive, and the completed optical sheet 30 varies. Can have various physical properties. Among such various optical sheets 30, those that are suitable for use in liquid crystal display devices and in-vehicle liquid crystal display devices and that do not reduce the manufacturing efficiency are determined by the tests described below.
[垂れ下がり量試験]
 光学シート30の垂れ下がり量試験の概要を図9に示す。図9はこの垂れ下がり量試験を行っている様子を側面から見た図である。まず温度25℃、湿度30%の環境下で、上面が平坦な支持台50を用意して、この支持台50の上面に試験の対象となる光学シート30を平らに配置する。次に支持台50の端部から、光学シート30の光学機能層32の複数の光透過部33とルーバ部34が交互に配列される(図9には示されていない)方向に沿って、光学シート30の一端を100mm突出させる。(図示しない仮支持部を使用して、仮支持部の上に光学シート30の一端を載せて100mm突出させ、その後仮支持部を取り外すようにしてもよい。)突出させた状態で、垂れ下がる前の光学シート30を破線で示す。上記段落0039で説明したような、光のムラの発生に関して影響が大きい方向への撓み、すなわち光学機能層32の複数の光透過部33とルーバ部34が交互に配列される方向(図2で「鉛直方向」とされている方向)に対して紙面内で直交する方向への撓みについて、この撓みやすさを垂れ下がり量試験で測定することができる。なお、光学シート30の光学機能層32の複数の光透過部33とルーバ部34が交互に配列される方向は、図8に示す製造工程において、光学シート30の流れ方向に直交する幅方向に対応する。
[Dripping amount test]
FIG. 9 shows an outline of the sagging amount test of the optical sheet 30. FIG. 9 is a side view of the state of performing this sagging amount test. First, in an environment of a temperature of 25 ° C. and a humidity of 30%, a support base 50 having a flat upper surface is prepared, and an optical sheet 30 to be tested is placed flat on the upper surface of the support base 50. Next, from the end of the support base 50, along the direction in which the plurality of light transmitting portions 33 and the louver portions 34 of the optical functional layer 32 of the optical sheet 30 are alternately arranged (not shown in FIG. 9). One end of the optical sheet 30 is projected by 100 mm. (A temporary support portion (not shown) may be used to place one end of the optical sheet 30 on the temporary support portion and project it by 100 mm, and then remove the temporary support portion.) In the projected state, before hanging down. The optical sheet 30 of the above is shown by a broken line. As described in paragraph 0039 above, bending in a direction that has a large effect on the occurrence of light unevenness, that is, a direction in which a plurality of light transmitting portions 33 and louver portions 34 of the optical functional layer 32 are alternately arranged (in FIG. 2). Regarding the bending in the direction orthogonal to the "vertical direction") in the paper surface, the easiness of bending can be measured by the sagging amount test. The direction in which the plurality of light transmitting portions 33 and the louver portions 34 of the optical functional layer 32 of the optical sheet 30 are alternately arranged is the width direction orthogonal to the flow direction of the optical sheet 30 in the manufacturing process shown in FIG. Correspond.
 光学シート30のうち突出した部分の長さが100mmであるのに対し、光学シート30のうち支持台50の上面に配置されている部分(すなわち支持台50から突出していない部分)の長さは、100mm以上あることが好ましい。そして、光学シート30のうち、支持台50の上面に配置されている部分を上から押えるように、板状のシート押え51を光学シート30の上に置いて、光学シート30を支持台50上に保持する。シート押え51の重さは、後述するように試験中に光学シート30が支持台50の上面から浮き上がらないような重さを適宜選択する。この重さは光学シート30の大きさにもよるが、数百グラムから数キログラムの範囲から選択可能である。支持台50の端部から100mm突出した光学シート30は、自重により、下方へと垂れ下がる。垂れ下がった状態の光学シート30を実線で示す。このとき、シート押え51が光学シート30のうち支持台50の上面に配置されている部分を上から押えているので、光学シート30のうち特に支持台50の端部付近にある部分が、光学シート30の突出部の垂れ下がりに伴って支持台50の上面から浮き上がることを防いでいる。このようにすることで垂れ下がり量を正確に計測することができる。支持台50の上面に配置された光学シート30の高さと、垂れ下がった光学シート30の端部の高さの差をとり、この値を垂れ下がり量Fとする。光学シート30の剛性が高ければ、この垂れ下がり量Fは少なく、剛性が低ければ、垂れ下がり量Fは大きい。 The length of the protruding portion of the optical sheet 30 is 100 mm, whereas the length of the portion of the optical sheet 30 arranged on the upper surface of the support base 50 (that is, the portion not protruding from the support base 50) is , 100 mm or more is preferable. Then, the plate-shaped sheet retainer 51 is placed on the optical sheet 30 so as to press the portion of the optical sheet 30 arranged on the upper surface of the support base 50 from above, and the optical sheet 30 is placed on the support base 50. Hold on. The weight of the sheet retainer 51 is appropriately selected so that the optical sheet 30 does not rise from the upper surface of the support base 50 during the test, as will be described later. This weight depends on the size of the optical sheet 30, but can be selected from the range of several hundred grams to several kilograms. The optical sheet 30 projecting 100 mm from the end of the support base 50 hangs downward due to its own weight. The hanging optical sheet 30 is shown by a solid line. At this time, since the sheet retainer 51 presses the portion of the optical sheet 30 that is arranged on the upper surface of the support base 50 from above, the portion of the optical sheet 30 that is particularly near the end of the support base 50 is optical. It prevents the seat 30 from rising from the upper surface of the support base 50 as the protruding portion hangs down. By doing so, the amount of sagging can be measured accurately. The difference between the height of the optical sheet 30 arranged on the upper surface of the support base 50 and the height of the end portion of the hanging optical sheet 30 is taken, and this value is defined as the hanging amount F. If the rigidity of the optical sheet 30 is high, the amount of sagging F is small, and if the rigidity is low, the amount of sagging F is large.
[屈曲性試験]
 光学シート30の製造の際、ロールトゥロール工程が存在するため、光学シート30の剛性が高すぎると、ロールトゥロール工程を伴う製造方法を適用できないおそれがある。対象となる光学シート30がロールトゥロール工程を伴う製造方法により製造可能であるか否かを判定するため、屈曲性試験を行う。屈曲性試験は、光学シート30の屈曲性を確認するための試験であり、JIS K 5600-5-1に基づいて行われる。JIS K 5600-5は、塗料一般試験方法に関する規格であり、特に塗膜の機械的性質に関する試験方法に関する規格である。そして、JIS K 5600-5-1は、塗膜の機械的性質の中でも、特に耐屈曲性(円筒形マンドレル法)に関するものであるが、本発明においては、これを光学シートの屈曲性試験に応用したものである。
[Flexibility test]
Since a roll-to-roll step is present in the manufacture of the optical sheet 30, if the rigidity of the optical sheet 30 is too high, the manufacturing method involving the roll-to-roll step may not be applicable. A flexibility test is performed to determine whether or not the target optical sheet 30 can be manufactured by a manufacturing method involving a roll-to-roll step. The flexibility test is a test for confirming the flexibility of the optical sheet 30, and is performed based on JIS K 5600-5-1. JIS K 5600-5 is a standard relating to a general coating test method, and in particular, a standard relating to a test method relating to the mechanical properties of a coating film. JIS K 5600-5-1 relates to bending resistance (cylindrical mandrel method) among the mechanical properties of the coating film, but in the present invention, this is used for the bending test of the optical sheet. It is an application.
 本発明における屈曲性試験は、JIS K 5600-5-1に規定された2種類の試験装置のうち、タイプ2の試験装置を使用する。規格上、タイプ2の試験装置は、マンドレルの直径が6、10、13mmのもののうち一つと組み合わせて用いられることが規定されているが、タイプ2の試験装置で他の直径のマンドレルを用いても良いことが規格に注記されている。本発明の屈曲性試験では、タイプ2の試験装置で、直径150mmの円筒形マンドレルを用いて光学シートの屈曲性を試験した。 The flexibility test in the present invention uses a type 2 test device out of the two types of test devices specified in JIS K 5600-5-1. The standard stipulates that the type 2 test equipment is used in combination with one of the mandrel diameters of 6, 10, and 13 mm, but the type 2 test equipment uses a mandrel of another diameter. It is noted in the standard that it is also good. In the flexibility test of the present invention, the flexibility of the optical sheet was tested using a cylindrical mandrel having a diameter of 150 mm with a type 2 test apparatus.
 屈曲性試験は、光学シート30を試験装置のマンドレルに巻き付けるように折り曲げて、光学シート30に割れが生じているかどうかを目視により確認することで行われた。図8に示す光学シート30の製造時の流れ方向に沿って、すなわち光学シート30の光学機能層32の前記複数の光透過部33とルーバ部34が交互に配列される(図8には示されていない)方向に対して光学シート30面内で直交する方向に沿って、光学シート30をマンドレルに巻き付けるようにして折り曲げた。これは屈曲性試験の際の光学シート30の状況を、光学シート30の製造時のロールトゥロール工程に対応させるためのものである。割れが生じていない場合は「合格」と判定し、割れが生じたものについては、「割れ発生」として判定した。 The flexibility test was performed by bending the optical sheet 30 so as to be wound around the mandrel of the test device and visually confirming whether or not the optical sheet 30 was cracked. The plurality of light transmitting portions 33 and louver portions 34 of the optical functional layer 32 of the optical sheet 30 are alternately arranged along the flow direction at the time of manufacturing the optical sheet 30 shown in FIG. 8 (shown in FIG. 8). The optical sheet 30 was bent so as to be wound around the mandrel along a direction orthogonal to the direction (not shown) in the plane of the optical sheet 30. This is for making the state of the optical sheet 30 at the time of the flexibility test correspond to the roll-to-roll process at the time of manufacturing the optical sheet 30. If there was no crack, it was judged as "pass", and if it was cracked, it was judged as "cracked".
[光のムラの確認]
 光のムラの発生については、各実施例及び比較例の光学シートを12.3インチIPS液晶ディスプレイに実装し、温度95℃の環境において1000時間、温度-45℃の環境において1000時間、の信頼性試験を行った液晶ディスプレイを動作させた際の光のムラの有無を目視により確認した。
[Confirmation of uneven light]
Regarding the occurrence of light unevenness, the optical sheets of each example and comparative example were mounted on a 12.3 inch IPS liquid crystal display, and the reliability was 1000 hours in an environment of 95 ° C. and 1000 hours in an environment of −45 ° C. It was visually confirmed whether or not there was unevenness in light when the liquid crystal display subjected to the sex test was operated.
 表1は、各実施例及び比較例に関する垂れ下がり量試験の測定結果、屈曲性試験の判定結果、及び光のムラの確認結果を示すものである。 Table 1 shows the measurement results of the sagging amount test, the judgment result of the flexibility test, and the confirmation result of light unevenness for each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これらの結果から、垂れ下がり量が10.0mm以下の光学シートに関しては、いずれも光のムラが発生しないことが分かった。一方、垂れ下がり量が10.0mm以下であっても、屈曲性試験で割れが発生したもの(比較例3)については、製品において光のムラが発生しないが、ロールトゥロール工程を伴う製造方法での製造効率に影響を及ぼすため、適切ではない。よって、光学シートを支持台上に配置して、その一端を支持台の端部から100mm突出させたときの垂れ下がり量が10mm以下であり、かつ光学シートを直径150mmのマンドレルに巻き付けるように折り曲げたときに割れを生じないような光学シート(実施例1~3)が適切であることが分かった。 From these results, it was found that light unevenness did not occur in any of the optical sheets with a sagging amount of 10.0 mm or less. On the other hand, even if the amount of sagging is 10.0 mm or less, in the case where cracks occur in the flexibility test (Comparative Example 3), light unevenness does not occur in the product, but a manufacturing method involving a roll-to-roll step is used. It is not appropriate because it affects the manufacturing efficiency of. Therefore, when the optical sheet is arranged on the support base and one end thereof is projected 100 mm from the end portion of the support base, the amount of sagging is 10 mm or less, and the optical sheet is bent so as to be wound around a mandrel having a diameter of 150 mm. It has been found that optical sheets (Examples 1 to 3) that do not occasionally crack are suitable.
 すなわち、比較例に比べて、液晶表示装置に実装した際も撓みにくく光のムラの発生を抑制することが可能である一方で、製造効率の低下も防ぐことが可能となる。 That is, as compared with the comparative example, it is possible to suppress the occurrence of unevenness of light even when it is mounted on a liquid crystal display device, and it is also possible to prevent a decrease in manufacturing efficiency.
 また、この結果に基づいて、所定の構成の光学シートが、液晶表示装置、特に車載用の液晶表示装置への使用に好適であり、そして所定の製造効率を確保可能であるかどうかを容易に判定することができる。すなわち、まず使用候補となる光学シートを準備し、この光学シートの垂れ下がり量を上述した手法により測定して、垂れ下がり量が10mm以下であるか否かを判定する。また、この光学シートを上述したように直径150mmのマンドレルに巻き付けるように折り曲げて、割れを生じるか否かを判定する。そして、垂れ下がり量が10mm以下であると判定され、かつマンドレルに巻き付けるように折り曲げた際に割れを生じなかったと判定された光学シートの構成を採用して、光学シートを製造する合格と判定された光学シートの構成(材料及び構造等)を採用して、上述したような光学シートの製造方法に従い、液晶表示装置、特に車載用の液晶表示装置への使用に好適かつ製造効率が低下しない光学シートを製造することができる。 Further, based on this result, it is easy to determine whether or not the optical sheet having a predetermined configuration is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device, and can secure a predetermined manufacturing efficiency. It can be determined. That is, first, an optical sheet as a candidate for use is prepared, and the amount of sagging of this optical sheet is measured by the above-mentioned method to determine whether or not the amount of sagging is 10 mm or less. Further, as described above, the optical sheet is bent so as to be wound around a mandrel having a diameter of 150 mm, and it is determined whether or not cracks occur. Then, it was determined that the amount of sagging was 10 mm or less, and the optical sheet was determined to have not cracked when bent so as to be wound around the mandrel, and the optical sheet was determined to be acceptable for manufacturing. An optical sheet that adopts the optical sheet configuration (material, structure, etc.) and is suitable for use in liquid crystal display devices, especially in-vehicle liquid crystal display devices, and does not reduce manufacturing efficiency, according to the optical sheet manufacturing method as described above. Can be manufactured.
[第2の試験方法(吸水率試験)]
 上述した第1の試験方法(垂れ下がり量試験及び屈曲性試験)とは別の第2の試験方法、すなわち吸水率試験について以下の通り説明する。まず、吸水率試験に使用されたサンプルは以下の通りである。
[Second test method (water absorption rate test)]
A second test method different from the above-mentioned first test method (hanging amount test and flexibility test), that is, a water absorption rate test will be described as follows. First, the samples used in the water absorption test are as follows.
(実施例1’)
 実施例1’に係る光学シートは上述した第1の試験方法における実施例1と同じものを使用した。
(Example 1')
The same optical sheet as in Example 1 in the first test method described above was used as the optical sheet according to Example 1'.
(実施例2’)
 実施例1’に係る光学シートにおいて、基材層の材料をポリカーボネート(PC)樹脂に変更して、基材層の厚みを130μmに変更し、さらに第2の基材層を貼り合わせずに、実施例2’に係る光学シートを作製した。
(Example 2')
In the optical sheet according to Example 1', the material of the base material layer is changed to polycarbonate (PC) resin, the thickness of the base material layer is changed to 130 μm, and the second base material layer is not bonded. An optical sheet according to Example 2'was produced.
(実施例3’)
 実施例1’に係る光学シートにおいて、基材層の材料をポリカーボネート樹脂に変更して、基材層の厚みを130μmに変更し、さらに第2の基材層の材料をポリカーボネート樹脂に変更し、第2の基材層の厚みを100μmに変更して貼り合わせて、実施例3’に係る光学シートを作製した。
(Example 3')
In the optical sheet according to Example 1', the material of the base material layer was changed to polycarbonate resin, the thickness of the base material layer was changed to 130 μm, and the material of the second base material layer was changed to polycarbonate resin. The thickness of the second base material layer was changed to 100 μm and bonded to prepare an optical sheet according to Example 3'.
(実施例4’)
 実施例1’に係る光学シートにおいて、基材層の材料をポリカーボネート樹脂に変更して、基材層の厚みを250μmに変更し、さらに第2の基材層を貼り合わせずに、実施例4’に係る光学シートを作製した。
(Example 4')
In the optical sheet according to Example 1', the material of the base material layer is changed to polycarbonate resin, the thickness of the base material layer is changed to 250 μm, and the second base material layer is not bonded. An optical sheet according to ‘’ was produced.
(比較例1’)
 実施例1’に係る光学シートにおいて、基材層及び第2の基材層の材料をそれぞれセルローストリアセテート(TAC)樹脂に変更して、基材層及び第2の基材層の厚みを60μmに変更し、その他は同じ条件を有する比較例に係る光学シートを作製した。
(Comparative Example 1')
In the optical sheet according to Example 1', the materials of the base material layer and the second base material layer are changed to cellulose triacetate (TAC) resin, respectively, so that the thickness of the base material layer and the second base material layer is 60 μm. An optical sheet according to a comparative example having the same conditions as the others was prepared.
[吸水率の測定]
 上述した構成を有する、液晶表示装置に使用可能な光学シートについて、以下のようにして吸水率の測定を行う。この測定はJIS K 7209に基づいて行われる。各実施例及び比較例のサンプルに対して行われた2通りの測定の概要を以下に示す。
(1)23℃24h浸水時吸水率
 十分に乾燥させたサンプルの重量を基準値として計測した後、23.0℃の蒸留水に完全に浸して24時間放置する。その後、サンプルを水から取り出してその重量を計測して、水に浸す前と後とのサンプルの重量差と、基準値に基づいて吸水率を求める。
(2)50℃24h乾燥時吸水率
 十分に乾燥させたサンプルの重量を基準値として計測した後、このサンプルを23.0℃の蒸留水に完全に浸して24時間放置する。その後、サンプルを水から取り出してその重量を計測した後、サンプルを50℃に保持したオーブンで24時間乾燥させる。その後、重量を計測して、乾燥前と後とのサンプルの重量差と、基準値に基づいて吸水率を求める。試験の過程でサンプルの重量は減少するため、変化率としての吸水率は負の値となるが、実際の吸水率としてはその絶対値を取る。
[Measurement of water absorption rate]
The water absorption rate of the optical sheet having the above-described configuration and which can be used in the liquid crystal display device is measured as follows. This measurement is made based on JIS K 7209. The outline of the two measurements performed on the samples of each example and comparative example is shown below.
(1) Water absorption rate when submerged at 23 ° C for 24 hours After measuring the weight of a sufficiently dried sample as a reference value, completely immerse it in distilled water at 23.0 ° C and leave it for 24 hours. After that, the sample is taken out from water, the weight thereof is measured, and the water absorption rate is determined based on the weight difference between the sample before and after immersion in water and the reference value.
(2) Water absorption rate when dried at 50 ° C for 24 hours After measuring the weight of a sufficiently dried sample as a reference value, the sample is completely immersed in distilled water at 23.0 ° C and left for 24 hours. Then, the sample is taken out of water, weighed, and then dried in an oven maintained at 50 ° C. for 24 hours. After that, the weight is measured, and the water absorption rate is determined based on the weight difference between the sample before and after drying and the reference value. Since the weight of the sample decreases in the process of the test, the water absorption rate as the rate of change becomes a negative value, but the actual water absorption rate takes the absolute value.
[光のムラの確認]
 光のムラの発生については、各実施例及び比較例の光学シートを12.3インチIPS液晶ディスプレイに実装して、温度65℃、湿度95%の環境において1000時間経過した後の光のムラの有無を目視により確認した。
[Confirmation of uneven light]
Regarding the occurrence of light unevenness, the optical sheets of each example and comparative example were mounted on a 12.3 inch IPS liquid crystal display, and after 1000 hours had passed in an environment of a temperature of 65 ° C. and a humidity of 95%, the light unevenness was generated. The presence or absence was visually confirmed.
 表2は、各実施例及び比較例に関する吸水率の測定結果及び光のムラの確認結果を示すものである。なお、表2の各実施例及び比較例について、その基材層の材料である、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、セルローストリアセテート樹脂の線膨張係数も合わせて示している。 Table 2 shows the measurement results of the water absorption rate and the confirmation results of light unevenness for each Example and Comparative Example. The linear expansion coefficients of polyethylene terephthalate resin, polycarbonate resin, and cellulose triacetate resin, which are the materials of the base material, are also shown for each of the Examples and Comparative Examples in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、吸水率が1.33%以下の各実施例についてはすべて光のムラが発生しなかったのに対し、吸水率が1.33%よりも大きい、2.60%の吸水率を有する比較例1については、光のムラが発生した。 As shown in Table 2, light unevenness did not occur in all the examples having a water absorption rate of 1.33% or less, whereas the water absorption rate was larger than 1.33%, 2.60%. In Comparative Example 1 having the water absorption rate of No. 1, uneven light occurred.
 実験を繰り返すことにより、光学シートの吸水による光学シートの変形が光のムラの発生に寄与するという知見が得られた。実験結果によると、吸水率が1.33%以下の光学シートであれば、光のムラは発生しない。ただし、高温環境下での製品の使用を想定すると、更に光学シートの熱膨張(基材層の寄与が支配的であると考えられる)も合わせて考慮することができ、光学シートの基材層の線熱膨張係数が4.9~5.6(×10-5/℃)の範囲内にあることがより好ましいことが分かった。 By repeating the experiment, it was found that the deformation of the optical sheet due to water absorption of the optical sheet contributes to the occurrence of light unevenness. According to the experimental results, if the optical sheet has a water absorption rate of 1.33% or less, light unevenness does not occur. However, assuming the use of the product in a high temperature environment, the thermal expansion of the optical sheet (the contribution of the base material layer is considered to be dominant) can also be taken into consideration, and the base material layer of the optical sheet can be considered. It was found that it is more preferable that the coefficient of linear thermal expansion of the above is in the range of 4.9 to 5.6 (× 10 -5 / ° C.).
 すなわち、実施例1’~4’によれば、比較例1’に比べて、光のムラの発生を抑制することができる。 That is, according to Examples 1'to 4', the occurrence of light unevenness can be suppressed as compared with Comparative Example 1'.
 また、第2の試験方法の結果に基づいて、所定の構成の光学シートが、液晶表示装置、特に車載用の液晶表示装置への使用に好適か否かを容易に判定することができる。すなわち、まず使用候補となる光学シートを準備して、この光学シートの吸水率をJIS K 7209に基づく吸水率試験により測定する。次に、測定された吸水率が閾値である1.33%以下であるか否か比較する。この比較の結果、光学シートの吸水率が1.33%以下であれば合格とし、光学シートの吸水率が1.33%よりも大きければ不合格として、判定を行う。そして、合格と判定された光学シートの構成(材料及び構造等)を採用して、上述したような光学シートの製造方法に従い、液晶表示装置、特に車載用の液晶表示装置への使用に好適な光学シートを製造することができる。 Further, based on the result of the second test method, it can be easily determined whether or not the optical sheet having a predetermined configuration is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device. That is, first, an optical sheet as a candidate for use is prepared, and the water absorption rate of this optical sheet is measured by a water absorption rate test based on JIS K7209. Next, it is compared whether or not the measured water absorption rate is 1.33% or less, which is the threshold value. As a result of this comparison, if the water absorption rate of the optical sheet is 1.33% or less, it is judged as acceptable, and if the water absorption rate of the optical sheet is larger than 1.33%, it is judged as rejected. Then, by adopting the structure (material, structure, etc.) of the optical sheet judged to be acceptable, it is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device, according to the above-mentioned manufacturing method of the optical sheet. Optical sheets can be manufactured.
 以上説明した第1の試験方法(垂れ下がり量試験及び屈曲性試験)、又は第2の試験方法(吸水率試験)に基づいて、液晶表示装置、特に車載用の液晶表示装置への使用に好適な光学シートをそれぞれ容易に判別することが可能であるが、これらの試験を組み合わせて、更に好適な光学シートを判別することが可能である。 Based on the first test method (hanging amount test and flexibility test) or the second test method (water absorption rate test) described above, it is suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device. Although each optical sheet can be easily discriminated, it is possible to further discriminate a more suitable optical sheet by combining these tests.
 具体的には、上述した第1の試験方法(垂れ下がり量試験及び屈曲性試験)の実施例1と第2の試験方法(吸水率試験)の実施例1’は同じ構成を有する光学シートであり、いずれの試験に伴う光のムラの確認の際もムラが発生することが無く、好適な光学シートであると判別できる。また、第1の試験方法(垂れ下がり量試験及び屈曲性試験)の実施例2と第2の試験方法(吸水率試験)の比較例1’は同じ構成を有する光学シートであり、垂れ下がり量試験及び屈曲性試験に伴う光のムラの確認の際はムラが発生しなかったが、吸水率試験に伴う光のムラの確認の際はムラが発生した。また、第1の試験方法(垂れ下がり量試験及び屈曲性試験)の比較例1は、第2の試験方法(吸水率試験)の実施例2’に対応する光学シートである。この光学シートは、吸水率試験に伴う光のムラの確認の際はムラが発生しなかったが、垂れ下がり量試験及び屈曲性試験に伴う光のムラの確認の際はムラが発生した。これらは、垂れ下がり量試験及び屈曲性試験に伴う光のムラの確認の際の環境条件と、吸水率試験に伴う光のムラの確認の際の環境条件の差異により生じたものと考えられ、使用環境の湿度の条件に応じてこれらの光学シートの採用の適否を検討すべきであることが示唆される。 Specifically, Example 1 of the above-mentioned first test method (hanging amount test and flexibility test) and Example 1'of the second test method (water absorption rate test) are optical sheets having the same configuration. When confirming the unevenness of light accompanying any of the tests, the unevenness does not occur, and it can be determined that the optical sheet is suitable. Further, Comparative Example 1'of Example 2 of the first test method (hanging amount test and flexibility test) and the second test method (water absorption rate test) are optical sheets having the same configuration, and the hanging amount test and the hanging amount test and No unevenness occurred when confirming the light unevenness accompanying the flexibility test, but unevenness occurred when confirming the light unevenness accompanying the water absorption test. Further, Comparative Example 1 of the first test method (hanging amount test and flexibility test) is an optical sheet corresponding to Example 2'of the second test method (water absorption rate test). In this optical sheet, unevenness did not occur when confirming the unevenness of light accompanying the water absorption test, but unevenness occurred when confirming the unevenness of light accompanying the sagging amount test and the flexibility test. It is probable that these were caused by the difference between the environmental conditions for confirming the light unevenness associated with the sagging amount test and the flexibility test and the environmental conditions for confirming the light unevenness associated with the water absorption rate test. It is suggested that the suitability of adopting these optical sheets should be examined according to the humidity conditions of the environment.
 このように、第1の試験方法(垂れ下がり量試験及び屈曲性試験)と、第2の試験方法(吸水率試験)とを組み合わせることにより、実施例1(実施例1’)の光学シートの構成が特に車載用の液晶表示装置への使用に好適かつ製造効率が低下しない、適切な構成であると判定できる。 In this way, by combining the first test method (hanging amount test and flexibility test) and the second test method (water absorption rate test), the configuration of the optical sheet of Example 1 (Example 1') is configured. However, it can be determined that the configuration is particularly suitable for use in an in-vehicle liquid crystal display device and does not reduce the manufacturing efficiency.
 以上説明した試験方法により、光のムラを抑制する光学シートの適切な構成を見出すことが可能となる。そして、この試験方法により見出された光学シートの構成を採用して、上述した製造方法により光学シートを製造することができる。 By the test method described above, it is possible to find an appropriate configuration of an optical sheet that suppresses unevenness of light. Then, the optical sheet can be manufactured by the above-mentioned manufacturing method by adopting the structure of the optical sheet found by this test method.
 このような試験方法及び製造方法によれば、液晶表示装置、特に車載用の液晶表示装置への使用に好適かつ製造効率が低下しない光学シートを容易に判別及び製造することができる。 According to such a test method and a manufacturing method, it is possible to easily discriminate and manufacture an optical sheet suitable for use in a liquid crystal display device, particularly an in-vehicle liquid crystal display device, and the manufacturing efficiency does not decrease.
 10 液晶表示装置
 14 下偏光板(偏光フィルム)
 30 光学シート
 31a 基材層
 31b 第2の基材層
 32 光学機能層
 33 光透過部
 34 ルーバ部
10 Liquid crystal display device 14 Lower polarizing plate (polarizing film)
30 Optical sheet 31a Base material layer 31b Second base material layer 32 Optical functional layer 33 Light transmitting part 34 Louver part

Claims (6)

  1.  液晶表示装置の反射型偏光板と液晶パネルとの間に設けられる光学シートであって、
     基材層と、
     前記基材層上に積層される光学機能層であって、前記基材層に沿って互いに所定間隔を空けて配列され光を透過させる複数の光透過部と、隣り合う前記光透過部の間に配置され光を反射若しくは吸収するルーバ部と、を有する光学機能層と、を備え、
     前記光学シートは、該光学シートを支持台上に配置して、前記光学機能層の前記複数の光透過部とルーバ部が交互に配列される方向に沿って、該光学シートの一端を支持台の端部から100mm突出させたときの垂れ下がり量が10mm以下であり、かつ前記光学シートは、前記光学機能層の前記複数の光透過部とルーバ部が交互に配列される方向に対して該光学シート面内で直交する方向に沿って、該光学シートを直径150mmのマンドレルに巻き付けるように折り曲げたときに割れを生じない、及び/又は
     前記光学シートは、JIS K 7209に基づく吸水率試験による吸水率で、1.33%以下の吸水率を有する、
    光学シート。
    An optical sheet provided between a reflective polarizing plate of a liquid crystal display device and a liquid crystal panel.
    Base layer and
    An optical functional layer laminated on the base material layer, between a plurality of light transmitting portions arranged along the base material layer at predetermined intervals and transmitting light, and adjacent light transmitting portions. It is provided with an optical functional layer having a louver portion, which is arranged in and reflects or absorbs light.
    In the optical sheet, the optical sheet is arranged on a support base, and one end of the optical sheet is supported on the support base along a direction in which the plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged. The amount of sagging when projected 100 mm from the end of the optical sheet is 10 mm or less, and the optical sheet has the optical in the direction in which the plurality of light transmitting portions and the louver portions of the optical functional layer are alternately arranged. No cracks occur when the optical sheet is bent to wrap around a 150 mm diameter mandrel along orthogonal directions in the sheet surface, and / or the optical sheet absorbs water according to a water absorption test based on JIS K 7209. It has a water absorption rate of 1.33% or less.
    Optical sheet.
  2.  前記光学シートは更に、前記光学機能層を挟んで前記基材層に対向するように配置された第2の基材層を有する、請求項1に記載の光学シート。 The optical sheet according to claim 1, further comprising a second base material layer arranged so as to face the base material layer with the optical functional layer interposed therebetween.
  3.  前記光学シートの基材層の材料の線熱膨張係数が4.9~5.6(×10-5/℃)である、請求項1又は2に記載の光学シート。 The optical sheet according to claim 1 or 2, wherein the material of the base material of the optical sheet has a coefficient of linear thermal expansion of 4.9 to 5.6 (× 10 -5 / ° C.).
  4.  請求項1~3の何れか一項に記載の光学シートと、
     前記光学シートを挟んで対向するように配置される反射型偏光板及び液晶パネルと、を備える液晶表示装置。
    The optical sheet according to any one of claims 1 to 3 and
    A liquid crystal display device including a reflective polarizing plate and a liquid crystal panel arranged so as to face each other with the optical sheet interposed therebetween.
  5.  基材層と、
     前記基材層上に積層される光学機能層であって、前記基材層に沿って互いに所定間隔を空けて配列され光を透過させる複数の光透過部と、隣り合う前記光透過部の間に配置され光を反射若しくは吸収するルーバ部と、を有する光学機能層と、を備える光学シートの試験方法であって、
     前記光学シートを支持台上に配置して、前記光学機能層の前記複数の光透過部とルーバ部が交互に配列される方向に沿って、該光学シートの一端を支持台の端部から100mm突出させたときの垂れ下がり量が10mm以下であるか否かを判定する、垂れ下がり量判定ステップと、前記光学シートを、前記光学機能層の前記複数の光透過部とルーバ部が交互に配列される方向に対して前記光学シート面内で直交する方向に沿って、直径150mmのマンドレルに巻き付けるように折り曲げて、割れを生じるか否かを判定する割れ判定ステップと、及び/又は
     前記光学シートの吸水率をJIS K 7209に基づく吸水率試験により測定する吸水率測定ステップと、前記吸水率測定ステップにより測定された吸水率が1.33%以下であれば合格とし、前記光学シートの吸水率が1.33%よりも大きければ不合格とする、吸水率判定ステップと、を含み、
     前記垂れ下がり量判定ステップにおいて前記垂れ下がり量が10mm以下であると判定され、かつ前記割れ判定ステップにおいて割れを生じなかったと判定された前記光学シートの構成、及び/又は前記吸水率判定ステップにおいて合格と判定された前記光学シートの構成を適切な構成と判定する、光学シートの試験方法。
    Base layer and
    An optical functional layer laminated on the base material layer, between a plurality of light transmitting portions arranged along the base material layer at predetermined intervals and transmitting light, and adjacent light transmitting portions. It is a test method of an optical sheet including an optical functional layer having a louver portion which is arranged in and reflects or absorbs light.
    The optical sheet is arranged on a support base, and one end of the optical sheet is 100 mm from the end portion of the support base along the direction in which the plurality of light transmitting portions and louver portions of the optical functional layer are alternately arranged. The sagging amount determination step for determining whether or not the sagging amount when projected is 10 mm or less, and the optical sheet are alternately arranged with the plurality of light transmitting portions and louver portions of the optical functional layer. A crack determination step of bending the mandrel having a diameter of 150 mm so as to wind it around a mandrel having a diameter of 150 mm along a direction orthogonal to the direction in the plane of the optical sheet to determine whether or not cracks occur, and / or water absorption of the optical sheet. If the water absorption rate measuring step in which the rate is measured by the water absorption rate test based on JIS K 7209 and the water absorption rate measured by the water absorption rate measurement step is 1.33% or less, the result is passed, and the water absorption rate of the optical sheet is 1. Includes a water absorption rate determination step, which is rejected if it is greater than .33%.
    The configuration of the optical sheet determined in the sagging amount determination step to be 10 mm or less and no cracking in the crack determination step, and / or a pass in the water absorption rate determination step. A method for testing an optical sheet, which determines that the structure of the optical sheet is an appropriate structure.
  6.  請求項5に記載の試験方法により、適切な構成と判定された前記光学シートの構成を採用して、前記光学シートを製造する、光学シートの製造方法。 A method for manufacturing an optical sheet, which manufactures the optical sheet by adopting the configuration of the optical sheet determined to be an appropriate configuration by the test method according to claim 5.
PCT/JP2020/035812 2019-09-24 2020-09-23 Optical sheet, liquid crystal display device, and optical sheet testing method and manufacturing method WO2021060282A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019172545 2019-09-24
JP2019-172545 2019-09-24
JP2020141435A JP2021056497A (en) 2019-08-27 2020-08-25 Optical sheet, liquid crystal display device, and test method and production method of optical sheet
JP2020-141435 2020-08-25

Publications (1)

Publication Number Publication Date
WO2021060282A1 true WO2021060282A1 (en) 2021-04-01

Family

ID=75166128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035812 WO2021060282A1 (en) 2019-09-24 2020-09-23 Optical sheet, liquid crystal display device, and optical sheet testing method and manufacturing method

Country Status (1)

Country Link
WO (1) WO2021060282A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049795A (en) * 2003-07-31 2005-02-24 Dainippon Printing Co Ltd Lens sheet for screen
JP2008096930A (en) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmission type display device
JP2010217871A (en) * 2009-02-19 2010-09-30 Dainippon Printing Co Ltd Light control sheet and liquid crystal display device using the light control sheet
JP2018205640A (en) * 2017-06-08 2018-12-27 大日本印刷株式会社 Optical sheet, image source unit, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049795A (en) * 2003-07-31 2005-02-24 Dainippon Printing Co Ltd Lens sheet for screen
JP2008096930A (en) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmission type display device
JP2010217871A (en) * 2009-02-19 2010-09-30 Dainippon Printing Co Ltd Light control sheet and liquid crystal display device using the light control sheet
JP2018205640A (en) * 2017-06-08 2018-12-27 大日本印刷株式会社 Optical sheet, image source unit, and liquid crystal display device

Similar Documents

Publication Publication Date Title
KR100913455B1 (en) Optical device package, backlight and liquid crystal display
JP4967274B2 (en) Light reflecting film and surface light source using the same
TWI453503B (en) Polarizer kit, and liquid crystal panel and liquid crystal display device using the same
KR100913264B1 (en) Optical element covering member, backlight, and liquid crystal display device
JP2009134251A (en) Optical element comprising restrained asymmetrical diffuser
JP2012103470A (en) Polarizing plate, liquid crystal display panel and display device
US8419259B2 (en) Backlight unit
JP5109346B2 (en) Light diffusing film and direct surface light source using the same
US20180128959A1 (en) Optical sheet, image source unit and image display device
JP2024022674A (en) Optical sheet, liquid crystal display device, and method for manufacturing optical sheet
JP2012118235A (en) Optical member, optical module, liquid crystal display panel and display device
JP5359275B2 (en) Light diffusion film and liquid crystal backlight unit using the same
JP2008250327A (en) Package, manufacturing method thereof, backlight, and liquid crystal display
WO2021060282A1 (en) Optical sheet, liquid crystal display device, and optical sheet testing method and manufacturing method
JP6933005B2 (en) Optical sheet, image source unit and liquid crystal display device
JP4525055B2 (en) Light reflecting film and surface light source using the same
JP2010108824A (en) Direct backlight
JP2021056497A (en) Optical sheet, liquid crystal display device, and test method and production method of optical sheet
JP2015111300A (en) Protective film, polarizing plate, liquid crystal display panel and display device
US11635562B2 (en) Image source unit, and liquid crystal display device
JP2012103489A (en) Protective film, polarizing plate, liquid crystal display panel, and display device
JP2007140499A (en) Light diffusion member and surface light source using the same
JP6932977B2 (en) Image source unit and liquid crystal display device
JP7244204B2 (en) Optical sheet, surface light source device, image source unit, and display device
JP7000781B2 (en) Optical sheet, surface light source device, image source unit, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870225

Country of ref document: EP

Kind code of ref document: A1