WO2021060268A1 - Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2021060268A1
WO2021060268A1 PCT/JP2020/035773 JP2020035773W WO2021060268A1 WO 2021060268 A1 WO2021060268 A1 WO 2021060268A1 JP 2020035773 W JP2020035773 W JP 2020035773W WO 2021060268 A1 WO2021060268 A1 WO 2021060268A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
diamine
crystal alignment
carbon atoms
Prior art date
Application number
PCT/JP2020/035773
Other languages
French (fr)
Japanese (ja)
Inventor
慎躍 大野
雄介 山本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020227002339A priority Critical patent/KR20220069916A/en
Priority to JP2021548925A priority patent/JPWO2021060268A1/ja
Priority to CN202080066916.0A priority patent/CN114514303A/en
Publication of WO2021060268A1 publication Critical patent/WO2021060268A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/90Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. amino-diphenylethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/94Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention comprises a liquid crystal alignment agent for vertical alignment (VA), a liquid crystal alignment film obtained from the liquid crystal alignment agent, a liquid crystal display element provided with the liquid crystal alignment film, a novel diamine suitable for them, and a heavy weight. Regarding coalescence.
  • VA vertical alignment
  • Liquid crystal display elements are widely used from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors.
  • the liquid crystal display element is generally configured by arranging a pair of electrode substrates so as to face each other with a predetermined gap (several ⁇ m) and enclosing a liquid crystal between the electrode substrates. Then, by applying a voltage between the transparent conductive films constituting each electrode of the electrode substrate, the display on the liquid crystal display element is performed.
  • These liquid crystal display elements have a liquid crystal alignment film that is indispensable for controlling the arrangement state of liquid crystal molecules.
  • a liquid crystal display element various driving methods have been developed in which the electrode structure and the physical characteristics of the liquid crystal molecules used are different.
  • various modes such as TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane Switching) method, and FFS (fringe field switching) method are known.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Alignment
  • IPS In-Plane Switching
  • FFS far-Plane Switching
  • the VA vertical orientation type liquid crystal display element has a wide viewing angle, a fast response speed, a large contrast, and the rubbing process can be eliminated in the production process. Therefore, there is a particular need for an increase in size. Widely used mainly for expensive TVs and monitors.
  • the above-mentioned transparent conductive film in the liquid crystal display element is usually formed of a composition (ITO) containing indium oxide as a main component and doped with several% tin oxide, and its refractive index is determined by the liquid crystal alignment film. It has a high value unlike the refractive index of. Therefore, when the light from the display light source is to be transmitted to the electrode substrate, the light is reflected at the interface between the transparent conductive film and the liquid crystal alignment film in each electrode substrate. As a result, the light transmittance of the electrode substrate cannot be sufficiently obtained, which causes a problem that the display brightness is lowered.
  • ultra-high-definition panels such as 4K and 8K have been developed, but these panels occupy a large amount of black matrix (BM), TFT, etc., and the aperture ratio of the panel decreases. It is important to improve the transmittance of the display unit.
  • BM black matrix
  • the present inventors have formed the transparent conductive film in order to increase the refractive index of the liquid crystal alignment film from the viewpoint that the above-mentioned problems can be solved by reducing the difference between the refractive index of the transparent conductive film and the refractive index of the liquid crystal alignment film.
  • Various materials were examined. Specifically, in order to increase the refractive index of the liquid crystal alignment film, various types of polymers contained in the liquid crystal alignment agent forming the liquid crystal alignment film were searched for.
  • a liquid crystal alignment film formed from a liquid crystal alignment agent containing a colorable polymer has a low light transmittance and causes a decrease in display brightness, and as a result, the above object is not achieved.
  • an object of the present invention is a liquid crystal alignment agent for forming a liquid crystal alignment film for VA (vertical alignment) having a high light transmittance because it has a high refractive index but no coloring property.
  • An object of the present invention is to provide a liquid crystal alignment film obtained from an agent and a liquid crystal display element having the liquid crystal alignment film.
  • the present invention is at least one selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (0) and a polyimide which is an imide of the polyimide precursor.
  • a liquid crystal alignment agent for vertical alignment (VA) which contains a polymer (P), a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a vertical alignment type liquid crystal display element having the liquid crystal alignment film. It is in.
  • L represents a single bond or -X 1- Q-X 2- group.
  • X 1 and X 2 independently represent a single bond, an oxygen atom or a sulfur atom.
  • Q is 1 carbon or 1 carbon atom or a sulfur atom. Represents 2 alkylene groups.
  • a liquid crystal alignment agent for vertical alignment (VA) that forms a liquid crystal alignment film having a high light transmittance because it has a high refractive index but no coloring property can be obtained. Since the liquid crystal alignment film on which the liquid crystal alignment agent is formed has a high refractive index, the difference between the refractive index of the transparent conductive film in the liquid crystal display element and the refractive index of the liquid crystal alignment film can be reduced, and the difference between the refractive index and the refractive index of the liquid crystal alignment film can be reduced. Since it does not have colorability, it is possible to obtain a vertically oriented (VA) type liquid crystal display element having high light transmission and high display brightness.
  • VA vertically oriented
  • the liquid crystal aligning agent of the present invention is made from a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (0) and a polyimide which is an imide of the polyimide precursor. It is characterized by containing at least one polymer (P) selected from the above group.
  • P polymer selected from the above group.
  • A, A', L, X 1 and X 2 are as defined above, respectively.
  • the monocyclic group in A and A' refers to a divalent group obtained by removing two hydrogen atoms from the monocyclic ring.
  • the monocycle include benzene; a 5-membered heterocycle such as furan, thiophene, pyrrole, oxazole, thiazole, imidazole, and pyrazole; and a 6-membered heterocycle such as pyran, pyrone, pyridine, pyridazine, pyrimidine, and pyrazine.
  • the single ring is preferably benzene or pyridine.
  • the monocyclic group is a phenylene group.
  • the condensed ring group in A and A' refers to a divalent group obtained by removing two hydrogen atoms from the condensed ring.
  • the fused ring include condensed polycyclic aromatic hydrocarbons such as naphthalene, tetraline, inden, fluorene, anthracene, phenanthrene and pyrene; benzofuran, thionaphthene, indole, carbazole, coumarin, benzo-pyrone, quinoline, isoquinoline, aclysine, etc.
  • fused polycyclic heterocycles such as phthalazine, quinazoline and quinoxaline.
  • the fused ring is preferably naphthalene, anthracene, pyrene, indole, carbazole, coumarin, benzo-pyrone, quinoline, or isoquinoline.
  • the group in which the two monocyclic groups are bonded is preferably a biphenyl structure or a bipyridine group.
  • a and A' preferably a phenylene group, a pyridinyl group, a naphthylene group, an anthracenyl group, a quinolinyl group, a biphenyl structure or a bipyridinyl group from the viewpoint of obtaining the effects of the present invention.
  • L is a single bond, -O- (CH 2 ) n- (n is an integer of 1 or 2), or -O- (CH 2 ) n- O- (n is an integer of 1 or 2). .) Is preferable.
  • Specific examples of the diamine (0) represented by the above formula (0) include the following formulas (d-1) to (d-21).
  • a preferable specific example of the diamine (0) represented by the above formula (0) is a diamine represented by the following formula (1).
  • A, L, X 1 and X 2 are as defined above, respectively.
  • the diamine (1) represented by the above formula (1) among the above formulas (d-1) to (d-21), the formulas (d-1) to (d-7), ( Examples thereof include d-13) to (d-14), (d-17) to (d-18) and (d-21).
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention is selected from the group consisting of the structures represented by the following formulas (S1) to (S3) in addition to the diamine represented by the above formula (0). It is preferable that the polymer is at least one selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (s) having at least one kind and a polyimide which is an imide of the polyimide precursor. ..
  • X 1 and X 2 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, and -CON. (CH 3 )-, -NH-, -O-, -COO-, -OCO- or-((CH 2 ) a1- A 1 ) m1- (a 1 is an integer from 1 to 15, and A 1 is oxygen.
  • atom or -COO- the stands, if .m 1 m 1 is an integer of 1 or 2 is 2, a plurality of a1 and a 1 represent each independently have the definitions).
  • G 1 and G 2 each independently represent a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms.
  • Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • m and n are independently integers of 0 to 3, and the total of m and n is 1 to 6, preferably 1 to 4.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 1 is substituted with a fluorine atom. You may.
  • Examples of the divalent cyclic group in G 1 and G 2 include a cyclopropylene group, a cyclohexylene group and a phenylene group.
  • Any hydrogen atom on these cyclic groups can be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -COO- or -OCO-.
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 2 may be substituted with a fluorine atom. Further, R 2 is preferably an alkyl group having 3 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms from the viewpoint of enhancing the liquid crystal orientation.
  • X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -OCH 2-, -COO- or -OCO-.
  • R 3 represents a structure having a steroid skeleton. Further, R 3 preferably has a structure containing a cholestanyl group, a cholesteryl group or a lanostenyl group.
  • Preferred specific examples of the formula [S1] include the following formulas [S1-x1] to [S1-x7].
  • R 1 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms.
  • X p is-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO-.
  • a 1 is an oxygen atom or -COO- * (however, the bond with "*” binds to (CH 2 ) a2 ), and A 2 is an oxygen atom * -COO- (however, "*").
  • a given binding hands (CH 2) binds to a2)
  • a 3 is 0 or 1
  • a 1 are each independently an integer of 1 ⁇ 10, Cy 1 , 4-Cyclohexylene group or 1,4-phenylene group.
  • X 3 is any of -O-, -CH 2 O-, -COO- or -OCO-
  • R 2 is an alkyl group having 3 to 20 carbon atoms or an alkyl group.
  • R 2 is an alkyl group having 3 to 20 carbon atoms, any hydrogen atoms that form the R 2 is substituted with a fluorine atom May be good.
  • a preferable specific example of the above formula [S3] is the following formula [S3-x].
  • X is the formula [X1], the formula [X2] or [X3]
  • Col is the formula [Col1], the formula [Col2] or the formula [Col3]
  • G Is a formula [G1], a formula [G2], a formula [G3], or a formula [G4].
  • Me represents a methyl group.
  • Preferred diamines (s) having the structures represented by the above formulas (S1) to (S3) include diamines represented by the following formulas (d1) or (d2).
  • Y represents the side chain structure represented by the above formulas [S1] to [S3], and the two Ys in the formula (d2) may be the same or different. You may be.
  • X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m.
  • m is an integer from 1 to 8.
  • Preferred specific examples of the diamine of the above formula (d1) include the following formulas (d1-1) to (d1-18). (N is an integer from 1 to 20.)
  • Examples of the diamine represented by the above formula (d2) include structures selected from the group consisting of the following formulas (d2-1) to (d2-6).
  • X p1 to X p8 are independently synonymous with X p in the above formulas [S1-x1] to [S1-x6], and X s1 to X s4 are independent and ⁇ O.
  • -, - CH 2 O -, - OCH 2 -, - COO- or -OCO- indicates, the X a ⁇ X f, -O - , - NH -, - O- (CH 2) m -O-, -C (CH 3 ) 2- , -CO-, -COO-, -CONH-,-(CH 2 ) m- , -SO 2- , -OC (CH 3 ) 2- , -CO- (CH) 2) m -, - NH- ( CH 2) m -, - NH- (CH 2) m -NH -, - SO 2 - (CH 2) m -, - SO 2 - (CH 2)
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention contains a diamine component containing the diamine (0), preferably a diamine component containing a diamine (s) in addition to the diamine (0). It is a polyimide precursor obtained by using it, or a polyimide which is an imidized product of the polyimide precursor.
  • the polyimide precursor is a polymer capable of obtaining a polyimide by imidization of a polyamic acid, a polyamic acid ester, or the like.
  • the polyamic acid (P), which is a polyimide precursor of the polymer (P), is a diamine component containing the diamine (0), preferably a diamine component containing a diamine (s) in addition to the diamine (0). It can be obtained by a polymerization reaction with a tetracarboxylic acid component.
  • the amount of the diamine (0) used is preferably 1 to 100 mol%, more preferably 1 to 99 mol%, still more preferably 5 to 95 mol%, based on the diamine component to be reacted with the tetracarboxylic acid component. ..
  • the amount of diamine (s) used is preferably 1 to 99 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid component, and 1 to 95 mol%. More preferably mol%.
  • the diamine component used in the production of the polyamic acid (P) may contain diamines other than diamine (0) and diamine (s) (hereinafter, these are also referred to as other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
  • Diamines with carboxy groups such as p-phenylenediamine, m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylmethane, 3,3' -Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 1,2-bis (4-aminophenyl) ethane, 1 , 3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene , 1,2-bis (4-aminophenoxy) ethane, 1,
  • Phenoxy) ethyl diamine having a photopolymerizable group such as 2,4-diamino-N, N-diallylaniline at the end, diamine having a radical initiation function such as the following formulas (R1) to (R5), 2,6- Diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, the following formulas (z-1) to (z-18), etc.
  • Groups such as -1) to (5-11) "-N (D)-" (D represents a protecting group that is desorbed by heating and replaced with a hydrogen atom, and is preferably a tert-butoxycarbonyl group. ), Diamines having an oxazoline structure such as the following formulas (Ox-1) to (Ox-2), diamines described in International Publication No. 2016/125870, and the like.
  • D1 indicates an integer of 2 to 10.
  • N represents an integer from 2 to 10.
  • Boc represents a tert-butoxycarbonyl group.
  • the diamine represented by (Ox-2) is preferable.
  • the amount of the other diamines used is preferably 1 to 99 mol%, more preferably 5 to 9 mol%, based on the total diamine components used. It is 95 mol%.
  • the amount of the diamines (s) used is preferably 98 mol% or less with respect to the diamine component to be reacted with the tetracarboxylic acid component. More preferably, it is 94 mol% or less.
  • the amount of the other diamine used is preferably 5 to 40 mol%, more preferably 10 to 40 mol%, based on the total diamine component used in the production of the polyamic acid (P).
  • the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic dianoxide.
  • tetracarboxylic dianhydride such as acid dialkyl ester dihalide can also be used.
  • the tetracarboxylic dianhydride or its derivative examples include aromatic tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and derivatives thereof.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring.
  • the aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not have to be composed of only a chain hydrocarbon structure, and a part thereof may have an alicyclic structure or an aromatic ring structure.
  • the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it is not necessary to have only an alicyclic structure, and a chain hydrocarbon structure or an aromatic ring structure may be partially provided.
  • the tetracarboxylic dianhydride or a derivative thereof is preferably represented by the following formula (T).
  • X represents a structure selected from the group consisting of the following (x-1) to (x-13).
  • R 1 to R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group.
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
  • j and k are independently 0 or 1, respectively, and A 1 and A 2 are independently single bonds, ether (-O-), carbonyl (-CO-), ester (-COO-), respectively. ), phenylene, sulfonyl group (-SO 2 - represents) or amide groups (-CONH-), 2 pieces of a 2 may be the same or may be different.
  • * 1 is a bond that binds to one acid anhydride group
  • * 2 is a bond that binds to the other acid anhydride group.
  • X is the above formulas (x-1) to (x-7), (x-11) to (x).
  • the one selected from -13) can be mentioned.
  • the proportion of the tetracarboxylic dianhydride or its derivative represented by the above formula (T) is preferably 1 mol% or more, more preferably 5 mol% or more, based on 1 mol of the total tetracarboxylic acid component used. Preferably, 10 mol% or more is more preferable.
  • the tetracarboxylic dianhydride and its derivative used for producing the polyamic acid (P) may contain a tetracarboxylic dianhydride other than the above formula (T) or a derivative thereof.
  • the polyamic acid (P) is produced by reacting the diamine component and the tetracarboxylic acid component in a solvent (polycondensation).
  • the solvent is not particularly limited as long as the produced polymer dissolves. Specific examples of the above solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl. -2-Imidazolidinone can be mentioned.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] can be used.
  • the indicated solvents can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Further, even if the solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate.
  • the reaction can be carried out at an arbitrary concentration, but the concentration of the diamine component and the tetracarboxylic acid component with respect to the solvent is preferably 1 to 50 mass by mass. %, More preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is 0.8 to 1.2. Is preferable. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the specific polymer produced.
  • the polyamic acid ester which is a polyimide precursor is, for example, [I] a method of reacting a polyamic acid obtained by the above synthesis reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [II] a method of reacting a tetracarboxylic acid diester with a diamine. III] It can be obtained by a known method such as a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
  • the polyimide contained in the liquid crystal alignment agent of the present invention is a polyimide obtained by ring-closing the above-mentioned polyimide precursor.
  • the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method of imidizing the polyimide precursor to obtain polyimide include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
  • the catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at ⁇ 20 to 250 ° C., preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times that of the amic acid group. It is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, and tributylamine trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.
  • the reaction solution may be added to a solvent for precipitation.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer which has been put into a solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure.
  • the solvent at this time include alcohols, ketones hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these because the purification efficiency is further improved.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and the polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. Is.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. Within such a molecular weight range, good orientation of the liquid crystal display element can be ensured.
  • the liquid crystal alignment agent of the present invention is a liquid composition in which the polymer (P) and other components used as needed are preferably dispersed or dissolved in a suitable solvent.
  • the liquid crystal alignment agent of the present invention for the purpose of improving, for example, electrical properties, vertical orientation, and solution properties, in addition to the polymer (P), other polymers (hereinafter, other polymers) are also used. ) May be contained.
  • the other polymer at least one selected from the group consisting of the structures represented by the above formulas (S1) to (S3) in addition to the above polymer (P) from the viewpoint of enhancing the vertical orientation. It may contain at least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a seed-bearing diamine and a polyimide which is an imide of the polyimide precursor.
  • the content ratio of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the polymers contained in the liquid crystal alignment agent. preferable.
  • polymers are not particularly limited, and are main skeletons such as polyimide precursors, polyimides, polysiloxanes, polyesters, polyamides, cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) derivatives, and poly (meth) acrylates.
  • polyimide precursors polyimides, polyamides, polyorganosiloxanes, poly (meth) acrylates and polyesters
  • polyimide precursors, polyimides and polysiloxanes is more preferable.
  • other polymers may be used in combination of 2 or more types.
  • the liquid crystal alignment agent of the present invention may contain other components other than the above, if necessary.
  • the component include a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetanyl group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and a polymerizable unsaturated group.
  • crosslinkable compound examples include compounds represented by the following formulas (CL-1) to (CL-11).
  • Examples of the compound for adjusting the dielectric constant and the electric resistance of the liquid crystal alignment film include monoamines having a nitrogen-containing aromatic heterocycle such as 3-picorylamine.
  • organic solvent used in the liquid crystal alignment agent of the present invention examples include N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, and N- (n-propyl).
  • the solid content concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent of the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferable. It is in the range of 1 to 10% by mass. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
  • the liquid crystal alignment film for vertical alignment using the liquid crystal alignment agent of the present invention can be produced by sequentially performing the steps of applying, drying and firing the above liquid crystal alignment agent on a substrate.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate, and in addition to the glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of process simplification, it is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal is formed. Further, in the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can also be used as the electrode in this case.
  • Examples of the method for applying the liquid crystal alignment agent include screen printing, offset printing, flexographic printing inkjet method, dip method, roll coater method, slit coater method, spinner method, and spray method. From the viewpoint of enhancing, a method of applying by flexographic printing or an inkjet method is preferable.
  • the liquid crystal alignment agent After applying the liquid crystal alignment agent on the substrate, it is dried at 40 to 150 ° C. by a heating means such as a hot plate or a heat circulation type oven IR (infrared) type oven, depending on the solvent used for the liquid crystal alignment agent. Then, the liquid crystal alignment film can be obtained by firing at a temperature of preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • a heating means such as a hot plate or a heat circulation type oven IR (infrared) type oven, depending on the solvent used for the liquid crystal alignment agent.
  • the thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, more preferably. Is 10 to 100 nm.
  • the liquid crystal display element of the present invention includes the liquid crystal alignment film.
  • the coating film formed as described above can be used as it is as a liquid crystal alignment film, but if necessary, a rubbing treatment or a PSA treatment described later may be performed.
  • the liquid crystal aligning agent of the present invention has a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element manufactured through a step of arranging an object and polymerizing a polymerizable compound by at least one of irradiation and heating of active energy rays while applying a voltage between electrodes.
  • the voltage to be applied can be, for example, a direct current or an alternating current of 5 to 50 V.
  • the active energy ray ultraviolet rays are suitable.
  • the ultraviolet rays include ultraviolet rays having a wavelength of 300 to 400 nm, preferably ultraviolet rays having a wavelength of 310 to 360 nm.
  • the irradiation amount of light is preferably 0.1 to 20 J / cm 2 , and more preferably 1 to 20 J / cm 2 .
  • the above liquid crystal alignment agent is applied onto a pair of substrates having a conductive film to form a coating film, and a coating film is formed through a layer of liquid crystal molecules.
  • the liquid crystal cells are arranged so as to face each other so that the coating films are opposed to each other, and the liquid crystal cells are irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates.
  • the above liquid crystal display element controls the pre-tilt of liquid crystal molecules by the PSA (Polymer Sustained Alignment) method.
  • PSA Polymer Sustained Alignment
  • a small amount of a photopolymerizable compound for example, a photopolymerizable monomer is mixed in a liquid crystal material, a liquid crystal cell is assembled, and then an ultraviolet ray is applied to the photopolymerizable compound in a state where a predetermined voltage is applied to the liquid crystal layer.
  • the pretilt of the liquid crystal molecules is controlled by the polymer produced by irradiating the liquid crystal molecules.
  • the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field or the like formed in the liquid crystal layer. Further, since the PSA method does not require a rubbing process, it is suitable for forming a vertically oriented liquid crystal layer in which it is difficult to control the pre-tilt by the rubbing process.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment agent of the present invention by the above-mentioned method, and then producing a liquid crystal cell by a known method.
  • a method for producing a liquid crystal cell a pair of substrates on which a liquid crystal alignment film is formed is prepared, a spacer is sprayed on the liquid crystal alignment film of one substrate, the liquid crystal alignment film surface is on the inside, and the other is produced.
  • Examples thereof include a method in which the substrates of the above are bonded and the liquid crystal is injected under reduced pressure to seal the liquid crystal, and a method in which the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacer is sprayed and then the substrates are bonded and sealed.
  • the liquid crystal may be mixed with a polymerizable compound that polymerizes by ultraviolet irradiation or heat.
  • the polymerizable compound is a compound having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule, for example, a polymerizable compound represented by the following formulas (M-1) to (M-3). Compounds can be mentioned.
  • the content of the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. If the amount of the polymerizable compound is less than 0.01 parts by mass, the polymerizable compound does not polymerize and the orientation of the liquid crystal cannot be controlled. If the amount is more than 10 parts by mass, the number of unreacted polymerizable compounds increases and the liquid crystal display element. The seizure characteristics of the polymer are reduced. After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating the liquid crystal cell with heat or ultraviolet rays while applying an AC / DC voltage to the liquid crystal cell. Thereby, the orientation of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable group that polymerizes between the pair of substrates by at least one of active energy rays and heat. It may also be used in a liquid crystal display element manufactured through a step of arranging an alignment film and applying a voltage between electrodes, that is, in SC-PVA mode.
  • ultraviolet rays are suitable as the active energy rays.
  • the ultraviolet rays the ultraviolet rays used in the PSA method can be applied including a preferable embodiment. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Further, ultraviolet rays and heating may be performed at the same time.
  • a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent or a polymer containing a polymerizable group A method using an ingredient can be mentioned.
  • the polymer containing a polymerizable group include a polymer obtained by using a diamine having a function of polymerizing by the above-mentioned light irradiation.
  • the molecular weight of the polyimide precursor and the polyimide can be determined by using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko) and a column (KD-803, KD-805) (manufactured by Shodex). It was measured as follows. Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L.
  • GPC room temperature gel permeation chromatography
  • THF tetrahydrofuran
  • Flow velocity 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
  • reaction solution was added to water (750 g) to precipitate crystals, and the crystals were collected by filtration.
  • Isopropyl alcohol (216 g) was added to the obtained crystals, and the mixture was heated and stirred at 65 ° C., and toluene (300 g) was added while cooling to room temperature for crystallization. This was filtered, the cake was washed with toluene and hexane, and the crystals were dried to obtain compound [9] (yield: 28.0 g, 106 mmol, yield 78%).
  • reaction solution was poured into water (2268 g) to precipitate crystals.
  • the mixture was filtered using a Büchner funnel to obtain sticky black-purple crystals (93 g).
  • N, N-dimethylformamide was added to the obtained crude product, dissolved by heating at 80 ° C., crystallized with methanol while cooling to room temperature, filtered and dried to obtain compound [11] (yield: 28). 0.0 g, 51.4 mmol, yield 67%).
  • reaction solution was cooled to 0 ° C., and a solution of Compound 2 (105.60 g, 42.2 mmol, 1.0 eq.) In THF (200 g) was added dropwise. After the dropping was completed, the temperature of the reaction solution was returned to room temperature, and the mixture was stirred at room temperature for 3 hours. Then, toluene (1 L) was added to dilute the reaction solution, the reaction solution was cooled to 0 ° C. again, and a 10% acetic acid solution (500 g) was gradually added dropwise.
  • the aqueous layer is removed by a liquid separation operation, the organic layer is washed with saturated brine (1 L), saturated aqueous sodium hydrogen carbonate solution (1 L), and saturated brine (1 L), and the organic layer is washed with anhydrous magnesium sulfate. Was dried. Then, it was filtered and distilled by an evaporator to obtain 172 g of a crude crystal of compound 3. The obtained crude crystals were used as they were in the next reaction.
  • the obtained crude product was recrystallized from an acetonitrile / ethanol (2: 1) solution, filtered, and then the filtered crystals were washed with ethanol to obtain crude crystals of Compound 8.
  • the crude crystals were purified by column chromatography (SiO 2 , CHCl 3 ) to obtain crystals of compound 8 (yield 7.1 g, yield 49%).
  • the solid content ratio in Table 2 above represents the content ratio of the polymer solid content with respect to 100 parts by mass of the liquid crystal aligning agent, and the solvent composition ratio represents the content ratio (parts by mass) in each organic solvent.
  • Example 14 The liquid crystal alignment agent (R1) obtained in Example 1 and the liquid crystal alignment agent (R4) obtained in Example 4 are mixed so that their mass ratios are 3: 7, and the mixture is stirred at room temperature for 3 hours. , Example 14 liquid crystal alignment agent (B5) was prepared. Further, in Examples 15 to 21, by carrying out in the same manner as in Example 14 except that the combination of the liquid crystal alignment agents used was changed to those shown in Table 3 below, Examples 15 to 21 shown in Table 3 below, respectively. Liquid crystal alignment agents (B6 to B8, R10 to R13) were prepared.
  • Examples 22 to 35 A liquid crystal alignment film and a liquid crystal cell were prepared as described below, and the characteristics of each of the prepared liquid crystal cells were evaluated. The results are shown in Table 4 below. In the following examples, Examples 22 to 25 and 28 to 31 are examples of the present invention, and Examples 26, 27 and 32 to 35 are comparative examples.
  • a liquid crystal alignment film was prepared as follows. Each liquid crystal alignment agent is spin-coated on a quartz substrate or a silicon wafer, dried on a hot plate at 70 ° C. for 90 seconds, and then baked in a hot air circulation oven (MB1-1G3030X, manufactured by Denko) at 230 ° C. for 20 minutes. , A liquid crystal alignment film having a film thickness of 100 nm was formed.
  • a measurement cell was prepared using two quartz substrates. A liquid crystal alignment film was formed on one of the two sheets, and a quartz substrate on which the liquid crystal alignment film was not formed was attached with the side surface on which the liquid crystal alignment film was formed inside. In the meantime, a refracting liquid (contact liquid, manufactured by Shimadzu Device Manufacturing Co., Ltd.) was inserted using a dropper to prepare a measurement cell. The refracting liquid was used from 11 types in 0.01 increments of 1.60 to 1.70 according to the respective refractive index.
  • a liquid crystal cell was prepared as follows. Each liquid crystal alignment agent was spin-coated on the ITO surface of an ITO electrode substrate having an ITO electrode pattern having a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line / space of 5 ⁇ m, and dried on a hot plate at 70 ° C. for 90 seconds. , 230 ° C., hot air circulation type oven (MB1-1G3030X, manufactured by Denko) for 30 minutes to form a liquid crystal alignment film having a film thickness of 100 nm.
  • hot air circulation type oven M1-1G3030X, manufactured by Denko
  • liquid crystal aligning agent is spin-coated on the ITO surface on which the electrode pattern is not formed, dried on a hot plate at 70 ° C. for 90 seconds, and then placed in a hot air circulation oven (MB1-1G3030X, manufactured by Denko) at 230 ° C. It was baked for 20 minutes to form a liquid crystal alignment film having a film thickness of 100 nm.
  • a 4 ⁇ m bead spacer was sprayed on the liquid crystal alignment film of one of the substrates, and then a sealant (solvent type thermosetting type epoxy resin) was printed on the bead spacers.
  • a sealant solvent type thermosetting type epoxy resin
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell.
  • a liquid crystal MLC-3023 (trade name manufactured by Merck & Co., Inc.) containing a polymerizable compound was injected into the empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
  • UV ultraviolet irradiation degree meter
  • evaluation of liquid crystal cell The method for evaluating the characteristics of each liquid crystal cell produced as described above is as follows. (Evaluation of vertical orientation) The liquid crystal cell was sandwiched between cross Nicol polarizing plates, and the liquid crystal cell was rotated in a state where the backlight was irradiated from the rear part, and it was visually observed whether the liquid crystal was vertically oriented by the change of brightness. The evaluation criteria are as follows. ⁇ : The liquid crystal is vertically oriented. X: The liquid crystal is not vertically oriented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are: a liquid crystal aligning agent that is for forming a liquid crystal alignment film for vertical alignment (VA) and that has a high refractive index and a high light transmittance due to not having any coloration; a liquid crystal alignment film obtained from said liquid crystal aligning agent; and a liquid crystal display element having said liquid crystal alignment film. This liquid crystal aligning agent for vertical alignment is characterized by containing at least one polymer (P) selected from the group consisting of polyimides and polyimide precursors obtained by using a diamine component including a diamine (0) represented by formula (0). (A and A' each independently represent a single-ring group, a fused-ring group, or a group obtained through binding of two said single-ring groups, and at least one of A and A' represents a fused-ring group. L represents a single bond or -X1-Q-X2-. X1 and X2 each independently represent a single bond, an oxygen atom, or a sulfur atom. Q represents an alkylene group having 1 or 2 carbon atoms.)

Description

垂直配向用の液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal alignment agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element
 本発明は、垂直配向(VA)用の液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を具備する液晶表示素子、並びにそれらに適した新規なジアミン、及び重合体に関する。 The present invention comprises a liquid crystal alignment agent for vertical alignment (VA), a liquid crystal alignment film obtained from the liquid crystal alignment agent, a liquid crystal display element provided with the liquid crystal alignment film, a novel diamine suitable for them, and a heavy weight. Regarding coalescence.
 液晶表示素子は、携帯電話、スマートフォンなどの小型用途から、テレビ用、モニター用などの比較的大型の用途まで幅広く使用されている。液晶表示素子は、一般的に、一対の電極基板を所定間隙(数μm)介し互いに対向するように配置するとともに電極基板の間に液晶を封入して構成されている。そして、電極基板の各電極を構成する透明導電膜間に電圧を印加することによって、液晶表示素子における表示を行うようにされている。これら液晶表示素子は、液晶分子の配列状態を制御するために不可欠な液晶配向膜を有する。 Liquid crystal display elements are widely used from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors. The liquid crystal display element is generally configured by arranging a pair of electrode substrates so as to face each other with a predetermined gap (several μm) and enclosing a liquid crystal between the electrode substrates. Then, by applying a voltage between the transparent conductive films constituting each electrode of the electrode substrate, the display on the liquid crystal display element is performed. These liquid crystal display elements have a liquid crystal alignment film that is indispensable for controlling the arrangement state of liquid crystal molecules.
 一方、液晶表示素子としては、電極構造や、使用する液晶分子の物性等が異なる種々の駆動方式が開発されている。例えば、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane Switching)方式、FFS(fringe field switching)方式等の各種のモードが知られている。
 なかでも、VA(垂直配向)方式の液晶表示素子は、視野角が広く、応答速度が速く、コントラストが大きく、また、生産プロセス上もラビング処理が不要にできることから、特に、大型化のニーズが高いテレビ用やモニター用を中心に広く使用されている。
On the other hand, as a liquid crystal display element, various driving methods have been developed in which the electrode structure and the physical characteristics of the liquid crystal molecules used are different. For example, various modes such as TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane Switching) method, and FFS (fringe field switching) method are known. ..
Among them, the VA (vertical orientation) type liquid crystal display element has a wide viewing angle, a fast response speed, a large contrast, and the rubbing process can be eliminated in the production process. Therefore, there is a particular need for an increase in size. Widely used mainly for expensive TVs and monitors.
国際公開第2008/117615号International Publication No. 2008/117615 日本特開2008-76950号公報Japanese Patent Application Laid-Open No. 2008-76950
 ところで、液晶表示素子における上述した透明導電膜は、通常、酸化インジウムを主成分としこれに数%の酸化錫をドープした組成物(ITO)により形成されるが、その屈折率は、液晶配向膜の屈折率と異なり、高い値を有する。このため、表示光源からの光を電極基板に透過させようとした場合、光が各電極基板における透明導電膜と液晶配向膜との境界面で反射されてしまう。その結果、電極基板の光透過率を十分に得ることができず、表示輝度が低下するという不具合を招いている。
 特に、近年では4Kや8Kといった超高精細なパネルが開発されているが、これらのパネルではブラックマトリクス(BM)やTFTなどの占有率が大きくなり、パネルの開口率が低下してしまうため、表示部の透過率向上が重要視されている。
By the way, the above-mentioned transparent conductive film in the liquid crystal display element is usually formed of a composition (ITO) containing indium oxide as a main component and doped with several% tin oxide, and its refractive index is determined by the liquid crystal alignment film. It has a high value unlike the refractive index of. Therefore, when the light from the display light source is to be transmitted to the electrode substrate, the light is reflected at the interface between the transparent conductive film and the liquid crystal alignment film in each electrode substrate. As a result, the light transmittance of the electrode substrate cannot be sufficiently obtained, which causes a problem that the display brightness is lowered.
In particular, in recent years, ultra-high-definition panels such as 4K and 8K have been developed, but these panels occupy a large amount of black matrix (BM), TFT, etc., and the aperture ratio of the panel decreases. It is important to improve the transmittance of the display unit.
 そこで、本発明者等は、透明導電膜の屈折率と液晶配向膜の屈折率との差を小さくすれば、上記不具合を解消させ得るという観点から、液晶配向膜の屈折率を高めるためその形成材料につき種々検討した。具体的には、液晶配向膜の屈折率を高めるために、液晶配向膜を形成する液晶配向剤に含有される重合体の種類を種々探索した。 Therefore, the present inventors have formed the transparent conductive film in order to increase the refractive index of the liquid crystal alignment film from the viewpoint that the above-mentioned problems can be solved by reducing the difference between the refractive index of the transparent conductive film and the refractive index of the liquid crystal alignment film. Various materials were examined. Specifically, in order to increase the refractive index of the liquid crystal alignment film, various types of polymers contained in the liquid crystal alignment agent forming the liquid crystal alignment film were searched for.
 その結果、特定の重合体を選択することにより、透明導電膜の屈折率に近似する屈折率を有する液晶配向膜を得ることができたが、一方で、高い屈折率を有する液晶配向膜を形成する重合体は多くの場合、着色性を有することが明らかとなった。着色性を有する重合体を含有する液晶配向剤から形成される液晶配向膜は、光の透過率が低く、表示輝度の低下を招き、結果として上記目的は達成されない。 As a result, by selecting a specific polymer, a liquid crystal alignment film having a refractive index close to that of the transparent conductive film could be obtained, but on the other hand, a liquid crystal alignment film having a high refractive index was formed. It has been clarified that the polymer to be produced has a coloring property in many cases. A liquid crystal alignment film formed from a liquid crystal alignment agent containing a colorable polymer has a low light transmittance and causes a decrease in display brightness, and as a result, the above object is not achieved.
 本発明の目的は、上記事情に鑑み、高い屈折率を有しながら着色性を有しないために高い光透過率を有するVA(垂直配向)用液晶配向膜を形成する液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することにある。 In view of the above circumstances, an object of the present invention is a liquid crystal alignment agent for forming a liquid crystal alignment film for VA (vertical alignment) having a high light transmittance because it has a high refractive index but no coloring property. An object of the present invention is to provide a liquid crystal alignment film obtained from an agent and a liquid crystal display element having the liquid crystal alignment film.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の構造を有する一部新規な重合体を含有する液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。
 本発明は、下記式(0)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする垂直配向(VA)用の液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を有する垂直配向方式の液晶表示素子にある。
Figure JPOXMLDOC01-appb-C000016
(A及びA’は、それぞれ独立して、単環基、縮合環基、又は前記単環基が2つ結合した基を表し、A及びA’の少なくとも1つは、縮合環基を表す。Lは、単結合、又は-X-Q-X-基を表す。X及びXは、それぞれ独立して、単結合、酸素原子又は硫黄原子を表す。Qは、炭素数1又は2のアルキレン基を表す。)
As a result of diligent research to achieve the above object, the present inventor finds that a liquid crystal aligning agent containing a partially novel polymer having a specific structure is effective for achieving the above object. The present invention has been completed.
The present invention is at least one selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (0) and a polyimide which is an imide of the polyimide precursor. A liquid crystal alignment agent for vertical alignment (VA), which contains a polymer (P), a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a vertical alignment type liquid crystal display element having the liquid crystal alignment film. It is in.
Figure JPOXMLDOC01-appb-C000016
(A and A'independently represent a monocyclic group, a fused ring group, or a group in which two monocyclic groups are bonded, and at least one of A and A'represents a fused ring group. L represents a single bond or -X 1- Q-X 2- group. X 1 and X 2 independently represent a single bond, an oxygen atom or a sulfur atom. Q is 1 carbon or 1 carbon atom or a sulfur atom. Represents 2 alkylene groups.)
 本発明によれば、高い屈折率を有しながらも着色性を有しないために高い光透過率を有する液晶配向膜を形成する垂直配向(VA)用の液晶配向剤が得られる。かかる液晶配向剤が形成される液晶配向膜は、高い屈折率を有するために、液晶表示素子における透明導電膜の屈折率と液晶配向膜の屈折率との差を小さくすることができ、また、着色性を有しないために、光の透過率が高く、かつ表示輝度の高い、垂直配向(VA)方式の液晶表示素子を得ることができる。 According to the present invention, a liquid crystal alignment agent for vertical alignment (VA) that forms a liquid crystal alignment film having a high light transmittance because it has a high refractive index but no coloring property can be obtained. Since the liquid crystal alignment film on which the liquid crystal alignment agent is formed has a high refractive index, the difference between the refractive index of the transparent conductive film in the liquid crystal display element and the refractive index of the liquid crystal alignment film can be reduced, and the difference between the refractive index and the refractive index of the liquid crystal alignment film can be reduced. Since it does not have colorability, it is possible to obtain a vertically oriented (VA) type liquid crystal display element having high light transmission and high display brightness.
 本発明の液晶配向剤は、上記のように、下記式(0)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000017
上記式(0)において、A、A’、L、X、Xは、それぞれ上記で定義したとおりである。
As described above, the liquid crystal aligning agent of the present invention is made from a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (0) and a polyimide which is an imide of the polyimide precursor. It is characterized by containing at least one polymer (P) selected from the above group.
Figure JPOXMLDOC01-appb-C000017
In the above formula (0), A, A', L, X 1 and X 2 are as defined above, respectively.
 A、A’における単環基とは、単環から水素原子を2個除いた2価の基をいう。単環としては、例えば、ベンゼン;フラン、チオフェン、ピロール、オキサゾール、チアゾール、イミダゾール、ピラゾール等の5員複素環;ピラン、ピロン、ピリジン、ピリダジン、ピリミジン、ピラジン等の6員複素環が挙げられる。単環は、好ましくは、ベンゼン又はピリジンである。なお、単環がベンゼンである場合、単環基はフェニレン基である。 The monocyclic group in A and A'refers to a divalent group obtained by removing two hydrogen atoms from the monocyclic ring. Examples of the monocycle include benzene; a 5-membered heterocycle such as furan, thiophene, pyrrole, oxazole, thiazole, imidazole, and pyrazole; and a 6-membered heterocycle such as pyran, pyrone, pyridine, pyridazine, pyrimidine, and pyrazine. The single ring is preferably benzene or pyridine. When the monocyclic ring is benzene, the monocyclic group is a phenylene group.
 A、A’における縮合環基とは、縮合環から水素原子を2個除いた2価の基をいう。縮合環としては、例えば、ナフタレン、テトラリン、インデン、フルオレン、アントラセン、フェナントレン、ピレン等の縮合多環芳香族炭化水素;ベンゾフラン、チオナフテン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、イソキノリン、アクリジン、フタラジン、キナゾリン、キノキサリン等の縮合多環式複素環が挙げられる。縮合環は、好ましくは、ナフタレン、アントラセン、ピレン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、又はイソキノリンである。
 上記単環基が2つ結合した基は、好ましくは、ビフェニル構造、ビピリジン基である。
The condensed ring group in A and A'refers to a divalent group obtained by removing two hydrogen atoms from the condensed ring. Examples of the fused ring include condensed polycyclic aromatic hydrocarbons such as naphthalene, tetraline, inden, fluorene, anthracene, phenanthrene and pyrene; benzofuran, thionaphthene, indole, carbazole, coumarin, benzo-pyrone, quinoline, isoquinoline, aclysine, etc. Examples thereof include fused polycyclic heterocycles such as phthalazine, quinazoline and quinoxaline. The fused ring is preferably naphthalene, anthracene, pyrene, indole, carbazole, coumarin, benzo-pyrone, quinoline, or isoquinoline.
The group in which the two monocyclic groups are bonded is preferably a biphenyl structure or a bipyridine group.
 なかでも、A、A’は、本発明の効果を得る観点から、フェニレン基、ピリジニル基、ナフチレン基、アントラセニル基、キノリニル基、ビフェニル構造、又はビピリジニル基が好ましい。
 Lは、単結合、-O-(CH-(nは1又は2の整数である。)、又は-O-(CH-O-(nは1又は2の整数である。)が好ましい。
 上記式(0)で表されるジアミン(0)の具体例としては、下記式(d-1)~(d-21)が挙げられる。
Among them, A and A'preferably a phenylene group, a pyridinyl group, a naphthylene group, an anthracenyl group, a quinolinyl group, a biphenyl structure or a bipyridinyl group from the viewpoint of obtaining the effects of the present invention.
L is a single bond, -O- (CH 2 ) n- (n is an integer of 1 or 2), or -O- (CH 2 ) n- O- (n is an integer of 1 or 2). .) Is preferable.
Specific examples of the diamine (0) represented by the above formula (0) include the following formulas (d-1) to (d-21).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(0)で表されるジアミン(0)の好ましい具体例としては、下記式(1)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000020
上記式(1)において、A、L、X、Xは、それぞれ上記で定義したとおりである。
A preferable specific example of the diamine (0) represented by the above formula (0) is a diamine represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000020
In the above formula (1), A, L, X 1 and X 2 are as defined above, respectively.
 上記式(1)で表されるジアミン(1)の好ましい具体例としては、上記式(d-1)~(d-21)のうち、式(d-1)~(d-7)、(d-13)~(d-14)、(d-17)~(d-18)及び(d-21)が挙げられる。 As a preferable specific example of the diamine (1) represented by the above formula (1), among the above formulas (d-1) to (d-21), the formulas (d-1) to (d-7), ( Examples thereof include d-13) to (d-14), (d-17) to (d-18) and (d-21).
 本発明の液晶配向剤に含有する重合体(P)は、上記式(0)で表されるジアミンに加えて、下記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有するジアミン(s)を含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体であるのが好ましい。
Figure JPOXMLDOC01-appb-C000021
The polymer (P) contained in the liquid crystal aligning agent of the present invention is selected from the group consisting of the structures represented by the following formulas (S1) to (S3) in addition to the diamine represented by the above formula (0). It is preferable that the polymer is at least one selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (s) having at least one kind and a polyimide which is an imide of the polyimide precursor. ..
Figure JPOXMLDOC01-appb-C000021
 式[S1]において、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、mは1~2の整数である。mが2の場合、複数のa1及びAは、それぞれ独立して前記定義を有する)を表す。G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基、炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であり、m及びnの合計は1~6であり、好ましくは1~4である。Rは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。
 また、G、Gにおける2価の環状基としては、例えば、シクロプロピレン基、シクロヘキシレン基、フェニレン基が挙げられる。これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されてもよい。
In the formula [S1], X 1 and X 2 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, and -CON. (CH 3 )-, -NH-, -O-, -COO-, -OCO- or-((CH 2 ) a1- A 1 ) m1- (a 1 is an integer from 1 to 15, and A 1 is oxygen. atom or -COO- the stands, if .m 1 m 1 is an integer of 1 or 2 is 2, a plurality of a1 and a 1 represent each independently have the definitions). G 1 and G 2 each independently represent a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms. Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom. m and n are independently integers of 0 to 3, and the total of m and n is 1 to 6, preferably 1 to 4. R 1 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 1 is substituted with a fluorine atom. You may.
Examples of the divalent cyclic group in G 1 and G 2 include a cyclopropylene group, a cyclohexylene group and a phenylene group. Any hydrogen atom on these cyclic groups can be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
Figure JPOXMLDOC01-appb-C000022
 式[S2]において、Xは、単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。
 また、Rは、液晶配向性を高める観点から、炭素数3~20のアルキル基又は炭素数2~20のアルコキシアルキル基が好ましい。
Figure JPOXMLDOC01-appb-C000022
In formula [S2], X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -COO- or -OCO-. Represents. R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 2 may be substituted with a fluorine atom.
Further, R 2 is preferably an alkyl group having 3 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms from the viewpoint of enhancing the liquid crystal orientation.
Figure JPOXMLDOC01-appb-C000023
 式[S3]において、Xは、-CONH-、-NHCO-、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。また、Rはコレスタニル基、コレステリル基又はラノスタニル基を含む構造が好ましい。
Figure JPOXMLDOC01-appb-C000023
In formula [S3], X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -OCH 2-, -COO- or -OCO-. R 3 represents a structure having a steroid skeleton. Further, R 3 preferably has a structure containing a cholestanyl group, a cholesteryl group or a lanostenyl group.
 式[S1]の好ましい具体例としては、下記式[S1-x1]~[S1-x7]を挙げることができる。
Figure JPOXMLDOC01-appb-C000024
Preferred specific examples of the formula [S1] include the following formulas [S1-x1] to [S1-x7].
Figure JPOXMLDOC01-appb-C000024
 上記式中、Rは、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基である。Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-である。Aは、酸素原子又は-COO-*(但し、「*」を付した結合手が(CHa2と結合する)、Aは、酸素原子*-COO-(但し、「*」を付した結合手が(CHa2と結合する)であり、aは、0又は1であり、a、aは、それぞれ独立して、1~10の整数であり、Cyは1,4-シクロへキシレン基又は1,4-フェニレン基である。
 式[S2]の好ましい具体例としては、Xが、-O-、-CHO-、-COO-又は-OCO-のいずれかであり、Rが炭素数3~20のアルキル基又は炭素数2~20のアルコキシアルキル基である場合が好ましく、Rが炭素数3~20のアルキル基である場合が更に好ましく、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。
In the above formula, R 1 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms. X p is-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO-. A 1 is an oxygen atom or -COO- * (however, the bond with "*" binds to (CH 2 ) a2 ), and A 2 is an oxygen atom * -COO- (however, "*"). a given binding hands (CH 2) binds to a2), a 3 is 0 or 1, a 1, a 2 are each independently an integer of 1 ~ 10, Cy 1 , 4-Cyclohexylene group or 1,4-phenylene group.
As a preferable specific example of the formula [S2], X 3 is any of -O-, -CH 2 O-, -COO- or -OCO-, and R 2 is an alkyl group having 3 to 20 carbon atoms or an alkyl group. preferably if an alkoxyalkyl group having 2 to 20 carbon atoms, more preferably R 2 is an alkyl group having 3 to 20 carbon atoms, any hydrogen atoms that form the R 2 is substituted with a fluorine atom May be good.
 上記式[S3]の好ましい具体例として、下記式[S3-x]が挙げられる。なお、式[S3-x]中、Xは、式[X1]、式[X2]又は[X3]であり、Colは、式[Col1]、式[Col2]又は式[Col3]であり、Gは、式[G1]、式[G2]、式[G3]又は式[G4]である。Meはメチル基を表す。 A preferable specific example of the above formula [S3] is the following formula [S3-x]. In the formula [S3-x], X is the formula [X1], the formula [X2] or [X3], and Col is the formula [Col1], the formula [Col2] or the formula [Col3], and G Is a formula [G1], a formula [G2], a formula [G3], or a formula [G4]. Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(S1)~(S3)で表される構造を有する好ましいジアミン(s)としては、下記式(d1)又は式(d2)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000026
Preferred diamines (s) having the structures represented by the above formulas (S1) to (S3) include diamines represented by the following formulas (d1) or (d2).
Figure JPOXMLDOC01-appb-C000026
 式(d1)、(d2)中、Yは、上記式[S1]~[S3]で表される側鎖構造を表し、式(d2)における2個のYは同一であっても良く、異なっていても良い。また、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-、-COO-、-CONH-、-NH-(CH-NH-、-SO-(CH-SO-を表す。mは1~8の整数である。 In the formulas (d1) and (d2), Y represents the side chain structure represented by the above formulas [S1] to [S3], and the two Ys in the formula (d2) may be the same or different. You may be. In addition, X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m. -O -, - O-C ( CH 3) 2 -, - CO- (CH 2) m -, - NH- (CH 2) m -, - SO 2 - (CH 2) m -, - CONH- ( CH 2) m -, - CONH- (CH 2) m -NHCO -, - COO- (CH 2) m -OCO -, - COO -, - CONH -, - NH- (CH 2) m -NH-, -SO 2- (CH 2 ) represents m- SO 2-. m is an integer from 1 to 8.
 上記式(d1)のジアミンの好ましい具体例としては、下記式(d1-1)~(d1-18)が挙げられる。
Figure JPOXMLDOC01-appb-C000027
(nは1~20の整数である。)
Preferred specific examples of the diamine of the above formula (d1) include the following formulas (d1-1) to (d1-18).
Figure JPOXMLDOC01-appb-C000027
(N is an integer from 1 to 20.)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(d2)で表されるジアミンとしては、下記式(d2-1)~(d2-6)からなる群から選ばれる構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000029
Examples of the diamine represented by the above formula (d2) include structures selected from the group consisting of the following formulas (d2-1) to (d2-6).
Figure JPOXMLDOC01-appb-C000029
 上記式中、Xp1~Xp8は、それぞれ独立して、上記式[S1-x1]~[S1-x6]におけるXと同義であり、Xs1~Xs4はそれぞれ独立して、-O-、-CHO-、-OCH-、-COO-又は-OCO-を示し、X~Xは、-O-、-NH-、-O-(CH-O-、-C(CH-、-CO-、-COO-、-CONH-、-(CH-、-SO-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-NH-(CH-NH-、-SO-(CH-、-SO-(CH-SO-、-CONH-(CH-、-CONH-(CH-NHCO-、又は-COO-(CH-OCO-を示し、R1a~R1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表す。mは1~8である。 In the above formula, X p1 to X p8 are independently synonymous with X p in the above formulas [S1-x1] to [S1-x6], and X s1 to X s4 are independent and −O. -, - CH 2 O -, - OCH 2 -, - COO- or -OCO- indicates, the X a ~ X f, -O - , - NH -, - O- (CH 2) m -O-, -C (CH 3 ) 2- , -CO-, -COO-, -CONH-,-(CH 2 ) m- , -SO 2- , -OC (CH 3 ) 2- , -CO- (CH) 2) m -, - NH- ( CH 2) m -, - NH- (CH 2) m -NH -, - SO 2 - (CH 2) m -, - SO 2 - (CH 2) m -SO 2 -, -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO-, or -COO- (CH 2 ) m- OCO-, and R 1a to R 1h are independent of each other. It represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms. m is 1 to 8.
(重合体(P)の製造)
 本発明の液晶配向剤に含有される重合体(P)は、それぞれ、上記ジアミン(0)を含有するジアミン成分、好ましくは上記ジアミン(0)に加えてジアミン(s)を含有するジアミン成分を用いて得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化物であるポリイミドである。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化にすることによりポリイミドを得ることができる重合体である。
(Production of polymer (P))
The polymer (P) contained in the liquid crystal aligning agent of the present invention contains a diamine component containing the diamine (0), preferably a diamine component containing a diamine (s) in addition to the diamine (0). It is a polyimide precursor obtained by using it, or a polyimide which is an imidized product of the polyimide precursor. Here, the polyimide precursor is a polymer capable of obtaining a polyimide by imidization of a polyamic acid, a polyamic acid ester, or the like.
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P)は、上記ジアミン(0)を含有するジアミン成分、好ましくは上記ジアミン(0)に加えてジアミン(s)を含有するジアミン成分とテトラカルボン酸成分との重合反応により得ることができる。
 この場合、ジアミン(0)の使用量は、テトラカルボン酸成分と反応させるジアミン成分に対して、1~100モル%が好ましく、1~99モル%がより好ましく、5~95モル%がさらに好ましい。
The polyamic acid (P), which is a polyimide precursor of the polymer (P), is a diamine component containing the diamine (0), preferably a diamine component containing a diamine (s) in addition to the diamine (0). It can be obtained by a polymerization reaction with a tetracarboxylic acid component.
In this case, the amount of the diamine (0) used is preferably 1 to 100 mol%, more preferably 1 to 99 mol%, still more preferably 5 to 95 mol%, based on the diamine component to be reacted with the tetracarboxylic acid component. ..
 上記ジアミン(0)に加えてジアミン(s)を使用する場合、ジアミン(s)の使用量は、テトラカルボン酸成分と反応させるジアミン成分に対して、1~99モル%が好ましく、1~95モル%がより好ましい。 When diamine (s) is used in addition to the above diamine (0), the amount of diamine (s) used is preferably 1 to 99 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid component, and 1 to 95 mol%. More preferably mol%.
 上記ポリアミック酸(P)の製造に用いられるジアミン成分は、ジアミン(0)及びジアミン(s)以外のジアミン(以下、これらをその他のジアミンともいう。)を含んでいてもよい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。 The diamine component used in the production of the polyamic acid (P) may contain diamines other than diamine (0) and diamine (s) (hereinafter, these are also referred to as other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
 p-フェニレンジアミン、m-フェニレンジアミン、4-(2-(メチルアミノ)エチル)アニリン、3,5-ジアミノ安息香酸などのカルボキシ基を有するジアミン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、ジ(2-(4-アミノフェノキシ)エチル)エーテル、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン、下記式(a-1)~(a-6)で表されるジアミン、好ましくはメタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン、下記式(R1)~(R5)などのラジカル開始機能を有するジアミン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、下記式(z-1)~(z-18)などの複素環を有するジアミン、下記式(Dp-1)~(Dp-3)などのジフェニルアミン骨格を有するジアミン、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどのオルガノシロキサン含有ジアミン、下記式(5-1)~(5-11)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、下記式(Ox-1)~(Ox-2)などのオキサゾリン構造を有するジアミン、国際公開第2016/125870号に記載のジアミンなど。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(d1は、2~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000033
(nは2~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
(Bocはtert-ブトキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000036
Diamines with carboxy groups such as p-phenylenediamine, m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylmethane, 3,3' -Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 1,2-bis (4-aminophenyl) ethane, 1 , 3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene , 1,2-bis (4-aminophenoxy) ethane, 1,2-bis (4-amino-2-methylphenoxy) ethane, 1,3-bis (4-aminophenoxy) propane, 1,4-bis ( 4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 4- (2- (4-aminophenoxy) ethoxy) -3- Fluoroaniline, di (2- (4-aminophenoxy) ethyl) ether, 4-amino-4'-(2- (4-aminophenoxy) ethoxy) biphenyl, 2,2'-dimethyl-4,4'-diamino Biphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,2'- Bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-aminophenyl) propane, 1 , 3-Bis (4-aminophenethyl) urea and other amine-bonded diamines, diamines represented by the following formulas (a-1) to (a-6), preferably 2- (2,4-diamino) methacrylate. Phenoxy) ethyl, diamine having a photopolymerizable group such as 2,4-diamino-N, N-diallylaniline at the end, diamine having a radical initiation function such as the following formulas (R1) to (R5), 2,6- Diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, the following formulas (z-1) to (z-18), etc. Diami with a heterocycle Diamine having a diphenylamine skeleton such as the following formulas (Dp-1) to (Dp-3), an organosiloxane-containing diamine such as 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, and the following formula (5). Groups such as -1) to (5-11) "-N (D)-" (D represents a protecting group that is desorbed by heating and replaced with a hydrogen atom, and is preferably a tert-butoxycarbonyl group. ), Diamines having an oxazoline structure such as the following formulas (Ox-1) to (Ox-2), diamines described in International Publication No. 2016/125870, and the like.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(D1 indicates an integer of 2 to 10.)
Figure JPOXMLDOC01-appb-C000033
(N represents an integer from 2 to 10.)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
(Boc represents a tert-butoxycarbonyl group.)
Figure JPOXMLDOC01-appb-C000036
 なかでも、その他のジアミンとして、本発明の効果を好適に得る観点から,p-フェニレンジアミン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、2,2’-ジメチル-4,4’-ジアミノビフェニル、メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリン、上記式(R1)~(R5)で表されるジアミン、上記式(z-1)~(z-18)で表されるジアミン、上記式(5-1)~(5-11)で表されるジアミン、上記式(Ox-1)~(Ox-2)で表されるジアミンが好ましい。
 上記ジアミン(0)に加えてその他のジアミンを使用する場合、上記その他のジアミンの使用量は、使用される全ジアミン成分に対して、好ましくは1~99モル%であり、より好ましくは5~95モル%である。
 上記ジアミン(0)及びジアミン(s)に加えてその他のジアミンを使用する場合、ジアミン(s)の使用量は、テトラカルボン酸成分と反応させるジアミン成分に対して、98モル%以下が好ましく、94モル%以下がより好ましい。
Among them, p-phenylenediamine, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, 2, 2'-dimethyl-4,4'-diaminobiphenyl, 2- (2,4-diaminophenoxy) ethyl methacrylate, 2,4-diamino-N, N-diallylaniline, according to the above formulas (R1) to (R5). The diamine represented, the diamine represented by the above formulas (z-1) to (z-18), the diamine represented by the above formulas (5-1) to (5-11), the above formula (Ox-1). The diamine represented by (Ox-2) is preferable.
When other diamines are used in addition to the above diamine (0), the amount of the other diamines used is preferably 1 to 99 mol%, more preferably 5 to 9 mol%, based on the total diamine components used. It is 95 mol%.
When other diamines are used in addition to the above diamines (0) and diamines (s), the amount of the diamines (s) used is preferably 98 mol% or less with respect to the diamine component to be reacted with the tetracarboxylic acid component. More preferably, it is 94 mol% or less.
 上記その他のジアミンの使用量は、ポリアミック酸(P)の製造に使用される全ジアミン成分に対して、好ましくは5~40モル%であり、より好ましくは10~40モル%である。 The amount of the other diamine used is preferably 5 to 40 mol%, more preferably 10 to 40 mol%, based on the total diamine component used in the production of the polyamic acid (P).
 PSA方式やSC-PVAモードを用いる液晶表示素子では、応答速度を高める点から、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、光重合性基を末端に有するジアミン、上記式(R1)~(R5)で表されるジアミン、上記式(z-1)~(z-18)で表されるジアミンは、ポリアミック酸(P)を製造する場合に1種以上用いることができ、その使用量は、ポリアミック酸(P)の製造に使用される全ジアミン成分に対して、好ましくは1~40モル%であり、より好ましくは5~40モル%である。 In the liquid crystal display element using the PSA method or the SC-PVA mode, from the viewpoint of increasing the response speed, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, a diamine having a photopolymerizable group at the end, and the above formula ( One or more of the diamines represented by R1) to (R5) and the diamines represented by the above formulas (z-1) to (z-18) can be used in the production of the polyamic acid (P). The amount used is preferably 1 to 40 mol%, more preferably 5 to 40 mol%, based on the total diamine component used in the production of the polyamic acid (P).
(テトラカルボン酸成分)
 上記ポリアミック酸(P)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
(Tetracarboxylic acid component)
When the polyamic acid (P) is produced, the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic dianoxide. Derivatives of tetracarboxylic dianhydride such as acid dialkyl ester dihalide can also be used.
 上記テトラカルボン酸二無水物又はその誘導体は、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。 Examples of the tetracarboxylic dianhydride or its derivative include aromatic tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and derivatives thereof. Here, the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring. The aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not have to be composed of only a chain hydrocarbon structure, and a part thereof may have an alicyclic structure or an aromatic ring structure.
 また、脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。 The alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it is not necessary to have only an alicyclic structure, and a chain hydrocarbon structure or an aromatic ring structure may be partially provided.
 なかでも、上記テトラカルボン酸二無水物又はその誘導体は、下記式(T)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000037
 但し、式(T)中、Xは、下記(x-1)~(x-13)からなる群から選ばれる構造を表す。
Among them, the tetracarboxylic dianhydride or a derivative thereof is preferably represented by the following formula (T).
Figure JPOXMLDOC01-appb-C000037
However, in the formula (T), X represents a structure selected from the group consisting of the following (x-1) to (x-13).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 上記式(x-1)において、R~Rは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。j及びkは、それぞれ独立して、0又は1であり、A及びAは、それぞれ独立して、単結合、エーテル(-O-)、カルボニル(-CO-)、エステル(-COO-)、フェニレン、スルホニル基(-SO-)又はアミド基(-CONH-)を表し、2個のAは同一であっても良く、異なっていても良い。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。 In the above formula (x-1), R 1 to R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group. R 5 and R 6 each independently represent a hydrogen atom or a methyl group. j and k are independently 0 or 1, respectively, and A 1 and A 2 are independently single bonds, ether (-O-), carbonyl (-CO-), ester (-COO-), respectively. ), phenylene, sulfonyl group (-SO 2 - represents) or amide groups (-CONH-), 2 pieces of a 2 may be the same or may be different. * 1 is a bond that binds to one acid anhydride group, and * 2 is a bond that binds to the other acid anhydride group.
 上記式(x-12)、(x-13)の好ましい具体例としては、下記式(x-14)~(x-29)が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Preferred specific examples of the above formulas (x-12) and (x-13) include the following formulas (x-14) to (x-29). * Represents a bond.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体の好ましい具体例としては、Xが、上記式(x-1)~(x-7)、(x-11)~(x-13)から選ばれるものが挙げられる。 As a preferable specific example of the tetracarboxylic dianhydride represented by the above formula (T) or a derivative thereof, X is the above formulas (x-1) to (x-7), (x-11) to (x). The one selected from -13) can be mentioned.
 上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、使用される全テトラカルボン酸成分1モルに対して、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましい。
 ポリアミック酸(P)の製造に用いられるテトラカルボン酸二無水物及びその誘導体は、上記式(T)以外のテトラカルボン酸二無水物又はその誘導体を含有していてもよい。
The proportion of the tetracarboxylic dianhydride or its derivative represented by the above formula (T) is preferably 1 mol% or more, more preferably 5 mol% or more, based on 1 mol of the total tetracarboxylic acid component used. Preferably, 10 mol% or more is more preferable.
The tetracarboxylic dianhydride and its derivative used for producing the polyamic acid (P) may contain a tetracarboxylic dianhydride other than the above formula (T) or a derivative thereof.
 ポリアミック酸(P)の製造は、上記ジアミン成分と、テトラカルボン酸成分と、を溶媒中で(縮重合)反応させることにより行われる。溶媒としては、生成した重合体が溶解するものであれば特に限定されない。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
The polyamic acid (P) is produced by reacting the diamine component and the tetracarboxylic acid component in a solvent (polycondensation). The solvent is not particularly limited as long as the produced polymer dissolves.
Specific examples of the above solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl. -2-Imidazolidinone can be mentioned. When the polymer has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] can be used. The indicated solvents can be used.
Figure JPOXMLDOC01-appb-C000041
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を表す。)。
Figure JPOXMLDOC01-appb-C000041
(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3]. ], D 3 represents an alkyl group having 1 to 4 carbon atoms.)
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、上記溶媒に対するジアミン成分とテトラカルボン酸成分の濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。
 反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数との比(ジアミン成分の合計モル数/テトラカルボン酸成分の合計モル数)は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成する特定重合体の分子量は大きくなる。
These solvents may be used alone or in combination. Further, even if the solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate.
When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the reaction can be carried out at an arbitrary concentration, but the concentration of the diamine component and the tetracarboxylic acid component with respect to the solvent is preferably 1 to 50 mass by mass. %, More preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then the solvent can be added.
In the reaction, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component (total number of moles of the diamine component / total number of moles of the tetracarboxylic acid component) is 0.8 to 1.2. Is preferable. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the specific polymer produced.
 ポリイミド前駆体であるポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。 The polyamic acid ester which is a polyimide precursor is, for example, [I] a method of reacting a polyamic acid obtained by the above synthesis reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [II] a method of reacting a tetracarboxylic acid diester with a diamine. III] It can be obtained by a known method such as a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
[ポリイミド]
 本発明の液晶配向剤に含有されるポリイミドは上記ポリイミド前駆体を閉環させて得られるポリイミドである。ポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
[Polyimide]
The polyimide contained in the liquid crystal alignment agent of the present invention is a polyimide obtained by ring-closing the above-mentioned polyimide precursor. In polyimide, the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化してポリイミドを得る方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 Examples of the method of imidizing the polyimide precursor to obtain polyimide include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor. The temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミントリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at −20 to 250 ° C., preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times that of the amic acid group. It is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, and tributylamine trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.
 ポリイミド前駆体のイミド化の反応溶液から、生成したポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類炭化水素などが挙げられ、これらの内から選ばれる3種以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide from the reaction solution for imidization of the polyimide precursor, the reaction solution may be added to a solvent for precipitation. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like. The polymer which has been put into a solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, by repeating the operation of redistributing the polymer recovered by precipitation in a solvent and recovering by reprecipitation 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these because the purification efficiency is further improved.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。 The polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and the polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. Is. The molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. Within such a molecular weight range, good orientation of the liquid crystal display element can be ensured.
(液晶配向剤)
 本発明の液晶配向剤は、重合体(P)、及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物である。
(Liquid crystal alignment agent)
The liquid crystal alignment agent of the present invention is a liquid composition in which the polymer (P) and other components used as needed are preferably dispersed or dissolved in a suitable solvent.
 本発明の液晶配向剤においては、例えば電気特性、垂直配向性や溶液特性を改善することなどを目的として、重合体(P)のほかに、それ以外の重合体(以下、その他の重合体ともいう。)を含有させてもよい。その他の重合体の具体例としては、垂直配向性を高める観点から、上記重合体(P)に加えて、上記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有するジアミンを含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有してもよい。
 その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
In the liquid crystal alignment agent of the present invention, for the purpose of improving, for example, electrical properties, vertical orientation, and solution properties, in addition to the polymer (P), other polymers (hereinafter, other polymers) are also used. ) May be contained. As a specific example of the other polymer, at least one selected from the group consisting of the structures represented by the above formulas (S1) to (S3) in addition to the above polymer (P) from the viewpoint of enhancing the vertical orientation. It may contain at least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a seed-bearing diamine and a polyimide which is an imide of the polyimide precursor.
The content ratio of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the polymers contained in the liquid crystal alignment agent. preferable.
 その他の重合体は特に限定されず、例えばポリイミド前駆体、ポリイミド、ポリシロキサン、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどの主骨格が挙げられる。なかでも、ポリイミド前駆体、ポリイミド、ポリアミド、ポリオルガノシロキサン、ポリ(メタ)アクリレート及びポリエステルよりなる群から選ばれる少なくとも一種であることが好ましい。なかでも、ポリイミド前駆体、ポリイミド及びポリシロキサンよりなる群から選ばれる少なくとも一種であることがより好ましい。なお、その他の重合体は、2種以上を組み合わせて使用してもよい。 Other polymers are not particularly limited, and are main skeletons such as polyimide precursors, polyimides, polysiloxanes, polyesters, polyamides, cellulose derivatives, polyacetals, polystyrene derivatives, poly (styrene-phenylmaleimide) derivatives, and poly (meth) acrylates. Can be mentioned. Among them, at least one selected from the group consisting of polyimide precursors, polyimides, polyamides, polyorganosiloxanes, poly (meth) acrylates and polyesters is preferable. Among them, at least one selected from the group consisting of polyimide precursors, polyimides and polysiloxanes is more preferable. In addition, other polymers may be used in combination of 2 or more types.
 本発明の液晶配向剤は、その他、必要に応じて上記以外の成分を含有していてもよい。当該成分としては、例えば、エポキシ基、イソシアネート基、オキセタニル基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。
 架橋性化合物の好ましい具体例としては、下記式(CL-1)~(CL-11)で示される化合物が挙げられる。液晶配向膜の誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000042
The liquid crystal alignment agent of the present invention may contain other components other than the above, if necessary. Examples of the component include a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetanyl group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and a polymerizable unsaturated group. At least one compound selected from the group consisting of crosslinkable compounds having a functional group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant, a sensitizer, an antiseptic, and a dielectric of a liquid crystal alignment film. Examples include compounds for adjusting the rate and electrical resistance.
Preferred specific examples of the crosslinkable compound include compounds represented by the following formulas (CL-1) to (CL-11). Examples of the compound for adjusting the dielectric constant and the electric resistance of the liquid crystal alignment film include monoamines having a nitrogen-containing aromatic heterocycle such as 3-picorylamine.
Figure JPOXMLDOC01-appb-C000042
 本発明の液晶配向剤で使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネートなどを挙げることができる。これらは、2種以上を混合して使用することができる。 Examples of the organic solvent used in the liquid crystal alignment agent of the present invention include N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, and N- (n-propyl). -2-Pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n-butyl) -2-pyrrolidone, N- (tert-butyl) -2-pyrrolidone, N- (n-pentyl) -2-pyrrolidone, N -Methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy- N, N-dimethylpropanamide, γ-butyrolactone, γ-butyrolactam, N, N-dimethylformamide, N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, Butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol dimethyl ether , Diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol) , Diisobutylketone, isoamylpropionate, isoamylisobutyrate, diisopentyl ether, ethylene carbonate, propylene carbonate and the like. These can be used by mixing two or more kinds.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The solid content concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent of the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferable. It is in the range of 1 to 10% by mass. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
<液晶配向膜>
 本発明の液晶配向剤を用いた垂直配向用の液晶配向膜は、上記の液晶配向剤を、基板上に塗布、乾燥及び焼成する工程を順次行うことにより製造することができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハーなどの不透明な基板も使用でき、この場合の電極としてはアルミニウムなどの光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film for vertical alignment using the liquid crystal alignment agent of the present invention can be produced by sequentially performing the steps of applying, drying and firing the above liquid crystal alignment agent on a substrate. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate, and in addition to the glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of process simplification, it is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal is formed. Further, in the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can also be used as the electrode in this case.
 液晶配向剤の塗布方法は、スクリーン印刷、オフセット印刷、フレキソ印刷インクジェット法、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などを挙げることができるが、液晶配向膜の製造効率を高める観点でフレキソ印刷又はインクジェット法で塗布する方法が好ましい。 Examples of the method for applying the liquid crystal alignment agent include screen printing, offset printing, flexographic printing inkjet method, dip method, roll coater method, slit coater method, spinner method, and spray method. From the viewpoint of enhancing, a method of applying by flexographic printing or an inkjet method is preferable.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンIR(赤外線)型オーブンなどの加熱手段により、液晶配向剤に用いる溶媒に応じて、好ましくは40~150℃で乾燥し、次いで、好ましくは150~300℃、より好ましくは180~250℃の温度で焼成することにより液晶配向膜とすることができる。 After applying the liquid crystal alignment agent on the substrate, it is dried at 40 to 150 ° C. by a heating means such as a hot plate or a heat circulation type oven IR (infrared) type oven, depending on the solvent used for the liquid crystal alignment agent. Then, the liquid crystal alignment film can be obtained by firing at a temperature of preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
 焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。 If the thickness of the liquid crystal alignment film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease. Therefore, it is preferably 5 to 300 nm, more preferably. Is 10 to 100 nm.
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向膜を具備するものである。
 VA方式の液晶表示素子では、上記のようにして形成された塗膜はそのまま液晶配向膜として用いることができるが、必要に応じてラビング処理又は後述のPSA処理を行ってもよい。
<Liquid crystal display element>
The liquid crystal display element of the present invention includes the liquid crystal alignment film.
In the VA type liquid crystal display element, the coating film formed as described above can be used as it is as a liquid crystal alignment film, but if necessary, a rubbing treatment or a PSA treatment described later may be performed.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nmの波長の光を含む紫外線、好ましくは310~360nmの波長の光を含む紫外線である。光の照射量としては、好ましくは0.1~20J/cmであり、より好ましくは1~20J/cmである。 The liquid crystal aligning agent of the present invention has a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element manufactured through a step of arranging an object and polymerizing a polymerizable compound by at least one of irradiation and heating of active energy rays while applying a voltage between electrodes. Here, the voltage to be applied can be, for example, a direct current or an alternating current of 5 to 50 V. Further, as the active energy ray, ultraviolet rays are suitable. The ultraviolet rays include ultraviolet rays having a wavelength of 300 to 400 nm, preferably ultraviolet rays having a wavelength of 310 to 360 nm. The irradiation amount of light is preferably 0.1 to 20 J / cm 2 , and more preferably 1 to 20 J / cm 2 .
 本発明の液晶配向剤を用いた液晶表示素子の製造方法としては、例えば、上記液晶配向剤を、導電膜を有する一対の基板上に塗布して塗膜を形成し、液晶分子の層を介して上記塗膜が相対するように対向配置して液晶セルを形成し、上記一対の基板の有する導電膜間に電圧を印加した状態で上記液晶セルに光照射する方法が挙げられる。 As a method for manufacturing a liquid crystal display element using the liquid crystal alignment agent of the present invention, for example, the above liquid crystal alignment agent is applied onto a pair of substrates having a conductive film to form a coating film, and a coating film is formed through a layer of liquid crystal molecules. There is a method in which the liquid crystal cells are arranged so as to face each other so that the coating films are opposed to each other, and the liquid crystal cells are irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The above liquid crystal display element controls the pre-tilt of liquid crystal molecules by the PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, a liquid crystal cell is assembled, and then an ultraviolet ray is applied to the photopolymerizable compound in a state where a predetermined voltage is applied to the liquid crystal layer. The pretilt of the liquid crystal molecules is controlled by the polymer produced by irradiating the liquid crystal molecules. Since the orientation state of the liquid crystal molecules when the polymer is formed is memorized even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field or the like formed in the liquid crystal layer. Further, since the PSA method does not require a rubbing process, it is suitable for forming a vertically oriented liquid crystal layer in which it is difficult to control the pre-tilt by the rubbing process.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment agent of the present invention by the above-mentioned method, and then producing a liquid crystal cell by a known method.
As a method for producing a liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, a spacer is sprayed on the liquid crystal alignment film of one substrate, the liquid crystal alignment film surface is on the inside, and the other is produced. Examples thereof include a method in which the substrates of the above are bonded and the liquid crystal is injected under reduced pressure to seal the liquid crystal, and a method in which the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacer is sprayed and then the substrates are bonded and sealed.
 液晶には、前述のとおり紫外線照射又は熱により重合する重合性化合物を混合してもよい。重合性化合物としては、アクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物、例えば下記式(M-1)~(M-3)で表されるような重合性化合物を挙げることができる。 As described above, the liquid crystal may be mixed with a polymerizable compound that polymerizes by ultraviolet irradiation or heat. The polymerizable compound is a compound having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule, for example, a polymerizable compound represented by the following formulas (M-1) to (M-3). Compounds can be mentioned.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 その際、重合性化合物の含有量は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。液晶セルを作製した後は、液晶セルに交流直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。 At that time, the content of the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. If the amount of the polymerizable compound is less than 0.01 parts by mass, the polymerizable compound does not polymerize and the orientation of the liquid crystal cannot be controlled. If the amount is more than 10 parts by mass, the number of unreacted polymerizable compounds increases and the liquid crystal display element. The seizure characteristics of the polymer are reduced. After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating the liquid crystal cell with heat or ultraviolet rays while applying an AC / DC voltage to the liquid crystal cell. Thereby, the orientation of the liquid crystal molecules can be controlled.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子、すなわち、SC-PVAモードにも用いてもよい。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、上記PSA方式で用いる紫外線を好ましい態様も含めて適用することができる。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 The liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable group that polymerizes between the pair of substrates by at least one of active energy rays and heat. It may also be used in a liquid crystal display element manufactured through a step of arranging an alignment film and applying a voltage between electrodes, that is, in SC-PVA mode. Here, ultraviolet rays are suitable as the active energy rays. As the ultraviolet rays, the ultraviolet rays used in the PSA method can be applied including a preferable embodiment. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Further, ultraviolet rays and heating may be performed at the same time.
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。重合性基を含む重合体の具体例としては、上記光照射により重合する機能を有するジアミンを用いて得られる重合体が挙げられる。 In order to obtain a liquid crystal alignment film containing a polymerizable group that polymerizes from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent or a polymer containing a polymerizable group A method using an ingredient can be mentioned. Specific examples of the polymer containing a polymerizable group include a polymer obtained by using a diamine having a function of polymerizing by the above-mentioned light irradiation.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。以下における、化合物の略号、及び各特性の測定方法は次のとおりである。また、特に言及のない限り、数値は、質量基準である。 The present invention will be specifically described below with reference to examples, but the present invention is not construed as being limited to these examples. In the following, the abbreviations of the compounds and the measurement method of each property are as follows. Unless otherwise specified, the numerical values are based on mass.
<特定ジアミン>
Figure JPOXMLDOC01-appb-C000044
<Specific diamine>
Figure JPOXMLDOC01-appb-C000044
<ジアミン(s)>
Figure JPOXMLDOC01-appb-C000045
<Diamine (s)>
Figure JPOXMLDOC01-appb-C000045
<その他のジアミン>
Figure JPOXMLDOC01-appb-C000046
 (Bocは、tert-ブトキシカルボニル基を表す。)
<Other diamines>
Figure JPOXMLDOC01-appb-C000046
(Boc represents a tert-butoxycarbonyl group.)
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000047
(Tetracarboxylic dianhydride)
Figure JPOXMLDOC01-appb-C000047
(有機溶媒)
 NMP:N-メチル-2-ピロリドン、   BCS:ブチルセロソルブ
 THF: テトラヒドロフラン
(Organic solvent)
NMP: N-methyl-2-pyrrolidone, BCS: Butyl cellosolve THF: tetrahydrofuran
 [粘度]
 ポリアミック酸溶液などの粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
[viscosity]
For the viscosity of the polyamic acid solution, etc., use an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL (milliliter), cone rotor TE-1 (1 ° 34', R24), temperature 25. Measured at ° C.
[分子量の測定]
 ポリイミド前駆体及びポリイミドなどの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
[Measurement of molecular weight]
The molecular weight of the polyimide precursor and the polyimide can be determined by using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko) and a column (KD-803, KD-805) (manufactured by Shodex). It was measured as follows.
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L. L, tetrahydrofuran (THF) is 10 ml / L)
Flow velocity: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
[イミド化率の測定]
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[Measurement of imidization rate]
20 mg of polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)) and deuterated dimethyl sulfoxide (DMSO-d 6,0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and ultrasonically applied to completely dissolve. This solution was measured for proton NMR at 500 MHz with an NMR measuring machine (JNW-ECA500) (manufactured by JEOL Datum). The imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the integrated value.
Imidization rate (%) = (1-α · x / y) × 100
In the above formula, x is the integrated proton peak value derived from the NH group of amic acid, y is the integrated peak value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the number ratio of the reference protons to.
<化合物[DA-n-2]の合成例>
 以下のスキームに従って化合物[DA-n-2]を合成した。
Figure JPOXMLDOC01-appb-C000048
<Synthesis example of compound [DA-n-2]>
Compound [DA-n-2] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000048
(化合物[1]の合成)
 ジメチルホルムアミド(1050g)に対して、6-ブロモナフタレン-2-オール(150g、672mmol)を加え、氷冷下に冷やした。それに水素化ナトリウム(60%、29.6g)を少しずつ加え、氷冷下で1時間撹拌した後、ベンジルブロミド(121g)を加え、室温で1時間撹拌した。さらに、水冷下、純水(750g)を少しずつ加えて撹拌し、結晶を析出させ、濾過し、濾物をメタノール(750g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[1]を得た(収量:207g、収率:98%、白色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):8.13(d,1H,J=2.0Hz),7.85(d,1H,J=9.2Hz),7.78(d,1H,J=8.8Hz),7.58(dd,1H,J=8.8Hz,2.4Hz),7.53-7.48(m,3H),7.44-7.40(m,2H),7.38-7.33(m,1H),7.30(dd,1H,J=9.0Hz,2.6Hz),5.22(s,2H).
(Synthesis of compound [1])
To dimethylformamide (1050 g), 6-bromonaphthalene-2-ol (150 g, 672 mmol) was added, and the mixture was cooled under ice-cooling. Sodium hydride (60%, 29.6 g) was added little by little, and the mixture was stirred under ice-cooling for 1 hour, benzyl bromide (121 g) was added, and the mixture was stirred at room temperature for 1 hour. Further, under water cooling, pure water (750 g) is added little by little and stirred to precipitate crystals, filtered, and the filter is slurry-washed with methanol (750 g), filtered, and the filter is dried to produce a compound [ 1] was obtained (yield: 207 g, yield: 98%, white crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 8.13 (d, 1H, J = 2.0 Hz), 7.85 (d, 1H, J = 9.2 Hz), 7. 78 (d, 1H, J = 8.8Hz), 7.58 (dd, 1H, J = 8.8Hz, 2.4Hz), 7.53-7.48 (m, 3H), 7.44-7 .40 (m, 2H), 7.38-7.33 (m, 1H), 7.30 (dd, 1H, J = 9.0Hz, 2.6Hz), 5.22 (s, 2H).
(化合物[2]の合成)
 テトラヒドロフラン(1000g)に対して、tert-ブトキシナトリウム(82.6g)及びベンゾフェノンイミン(126g)を加え、室温で30分撹拌した。これに化合物[1](207g、661mmol)、Pd(dba)(トリス(ジベンジリデンアセトン)ジパラジウム(0)、3.03g)及びBINAP(2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、6.17g)を加え、窒素雰囲気下、65℃で23時間撹拌した。室温まで冷却した後、1規定塩酸(1000g)を加え、室温で15分撹拌し、水層を分取した。更に有機層に対し、酢酸エチル(200g)、ヘキサン(100g)及び1規定塩酸(500g)を加えて、分取した水層に加えた。水冷下、水酸化ナトリウム(80g)を加えてアルカリ性とした。有機層を分取し、飽和塩化ナトリウム水溶液で洗浄した後、硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮することで粗体を得た(154g)。粗体に対し、酢酸エチル(462g)を加えて70℃で加熱溶解させた後、ヘキサン(770g)を加え、冷却した。そして、これを濾過し、濾物を乾燥させることで化合物[2]を得た(収量:124g、収率:74%、薄茶色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):7.50-7.43(m,4H),7.42-7.37(m,2H),7.35-7.30(m,1H),7.19(d,1H,J=2.8Hz),7.04(dd,1H,J=8.8Hz,2.8Hz),6.90(dd,1H,J=8.8Hz,2.0Hz),6.80(d,1H,J=2.0Hz),5.13(br,4H).
(Synthesis of compound [2])
To tetrahydrofuran (1000 g), tert-butoxysodium (82.6 g) and benzophenone imine (126 g) were added, and the mixture was stirred at room temperature for 30 minutes. Compounds [1] (207 g, 661 mmol), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium (0), 3.03 g) and BINAP (2,2'-bis (diphenylphosphino)- 1,1'-binaphthyl (6.17 g) was added, and the mixture was stirred at 65 ° C. for 23 hours under a nitrogen atmosphere. After cooling to room temperature, 1N hydrochloric acid (1000 g) was added, and the mixture was stirred at room temperature for 15 minutes to separate the aqueous layer. Further, ethyl acetate (200 g), hexane (100 g) and 1N hydrochloric acid (500 g) were added to the organic layer, and the mixture was added to the separated aqueous layer. Under water cooling, sodium hydroxide (80 g) was added to make it alkaline. The organic layer was separated, washed with saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (154 g). Ethyl acetate (462 g) was added to the crude product to dissolve it by heating at 70 ° C., and then hexane (770 g) was added to cool the crude product. Then, this was filtered and the filter medium was dried to obtain compound [2] (yield: 124 g, yield: 74%, light brown crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 7.50-7.43 (m, 4H), 7.42-7.37 (m, 2H), 7.35-7. 30 (m, 1H), 7.19 (d, 1H, J = 2.8Hz), 7.04 (dd, 1H, J = 8.8Hz, 2.8Hz), 6.90 (dd, 1H, J) = 8.8Hz, 2.0Hz), 6.80 (d, 1H, J = 2.0Hz), 5.13 (br, 4H).
(化合物[3]の合成)
 ジクロロメタン(1000g)に対して、化合物[2](124g、497mmol)及び二炭酸ジ-tert-ブチル(130g)を加え、室温で20時間撹拌した。反応が完結していなかったため、二炭酸ジ-tert-ブチル(10g)を追加添加し、さらに室温で20時間撹拌した。飽和炭酸水素ナトリウム水溶液(1L)及びジクロロメタン(300g)を加え、分液した。有機層を純水(450mL)、飽和塩化ナトリウム水溶液(300mL)の順に洗浄し、硫酸ナトリウムで乾燥させた後、濾過し、濾液を濃縮することで粗体を得た(198g)。粗体に対し、酢酸エチル(600g)を加えて70℃で加熱溶解させた後、ヘキサン(1000g)を加え、冷却した。そして、これを濾過し、濾物を乾燥させることで化合物[3]を得た(収量:142g、収率:82%、白色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):9.46(s,1H),8.02(s,1H),7.69(t,2H,J=8.6Hz),7.52-7.49(m,2H),7.45(dd,1H,J=9.0Hz,2.2Hz),7.43-7.39(m,2H),7.37-7.32(m,2H),7.17(dd,1H,J=9.0Hz,2.6Hz),5.18(s,2H),1.50(s,9H).
(Synthesis of compound [3])
Compound [2] (124 g, 497 mmol) and di-tert-butyl dicarbonate (130 g) were added to dichloromethane (1000 g), and the mixture was stirred at room temperature for 20 hours. Since the reaction was not completed, di-tert-butyl dicarbonate (10 g) was additionally added, and the mixture was further stirred at room temperature for 20 hours. Saturated aqueous sodium hydrogen carbonate solution (1 L) and dichloromethane (300 g) were added and separated. The organic layer was washed in the order of pure water (450 mL) and saturated aqueous sodium chloride solution (300 mL), dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (198 g). Ethyl acetate (600 g) was added to the crude product to dissolve it by heating at 70 ° C., and then hexane (1000 g) was added and cooled. Then, this was filtered and the filter medium was dried to obtain compound [3] (yield: 142 g, yield: 82%, white crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 9.46 (s, 1H), 8.02 (s, 1H), 7.69 (t, 2H, J = 8.6 Hz) , 7.52-7.49 (m, 2H), 7.45 (dd, 1H, J = 9.0Hz, 2.2Hz), 7.43-7.39 (m, 2H), 7.37- 7.32 (m, 2H), 7.17 (dd, 1H, J = 9.0Hz, 2.6Hz), 5.18 (s, 2H), 1.50 (s, 9H).
(化合物[4]の合成)
 エタノール(976g)に対して、化合物[3](122g、349mmol)及び5%パラジウムカーボン(12.2g)を加え、水素雰囲気下、40℃で96時間撹拌した。5%パラジウムカーボンを濾過し、濾液を濃縮することで化合物[4]を得た(収量:89.3g、収率:99%、白色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):9.52(s,1H),9.37(s,1H),7.94(s,1H),7.62-7.59(m,1H),7.56(d,1H,J=9.2Hz),7.39(dd,1H,J=9.0Hz,2.2Hz),7.04-7.00(m,2H),1.50(s,9H).
(Synthesis of compound [4])
Compound [3] (122 g, 349 mmol) and 5% palladium carbon (12.2 g) were added to ethanol (976 g), and the mixture was stirred at 40 ° C. for 96 hours under a hydrogen atmosphere. Compound [4] was obtained by filtering 5% palladium carbon and concentrating the filtrate (yield: 89.3 g, yield: 99%, white crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 9.52 (s, 1H), 9.37 (s, 1H), 7.94 (s, 1H), 7.62-7 .59 (m, 1H), 7.56 (d, 1H, J = 9.2Hz), 7.39 (dd, 1H, J = 9.0Hz, 2.2Hz), 7.04-7.00 ( m, 2H), 1.50 (s, 9H).
(化合物[5]の合成)
 ジメチルスルホキシド(500g)に対して、4-クロロニトロベンゼン(100g、635mmol)、エチレングリコール(551g)及び水酸化ナトリウム(23.1g)を加え、100℃で19時間撹拌した。室温まで冷却した後、酢酸エチル(560g)及び純水(700g)を加え、分液した。上層を回収したうえで、下層に酢酸エチル(300g)を加えて分液し、上層を合わせた。合わせた上層に純水(400g)及び飽和塩化ナトリウム水溶液(200g)を加えて再度分液し、酢酸エチル層を硫酸ナトリウムで乾燥後、濾過し、濾液を濃縮することで粗体を得た(110g)。粗体に対し、酢酸エチル(330g)を加えて60℃で加熱溶解させた後、ヘキサン(550g)を加え、冷却した。そして、これを濾過し、濾物を乾燥させることで化合物[5]を得た(収量:64.2g、収率:55%、淡黄色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):8.21(d,2H,J=9.4Hz),7.16(d,2H,J=9.4Hz),4.97(t,1H,J=5.6Hz),4.15(t,2H,J=4.8Hz),3.77-3.73(m,2H).
(Synthesis of compound [5])
To dimethyl sulfoxide (500 g), 4-chloronitrobenzene (100 g, 635 mmol), ethylene glycol (551 g) and sodium hydroxide (23.1 g) were added, and the mixture was stirred at 100 ° C. for 19 hours. After cooling to room temperature, ethyl acetate (560 g) and pure water (700 g) were added to separate the liquids. After recovering the upper layer, ethyl acetate (300 g) was added to the lower layer to separate the liquids, and the upper layers were combined. Pure water (400 g) and saturated aqueous sodium chloride solution (200 g) were added to the combined upper layer, and the layers were separated again. The ethyl acetate layer was dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (a crude product was obtained. 110g). Ethyl acetate (330 g) was added to the crude product to dissolve it by heating at 60 ° C., and then hexane (550 g) was added to cool the crude product. Then, this was filtered and the filter medium was dried to obtain compound [5] (yield: 64.2 g, yield: 55%, pale yellow crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 8.21 (d, 2H, J = 9.4 Hz), 7.16 (d, 2H, J = 9.4 Hz), 4. 97 (t, 1H, J = 5.6Hz), 4.15 (t, 2H, J = 4.8Hz), 3.77-3.73 (m, 2H).
(化合物[6]の合成)
 ジクロロメタン(1264g)に対して、化合物[5](63.2g、345mmol)を加え、氷冷下に冷やした。これにトリエチルアミン(52.4g)、トシルクロリド(69.0g)及び4-ジメチルアミノピリジン(1.26g)を加え、室温で19時間撹拌した。純水(632g)を加え、分液してジクロロメタン層を回収し、1規定塩酸(300g)、純水(300g)、飽和塩化ナトリウム水溶液(300g)の順に分液洗浄し、無水硫酸ナトリウムで乾燥させて、濾過し、濾液を濃縮することで化合物[6]を得た(収量:108g、収率:93%、白色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):8.18(d,2H,J=9.2Hz),7.80(d,2H,J=8.6Hz),7.47(d,2H,J=8.6Hz),7.05(d,2H,J=9.2Hz),4.40-4.37(m,2H),4.35-4.31(m,2H),2.41(s,3H).
(Synthesis of compound [6])
Compound [5] (63.2 g, 345 mmol) was added to dichloromethane (1264 g), and the mixture was cooled under ice-cooling. To this was added triethylamine (52.4 g), tosyl lolide (69.0 g) and 4-dimethylaminopyridine (1.26 g), and the mixture was stirred at room temperature for 19 hours. Pure water (632 g) is added, and the solution is separated to recover the dichloromethane layer. 1N Hydrochloric acid (300 g), pure water (300 g), and saturated aqueous sodium chloride solution (300 g) are separated and washed in this order, and dried over anhydrous sodium sulfate. The mixture was filtered and the filtrate was concentrated to give compound [6] (yield: 108 g, yield: 93%, white crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 8.18 (d, 2H, J = 9.2 Hz), 7.80 (d, 2H, J = 8.6 Hz), 7. 47 (d, 2H, J = 8.6Hz), 7.05 (d, 2H, J = 9.2Hz), 4.40-4.37 (m, 2H), 4.35-4.31 (m) , 2H), 2.41 (s, 3H).
(化合物[7]の合成)
 ジメチルホルムアミド(360g)に対して、化合物[4](45.0g、174mmol)、化合物[6](61.5g)及び炭酸カリウム(36.0g)を加え、80℃で21時間撹拌した。室温まで冷却した後、純水(720g)を加えて結晶を析出させた。濾過し、濾物をメタノール(360g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[7]を得た(収量:67.2g、収率:91%、淡黄土色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):9.47(s,1H),8.23(d,2H,J=9.2Hz),8.02(s,1H),7.72-7.69(m,2H),7.46(dd,1H,J=8.8Hz,2.0Hz),7.31(d,1H,J=2.4Hz),7.24(d,2H,J=9.2Hz),7.14(dd,1H,J=9.0Hz,2.6Hz),4.56-4.53(m,2H),4.46-4.43(m,2H),1.50(s,9H).
(Synthesis of compound [7])
Compound [4] (45.0 g, 174 mmol), compound [6] (61.5 g) and potassium carbonate (36.0 g) were added to dimethylformamide (360 g), and the mixture was stirred at 80 ° C. for 21 hours. After cooling to room temperature, pure water (720 g) was added to precipitate crystals. After filtration, the filter medium was slurry-washed with methanol (360 g), filtered, and the filter medium was dried to obtain compound [7] (yield: 67.2 g, yield: 91%, pale ocher crystals). ..
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 9.47 (s, 1H), 8.23 (d, 2H, J = 9.2 Hz), 8.02 (s, 1H) , 7.72-7.69 (m, 2H), 7.46 (dd, 1H, J = 8.8Hz, 2.0Hz), 7.31 (d, 1H, J = 2.4Hz), 7. 24 (d, 2H, J = 9.2Hz), 7.14 (dd, 1H, J = 9.0Hz, 2.6Hz), 4.56-4.53 (m, 2H), 4.46-4 .43 (m, 2H), 1.50 (s, 9H).
(化合物[8]の合成)
 クロロホルム(1096g)に対して、化合物[7](73.1g、172mmol)を加えて、水冷下で撹拌しながら、トリフルオロ酢酸(98.1g)を加え、50℃で19時間撹拌した。室温まで冷却した後、トリエチルアミン(87.0g)及び純水(1096g)を加えて結晶を析出させた。濾過し、濾物をメタノール(365g)でスラリー洗浄した後、濾過し、濾物を乾燥させることで粗体を得た(49.5g)。粗体に対し、ジメチルホルムアミド(124g)を加え、80℃で加熱溶解させた後、メタノール(248g)を加えて冷却し、結晶を析出させた。濾過し、濾物を乾燥させることで化合物[8]を得た(収量:47.3g、収率:85%、橙色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):8.23(d,2H,J=9.2Hz),7.51(dd,1H,J=8.8Hz,2.4Hz),7.45(dd,1H,J=8.8Hz,2.4Hz),7.24(dd,2H,J=9.2Hz,2.4Hz),7.27(s,1H),7.01(d,1H,J=9.2Hz),6.91(d,1H,J=8.8Hz),6.80(s,1H),5.15(br,2H),4.55-4.51(m,2H),4.41-4.37(m,2H).
(Synthesis of compound [8])
Compound [7] (73.1 g, 172 mmol) was added to chloroform (1096 g), trifluoroacetic acid (98.1 g) was added while stirring under water cooling, and the mixture was stirred at 50 ° C. for 19 hours. After cooling to room temperature, triethylamine (87.0 g) and pure water (1096 g) were added to precipitate crystals. After filtering, the filter product was slurry-washed with methanol (365 g), filtered, and the filter product was dried to obtain a crude product (49.5 g). Dimethylformamide (124 g) was added to the crude product, and the mixture was heated and dissolved at 80 ° C., and then methanol (248 g) was added and cooled to precipitate crystals. The mixture was filtered and the filtrate was dried to obtain compound [8] (yield: 47.3 g, yield: 85%, orange crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 8.23 (d, 2H, J = 9.2 Hz), 7.51 (dd, 1H, J = 8.8 Hz, 2.4 Hz) ), 7.45 (dd, 1H, J = 8.8Hz, 2.4Hz), 7.24 (dd, 2H, J = 9.2Hz, 2.4Hz), 7.27 (s, 1H), 7 .01 (d, 1H, J = 9.2Hz), 6.91 (d, 1H, J = 8.8Hz), 6.80 (s, 1H), 5.15 (br, 2H), 4.55 -4.51 (m, 2H), 4.41-4.37 (m, 2H).
(化合物[DA-n-2]の合成)
 ジメチルホルムアミド(371g)に対して、化合物[8](46.4g、143mmol)及び5%パラジウムカーボン(4.6g)を加え、水素雰囲気下、60℃で19時間撹拌した。反応があまり進行していなかったため、オートクレーブ中、0.4MPa水素雰囲気下、60℃で8時間撹拌した。窒素置換した後、5%パラジウムカーボンを濾過し、濾液を濃縮させて内容量を80gとした。ジメチルホルムアミド(46g)を加え、90℃で加熱溶解させた後、メタノール(210g)を加えて冷却し、結晶を析出させた。そして、これを濾過し、濾物を乾燥させることで、化合物[DA-n-2]を得た(収量:33.4g、収率:79%、淡紫色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):7.50(d,1H,J=8.8Hz),7.44(d,1H,J=8.8Hz),7.13(d,1H,J=2.8Hz),7.00(dd,1H,J=8.8Hz,2.8Hz),6.90(dd,1H,J=8.8Hz,2.4Hz),6.79(d,1H,J=2.4Hz),6.71(d,2H,J=8.8Hz),6.52(d,2H,J=8.8Hz),5.13(br,2H),4.63(br,2H),4.28-4.25(m,2H),4.20-4.17(m,2H).
(Synthesis of compound [DA-n-2])
Compound [8] (46.4 g, 143 mmol) and 5% palladium carbon (4.6 g) were added to dimethylformamide (371 g), and the mixture was stirred at 60 ° C. for 19 hours under a hydrogen atmosphere. Since the reaction did not proceed much, the mixture was stirred at 60 ° C. for 8 hours in an autoclave under a 0.4 MPa hydrogen atmosphere. After nitrogen substitution, 5% palladium carbon was filtered and the filtrate was concentrated to bring the content to 80 g. Dimethylformamide (46 g) was added and dissolved by heating at 90 ° C., and then methanol (210 g) was added and cooled to precipitate crystals. Then, this was filtered and the filtrate was dried to obtain compound [DA-n-2] (yield: 33.4 g, yield: 79%, pale purple crystals).
1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 7.50 (d, 1H, J = 8.8 Hz), 7.44 (d, 1H, J = 8.8 Hz), 7. 13 (d, 1H, J = 2.8Hz), 7.00 (dd, 1H, J = 8.8Hz, 2.8Hz), 6.90 (dd, 1H, J = 8.8Hz, 2.4Hz) , 6.79 (d, 1H, J = 2.4Hz), 6.71 (d, 2H, J = 8.8Hz), 6.52 (d, 2H, J = 8.8Hz), 5.13 ( br, 2H), 4.63 (br, 2H), 4.28-4.25 (m, 2H), 4.20-4.17 (m, 2H).
<化合物[DA-n-3]の合成>
 以下のスキームに従って化合物[DA-n-3]を合成した。
<Synthesis of compound [DA-n-3]>
Compound [DA-n-3] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(化合物[9]の合成)
 4つ口フラスコ中に、6-ブロモ-2-ナフタレンアミン(30.0g,135mmol)、テトラヒドロフラン(450g)、(4-ニトロフェニル)ボロン酸(27.2g,163mmol)、メタノール(300g)、炭酸セシウム(132g,405mmol)、及び水(150g)を仕込み、窒素置換した。そこに、テトラキス(トリフェニルホスフィン)パラジウム(0)(3.12g,2.70mmol)を加え、窒素置換し、55℃で終夜撹拌した。反応終了後、反応液を水(750g)中に加えて結晶を析出させ、濾過し、結晶を回収した。得られた結晶に対し、イソプロピルアルコール(216g)を加え、65℃で加熱撹拌し、室温に冷却しながらトルエン(300g)を加えて晶析させた。これを濾過し、トルエン、ヘキサンでケーキ洗浄後、結晶を乾燥させ、化合物[9]を得た(収量:28.0g,106mmol,収率78%)。
H-NMR(500MHz,DMSO-d,δ(ppm)):8.30(d,J=8.5Hz,2H),8.13(s,1H),8.03(d,J=8.6Hz,2H),7.72(d,J=8.8Hz,2H),7.63(d,J=8.7Hz,1H),7.00(d,J=8.5Hz,1H),6.85(s,1H),5.63(s,2H).
(Synthesis of compound [9])
6-Bromo-2-naphthaleneamine (30.0 g, 135 mmol), tetrahydrofuran (450 g), (4-nitrophenyl) boronic acid (27.2 g, 163 mmol), methanol (300 g), carbonate in a four-necked flask. Cesium (132 g, 405 mmol) and water (150 g) were charged and replaced with nitrogen. Tetrakis (triphenylphosphine) palladium (0) (3.12 g, 2.70 mmol) was added thereto, the mixture was replaced with nitrogen, and the mixture was stirred overnight at 55 ° C. After completion of the reaction, the reaction solution was added to water (750 g) to precipitate crystals, and the crystals were collected by filtration. Isopropyl alcohol (216 g) was added to the obtained crystals, and the mixture was heated and stirred at 65 ° C., and toluene (300 g) was added while cooling to room temperature for crystallization. This was filtered, the cake was washed with toluene and hexane, and the crystals were dried to obtain compound [9] (yield: 28.0 g, 106 mmol, yield 78%).
1 1 H-NMR (500 MHz, DMSO-d 6 , δ (ppm)): 8.30 (d, J = 8.5 Hz, 2H), 8.13 (s, 1H), 8.03 (d, J = 8.6Hz, 2H), 7.72 (d, J = 8.8Hz, 2H), 7.63 (d, J = 8.7Hz, 1H), 7.00 (d, J = 8.5Hz, 1H) ), 6.85 (s, 1H), 5.63 (s, 2H).
(化合物[DA-n-3]の合成)
 化合物[9](28.0g,106mmol)に対し、N,N-ジメチルホルムアミド(224g)を加え、窒素置換した後、5%パラジウムカーボン(含水品、2.24g)を加え窒素置換し、水素テドラーバッグを取り付け室温で終夜撹拌した。反応終了後、メンブレンフィルターに通しパラジウムカーボンを除去後、濾液を水(248g)中に加えて結晶を析出させ、濾過し、結晶(wet)を回収した。得られた結晶に対し、イソプロピルアルコール(50g)を加え55℃で加熱撹拌し、室温に冷却しながらトルエン(74g)を加えて晶析させた。濾過し、結晶を回収した(結晶A)。濾液を濃縮し、再度イソプロピルアルコール(55℃)-トルエン(室温)で晶析させ、濾過し、結晶を回収した(結晶B)得られた結晶A、Bを乾燥させ、化合物[DA-n-3]を得た。(収量:17.6g,75.1mmol,収率71%)。
H-NMR(500MHz,DMSO-d,δ(ppm)):7.76(s,1H),7.60(d,J=8.7Hz,1H),7.53-7.49(m,2H),7.41(d,J=8.2Hz,2H),6.92(d,J=8.7Hz,1H),6.80(s,1H),6.66(d,J=8.2Hz,2H),5.25(s,4H).
(Synthesis of compound [DA-n-3])
To compound [9] (28.0 g, 106 mmol), N, N-dimethylformamide (224 g) was added and replaced with nitrogen, then 5% palladium carbon (hydrous product, 2.24 g) was added and replaced with nitrogen, and hydrogen was substituted. A tedler bag was attached and the mixture was stirred at room temperature overnight. After completion of the reaction, palladium carbon was removed by passing through a membrane filter, the filtrate was added to water (248 g) to precipitate crystals, and the crystals were filtered to recover the crystals (wet). Isopropyl alcohol (50 g) was added to the obtained crystals, and the mixture was heated and stirred at 55 ° C., and toluene (74 g) was added while cooling to room temperature for crystallization. The crystals were collected by filtration (crystal A). The filtrate was concentrated, crystallized again with isopropyl alcohol (55 ° C.)-toluene (room temperature), filtered, and the crystals were recovered (crystal B). The obtained crystals A and B were dried and compounded [DA-n-. 3] was obtained. (Yield: 17.6 g, 75.1 mmol, yield 71%).
1 1 H-NMR (500 MHz, DMSO-d 6 , δ (ppm)): 7.76 (s, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.53-7.49 ( m, 2H), 7.41 (d, J = 8.2Hz, 2H), 6.92 (d, J = 8.7Hz, 1H), 6.80 (s, 1H), 6.66 (d, J = 8.2Hz, 2H), 5.25 (s, 4H).
<化合物[DA-n-9]の合成例>
 以下のスキームに従って化合物[DA-n-9]を合成した。
<Synthesis example of compound [DA-n-9]>
Compound [DA-n-9] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(化合物[4]の合成)
 [DA-n-2]での合成中間体である化合物[4]を使用した。
(化合物[10]の合成)
 ジメチルホルムアミド(607g)中、エチレングリコールジトシラート(60.7g、164mmol)、化合物[4](89.3g)及び炭酸カリウム(56.7g)加え、80℃で22時間撹拌した。室温まで冷却した後、純水(1200g)を加えて結晶を析出させた。そして、濾過し、濾物をメタノール(450g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た(83.9g)。粗体に対し、ジメチルホルムアミド(839g)を加え、90℃で加熱溶解させた後、メタノール(839g)を加えて冷却し、結晶を析出させた。そして、濾過し、濾物を乾燥させることで化合物[10]を得た(収量:71.2g、収率:80%、橙色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):9.43(s,2H),7.99(br,2H),7.67(d,4H,J=8.8Hz),7.43(dd,2H,J=8.8Hz,2.4Hz),7.28(d,2H,J=2.4Hz),7.12(dd,2H,J=8.8Hz,2.4Hz),4.42(s,4H),1.47(s,18H).
(Synthesis of compound [4])
Compound [4], which is a synthetic intermediate in [DA-n-2], was used.
(Synthesis of compound [10])
Ethylene glycol ditosylate (60.7 g, 164 mmol), compound [4] (89.3 g) and potassium carbonate (56.7 g) were added to dimethylformamide (607 g), and the mixture was stirred at 80 ° C. for 22 hours. After cooling to room temperature, pure water (1200 g) was added to precipitate crystals. Then, it was filtered, and the filter product was slurry-washed with methanol (450 g), filtered, and the filter product was dried to obtain a crude product (83.9 g). Dimethylformamide (839 g) was added to the crude product, and the mixture was heated and dissolved at 90 ° C., and then methanol (839 g) was added and cooled to precipitate crystals. Then, the mixture was filtered and the filtrate was dried to obtain compound [10] (yield: 71.2 g, yield: 80%, orange crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 9.43 (s, 2H), 7.99 (br, 2H), 7.67 (d, 4H, J = 8.8 Hz) , 7.43 (dd, 2H, J = 8.8Hz, 2.4Hz), 7.28 (d, 2H, J = 2.4Hz), 7.12 (dd, 2H, J = 8.8Hz, 2) .4Hz), 4.42 (s, 4H), 1.47 (s, 18H).
(化合物[DA-n-9]の合成)
 クロロホルム(1143g)中、化合物[10](71.2g、129mmol)を加えて、水冷下に冷やした。これにトリフルオロ酢酸(160g)を加え、50℃で24時間撹拌した。室温まで冷却した後、トリエチルアミン(142g)及び純水(1143g)を加えて結晶を析出させた。そして、濾過し、濾物をメタノール(400g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た(37.5g)。粗体に対し、ジメチルホルムアミド(225g)を加え、90℃で加熱溶解させた後、メタノール(225g)を加えて冷却し、結晶を析出させた。濾過、濾物を乾燥させることで化合物DA-n-9を得た(収量:33.5g、収率:75%、淡赤紫色結晶)。
H-NMR(400MHz,DMSO-d,δ(ppm)):7.51(d,2H,J=8.8Hz),7.45(d,2H,J=8.8Hz),7.17(d,2H,J=2.4Hz),7.02(dd,2H,J=8.8Hz,2.4Hz),6.91(dd,2H,J=8.8Hz,2.4Hz),6.80(d,2H,J=2.4Hz),5.14(br,4H),4.37(s,4H).
(Synthesis of compound [DA-n-9])
Compound [10] (71.2 g, 129 mmol) was added to chloroform (1143 g), and the mixture was cooled under water cooling. Trifluoroacetic acid (160 g) was added thereto, and the mixture was stirred at 50 ° C. for 24 hours. After cooling to room temperature, triethylamine (142 g) and pure water (1143 g) were added to precipitate crystals. Then, it was filtered, and the filter product was slurry-washed with methanol (400 g), filtered, and the filter product was dried to obtain a crude product (37.5 g). Dimethylformamide (225 g) was added to the crude product, and the mixture was heated and dissolved at 90 ° C., and then methanol (225 g) was added and cooled to precipitate crystals. The compound DA-n-9 was obtained by filtration and drying the filter (yield: 33.5 g, yield: 75%, pale reddish purple crystals).
1 1 H-NMR (400 MHz, DMSO-d 6 , δ (ppm)): 7.51 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.8 Hz), 7. 17 (d, 2H, J = 2.4Hz), 7.02 (dd, 2H, J = 8.8Hz, 2.4Hz), 6.91 (dd, 2H, J = 8.8Hz, 2.4Hz) , 6.80 (d, 2H, J = 2.4Hz), 5.14 (br, 4H), 4.37 (s, 4H).
<化合物[DA-n-10]の合成例>
 以下のスキームに従って化合物[DA-n-10]を合成した。
<Synthesis example of compound [DA-n-10]>
Compound [DA-n-10] was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(化合物[11]の合成)
 tert-ブチル(5-ヒドロキシ-1-ナフタレニル)カルバメート(27.0g,104mmol)に対し、N,N-ジメチルホルムアミド(216g)及び炭酸カリウム(33g,239mmol)を仕込み、80℃で撹拌した。次に、1,2-ビス(4-メチルベンゼンスルホネート)-1,2-エタンジオール(18.0g,496mmol)のN,N-ジメチルホルムアミド(162g)溶液を滴下ロートにて滴下し、80℃で終夜加熱撹拌した。反応終了後、反応液を水(2268g)に注ぎ、結晶を析出させた。ブフナー漏斗を用いて混合液を濾過し、べたつきのある黒紫色結晶(93g)を得た。得られた粗物にN,N-ジメチルホルムアミドを加えて80℃で加熱溶解させ、室温に冷却しながらメタノールにて晶析し、濾過・乾燥させ、化合物[11]を得た(収量:28.0g,51.4mmol,収率67%)。
H-NMR(500MHz,DMSO-d,δ(ppm)):9.14(s,2H),7.98(d,J=10.0Hz,2H),7.64(d,J=10.0Hz,2H),7.55(d,J=10.0Hz,2H),7.46(t,J=7.5Hz,2H),7.39(t,J=7.5Hz,2H),7.13(d,J=10.0Hz,2H),4.65(s,4H),1.49(s,18H).
(Synthesis of compound [11])
N, N-dimethylformamide (216 g) and potassium carbonate (33 g, 239 mmol) were added to tert-butyl (5-hydroxy-1-naphthalenyl) carbamate (27.0 g, 104 mmol), and the mixture was stirred at 80 ° C. Next, a solution of 1,2-bis (4-methylbenzenesulfonate) -1,2-ethanediol (18.0 g, 496 mmol) in N, N-dimethylformamide (162 g) was added dropwise with a dropping funnel at 80 ° C. It was heated and stirred overnight. After completion of the reaction, the reaction solution was poured into water (2268 g) to precipitate crystals. The mixture was filtered using a Büchner funnel to obtain sticky black-purple crystals (93 g). N, N-dimethylformamide was added to the obtained crude product, dissolved by heating at 80 ° C., crystallized with methanol while cooling to room temperature, filtered and dried to obtain compound [11] (yield: 28). 0.0 g, 51.4 mmol, yield 67%).
1 1 H-NMR (500 MHz, DMSO-d 6 , δ (ppm)): 9.14 (s, 2H), 7.98 (d, J = 10.0 Hz, 2H), 7.64 (d, J = 10.0Hz, 2H), 7.55 (d, J = 10.0Hz, 2H), 7.46 (t, J = 7.5Hz, 2H), 7.39 (t, J = 7.5Hz, 2H) ), 7.13 (d, J = 10.0Hz, 2H), 4.65 (s, 4H), 1.49 (s, 18H).
(化合物[DA-n-10]の合成)
 化合物[11](28.0g,51.4mmol)に対し、クロロホルム(374g)及び炭酸カリウム(33g,239mmol)を仕込み、80℃で撹拌した。次に、滴下ロートにてトリフルオロ酢酸(31.0g,313mmol)をゆっくり滴下し、50℃で6時間加熱撹拌したところ、反応系内に灰色結晶が析出した。25℃に冷却した後、反応液を水(374g)に注ぎ、濾過した。得られた結晶に対し、トリエチルアミン及び水を加えて撹拌し、トリフルオロ酢酸塩からジアミンを遊離させ、再度濾過し、メタノール、次いでヘキサンで洗浄後、乾燥させ、化合物[DA-n-10]を得た(収量:9.30g,27.0mmol,収率86%)。
H-NMR(500MHz,DMSO-d,δ(ppm)):7.65(d,J=7.5Hz,2H),7.41(d,J=8.0Hz,2H),7.29(t,J=8.0Hz,2H),7.12(t,J=8.0Hz,2H),7.00(t,J=7.5Hz,2H),6.67(d,J=7.5Hz,2H),5.62(s,4H),4.56(s,4H).
(Synthesis of compound [DA-n-10])
Chloroform (374 g) and potassium carbonate (33 g, 239 mmol) were added to compound [11] (28.0 g, 51.4 mmol), and the mixture was stirred at 80 ° C. Next, trifluoroacetic acid (31.0 g, 313 mmol) was slowly added dropwise with a dropping funnel, and the mixture was heated and stirred at 50 ° C. for 6 hours, and gray crystals were precipitated in the reaction system. After cooling to 25 ° C., the reaction solution was poured into water (374 g) and filtered. To the obtained crystals, triethylamine and water were added and stirred to liberate the diamine from the trifluoroacetic acid salt, filtered again, washed with methanol and then hexane, and dried to obtain the compound [DA-n-10]. Obtained (yield: 9.30 g, 27.0 mmol, yield 86%).
1 1 H-NMR (500 MHz, DMSO-d 6 , δ (ppm)): 7.65 (d, J = 7.5 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7. 29 (t, J = 8.0Hz, 2H), 7.12 (t, J = 8.0Hz, 2H), 7.00 (t, J = 7.5Hz, 2H), 6.67 (d, J) = 7.5Hz, 2H), 5.62 (s, 4H), 4.56 (s, 4H).
<DA-v-7の合成>
 以下のスキームに従って化合物[DA-v-7]を合成した。「MeO」はメトキシ基を表す。
Figure JPOXMLDOC01-appb-C000052
<Synthesis of DA-v-7>
Compound [DA-v-7] was synthesized according to the following scheme. "MeO" represents a methoxy group.
Figure JPOXMLDOC01-appb-C000052
(化合物3(3a,3b混合物)の合成)
 4つ口フラスコにマグネシウム(15.39g,63.3mmol,1.5eq.)を加え、真空ポンプにて1時間真空乾燥を行った後、THF(100g)をシリンジにて加え、室温にて撹拌した。次に化合物1(100g,42.2mmol)のTHF(300g)溶液を穏やかに還流する程度の速度で徐々に滴下しながら加えた。その後、反応溶液を0℃に冷却し、化合物2(105.60g,42.2mmol,1.0eq.)のTHF(200g)溶液を滴下した。滴下が終了した後、反応液の温度を室温まで戻し、室温にて3時間撹拌を行った。その後、トルエン(1L)を加え、反応液を希釈した後、反応溶液を再び0℃に冷却し、10%酢酸溶液(500g)を徐々に滴下し加えた。
 次に、分液操作にて水層を除去し、有機層を飽和食塩水(1L)、飽和炭酸水素ナトリウム水溶液(1L)、飽和食塩水(1L)でそれぞれ洗浄し無水硫酸マグネシウムにて有機層を乾燥した。その後、ろ過、エバポレーターにて留去を行い、化合物3の粗結晶172gを得た。得られた粗結晶はそのまま次の反応に使用した。
(Synthesis of Compound 3 (3a, 3b mixture))
Magnesium (15.39 g, 63.3 mmol, 1.5 eq.) Is added to a four-necked flask, vacuum dried with a vacuum pump for 1 hour, then THF (100 g) is added with a syringe, and the mixture is stirred at room temperature. did. Next, a solution of compound 1 (100 g, 42.2 mmol) in THF (300 g) was added slowly and dropwise at a rate of gently refluxing. Then, the reaction solution was cooled to 0 ° C., and a solution of Compound 2 (105.60 g, 42.2 mmol, 1.0 eq.) In THF (200 g) was added dropwise. After the dropping was completed, the temperature of the reaction solution was returned to room temperature, and the mixture was stirred at room temperature for 3 hours. Then, toluene (1 L) was added to dilute the reaction solution, the reaction solution was cooled to 0 ° C. again, and a 10% acetic acid solution (500 g) was gradually added dropwise.
Next, the aqueous layer is removed by a liquid separation operation, the organic layer is washed with saturated brine (1 L), saturated aqueous sodium hydrogen carbonate solution (1 L), and saturated brine (1 L), and the organic layer is washed with anhydrous magnesium sulfate. Was dried. Then, it was filtered and distilled by an evaporator to obtain 172 g of a crude crystal of compound 3. The obtained crude crystals were used as they were in the next reaction.
(化合物4の合成)
 化合物3の粗結晶(172g,422mmol)、p-トルエンスルホン酸一水和物(4.82g,及び25.3mmol,0.06eq.)の脱水トルエン(MS4A脱水品、2L)混合物を、還流下、水を抜きながら2時間反応させた。反応終了後、エバポレーターにてトルエンを使用量の半分程度留去した後、溶液を室温にて撹拌し、固体を析出させた。得られた固体をろ過し、化合物4の結晶を得た(得量150g、得率91%)。
(Synthesis of Compound 4)
A mixture of crude crystals of compound 3 (172 g, 422 mmol) and p-toluenesulfonic acid monohydrate (4.82 g, and 25.3 mmol, 0.06 eq.) In dehydrated toluene (MS4A dehydrated product, 2 L) under reflux. , The reaction was carried out for 2 hours while draining water. After completion of the reaction, about half of the amount of toluene used was distilled off with an evaporator, and then the solution was stirred at room temperature to precipitate a solid. The obtained solid was filtered to obtain crystals of compound 4 (gain: 150 g, yield 91%).
(化合物5(5a,5b混合物)の合成)
 化合物4(108g,276mmol)、5%パラジウムカーボン(含水品、11g、10wt%)、酢酸エチル(1L)、及びエタノール(1L)の混合物を、水素存在下にて、室温で撹拌した。反応終了後、トルエン(2L)を加え結晶を溶かした後、反応混合物をセライトにてろ過、セライトをトルエン1Lで洗浄した。ろ液を減圧下にて濃縮したところ、目的化合物5を得た(得量103.3g、得率95%)。
(Synthesis of Compound 5 (mixture of 5a and 5b))
A mixture of compound 4 (108 g, 276 mmol), 5% palladium carbon (hydrous product, 11 g, 10 wt%), ethyl acetate (1 L) and ethanol (1 L) was stirred in the presence of hydrogen at room temperature. After completion of the reaction, toluene (2 L) was added to dissolve the crystals, the reaction mixture was filtered through Celite, and Celite was washed with 1 L of toluene. When the filtrate was concentrated under reduced pressure, the target compound 5 was obtained (gain: 103.3 g, yield 95%).
(化合物6の合成)
 0℃、窒素置換下、化合物5(95.4g,243mmol)の塩化メチレン(800mL)溶液中に、BBr(1.0M-CHCl,243mL,1.01mol)を滴下した。滴下後、0℃で2時間撹拌した。反応終了後、蒸留水中に、反応液を少しずつ加えた。酢酸エチル(1L)にて抽出し、抽出液を蒸留水500mLで2回洗浄した。有機層を硫酸マグネシウムにて乾燥後、溶媒を減圧下にて留去した。得られた粗物をエタノールにて再結晶、ろ過、エタノールにて洗浄を行ったところ、目的化合物6を得た(得量18.6g、得率21%)。
(Synthesis of Compound 6)
BBr 3 (1.0 M-CH 2 Cl 2 , 243 mL, 1.01 mol) was added dropwise to a solution of compound 5 (95.4 g, 243 mmol) in methylene chloride (800 mL) at 0 ° C. under nitrogen substitution. After the dropping, the mixture was stirred at 0 ° C. for 2 hours. After completion of the reaction, the reaction solution was added little by little to the distilled water. The extract was extracted with ethyl acetate (1 L), and the extract was washed twice with 500 mL of distilled water. The organic layer was dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained crude product was recrystallized from ethanol, filtered, and washed with ethanol to obtain the target compound 6 (18.6 g obtained, 21% yield).
(化合物8の合成)
 化合物6(10.0g,26.4mmol)、炭酸カリウム(11.0g,79.2mmol,3eq.)、及びトルエン(50g)の混合物中に、還流下、化合物7(5.35g,26.4mmol)のトルエン(20g)溶液を滴下した。滴下後、還流にて一晩撹拌した。反応終了後、反応液を60℃程度まで冷却した後、酢酸エチル(500g)を加え、蒸留水にて3回洗浄した。有機層を無水硫酸マグネシウムにて乾燥後、溶媒を減圧下にて留去した。得られた粗物を、アセトニトリル/エタノール(2:1)溶液にて再結晶、ろ過後、ろ過結晶をエタノールにて洗浄し、化合物8の粗結晶を得た。この粗結晶をカラムクロマトグラフィー(SiO,CHCl)にて精製し、化合物8の結晶を得た(得量7.1g、得率49%).
(Synthesis of Compound 8)
Compound 7 (5.35 g, 26.4 mmol) in a mixture of compound 6 (10.0 g, 26.4 mmol), potassium carbonate (11.0 g, 79.2 mmol, 3 eq.), And toluene (50 g) under reflux. ) Intoluene (20 g) solution was added dropwise. After the dropping, the mixture was stirred at reflux overnight. After completion of the reaction, the reaction solution was cooled to about 60 ° C., ethyl acetate (500 g) was added, and the mixture was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained crude product was recrystallized from an acetonitrile / ethanol (2: 1) solution, filtered, and then the filtered crystals were washed with ethanol to obtain crude crystals of Compound 8. The crude crystals were purified by column chromatography (SiO 2 , CHCl 3 ) to obtain crystals of compound 8 (yield 7.1 g, yield 49%).
(DA-v-7の合成)
 化合物8(12.2g,22.4mmol)、5%パラジウムカーボン(含水品、1.22g、10wt%)、1,4-ジオキサン(120g)の混合物を、水素存在下、60℃、4時間撹拌した。反応終了後、窒素置換を行なった後、60℃のままセライトでろ過した。ろ液を、減圧下、溶媒留去したところ、粗物を得た。その粗物を2-プロパノール/酢酸エチル(2:1)で再結晶することにより、目的物であるDA-v-7を得た(得量8.0g、得率74%)。
H-NMR(500MHz,CDCl,δ(ppm)):7.725(1H,d),7.577(2H,m),7.272(2H,m),7.102(1H,s),6.791(1H,d),6.207(1H,d),6.117(1H,dd),3.621(4H,broad),2.553(1H,m),2.067-0.863(31H,m).
(Synthesis of DA-v-7)
A mixture of Compound 8 (12.2 g, 22.4 mmol), 5% palladium carbon (hydrous product, 1.22 g, 10 wt%) and 1,4-dioxane (120 g) was stirred at 60 ° C. for 4 hours in the presence of hydrogen. did. After completion of the reaction, nitrogen substitution was carried out, and then the mixture was filtered through Celite at 60 ° C. The filtrate was evaporated under reduced pressure to give a crude product. The crude product was recrystallized from 2-propanol / ethyl acetate (2: 1) to obtain the desired product, DA-v-7 (gain: 8.0 g, yield: 74%).
1 1 H-NMR (500 MHz, CDCl 3 , δ (ppm)): 7.725 (1H, d), 7.577 (2H, m), 7.272 (2H, m), 7.102 (1H, s) ), 6.791 (1H, d), 6.207 (1H, d), 6.117 (1H, dd), 3.621 (4H, road), 2.553 (1H, m), 2.067. -0.863 (31H, m).
[ポリアミック酸の合成]
<合成例1>
 撹拌装置付き100mL四つ口フラスコに、DA-4を1.66g(7.00mmol)、DA-5を2.89g(8.75mmol)、DA-v-6を5.30g(7.00mmol)、DA-13を2.43g(12.3mmol)量り取り、NMPを49.1g加えて、撹拌し溶解させた。このジアミン溶液を撹拌しながらDC-3を7.53g(33.6mmol)添加し、さらにNMPを30.1g加え、60℃で15時間撹拌してポリアミック酸(A-R1、粘度:649mPa・s、数平均分子量:14,231)の溶液を得た。
[Synthesis of polyamic acid]
<Synthesis example 1>
1.66 g (7.00 mmol) of DA-4, 2.89 g (8.75 mmol) of DA-5, 5.30 g (7.00 mmol) of DA-v-6 in a 100 mL four-necked flask with a stirrer. , DA-13 was weighed in 2.43 g (12.3 mmol), 49.1 g of NMP was added, and the mixture was stirred and dissolved. While stirring this diamine solution, 7.53 g (33.6 mmol) of DC-3 was added, 30.1 g of NMP was further added, and the mixture was stirred at 60 ° C. for 15 hours to obtain a polyamic acid (AR1, viscosity: 649 mPa · s). , A solution having a number average molecular weight of 14,231) was obtained.
<合成例2~13>
 ジアミン成分及び酸二無水物成分を、それぞれ、下記表1に示すものに変更したこと以外は、合成例1と同様に実施することにより、下記表1に示す、ポリアミック酸溶液(A-R2)~(A-R9)、(A-B1)~(A-B4)を得た。得られたポリアミック酸の粘度、分子量も下記表1に示す。
<Synthesis Examples 2 to 13>
The polyamic acid solution (AR2) shown in Table 1 below was carried out in the same manner as in Synthesis Example 1 except that the diamine component and the acid dianhydride component were changed to those shown in Table 1 below. -(A-R9) and (A-B1)-(A-B4) were obtained. The viscosity and molecular weight of the obtained polyamic acid are also shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
[液晶配向剤の調製]
<例1>
 上記で得たポリアミック酸(A-R1)の溶液(6.0g)にNMP(6.0g)及びBCS(8.0g)を加え室温で10時間撹拌して、ポリアミック酸(A-R1)が6質量%、NMPが54質量%、及びBCSが40質量%を含む液晶配向剤(R1)を得た。
[Preparation of liquid crystal alignment agent]
<Example 1>
NMP (6.0 g) and BCS (8.0 g) were added to the solution (6.0 g) of the polyamic acid (AR1) obtained above, and the mixture was stirred at room temperature for 10 hours to obtain the polyamic acid (AR1). A liquid crystal aligning agent (R1) containing 6% by mass, 54% by mass of NMP, and 40% by mass of BCS was obtained.
<合成例2~13>
 ポリアミック酸(A-R1)の代りに、下記表2に示すように、ポリアミック酸(A-R2)~(A-R9)、(A-B1)~(A-B4)を使用したこと以外は、例1と同様に実施することにより、それぞれ、表2に示す、例2~13の液晶配向剤(R2)~(R9)、(B1)~(B4)を得た。
 なお、表2の例1~13において、例1~3、6~9は比較例であり、例4,5、10~13は、本発明の実施例である。
<Synthesis Examples 2 to 13>
As shown in Table 2 below, instead of the polyamic acid (A-R1), except that the polyamic acids (A-R2) to (A-R9) and (A-B1) to (A-B4) were used. By carrying out in the same manner as in Example 1, the liquid crystal alignment agents (R2) to (R9) and (B1) to (B4) of Examples 2 to 13 shown in Table 2 were obtained, respectively.
In Examples 1 to 13 of Table 2, Examples 1 to 3 and 6 to 9 are comparative examples, and Examples 4, 5, 10 to 13 are examples of the present invention.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 上記表2中の固形分比率は、液晶配向剤100質量部に対する重合体固形分の含有比率を表し、溶媒組成比率は、各有機溶媒における含有割合(質量部)を表す。 The solid content ratio in Table 2 above represents the content ratio of the polymer solid content with respect to 100 parts by mass of the liquid crystal aligning agent, and the solvent composition ratio represents the content ratio (parts by mass) in each organic solvent.
<例14~21>
 例1で得られた液晶配向剤(R1)と例4で得られた液晶配向剤(R4)とを、それぞれの質量比が3:7となるように混合して、室温で3時間撹拌し、例14の液晶配向剤(B5)を調製した。
 また、例15~21では、使用する液晶配向剤の組み合わせを下記表3に示すものに変更した以外は例14と同様に実施することにより、それぞれ、下記表3に示す、例15~21の液晶配向剤(B6~B8,R10~R13)を調製した。
Figure JPOXMLDOC01-appb-T000055
<Examples 14 to 21>
The liquid crystal alignment agent (R1) obtained in Example 1 and the liquid crystal alignment agent (R4) obtained in Example 4 are mixed so that their mass ratios are 3: 7, and the mixture is stirred at room temperature for 3 hours. , Example 14 liquid crystal alignment agent (B5) was prepared.
Further, in Examples 15 to 21, by carrying out in the same manner as in Example 14 except that the combination of the liquid crystal alignment agents used was changed to those shown in Table 3 below, Examples 15 to 21 shown in Table 3 below, respectively. Liquid crystal alignment agents (B6 to B8, R10 to R13) were prepared.
Figure JPOXMLDOC01-appb-T000055
<例22~35>
 下記のようにして、液晶配向膜及び液晶セルを作製し、作製した各液晶セルの特性を評価した。それらの結果を下記表4に示す。なお、下記の例において、例22~25、28~31は本発明の実施例であり、例26、27、32~35は比較例である。
[液晶配向膜の作製]
 上記例1~21で調製した液晶配向剤を用いて、以下のようにして液晶配向膜を作製した。各液晶配向剤を、石英基板又はシリコンウェハーにスピンコートし、70℃のホットプレートで90秒間乾燥した後、230℃の熱風循環式オーブン(デンコー社製、MB1-1G3030X)で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 
<Examples 22 to 35>
A liquid crystal alignment film and a liquid crystal cell were prepared as described below, and the characteristics of each of the prepared liquid crystal cells were evaluated. The results are shown in Table 4 below. In the following examples, Examples 22 to 25 and 28 to 31 are examples of the present invention, and Examples 26, 27 and 32 to 35 are comparative examples.
[Preparation of liquid crystal alignment film]
Using the liquid crystal alignment agents prepared in Examples 1 to 21, a liquid crystal alignment film was prepared as follows. Each liquid crystal alignment agent is spin-coated on a quartz substrate or a silicon wafer, dried on a hot plate at 70 ° C. for 90 seconds, and then baked in a hot air circulation oven (MB1-1G3030X, manufactured by Denko) at 230 ° C. for 20 minutes. , A liquid crystal alignment film having a film thickness of 100 nm was formed.
[液晶配向膜の屈折率の測定]
 分光エリプソメーター(J.A.Woollam社製、M-2000)を使用し、CAUCHYモデルによるフィッティングを行って、波長250~800nmにおける屈折率を測定した。結果を表4に示す。表4には、波長550nmにおける屈折率を記した。屈折率が1.62より大きい場合を「良好」とし、1.62以下の場合を「不良」とした。
[Measurement of refractive index of liquid crystal alignment film]
Using a spectroscopic ellipsometer (M-2000, manufactured by JA Woollam), fitting by a Cauchy model was performed, and the refractive index at a wavelength of 250 to 800 nm was measured. The results are shown in Table 4. Table 4 shows the refractive index at a wavelength of 550 nm. When the refractive index was larger than 1.62, it was regarded as "good", and when it was 1.62 or less, it was regarded as "poor".
[液晶配向膜の透過率の測定]
 石英基板を二枚使用して測定セルを作製した。二枚のうち一枚には液晶配向膜を形成し、液晶配向膜を形成した側の面を内側にして、液晶配向膜を形成していない石英基板を貼り合わせた。その間に屈折液(接触液、島津デバイス製造社製)を、スポイトを用いて挿入し、測定セルを作製した。屈折液は1.60~1.70の0.01刻み11種類の中から、それぞれの屈折率に合わせて使用した。
 紫外可視分光光度計(島津製作所社製、UV-2600)を使用し、上記で作製した測定セルの波長380~800nmにおける透過率を測定した。結果を表4に示す。表4には波長380~800nmにおける透過率の平均値を記した。
 透過率が99.0%より大きい場合を「良好」とし、99.0%以下の場合を「不良」として評価を行った。
[Measurement of transmittance of liquid crystal alignment film]
A measurement cell was prepared using two quartz substrates. A liquid crystal alignment film was formed on one of the two sheets, and a quartz substrate on which the liquid crystal alignment film was not formed was attached with the side surface on which the liquid crystal alignment film was formed inside. In the meantime, a refracting liquid (contact liquid, manufactured by Shimadzu Device Manufacturing Co., Ltd.) was inserted using a dropper to prepare a measurement cell. The refracting liquid was used from 11 types in 0.01 increments of 1.60 to 1.70 according to the respective refractive index.
Using an ultraviolet-visible spectrophotometer (UV-2600, manufactured by Shimadzu Corporation), the transmittance of the measurement cell prepared above at a wavelength of 380 to 800 nm was measured. The results are shown in Table 4. Table 4 shows the average value of the transmittance at a wavelength of 380 to 800 nm.
When the transmittance was greater than 99.0%, it was evaluated as "good", and when it was 99.0% or less, it was evaluated as "poor".
「液晶配向膜及び液晶セルの作製」
 上記各実施例で調製した液晶配向剤を用いて、以下のようにして液晶セルを作製した。
 各液晶配向剤を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、70℃のホットプレートで90秒間乾燥した後、230℃の熱風循環式オーブン(デンコー社製、MB1-1G3030X)で30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 
 また、液晶配向剤を電極パターンが形成されていないITO面にスピンコートし、70度のホットプレートで90秒間乾燥させた後、230℃の熱風循環式オーブン(デンコー社製、MB1-1G3030X)で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
"Preparation of liquid crystal alignment film and liquid crystal cell"
Using the liquid crystal alignment agent prepared in each of the above examples, a liquid crystal cell was prepared as follows.
Each liquid crystal alignment agent was spin-coated on the ITO surface of an ITO electrode substrate having an ITO electrode pattern having a pixel size of 100 μm × 300 μm and a line / space of 5 μm, and dried on a hot plate at 70 ° C. for 90 seconds. , 230 ° C., hot air circulation type oven (MB1-1G3030X, manufactured by Denko) for 30 minutes to form a liquid crystal alignment film having a film thickness of 100 nm.
Further, the liquid crystal aligning agent is spin-coated on the ITO surface on which the electrode pattern is not formed, dried on a hot plate at 70 ° C. for 90 seconds, and then placed in a hot air circulation oven (MB1-1G3030X, manufactured by Denko) at 230 ° C. It was baked for 20 minutes to form a liquid crystal alignment film having a film thickness of 100 nm.
 上記の2枚の基板について一方の基板の液晶配向膜上に4μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに重合性化合物を含有する液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。 For the above two substrates, a 4 μm bead spacer was sprayed on the liquid crystal alignment film of one of the substrates, and then a sealant (solvent type thermosetting type epoxy resin) was printed on the bead spacers. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell. A liquid crystal MLC-3023 (trade name manufactured by Merck & Co., Inc.) containing a polymerizable compound was injected into the empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
 その後、この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から325nm以下の波長をカットするフィルターを通したUVを10J/cm照射した。なお、UVの照度は、紫外線照射度計(ORC社製UV-MO3A)を用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態でUV-FL照射装置(東芝ライテック社製)を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。 Then, with a DC voltage of 15 V applied to the liquid crystal cell, UV was irradiated at 10 J / cm 2 from the outside of the liquid crystal cell through a filter that cuts a wavelength of 325 nm or less. The illuminance of UV was measured using an ultraviolet irradiation degree meter (UV-MO3A manufactured by ORC). After that, for the purpose of inactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: UV lamp:) was used using a UV-FL irradiation device (manufactured by Toshiba Litec) in a state where no voltage was applied. FLR40SUV32 / A-1) was irradiated for 30 minutes.
「液晶セルの評価」
 上記のようにして作製した各液晶セルの特性の評価方法は以下のとおりである。
(垂直配向性の評価)
 液晶セルをクロスニコルの偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化で液晶が垂直配向しているかを目視にて観察した。評価基準は下記のとおりである。
 ○:液晶は垂直配向している。   ×:液晶が垂直配向していない。
"Evaluation of liquid crystal cell"
The method for evaluating the characteristics of each liquid crystal cell produced as described above is as follows.
(Evaluation of vertical orientation)
The liquid crystal cell was sandwiched between cross Nicol polarizing plates, and the liquid crystal cell was rotated in a state where the backlight was irradiated from the rear part, and it was visually observed whether the liquid crystal was vertically oriented by the change of brightness. The evaluation criteria are as follows.
◯: The liquid crystal is vertically oriented. X: The liquid crystal is not vertically oriented.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 なお、2019年9月24日に出願された日本特許出願2019-173271号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-173271 filed on September 24, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.

Claims (20)

  1.  下記式(0)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする垂直配向用の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(0)中、A及びA’は、それぞれ独立して、単環基、縮合環基、又は前記単環基が2つ結合した基を表し、A及びA’の少なくとも1つは、縮合環基を表す。Lは、単結合、又は-X-Q-X-基を表す。X及びXは、それぞれ独立して、単結合、酸素原子又は硫黄原子を表す。Qは、炭素数1又は2のアルキレン基を表す。)
    At least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (0) and polyimide which is an imide of the polyimide precursor. ), A liquid crystal aligning agent for vertical alignment.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (0), A and A'independently represent a monocyclic group, a condensed ring group, or a group in which two monocyclic groups are bonded, and at least one of A and A'is Representing a fused ring group. L represents a single bond or -X 1- Q-X 2- group. X 1 and X 2 independently represent a single bond, an oxygen atom or a sulfur atom. Q Represents an alkylene group having 1 or 2 carbon atoms.)
  2.  前記縮合環基が、ナフタレン、アントラセン、ピレン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、又はイソキノリンのいずれかである縮合環から水素原子を2個除いた2価の基である請求項1に記載の液晶配向剤。 Claim 1 in which the fused ring group is a divalent group obtained by removing two hydrogen atoms from a fused ring which is any one of naphthalene, anthracene, pyrene, indole, carbazole, coumarin, benzo-pyrone, quinoline, or isoquinoline. The liquid crystal alignment agent according to.
  3.  前記ジアミン(0)が、下記式(1)で表されるジアミンである請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Aは、単環基、縮合環基、又は前記単環基が2つ結合した基を表し、Lは単結合、又は-X-Q-X-を表す。X及びXは、それぞれ独立して、単結合、酸素原子又は硫黄原子を表す。Qは、炭素数1又は2のアルキレン基を表す。)
    The liquid crystal alignment agent according to claim 1 or 2, wherein the diamine (0) is a diamine represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (1), A represents a monocyclic group, a condensed ring group, or a group in which two monocyclic groups are bonded, and L represents a single bond or -X 1- Q-X 2- . X 1 and X 2 independently represent a single bond, an oxygen atom or a sulfur atom, and Q represents an alkylene group having 1 or 2 carbon atoms.
  4.  前記式(1)において、Aがフェニレン基、ピリジニル基、ナフチレン基、アントラセニル基、キノリニル基、ビフェニル構造、又はビピリジニル基である請求項3に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 3, wherein in the formula (1), A is a phenylene group, a pyridinyl group, a naphthylene group, an anthracenyl group, a quinolinyl group, a biphenyl structure, or a bipyridinyl group.
  5.  前記式(1)で表されるジアミンが、下記式(d-1)~(d-7)、(d-13)~(d-14)、(d-17)~(d-18)及び(d-21)からなる群から選ばれるいずれかのジアミンである請求項3又は4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The diamines represented by the formula (1) are the following formulas (d-1) to (d-7), (d-13) to (d-14), (d-17) to (d-18) and The liquid crystal alignment agent according to claim 3 or 4, which is any diamine selected from the group consisting of (d-21).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  6.  前記ジアミン(0)が、下記式(d-8)~(d-12)、(d-15)、(d-16)、(d-19)及び(d-20)からなる群から選ばれるいずれかのジアミンである請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    The diamine (0) is selected from the group consisting of the following formulas (d-8) to (d-12), (d-15), (d-16), (d-19) and (d-20). The liquid crystal alignment agent according to claim 1, which is any diamine.
    Figure JPOXMLDOC01-appb-C000005
  7.  前記重合体(P)が、下記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有するジアミン(s)を更に含むジアミン成分を用いて得られる請求項1~6のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、mは1~2の整数である。mが2の場合、複数のa1及びAは、それぞれ独立して前記定義を有する)を表す。G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基、炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であり、m及びnの合計は1~6である。Rは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000007
    (Xは、単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000008
    (Xは、-CONH-、-NHCO-、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。)
    Claim 1 obtained by using a diamine component further containing a diamine (s) in which the polymer (P) has at least one selected from the group consisting of the structures represented by the following formulas (S1) to (S3). The liquid crystal alignment agent according to any one of 6 to 6.
    Figure JPOXMLDOC01-appb-C000006
    (X 1 and X 2 are independent, single bond,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )- , -NH-, -O-, -COO-, -OCO- or-((CH 2 ) a1- A 1 ) m1- (a1 is an integer from 1 to 15, and A 1 is an oxygen atom or -COO- , And m 1 is an integer of 1 to 2. When m 1 is 2, a plurality of a 1 and A 1 have the above definitions independently of each other). G 1 and G 2 are independent of each other. Then, it represents a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms. Any hydrogen atom on the cyclic group represents. , An alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom may be substituted. .M and n are independently integers of 0 to 3, and the sum of m and n is 1 to 6. R 1 is an alkyl group having 1 to 20 carbon atoms and an alkoxy having 1 to 20 carbon atoms. Any hydrogen atom representing a group or an alkoxyalkyl group having 2 to 20 carbon atoms and forming R 1 may be substituted with a fluorine atom.)
    Figure JPOXMLDOC01-appb-C000007
    (X 3 represents a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -COO- or -OCO- R 2 Represents an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 2 may be substituted with a fluorine atom.)
    Figure JPOXMLDOC01-appb-C000008
    (X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -OCH 2- , -COO- or -OCO-. R 3 represents a structure having a steroid skeleton.)
  8.  前記ジアミン(s)が、下記式(d1)又は式(d2)で表されるジアミンである請求項7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000009
    (Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-、-COO-、-CONH-、-NH-(CH-NH-又は-SO-(CH-SO-を表す。mは1~8の整数である。Yは、前記式(S1)~(S3)のいずれかの構造を表し、式(d2)における2個のYは同一であっても良く、異なっていても良い。)
    The liquid crystal alignment agent according to claim 7, wherein the diamine (s) is a diamine represented by the following formula (d1) or formula (d2).
    Figure JPOXMLDOC01-appb-C000009
    (X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m- O -, - O-C ( CH 3) 2 -, - CO- (CH 2) m -, - NH- (CH 2) m -, - SO 2 - (CH 2) m -, - CONH- (CH 2) m -, - CONH- ( CH 2) m -NHCO -, - COO- (CH 2) m -OCO -, - COO -, - CONH -, - NH- (CH 2) m -NH- or - It represents SO 2- (CH 2 ) m- SO 2-. M is an integer of 1 to 8. Y represents any structure of the above formulas (S1) to (S3), and in the formula (d2). The two Ys may be the same or different.)
  9.  前記式(d1)で表されるジアミンが、下記の式(d1-1)~(d1-18)からなる群から選ばれるいずれかのジアミンである請求項8に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (nは1~20の整数である。)
    Figure JPOXMLDOC01-appb-C000011
    The liquid crystal alignment agent according to claim 8, wherein the diamine represented by the formula (d1) is any diamine selected from the group consisting of the following formulas (d1-1) to (d1-18).
    Figure JPOXMLDOC01-appb-C000010
    (N is an integer from 1 to 20.)
    Figure JPOXMLDOC01-appb-C000011
  10.  前記式(d2)で表されるジアミンが、下記の式(d2-1)~(d2-6)からなる群から選ばれるいずれかのジアミンである請求項8に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000012
    (Xp1~Xp8は、それぞれ独立して、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表す。Xs1~Xs4はそれぞれ独立して、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。X~Xは、-O-、-NH-、-O-(CH-O-、-C(CH-、-CO-、-COO-、-CONH-、-(CH-、-SO-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-NH-(CH-NH-、-SO-(CH-、-SO-(CH-SO-、-CONH-(CH-、-CONH-(CH-NHCO-、又は-COO-(CH-OCO-を表す。R1a~R1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表す。mは1~8の整数である。)
    The liquid crystal alignment agent according to claim 8, wherein the diamine represented by the formula (d2) is any diamine selected from the group consisting of the following formulas (d2-1) to (d2-6).
    Figure JPOXMLDOC01-appb-C000012
    (X p1 to X p8 are independently each of-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-,-. NH -, - O -, - CH 2 O -, - CH 2 OCO -, - COO-, or -OCO- .X s1 ~ X s4 representative of a is independently, -O -, - CH 2 O- , -OCH 2- , -COO- or -OCO-. X a to X f are -O-, -NH-, -O- (CH 2 ) m- O-, -C (CH 3 ) 2 -, -CO-, -COO-, -CONH-,-(CH 2 ) m- , -SO 2- , -OC (CH 3 ) 2- , -CO- (CH 2 ) m- , -NH - (CH 2) m -, - NH- (CH 2) m -NH -, - SO 2 - (CH 2) m -, - SO 2 - (CH 2) m -SO 2 -, - CONH- (CH 2 ) Represents m- , -CONH- (CH 2 ) m- NHCO-, or -COO- (CH 2 ) m- OCO-. R 1a to R 1h are independently alkyl having 1 to 20 carbon atoms. Represents a group, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms. M is an integer of 1 to 8).
  11.  前記重合体(P)が、前記ジアミン成分と、下記式(T)で表されるテトラカルボン酸二無水物を含有するテトラカルボン酸成分と、の重合反応により得られる請求項1~10のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000013
    (Xは、下記式(x-1)~(x-13)から選ばれる構造を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (R~Rは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。j及びkは、それぞれ独立して、0又は1の整数である。A及びAは、それぞれ独立して、単結合、エーテル、カルボニル、エステル、フェニレン、スルホニル又はアミド基を表し、2個のAは同一であっても良く、異なっていても良い。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
    Any of claims 1 to 10 obtained by the polymerization reaction of the polymer (P) with the diamine component and a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula (T). The liquid crystal aligning agent according to item 1.
    Figure JPOXMLDOC01-appb-C000013
    (X represents a structure selected from the following formulas (x-1) to (x-13).)
    Figure JPOXMLDOC01-appb-C000014
    (R 1 to R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group. R 5 and R 6 independently represent a hydrogen atom or a methyl group, respectively. J and k are independently integers of 0 or 1 , respectively. A 1 and A 2 independently represent a single bond, ether, carbonyl, ester, phenylene, sulfonyl or amide group. , Two A 2s may be the same or different. * 1 is a bond that binds to one acid anhydride group, and * 2 is a bond that binds to the other acid anhydride group. It is a hand.)
  12.  前記式(T)のXが、前記式(x-1)~(x-7)、(x-11)~(x-13)のいずれかである請求項11に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 11, wherein X in the formula (T) is any one of the formulas (x-1) to (x-7) and (x-11) to (x-13).
  13.  前記ジアミン(0)が、全ジアミン成分中、1~100モル%含有される請求項1~12のいずれか1項に記載の液晶配向剤。 The liquid crystal alignment agent according to any one of claims 1 to 12, wherein the diamine (0) is contained in an amount of 1 to 100 mol% in the total diamine component.
  14.  前記ジアミン(s)が、全ジアミン成分中、1~99モル%含有される請求項7~13のいずれか1項に記載の液晶配向剤。 The liquid crystal alignment agent according to any one of claims 7 to 13, wherein the diamine (s) is contained in an amount of 1 to 99 mol% in the total diamine component.
  15.  請求項1~14のいずれか1項に記載の液晶配向剤を用いて形成されてなる垂直配向用の液晶配向膜。 A liquid crystal alignment film for vertical alignment formed by using the liquid crystal alignment agent according to any one of claims 1 to 14.
  16.  請求項15に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element including the liquid crystal alignment film according to claim 15.
  17.  請求項1~14のいずれか1項に記載の液晶配向剤を、導電膜を有する一対の基板上に塗布して塗膜を形成し、液晶分子の層を介して前記塗膜が相対するように対向配置して液晶セルを形成し、前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する液晶表示素子の製造方法。 The liquid crystal aligning agent according to any one of claims 1 to 14 is applied onto a pair of substrates having a conductive film to form a coating film so that the coating films face each other via a layer of liquid crystal molecules. A method for manufacturing a liquid crystal display element, which forms a liquid crystal cell by arranging the liquid crystal cells facing each other and irradiates the liquid crystal cell with light in a state where a voltage is applied between the conductive films of the pair of substrates.
  18.  下記式(2-1)又は(2-2)で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000015
    A diamine represented by the following formula (2-1) or (2-2).
    Figure JPOXMLDOC01-appb-C000015
  19.  請求項18に記載のジアミンを含むジアミン成分から得られる重合体。 A polymer obtained from the diamine component containing the diamine according to claim 18.
  20.  請求項18に記載のジアミンを含むジアミン成分とテトラカルボン酸成分との重縮合反応により得られるポリイミド前駆体又はそのイミド化物であるポリイミド。 A polyimide precursor or an imidized polyimide obtained by a polycondensation reaction between a diamine-containing diamine component according to claim 18 and a tetracarboxylic acid component.
PCT/JP2020/035773 2019-09-24 2020-09-23 Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element WO2021060268A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227002339A KR20220069916A (en) 2019-09-24 2020-09-23 Liquid crystal aligning agent for vertical alignment, liquid crystal aligning film, and liquid crystal display element
JP2021548925A JPWO2021060268A1 (en) 2019-09-24 2020-09-23
CN202080066916.0A CN114514303A (en) 2019-09-24 2020-09-23 Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173271 2019-09-24
JP2019173271 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021060268A1 true WO2021060268A1 (en) 2021-04-01

Family

ID=75165817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035773 WO2021060268A1 (en) 2019-09-24 2020-09-23 Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element

Country Status (4)

Country Link
JP (1) JPWO2021060268A1 (en)
KR (1) KR20220069916A (en)
CN (1) CN114514303A (en)
WO (1) WO2021060268A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257736A (en) * 2010-05-10 2011-12-22 Jsr Corp Liquid crystal aligning agent
KR20130030908A (en) * 2011-09-20 2013-03-28 (주)루미나노 Carbazole compound and preparing method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076950A (en) 2006-09-25 2008-04-03 Sharp Corp Liquid crystal display panel and manufacturing method thereof
WO2008117615A1 (en) 2007-03-26 2008-10-02 Sharp Kabushiki Kaisha Liquid crystal display device and polymer for aligning film material
WO2015060357A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7375544B2 (en) * 2017-11-21 2023-11-08 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257736A (en) * 2010-05-10 2011-12-22 Jsr Corp Liquid crystal aligning agent
KR20130030908A (en) * 2011-09-20 2013-03-28 (주)루미나노 Carbazole compound and preparing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAULVANNAN, K. ET AL.: "Poly(Pyromellitimide)s Containing Naphthoxy/ Oxyethylene Linkages", JOURNAL OF POLYMER MATERIALS, vol. 8, no. 4, 1991, pages 311 - 315 *

Also Published As

Publication number Publication date
KR20220069916A (en) 2022-05-27
CN114514303A (en) 2022-05-17
JPWO2021060268A1 (en) 2021-04-01
TW202126795A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
JP7409431B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2005105892A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
CN101671250A (en) Norbornene monomer, polynorbornene derivative, liquid crystal photoalignment film containing the same and liquid crystal display containing the same
KR101464308B1 (en) Aligment material for liquid crystal display device and a preparing method of same
JP7180196B2 (en) Liquid crystal aligning agent for forming a photo-alignment liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element using the same, polymer, and diamine
KR20150108742A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, compound and polymer
KR102572922B1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
TWI610964B (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, phase difference film, manufacturing method of phase difference film and polymer
JP7102536B2 (en) Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
JP7347410B2 (en) New liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6852248B2 (en) A liquid crystal alignment agent composition, a method for producing a liquid crystal alignment film using the same, and a liquid crystal alignment film using the same.
WO2021060270A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2021060268A1 (en) Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element
JP7136187B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
TWI853094B (en) Liquid crystal alignment agent for vertical alignment, liquid crystal alignment film, and liquid crystal display element
JP2020506420A (en) Liquid crystal alignment composition, method for producing liquid crystal alignment film using the same, and liquid crystal alignment film using the same
JP6859582B2 (en) A liquid crystal alignment agent composition, a method for producing a liquid crystal alignment film using the same, and a liquid crystal alignment film using the same.
JP7102541B2 (en) Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using it, liquid crystal alignment film and liquid crystal display element using it.
WO2022107640A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022190692A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2021059999A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, polymer, and diamine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867213

Country of ref document: EP

Kind code of ref document: A1