WO2021060219A1 - Power storage module - Google Patents

Power storage module Download PDF

Info

Publication number
WO2021060219A1
WO2021060219A1 PCT/JP2020/035646 JP2020035646W WO2021060219A1 WO 2021060219 A1 WO2021060219 A1 WO 2021060219A1 JP 2020035646 W JP2020035646 W JP 2020035646W WO 2021060219 A1 WO2021060219 A1 WO 2021060219A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
holder
bus bar
device group
storage module
Prior art date
Application number
PCT/JP2020/035646
Other languages
French (fr)
Japanese (ja)
Inventor
小林 亨
章平 山中
利崇 小林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021548896A priority Critical patent/JPWO2021060219A1/ja
Publication of WO2021060219A1 publication Critical patent/WO2021060219A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage module.
  • Patent Document 1 describes a battery bag in which a battery pack composed of a group of batteries of a plurality of cells is provided in a battery case.
  • a predetermined number of cells are arranged in the front-rear direction of the battery case so that their positive terminals face the same direction to form a battery unit, and the battery unit and the positive terminal have opposite directions. And are adjacent to each other to form a battery block, and a predetermined number of battery blocks are arranged in the left-right direction of the battery case to form a battery set.
  • a predetermined number of single batteries of the battery unit are connected in parallel, two battery units are connected in series, and a predetermined number of battery blocks are connected in series by a bus bar.
  • the above battery pack can be mounted on a vehicle such as a hybrid vehicle or an electric vehicle as a power supply device, for example.
  • the battery pack is likely to be vibrated while the vehicle is running. If the battery pack does not have sufficient seismic resistance, vibration may lead to damage to the battery pack such as breakage between each cell and the bus bar.
  • an object of the present invention is to provide a power storage module having excellent vibration resistance.
  • the main aspect of the present invention relates to a power storage module.
  • the power storage module according to this embodiment is electrically connected between a plurality of power storage devices having a positive electrode terminal at one end and a negative electrode terminal at the other end, a holder unit holding the plurality of power storage devices, and the plurality of power storage devices. It is equipped with a bus bar to connect to the target.
  • the plurality of power storage devices include a first device group in which one end thereof is arranged so as to face the first direction, and the holder unit includes a first holder and a second holder. Then, the first device group is sandwiched and held between the first holder and the second holder.
  • FIG. 1 is a perspective view of a power storage module according to an embodiment.
  • FIG. 2 is a perspective view of the core unit according to the embodiment.
  • FIG. 3 is an exploded perspective view of the core unit according to the embodiment.
  • FIG. 4 is an exploded perspective view of the power storage device block according to the embodiment.
  • FIG. 5A is a perspective view of the first single-sided holder viewed from the right front according to the embodiment, and
  • FIG. 5B is a perspective view of the first single-sided holder viewed from the left rear according to the embodiment. It is a perspective view of.
  • FIG. 6A is a perspective view of the first double-sided holder viewed from the right front according to the embodiment, and FIG.
  • FIG. 6B is a perspective view of the first double-sided holder viewed from the left rear according to the embodiment. It is a perspective view of.
  • FIG. 7A is a perspective view of the second double-sided holder viewed from the front right according to the embodiment, and FIG. 7B is a second double-sided holder viewed from the rear left according to the embodiment.
  • FIG. 8A is a perspective view of the upper busbar unit according to the embodiment, and FIG. 8B is an upper busbar and a positive electrode output busbar according to the embodiment in a state where the outer body is not covered. It is a perspective view of the negative electrode output bus bar.
  • FIG. 9A is a perspective view of the lower busbar unit according to the embodiment, and FIG.
  • FIG. 9B is a perspective view of the lower busbar unit according to the embodiment without being covered with an exterior body. is there.
  • FIG. 10A is a side sectional view of the upper busbar unit according to the embodiment
  • FIG. 10B is a side sectional view of the lower busbar unit according to the embodiment.
  • 11 (a) and 11 (b) are perspective views of the positive electrode external output terminal and the negative electrode external output terminal, respectively, according to the embodiment.
  • FIG. 12 is a perspective view of the circuit board according to the embodiment.
  • FIG. 13 is a plan sectional view of the power storage device block according to the embodiment.
  • FIG. 14 is a perspective view of the upper bus bar unit according to the first modification.
  • 15 (a) and 15 (b) are a perspective view and a plan sectional view of the first double-sided holder according to the second modification, respectively.
  • the upward device group 100A corresponds to the "first device group” and the "third device group” described in the claims
  • the downward device group 100B corresponds to the "first device group” and the "third device group” described in the claims.
  • the first single-sided holder 210A corresponds to the "first holder” described in the claims
  • the second single-sided holder 210B corresponds to the "third holder” described in the claims.
  • the first double-sided holder 220 corresponds to the "second holder” and the "fourth holder” described in the claims
  • the second double-sided holder 230 becomes the "first holder" and the "third holder”.
  • first through holes 213, 225, 235 and the second through holes 214, 226, 236 correspond to the "through holes” described in the claims.
  • the upper bus bar 410 corresponds to the "bus bar” and the “second bus bar” described in the claims
  • the lower bus bar 510 corresponds to the "bus bar” and the “first bus bar” described in the claims.
  • the opening 412a corresponds to the "first opening” described in the claims
  • the opening 441 corresponds to the "second opening” described in the claims.
  • FIG. 1 is a perspective view of the power storage module 1.
  • FIG. 2 is a perspective view of the core unit 10.
  • the upper bus bar unit 20 is drawn so that the portions covered by the exterior body 440 of the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 can be seen.
  • the power storage module 1 includes a core unit 10, an upper bus bar unit 20, a lower bus bar unit 30, a positive electrode external output terminal 40, a negative electrode external output terminal 50, and a circuit board 60.
  • the core unit 10 includes a plurality of (112) power storage devices 100 held by the holder unit 200.
  • the upper bus bar unit 20 and the lower bus bar unit 30 are mounted on the upper surface and the lower surface of the core unit 10, respectively, and include a plurality of upper bus bars 410 and a lower bus bar 510 that electrically connect a plurality of power storage devices 100.
  • the positive electrode external output terminal 40 is attached to the right end of the upper surface of the core unit 10 and is electrically connected to the positive electrode output bus bar 420 of the upper bus bar unit 20.
  • the negative electrode external output terminal 50 is attached to the left end portion of the upper surface of the core unit 10 and is electrically connected to the negative electrode output bus bar 430 of the upper bus bar unit 20.
  • the electric power of the plurality of power storage devices 100 is supplied to the outside of the power storage module 1 through the positive electrode external output terminal 40 and the negative electrode external output terminal 50.
  • the circuit board 60 is mounted on the front side surface of the core unit 10.
  • a plurality of upper bus bars 410 and lower bus bars 510 are electrically connected to the circuit board 60.
  • FIG. 3 is an exploded perspective view of the core unit 10.
  • FIG. 4 is an exploded perspective view of the power storage device block 70.
  • the core unit 10 includes a power storage device block 70 in which a plurality of power storage devices 100 are held by the holder unit 200, and a binding frame 80 surrounding the power storage device block 70.
  • the power storage device block 70 is provided with 112 power storage devices 100. That is, in the power storage device block 70, seven sets of upward device groups 100A and seven sets of downward device groups 100B are alternately arranged in the left-right direction.
  • the upward device group 100A is configured by arranging eight power storage devices 100 in the front-rear direction so that their end faces having the positive electrode terminals 110 face upward.
  • the downward device group 100B is configured by arranging eight power storage devices 100 in the front-rear direction so that their end faces having the positive electrode terminals 110 face downward.
  • the power storage device 100 is, for example, a lithium ion secondary battery in which the active material of the positive electrode is a lithium transition metal oxide such as lithium cobalt oxide, and the active material of the negative electrode is a carbon material.
  • the power storage device 100 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a primary battery.
  • the power storage device 100 may be a capacitor such as a lithium ion capacitor. Further, the power storage device 100 may use a conductive polymer as the active material of the positive electrode. Examples of the conductive polymer include polyaniline, polypyrrole or polythiophene and derivatives thereof, and a plurality of types of conductive polymers may be used.
  • the power storage device 100 is formed in a cylindrical shape (cylindrical shape), has a positive electrode terminal 110 on one end face, and has a negative electrode terminal 120 on the other end face.
  • the electric power stored in the power storage device 100 is drawn out through the positive electrode terminal 110 and the negative electrode terminal 120.
  • a hole (not shown) connected to the inside of the power storage device 100 is formed in the positive electrode terminal 110, that is, one end face, and this hole is closed by a disk-shaped sealing body 130 made of a rubber material.
  • the power storage device 100 may have a prismatic shape (square tubular shape) instead of a cylindrical shape.
  • the holder unit 200 includes a first single-sided holder 210A, a second single-sided holder 210B, seven first double-sided holders 220, and six second double-sided holders 230 connected in the left-right direction.
  • the first single-sided holder 210A, the second single-sided holder 210B, the first double-sided holder 220, and the second double-sided holder 230 are formed of a resin material such as polybutylene terephthalate (PBT) or polyphenylene sulfide (PPS).
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • the first single-sided holder 210A is arranged at the right end of the holder unit 200
  • the second single-sided holder 210B is arranged at the left end of the holder unit 200.
  • the first double-sided holder 220 and the second double-sided holder 230 are alternately arranged in the left-right direction.
  • FIG. 5A is a perspective view of the first single-sided holder 210A viewed from the front right
  • FIG. 5B is a perspective view of the first single-sided holder 210A viewed from the rear left.
  • the first single-sided holder 210A has a substantially rectangular parallelepiped shape that is long in the front-rear direction and thin in the left-right direction.
  • eight accommodating portions 211 for accommodating and holding each power storage device 100 of the upward device group 100A are provided so as to be continuous in the front-rear direction.
  • Each accommodating portion 211 is a recess recessed in a semi-cylindrical shape, and the upper end surface and the lower end surface thereof are opened by leaving a semicircular rib 212 at the edge portion.
  • the eight accommodating portions 211 are slightly displaced rearward.
  • Each accommodating portion 211 is formed with a first through hole 213 penetrating in the left-right direction at the central portion in the front-rear direction of the upper part and the lower part. Further, in the first single-sided holder 210A, the position between the two adjacent accommodating portions 211, that is, the position of the wall portion partitioning the two recesses, and the same height position as the upper and lower first through holes 213. A second through hole 214 penetrating in the left-right direction is formed. As a result, on the right side surface of the first single-sided holder 210A, eight first through holes 213 and eight second through holes 214 are alternately arranged in the upper part and the lower part, respectively.
  • positioning protrusions 215 are formed on the front lower end portion and the rear lower end portion, and positioning holes 216 are formed on the front upper end portion and the rear upper end portion.
  • a rectangular fitting recess 217 elongated in the front-rear direction is formed between the rows of the first through holes 213 and the second through holes 214. Further, on the right side surface of the first single-sided holder 210A, two upper and lower mounting holes 218 are formed at the front end portion and the rear end portion.
  • Positioning protrusions 219 are formed on the upper surface of the first single-sided holder 210A at the front and rear portions. Further, metal nuts 240 are embedded in six places on the upper surface of the first single-sided holder 210A. The six nuts 240 are also provided on the lower surface of the first single-sided holder 210A.
  • the second single-sided holder 210B has the same configuration as the first single-sided holder 210A, and the first single-sided holder 210A is arranged upside down in front, back, left, and right. Therefore, FIGS. 5A and 5B are perspective views of the second single-sided holder 210B as viewed from the left rear and the right front, respectively.
  • the eight accommodating portions 211 are for accommodating and holding each power storage device 100 of the downward device group 100B.
  • the protrusion 215 at the front end is not used for positioning, so it is cut off before being connected to the first double-sided holder 220.
  • the protrusion 215 at the rear end is not used for positioning, and is therefore cut off before being connected to the second double-sided holder 230.
  • FIG. 6A is a perspective view of the first double-sided holder 220 seen from the front right
  • FIG. 6B is a perspective view of the first double-sided holder 220 seen from the rear left.
  • the first double-sided holder 220 has a substantially rectangular parallelepiped shape that is long in the front-rear direction and thin in the left-right direction.
  • eight first accommodating portions 221 for accommodating and holding each power storage device 100 of the upward device group 100A are provided so as to be continuous in the front-rear direction.
  • eight second accommodating portions 222 for accommodating and holding each power storage device 100 of the downward device group 100B are provided so as to be continuous in the front-rear direction.
  • Each of the first accommodating portions 221 and each second accommodating portion 222 is a recess recessed in a semi-cylindrical shape, and the upper end surface and the lower end surface thereof are opened by leaving semicircular ribs 223 and 224 at the edge portion.
  • the eight first accommodating portions 221 are slightly displaced forward, and the eight second accommodating portions 222 are slightly displaced rearward.
  • the eight first accommodating portions 221 and the eight second accommodating portions 222 have their own accommodating portions located between the two adjacent accommodating portions.
  • Each first accommodating portion 221 is formed with a first through hole 225 penetrating in the left-right direction at the central portion in the front-rear direction of the upper part and the lower part.
  • the first through hole 225 passes between two adjacent second accommodating portions 222, that is, a wall portion that separates the two recesses, on the left side surface side of the first double-sided holder 220.
  • a second through hole 226 that penetrates in the left-right direction is formed at the same height position as the first through hole 225, which is the central portion in the front-rear direction of the upper part and the lower part.
  • the second through hole 226 passes between two adjacent first accommodating portions 221 on the right side surface side of the first double-sided holder 220, that is, a wall portion that separates the two recesses.
  • positioning protrusions 227 and holes 228 are formed at the rear upper end portion and the rear lower end portion, respectively.
  • a mounting hole 229 is formed in the central portion in the front-rear direction on the upper surface of the first double-sided holder 220.
  • the temperature sensor 250 is inserted and fixed in the mounting hole 229 of the central first double-sided holder 220.
  • the temperature sensor 250 is provided in the holder unit 200.
  • the temperature sensor 250 is connected to the circuit board 60 via a cable (not shown).
  • FIG. 7 (a) is a perspective view of the second double-sided holder 230 seen from the front right
  • FIG. 7 (b) is a perspective view of the second double-sided holder 230 seen from the rear left.
  • the second double-sided holder 230 has a mirrored shape with the first double-sided holder 220, and eight first accommodating portions 231 are provided on the left side surface thereof, and eight second accommodating portions 232 are provided on the right side surface thereof. ..
  • the upper end surface and the lower end surface of each first accommodating portion 231 and each second accommodating portion 232 are opened with ribs 233 and 234 left at the edges.
  • First through holes 235 are formed in the upper part and the lower part of each first accommodating portion 231, and second through holes 236 are formed in the upper part and the lower part of each of the second accommodating portions 232.
  • positioning protrusions 237 and holes 238 are formed at the rear lower end portion and the rear upper end portion, respectively.
  • the upward device group 100A located at the right end is sandwiched and held between the first single-sided holder 210A and the first double-sided holder 220 at the right end.
  • the first single-sided holder 210A and the first are formed by a snap structure (not shown).
  • the double-sided holder 220 is connected.
  • each power storage device 100 of the upward device group 100A is housed in each accommodating portion 211 of the first single-sided holder 210A, and the other half is accommodated in each first accommodating portion 221 of the first double-sided holder 220.
  • Each power storage device 100 is stopped by the upper and lower ribs 212 and 223 so that it cannot be pulled out from the two holders 210A and 220 in the vertical direction.
  • the downward device group 100B located at the left end is sandwiched and held between the second single-sided holder 210B and the first double-sided holder 220 at the left end.
  • the second single-sided holder 210B and the first are formed by a snap structure (not shown).
  • the double-sided holder 220 is connected.
  • each power storage device 100 of the downward device group 100B is housed in each accommodating portion 211 of the second single-sided holder 210B, and the other half is accommodated in each second accommodating portion 222 of the first double-sided holder 220.
  • Each power storage device 100 is stopped by the upper and lower ribs 212 and 224 so that it cannot be pulled out from the two holders 210B and 220 in the vertical direction.
  • the other six upward device groups 100A and the five downward device groups 100B are sandwiched and held between the first double-sided holder 220 and the second double-sided holder 230.
  • the first double-sided holder 220 and the second are provided by a snap structure (not shown).
  • the double-sided holder 230 is connected.
  • each power storage device 100 of the upward device group 100A is housed in each first storage part 221 of the first double-sided holder 220, and the other half is housed in each first storage part 231 of the second double-sided holder 230. ..
  • Each power storage device 100 is stopped by the upper and lower ribs 223 and 233 so that it cannot be pulled out from the two holders 220 and 230 in the vertical direction.
  • half of the peripheral surface of each power storage device 100 of the downward device group 100B is housed in each second storage part 222 of the first double-sided holder 220, and the other half is housed in each second storage part 232 of the second double-sided holder 230. Will be done.
  • Each power storage device 100 is stopped by the upper and lower ribs 224 and 234 so that it cannot be pulled out from the two holders 220 and 230 in the vertical direction.
  • Each power storage device 100 is fixed to the inner surfaces of the corresponding accommodating portions 211, the first accommodating portions 221 and 231 and the second accommodating portions 222 and 232 with an adhesive. Therefore, between the peripheral surface of each power storage device 100 and the inner surfaces of the accommodating portions 211, the first accommodating portions 221 and 231 and the second accommodating portions 222 and 232, the amount of cooling air described later is equal to the thickness of the adhesive. There will be a gap for the air to pass through.
  • a binding frame 80 is attached around the power storage device block 70.
  • the binding frame 80 is composed of a front plate 310, a rear plate 320, a left plate 330, and a right plate 340.
  • the front plate 310 and the rear plate 320 are made of a metal material such as aluminum and have a long rectangular shape in the left-right direction.
  • the left plate 330 and the right plate 340 are made of a metal material such as aluminum and have a long rectangular shape in the front-rear direction.
  • a plurality (7) oval openings 311 are formed in the front plate 310 so as to be arranged in the left-right direction. Further, the front plate 310 is formed with two upper and lower insertion holes 312 on the left and right side surfaces. Further, the front plate 310 is formed with six mounting bosses 313 for the substrate.
  • a plurality (7) oval openings 321 are formed in the rear plate 320 so as to be arranged in the left-right direction. Further, the rear plate 320 is formed with two upper and lower insertion holes 322 on the left and right side surfaces.
  • the left plate 330 is formed with an elongated rectangular opening 331 in the front-rear direction at the upper part and the lower part. Further, the left plate 330 is formed with two upper and lower insertion holes 332 at the front end portion and the rear end portion. Further, the left plate 330 is provided with a fitting portion 333 having a shape corresponding to the fitting recess 217 of the second single-sided holder 210B on the surface facing the left side surface of the power storage device block 70. Further, the left plate 330 is provided with mounting tabs 334 having mounting holes at the lower ends of the front and rear portions.
  • the right plate 340 has the same configuration as the left plate 330, and has two openings 341, four insertion holes 342, a fitting portion 343, and two mounting tabs 344.
  • the left plate 330 and the right plate 340 are mounted on the left side surface and the right side surface of the power storage device block 70, respectively.
  • the fitting portion 333 of the left plate 330 is fitted into the fitting recess 217 of the second single-sided holder 210B
  • the fitting portion 343 of the right plate 340 is fitted into the fitting recess 217 of the first single-sided holder 210A.
  • the front plate 310 and the rear plate 320 are mounted on the front side surface and the rear side surface of the power storage device block 70, respectively.
  • the insertion holes 312 and 322 of the front plate 310 and the rear plate 320 overlap the insertion holes 332 and 342 of the left plate 330 and the right plate 340 from the outside.
  • Screws 350 are passed through two overlapping two insertion holes 312, 322, 332, and 342, respectively, and four mounting holes 218 of the first single-sided holder 210A and four mounting holes 218 of the second single-sided holder 210B, respectively. Can be stopped by.
  • the core unit 10 is completed as shown in FIG.
  • the holders 210A, 210B, 220, and 230 of the holder unit 200 are bound by the binding frame 80.
  • the positive electrode terminal 110 and the negative electrode terminal 120 of each power storage device 100 face the outside from the openings 200a of the holder unit 200 formed above and below each power storage device 100.
  • the upper and lower openings 341 of the right plate 340 of the binding frame 80 overlap the upper and lower first through holes 213 and the second through holes 214 of the first single-sided holder 210A, and these first ones.
  • the through hole 213 and the second through hole 214 are opened to the outside (see FIG. 2).
  • the upper and lower openings 331 of the left plate 330 of the binding frame 80 overlap the upper and lower first through holes 213 and the second through holes 214 of the second single-sided holder 210B.
  • the first through hole 213 and the second through hole 214 are open to the outside.
  • FIG. 8A is a perspective view of the upper bus bar unit 20
  • FIG. 8B is a perspective view of the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 in a state where the outer body 440 is not covered.
  • Is. 9 (a) is a perspective view of the lower bus bar unit 30, and FIG. 9 (b) is a perspective view of the lower bus bar 510 in a state where the lower bus bar unit 30 is not covered with the exterior body 520.
  • 10 (a) is a side sectional view of the upper bus bar unit 20, and FIG. 10 (b) is a side sectional view of the lower bus bar unit 30.
  • the upper bus bar unit 20 is drawn so that the portion covered by the exterior body 440 of the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 can be seen for convenience.
  • the lower bus bar unit 30 is drawn so that the portion covered by the exterior body 520 of the lower bus bar 510 can be seen for convenience.
  • the upper bus bar unit 20 includes six upper bus bars 410 arranged in the left-right direction, a positive electrode output bus bar 420 and a negative electrode output bus bar 430 arranged on the right and left sides of the six upper bus bars 410, respectively, and the upper bus bar 410 and the positive output bus bar. Includes 420 and an exterior body 440 that covers the negative electrode output busbar 430.
  • the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 are formed by cutting out a conductive material such as aluminum or copper into a predetermined shape and performing processing such as bending.
  • the exterior body 440 is formed of a non-soft resin material such as PBT and PPS. By insert molding, six upper bus bars 410, a positive electrode output bus bar 420, and a negative electrode output bus bar 430 are embedded inside the exterior body 440.
  • the upper bus bar 410 has 16 terminal portions 411 connected to the positive electrode terminal 110 or the negative electrode terminal 120 of the power storage device 100, a conductive portion 412 connecting between these terminal portions 411, and a substrate connection connected to the circuit board 60. Includes part 413 and.
  • the conductive portion 412 has a predetermined shape and a long plate shape in the front-rear direction.
  • the conductive portion 412 is formed with 16 circular openings 412a arranged so as to be arranged in eight in the front-rear direction and two in the left-right direction.
  • the eight openings 412a in the front-rear direction are arranged at the same spacing as the storage devices 100 of the upward device group 100A and the downward device group 100B. Further, the eight openings 412a in the left column and the eight openings 412a in the right column are displaced from each other according to the positional deviation between the upward device group 100A and the downward device group 100B in the front-rear direction.
  • Each of the 16 terminal portions 411 is formed from the front edge of each opening 412a of the conductive portion 412 and extends rearward.
  • Each terminal portion 411 has a shape that extends rearward, then bends and extends in an oblique downward direction, and further bends and extends rearward. That is, since the tip end portion of each terminal portion 411 is lowered one step from the base end portion, it is easy to contact the positive electrode terminal 110 or the negative electrode terminal 120 of the power storage device 100, and each terminal portion 411 has a spring property in the contact direction. It has been done.
  • the board connection portion 413 is formed from the central portion of the front end of the conductive portion 412 and extends forward.
  • the substrate connection portion 413 has a thin plate shape whose tip side is bent downward.
  • An insertion hole 413a through which the screw 920 is passed is formed at the tip of the board connection portion 413.
  • the positive electrode output bus bar 420 includes eight terminal portions 421 connected to the positive electrode terminals 110 of the power storage device 100, a conductive portion 422 connecting between these terminal portions 421, and a substrate connecting portion 423 connected to the circuit board 60. Includes a terminal connection portion 424 connected to the positive electrode external output terminal 40.
  • the conductive portion 422 has a predetermined shape and a long plate shape in the front-rear direction. Eight circular openings 422a are formed in the conductive portion 422 so as to be arranged in the front-rear direction. The eight openings 422a are arranged at the same intervals as the intervals between the power storage devices 100 of the upward device group 100A.
  • Each of the eight terminal portions 421 is formed from the front edge of each opening 422a of the conductive portion 422 and extends rearward.
  • the configuration of each terminal portion 421 is the same as the configuration of each terminal portion 411 of the upper bus bar 410.
  • the board connecting portion 423 is formed from the left front end of the conductive portion 422 and extends forward.
  • the configuration of the substrate connecting portion 423 is the same as the configuration of the substrate connecting portion 413 of the upper bus bar 410, and an insertion hole 423a is formed at the tip portion thereof.
  • the terminal connection portion 424 is formed so as to project from the conductive portion 422 to the right side, and has a long plate shape in the front-rear direction.
  • Four insertion holes 424a are formed in the terminal connection portion 424 so as to be arranged in the front-rear direction. Further, a positioning hole 424b is formed at the rear end of the terminal connection portion 424.
  • the negative electrode output bus bar 430 includes eight terminal portions 431 connected to the negative electrode terminals 120 of the power storage device 100, a conductive portion 432 connecting between these terminal portions 431, and a substrate connecting portion 433 connected to the circuit board 60. Includes a terminal connection portion 434 connected to the negative electrode external output terminal 50.
  • the conductive portion 432 has a predetermined shape and a long plate shape in the front-rear direction. Eight circular openings 432a are formed in the conductive portion 432 so as to be arranged in the front-rear direction. The eight openings 432a are arranged at the same intervals as the intervals between the power storage devices 100 of the downward device group 100B.
  • Each of the eight terminal portions 431 is formed from the front edge of each opening 432a of the conductive portion 432 and extends rearward.
  • the configuration of each terminal portion 431 is the same as the configuration of each terminal portion 411 of the upper bus bar 410.
  • the board connecting portion 433 is formed from the right front end of the conductive portion 432 and extends forward.
  • the configuration of the substrate connecting portion 433 is the same as the configuration of the substrate connecting portion 413 of the upper bus bar 410, and an insertion hole 433a is formed at the tip portion thereof.
  • the terminal connection portion 434 is formed so as to project from the conductive portion 432 to the left side, and has a long plate shape in the front-rear direction.
  • Four insertion holes 434a are formed in the terminal connection portion 434 so as to be arranged in the front-rear direction.
  • a positioning hole 434b is formed at the front end portion of the terminal connection portion 424.
  • the exterior body 440 covers the portions of the conductive portions 412, 422, and 432 of the bus bars 410, 420, and 430 except for the openings 412a, 422a, and 432a.
  • the exterior body 440 includes a coating layer 440a that covers the upper surface of the conductive portions 412, 422, and 432, and a coating layer 440b that covers the lower surface of the conductive portions 412, 422, and 432.
  • the exterior body 440 that is, the coating layers 440a and 440b, is formed with openings 441 that overlap the openings 412a, 422a, and 432a.
  • the exterior body 440 covers the portions of the board connecting portions 413, 423, and 433 of the bus bars 410, 420, and 430, except for the tip portion. Therefore, in the upper bus bar 410, each terminal portion 411 and the tip portion of the substrate connecting portion 413 are exposed to the outside of the exterior body 440, and in the positive electrode output bus bar 420 and the negative electrode output bus bar 430, the terminal portions 421 and 431 are connected to the substrate. The tip portions of the portions 423 and 433 and the terminal connection portions 424 and 434 are exposed to the outside of the exterior body 440.
  • the exterior body 440 is integrally formed with a positive electrode terminal block 450 and a negative electrode terminal block 460 at the right end and the left end, respectively.
  • Two mounting holes 451 and 461 arranged in the front and rear are formed in the positive electrode terminal block 450 and the negative electrode terminal block 460.
  • Metal nuts (not shown) are installed in the mounting holes 451 and 461.
  • the lower bus bar unit 30 includes seven lower bus bars 510 arranged in the left-right direction and an exterior body 520 covering these lower bus bars 510.
  • the lower bus bar 510 and the outer body 520 are formed of the same material as the upper bus bar 410 and the outer body 440, respectively, and seven lower bus bars 510 are embedded inside the outer body 520 by insert molding.
  • the lower bus bar 510 has a configuration in which the upper bus bar 410 is turned upside down, and includes 16 terminal portions 511, a conductive portion 512 having 16 openings 512a, and a substrate connecting portion 513 having an insertion hole 513a. ..
  • the exterior body 520 covers the portion of the lower bus bar 510 of the conductive portion 512 except for each opening 512a.
  • the exterior body 520 includes a coating layer 520a that covers the upper surface of the conductive portion 512 and a coating layer 520b that covers the lower surface of the conductive portion 512.
  • An opening 521 that overlaps each opening 512a is formed in the exterior body 520, that is, the coating layers 520a and 520b.
  • the exterior body 520 covers a portion of the lower bus bar 510 other than the tip portion of the substrate connection portion 513. Therefore, in the lower bus bar 510, each terminal portion 511 and the tip portion of the substrate connecting portion 513 are exposed to the outside of the exterior body 520.
  • insertion holes 522 and 523 are formed at the right end and the left end of the exterior body 520 so as to be arranged in the front-rear direction, respectively.
  • 11 (a) and 11 (b) are perspective views of the positive electrode external output terminal 40 and the negative electrode external output terminal 50, respectively.
  • the positive electrode external output terminal 40 is formed of a conductive material such as aluminum or copper, and has a rectangular plate-shaped connection terminal portion 610 elongated in the front-rear direction and a rectangle extending from the right end to the right end of the connection terminal portion 610. Includes an output terminal portion 620 having a plate shape of.
  • Four insertion holes 611 are formed in the connection terminal portion 610 so as to be arranged in the front-rear direction.
  • a positioning hole 612 is formed at the rear end portion, and a positioning elongated hole 613 is formed at the front end portion.
  • Two mounting holes 621 arranged in the front-rear direction are formed in the output terminal portion 620.
  • the negative electrode external output terminal 50 has a configuration in which the positive electrode external output terminal 40 is turned upside down in the front-rear and left-right directions, and has a connection terminal portion 710 having four insertion holes 711, a positioning hole 712 and an elongated hole 713, and two. Includes an output terminal portion 720 having a mounting hole 721.
  • FIG. 12 is a perspective view of the circuit board 60.
  • the circuit board 60 is formed by mounting an electronic circuit 820 on a printed circuit board 810 having a square shape.
  • the electronic circuit 820 includes, for example, a voltage detection circuit that detects the voltage of each power storage device 100 and a balance circuit that aligns the voltage of each power storage device 100 according to the voltage detected by the voltage detection circuit.
  • the electronic circuit 820 also includes a temperature detection circuit connected to the temperature sensor 250.
  • the circuit board 60 is a printed circuit board for connection with the board connection portions 413, 423, 433 of each bus bar 410, 420, 420 of the upper bus bar unit 20 and the board connection portion 513 of the lower bus bar 510 of the lower bus bar unit 30.
  • Each input terminal 830 is formed with a mounting hole 831 to which the screw 920 is fastened.
  • the printed circuit board 810 is formed with insertion holes 811 at the four corners and at the center of the upper end and the lower end, respectively, through which the mounting screws 910 are passed.
  • the circuit board 60 is first attached to the core unit 10, that is, the six mounting bosses 313 on the front side surface of the binding frame 80 by the six screws 910. As a result, the circuit board 60 is arranged so that its substrate surface faces the front side surface of the holder unit 200 (the surface along the direction in which the upper bus bar 410 and the lower bus bar 510 are arranged).
  • the upper bus bar unit 20 is mounted on the upper surface of the core unit 10.
  • the hole 424b of the positive electrode output bus bar 420 fits into the protrusion 219 of the first single-sided holder 210A
  • the hole 434b of the negative electrode output bus bar 430 fits into the protrusion 219 of the second single-sided holder 210B, so that the upper bus bar unit 20 can be positioned. Be done.
  • the terminal portions 411, 421, and 431 of the bus bars 410, 420, and 430 come into contact with the positive electrode terminal 110 or the negative electrode terminal 120 of the corresponding power storage device 100 through the openings 200a of the holder unit 200.
  • the positive electrode external output terminal 40 and the negative electrode external output terminal 50 are placed on the right end portion and the left end portion of the upper bus bar unit 20, respectively.
  • the connection terminal portion 610 contacts the terminal connection portion 424 of the positive electrode output bus bar 420, and the output terminal portion 620 is arranged on the positive electrode terminal block 450.
  • the connection terminal portion 710 is in contact with the terminal connection portion 434 of the negative electrode output bus bar 430, and the output terminal portion 720 is arranged on the negative electrode terminal block 460.
  • the positive electrode external output terminal 40 is positioned by fitting the hole 612 and the elongated hole 613 of the positive electrode external output terminal 40 into the protrusion 219 of the first single-sided holder 210A.
  • the negative electrode external output terminal 50 is positioned by fitting the hole 712 and the elongated hole 713 of the negative electrode external output terminal 50 into the protrusion 219 of the second single-sided holder 210B.
  • the screw 930 passed through the two insertion holes 611 and 424a is fastened to the nut 240.
  • the four insertion holes 711 of the negative electrode external output terminal 50 and the four insertion holes 434a of the negative electrode output bus bar 430 overlap the four nuts 240 of the second single-sided holder 210B. Screws 930 through the two insertion holes 711 and 434a are fastened to the nut 240.
  • the upper bus bar unit 20, the positive electrode external output terminal 40, and the negative electrode external output terminal 50 are fixed to the upper surface of the core unit 10.
  • the positive electrode output bus bar 420 and the positive electrode external output terminal 40 are electrically connected, and the negative electrode output bus bar 430 and the negative electrode external output terminal 50 are electrically connected.
  • each terminal portion 511 of the lower bus bar 510 contacts the positive electrode terminal 110 or the negative electrode terminal 120 of the corresponding power storage device 100 through each opening 200a of the holder unit 200.
  • the four insertion holes 522 at the right end of the lower bus bar unit 30 overlap the four nuts 240 of the first single-sided holder 210A. A screw (not shown) that has been passed through the insertion hole 522 is fastened to the nut 240. Similarly, the four insertion holes 523 at the left end of the lower bus bar unit 30 overlap the four nuts 240 of the second single-sided holder 210B. A screw (not shown) that has been passed through the insertion hole 522 is fastened to the nut 240. As a result, the lower bus bar unit 30 is fixed to the lower surface of the core unit 10.
  • terminal portions 411, 421, and 431 of the bus bars 410, 420, and 430 of the upper bus bar unit 20 are connected to the positive electrode terminal 110 or the negative electrode terminal 120 of the power storage device 100 corresponding to each by a joining method such as spot welding. Be joined. Further, each terminal portion 511 of the lower bus bar 510 of the lower bus bar unit 30 is joined to the positive electrode terminal 110 or the negative electrode terminal 120 of the corresponding power storage device 100 by a joining method such as spot welding.
  • the six upper bus bars 410 of the upper bus bar unit 20, the positive electrode output bus bar 420, and the substrate connection portions 413, 423, 433 of the negative electrode output bus bar 430 are connected to the input terminals 830 of the circuit board 60 corresponding to them by screws 920. Will be done.
  • the six upper bus bars 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 of the upper bus bar unit 20 are electrically connected to the circuit board 60.
  • the board connection portions 513 of the seven lower bus bars 510 of the lower bus bar unit 30 are connected to the input terminals 830 of the circuit board 60 corresponding to them by screws 920.
  • the seven lower bus bars 510 of the lower bus bar unit 30 are electrically connected to the circuit board 60.
  • the power storage module 1 is completed.
  • the six upper bus bars 410 of the upper bus bar unit 20 correspond to the downward device groups 100A and the six downward device groups 100B, excluding the upward device group 100A at the right end and the downward device group 100B at the left end, respectively.
  • An electrical connection is made between the negative electrode terminal 120 and the positive electrode terminal 110 of the power storage device 100 of the upward device group 100A to the left of the negative electrode terminal 120.
  • the positive electrode output bus bar 420 of the upper bus bar unit 20 electrically connects the positive electrode terminals 110 of the power storage device 100 of the upward device group 100A at the right end to each other, and the positive electrode terminal 110 of the power storage device 100 of the upward device group 100A at the right end. And the positive electrode external output terminal 40 are electrically connected.
  • the negative electrode output bus bar 430 of the upper bus bar unit 20 is electrically connected to the negative electrode terminals 120 of the power storage device 100 of the downward device group 100B at the left end, and the negative electrode terminal 120 of the power storage device 100 of the downward device group 100B at the left end. And the negative electrode external output terminal 50 are electrically connected.
  • the seven lower bus bars 510 of the lower bus bar unit 30 are electrically connected to each other of the negative electrode terminals 120 of the power storage device 100 of the upward device group 100A corresponding to each, and the power storage device 100 of the downward device group 100B adjacent to the left side thereof. Electrically connect the positive electrode terminals 110 to each other, and electrically connect the negative electrode terminal 120 of the power storage device 100 of the upward device group 100A and the positive electrode terminal 110 of the power storage device 100 of the downward device group 100B to the left of the negative terminal 120. ..
  • the power storage module 1 has a configuration in which eight power storage devices 100 are connected in parallel and 14 sets of device groups 100A and 100B consisting of these eight power storage devices 100 are connected in series, and the output voltage based on this configuration. And electric capacity can be obtained.
  • a plurality of power storage modules 1 are housed in a housing as a set to form a power storage unit.
  • a cooling fan is provided in the housing, and cooling air, which is a cooling fluid, is forcibly sent to the power storage module 1.
  • the sent cooling air is in the left-right direction of the power storage module 1, that is, in the direction in which the power storage devices 100 are connected in series, and in the direction in which the holders 210A, 210B, 220, and 230 of the holder unit 200 are lined up. It has a flowing cooling structure. For example, as shown in FIG. 1, the cooling air is supplied to the power storage module 1 so as to flow to the left.
  • FIG. 13 is a plan sectional view of the power storage device block 70. In FIG. 13, for convenience, the central portion of the power storage device block 70 is not shown. Further, in FIG. 13, the flow of cooling air is indicated by arrows for a part of the cooling paths inside the power storage device block 70.
  • each of the second through holes 226 and the first single-sided holder 210A of the first double-sided holder 220 is connected to the second through hole 214.
  • each first through hole 225 of the first double-sided holder 220 and the second double-sided holder 230 to the left of the first through hole 225 are provided.
  • the first through holes 235 of the above are connected, and the second through holes 236 of the second double-sided holder 230 and the second through holes 226 of the first double-sided holder 220 to the left of the second through holes 236 are connected. Further, in the second single-sided holder 210B and the leftmost first double-sided holder 220, each first through hole 225 of the first double-sided holder 220 and each second through hole 214 of the second single-sided holder 210B are connected.
  • Eight second cooling paths CR2 penetrating the seven storage spaces 202 in which 100 are housed in the left-right direction are alternately formed in the front-rear direction.
  • the cooling air flowing into the power storage module 1 enters each of the first through holes 213 and each second through hole 214 of the first single-sided holder 210A.
  • the cooling air that has entered each first cooling path CR1 from each first through hole 213 cools the power storage device 100 in the accommodation space 201 through the seven accommodation spaces 201 as shown by the arrows in FIG. 13, and the second It is discharged to the outside from the second through hole 214 of the single-sided holder 210B.
  • the cooling air that has entered each of the second cooling paths CR2 from each of the second through holes 214 cools the power storage device 100 in the accommodation space 202 through the seven accommodation spaces 202 as shown by the arrows in FIG. It is discharged to the outside from the first through hole 213 of the second single-sided holder 210B.
  • each power storage device 100 of the upward device group 100A and each power storage device 100 of the downward device group 100B are individually cooled by the cooling air flowing through the first cooling path CR1 and the second cooling path CR2, respectively. Will be done.
  • the accommodation space 201 of the adjacent first cooling path CR1 and the accommodation space 202 of the adjacent second cooling path CR2 are closely spaced in the front-rear direction, the accommodation space of the first cooling path CR1 is small.
  • the cooling air flowing through the respective cooling paths CR1 and CR2 may be slightly mixed in these communicating portions.
  • the communication portion is eliminated, and the first cooling path CR1 and the second cooling path CR2 are completely separated. It may be in a state.
  • the power storage module 1 has a plurality of power storage devices 100 having a positive electrode terminal 110 at one end and a negative electrode terminal 120 at the other end, a holder unit 200 holding a plurality of (112) power storage devices 100, and a plurality of power storage devices 100.
  • the bus bars 410 and 510 are electrically connected to each other.
  • the plurality of power storage devices 100 include an upward device group 100A in which one end is arranged facing upward, and the holder unit 200 includes a first single-sided holder 210A (second double-sided holder 230) and a first double-sided holder. Includes 220 and. Then, the upward device group 100A is sandwiched and held between the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220.
  • each power storage device 100 of the upward device group 100A is firmly held on both sides of its side surface (peripheral surface) by the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220. .. This improves the seismic resistance of the power storage module 1.
  • the bus bars 410 and 510 include a plurality of terminal parts 411 and 511 connected to each of the plurality of power storage devices 100 and conductive parts 412 and 512 connecting between the plurality of terminal parts 411 and 511. , And both surfaces of the conductive portions 412 and 512 are covered with exterior bodies 440 and 520, that is, coating layers 440a, 440b, 520a and 520b.
  • the plate-shaped bus bars 410 and 510 are reinforced by the coating layers 440a, 440b, 520a, and 520b, so that the bus bars 410 and 510 are distorted, deformed, or the like when vibration or the like occurs in the power storage module 1. Can be suppressed.
  • the plurality of power storage devices 100 include a downward device group 100B in which one end is arranged facing downward, and the holder unit 200 includes a second double-sided holder 230 (second single-sided holder 210B). Including. Then, the downward device group 100B is sandwiched and held between the first double-sided holder 220 and the second double-sided holder 230 (second single-sided holder 210B).
  • each power storage device 100 of the upward device group 100A is firmly held on both sides of its side surface (peripheral surface) by the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220.
  • Each power storage device 100 of the downward device group 100B is firmly held on both sides of its side surface (peripheral surface) by the first double-sided holder 220 and the second double-sided holder 230 (second single-sided holder 210B).
  • This improves the seismic resistance of the power storage module 1.
  • the first double-sided holder 220 is used for holding both the upward device group 100A and the downward device group 100B, the number of holders constituting the holder unit 200 can be reduced.
  • the first single-sided holder 210A, the first double-sided holder 220), the second double-sided holder 230, and the second single-sided holder 210B are passed through the cooling air to bring the cooling air into contact with the plurality of power storage devices 100.
  • Through holes 213, 214, 225, 226, 235, and 236 are provided.
  • the power storage device 100 can be cooled by the cooling air, and the temperature rise of the plurality of power storage devices 100 can be suppressed.
  • the first double-sided holder 220 and the second double-sided holder 230 are housed on one side surface in which a plurality of (8) power storage devices 100 in the upward device group 100A are arranged and accommodated in one direction.
  • a plurality of (8) first accommodating portions 221 and 231 are provided, and each of the plurality (8) power storage devices 100 in the downward device group 100B is arranged in one direction on the other side surface facing one side surface. It has a plurality (8 pieces) of second accommodating portions 222 and 232.
  • the plurality of second accommodating portions 222 and 232 are provided so that one of the plurality of second accommodating portions 222 and 232 is located between the two adjacent accommodating portions of the plurality of first accommodating portions 221, 231. Be done.
  • the through holes are formed in the first accommodating portions 221, 231 and formed in the first accommodating portions 225 and 235 and the second accommodating portions 222 and 232 passing between the two adjacent second accommodating portions 222 and 232.
  • the plurality of first accommodating portions 221 and 231 and the plurality of second accommodating portions 222 are arranged in a staggered manner so that the holder unit 200 is arranged in the arrangement direction of the respective holders 210A, 210B, 220, 230.
  • the power storage device 100 housed and held in the first storage units 221 and 231 and the power storage device 100 housed and held in the second storage units 222 and 232 are provided in the first through holes 225 and 235, respectively. Since it can be cooled by the cooling air passing through the second through hole 226 and 236 and the cold air passing through the second through holes 226 and 236, the cooling efficiency of the plurality of power storage devices 100 can be improved.
  • the plurality of power storage devices 100 in the upward device group 100A are connected in parallel by the bus bars 410 and 510
  • the plurality of power storage devices 100 in the downward device group 100B are connected in parallel by the bus bars 410 and 510.
  • the upward device group 100A and the downward device group 100B are connected in series by the bus bars 410 and 510.
  • the cooling air flows in the direction from the upward device group 100A to the downward device group 100B through the through holes 225, 226, 235, and 236.
  • cooling air flows in the holder unit 200 so as to be orthogonal to the direction in which the storage devices 100 connected in parallel by the bus bars 410 and 510 are arranged, so that the cooling contacts the storage devices 100 connected in parallel. Air has a similar temperature. Therefore, each power storage device 100 connected in parallel can be uniformly cooled.
  • the plurality of power storage devices 100 include another upward device group 100A in which one end is arranged upward, and the holder unit 200 includes another first double-sided holder 220.
  • the other upward device group 100A is sandwiched and held between the second double-sided holder 230 and the other first double-sided holder 220.
  • the bus bar connects the negative electrode terminals 120 of the upward device group 100A, the positive electrode terminals 110 of the downward device group 100B, and the negative electrode terminals 120 of the upward device group 100A and the positive electrode terminals 110 of the downward device group 100B.
  • the lower bus bar 510 to be connected, the negative electrode terminals 120 of the downward device group 100B, the positive electrode terminals 110 of the other upward device group 100A, and the negative electrode terminals 120 of the downward device group 100B and another upward device group 100A.
  • the upper bus bar 410 for connecting to the positive electrode terminal 110 is included.
  • each power storage device 100 of the upward device group 100A is firmly held on both sides of its side surface (peripheral surface) by the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220.
  • Each power storage device 100 of the downward device group 100B is firmly held on both sides of its side surface (peripheral surface) by the first double-sided holder 220 and the second double-sided holder 230
  • each power storage device 100 of the other upward device group 100A is Both sides of the side surface (peripheral surface) are firmly held by the second double-sided holder 230 and the other first double-sided holder 220. This improves the seismic resistance of the power storage module 1.
  • the first double-sided holder 220 is used to hold both the upward device group 100A and the downward device group 100B
  • the second double-sided holder 230 is used to hold both the downward device group 100B and the other upward device group 100A. Since it is used, the number of holders constituting the holder unit 200 can be reduced.
  • the upper bus bar 410 and the lower bus bar 510 can connect each storage device 100 of the upward device group 100A, the downward device group 100B, and another upward device group 100A in parallel, and the upward device group 100A and the downward device group 100B can be connected.
  • One upward device group 100A can be connected in series.
  • the power storage module 1 is provided with a circuit board 60 to which the lower bus bar 510 and the upper bus bar 410 are connected.
  • the circuit board 60 is arranged so that its substrate surface faces the surface (front side surface) of the holder unit 200 along the direction (vertical direction) in which the lower bus bar 510 and the upper bus bar 410 are arranged.
  • the lower bus bar 510 and the upper bus bar 410 can be connected to the circuit board 60 by a short route from both sides in the direction in which the lower bus bar 510 and the upper bus bar 410 are lined up. Further, it is possible to prevent the size of the power storage module 1 from increasing in the direction in which the holder unit 200 and the circuit board 60 are lined up, and it is possible to reduce the size of the power storage module 1.
  • the holder unit 200 is provided with a temperature sensor 250.
  • the temperature sensor 250 can detect abnormal overheating of a plurality of power storage devices 100.
  • FIG. 14 is a perspective view of the upper bus bar unit 20 according to the first modification.
  • annular wall portion 442 surrounding the periphery of each opening 441 is formed on the upper surface of the exterior body 440, that is, the surface of the upper covering layer 440a.
  • the internal electrolytic solution may scatter from the end face.
  • the scattered electrolytic solution hits the wall portion 442 formed in each opening 441, so that it is difficult to leak to the periphery of the opening 441. Further, even if the scattered electrolytic solution leaks around the opening 441 and falls on the upper surface of the exterior body 440, the electrolytic solution is blocked by the wall portion 442 of the surrounding opening 441, so that the electrolytic solution enters the opening 441. The invasion of the electrolytic solution is prevented.
  • the lower bus bar unit 30 may also be provided with an annular wall portion that surrounds the periphery of each opening 521, similarly to the upper bus bar unit 20. In this way, even if the lower end surface of the power storage device 100 is damaged and the electrolytic solution is scattered, the electrolytic solution hits the wall formed in each opening 521 and spreads around the opening 521. It becomes difficult.
  • 15 (a) and 15 (b) are a perspective view and a plan sectional view of the first double-sided holder 220 according to the second modification, respectively.
  • groove portions 221a extending in the front-rear direction in which the first accommodating portions 221 are lined up are formed on the upper and lower portions of the inner surface of each first accommodating portion 221. These groove portions 221a are formed at the position of the first through hole 225 with the same width as the width of the first through hole 225 in the vertical direction, and the groove portions are connected to each other in the front-rear direction. Further, a front groove portion 221b and a rear groove portion 221c connected to the groove portion 221a are formed at the front end portion and the rear end portion of the right side surface of the first double-sided holder 220, respectively.
  • groove portions 222a extending in the front-rear direction in which the second accommodating portions 222 are lined up are formed on the upper and lower portions of the inner surface of each of the second accommodating portions 222. These groove portions 222a are formed at the position of the second through hole 226 with the same width as the width of the second through hole 226 in the vertical direction, and the groove portions are connected to each other in the front-rear direction. Further, a front groove portion 222b and a rear groove portion 222c connected to the groove portion 222a are formed at the front end portion and the rear end portion of the left side surface of the first double-sided holder 220, respectively.
  • the second double-sided holder 230 also has the same groove portion, front groove portion and front groove portion as the first double-sided holder 220 on the left side surface and the right side surface on which the first accommodating portion 231 and the second accommodating portion 232 are formed.
  • a rear groove is formed.
  • the first single-sided holder 210A and the second single-sided holder 210B are also formed with a groove portion, a front groove portion, and a rear groove portion similar to the first double-sided holder 220 on the surface on which the accommodating portion 211 is formed.
  • the upward device group 100A and the downward device group 100B are composed of eight power storage devices 100.
  • the number of power storage devices 100 constituting the upward device group 100A and the downward device group 100B is not limited to the above, and may be any number as long as there are a plurality of them.
  • the power storage device block 70 includes 7 sets of upward device group 100A and 7 sets of downward device group 100B.
  • the number of the upward device group 100A and the downward device group 100B is not limited to the above number, and may be any number.
  • the number of the first double-sided holder 220 and the second double-sided holder 230 of the holder unit 200, and the number of the upper bus bar 410 and the lower bus bar 510 are changed according to, for example, the number of the upward device group 100A and the downward device group 100B.
  • the holder unit 200 includes a first single-sided holder 210A, two first double-sided holders 220, and the like. It includes one second double-sided holder 230 and a second single-sided holder 210B.
  • the upper bus bar unit 20 includes one upper bus bar 410, a positive electrode output bus bar 420, and a negative electrode output bus bar 430
  • the lower bus bar unit 30 includes two lower bus bars 510.
  • the holder unit 200 includes the first single-sided holder 210A, one first double-sided holder 220, and the like. Includes the second single-sided holder 210B and does not include the second double-sided holder 230.
  • the upper bus bar unit 20 includes a positive electrode output bus bar 420 and a negative electrode output bus bar 430, does not include the upper bus bar 410
  • the lower bus bar unit 30 includes one lower bus bar 510.
  • each holder 210A, 210B, 220, 230 may be formed with one or three or more first through holes 213, 225, 235 and second through holes 214, 226, 236 in the vertical direction. ..
  • both the upper and lower surfaces of the conductive portions 412 and 512 of the upper bus bar 410 and the lower bus bar 510 are coated layers 440a, 440b, 520a, 520b.
  • a configuration may be adopted in which the surface of any one of the conductive portions 412 and 512 is not covered by the coating layers 440a, 440b, 520a, and 520b.
  • a configuration may be adopted in which both the upper and lower surfaces of the conductive portions 412 and 512 or a part of one of the surfaces is covered with the coating layers 440a, 440b, 520a and 520b.
  • the present invention is useful for power storage modules used in various electronic devices, electrical devices, industrial devices, electrical components of vehicles, and the like.

Abstract

This power storage module comprises: a plurality of power storage devices 100 each having a positive electrode terminal 110 at one end and a negative electrode terminal 120 at the other end; a holder unit 200 that holds the plurality of power storage devices 100; and a busbar that electrically connects the plurality of power storage devices 100. The plurality of power storage devices 100 includes an upward-facing device group 100A, one end of which is positioned facing upward, and the holder unit 200 includes a first single-surface holder 210A and a first double-surface holder 220. The upward-facing device group 100A is held by being sandwiched between the first single-surface holder 210A and the first double-surface holder 220.

Description

蓄電モジュールPower storage module
 本発明は、蓄電モジュールに関する。 The present invention relates to a power storage module.
 蓄電モジュールの一例として、電池ケース内に、複数の単電池の電池群からなる組電池を備えた電池バックが、特許文献1に記載されている。 As an example of a power storage module, Patent Document 1 describes a battery bag in which a battery pack composed of a group of batteries of a plurality of cells is provided in a battery case.
 この電池パックでは、所定数の単電池を、それらの正極端子が同じ方向を向くよう電池ケースの前後方向に並べて電池ユニットを構成し、この電池ユニットと、正極端子の向きが反対となる電池ユニットとを隣接させて電池ブロックを構成し、さらに、所定数の電池ブロックを電池ケースの左右方向に並べて電池組を構成している。電池組では、バスバーにより、電池ユニットの所定数の単電池が並列に接続されるとともに2つの電池ユニットが直列に接続され、さらに、所定数の電池ブロックが直列に接続される。 In this battery pack, a predetermined number of cells are arranged in the front-rear direction of the battery case so that their positive terminals face the same direction to form a battery unit, and the battery unit and the positive terminal have opposite directions. And are adjacent to each other to form a battery block, and a predetermined number of battery blocks are arranged in the left-right direction of the battery case to form a battery set. In the battery set, a predetermined number of single batteries of the battery unit are connected in parallel, two battery units are connected in series, and a predetermined number of battery blocks are connected in series by a bus bar.
特許第5704098号公報Japanese Patent No. 5704098
 上記の電池パックは、例えば、電源装置としてハイブリット自動車、電気自動車等の車両に搭載され得る。このような場合、電池パックには、車両の走行中などに振動が加わりやすい。電池組が十分な耐震性を有していないと、振動により、各単電池とバスバーとの間に破断が生じるなどの電池組の破損に繋がる虞がある。 The above battery pack can be mounted on a vehicle such as a hybrid vehicle or an electric vehicle as a power supply device, for example. In such a case, the battery pack is likely to be vibrated while the vehicle is running. If the battery pack does not have sufficient seismic resistance, vibration may lead to damage to the battery pack such as breakage between each cell and the bus bar.
 そこで、本発明は、耐振性に優れる蓄電モジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a power storage module having excellent vibration resistance.
 本発明の主たる態様は、蓄電モジュールに関する。本態様に係る蓄電モジュールは、一端に正極端子を有し、他端に負極端子を有する複数の蓄電デバイスと、前記複数の蓄電デバイスを保持するホルダーユニットと、前記複数の蓄電デバイスの間を電気的に接続するバスバーと、を備える。ここで、前記複数の蓄電デバイスは、前記一端が第1の方向を向いて配置されてなる第1デバイス群を含み、前記ホルダーユニットは、第1ホルダーと第2ホルダーとを含む。そして、前記第1デバイス群は、前記第1ホルダーと前記第2ホルダーとに挟まれて保持される。 The main aspect of the present invention relates to a power storage module. The power storage module according to this embodiment is electrically connected between a plurality of power storage devices having a positive electrode terminal at one end and a negative electrode terminal at the other end, a holder unit holding the plurality of power storage devices, and the plurality of power storage devices. It is equipped with a bus bar to connect to the target. Here, the plurality of power storage devices include a first device group in which one end thereof is arranged so as to face the first direction, and the holder unit includes a first holder and a second holder. Then, the first device group is sandwiched and held between the first holder and the second holder.
 本発明によれば、耐振性に優れる蓄電モジュールを提供できる。 According to the present invention, it is possible to provide a power storage module having excellent vibration resistance.
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。 The effect or significance of the present invention will be further clarified by the description of the embodiments shown below. However, the embodiments shown below are merely examples when the present invention is put into practice, and the present invention is not limited to those described in the following embodiments.
図1は、実施の形態に係る、蓄電モジュールの斜視図である。FIG. 1 is a perspective view of a power storage module according to an embodiment. 図2は、実施の形態に係る、コアユニットの斜視図である。FIG. 2 is a perspective view of the core unit according to the embodiment. 図3は、実施の形態に係る、コアユニットの分解斜視図である。FIG. 3 is an exploded perspective view of the core unit according to the embodiment. 図4は、実施の形態に係る、蓄電デバイスブロックの分解斜視図である。FIG. 4 is an exploded perspective view of the power storage device block according to the embodiment. 図5(a)は、実施の形態に係る、右前方から見た第1片面ホルダーの斜視図であり、図5(b)は、実施の形態に係る、左後方から見た第1片面ホルダーの斜視図である。FIG. 5A is a perspective view of the first single-sided holder viewed from the right front according to the embodiment, and FIG. 5B is a perspective view of the first single-sided holder viewed from the left rear according to the embodiment. It is a perspective view of. 図6(a)は、実施の形態に係る、右前方から見た第1両面ホルダーの斜視図であり、図6(b)は、実施の形態に係る、左後方から見た第1両面ホルダーの斜視図である。FIG. 6A is a perspective view of the first double-sided holder viewed from the right front according to the embodiment, and FIG. 6B is a perspective view of the first double-sided holder viewed from the left rear according to the embodiment. It is a perspective view of. 図7(a)は、実施の形態に係る、右前方から見た第2両面ホルダーの斜視図であり、図7(b)は、実施の形態に係る、左後方から見た第2両面ホルダーの斜視図である。FIG. 7A is a perspective view of the second double-sided holder viewed from the front right according to the embodiment, and FIG. 7B is a second double-sided holder viewed from the rear left according to the embodiment. It is a perspective view of. 図8(a)は、実施の形態に係る、上バスバーユニットの斜視図であり、図8(b)は、実施の形態に係る、外装体に覆われていない状態の上バスバー、正極出力バスバーおよび負極出力バスバーの斜視図である。FIG. 8A is a perspective view of the upper busbar unit according to the embodiment, and FIG. 8B is an upper busbar and a positive electrode output busbar according to the embodiment in a state where the outer body is not covered. It is a perspective view of the negative electrode output bus bar. 図9(a)は、実施の形態に係る、下バスバーユニットの斜視図であり、図9(b)は、実施の形態に係る、外装体に覆われていない状態の下バスバーの斜視図である。FIG. 9A is a perspective view of the lower busbar unit according to the embodiment, and FIG. 9B is a perspective view of the lower busbar unit according to the embodiment without being covered with an exterior body. is there. 図10(a)は、実施の形態に係る、上バスバーユニットの側面断面図であり、図10(b)は、実施の形態に係る、下バスバーユニットの側面断面図である。FIG. 10A is a side sectional view of the upper busbar unit according to the embodiment, and FIG. 10B is a side sectional view of the lower busbar unit according to the embodiment. 図11(a)および(b)は、それぞれ、実施の形態に係る、正極外部出力端子および負極外部出力端子の斜視図である。11 (a) and 11 (b) are perspective views of the positive electrode external output terminal and the negative electrode external output terminal, respectively, according to the embodiment. 図12は、実施の形態に係る、回路基板の斜視図である。FIG. 12 is a perspective view of the circuit board according to the embodiment. 図13は、実施の形態に係る、蓄電デバイスブロックの平面断面図である。FIG. 13 is a plan sectional view of the power storage device block according to the embodiment. 図14は、変更例1に係る、上バスバーユニットの斜視図である。FIG. 14 is a perspective view of the upper bus bar unit according to the first modification. 図15(a)および(b)は、それぞれ、変更例2に係る、第1両面ホルダーの斜視図および平面断面図である。15 (a) and 15 (b) are a perspective view and a plan sectional view of the first double-sided holder according to the second modification, respectively.
 以下、本実施の形態に係る蓄電モジュール1について図面を参照して説明する。便宜上、各図には、適宜、前後、左右および上下の方向が付記されている。なお、図示の方向は、あくまで蓄電モジュール1の相対的な方向を示すものであり、絶対的な方向を示すものではない。また、説明の便宜上、「上バスバーユニット」、「下バスバーユニット」など、一部の構成において、図示の方向に従った名称がつけられる場合がある。 Hereinafter, the power storage module 1 according to the present embodiment will be described with reference to the drawings. For convenience, each figure is appropriately marked with front-back, left-right, and up-down directions. It should be noted that the directions shown only indicate the relative directions of the power storage module 1 and do not indicate the absolute directions. Further, for convenience of explanation, in some configurations such as "upper bus bar unit" and "lower bus bar unit", names may be given according to the directions shown in the drawings.
 本実施の形態において、上向きデバイス群100Aが、特許請求の範囲に記載の「第1デバイス群」および「第3デバイス群」に対応し、下向きデバイス群100Bが、特許請求の範囲に記載の「第2デバイス群」に対応する。また、第1片面ホルダー210Aが、特許請求の範囲に記載の「第1ホルダー」に対応し、第2片面ホルダー210Bが、特許請求の範囲に記載の「第3ホルダー」に対応する。さらに、第1両面ホルダー220が、特許請求の範囲に記載の「第2ホルダー」および「第4ホルダー」に対応し、第2両面ホルダー230が、「第1ホルダー」および「第3ホルダー」に対応する。さらに、第1貫通孔213、225、235および第2貫通孔214、226、236が、特許請求の範囲に記載の「貫通孔」に対応する。さらに、上バスバー410が、特許請求の範囲に記載の「バスバー」および「第2バスバー」に対応し、下バスバー510が、特許請求の範囲に記載の「バスバー」および「第1バスバー」に対応する。さらに、開口部412aが、特許請求の範囲に記載の「第1開口部」に対応し、開口部441が特許請求の範囲に記載の「第2開口部」に対応する。 In the present embodiment, the upward device group 100A corresponds to the "first device group" and the "third device group" described in the claims, and the downward device group 100B corresponds to the "first device group" and the "third device group" described in the claims. Corresponds to the "second device group". Further, the first single-sided holder 210A corresponds to the "first holder" described in the claims, and the second single-sided holder 210B corresponds to the "third holder" described in the claims. Further, the first double-sided holder 220 corresponds to the "second holder" and the "fourth holder" described in the claims, and the second double-sided holder 230 becomes the "first holder" and the "third holder". Correspond. Further, the first through holes 213, 225, 235 and the second through holes 214, 226, 236 correspond to the "through holes" described in the claims. Further, the upper bus bar 410 corresponds to the "bus bar" and the "second bus bar" described in the claims, and the lower bus bar 510 corresponds to the "bus bar" and the "first bus bar" described in the claims. To do. Further, the opening 412a corresponds to the "first opening" described in the claims, and the opening 441 corresponds to the "second opening" described in the claims.
 ただし、上記記載は、あくまで、特許請求の範囲の構成と実施形態の構成とを対応付けることを目的とするものであって、上記対応付けによって特許請求の範囲に記載の発明が実施形態の構成に何ら限定されるものではない。 However, the above description is intended only for the purpose of associating the configuration of the claims with the configuration of the embodiment, and the invention described in the scope of claims by the above association becomes the configuration of the embodiment. It is not limited in any way.
 図1は、蓄電モジュール1の斜視図である。図2は、コアユニット10の斜視図である。図1では、便宜上、上バスバー410、正極出力バスバー420および負極出力バスバー430の外装体440に覆われた部分が見えるように、上バスバーユニット20が描かれている。 FIG. 1 is a perspective view of the power storage module 1. FIG. 2 is a perspective view of the core unit 10. In FIG. 1, for convenience, the upper bus bar unit 20 is drawn so that the portions covered by the exterior body 440 of the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 can be seen.
 蓄電モジュール1は、コアユニット10と、上バスバーユニット20と、下バスバーユニット30と、正極外部出力端子40と、負極外部出力端子50と、回路基板60とを備える。 The power storage module 1 includes a core unit 10, an upper bus bar unit 20, a lower bus bar unit 30, a positive electrode external output terminal 40, a negative electrode external output terminal 50, and a circuit board 60.
 コアユニット10は、ホルダーユニット200により保持された複数(112個)の蓄電デバイス100を含む。 The core unit 10 includes a plurality of (112) power storage devices 100 held by the holder unit 200.
 上バスバーユニット20および下バスバーユニット30は、それぞれ、コアユニット10の上面および下面に装着され、複数の蓄電デバイス100を電気的に接続する複数の上バスバー410および下バスバー510を含む。 The upper bus bar unit 20 and the lower bus bar unit 30 are mounted on the upper surface and the lower surface of the core unit 10, respectively, and include a plurality of upper bus bars 410 and a lower bus bar 510 that electrically connect a plurality of power storage devices 100.
 正極外部出力端子40は、コアユニット10の上面の右端部に装着され、上バスバーユニット20の正極出力バスバー420に電気的に接続される。負極外部出力端子50は、コアユニット10の上面の左端部に装着され、上バスバーユニット20の負極出力バスバー430に電気的に接続される。複数の蓄電デバイス100の電力は、正極外部出力端子40および負極外部出力端子50を通じて蓄電モジュール1の外部に供給される。 The positive electrode external output terminal 40 is attached to the right end of the upper surface of the core unit 10 and is electrically connected to the positive electrode output bus bar 420 of the upper bus bar unit 20. The negative electrode external output terminal 50 is attached to the left end portion of the upper surface of the core unit 10 and is electrically connected to the negative electrode output bus bar 430 of the upper bus bar unit 20. The electric power of the plurality of power storage devices 100 is supplied to the outside of the power storage module 1 through the positive electrode external output terminal 40 and the negative electrode external output terminal 50.
 回路基板60は、コアユニット10の前側面に装着される。複数の上バスバー410および下バスバー510が回路基板60に電気的に接続される。 The circuit board 60 is mounted on the front side surface of the core unit 10. A plurality of upper bus bars 410 and lower bus bars 510 are electrically connected to the circuit board 60.
 図3は、コアユニット10の分解斜視図である。図4は、蓄電デバイスブロック70の分解斜視図である。 FIG. 3 is an exploded perspective view of the core unit 10. FIG. 4 is an exploded perspective view of the power storage device block 70.
 コアユニット10は、複数の蓄電デバイス100がホルダーユニット200により保持されてなる蓄電デバイスブロック70と、蓄電デバイスブロック70の周囲を囲む結束枠80とを含む。本実施の形態では、蓄電デバイスブロック70に112個の蓄電デバイス100が備えられる。即ち、蓄電デバイスブロック70では、7組の上向きデバイス群100Aと7組の下向きデバイス群100Bとが、左右方向に交互に配列される。上向きデバイス群100Aは、8個の蓄電デバイス100が、正極端子110を有するそれらの端面が上向きとなるように、前後方向に配列されることにより構成される。下向きデバイス群100Bは、8個の蓄電デバイス100が、正極端子110を有するそれらの端面が下向きとなるように、前後方向に配列されることにより構成される。 The core unit 10 includes a power storage device block 70 in which a plurality of power storage devices 100 are held by the holder unit 200, and a binding frame 80 surrounding the power storage device block 70. In the present embodiment, the power storage device block 70 is provided with 112 power storage devices 100. That is, in the power storage device block 70, seven sets of upward device groups 100A and seven sets of downward device groups 100B are alternately arranged in the left-right direction. The upward device group 100A is configured by arranging eight power storage devices 100 in the front-rear direction so that their end faces having the positive electrode terminals 110 face upward. The downward device group 100B is configured by arranging eight power storage devices 100 in the front-rear direction so that their end faces having the positive electrode terminals 110 face downward.
 蓄電デバイス100は、たとえば、正極の活物質がコバルト酸リチウムなどのリチウム遷移金属酸化物であり、負極の活物質が炭素材料であるリチウムイオン二次電池である。なお、蓄電デバイス100は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよく、また、一次電池であってもよい。 The power storage device 100 is, for example, a lithium ion secondary battery in which the active material of the positive electrode is a lithium transition metal oxide such as lithium cobalt oxide, and the active material of the negative electrode is a carbon material. The power storage device 100 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a primary battery.
 蓄電デバイス100は、リチウムイオンキャパシタ等のキャパシタであってもよい。また、蓄電デバイス100は、正極の活物質として導電性高分子を用いたのもであってもよい。導電性高分子としては、ポリアニリン、ポリピロールまたはポリチオフェンおよびこれらの誘導体等が挙げられ、複数種の導電性高分子を用いてもよい。 The power storage device 100 may be a capacitor such as a lithium ion capacitor. Further, the power storage device 100 may use a conductive polymer as the active material of the positive electrode. Examples of the conductive polymer include polyaniline, polypyrrole or polythiophene and derivatives thereof, and a plurality of types of conductive polymers may be used.
 蓄電デバイス100は、円柱状(円筒状)に形成され、一方の端面に正極端子110を有し、他方の端面に負極端子120を有する。正極端子110および負極端子120を通じて蓄電デバイス100に貯蓄された電力が引き出される。正極端子110、即ち一方の端面には、蓄電デバイス100の内部に繋がる孔(図示せず)が形成され、この孔がゴム材料からなる円盤状の封口体130で塞がれている。蓄電デバイス100の内部のガス圧が高まったときに、内部のガスが封口体130を通じて外部に排出される。なお、蓄電デバイス100は、円柱状でなく、角柱状(角筒状)を有していてもよい。 The power storage device 100 is formed in a cylindrical shape (cylindrical shape), has a positive electrode terminal 110 on one end face, and has a negative electrode terminal 120 on the other end face. The electric power stored in the power storage device 100 is drawn out through the positive electrode terminal 110 and the negative electrode terminal 120. A hole (not shown) connected to the inside of the power storage device 100 is formed in the positive electrode terminal 110, that is, one end face, and this hole is closed by a disk-shaped sealing body 130 made of a rubber material. When the gas pressure inside the power storage device 100 increases, the gas inside is discharged to the outside through the sealing body 130. The power storage device 100 may have a prismatic shape (square tubular shape) instead of a cylindrical shape.
 ホルダーユニット200は、第1片面ホルダー210Aと、第2片面ホルダー210Bと、7つの第1両面ホルダー220と、6つの第2両面ホルダー230とが左右方向に連結されてなる。第1片面ホルダー210A、第2片面ホルダー210B、第1両面ホルダー220および第2両面ホルダー230は、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)などの樹脂材料により形成される。第1片面ホルダー210Aは、ホルダーユニット200の右端に配置され、第2片面ホルダー210Bは、ホルダーユニット200の左端に配置される。第1両面ホルダー220と第2両面ホルダー230は、左右方向に交互に配置される。 The holder unit 200 includes a first single-sided holder 210A, a second single-sided holder 210B, seven first double-sided holders 220, and six second double-sided holders 230 connected in the left-right direction. The first single-sided holder 210A, the second single-sided holder 210B, the first double-sided holder 220, and the second double-sided holder 230 are formed of a resin material such as polybutylene terephthalate (PBT) or polyphenylene sulfide (PPS). The first single-sided holder 210A is arranged at the right end of the holder unit 200, and the second single-sided holder 210B is arranged at the left end of the holder unit 200. The first double-sided holder 220 and the second double-sided holder 230 are alternately arranged in the left-right direction.
 図5(a)は、右前方から見た第1片面ホルダー210Aの斜視図であり、図5(b)は、左後方から見た第1片面ホルダー210Aの斜視図である。 FIG. 5A is a perspective view of the first single-sided holder 210A viewed from the front right, and FIG. 5B is a perspective view of the first single-sided holder 210A viewed from the rear left.
 第1片面ホルダー210Aは、前後方向に長く左右方向に薄いほぼ直方体形状を有する。第1片面ホルダー210Aの左側面には、上向きデバイス群100Aの各蓄電デバイス100を収容して保持するための8つの収容部211が前後方向に連続するように設けられる。各収容部211は、半円筒状に凹む凹部であり、その上端面および下端面が半円環状のリブ212を縁部に残して開口する。第1片面ホルダー210Aにおいて、8つの収容部211は、後方にややずらされた状態となっている。 The first single-sided holder 210A has a substantially rectangular parallelepiped shape that is long in the front-rear direction and thin in the left-right direction. On the left side surface of the first single-sided holder 210A, eight accommodating portions 211 for accommodating and holding each power storage device 100 of the upward device group 100A are provided so as to be continuous in the front-rear direction. Each accommodating portion 211 is a recess recessed in a semi-cylindrical shape, and the upper end surface and the lower end surface thereof are opened by leaving a semicircular rib 212 at the edge portion. In the first single-sided holder 210A, the eight accommodating portions 211 are slightly displaced rearward.
 各収容部211には、上部と下部の前後方向における中央部に、左右方向に貫通する第1貫通孔213が形成される。また、第1片面ホルダー210Aには、隣り合う2つの収容部211の間の位置、即ち2つの凹部を仕切る壁部の位置であって、上下の第1貫通孔213と同じ高さ位置に、左右方向に貫通する第2貫通孔214が形成される。これにより、第1片面ホルダー210Aの右側面では、上部と下部において、それぞれ、8つの第1貫通孔213と8つの第2貫通孔214とが交互に並ぶ。 Each accommodating portion 211 is formed with a first through hole 213 penetrating in the left-right direction at the central portion in the front-rear direction of the upper part and the lower part. Further, in the first single-sided holder 210A, the position between the two adjacent accommodating portions 211, that is, the position of the wall portion partitioning the two recesses, and the same height position as the upper and lower first through holes 213. A second through hole 214 penetrating in the left-right direction is formed. As a result, on the right side surface of the first single-sided holder 210A, eight first through holes 213 and eight second through holes 214 are alternately arranged in the upper part and the lower part, respectively.
 さらに、第1片面ホルダー210Aの左側面には、前下端部と後下端部に位置決め用の突起215が形成され、前上端部と後上端部に位置決め用の孔216が形成される。 Further, on the left side surface of the first single-sided holder 210A, positioning protrusions 215 are formed on the front lower end portion and the rear lower end portion, and positioning holes 216 are formed on the front upper end portion and the rear upper end portion.
 第1片面ホルダー210Aの右側面には、上下2つの第1貫通孔213と第2貫通孔214の列の間に、前後方向に細長い方形状の嵌合凹部217が形成される。また、第1片面ホルダー210Aの右側面には、前端部と後端部に、上下2つの取付孔218が形成される。 On the right side surface of the first single-sided holder 210A, a rectangular fitting recess 217 elongated in the front-rear direction is formed between the rows of the first through holes 213 and the second through holes 214. Further, on the right side surface of the first single-sided holder 210A, two upper and lower mounting holes 218 are formed at the front end portion and the rear end portion.
 第1片面ホルダー210Aの上面には、前部と後部に、位置決め用の突起219が形成される。また、第1片面ホルダー210Aの上面には、6か所に、金属製のナット240が埋め込まれる。6つのナット240は、第1片面ホルダー210Aの下面にも設けられる。 Positioning protrusions 219 are formed on the upper surface of the first single-sided holder 210A at the front and rear portions. Further, metal nuts 240 are embedded in six places on the upper surface of the first single-sided holder 210A. The six nuts 240 are also provided on the lower surface of the first single-sided holder 210A.
 第2片面ホルダー210Bは、その構成が第1片面ホルダー210Aと同じであり、第1片面ホルダー210Aを、前後左右逆さまに配置したものである。よって、図5(a)および(b)は、それぞれ、第2片面ホルダー210Bを左後方および右前方から見た斜視図でもある。第2片面ホルダー210Bでは、8つの収容部211は、下向きデバイス群100Bの各蓄電デバイス100を収容し保持するためのものとなる。 The second single-sided holder 210B has the same configuration as the first single-sided holder 210A, and the first single-sided holder 210A is arranged upside down in front, back, left, and right. Therefore, FIGS. 5A and 5B are perspective views of the second single-sided holder 210B as viewed from the left rear and the right front, respectively. In the second single-sided holder 210B, the eight accommodating portions 211 are for accommodating and holding each power storage device 100 of the downward device group 100B.
 なお、第1片面ホルダー210Aでは、前端部の突起215は、位置決めに用いられないため、第1両面ホルダー220との連結前に切除される。同様に、第2片面ホルダー210Bでは、後端部の突起215は、位置決めに用いられないため、第2両面ホルダー230との連結前に切除される。 In the first single-sided holder 210A, the protrusion 215 at the front end is not used for positioning, so it is cut off before being connected to the first double-sided holder 220. Similarly, in the second single-sided holder 210B, the protrusion 215 at the rear end is not used for positioning, and is therefore cut off before being connected to the second double-sided holder 230.
 図6(a)は、右前方から見た第1両面ホルダー220の斜視図であり、図6(b)は、左後方から見た第1両面ホルダー220の斜視図である。 FIG. 6A is a perspective view of the first double-sided holder 220 seen from the front right, and FIG. 6B is a perspective view of the first double-sided holder 220 seen from the rear left.
 第1両面ホルダー220は、前後方向に長く左右方向に薄いほぼ直方体形状を有する。第1両面ホルダー220の右側面には、上向きデバイス群100Aの各蓄電デバイス100を収容して保持するための8つの第1収容部221が前後方向に連続するように設けられる。また、第1両面ホルダー220の左側面には、下向きデバイス群100Bの各蓄電デバイス100を収容して保持するための8つの第2収容部222が前後方向に連続するように設けられる。各第1収容部221および各第2収容部222は、半円筒状に凹む凹部であり、その上端面および下端面が半円環状のリブ223、224を縁部に残して開口する。第1両面ホルダー220において、8つの第1収容部221は、前方にややずらされた状態となっており、8つの第2収容部222は、後方にややずらされた状態となっている。これにより、8つの第1収容部221と8つの第2収容部222は、自身の隣り合う2つの収容部の間に相手の収容部が位置するようになっている。 The first double-sided holder 220 has a substantially rectangular parallelepiped shape that is long in the front-rear direction and thin in the left-right direction. On the right side surface of the first double-sided holder 220, eight first accommodating portions 221 for accommodating and holding each power storage device 100 of the upward device group 100A are provided so as to be continuous in the front-rear direction. Further, on the left side surface of the first double-sided holder 220, eight second accommodating portions 222 for accommodating and holding each power storage device 100 of the downward device group 100B are provided so as to be continuous in the front-rear direction. Each of the first accommodating portions 221 and each second accommodating portion 222 is a recess recessed in a semi-cylindrical shape, and the upper end surface and the lower end surface thereof are opened by leaving semicircular ribs 223 and 224 at the edge portion. In the first double-sided holder 220, the eight first accommodating portions 221 are slightly displaced forward, and the eight second accommodating portions 222 are slightly displaced rearward. As a result, the eight first accommodating portions 221 and the eight second accommodating portions 222 have their own accommodating portions located between the two adjacent accommodating portions.
 各第1収容部221には、上部と下部の前後方向における中央部に、左右方向に貫通する第1貫通孔225が形成される。第1貫通孔225は、第1両面ホルダー220の左側面側において、隣り合う2つの第2収容部222の間、即ち2つの凹部を仕切る壁部を通る。同様に、各第2収容部222には、上部と下部の前後方向における中央部であって、第1貫通孔225と同じ高さ位置に、左右方向に貫通する第2貫通孔226が形成される。第2貫通孔226は、第1両面ホルダー220の右側面側において、隣り合う2つの第1収容部221の間、即ち2つの凹部を仕切る壁部を通る。 Each first accommodating portion 221 is formed with a first through hole 225 penetrating in the left-right direction at the central portion in the front-rear direction of the upper part and the lower part. The first through hole 225 passes between two adjacent second accommodating portions 222, that is, a wall portion that separates the two recesses, on the left side surface side of the first double-sided holder 220. Similarly, in each of the second accommodating portions 222, a second through hole 226 that penetrates in the left-right direction is formed at the same height position as the first through hole 225, which is the central portion in the front-rear direction of the upper part and the lower part. To. The second through hole 226 passes between two adjacent first accommodating portions 221 on the right side surface side of the first double-sided holder 220, that is, a wall portion that separates the two recesses.
 さらに、第1両面ホルダー220の右側面および左側面には、後上端部と後下端部にそれぞれ、位置決め用の突起227と孔228とが形成される。 Further, on the right side surface and the left side surface of the first double-sided holder 220, positioning protrusions 227 and holes 228 are formed at the rear upper end portion and the rear lower end portion, respectively.
 第1両面ホルダー220の上面には、前後方向における中央部に、装着孔229が形成される。7つの第1両面ホルダー220のうち、たとえば、中央の第1両面ホルダー220の装着孔229に温度センサ250が挿入されて固定される。これにより、ホルダーユニット200に、温度センサ250が設けられることになる。温度センサ250は、図示しないケーブルを介して回路基板60に接続される。 A mounting hole 229 is formed in the central portion in the front-rear direction on the upper surface of the first double-sided holder 220. Of the seven first double-sided holders 220, for example, the temperature sensor 250 is inserted and fixed in the mounting hole 229 of the central first double-sided holder 220. As a result, the temperature sensor 250 is provided in the holder unit 200. The temperature sensor 250 is connected to the circuit board 60 via a cable (not shown).
 図7(a)は、右前方から見た第2両面ホルダー230の斜視図であり、図7(b)は、左後方から見た第2両面ホルダー230の斜視図である。 FIG. 7 (a) is a perspective view of the second double-sided holder 230 seen from the front right, and FIG. 7 (b) is a perspective view of the second double-sided holder 230 seen from the rear left.
 第2両面ホルダー230は、第1両面ホルダー220と鏡写しの形状を有し、その左側面に8つの第1収容部231が設けられ、その右側面に8つの第2収容部232が設けられる。各第1収容部231および各第2収容部232の上端面および下端面は、リブ233、234を縁部に残して開口する。各第1収容部231には、上部と下部に第1貫通孔235が形成され、各第2収容部232には、上部と下部に第2貫通孔236が形成される。さらに、第2両面ホルダー230の右側面および左側面には、後下端部と後上端部にそれぞれ、位置決め用の突起237と孔238とが形成される。 The second double-sided holder 230 has a mirrored shape with the first double-sided holder 220, and eight first accommodating portions 231 are provided on the left side surface thereof, and eight second accommodating portions 232 are provided on the right side surface thereof. .. The upper end surface and the lower end surface of each first accommodating portion 231 and each second accommodating portion 232 are opened with ribs 233 and 234 left at the edges. First through holes 235 are formed in the upper part and the lower part of each first accommodating portion 231, and second through holes 236 are formed in the upper part and the lower part of each of the second accommodating portions 232. Further, on the right side surface and the left side surface of the second double-sided holder 230, positioning protrusions 237 and holes 238 are formed at the rear lower end portion and the rear upper end portion, respectively.
 図4に戻り、右端に位置する上向きデバイス群100Aは、第1片面ホルダー210Aと右端の第1両面ホルダー220とに挟まれて保持される。この際、第1片面ホルダー210Aの突起215および孔216と第1両面ホルダー220の孔228および突起227が合されて位置決めがなされた後、図示しないスナップ構造により、第1片面ホルダー210Aと第1両面ホルダー220とが連結される。上向きデバイス群100Aの各蓄電デバイス100の周面の半分が第1片面ホルダー210Aの各収容部211に収容され、残り半分が第1両面ホルダー220の各第1収容部221に収容される。各蓄電デバイス100は、上下のリブ212、223で止められることにより、2つのホルダー210A、220から上下方向に抜けない。 Returning to FIG. 4, the upward device group 100A located at the right end is sandwiched and held between the first single-sided holder 210A and the first double-sided holder 220 at the right end. At this time, after the protrusions 215 and 216 of the first single-sided holder 210A and the holes 228 and the protrusions 227 of the first double-sided holder 220 are aligned and positioned, the first single-sided holder 210A and the first are formed by a snap structure (not shown). The double-sided holder 220 is connected. Half of the peripheral surface of each power storage device 100 of the upward device group 100A is housed in each accommodating portion 211 of the first single-sided holder 210A, and the other half is accommodated in each first accommodating portion 221 of the first double-sided holder 220. Each power storage device 100 is stopped by the upper and lower ribs 212 and 223 so that it cannot be pulled out from the two holders 210A and 220 in the vertical direction.
 また、左端に位置する下向きデバイス群100Bは、第2片面ホルダー210Bと左端の第1両面ホルダー220とに挟まれて保持される。この際、第2片面ホルダー210Bの突起215および孔216と第1両面ホルダー220の孔228および突起227が合されて位置決めがなされた後、図示しないスナップ構造により、第2片面ホルダー210Bと第1両面ホルダー220とが連結される。下向きデバイス群100Bの各蓄電デバイス100の周面の半分が第2片面ホルダー210Bの各収容部211に収容され、残り半分が第1両面ホルダー220の各第2収容部222に収容される。各蓄電デバイス100は、上下のリブ212、224で止められることにより、2つのホルダー210B、220から上下方向に抜けない。 Further, the downward device group 100B located at the left end is sandwiched and held between the second single-sided holder 210B and the first double-sided holder 220 at the left end. At this time, after the protrusions 215 and 216 of the second single-sided holder 210B and the holes 228 and the protrusions 227 of the first double-sided holder 220 are aligned and positioned, the second single-sided holder 210B and the first are formed by a snap structure (not shown). The double-sided holder 220 is connected. Half of the peripheral surface of each power storage device 100 of the downward device group 100B is housed in each accommodating portion 211 of the second single-sided holder 210B, and the other half is accommodated in each second accommodating portion 222 of the first double-sided holder 220. Each power storage device 100 is stopped by the upper and lower ribs 212 and 224 so that it cannot be pulled out from the two holders 210B and 220 in the vertical direction.
 さらに、その他の6つの上向きデバイス群100Aと5つの下向きデバイス群100Bは、第1両面ホルダー220と第2両面ホルダー230とに挟まれて保持される。この際、第1両面ホルダー220の突起227および孔228と第2両面ホルダー230の孔238および突起237が合されて位置決めがなされた後、図示しないスナップ構造により、第1両面ホルダー220と第2両面ホルダー230とが連結される。上向きデバイス群100Aの各蓄電デバイス100の周面の半分が第1両面ホルダー220の各第1収容部221に収容され、残り半分が第2両面ホルダー230の各第1収容部231に収容される。各蓄電デバイス100は、上下のリブ223、233で止められることにより、2つのホルダー220、230から上下方向に抜けない。また、下向きデバイス群100Bの各蓄電デバイス100の周面の半分が第1両面ホルダー220の各第2収容部222に収容され、残り半分が第2両面ホルダー230の各第2収容部232に収容される。各蓄電デバイス100は、上下のリブ224、234で止められることにより、2つのホルダー220、230から上下方向に抜けない。 Further, the other six upward device groups 100A and the five downward device groups 100B are sandwiched and held between the first double-sided holder 220 and the second double-sided holder 230. At this time, after the protrusions 227 and holes 228 of the first double-sided holder 220 and the holes 238 and protrusions 237 of the second double-sided holder 230 are aligned and positioned, the first double-sided holder 220 and the second are provided by a snap structure (not shown). The double-sided holder 230 is connected. Half of the peripheral surface of each power storage device 100 of the upward device group 100A is housed in each first storage part 221 of the first double-sided holder 220, and the other half is housed in each first storage part 231 of the second double-sided holder 230. .. Each power storage device 100 is stopped by the upper and lower ribs 223 and 233 so that it cannot be pulled out from the two holders 220 and 230 in the vertical direction. Further, half of the peripheral surface of each power storage device 100 of the downward device group 100B is housed in each second storage part 222 of the first double-sided holder 220, and the other half is housed in each second storage part 232 of the second double-sided holder 230. Will be done. Each power storage device 100 is stopped by the upper and lower ribs 224 and 234 so that it cannot be pulled out from the two holders 220 and 230 in the vertical direction.
 なお、各蓄電デバイス100は、それぞれに対応する収容部211、第1収容部221、231および第2収容部222、232の内面に、接着剤により固定される。このため、各蓄電デバイス100の周面と、収容部211、第1収容部221、231および第2収容部222、232の内面との間には、接着剤の厚み分だけ、後述する冷却空気が通る隙間が生じることになる。 Each power storage device 100 is fixed to the inner surfaces of the corresponding accommodating portions 211, the first accommodating portions 221 and 231 and the second accommodating portions 222 and 232 with an adhesive. Therefore, between the peripheral surface of each power storage device 100 and the inner surfaces of the accommodating portions 211, the first accommodating portions 221 and 231 and the second accommodating portions 222 and 232, the amount of cooling air described later is equal to the thickness of the adhesive. There will be a gap for the air to pass through.
 蓄電デバイスブロック70の周囲には、結束枠80が装着される。 A binding frame 80 is attached around the power storage device block 70.
 図3に示すように、結束枠80は、前板310と、後板320と、左板330と、右板340とにより構成される。前板310および後板320は、アルミニウム等の金属材料により形成され、左右方向に長い方形状を有する。左板330および右板340は、アルミニウム等の金属材料により形成され、前後方向に長い方形状を有する。 As shown in FIG. 3, the binding frame 80 is composed of a front plate 310, a rear plate 320, a left plate 330, and a right plate 340. The front plate 310 and the rear plate 320 are made of a metal material such as aluminum and have a long rectangular shape in the left-right direction. The left plate 330 and the right plate 340 are made of a metal material such as aluminum and have a long rectangular shape in the front-rear direction.
 前板310には、左右方向に並ぶように複数(7つ)の長円形の開口部311が形成される。また、前板310には、左右の側面に、上下2つの挿通孔312が形成される。さらに、前板310には、基板用の6つの取付ボス313が形成される。 A plurality (7) oval openings 311 are formed in the front plate 310 so as to be arranged in the left-right direction. Further, the front plate 310 is formed with two upper and lower insertion holes 312 on the left and right side surfaces. Further, the front plate 310 is formed with six mounting bosses 313 for the substrate.
 後板320には、左右方向に並ぶように複数(7つ)の長円形の開口部321が形成される。また、後板320には、左右の側面に、上下2つの挿通孔322が形成される。 A plurality (7) oval openings 321 are formed in the rear plate 320 so as to be arranged in the left-right direction. Further, the rear plate 320 is formed with two upper and lower insertion holes 322 on the left and right side surfaces.
 左板330には、上部と下部に、前後方向に細長い方形状の開口部331が形成される。また、左板330には、前端部と後端部に、上下2つの挿通孔332が形成される。さらに、左板330には、蓄電デバイスブロック70の左側面に対向する面に、第2片面ホルダー210Bの嵌合凹部217に対応する形状の嵌合部333が設けられる。さらに、左板330には、前部と後部の下端に、取付孔を有する取付タブ334が設けられる。 The left plate 330 is formed with an elongated rectangular opening 331 in the front-rear direction at the upper part and the lower part. Further, the left plate 330 is formed with two upper and lower insertion holes 332 at the front end portion and the rear end portion. Further, the left plate 330 is provided with a fitting portion 333 having a shape corresponding to the fitting recess 217 of the second single-sided holder 210B on the surface facing the left side surface of the power storage device block 70. Further, the left plate 330 is provided with mounting tabs 334 having mounting holes at the lower ends of the front and rear portions.
 右板340は、左板330と同じ構成であり、2つの開口部341と、4つの挿通孔342と、嵌合部343と、2つの取付タブ344とを有する。 The right plate 340 has the same configuration as the left plate 330, and has two openings 341, four insertion holes 342, a fitting portion 343, and two mounting tabs 344.
 結束枠80を蓄電デバイスブロック70に取り付ける際には、まず、蓄電デバイスブロック70の左側面と右側面に、それぞれ、左板330および右板340が装着される。このとき、左板330の嵌合部333が第2片面ホルダー210Bの嵌合凹部217に嵌め込まれ、右板340の嵌合部343が第1片面ホルダー210Aの嵌合凹部217に嵌め込まれる。 When attaching the binding frame 80 to the power storage device block 70, first, the left plate 330 and the right plate 340 are mounted on the left side surface and the right side surface of the power storage device block 70, respectively. At this time, the fitting portion 333 of the left plate 330 is fitted into the fitting recess 217 of the second single-sided holder 210B, and the fitting portion 343 of the right plate 340 is fitted into the fitting recess 217 of the first single-sided holder 210A.
 次に、蓄電デバイスブロック70の前側面と後側面に、それぞれ、前板310および後板320が装着される。前板310および後板320の挿通孔312、322が外側から左板330および右板340の挿通孔332、342に重なる。8か所の重なる2つの挿通孔312、322、332、342に、それぞれ、ネジ350が通されて、第1片面ホルダー210Aの4つの取付孔218と第2片面ホルダー210Bの4つの取付孔218に止められる。 Next, the front plate 310 and the rear plate 320 are mounted on the front side surface and the rear side surface of the power storage device block 70, respectively. The insertion holes 312 and 322 of the front plate 310 and the rear plate 320 overlap the insertion holes 332 and 342 of the left plate 330 and the right plate 340 from the outside. Screws 350 are passed through two overlapping two insertion holes 312, 322, 332, and 342, respectively, and four mounting holes 218 of the first single-sided holder 210A and four mounting holes 218 of the second single-sided holder 210B, respectively. Can be stopped by.
 蓄電デバイスブロック70に結束枠80が取り付けられると、図2のように、コアユニット10が出来上がる。蓄電デバイスブロック70では、ホルダーユニット200の各ホルダー210A、210B、220、230が結束枠80によって結束された状態となる。 When the binding frame 80 is attached to the power storage device block 70, the core unit 10 is completed as shown in FIG. In the power storage device block 70, the holders 210A, 210B, 220, and 230 of the holder unit 200 are bound by the binding frame 80.
 コアユニット10の上面および下面では、各蓄電デバイス100の上方および下方に形成されたホルダーユニット200の開口部200aから各蓄電デバイス100の正極端子110および負極端子120が外部に臨む。 On the upper and lower surfaces of the core unit 10, the positive electrode terminal 110 and the negative electrode terminal 120 of each power storage device 100 face the outside from the openings 200a of the holder unit 200 formed above and below each power storage device 100.
 また、コアユニット10の右側面では、結束枠80の右板340の上下の開口部341が、第1片面ホルダー210Aの上下の第1貫通孔213および第2貫通孔214に重なり、これら第1貫通孔213および第2貫通孔214が外部に開放された状態となる(図2参照)。同様に、コアユニット10の左側面では、結束枠80の左板330の上下の開口部331が、第2片面ホルダー210Bの上下の第1貫通孔213および第2貫通孔214に重なり、これら第1貫通孔213および第2貫通孔214が外部に開放された状態となる。 Further, on the right side surface of the core unit 10, the upper and lower openings 341 of the right plate 340 of the binding frame 80 overlap the upper and lower first through holes 213 and the second through holes 214 of the first single-sided holder 210A, and these first ones. The through hole 213 and the second through hole 214 are opened to the outside (see FIG. 2). Similarly, on the left side surface of the core unit 10, the upper and lower openings 331 of the left plate 330 of the binding frame 80 overlap the upper and lower first through holes 213 and the second through holes 214 of the second single-sided holder 210B. The first through hole 213 and the second through hole 214 are open to the outside.
 図8(a)は、上バスバーユニット20の斜視図であり、図8(b)は、外装体440に覆われていない状態の上バスバー410、正極出力バスバー420および負極出力バスバー430の斜視図である。図9(a)は、下バスバーユニット30の斜視図であり、図9(b)は、外装体520に覆われていない状態の下バスバー510の斜視図である。図10(a)は、上バスバーユニット20の側面断面図であり、図10(b)は、下バスバーユニット30の側面断面図である。なお、図8(a)では、便宜上、上バスバー410、正極出力バスバー420および負極出力バスバー430の外装体440に覆われた部分が見えるように、上バスバーユニット20が描かれている。同様に、図9(a)では、便宜上、下バスバー510の外装体520に覆われた部分が見えるように、下バスバーユニット30が描かれている。 FIG. 8A is a perspective view of the upper bus bar unit 20, and FIG. 8B is a perspective view of the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 in a state where the outer body 440 is not covered. Is. 9 (a) is a perspective view of the lower bus bar unit 30, and FIG. 9 (b) is a perspective view of the lower bus bar 510 in a state where the lower bus bar unit 30 is not covered with the exterior body 520. 10 (a) is a side sectional view of the upper bus bar unit 20, and FIG. 10 (b) is a side sectional view of the lower bus bar unit 30. In FIG. 8A, the upper bus bar unit 20 is drawn so that the portion covered by the exterior body 440 of the upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 can be seen for convenience. Similarly, in FIG. 9A, the lower bus bar unit 30 is drawn so that the portion covered by the exterior body 520 of the lower bus bar 510 can be seen for convenience.
 上バスバーユニット20は、左右方向に並ぶ6つの上バスバー410と、6つの上バスバー410の右側および左側にそれぞれ配置される正極出力バスバー420および負極出力バスバー430と、これら上バスバー410、正極出力バスバー420および負極出力バスバー430を覆う外装体440とを含む。上バスバー410、正極出力バスバー420および負極出力バスバー430は、アルミニウム、銅等の導電性の材料を所定形状に切り抜き、折り曲げ等の加工を行うことにより形成される。外装体440は、PBT、PPS等の軟質性ではない樹脂材料で形成される。インサート成形によって、外装体440の内部に6つの上バスバー410と正極出力バスバー420と負極出力バスバー430とが埋め込まれる。 The upper bus bar unit 20 includes six upper bus bars 410 arranged in the left-right direction, a positive electrode output bus bar 420 and a negative electrode output bus bar 430 arranged on the right and left sides of the six upper bus bars 410, respectively, and the upper bus bar 410 and the positive output bus bar. Includes 420 and an exterior body 440 that covers the negative electrode output busbar 430. The upper bus bar 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 are formed by cutting out a conductive material such as aluminum or copper into a predetermined shape and performing processing such as bending. The exterior body 440 is formed of a non-soft resin material such as PBT and PPS. By insert molding, six upper bus bars 410, a positive electrode output bus bar 420, and a negative electrode output bus bar 430 are embedded inside the exterior body 440.
 上バスバー410は、蓄電デバイス100の正極端子110または負極端子120に接続される16個の端子部411と、これら端子部411の間を繋ぐ導通部412と、回路基板60に接続される基板接続部413とを含む。 The upper bus bar 410 has 16 terminal portions 411 connected to the positive electrode terminal 110 or the negative electrode terminal 120 of the power storage device 100, a conductive portion 412 connecting between these terminal portions 411, and a substrate connection connected to the circuit board 60. Includes part 413 and.
 導通部412は、所定形状の前後方向に長い板状を有する。導通部412には、16個の円形の開口部412aが、前後方向に8個、左右方向に2個並ぶように形成される。前後方向の8個の開口部412aは、上向きデバイス群100Aおよび下向きデバイス群100Bの蓄電デバイス100同士の間隔と同じ間隔で並ぶ。また、左列の8個の開口部412aと右列の8個の開口部412aは、上向きデバイス群100Aと下向きデバイス群100Bの前後方向の位置ずれに合わせて、その位置がずらされている。 The conductive portion 412 has a predetermined shape and a long plate shape in the front-rear direction. The conductive portion 412 is formed with 16 circular openings 412a arranged so as to be arranged in eight in the front-rear direction and two in the left-right direction. The eight openings 412a in the front-rear direction are arranged at the same spacing as the storage devices 100 of the upward device group 100A and the downward device group 100B. Further, the eight openings 412a in the left column and the eight openings 412a in the right column are displaced from each other according to the positional deviation between the upward device group 100A and the downward device group 100B in the front-rear direction.
 16個の端子部411は、それぞれ、導通部412の各開口部412aの前側の縁から形成されて後方へ延びる。各端子部411は、後方へ延び後に屈曲して下斜め方向に延び、さらに屈曲して後方へ延びるような形状を有する。即ち、各端子部411は、先端部が基端部よりも一段下げられることで、蓄電デバイス100の正極端子110または負極端子120に接触しやすく、また、その接触方向にばね性を有するようになされている。 Each of the 16 terminal portions 411 is formed from the front edge of each opening 412a of the conductive portion 412 and extends rearward. Each terminal portion 411 has a shape that extends rearward, then bends and extends in an oblique downward direction, and further bends and extends rearward. That is, since the tip end portion of each terminal portion 411 is lowered one step from the base end portion, it is easy to contact the positive electrode terminal 110 or the negative electrode terminal 120 of the power storage device 100, and each terminal portion 411 has a spring property in the contact direction. It has been done.
 基板接続部413は、導通部412の前端中央部から形成されて前方へ延びる。基板接続部413は、先端側が下方に折れ曲がる細い板状を有する。基板接続部413の先端部には、ネジ920が通される挿通孔413aが形成される。 The board connection portion 413 is formed from the central portion of the front end of the conductive portion 412 and extends forward. The substrate connection portion 413 has a thin plate shape whose tip side is bent downward. An insertion hole 413a through which the screw 920 is passed is formed at the tip of the board connection portion 413.
 正極出力バスバー420は、蓄電デバイス100の正極端子110に接続される8個の端子部421と、これら端子部421の間を繋ぐ導通部422と、回路基板60に接続される基板接続部423と、正極外部出力端子40に接続される端子接続部424とを含む。 The positive electrode output bus bar 420 includes eight terminal portions 421 connected to the positive electrode terminals 110 of the power storage device 100, a conductive portion 422 connecting between these terminal portions 421, and a substrate connecting portion 423 connected to the circuit board 60. Includes a terminal connection portion 424 connected to the positive electrode external output terminal 40.
 導通部422は、所定形状の前後方向に長い板状を有する。導通部422には、8個の円形の開口部422aが前後方向に並ぶように形成される。8個の開口部422aは、上向きデバイス群100Aの蓄電デバイス100同士の間隔と同じ間隔で並ぶ。 The conductive portion 422 has a predetermined shape and a long plate shape in the front-rear direction. Eight circular openings 422a are formed in the conductive portion 422 so as to be arranged in the front-rear direction. The eight openings 422a are arranged at the same intervals as the intervals between the power storage devices 100 of the upward device group 100A.
 8個の端子部421は、それぞれ、導通部422の各開口部422aの前側の縁から形成されて後方へ延びる。各端子部421の構成は、上バスバー410の各端子部411の構成と同様である。 Each of the eight terminal portions 421 is formed from the front edge of each opening 422a of the conductive portion 422 and extends rearward. The configuration of each terminal portion 421 is the same as the configuration of each terminal portion 411 of the upper bus bar 410.
 基板接続部423は、導通部422の左前端から形成されて前方へ延びる。基板接続部423の構成は、上バスバー410の基板接続部413の構成と同様であり、その先端部に挿通孔423aが形成される。 The board connecting portion 423 is formed from the left front end of the conductive portion 422 and extends forward. The configuration of the substrate connecting portion 423 is the same as the configuration of the substrate connecting portion 413 of the upper bus bar 410, and an insertion hole 423a is formed at the tip portion thereof.
 端子接続部424は、導通部422から右側に張り出すように形成され、前後方向に長い板状を有する。端子接続部424には、前後方向に並ぶように、4つの挿通孔424aが形成される。また、端子接続部424の後端部には、位置決め用の孔424bが形成される。 The terminal connection portion 424 is formed so as to project from the conductive portion 422 to the right side, and has a long plate shape in the front-rear direction. Four insertion holes 424a are formed in the terminal connection portion 424 so as to be arranged in the front-rear direction. Further, a positioning hole 424b is formed at the rear end of the terminal connection portion 424.
 負極出力バスバー430は、蓄電デバイス100の負極端子120に接続される8個の端子部431と、これら端子部431の間を繋ぐ導通部432と、回路基板60に接続される基板接続部433と、負極外部出力端子50に接続される端子接続部434とを含む。 The negative electrode output bus bar 430 includes eight terminal portions 431 connected to the negative electrode terminals 120 of the power storage device 100, a conductive portion 432 connecting between these terminal portions 431, and a substrate connecting portion 433 connected to the circuit board 60. Includes a terminal connection portion 434 connected to the negative electrode external output terminal 50.
 導通部432は、所定形状の前後方向に長い板状を有する。導通部432には、8個の円形の開口部432aが前後方向に並ぶように形成される。8個の開口部432aは、下向きデバイス群100Bの蓄電デバイス100同士の間隔と同じ間隔で並ぶ。 The conductive portion 432 has a predetermined shape and a long plate shape in the front-rear direction. Eight circular openings 432a are formed in the conductive portion 432 so as to be arranged in the front-rear direction. The eight openings 432a are arranged at the same intervals as the intervals between the power storage devices 100 of the downward device group 100B.
 8個の端子部431は、それぞれ、導通部432の各開口部432aの前側の縁から形成されて後方へ延びる。各端子部431の構成は、上バスバー410の各端子部411の構成と同様である。 Each of the eight terminal portions 431 is formed from the front edge of each opening 432a of the conductive portion 432 and extends rearward. The configuration of each terminal portion 431 is the same as the configuration of each terminal portion 411 of the upper bus bar 410.
 基板接続部433は、導通部432の右前端から形成されて前方へ延びる。基板接続部433の構成は、上バスバー410の基板接続部413の構成と同様であり、その先端部に挿通孔433aが形成される。 The board connecting portion 433 is formed from the right front end of the conductive portion 432 and extends forward. The configuration of the substrate connecting portion 433 is the same as the configuration of the substrate connecting portion 413 of the upper bus bar 410, and an insertion hole 433a is formed at the tip portion thereof.
 端子接続部434は、導通部432から左側に張り出すように形成され、前後方向に長い板状を有する。端子接続部434には、前後方向に並ぶように、4つの挿通孔434aが形成される。また、端子接続部424の前端部には、位置決め用の孔434bが形成される。 The terminal connection portion 434 is formed so as to project from the conductive portion 432 to the left side, and has a long plate shape in the front-rear direction. Four insertion holes 434a are formed in the terminal connection portion 434 so as to be arranged in the front-rear direction. Further, a positioning hole 434b is formed at the front end portion of the terminal connection portion 424.
 外装体440は、各バスバー410、420、430の導通部412、422、432における各開口部412a、422a、432aを除く部分を覆う。外装体440には、導通部412、422、432の上側の表面を覆う被覆層440aと、導通部412、422、432の下側の表面を覆う被覆層440bとが含まれる。外装体440、即ち被覆層440a、440bには、各開口部412a、422a、432aに重なる開口部441が形成される。また、外装体440は、各バスバー410、420、430の基板接続部413、423、433における先端部を除く部分を覆う。よって、上バスバー410では、各端子部411と基板接続部413の先端部とが外装体440の外に露出し、正極出力バスバー420および負極出力バスバー430では、各端子部421、431と基板接続部423、433の先端部と端子接続部424、434とが外装体440の外に露出する。 The exterior body 440 covers the portions of the conductive portions 412, 422, and 432 of the bus bars 410, 420, and 430 except for the openings 412a, 422a, and 432a. The exterior body 440 includes a coating layer 440a that covers the upper surface of the conductive portions 412, 422, and 432, and a coating layer 440b that covers the lower surface of the conductive portions 412, 422, and 432. The exterior body 440, that is, the coating layers 440a and 440b, is formed with openings 441 that overlap the openings 412a, 422a, and 432a. Further, the exterior body 440 covers the portions of the board connecting portions 413, 423, and 433 of the bus bars 410, 420, and 430, except for the tip portion. Therefore, in the upper bus bar 410, each terminal portion 411 and the tip portion of the substrate connecting portion 413 are exposed to the outside of the exterior body 440, and in the positive electrode output bus bar 420 and the negative electrode output bus bar 430, the terminal portions 421 and 431 are connected to the substrate. The tip portions of the portions 423 and 433 and the terminal connection portions 424 and 434 are exposed to the outside of the exterior body 440.
 外装体440には、右端部および左端部に、それぞれ、正極端子台450および負極端子台460が一体に形成される。正極端子台450および負極端子台460には、前後に並ぶ2つの取付孔451、461が形成される。各取付孔451、461には、図示しない金属製のナットが設置される。 The exterior body 440 is integrally formed with a positive electrode terminal block 450 and a negative electrode terminal block 460 at the right end and the left end, respectively. Two mounting holes 451 and 461 arranged in the front and rear are formed in the positive electrode terminal block 450 and the negative electrode terminal block 460. Metal nuts (not shown) are installed in the mounting holes 451 and 461.
 下バスバーユニット30は、左右方向に並ぶ7つの下バスバー510と、これら下バスバー510を覆う外装体520とを含む。下バスバー510および外装体520は、それぞれ、上バスバー410および外装体440と同じ材料で形成され、インサート成形によって、外装体520の内部に7つの下バスバー510が埋め込まれる。 The lower bus bar unit 30 includes seven lower bus bars 510 arranged in the left-right direction and an exterior body 520 covering these lower bus bars 510. The lower bus bar 510 and the outer body 520 are formed of the same material as the upper bus bar 410 and the outer body 440, respectively, and seven lower bus bars 510 are embedded inside the outer body 520 by insert molding.
 下バスバー510は、上バスバー410を上下逆さにした構成であり、16個の端子部511と、16個の開口部512aを有する導通部512と、挿通孔513aを有する基板接続部513とを含む。 The lower bus bar 510 has a configuration in which the upper bus bar 410 is turned upside down, and includes 16 terminal portions 511, a conductive portion 512 having 16 openings 512a, and a substrate connecting portion 513 having an insertion hole 513a. ..
 外装体520は、下バスバー510の導通部512における各開口部512aを除く部分を覆う。外装体520には、導通部512の上側の表面を覆う被覆層520aと、導通部512の下側の表面を覆う被覆層520bとが含まれる。外装体520、即ち被覆層520a、520bには、各開口部512aに重なる開口部521が形成される。また、外装体520は、下バスバー510の基板接続部513における先端部を除く部分を覆う。よって、下バスバー510では、各端子部511と基板接続部513の先端部とが外装体520の外に露出する。 The exterior body 520 covers the portion of the lower bus bar 510 of the conductive portion 512 except for each opening 512a. The exterior body 520 includes a coating layer 520a that covers the upper surface of the conductive portion 512 and a coating layer 520b that covers the lower surface of the conductive portion 512. An opening 521 that overlaps each opening 512a is formed in the exterior body 520, that is, the coating layers 520a and 520b. Further, the exterior body 520 covers a portion of the lower bus bar 510 other than the tip portion of the substrate connection portion 513. Therefore, in the lower bus bar 510, each terminal portion 511 and the tip portion of the substrate connecting portion 513 are exposed to the outside of the exterior body 520.
 外装体520の右端部と左端部には、それぞれ、前後方向に並ぶように、4つの挿通孔522、523が形成される。 Four insertion holes 522 and 523 are formed at the right end and the left end of the exterior body 520 so as to be arranged in the front-rear direction, respectively.
 図11(a)および(b)は、それぞれ、正極外部出力端子40および負極外部出力端子50の斜視図である。 11 (a) and 11 (b) are perspective views of the positive electrode external output terminal 40 and the negative electrode external output terminal 50, respectively.
 正極外部出力端子40は、アルミニウム、銅等の導電性の材料に形成され、前後方向に細長い方形の板状を有する接続端子部610と、接続端子部610の右端から右方に張り出す、長方形の板状を有する出力端子部620とを含む。接続端子部610には、前後方向に並ぶように、4つの挿通孔611が形成される。また、接続端子部610には、後端部に位置決め用の孔612が形成され、前端部に位置決め用の長孔613が形成される。出力端子部620には、前後方向に並ぶ2つの取付孔621が形成される。 The positive electrode external output terminal 40 is formed of a conductive material such as aluminum or copper, and has a rectangular plate-shaped connection terminal portion 610 elongated in the front-rear direction and a rectangle extending from the right end to the right end of the connection terminal portion 610. Includes an output terminal portion 620 having a plate shape of. Four insertion holes 611 are formed in the connection terminal portion 610 so as to be arranged in the front-rear direction. Further, in the connection terminal portion 610, a positioning hole 612 is formed at the rear end portion, and a positioning elongated hole 613 is formed at the front end portion. Two mounting holes 621 arranged in the front-rear direction are formed in the output terminal portion 620.
 負極外部出力端子50は、正極外部出力端子40を前後左右逆さまにした構成を有し、4つの挿通孔711と、位置決め用の孔712および長孔713とを有する接続端子部710と、2つの取付孔721を有する出力端子部720とを含む。 The negative electrode external output terminal 50 has a configuration in which the positive electrode external output terminal 40 is turned upside down in the front-rear and left-right directions, and has a connection terminal portion 710 having four insertion holes 711, a positioning hole 712 and an elongated hole 713, and two. Includes an output terminal portion 720 having a mounting hole 721.
 図12は、回路基板60の斜視図である。 FIG. 12 is a perspective view of the circuit board 60.
 回路基板60は、方形状を有するプリント基板810上に電子回路820が実装されてなる。電子回路820は、たとえば、各蓄電デバイス100の電圧を検出する電圧検出回路および電圧検出回路が検出した電圧に応じて各蓄電デバイス100の電圧を揃えるバランス回路を含む。また、電子回路820は、温度センサ250に接続される温度検出回路を含む。 The circuit board 60 is formed by mounting an electronic circuit 820 on a printed circuit board 810 having a square shape. The electronic circuit 820 includes, for example, a voltage detection circuit that detects the voltage of each power storage device 100 and a balance circuit that aligns the voltage of each power storage device 100 according to the voltage detected by the voltage detection circuit. The electronic circuit 820 also includes a temperature detection circuit connected to the temperature sensor 250.
 また、回路基板60は、上バスバーユニット20の各バスバー410、420、420の基板接続部413、423、433および下バスバーユニット30の下バスバー510の基板接続部513との接続のためにプリント基板810上に実装された15個の入力端子830を含む。各入力端子830には、ネジ920が止められる取付孔831が形成される。 Further, the circuit board 60 is a printed circuit board for connection with the board connection portions 413, 423, 433 of each bus bar 410, 420, 420 of the upper bus bar unit 20 and the board connection portion 513 of the lower bus bar 510 of the lower bus bar unit 30. Includes 15 input terminals 830 mounted on the 810. Each input terminal 830 is formed with a mounting hole 831 to which the screw 920 is fastened.
 プリント基板810には、4つの角部と、上端部および下端部の中央部とに、それぞれ、取付用のネジ910が通される挿通孔811が形成される。 The printed circuit board 810 is formed with insertion holes 811 at the four corners and at the center of the upper end and the lower end, respectively, through which the mounting screws 910 are passed.
 コアユニット10が完成した後、蓄電モジュール1を組み立てる際には、まず、6つのネジ910により、回路基板60がコアユニット10、即ち結束枠80の前側面の6つの取付ボス313に取り付けられる。これにより、回路基板60は、その基板面がホルダーユニット200における前側面(上バスバー410と下バスバー510が並ぶ方向に沿う面)と対向するように配置される。 After the core unit 10 is completed, when assembling the power storage module 1, the circuit board 60 is first attached to the core unit 10, that is, the six mounting bosses 313 on the front side surface of the binding frame 80 by the six screws 910. As a result, the circuit board 60 is arranged so that its substrate surface faces the front side surface of the holder unit 200 (the surface along the direction in which the upper bus bar 410 and the lower bus bar 510 are arranged).
 次に、コアユニット10の上面に、上バスバーユニット20が装着される。この際、正極出力バスバー420の孔424bが第1片面ホルダー210Aの突起219に嵌り、負極出力バスバー430の孔434bが第2片面ホルダー210Bの突起219に嵌ることにより、上バスバーユニット20の位置決めがなされる。各バスバー410、420、430の各端子部411、421、431が、ホルダーユニット200の各開口部200aを通じて、それぞれに対応する蓄電デバイス100の正極端子110または負極端子120に接触する。 Next, the upper bus bar unit 20 is mounted on the upper surface of the core unit 10. At this time, the hole 424b of the positive electrode output bus bar 420 fits into the protrusion 219 of the first single-sided holder 210A, and the hole 434b of the negative electrode output bus bar 430 fits into the protrusion 219 of the second single-sided holder 210B, so that the upper bus bar unit 20 can be positioned. Be done. The terminal portions 411, 421, and 431 of the bus bars 410, 420, and 430 come into contact with the positive electrode terminal 110 or the negative electrode terminal 120 of the corresponding power storage device 100 through the openings 200a of the holder unit 200.
 次に、上バスバーユニット20の右端部と左端部にそれぞれ、正極外部出力端子40と負極外部出力端子50が載置される。正極外部出力端子40は、接続端子部610が正極出力バスバー420の端子接続部424に接触し、出力端子部620が正極端子台450上に配置される。また、負極外部出力端子50は、接続端子部710が負極出力バスバー430の端子接続部434に接触し、出力端子部720が負極端子台460上に配置される。このとき、正極外部出力端子40の孔612および長孔613が第1片面ホルダー210Aの突起219に嵌ることにより、正極外部出力端子40の位置決めがなされる。また、負極外部出力端子50の孔712および長孔713が第2片面ホルダー210Bの突起219に嵌ることにより、負極外部出力端子50の位置決めがなされる。 Next, the positive electrode external output terminal 40 and the negative electrode external output terminal 50 are placed on the right end portion and the left end portion of the upper bus bar unit 20, respectively. In the positive electrode external output terminal 40, the connection terminal portion 610 contacts the terminal connection portion 424 of the positive electrode output bus bar 420, and the output terminal portion 620 is arranged on the positive electrode terminal block 450. Further, in the negative electrode external output terminal 50, the connection terminal portion 710 is in contact with the terminal connection portion 434 of the negative electrode output bus bar 430, and the output terminal portion 720 is arranged on the negative electrode terminal block 460. At this time, the positive electrode external output terminal 40 is positioned by fitting the hole 612 and the elongated hole 613 of the positive electrode external output terminal 40 into the protrusion 219 of the first single-sided holder 210A. Further, the negative electrode external output terminal 50 is positioned by fitting the hole 712 and the elongated hole 713 of the negative electrode external output terminal 50 into the protrusion 219 of the second single-sided holder 210B.
 正極外部出力端子40の4つの挿通孔611と正極出力バスバー420の4つの挿通孔424aとが第1片面ホルダー210Aの4つのナット240に重なる。2つの挿通孔611、424aを通されたネジ930がナット240に止められる。同様に、負極外部出力端子50の4つの挿通孔711と負極出力バスバー430の4つの挿通孔434aとが第2片面ホルダー210Bの4つのナット240に重なる。2つの挿通孔711、434aを通されたネジ930がナット240に止められる。これにより、上バスバーユニット20、正極外部出力端子40および負極外部出力端子50がコアユニット10の上面に固定される。正極出力バスバー420と正極外部出力端子40とが電気的に接続され、負極出力バスバー430と負極外部出力端子50が電気的に接続される。 The four insertion holes 611 of the positive electrode external output terminal 40 and the four insertion holes 424a of the positive electrode output bus bar 420 overlap the four nuts 240 of the first single-sided holder 210A. The screw 930 passed through the two insertion holes 611 and 424a is fastened to the nut 240. Similarly, the four insertion holes 711 of the negative electrode external output terminal 50 and the four insertion holes 434a of the negative electrode output bus bar 430 overlap the four nuts 240 of the second single-sided holder 210B. Screws 930 through the two insertion holes 711 and 434a are fastened to the nut 240. As a result, the upper bus bar unit 20, the positive electrode external output terminal 40, and the negative electrode external output terminal 50 are fixed to the upper surface of the core unit 10. The positive electrode output bus bar 420 and the positive electrode external output terminal 40 are electrically connected, and the negative electrode output bus bar 430 and the negative electrode external output terminal 50 are electrically connected.
 次に、コアユニット10の下面に、下バスバーユニット30が装着される。下バスバー510の各端子部511が、ホルダーユニット200の各開口部200aを通じて、それぞれに対応する蓄電デバイス100の正極端子110または負極端子120に接触する。 Next, the lower bus bar unit 30 is mounted on the lower surface of the core unit 10. Each terminal portion 511 of the lower bus bar 510 contacts the positive electrode terminal 110 or the negative electrode terminal 120 of the corresponding power storage device 100 through each opening 200a of the holder unit 200.
 下バスバーユニット30の右端部の4つの挿通孔522が第1片面ホルダー210Aの4つのナット240に重なる。挿通孔522を通されたネジ(図示せず)がナット240に止められる。同様に、下バスバーユニット30の左端部の4つの挿通孔523が第2片面ホルダー210Bの4つのナット240に重なる。挿通孔522を通されたネジ(図示せず)がナット240に止められる。これにより、下バスバーユニット30がコアユニット10の下面に固定される。 The four insertion holes 522 at the right end of the lower bus bar unit 30 overlap the four nuts 240 of the first single-sided holder 210A. A screw (not shown) that has been passed through the insertion hole 522 is fastened to the nut 240. Similarly, the four insertion holes 523 at the left end of the lower bus bar unit 30 overlap the four nuts 240 of the second single-sided holder 210B. A screw (not shown) that has been passed through the insertion hole 522 is fastened to the nut 240. As a result, the lower bus bar unit 30 is fixed to the lower surface of the core unit 10.
 次に、上バスバーユニット20の各バスバー410、420、430の各端子部411、421、431が、それぞれに対応する蓄電デバイス100の正極端子110または負極端子120に、スポット溶接等の接合方法により接合される。また、下バスバーユニット30の下バスバー510の各端子部511が、それぞれに対応する蓄電デバイス100の正極端子110または負極端子120に、スポット溶接等の接合方法により接合される。 Next, the terminal portions 411, 421, and 431 of the bus bars 410, 420, and 430 of the upper bus bar unit 20 are connected to the positive electrode terminal 110 or the negative electrode terminal 120 of the power storage device 100 corresponding to each by a joining method such as spot welding. Be joined. Further, each terminal portion 511 of the lower bus bar 510 of the lower bus bar unit 30 is joined to the positive electrode terminal 110 or the negative electrode terminal 120 of the corresponding power storage device 100 by a joining method such as spot welding.
 最後に、上バスバーユニット20の6つの上バスバー410、正極出力バスバー420および負極出力バスバー430の基板接続部413、423、433が、それらに対応する回路基板60の入力端子830にネジ920により接続される。これにより、上バスバーユニット20の6つの上バスバー410、正極出力バスバー420および負極出力バスバー430が回路基板60と電気的に接続される。同様に、下バスバーユニット30の7つの下バスバー510の基板接続部513が、それらに対応する回路基板60の入力端子830にネジ920により接続される。これにより、下バスバーユニット30の7つの下バスバー510が回路基板60と電気的に接続される。 Finally, the six upper bus bars 410 of the upper bus bar unit 20, the positive electrode output bus bar 420, and the substrate connection portions 413, 423, 433 of the negative electrode output bus bar 430 are connected to the input terminals 830 of the circuit board 60 corresponding to them by screws 920. Will be done. As a result, the six upper bus bars 410, the positive electrode output bus bar 420, and the negative electrode output bus bar 430 of the upper bus bar unit 20 are electrically connected to the circuit board 60. Similarly, the board connection portions 513 of the seven lower bus bars 510 of the lower bus bar unit 30 are connected to the input terminals 830 of the circuit board 60 corresponding to them by screws 920. As a result, the seven lower bus bars 510 of the lower bus bar unit 30 are electrically connected to the circuit board 60.
 こうして、図1に示すように、蓄電モジュール1が完成する。 Thus, as shown in FIG. 1, the power storage module 1 is completed.
 上バスバーユニット20の6つの上バスバー410は、右端の上向きデバイス群100Aと左端の下向きデバイス群100Bを除く6つの上向きデバイス群100Aと6つの下向きデバイス群100Bにおいて、それぞれに対応する、下向きデバイス群100Bの蓄電デバイス100の負極端子120同士の電気的な接続、その左隣りの上向きデバイス群100Aの蓄電デバイス100の正極端子110同士の電気的な接続、および、下向きデバイス群100Bの蓄電デバイス100の負極端子120とその左隣の上向きデバイス群100Aの蓄電デバイス100の正極端子110との電気的な接続を行う。 The six upper bus bars 410 of the upper bus bar unit 20 correspond to the downward device groups 100A and the six downward device groups 100B, excluding the upward device group 100A at the right end and the downward device group 100B at the left end, respectively. The electrical connection between the negative electrode terminals 120 of the power storage device 100 of 100B, the electrical connection between the positive electrode terminals 110 of the power storage device 100 of the upward device group 100A adjacent to the left side thereof, and the power storage device 100 of the downward device group 100B. An electrical connection is made between the negative electrode terminal 120 and the positive electrode terminal 110 of the power storage device 100 of the upward device group 100A to the left of the negative electrode terminal 120.
 また、上バスバーユニット20の正極出力バスバー420は、右端の上向きデバイス群100Aの蓄電デバイス100の正極端子110同士の電気的な接続、および、右端の上向きデバイス群100Aの蓄電デバイス100の正極端子110と正極外部出力端子40との電気的な接続を行う。さらに、上バスバーユニット20の負極出力バスバー430は、左端の下向きデバイス群100Bの蓄電デバイス100の負極端子120同士の電気的な接続、および、左端の下向きデバイス群100Bの蓄電デバイス100の負極端子120と負極外部出力端子50との電気的な接続を行う。 Further, the positive electrode output bus bar 420 of the upper bus bar unit 20 electrically connects the positive electrode terminals 110 of the power storage device 100 of the upward device group 100A at the right end to each other, and the positive electrode terminal 110 of the power storage device 100 of the upward device group 100A at the right end. And the positive electrode external output terminal 40 are electrically connected. Further, the negative electrode output bus bar 430 of the upper bus bar unit 20 is electrically connected to the negative electrode terminals 120 of the power storage device 100 of the downward device group 100B at the left end, and the negative electrode terminal 120 of the power storage device 100 of the downward device group 100B at the left end. And the negative electrode external output terminal 50 are electrically connected.
 さらに、下バスバーユニット30の7つの下バスバー510は、それぞれに対応する、上向きデバイス群100Aの蓄電デバイス100の負極端子120同士の電気的な接続、その左隣りの下向きデバイス群100Bの蓄電デバイス100の正極端子110同士の電気的な接続、および、上向きデバイス群100Aの蓄電デバイス100の負極端子120とその左隣の下向きデバイス群100Bの蓄電デバイス100の正極端子110との電気的な接続を行う。 Further, the seven lower bus bars 510 of the lower bus bar unit 30 are electrically connected to each other of the negative electrode terminals 120 of the power storage device 100 of the upward device group 100A corresponding to each, and the power storage device 100 of the downward device group 100B adjacent to the left side thereof. Electrically connect the positive electrode terminals 110 to each other, and electrically connect the negative electrode terminal 120 of the power storage device 100 of the upward device group 100A and the positive electrode terminal 110 of the power storage device 100 of the downward device group 100B to the left of the negative terminal 120. ..
 これにより、蓄電モジュール1は、8個の蓄電デバイス100が並列接続され、これら8個の蓄電デバイス100からなる14組のデバイス群100A、100Bが直列接続された構成となり、この構成に基づく出力電圧と電気容量が得られる。 As a result, the power storage module 1 has a configuration in which eight power storage devices 100 are connected in parallel and 14 sets of device groups 100A and 100B consisting of these eight power storage devices 100 are connected in series, and the output voltage based on this configuration. And electric capacity can be obtained.
 蓄電モジュール1は、複数個が一組となって筐体内に収容され、蓄電ユニットを構成する。筐体内には、冷却ファンが設けられ、蓄電モジュール1に強制的に冷却用の流体である冷却空気が送られる。筐体は、送られた冷却空気が、蓄電モジュール1の左右方向、即ち、蓄電デバイス100が直列接続された方向であって、ホルダーユニット200の各ホルダー210A、210B、220、230が並ぶ方向に流れるような冷却構造となっており、たとえば、図1に示すように、冷却空気は、蓄電モジュール1に対して、左方向へ流れるように供給される。 A plurality of power storage modules 1 are housed in a housing as a set to form a power storage unit. A cooling fan is provided in the housing, and cooling air, which is a cooling fluid, is forcibly sent to the power storage module 1. In the housing, the sent cooling air is in the left-right direction of the power storage module 1, that is, in the direction in which the power storage devices 100 are connected in series, and in the direction in which the holders 210A, 210B, 220, and 230 of the holder unit 200 are lined up. It has a flowing cooling structure. For example, as shown in FIG. 1, the cooling air is supplied to the power storage module 1 so as to flow to the left.
 図13は、蓄電デバイスブロック70の平面断面図である。図13では、便宜上、蓄電デバイスブロック70の中央部分の図示が省略されている。また、図13には、蓄電デバイスブロック70の内部の一部の冷却経路について、冷却空気の流れが矢印により示されている。 FIG. 13 is a plan sectional view of the power storage device block 70. In FIG. 13, for convenience, the central portion of the power storage device block 70 is not shown. Further, in FIG. 13, the flow of cooling air is indicated by arrows for a part of the cooling paths inside the power storage device block 70.
 図13に示すように、蓄電デバイスブロック70の内部では、第1片面ホルダー210Aと右端の第1両面ホルダー220において、第1両面ホルダー220の各第2貫通孔226と第1片面ホルダー210Aの各第2貫通孔214とが繋がる。また、左端の第1両面ホルダー220を除く6つの第1両面ホルダー220と6つの第2両面ホルダー230において、第1両面ホルダー220の各第1貫通孔225とその左隣りの第2両面ホルダー230の各第1貫通孔235とが繋がり、第2両面ホルダー230の各第2貫通孔236とその左隣の第1両面ホルダー220の各第2貫通孔226とが繋がる。さらに、第2片面ホルダー210Bと左端の第1両面ホルダー220において、第1両面ホルダー220の各第1貫通孔225と第2片面ホルダー210Bの各第2貫通孔214とが繋がる。 As shown in FIG. 13, inside the power storage device block 70, in the first single-sided holder 210A and the rightmost first double-sided holder 220, each of the second through holes 226 and the first single-sided holder 210A of the first double-sided holder 220. It is connected to the second through hole 214. Further, in the six first double-sided holders 220 and the six second double-sided holders 230 excluding the leftmost first double-sided holder 220, each first through hole 225 of the first double-sided holder 220 and the second double-sided holder 230 to the left of the first through hole 225 are provided. The first through holes 235 of the above are connected, and the second through holes 236 of the second double-sided holder 230 and the second through holes 226 of the first double-sided holder 220 to the left of the second through holes 236 are connected. Further, in the second single-sided holder 210B and the leftmost first double-sided holder 220, each first through hole 225 of the first double-sided holder 220 and each second through hole 214 of the second single-sided holder 210B are connected.
 これにより、蓄電デバイスブロック70の内部には、上向きデバイス群100Aの蓄電デバイス100が収容された7つの収容空間201を左右方向に貫く8つの第1冷却経路CR1と、下向きデバイス群100Bの蓄電デバイス100が収容された7つの収容空間202を左右方向に貫く8つの第2冷却経路CR2とが前後方向に交互に形成される。 As a result, inside the power storage device block 70, eight first cooling paths CR1 penetrating in the left-right direction through the seven storage spaces 201 in which the power storage device 100 of the upward device group 100A is housed, and the power storage device of the downward device group 100B. Eight second cooling paths CR2 penetrating the seven storage spaces 202 in which 100 are housed in the left-right direction are alternately formed in the front-rear direction.
 蓄電モジュール1に流れてきた冷却空気は、第1片面ホルダー210Aの各第1貫通孔213と各第2貫通孔214へ進入する。各第1貫通孔213から各第1冷却経路CR1へ進入した冷却空気は、図13の矢印のように、7つの収容空間201を通って収容空間201内の蓄電デバイス100を冷却し、第2片面ホルダー210Bの第2貫通孔214から外部に排出される。また、各第2貫通孔214から各第2冷却経路CR2へ進入した冷却空気は、図13の矢印のように、7つの収容空間202を通って収容空間202内の蓄電デバイス100を冷却し、第2片面ホルダー210Bの第1貫通孔213から外部に排出される。 The cooling air flowing into the power storage module 1 enters each of the first through holes 213 and each second through hole 214 of the first single-sided holder 210A. The cooling air that has entered each first cooling path CR1 from each first through hole 213 cools the power storage device 100 in the accommodation space 201 through the seven accommodation spaces 201 as shown by the arrows in FIG. 13, and the second It is discharged to the outside from the second through hole 214 of the single-sided holder 210B. Further, the cooling air that has entered each of the second cooling paths CR2 from each of the second through holes 214 cools the power storage device 100 in the accommodation space 202 through the seven accommodation spaces 202 as shown by the arrows in FIG. It is discharged to the outside from the first through hole 213 of the second single-sided holder 210B.
 このようにして、上向きデバイス群100Aの各蓄電デバイス100と下向きデバイス群100Bの各蓄電デバイス100とが、それぞれ、各第1冷却経路CR1と各第2冷却経路CR2を流れる冷却空気により個別に冷却される。 In this way, each power storage device 100 of the upward device group 100A and each power storage device 100 of the downward device group 100B are individually cooled by the cooling air flowing through the first cooling path CR1 and the second cooling path CR2, respectively. Will be done.
 なお、本実施の形態では、隣り合う第1冷却経路CR1の収容空間201同士および隣り合う第2冷却経路CR2の収容空間202同士の前後方向の間隔が小さいため、第1冷却経路CR1の収容空間201と第2冷却経路CR2の2つの収容空間202を結ぶ通路(第2貫通孔226、236)との間が連通しており、第2冷却経路CR2の収容空間202が第1冷却経路CR1の2つの収容空間201を結ぶ通路(第1貫通孔225、235)と連通している。即ち、第1冷却経路CR1と第2冷却経路CR2は完全に分離された状態にはないため、各冷却経路CR1、CR2を流れる冷却空気が、これら連通部分で僅かに混ざり得る。これに対して、収容空間201同士および収容空間202同士の前後方向の間隔を大きくすることで、連通部分を無くすようにし、第1冷却経路CR1と第2冷却経路CR2とが完全に分離された状態になるようにしてもよい。 In the present embodiment, since the accommodation space 201 of the adjacent first cooling path CR1 and the accommodation space 202 of the adjacent second cooling path CR2 are closely spaced in the front-rear direction, the accommodation space of the first cooling path CR1 is small. There is communication between 201 and the passage (second through hole 226, 236) connecting the two accommodation spaces 202 of the second cooling path CR2, and the accommodation space 202 of the second cooling path CR2 is the first cooling path CR1. It communicates with a passage (first through hole 225, 235) connecting the two accommodation spaces 201. That is, since the first cooling path CR1 and the second cooling path CR2 are not in a completely separated state, the cooling air flowing through the respective cooling paths CR1 and CR2 may be slightly mixed in these communicating portions. On the other hand, by increasing the distance between the accommodation spaces 201 and the accommodation spaces 202 in the front-rear direction, the communication portion is eliminated, and the first cooling path CR1 and the second cooling path CR2 are completely separated. It may be in a state.
 <実施の形態の効果>
 以上、本実施の形態に係る蓄電モジュール1によれば、以下の効果が奏され得る。
<Effect of embodiment>
As described above, according to the power storage module 1 according to the present embodiment, the following effects can be achieved.
 蓄電モジュール1は、一端に正極端子110を有し、他端に負極端子120を有する複数の蓄電デバイス100と、複数(112個)の蓄電デバイス100を保持するホルダーユニット200と複数の蓄電デバイス100の間を電気的に接続するバスバー410、510と、を備える。ここで、複数の蓄電デバイス100は、一端が上方向を向いて配置されてなる上向きデバイス群100Aを含み、ホルダーユニット200は、第1片面ホルダー210A(第2両面ホルダー230)と第1両面ホルダー220とを含む。そして、上向きデバイス群100Aは、第1片面ホルダー210A(第2両面ホルダー230)と第1両面ホルダー220とに挟まれて保持される。 The power storage module 1 has a plurality of power storage devices 100 having a positive electrode terminal 110 at one end and a negative electrode terminal 120 at the other end, a holder unit 200 holding a plurality of (112) power storage devices 100, and a plurality of power storage devices 100. The bus bars 410 and 510 are electrically connected to each other. Here, the plurality of power storage devices 100 include an upward device group 100A in which one end is arranged facing upward, and the holder unit 200 includes a first single-sided holder 210A (second double-sided holder 230) and a first double-sided holder. Includes 220 and. Then, the upward device group 100A is sandwiched and held between the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220.
 この構成によれば、上向きデバイス群100Aの各蓄電デバイス100は、その側面(周面)の両側を第1片面ホルダー210A(第2両面ホルダー230)と第1両面ホルダー220によりしっかりと保持される。これにより、蓄電モジュール1の耐震性が向上する。 According to this configuration, each power storage device 100 of the upward device group 100A is firmly held on both sides of its side surface (peripheral surface) by the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220. .. This improves the seismic resistance of the power storage module 1.
 また、蓄電モジュール1において、バスバー410、510は、複数の蓄電デバイス100のそれぞれに接続される複数の端子部411、511と、複数の端子部411、511の間を繋ぐ導通部412、512と、を有し、導通部412、512の両表面が外装体440、520、即ち被覆層440a、440b、520a、520bにより覆われる。 Further, in the power storage module 1, the bus bars 410 and 510 include a plurality of terminal parts 411 and 511 connected to each of the plurality of power storage devices 100 and conductive parts 412 and 512 connecting between the plurality of terminal parts 411 and 511. , And both surfaces of the conductive portions 412 and 512 are covered with exterior bodies 440 and 520, that is, coating layers 440a, 440b, 520a and 520b.
 この構成によれば、板状であるバスバー410、510が被覆層440a、440b、520a、520bにより補強されるので、蓄電モジュール1に振動等が生じたときのバスバー410、510の歪み、変形等を抑制できる。 According to this configuration, the plate-shaped bus bars 410 and 510 are reinforced by the coating layers 440a, 440b, 520a, and 520b, so that the bus bars 410 and 510 are distorted, deformed, or the like when vibration or the like occurs in the power storage module 1. Can be suppressed.
 さらに、蓄電モジュール1において、複数の蓄電デバイス100は、一端が下方向を向いて配置されてなる下向きデバイス群100Bを含み、ホルダーユニット200は、第2両面ホルダー230(第2片面ホルダー210B)を含む。そして、下向きデバイス群100Bは、第1両面ホルダー220と第2両面ホルダー230(第2片面ホルダー210B)とに挟まれて保持される。 Further, in the power storage module 1, the plurality of power storage devices 100 include a downward device group 100B in which one end is arranged facing downward, and the holder unit 200 includes a second double-sided holder 230 (second single-sided holder 210B). Including. Then, the downward device group 100B is sandwiched and held between the first double-sided holder 220 and the second double-sided holder 230 (second single-sided holder 210B).
 この構成によれば、上向きデバイス群100Aの各蓄電デバイス100は、その側面(周面)の両側を第1片面ホルダー210A(第2両面ホルダー230)と第1両面ホルダー220によりしっかりと保持され、下向きデバイス群100Bの各蓄電デバイス100は、その側面(周面)の両側を第1両面ホルダー220と第2両面ホルダー230(第2片面ホルダー210B)によりしっかりと保持される。これにより、蓄電モジュール1の耐震性が向上する。しかも、第1両面ホルダー220は、上向きデバイス群100Aと下向きデバイス群100Bの双方の保持に用いられるので、ホルダーユニット200を構成するホルダーの個数を減らすことができる。 According to this configuration, each power storage device 100 of the upward device group 100A is firmly held on both sides of its side surface (peripheral surface) by the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220. Each power storage device 100 of the downward device group 100B is firmly held on both sides of its side surface (peripheral surface) by the first double-sided holder 220 and the second double-sided holder 230 (second single-sided holder 210B). This improves the seismic resistance of the power storage module 1. Moreover, since the first double-sided holder 220 is used for holding both the upward device group 100A and the downward device group 100B, the number of holders constituting the holder unit 200 can be reduced.
 さらに、蓄電モジュール1において、第1片面ホルダー210A、第1両面ホルダー220)、第2両面ホルダー230および第2片面ホルダー210Bには、冷却空気を通して、複数の蓄電デバイス100に冷却空気を接触させるための貫通孔213、214、225、226、235、236が設けられる。 Further, in the power storage module 1, the first single-sided holder 210A, the first double-sided holder 220), the second double-sided holder 230, and the second single-sided holder 210B are passed through the cooling air to bring the cooling air into contact with the plurality of power storage devices 100. Through holes 213, 214, 225, 226, 235, and 236 are provided.
 この構成によれば、冷却空気により蓄電デバイス100を冷却でき、複数の蓄電デバイス100の温度上昇を抑制できる。 According to this configuration, the power storage device 100 can be cooled by the cooling air, and the temperature rise of the plurality of power storage devices 100 can be suppressed.
 さらに、蓄電モジュール1において、第1両面ホルダー220および第2両面ホルダー230は、一方の側面に上向きデバイス群100Aにおける複数(8個)の蓄電デバイス100のそれぞれが一方向に配列して収容される複数(8個)の第1収容部221、231を有するとともに、一方の側面に背向する他方の側面に下向きデバイス群100Bにおける複数(8個)の蓄電デバイス100のそれぞれが一方向に配列して収容される複数(8個)の第2収容部222、232を有する。複数の第2収容部222、232は、複数の第1収容部221、231うち隣り合う2つの収容部の間に、複数の第2収容部222、232のうちの1つが位置するように設けられる。そして、貫通孔は、第1収容部221、231に形成され、隣り合う2つの第2収容部222、232の間を通る第1貫通孔225、235と、第2収容部222、232に形成され、隣り合う2つの第1収容部221、231の間を通る第2貫通孔226、236と、を含む。 Further, in the power storage module 1, the first double-sided holder 220 and the second double-sided holder 230 are housed on one side surface in which a plurality of (8) power storage devices 100 in the upward device group 100A are arranged and accommodated in one direction. A plurality of (8) first accommodating portions 221 and 231 are provided, and each of the plurality (8) power storage devices 100 in the downward device group 100B is arranged in one direction on the other side surface facing one side surface. It has a plurality (8 pieces) of second accommodating portions 222 and 232. The plurality of second accommodating portions 222 and 232 are provided so that one of the plurality of second accommodating portions 222 and 232 is located between the two adjacent accommodating portions of the plurality of first accommodating portions 221, 231. Be done. The through holes are formed in the first accommodating portions 221, 231 and formed in the first accommodating portions 225 and 235 and the second accommodating portions 222 and 232 passing between the two adjacent second accommodating portions 222 and 232. Includes second through holes 226, 236, which pass between two adjacent first housing portions 221, 231.
 この構成によれば、複数の第1収容部221、231と複数の第2収容部222とがずらされて配置されることにより、ホルダーユニット200を各ホルダー210A、210B、220、230の並び方向にコンパクトにできる。また、第1収容部221、231に収容されて保持される蓄電デバイス100と、第2収容部222、232に収容されて保持される蓄電デバイス100とを、それぞれ、第1貫通孔225、235を通る冷却空気と第2貫通孔226、236を通る冷空気により冷却できるので、複数の蓄電デバイス100の冷却効率を高めることができる。 According to this configuration, the plurality of first accommodating portions 221 and 231 and the plurality of second accommodating portions 222 are arranged in a staggered manner so that the holder unit 200 is arranged in the arrangement direction of the respective holders 210A, 210B, 220, 230. Can be made compact. Further, the power storage device 100 housed and held in the first storage units 221 and 231 and the power storage device 100 housed and held in the second storage units 222 and 232 are provided in the first through holes 225 and 235, respectively. Since it can be cooled by the cooling air passing through the second through hole 226 and 236 and the cold air passing through the second through holes 226 and 236, the cooling efficiency of the plurality of power storage devices 100 can be improved.
 さらに、蓄電モジュール1において、上向きデバイス群100Aにおける複数の蓄電デバイス100同士は、バスバー410、510により並列接続され、下向きデバイス群100Bにおける複数の蓄電デバイス100同士は、バスバー410、510により並列接続され、上向きデバイス群100Aと下向きデバイス群100Bとは、バスバー410、510により直列接続される。冷却空気は、貫通孔225、226、235、236を通って上向きデバイス群100Aから下向きデバイス群100Bに向かう方向に流れる。 Further, in the power storage module 1, the plurality of power storage devices 100 in the upward device group 100A are connected in parallel by the bus bars 410 and 510, and the plurality of power storage devices 100 in the downward device group 100B are connected in parallel by the bus bars 410 and 510. The upward device group 100A and the downward device group 100B are connected in series by the bus bars 410 and 510. The cooling air flows in the direction from the upward device group 100A to the downward device group 100B through the through holes 225, 226, 235, and 236.
 この構成によれば、バスバー410、510により並列接続された各蓄電デバイス100が並ぶ方向と直交するようにホルダーユニット200内を冷却空気が流れるため、並列接続された各蓄電デバイス100に接触する冷却空気は同じような温度となる。よって、並列接続された各蓄電デバイス100を均一に冷却できる。 According to this configuration, cooling air flows in the holder unit 200 so as to be orthogonal to the direction in which the storage devices 100 connected in parallel by the bus bars 410 and 510 are arranged, so that the cooling contacts the storage devices 100 connected in parallel. Air has a similar temperature. Therefore, each power storage device 100 connected in parallel can be uniformly cooled.
 さらに、蓄電モジュール1において、複数の蓄電デバイス100は、一端が上方向いて配置されてなるもう一つの上向きデバイス群100Aを含み、ホルダーユニット200は、もう一つの第1両面ホルダー220を含む。もう一つの上向きデバイス群100Aは、第2両面ホルダー230ともう一つの第1両面ホルダー220とに挟まれて保持される。そして、バスバーは、上向きデバイス群100Aの負極端子120同士の接続、下向きデバイス群100Bの正極端子110同士の接続、および、上向きデバイス群100Aの負極端子120と下向きデバイス群100Bの正極端子110との接続を行う下バスバー510と、下向きデバイス群100Bの負極端子120同士、もう一つの上向きデバイス群100Aの正極端子110同士、および、下向きデバイス群100Bの負極端子120ともう一つの上向きデバイス群100Aの正極端子110との接続を行う上バスバー410と、を含む。 Further, in the power storage module 1, the plurality of power storage devices 100 include another upward device group 100A in which one end is arranged upward, and the holder unit 200 includes another first double-sided holder 220. The other upward device group 100A is sandwiched and held between the second double-sided holder 230 and the other first double-sided holder 220. Then, the bus bar connects the negative electrode terminals 120 of the upward device group 100A, the positive electrode terminals 110 of the downward device group 100B, and the negative electrode terminals 120 of the upward device group 100A and the positive electrode terminals 110 of the downward device group 100B. The lower bus bar 510 to be connected, the negative electrode terminals 120 of the downward device group 100B, the positive electrode terminals 110 of the other upward device group 100A, and the negative electrode terminals 120 of the downward device group 100B and another upward device group 100A. The upper bus bar 410 for connecting to the positive electrode terminal 110 is included.
 この構成によれば、上向きデバイス群100Aの各蓄電デバイス100は、その側面(周面)の両側を第1片面ホルダー210A(第2両面ホルダー230)と第1両面ホルダー220によりしっかりと保持され、下向きデバイス群100Bの各蓄電デバイス100は、その側面(周面)の両側を第1両面ホルダー220と第2両面ホルダー230によりしっかりと保持され、もう一つの上向きデバイス群100Aの各蓄電デバイス100は、その側面(周面)の両側を第2両面ホルダー230ともう一つの第1両面ホルダー220によりしっかりと保持される。これにより、蓄電モジュール1の耐震性が向上する。 According to this configuration, each power storage device 100 of the upward device group 100A is firmly held on both sides of its side surface (peripheral surface) by the first single-sided holder 210A (second double-sided holder 230) and the first double-sided holder 220. Each power storage device 100 of the downward device group 100B is firmly held on both sides of its side surface (peripheral surface) by the first double-sided holder 220 and the second double-sided holder 230, and each power storage device 100 of the other upward device group 100A is Both sides of the side surface (peripheral surface) are firmly held by the second double-sided holder 230 and the other first double-sided holder 220. This improves the seismic resistance of the power storage module 1.
 しかも、第1両面ホルダー220は、上向きデバイス群100Aと下向きデバイス群100Bの双方の保持に用いられ、第2両面ホルダー230は、下向きデバイス群100Bともう一つの上向きデバイス群100Aの双方の保持に用いられるので、ホルダーユニット200を構成するホルダーの個数を減らすことができる。 Moreover, the first double-sided holder 220 is used to hold both the upward device group 100A and the downward device group 100B, and the second double-sided holder 230 is used to hold both the downward device group 100B and the other upward device group 100A. Since it is used, the number of holders constituting the holder unit 200 can be reduced.
 また、上バスバー410と下バスバー510とにより、上向きデバイス群100A、下向きデバイス群100Bおよびもう一つの上向きデバイス群100Aの各蓄電デバイス100を並列接続でき、上向きデバイス群100Aと下向きデバイス群100Bともう一つの上向きデバイス群100Aとを直列接続することができる。 Further, the upper bus bar 410 and the lower bus bar 510 can connect each storage device 100 of the upward device group 100A, the downward device group 100B, and another upward device group 100A in parallel, and the upward device group 100A and the downward device group 100B can be connected. One upward device group 100A can be connected in series.
 さらに、蓄電モジュール1において、下バスバー510および上バスバー410が接続される回路基板60が備えられる。ここで、回路基板60は、その基板面がホルダーユニット200における下バスバー510と上バスバー410が並ぶ方向(上下方向)に沿う面(前側面)と対向するように配置される。 Further, the power storage module 1 is provided with a circuit board 60 to which the lower bus bar 510 and the upper bus bar 410 are connected. Here, the circuit board 60 is arranged so that its substrate surface faces the surface (front side surface) of the holder unit 200 along the direction (vertical direction) in which the lower bus bar 510 and the upper bus bar 410 are arranged.
 この構成によれば、下バスバー510と上バスバー410とが並ぶ方向の両側から下バスバー510と上バスバー410とを回路基板60へ短い経路で接続できる。また、ホルダーユニット200と回路基板60とが並ぶ方向に蓄電モジュール1の寸法が大きくなることを抑制でき、蓄電モジュール1の小型化を図ることができる。 According to this configuration, the lower bus bar 510 and the upper bus bar 410 can be connected to the circuit board 60 by a short route from both sides in the direction in which the lower bus bar 510 and the upper bus bar 410 are lined up. Further, it is possible to prevent the size of the power storage module 1 from increasing in the direction in which the holder unit 200 and the circuit board 60 are lined up, and it is possible to reduce the size of the power storage module 1.
 さらに、蓄電モジュール1において、ホルダーユニット200には、温度センサ250が設けられる。 Further, in the power storage module 1, the holder unit 200 is provided with a temperature sensor 250.
 この構成によれば、温度センサ250により、複数の蓄電デバイス100の異常過熱を検出することができる。 According to this configuration, the temperature sensor 250 can detect abnormal overheating of a plurality of power storage devices 100.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではなく、また、本発明の適用例も、上記実施の形態の他に、種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and application examples of the present invention also have various changes in addition to the above-described embodiments. It is possible.
 <変更例1>
 図14は、変更例1に係る、上バスバーユニット20の斜視図である。
<Change example 1>
FIG. 14 is a perspective view of the upper bus bar unit 20 according to the first modification.
 変更例1に係る上バスバーユニット20では、外装体440の上面、即ち上側の被覆層440aの表面に、各開口部441の周囲を囲む環状の壁部442が形成される。 In the upper bus bar unit 20 according to the first modification, an annular wall portion 442 surrounding the periphery of each opening 441 is formed on the upper surface of the exterior body 440, that is, the surface of the upper covering layer 440a.
 蓄電デバイス100の内部のガス圧が異常に高まることで、蓄電デバイス100の上側の端面に破損が生じてしまうと、その端面から内部の電解液が飛散する虞がある。変更例1の上バスバーユニット20では、飛散した電解液が各開口部441に形成された壁部442に当たることで開口部441の周囲に漏れ出しにくい。また、飛散した電解液が開口部441の周囲に漏れ出し外装体440の上面に落ちても、周囲の開口部441の壁部442で電解液が堰き止められることにより、その開口部441内への電解液の侵入が防止される。 If the gas pressure inside the power storage device 100 is abnormally increased and the upper end surface of the power storage device 100 is damaged, the internal electrolytic solution may scatter from the end face. In the upper bus bar unit 20 of the first modification, the scattered electrolytic solution hits the wall portion 442 formed in each opening 441, so that it is difficult to leak to the periphery of the opening 441. Further, even if the scattered electrolytic solution leaks around the opening 441 and falls on the upper surface of the exterior body 440, the electrolytic solution is blocked by the wall portion 442 of the surrounding opening 441, so that the electrolytic solution enters the opening 441. The invasion of the electrolytic solution is prevented.
 なお、下バスバーユニット30においても、上バスバーユニット20と同様に、各開口部521の周囲を囲む環状の壁部が設けられてもよい。このようにすれば、蓄電デバイス100の下側の端面が破損して電解液が飛散しても、その電解液が各開口部521に形成された壁部に当たることで開口部521の周囲に拡がりにくくなる。 Note that the lower bus bar unit 30 may also be provided with an annular wall portion that surrounds the periphery of each opening 521, similarly to the upper bus bar unit 20. In this way, even if the lower end surface of the power storage device 100 is damaged and the electrolytic solution is scattered, the electrolytic solution hits the wall formed in each opening 521 and spreads around the opening 521. It becomes difficult.
 <変更例2>
 図15(a)および(b)は、それぞれ、変更例2に係る、第1両面ホルダー220の斜視図および平面断面図である。
<Change example 2>
15 (a) and 15 (b) are a perspective view and a plan sectional view of the first double-sided holder 220 according to the second modification, respectively.
 変更例2の第1両面ホルダー220において、各第1収容部221の内面の上部と下部には、これら第1収容部221が並ぶ前後方向に延びる溝部221aが形成される。これら溝部221aは、第1貫通孔225の位置に、第1貫通孔225の上下方向の幅と同じ幅で形成され、溝部同士が前後方向に繋がっている。また、第1両面ホルダー220の右側面の前端部および後端部には、それぞれ、溝部221aに繋がる前溝部221bおよび後溝部221cが形成される。同様に、各第2収容部222の内面の上部と下部には、これら第2収容部222が並ぶ前後方向に延びる溝部222aが形成される。これら溝部222aは、第2貫通孔226の位置に、第2貫通孔226の上下方向の幅と同じ幅で形成され、溝部同士が前後方向に繋がっている。また、第1両面ホルダー220の左側面の前端部および後端部には、それぞれ、溝部222aに繋がる前溝部222bおよび後溝部222cが形成される。 In the first double-sided holder 220 of the second modification, groove portions 221a extending in the front-rear direction in which the first accommodating portions 221 are lined up are formed on the upper and lower portions of the inner surface of each first accommodating portion 221. These groove portions 221a are formed at the position of the first through hole 225 with the same width as the width of the first through hole 225 in the vertical direction, and the groove portions are connected to each other in the front-rear direction. Further, a front groove portion 221b and a rear groove portion 221c connected to the groove portion 221a are formed at the front end portion and the rear end portion of the right side surface of the first double-sided holder 220, respectively. Similarly, groove portions 222a extending in the front-rear direction in which the second accommodating portions 222 are lined up are formed on the upper and lower portions of the inner surface of each of the second accommodating portions 222. These groove portions 222a are formed at the position of the second through hole 226 with the same width as the width of the second through hole 226 in the vertical direction, and the groove portions are connected to each other in the front-rear direction. Further, a front groove portion 222b and a rear groove portion 222c connected to the groove portion 222a are formed at the front end portion and the rear end portion of the left side surface of the first double-sided holder 220, respectively.
 さらに、変更例2では、第2両面ホルダー230にも、第1収容部231および第2収容部232が形成された左側面および右側面に、第1両面ホルダー220と同様の溝部、前溝部および後溝部が形成される。さらに、第1片面ホルダー210Aおよび第2片面ホルダー210Bにも、収容部211が形成された面に、第1両面ホルダー220と同様の溝部、前溝部および後溝部が形成される。 Further, in the second modification, the second double-sided holder 230 also has the same groove portion, front groove portion and front groove portion as the first double-sided holder 220 on the left side surface and the right side surface on which the first accommodating portion 231 and the second accommodating portion 232 are formed. A rear groove is formed. Further, the first single-sided holder 210A and the second single-sided holder 210B are also formed with a groove portion, a front groove portion, and a rear groove portion similar to the first double-sided holder 220 on the surface on which the accommodating portion 211 is formed.
 このような構成とされると、蓄電モジュール1に対して前後方向に冷却空気が流れるように蓄電ユニットが構成された場合にも、ホルダーユニット200において、第1両面ホルダー220の溝部221a、222a、前溝部221b、222bおよび後溝部221c、222c、第2両面ホルダー230の溝部、前溝部および後溝部、並びに、第1片面ホルダー210Aおよび第2片面ホルダー210Bの溝部、前溝部および後溝部を冷却空気が流れる(図15(a)の矢印参照)。これにより、ホルダーユニット200に保持された複数の蓄電デバイス100が冷却される。 With such a configuration, even when the power storage unit is configured so that cooling air flows in the front-rear direction with respect to the power storage module 1, in the holder unit 200, the grooves 221a and 222a of the first double-sided holder 220, Cooling air for the front groove portions 221b, 222b and rear groove portions 221c, 222c, the groove portion of the second double-sided holder 230, the front groove portion and the rear groove portion, and the grooves, front groove and rear groove of the first single-sided holder 210A and the second single-sided holder 210B. (See the arrow in FIG. 15 (a)). As a result, the plurality of power storage devices 100 held in the holder unit 200 are cooled.
 <その他の変更例>
 上記実施の形態では、上向きデバイス群100Aおよび下向きデバイス群100Bが8個の蓄電デバイス100により構成された。しかしながら、上向きデバイス群100Aおよび下向きデバイス群100Bを構成する蓄電デバイス100の個数は、上記のものに限られず、複数個であれば幾つであってもよい。
<Other changes>
In the above embodiment, the upward device group 100A and the downward device group 100B are composed of eight power storage devices 100. However, the number of power storage devices 100 constituting the upward device group 100A and the downward device group 100B is not limited to the above, and may be any number as long as there are a plurality of them.
 また、上記実施の形態では、蓄電デバイスブロック70に、7組の上向きデバイス群100Aと7組の下向きデバイス群100Bとが含まれた。しかしながら、上向きデバイス群100Aと下向きデバイス群100Bの個数は、上記の個数に限られず、幾つであってもよい。 Further, in the above embodiment, the power storage device block 70 includes 7 sets of upward device group 100A and 7 sets of downward device group 100B. However, the number of the upward device group 100A and the downward device group 100B is not limited to the above number, and may be any number.
 また、ホルダーユニット200の第1両面ホルダー220と第2両面ホルダー230の個数、並びに上バスバー410および下バスバー510の個数は、たとえば、上向きデバイス群100Aと下向きデバイス群100Bの個数に応じて変更される。たとえば、蓄電デバイスブロック70に、2組の上向きデバイス群100Aと2組の下向きデバイス群100Bとが含まれる場合、ホルダーユニット200は、第1片面ホルダー210Aと、2つの第1両面ホルダー220と、1つの第2両面ホルダー230と、第2片面ホルダー210Bとを含む。また、上バスバーユニット20は、1つの上バスバー410と、正極出力バスバー420と、負極出力バスバー430とを含み、下バスバーユニット30は、2つの下バスバー510を含む。あるいは、蓄電デバイスブロック70に、1組の上向きデバイス群100Aと1組の下向きデバイス群100Bとが含まれる場合、ホルダーユニット200は、第1片面ホルダー210Aと、1つの第1両面ホルダー220と、第2片面ホルダー210Bとを含み、第2両面ホルダー230を含まない。また、上バスバーユニット20は、正極出力バスバー420と負極出力バスバー430とを含み、上バスバー410を含まず、下バスバーユニット30は、1つの下バスバー510を含む。 Further, the number of the first double-sided holder 220 and the second double-sided holder 230 of the holder unit 200, and the number of the upper bus bar 410 and the lower bus bar 510 are changed according to, for example, the number of the upward device group 100A and the downward device group 100B. To. For example, when the power storage device block 70 includes two sets of upward device groups 100A and two sets of downward device groups 100B, the holder unit 200 includes a first single-sided holder 210A, two first double-sided holders 220, and the like. It includes one second double-sided holder 230 and a second single-sided holder 210B. Further, the upper bus bar unit 20 includes one upper bus bar 410, a positive electrode output bus bar 420, and a negative electrode output bus bar 430, and the lower bus bar unit 30 includes two lower bus bars 510. Alternatively, when the power storage device block 70 includes one set of upward device group 100A and one set of downward device group 100B, the holder unit 200 includes the first single-sided holder 210A, one first double-sided holder 220, and the like. Includes the second single-sided holder 210B and does not include the second double-sided holder 230. Further, the upper bus bar unit 20 includes a positive electrode output bus bar 420 and a negative electrode output bus bar 430, does not include the upper bus bar 410, and the lower bus bar unit 30 includes one lower bus bar 510.
 さらに、上記実施の形態では、各ホルダー210A、210B、220、230に、上下方向に2個ずつ第1貫通孔213、225、235および第2貫通孔214、226、236が形成された。しかしながら、各ホルダー210A、210B、220、230には、上下方向に1個ずつまたは3つ以上ずつ第1貫通孔213、225、235および第2貫通孔214、226、236が形成されてもよい。 Further, in the above embodiment, two first through holes 213, 225, 235 and second through holes 214, 226, 236 are formed in each of the holders 210A, 210B, 220, and 230 in the vertical direction. However, each holder 210A, 210B, 220, 230 may be formed with one or three or more first through holes 213, 225, 235 and second through holes 214, 226, 236 in the vertical direction. ..
 さらに、上記実施の形態では、上バスバーユニット20および下バスバーユニット30において、上バスバー410および下バスバー510の導通部412、512の上側と下側の両表面が被覆層440a、440b、520a、520bにより覆われた。しかしながら、導通部412、512の何れか一方側の表面が被覆層440a、440b、520a、520bにより覆われない構成が採られてもよい。また、導通部412、512の上側と下側の両表面または何れか一方の表面の一部が、被覆層440a、440b、520a、520bにより覆われる構成が採られてもよい。 Further, in the above embodiment, in the upper bus bar unit 20 and the lower bus bar unit 30, both the upper and lower surfaces of the conductive portions 412 and 512 of the upper bus bar 410 and the lower bus bar 510 are coated layers 440a, 440b, 520a, 520b. Covered by However, a configuration may be adopted in which the surface of any one of the conductive portions 412 and 512 is not covered by the coating layers 440a, 440b, 520a, and 520b. Further, a configuration may be adopted in which both the upper and lower surfaces of the conductive portions 412 and 512 or a part of one of the surfaces is covered with the coating layers 440a, 440b, 520a and 520b.
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, various modifications of the embodiment of the present invention can be made as appropriate within the scope of the technical idea shown in the claims.
 なお、上記実施の形態の説明において「上方」「下方」等の方向を示す用語は、構成部材の相対的な位置関係にのみ依存する相対的な方向を示すものであり、鉛直方向、水平方向等の絶対的な方向を示すものではない。 In the description of the above embodiment, terms such as "upward" and "downward" indicate relative directions that depend only on the relative positional relationship of the constituent members, and are vertical and horizontal directions. It does not indicate the absolute direction such as.
 本発明は、各種電子機器、電気機器、産業機器、車両の電装等に使用される蓄電モジュールに有用である。 The present invention is useful for power storage modules used in various electronic devices, electrical devices, industrial devices, electrical components of vehicles, and the like.
 1 蓄電モジュール
 20 上バスバーユニット
 30 下バスバーユニット
 60 回路基板
 100 蓄電デバイス
 100A 上向きデバイス群(第1デバイス群、第3デバイス群)
 100B 下向きデバイス群(第2デバイス群)
 110 正極端子
 120 負極端子
 200 ホルダーユニット
 210A 第1片面ホルダー(第1ホルダー)
 213 第1貫通孔(貫通孔)
 214 第2貫通孔(貫通孔)
 210B 第2片面ホルダー(第3ホルダー)
 220 第1両面ホルダー(第2ホルダー、第4ホルダー)
 221 第1収容部
 222 第2収容部
 225 第1貫通孔(貫通孔)
 226 第2貫通孔(貫通孔)
 230 第2両面ホルダー(第1ホルダー、第3ホルダー)
 231 第1収容部
 232 第2収容部
 235 第1貫通孔(貫通孔)
 236 第2貫通孔(貫通孔)
 250 温度センサ
 410 上バスバー(バスバー、第2バスバー)
 411 端子部
 412 導通部
 412a 開口部(第1開口部)
 440a 被覆層
 440b 被覆層
 441 開口部(第2開口部)
 442 壁部
 510 下バスバー(バスバー、第1バスバー)
 511 端子部
 512 導通部
 520a 被覆層
 520b 被覆層
1 Power storage module 20 Upper bus bar unit 30 Lower bus bar unit 60 Circuit board 100 Power storage device 100A Upward device group (1st device group, 3rd device group)
100B downward device group (second device group)
110 Positive electrode terminal 120 Negative electrode terminal 200 Holder unit 210A First single-sided holder (first holder)
213 First through hole (through hole)
214 Second through hole (through hole)
210B 2nd single-sided holder (3rd holder)
220 1st double-sided holder (2nd holder, 4th holder)
221 1st accommodating part 222 2nd accommodating part 225 1st through hole (through hole)
226 Second through hole (through hole)
230 2nd double-sided holder (1st holder, 3rd holder)
231 First accommodating part 232 Second accommodating part 235 First through hole (through hole)
236 Second through hole (through hole)
250 Temperature sensor 410 Upper busbar (busbar, 2nd busbar)
411 Terminal 412 Conductive 412a Opening (1st opening)
440a coating layer 440b coating layer 441 opening (second opening)
442 Wall 510 Lower Busbar (Busbar, 1st Busbar)
511 Terminal part 512 Conductive part 520a Coating layer 520b Coating layer

Claims (13)

  1.  一端に正極端子を有し、他端に負極端子を有する複数の蓄電デバイスと、
     前記複数の蓄電デバイスを保持するホルダーユニットと、
     前記複数の蓄電デバイスの間を電気的に接続するバスバーと、を備え、
     前記複数の蓄電デバイスは、前記一端が第1の方向を向いて配置されてなる第1デバイス群を含み、
     前記ホルダーユニットは、第1ホルダーと第2ホルダーとを含み、
     前記第1デバイス群は、前記第1ホルダーと前記第2ホルダーとに挟まれて保持される、
    ことを特徴とする蓄電モジュール。
    A plurality of power storage devices having a positive electrode terminal at one end and a negative electrode terminal at the other end,
    A holder unit that holds the plurality of power storage devices,
    A bus bar that electrically connects the plurality of power storage devices is provided.
    The plurality of power storage devices include a first device group in which one end thereof is arranged so as to face the first direction.
    The holder unit includes a first holder and a second holder.
    The first device group is sandwiched and held between the first holder and the second holder.
    A power storage module characterized by this.
  2.  請求項1に記載の蓄電モジュールにおいて、
     前記バスバーは、
      前記複数の蓄電デバイスのそれぞれに接続される複数の端子部と、
      前記複数の端子部の間を繋ぐ導通部と、を有し、
     前記導通部の表面の少なくとも一部が被覆層により覆われる、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 1,
    The bus bar
    A plurality of terminals connected to each of the plurality of power storage devices,
    It has a conductive portion that connects the plurality of terminal portions, and has a conductive portion.
    At least a part of the surface of the conductive portion is covered with a coating layer.
    A power storage module characterized by this.
  3.  請求項2に記載の蓄電モジュールにおいて、
     前記バスバーには、前記複数の端子部のそれぞれに対応した第1開口部が形成され、
     前記被覆層には、前記第1開口部に重なる第2開口部と、当該第2開口部の周囲を囲む壁部とが形成される、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 2.
    The bus bar is formed with a first opening corresponding to each of the plurality of terminal portions.
    The coating layer is formed with a second opening that overlaps the first opening and a wall that surrounds the second opening.
    A power storage module characterized by this.
  4.  請求項1ないし3の何れか一項に記載の蓄電モジュールにおいて、
     前記複数の蓄電デバイスは、前記一端が前記第1の方向とは反対の第2の方向を向いて配置されてなる第2デバイス群を含み、
     前記ホルダーユニットは、第3ホルダーを含み、
     前記第2デバイス群は、前記第2ホルダーと前記第3ホルダーとに挟まれて保持される、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to any one of claims 1 to 3.
    The plurality of power storage devices include a second device group in which one end thereof is arranged so as to face a second direction opposite to the first direction.
    The holder unit includes a third holder.
    The second device group is sandwiched and held between the second holder and the third holder.
    A power storage module characterized by this.
  5.  請求項4に記載の蓄電モジュールにおいて、
     前記第1ホルダー、前記第2ホルダーおよび前記第3ホルダーには、流体を通して、前記複数の蓄電デバイスに前記流体を接触させるための貫通孔が設けられる、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 4,
    The first holder, the second holder, and the third holder are provided with through holes for bringing the fluid into contact with the plurality of power storage devices through the fluid.
    A power storage module characterized by this.
  6.  請求項5に記載の蓄電モジュールにおいて、
     前記第2ホルダーは、第1の面に前記第1デバイス群における複数の蓄電デバイスのそれぞれが一方向に配列して収容される複数の第1収容部を有するとともに、前記第1の面と背向する第2の面に前記第2デバイス群における複数の蓄電デバイスのそれぞれが一方向に配列して収容される複数の第2収容部を有する、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 5,
    The second holder has a plurality of first accommodating portions in which each of the plurality of power storage devices in the first device group is arranged and accommodated in one direction on the first surface, and the first surface and the back. The facing second surface has a plurality of second accommodating portions in which each of the plurality of power storage devices in the second device group is arranged and accommodated in one direction.
    A power storage module characterized by this.
  7.  請求項6に記載の蓄電モジュールにおいて、
     前記複数の第2収容部は、前記複数の第1収容部のうち隣り合う2つの収容部の間に、前記複数の第2収容部のうちの1つが位置するように設けられる、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 6,
    The plurality of second accommodating portions are provided so that one of the plurality of second accommodating portions is located between two adjacent accommodating portions of the plurality of first accommodating portions.
    A power storage module characterized by this.
  8.  請求項7に記載の蓄電モジュールにおいて、
     前記貫通孔は、
      前記第1収容部に形成され、隣り合う2つの前記第2収容部の間を通る第1貫通孔と、
      前記第2収容部に形成され、隣り合う2つの前記第1収容部の間を通る第2貫通孔と、を含む、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 7.
    The through hole is
    A first through hole formed in the first accommodating portion and passing between two adjacent second accommodating portions,
    A second through hole formed in the second accommodating portion and passing between two adjacent first accommodating portions.
    A power storage module characterized by this.
  9.  請求項5ないし8の何れか一項に記載の蓄電モジュールにおいて、
     前記第1デバイス群における複数の蓄電デバイス同士は、前記バスバーにより並列接続され、
     前記第2デバイス群における複数の蓄電デバイス同士は、前記バスバーにより並列接続され、
     前記第1デバイス群と前記第2デバイス群とは、前記バスバーにより直列接続され、
     前記流体は、前記貫通孔を通って前記第1デバイス群から前記第2デバイス群に向かう方向に流れる、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to any one of claims 5 to 8.
    A plurality of power storage devices in the first device group are connected in parallel by the bus bar, and are connected in parallel.
    The plurality of power storage devices in the second device group are connected in parallel by the bus bar, and are connected in parallel.
    The first device group and the second device group are connected in series by the bus bar, and are connected in series.
    The fluid flows in the direction from the first device group to the second device group through the through hole.
    A power storage module characterized by this.
  10.  請求項4ないし9の何れか一項に記載の蓄電モジュールにおいて、
     前記複数の蓄電デバイスは、前記一端が前記第1の方向を向いて配置されてなる第3デバイス群を含み、
     前記ホルダーユニットは、第4ホルダーを含み、
     前記第3デバイス群は、前記第3ホルダーと前記第4ホルダーとに挟まれて保持され、
     前記バスバーは、
      前記第1デバイス群の前記負極端子同士の接続、前記第2デバイス群の前記正極端子同士の接続、および、前記第1デバイス群の前記負極端子と前記第2デバイス群の前記正極端子との接続を行う第1バスバーと、
      前記第2デバイス群の前記負極端子同士、前記第3デバイス群の前記正極端子同士、および、前記第2デバイス群の前記負極端子と前記第3デバイス群の前記正極端子との接続を行う第2バスバーと、を含む、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to any one of claims 4 to 9.
    The plurality of power storage devices include a third device group in which one end thereof is arranged so as to face the first direction.
    The holder unit includes a fourth holder.
    The third device group is sandwiched and held between the third holder and the fourth holder.
    The bus bar
    Connection between the negative electrode terminals of the first device group, connection between the positive electrode terminals of the second device group, and connection between the negative electrode terminal of the first device group and the positive electrode terminal of the second device group. The first bus bar to do
    A second that connects the negative electrode terminals of the second device group, the positive electrode terminals of the third device group, and the negative electrode terminals of the second device group and the positive electrode terminals of the third device group. Including the bus bar,
    A power storage module characterized by this.
  11.  請求項10に記載の蓄電モジュールにおいて、
     前記第1バスバーおよび前記第2バスバーが接続される回路基板を、さらに備え、
     前記回路基板は、その基板面が前記ホルダーユニットにおける前記第1バスバーと前記第2バスバーが並ぶ方向に沿う面と対向するように配置される、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 10,
    A circuit board to which the first bus bar and the second bus bar are connected is further provided.
    The circuit board is arranged so that its substrate surface faces the surface of the holder unit along the direction in which the first bus bar and the second bus bar are arranged.
    A power storage module characterized by this.
  12.  請求項3に記載の蓄電モジュールにおいて、
     前記第1ホルダーおよび前記第2ホルダーには、流体を通して、前記複数の蓄電デバイスに前記流体を接触させるための貫通孔が設けられる、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to claim 3,
    The first holder and the second holder are provided with through holes for bringing the fluid into contact with the plurality of power storage devices through the fluid.
    A power storage module characterized by this.
  13.  請求項1ないし12の何れか一項に記載の蓄電モジュールにおいて、
     前記ホルダーユニットには、温度センサが設けられる、
    ことを特徴とする蓄電モジュール。
    In the power storage module according to any one of claims 1 to 12.
    The holder unit is provided with a temperature sensor.
    A power storage module characterized by this.
PCT/JP2020/035646 2019-09-27 2020-09-18 Power storage module WO2021060219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548896A JPWO2021060219A1 (en) 2019-09-27 2020-09-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-176934 2019-09-27
JP2019176934 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060219A1 true WO2021060219A1 (en) 2021-04-01

Family

ID=75165952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035646 WO2021060219A1 (en) 2019-09-27 2020-09-18 Power storage module

Country Status (2)

Country Link
JP (1) JPWO2021060219A1 (en)
WO (1) WO2021060219A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176227A1 (en) * 2022-03-18 2023-09-21 パナソニックエナジー株式会社 Battery pack and manufacturing method therefor
WO2024070212A1 (en) * 2022-09-26 2024-04-04 パナソニックエナジー株式会社 Electric device and method of manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155789A (en) * 1999-11-24 2001-06-08 Shin Kobe Electric Mach Co Ltd Battery for electric car
JP2009205979A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Battery pack
JP2010282811A (en) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd Battery pack
JP2013235827A (en) * 2012-04-13 2013-11-21 Hitachi Vehicle Energy Ltd Battery block and secondary battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155789A (en) * 1999-11-24 2001-06-08 Shin Kobe Electric Mach Co Ltd Battery for electric car
JP2009205979A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Battery pack
JP2010282811A (en) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd Battery pack
JP2013235827A (en) * 2012-04-13 2013-11-21 Hitachi Vehicle Energy Ltd Battery block and secondary battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176227A1 (en) * 2022-03-18 2023-09-21 パナソニックエナジー株式会社 Battery pack and manufacturing method therefor
WO2024070212A1 (en) * 2022-09-26 2024-04-04 パナソニックエナジー株式会社 Electric device and method of manufacturing same

Also Published As

Publication number Publication date
JPWO2021060219A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6117308B2 (en) Secondary battery device
KR100948970B1 (en) Middle or Large-sized Battery Module Employing Impact-absorbing Member
JP4430075B2 (en) Cartridge type lithium ion polymer battery pack
KR100746485B1 (en) Sensing Board Assembly for Secondary Battery Module
US10553909B2 (en) Battery pack
JP6592193B2 (en) Integrated cartridge and battery pack including the same
KR101913786B1 (en) Battery Module for Direct Connection Structure Between Terminal Plate and Battery Management System
KR20070110565A (en) Middle or large-sized battery module
KR20120016353A (en) Battery pack of compact structure
KR20060072922A (en) Battery cartridge for novel structure and open type battery module containing the same
JP2005197192A (en) Pack cell and its assembling method
JP2015060690A (en) Battery laminate and battery pack
JP2011159474A (en) Battery pack
WO2021060219A1 (en) Power storage module
KR20130129838A (en) Method for producing electric storage device, and spacer and electric storage device
KR20120074415A (en) Unit module of novel structure and battery module comprising the same
EP4007042B1 (en) Upper part cooling-type battery pack
KR20120074426A (en) Unit module of novel structure and battery module comprising the same
JP2003338269A (en) Secondary battery module
KR102012403B1 (en) Intergrated Cartridge for battery cell and Battery Pack having the same
CN110495017B (en) Connection plate and battery module including the same
KR20190074800A (en) Battery module and battery pack including the same
KR101136807B1 (en) Cartridge for Middle or Large-sized Battery Module
TW202406202A (en) battery pack
TW202406203A (en) battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869988

Country of ref document: EP

Kind code of ref document: A1