WO2021059921A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2021059921A1
WO2021059921A1 PCT/JP2020/033519 JP2020033519W WO2021059921A1 WO 2021059921 A1 WO2021059921 A1 WO 2021059921A1 JP 2020033519 W JP2020033519 W JP 2020033519W WO 2021059921 A1 WO2021059921 A1 WO 2021059921A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchange
exhaust gas
heat
exchange tube
Prior art date
Application number
PCT/JP2020/033519
Other languages
French (fr)
Japanese (ja)
Inventor
友哉 中村
章弘 川又
Original Assignee
株式会社ユタカ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユタカ技研 filed Critical 株式会社ユタカ技研
Publication of WO2021059921A1 publication Critical patent/WO2021059921A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat exchanger that exchanges heat between two types of heat media.
  • the exhaust gas discharged from the engine is cooled by cooling water and recirculated to the engine.
  • Exhaust gas is cooled by an EGR (Exhaust Gas Recirculation) cooler.
  • the EGR cooler can be said to be a heat exchanger that exchanges heat between the exhaust gas and the cooling water.
  • Patent Document 1 discloses an EGR cooler as a heat exchanger.
  • the EGR cooler a plurality of heat exchange tubes are surrounded by a core case, and the exhaust gas (first heat medium) flowing inside the heat exchange tubes and the cooling flowing inside the core case on the outer periphery of the heat exchange tubes. Heat exchange is performed with water (second heat medium).
  • the EGR cooler also includes a valve that opens and closes some heat exchange tubes.
  • the temperature of the exhaust gas returned to the engine can be stabilized at the target temperature regardless of the flow rate of the exhaust gas.
  • the temperature of the first heat medium discharged from the heat exchanger can be stabilized.
  • An object of the present invention is to provide a heat exchanger capable of stabilizing the temperature of the first heat medium to be discharged while being inexpensive and compact.
  • a first aspect of the present invention includes a plurality of flat heat exchange tubes through which a first heat medium flows, and a core case containing the plurality of heat exchange tubes.
  • a heat exchanger in which a second heat medium flowing around the outer periphery of the heat exchange tube and the first heat medium exchange heat inside the core case.
  • the plurality of heat exchange tubes include at least one specific heat exchange tube. Inside the specific heat exchange tube, there are a fin-equipped flow path having fins, and a finless flow path that exchanges heat with a smaller amount of heat than the fin-equipped flow path because it does not have the fins.
  • Heat exchangers are provided characterized by being partitioned in.
  • the specific heat exchange tube is thicker than the general heat exchange tube. ..
  • the cross section of the finless flow path is square.
  • two fin-equipped flow paths are provided for one specific heat exchange tube, and the fins constituting each fin-equipped flow path have the same shape. And The finless flow path is located between the two finned flow paths.
  • the plurality of heat exchange tubes include at least one specific heat exchange tube.
  • the inside of this specific heat exchange tube is divided into a flow path with fins having fins and a flow path without fins that exchange heat with a smaller amount of heat than the flow path with fins because it does not have fins. Has been done.
  • the temperature of the first heat medium discharged from the finless flow path is closer to the temperature on the introduction side.
  • the first heat medium which has undergone heat exchange of an excessive amount of heat with respect to the appropriate temperature
  • the first heat medium closer to the temperature on the introduction side the first heat medium is discharged in a region where the flow rate is low.
  • the temperature of the heat medium of the above becomes an appropriate temperature.
  • the temperature of the first heat medium discharged from the finned flow path is set to be an appropriate temperature.
  • the finless flow path since the finless flow path has a small amount of heat for cooling, the first heat medium discharged from the finless flow path has a high temperature in a region where the flow rate of the first heat medium is large.
  • the first heat medium in the finless flow path becomes a resistance, and more first heat medium flows into the finned flow path.
  • the influence of the exhaust gas passing through the finless flow path is relatively low.
  • a small amount of the high-temperature first heat medium that has passed through the finless flow path is mixed with the first heat medium that has passed through the finned flow path and has been adjusted to an appropriate temperature. Therefore, the temperature of the first heat medium to be discharged does not rise excessively and is discharged to the outside of the heat exchanger at an appropriate temperature.
  • the finless flow path is provided inside the heat exchange tube. Therefore, the heat exchanger can be miniaturized as compared with the case where a tube having a small amount of heat for heat exchange is separately provided.
  • a general heat exchange tube other than the specific heat exchange tube is used.
  • the specific heat exchange tube is thicker than the general heat exchange tube. Therefore, the flow path area of the finless flow path of the specific heat exchange tube becomes large. On the other hand, the thickness of the general heat exchange tube is maintained. That is, even when the flow path area of the finless flow path is set large, it is possible to prevent the heat exchanger from becoming large.
  • the cross section of the finless flow path is square.
  • the circumference of the square is shorter than the circumference of the rectangle. Therefore, the pipe friction loss of the first heat medium flowing through the finless flow path can be reduced.
  • two fin-equipped flow paths are provided for one specific heat exchange tube, and the fins constituting each fin-equipped flow path have the same shape. Therefore, the number of fin parts can be reduced.
  • a finless flow path is located between the two finned flow paths. Since the finless flow path is located closer to the center, it becomes easy to guide the gas introduced inside the heat exchanger to the finless flow path.
  • FIG. 1A is a perspective view of a heat exchanger according to an embodiment.
  • FIG. 1B is an exploded perspective view of the heat exchanger shown in FIG. 1A. It is a cross section of line 2-2 of FIG. 1 (a).
  • FIG. 3A is a cross-sectional view of a specific heat exchange tube constituting a part of the heat exchanger shown in FIG.
  • FIG. 3B is a perspective view of a specific heat exchange tube forming a part of the heat exchanger shown in FIG. It is a cross section of line 4-4 of FIG. 1 (a). It is a cross section of line 5-5 of FIG. 1 (a).
  • upstream and downstream are based on the flow direction of the exhaust gas (first heat medium).
  • the EGR (Exhaust Gas Recirculation) cooler 10 (heat exchanger 10) has a rectangular body 16 composed of five heat exchange tubes 11 to 15, a tubular core case 20 surrounding the body 16, and a core case 20.
  • the core case 20 is composed of a pair of U-shaped case halves 50 and 60 whose opening sides face each other.
  • the first case half body 50 has a flat plate-shaped first base portion 51 extending in the exhaust gas flow direction, and a first case half body extending from both ends of the first base portion 51 to the second case half body. It is composed of a wall half body 52 and a second wall half body 53.
  • the first base 51 has a water introduction hole 51a for introducing cooling water (second heat medium) and a water discharge hole 51b for discharging cooling water.
  • the second case half body 60 has a flat plate-shaped second base 61 extending in the exhaust gas flow direction and a third case half body 60 extending from both ends of the second base 61 to the first case half body 50. It is composed of a wall half body 62 and a fourth wall half body 63.
  • the first wall portion 52 and the third wall portion 62 constitute the first wall portion 21.
  • the second wall portion 53 and the fourth wall portion 63 constitute the second wall portion 22.
  • the first base 51, the second base 61, the first wall 21, and the second wall 22 form a tubular core case 20 having both ends open.
  • the main body 16 is formed by laminating the first heat exchange tubes 11 to the fifth heat exchange tubes 15.
  • a third heat exchange tube 13 (specific heat exchange tube) located at the center of the stacking direction and not provided with fins in a part thereof will be described.
  • the third heat exchange tube 13 is composed of a flat tube 83 composed of a pair of U-shaped tube halves 81 and 82, and two fins 90 and 90 housed in the tube 83. Become.
  • the third heat exchange tube 13 has a symmetrical configuration with respect to the center in the width direction (longitudinal direction of the cross section) of the third heat exchange tube 13.
  • the first tube half body 81 has a flat first flat portion 84 and two first edge portions 85 extending from both ends of the first flat portion 84 toward the second tube half body 82. , 85 and.
  • the second tube half body 82 has a flat second flat portion 86 and two second edge portions 87 extending from both ends of the second flat portion 86 toward the first tube half body 81. , 87 and.
  • the first edge portion 85 and the second edge portion 87 form a side wall portion 88.
  • Each fin 90 has a pulse wavy shape as a whole, and has a plurality of first contact portions 91 that are in contact with the first flat portion 84 and a plurality of second contacts that are in contact with the second flat portion 86.
  • the heat of the exhaust gas that extends between the abutting portion 92 of the above, the end portion 91a of each of the first abutting portions 91, and the end portion 92a of each of the second abutting portions 92 and flows inside the tube 83. It is composed of a plurality of heat absorbing portions 93 that absorb the heat.
  • the fin 90 may be provided with an uneven portion or a cut-up portion.
  • the heat absorbing portion 93 located on the innermost side in the width direction of the third heat exchange tube 13 is designated as the partition wall portion 94. It can be said that the inside of the third heat exchange tube 13 is divided into three by two partition walls 94.
  • the inside of the third heat exchange tube 13 is a first flow path F1 (flow path with fins) between one side wall portion 88 of the tube 83 and one partition wall portion 94, and the other of the tube 83.
  • second flow path F2 flow path without fins
  • the width of the second flow path F2 that is, the dimension W1 between the two partition walls 94, is larger than the pitch W2 of the fins 90 (the distance between the endothermic portions 93 adjacent to each other).
  • the flow path area of the first flow path F1 is larger than the flow path area of the second flow path F2.
  • the heat exchange tubes 11, 12, 14, and 15 (general heat exchange tubes) other than the third heat exchange tube 13 have the same configuration as each other.
  • the configuration of the second heat exchange tube 12 will be described. This description also applies to other heat exchange tubes 11, 14, 15.
  • the second heat exchange tube 12 is composed of a flat tube 73 composed of a pair of U-shaped tube halves 71 and 72, and a wavy single fin 74 housed in the tube 73. Become.
  • the first tube half body 71 has a flat first flat portion 75 and two first edge portions 76 extending from both ends of the first flat portion 75 toward the second tube half body 72. , 76 and.
  • the second tube half body 72 has a flat second flat portion 77 and two second edge portions 78 extending from both ends of the second flat portion 77 toward the first tube half body 71. , 78 and.
  • the third heat exchange tube 13 is thicker than the second heat exchange tube 12.
  • the internal height H1 of the third heat exchange tube 13 (the dimension in the direction in which the heat absorbing portion 93 extends) is higher than the internal height H2 of the second heat exchange tube 12.
  • the size L1 of the opening on the introduction side of the third heat exchange tube 13 is wider than the size L2 of the flow path in the third heat exchange tube 13 with reference to the thickness direction of the tube.
  • the end portion 84a on the exhaust gas introduction side is offset to the adjacent fourth heat exchange tube 14 side.
  • the end portion 86a on the exhaust gas introduction side of the second flat portion 86 is offset to the adjacent second heat exchange tube 12 side.
  • the heat exchange tubes 11, 12, 14, and 15 have the same configuration.
  • the end portion 75a on the exhaust gas introduction side of the first flat portion 75 is offset to the adjacent third heat exchange tube 13 side.
  • the end 77a on the exhaust gas introduction side of the second flat portion 77 is offset to the adjacent first heat exchange tube 11 side. The ends adjacent to each other are in contact with each other.
  • the support member (end plate) that supports the five heat exchange tubes 11 to 15 becomes unnecessary.
  • the gap between the heat exchange tubes 11 to 15 adjacent to each other serves as a flow path for the cooling water to flow.
  • the end portion 75a of the first flat portion 75 located at one corner (lower side) is in contact with the first wall portion half body 52.
  • the end portion 77a of the second flat portion 77 located at the other corner (upper side) is in contact with the second wall portion half body 53.
  • each heat exchange tube 11 to 15 on the exhaust gas discharge side has the same configuration. The description is omitted.
  • the gas introduction member 30 includes a flat plate-shaped introduction side bottom portion 31 having an introduction hole 31a into which exhaust gas can be introduced, and an introduction side peripheral wall portion 32 extending from the peripheral edge of the introduction side bottom portion 31 in the exhaust gas flow direction. Have. The introduction side peripheral wall portion 32 overlaps one end of the core case 20.
  • the gas discharge member 40 includes a flat plate-shaped discharge side bottom 41 having a discharge hole 41a capable of discharging exhaust gas, and a discharge side peripheral wall portion 42 extending from the peripheral edge of the discharge side bottom 41 in a direction opposite to the flow direction of the exhaust gas. And have.
  • the discharge side peripheral wall portion 42 overlaps the other end of the core case 20.
  • the exhaust gas discharged from the engine is introduced into the core case 20 from the gas introduction member 30.
  • the introduced exhaust gas passes through the two flow paths F1 and the flow path F2.
  • the cooling water introduced into the core case 20 flows from the water introduction hole 51a to the outer periphery of the heat exchange tubes 11 to 15.
  • the exhaust gas passing through each of the heat exchange tubes 11 to 15 is cooled by the cooling water flowing on the outer circumference.
  • the cooled exhaust gas is discharged from the gas discharge member 40 and returned to the engine.
  • the cooling water that has absorbed the heat of the exhaust gas is discharged to the outside of the core case 20 from the water discharge hole 51b.
  • FIG. 6 shows the relationship between the flow rate of the exhaust gas and the temperature of the exhaust gas.
  • the horizontal axis shows the flow rate [g / s] of the exhaust gas
  • the vertical axis shows the temperature [° C] of the exhaust gas.
  • Tmin shown on the vertical axis is the lower limit of the temperature allowed as the temperature of the exhaust gas discharged from the EGR cooler.
  • Tmax shown on the vertical axis is an upper limit of the temperature allowed as the temperature of the exhaust gas discharged from the EGR cooler.
  • T1 and T1 indicate the temperature of the exhaust gas that has passed through the respective flow paths F1.
  • T2 indicates the temperature of the exhaust gas that has passed through the flow path F2.
  • T3 indicates the temperature of a gas in which the exhaust gas passing through the flow path F1 and the exhaust gas passing through the flow path F2 are mixed (hereinafter, referred to as “mixed gas”).
  • the temperature of the exhaust gas is low in the region where the flow rate is low, and the temperature of the exhaust gas is high in the region where the flow rate is high.
  • the temperature T1 of the exhaust gas that has passed through the flow path F1 is below the lower limit Tmin of the allowable temperature in the region where the flow rate is small. It can be said that the exhaust gas passing through the flow path F1 is excessively cooled in the region where the flow rate is low.
  • the temperature T2 of the exhaust gas that has passed through the flow path F2 is higher than the temperature T1 of the exhaust gas that has passed through the flow path F1 in all regions.
  • the temperature T0 of the exhaust gas when it is introduced into the EGR cooler is the same for the exhaust gas passing through the flow path F1 and the exhaust gas passing through the flow path F2. Therefore, it can be said that the amount of heat exchanged by the flow path F1 is larger than the amount of heat exchanged by the flow path F2.
  • T2 of the exhaust gas that has passed through the flow path F2 exceeds Tmax, which is the upper limit of the allowable temperature, in all regions.
  • the temperature T3 of the mixed gas is between Tmin and Tmax, which is an acceptable temperature in all regions.
  • the difference between the lowest temperature and the highest temperature is defined as ⁇ T1.
  • the difference between the lowest temperature and the highest temperature is defined as ⁇ T3. Comparing ⁇ T1 and ⁇ T3, ⁇ T3 is smaller. That is, it can be said that ⁇ T1> ⁇ T3, and the temperature of the mixed gas was more stable than that of the exhaust gas that passed through the flow path F1.
  • the exhaust gas that has passed through the flow path F1 and the exhaust gas that has passed through the flow path F2, which has a smaller amount of heat exchange than the flow path F1 are mixed.
  • the temperature T3 of the mixed gas becomes between Tmin and Tmax, which is an allowable temperature, and the temperature of the exhaust gas also stabilizes.
  • FIG. 7 shows the relationship between the pressure of the exhaust gas introduced into the EGR cooler and the flow rate of the exhaust gas passing through each heat exchange tube.
  • the horizontal axis shows the pressure [N / m 2 ] of the exhaust gas introduced into the EGR cooler, and the vertical axis shows the flow rate [g / s] of the exhaust gas passing through each heat exchange tube.
  • Q1 shows the flow rate of the exhaust gas that has passed through the flow path F1.
  • Q2 indicates the flow rate of the exhaust gas that has passed through the flow path F2.
  • the flow rate of the exhaust gas flowing inside increases as the pressure of the exhaust gas increases. In all regions, the flow rate of the exhaust gas that has passed through the flow path F1 is higher than the flow rate of the exhaust gas that has passed through the flow path F2.
  • ⁇ Q which is the difference between the flow rate of the exhaust gas flowing through the flow path F1 and the flow rate of the exhaust gas flowing through the flow path F2.
  • ⁇ Qmin the difference in the exhaust gas flow rate
  • ⁇ Qmax the difference in the exhaust gas flow rate
  • the heat exchange tubes 11 to 15 are surrounded by the core case 20, and the exhaust gas flowing inside the heat exchange tubes 11 to 15 is the cooling water that flows inside the core case 20 on the outer periphery of the heat exchange tubes 11 to 15.
  • the heat exchange tubes 11 to 15 include different types of flow paths F1 and F2, and the amount of heat exchanged by the flow path F1 is the heat performed by the flow path F2. It is set to be more than the amount of heat for replacement.
  • the temperature of the exhaust gas discharged from the flow path F1 is set to be an appropriate temperature in the region where the flow rate of the exhaust gas is large.
  • the flow path F2 since the flow path F2 has a small amount of heat for cooling, the exhaust gas discharged from the flow path F2 has a high temperature in a region where the flow rate of the exhaust gas is large.
  • the exhaust gas in the flow path F2 becomes a resistance, and more exhaust gas flows into the flow path F1. Since the flow rate of the exhaust gas flowing through the flow path F2 is small, the influence of the exhaust gas passing through the flow path F2 is relatively low.
  • the flow path F2 is provided inside the third heat exchange tube 13. Therefore, the EGR cooler 10 can be downsized as compared with the case where a tube having a small amount of heat exchange is provided separately.
  • the flow path area of the flow path F1 is larger than the flow path area of the flow path F2.
  • the amount of heat exchanged in the flow path F1 can be further increased. In a region where the flow rate is large, the influence of the exhaust gas passing through the flow path F2 can be reduced.
  • Each of the exhaust holes 41a overlaps with the second flow path F2 when viewed from the direction along the flow of the exhaust gas.
  • the second flow path F2 is located inside the discharge hole 41a (introduction hole 31a). Therefore, a predetermined amount of exhaust gas can be reliably guided to the flow path F2.
  • the temperature of the gas discharged from the EGR cooler 10 can be more reliably raised to a temperature higher than a predetermined temperature. Thereby, the stability of the temperature of the exhaust gas can be improved.
  • the third heat exchange tube 13 is thicker than the second heat exchange tube 12.
  • the internal height H1 of the third heat exchange tube 13 (the dimension in the direction in which the heat absorbing portion 93 extends) is higher than the internal height H2 of the second heat exchange tube 12.
  • the flow path area of the flow path F2 of the third heat exchange tube 13 becomes larger.
  • the thicknesses of the heat exchange tubes 11, 12, 14 and 15 are maintained. That is, even when the flow path area of the flow path F2 is set large, it is possible to prevent the EGR cooler 10 from becoming large.
  • Two flow paths F1 are provided for the third heat exchange tube 13, and the fins 90 constituting each flow path F1 have the same shape. Therefore, the number of parts can be reduced.
  • the flow path F2 is located between the two flow paths F1. Since the flow path F2 is located in the center, the gas introduced inside the EGR cooler 10 can be easily guided to the flow path F2.
  • FIG. 8 shows a third heat exchange tube 13A according to a modified example.
  • the configurations of the four fins 90A provided inside are different.
  • the configurations common to the examples are designated by the same reference numerals as those in the examples, and the description thereof will be omitted.
  • the two fins 90A and 90A adjacent to each other are symmetrical with respect to the center in the width direction.
  • the two fins 90A and 90A adjacent to each other are symmetrical with respect to the center in the height direction.
  • Each fin 90A has a plurality of first contact portions 91A that are in contact with the tube 83, and a plurality of second contact portions 92A that are in contact with the fins 90A that are symmetrically arranged in the height direction.
  • a plurality of endothermic portions that extend between the end of the first abutting portion 91A and the end of the second abutting portion 92 and absorb the heat of the exhaust gas flowing inside the third heat exchange tube 13. It consists of 93A.
  • the one located on the innermost side is referred to as the inner endothermic portion 94A.
  • the two inner heat absorbing portions 94A adjacent to each other in the height direction constitute a partition wall portion 95A that partitions the inside of the tube 83.
  • the inside of the third heat exchange tube 13A is divided into three by two partition walls 95A and 95A (only the code of one partition wall 95A is shown).
  • the inside of the third heat exchange tube 13A includes a first flow path f1 (flow path with fins) between one side wall portion 88 of the tube 83 and one partition wall portion 95A, and the other of the tube 83.
  • First flow path f1 flow path with fins
  • second flow path f2 flow path without fins
  • the modified example has the following unique effects in addition to the effects of the examples.
  • the two fins 90A and 90A provided in the third heat exchange tube 13A are laminated in the height direction.
  • the height can be adjusted by laminating the fins 90A. Since the fin 90A is highly versatile, the manufacturing cost can be reduced.
  • the distance W3 between the partition walls 95A and 95A is equal to the height H3 inside the third heat exchange tube 13. That is, the cross section of the flow path f2 is square. In general, when comparing a rectangle and a square of the same area, the circumference of the square is shorter than the circumference of the rectangle. Therefore, the pipe friction loss of the exhaust gas flowing through the flow path F2 can be reduced.
  • the heat exchanger of the present invention was applied to the EGR cooler in the embodiment, it can be applied to other uses. Further, it can be used not only for heat exchange between gas and liquid but also for heat exchange between gas and gas.
  • the present invention is not limited to Examples and Modifications as long as it exerts actions and effects.
  • the components of the embodiment and the components of the modified example may be appropriately combined, and the number of heat exchange tubes may be appropriately changed.
  • the heat exchanger of the present invention is suitable for an EGR cooler.
  • EGR cooler heat exchanger
  • Second heat exchange tube generally heat exchange tube
  • Third heat exchange tube specific heat exchange tube
  • Core case 90 ... Fins 91 ... First contact portion 92 ... Second contact portion 93 ... Endothermic portion
  • F1 ... First flow path (flow path with fins)
  • F2 Second flow path (flow path without fins)

Abstract

A plurality of heat exchanger tubes (11–15) include at least one specific heat exchanger tube (13). The interior of the specific heat exchanger tube (13) is divided into flow paths (F1) that have a fin (90) and a flow path (F2) that carries out a smaller amount of heat exchange than the flow paths (F1) due to lacking a fin (90).

Description

熱交換器Heat exchanger
 本発明は、2種類の熱媒体間で熱交換を行う熱交換器に関する。 The present invention relates to a heat exchanger that exchanges heat between two types of heat media.
 一部の車両において、エンジンから排出された排気ガスを冷却水によって冷却し、エンジンに再循環させている。排気ガスの冷却は、EGR(Exhaust Gas Recirculation)クーラによって行なわれる。EGRクーラは、排気ガスと冷却水との間で熱交換を行う熱交換器ということができる。熱交換器に関する従来技術として特許文献1に開示される技術がある。 In some vehicles, the exhaust gas discharged from the engine is cooled by cooling water and recirculated to the engine. Exhaust gas is cooled by an EGR (Exhaust Gas Recirculation) cooler. The EGR cooler can be said to be a heat exchanger that exchanges heat between the exhaust gas and the cooling water. As a conventional technique relating to a heat exchanger, there is a technique disclosed in Patent Document 1.
 特許文献1には、熱交換器としてEGRクーラが開示されている。EGRクーラは、コアケースに複数の熱交換チューブが囲われ、熱交換チューブの内部に流される排気ガス(第1の熱媒体)及び熱交換チューブの外周であってコアケースの内部に流される冷却水(第2の熱媒体)によって熱交換を行う。EGRクーラは、さらに、一部の熱交換チューブを開閉するバルブを備えている。 Patent Document 1 discloses an EGR cooler as a heat exchanger. In the EGR cooler, a plurality of heat exchange tubes are surrounded by a core case, and the exhaust gas (first heat medium) flowing inside the heat exchange tubes and the cooling flowing inside the core case on the outer periphery of the heat exchange tubes. Heat exchange is performed with water (second heat medium). The EGR cooler also includes a valve that opens and closes some heat exchange tubes.
 排気ガスの流量が少ない場合には、一部の熱交換チューブをバルブによって閉じる。これにより、排気ガスは残った熱交換チューブにのみ流れる。これにより、排気ガスの温度が過剰に下がることを防止している。一方、排気ガスの流量が多い場合には、全ての熱交換チューブの内部に排気ガスを流す。 If the flow rate of exhaust gas is low, close some heat exchange tubes with a valve. As a result, the exhaust gas flows only to the remaining heat exchange tube. This prevents the temperature of the exhaust gas from dropping excessively. On the other hand, when the flow rate of the exhaust gas is large, the exhaust gas is flowed inside all the heat exchange tubes.
 これにより、エンジンに戻される排気ガスの温度を、排気ガスの流量にかかわらず目標温度に安定させることができる。換言すれば、熱交換器から排出される第1の熱媒体の温度を安定させることができる。 As a result, the temperature of the exhaust gas returned to the engine can be stabilized at the target temperature regardless of the flow rate of the exhaust gas. In other words, the temperature of the first heat medium discharged from the heat exchanger can be stabilized.
特開2009-36063号公報JP-A-2009-36063
 特許文献1に開示された熱交換器によれば、熱交換器から排出される第1の熱媒体の温度を安定させるために、バルブを設ける必要がある。バルブを設ける分、熱交換器のコストが嵩むと共に、熱交換器が大型化する。 According to the heat exchanger disclosed in Patent Document 1, it is necessary to provide a valve in order to stabilize the temperature of the first heat medium discharged from the heat exchanger. The cost of the heat exchanger increases as the valve is provided, and the heat exchanger becomes larger.
 本発明は、安価且つ小型でありながら、排出される第1の熱媒体の温度を安定させることができる熱交換器の提供を課題とする。 An object of the present invention is to provide a heat exchanger capable of stabilizing the temperature of the first heat medium to be discharged while being inexpensive and compact.
 請求項1では、内部を第1の熱媒体が流れる複数の扁平状の熱交換チューブと、これらの複数の熱交換チューブを収納しているコアケースと、を有し、
 前記コアケースの内部にて、前記熱交換チューブの外周を流れる第2の熱媒体と前記第1の熱媒体とが熱交換を行う熱交換器において、
 複数の前記熱交換チューブは、少なくとも1つの特定熱交換チューブを含み、
 この特定熱交換チューブの内部は、フィンを有しているフィン付き流路と、前記フィンを有していないことにより前記フィン付き流路よりも少ない熱量の熱交換を行うフィンなし流路と、に区画されている、ことを特徴とする熱交換器が提供される。
A first aspect of the present invention includes a plurality of flat heat exchange tubes through which a first heat medium flows, and a core case containing the plurality of heat exchange tubes.
In a heat exchanger in which a second heat medium flowing around the outer periphery of the heat exchange tube and the first heat medium exchange heat inside the core case.
The plurality of heat exchange tubes include at least one specific heat exchange tube.
Inside the specific heat exchange tube, there are a fin-equipped flow path having fins, and a finless flow path that exchanges heat with a smaller amount of heat than the fin-equipped flow path because it does not have the fins. Heat exchangers are provided characterized by being partitioned in.
 請求項2に記載のごとく、好ましくは、複数の前記熱交換チューブのなかの、前記特定熱交換チューブ以外を一般熱交換チューブとすると、 前記特定熱交換チューブは、前記一般熱交換チューブよりも厚い。 As described in claim 2, preferably, if a general heat exchange tube other than the specific heat exchange tube is used among the plurality of heat exchange tubes, the specific heat exchange tube is thicker than the general heat exchange tube. ..
 請求項3に記載のごとく、好ましくは、前記フィンなし流路の断面は正方形である。 As described in claim 3, preferably, the cross section of the finless flow path is square.
 請求項4に記載のごとく、好ましくは、1つの前記特定熱交換チューブに対して、前記フィン付き流路は2つ設けられており、各々の前記フィン付き流路を構成する前記フィンは同一形状であり、
 2つの前記フィン付き流路の間には、前記フィンなし流路が位置している。
As described in claim 4, preferably, two fin-equipped flow paths are provided for one specific heat exchange tube, and the fins constituting each fin-equipped flow path have the same shape. And
The finless flow path is located between the two finned flow paths.
 請求項1では、複数の熱交換チューブは、少なくとも1つの特定熱交換チューブを含んでいる。この特定熱交換チューブの内部は、フィンを有しているフィン付き流路と、フィンを有していないことによりフィン付き流路よりも少ない熱量の熱交換を行うフィンなし流路と、に区画されている。 In claim 1, the plurality of heat exchange tubes include at least one specific heat exchange tube. The inside of this specific heat exchange tube is divided into a flow path with fins having fins and a flow path without fins that exchange heat with a smaller amount of heat than the flow path with fins because it does not have fins. Has been done.
 フィンなし流路から排出された第1の熱媒体の温度は、より導入側の温度に近い。適温に対し過剰な熱量の熱交換が行われた第1の熱媒体に、より導入側の温度に近い第1の熱媒体が混合されることにより、流量の少ない領域において、排出される第1の熱媒体の温度は、適温となる。第1の熱媒体の流量が多い領域において、フィン付き流路から排出される第1の熱媒体の温度は、適温となるよう設定されている。 The temperature of the first heat medium discharged from the finless flow path is closer to the temperature on the introduction side. By mixing the first heat medium, which has undergone heat exchange of an excessive amount of heat with respect to the appropriate temperature, with the first heat medium closer to the temperature on the introduction side, the first heat medium is discharged in a region where the flow rate is low. The temperature of the heat medium of the above becomes an appropriate temperature. In the region where the flow rate of the first heat medium is large, the temperature of the first heat medium discharged from the finned flow path is set to be an appropriate temperature.
 一方、フィンなし流路は冷却する熱量が小さいため、第1の熱媒体の流量が多い領域において、フィンなし流路から排出される第1の熱媒体は高温である。第1の熱媒体が高温である場合において、フィンなし流路内の第1の熱媒体が抵抗となり、より多くの第1の熱媒体がフィン付き流路に流れる。 On the other hand, since the finless flow path has a small amount of heat for cooling, the first heat medium discharged from the finless flow path has a high temperature in a region where the flow rate of the first heat medium is large. When the first heat medium is at a high temperature, the first heat medium in the finless flow path becomes a resistance, and more first heat medium flows into the finned flow path.
 フィンなし流路を流れる第1の熱媒体の流量が少ないため、フィンなし流路を通過した排気ガスの影響は、相対的に低くなる。流量が多い領域において、フィン付き流路を通過し適温とされた第1の熱媒体に、フィンなし流路を通過した高温の第1の熱媒体が少量混合される。このため、排出される第1の熱媒体の温度は過剰に上昇することなく、適温のまま熱交換器の外部に排出される。 Since the flow rate of the first heat medium flowing through the finless flow path is small, the influence of the exhaust gas passing through the finless flow path is relatively low. In the region where the flow rate is high, a small amount of the high-temperature first heat medium that has passed through the finless flow path is mixed with the first heat medium that has passed through the finned flow path and has been adjusted to an appropriate temperature. Therefore, the temperature of the first heat medium to be discharged does not rise excessively and is discharged to the outside of the heat exchanger at an appropriate temperature.
 排出される第1の熱媒体の温度を安定させるためにバルブや外部制御が不要である。安価且つ小型でありながら、排出される第1の熱媒体の温度を安定させることができる熱交換器を提供することができる。 No valve or external control is required to stabilize the temperature of the discharged first heat medium. It is possible to provide a heat exchanger capable of stabilizing the temperature of the first heat medium to be discharged while being inexpensive and compact.
 加えて、フィンなし流路は、熱交換チューブの内部に設けられている。そのため、熱交換の熱量の少ないチューブを別個に設ける場合と比較すると、熱交換器を小型化することができる。 In addition, the finless flow path is provided inside the heat exchange tube. Therefore, the heat exchanger can be miniaturized as compared with the case where a tube having a small amount of heat for heat exchange is separately provided.
 請求項2では、複数の熱交換チューブのなかの、特定熱交換チューブ以外を一般熱交換チューブとする。特定熱交換チューブは、一般熱交換チューブよりも厚い。そのため、特定熱交換チューブのフィンなし流路の流路面積は大きくなる。一方、一般熱交換チューブの厚みは維持される。即ち、フィンなし流路の流路面積を大きく設定した場合であっても、熱交換器が大型化することを抑制できる。 In claim 2, among a plurality of heat exchange tubes, a general heat exchange tube other than the specific heat exchange tube is used. The specific heat exchange tube is thicker than the general heat exchange tube. Therefore, the flow path area of the finless flow path of the specific heat exchange tube becomes large. On the other hand, the thickness of the general heat exchange tube is maintained. That is, even when the flow path area of the finless flow path is set large, it is possible to prevent the heat exchanger from becoming large.
 請求項3では、フィンなし流路の断面は正方形である。一般に、同一面積の長方形と正方形を比較した場合、正方形の周は長方形の周よりも短い。そのため、フィンなし流路を流れる第1の熱媒体の管摩擦損失を小さくすることができる。 In claim 3, the cross section of the finless flow path is square. In general, when comparing a rectangle and a square of the same area, the circumference of the square is shorter than the circumference of the rectangle. Therefore, the pipe friction loss of the first heat medium flowing through the finless flow path can be reduced.
 請求項4では、1つの特定熱交換チューブに対して、フィン付き流路は2つ設けられており、各々のフィン付き流路を構成するフィンは同一形状である。そのため、フィンの部品点数を減らすことができる。加えて、2つのフィン付き流路の間には、フィンなし流路が位置している。フィンなし流路が中央寄りに位置するため、熱交換器の内部に導入されたガスをフィンなし流路に誘導しやすくなる。 In claim 4, two fin-equipped flow paths are provided for one specific heat exchange tube, and the fins constituting each fin-equipped flow path have the same shape. Therefore, the number of fin parts can be reduced. In addition, a finless flow path is located between the two finned flow paths. Since the finless flow path is located closer to the center, it becomes easy to guide the gas introduced inside the heat exchanger to the finless flow path.
図1(a)は、実施例による熱交換器の斜視図である。図1(b)は、図1(a)に示された熱交換器の分解斜視図である。FIG. 1A is a perspective view of a heat exchanger according to an embodiment. FIG. 1B is an exploded perspective view of the heat exchanger shown in FIG. 1A. 図1(a)の2-2線断面である。It is a cross section of line 2-2 of FIG. 1 (a). 図3(a)は、図2に示された熱交換器の一部を構成する特定熱交換チューブの断面図である。図3(b)は、図2に示された熱交換器の一部を構成する特定熱交換チューブの斜視図である。FIG. 3A is a cross-sectional view of a specific heat exchange tube constituting a part of the heat exchanger shown in FIG. FIG. 3B is a perspective view of a specific heat exchange tube forming a part of the heat exchanger shown in FIG. 図1(a)の4-4線断面である。It is a cross section of line 4-4 of FIG. 1 (a). 図1(a)の5-5線断面である。It is a cross section of line 5-5 of FIG. 1 (a). 図5に示されたフィン付き流路及びフィンなし流路を流れる排気ガスの温度と流量との関係を模式的に示した図である。It is a figure which showed typically the relationship between the temperature and the flow rate of the exhaust gas flowing through the finned flow path and the finless flow path shown in FIG. 図5に示されたフィン付き流路及びフィンなし流路を流れる排気ガスの流量と圧力との関係を模式的に示した図である。It is a figure which showed typically the relationship between the flow rate and pressure of the exhaust gas flowing through the finned flow path and the finless flow path shown in FIG. 変形例による特定熱交換チューブを説明する図である。It is a figure explaining the specific heat exchange tube by the modification.
 本発明の実施の形態を添付図に基づいて以下に説明する。以下の説明において、上流及び下流とは、排気ガス(第1の熱媒体)の流れ方向を基準とする。 An embodiment of the present invention will be described below with reference to the attached figure. In the following description, upstream and downstream are based on the flow direction of the exhaust gas (first heat medium).
<実施例>
 図1(a)、図1(b)を参照する。EGR(Exhaust Gas Recirculation)クーラ10(熱交換器10)は、5つの熱交換チューブ11~15からなる直方体状の本体16と、本体16を囲っている筒状のコアケース20と、コアケース20の一端に差し込まれてエンジンから排出された排気ガス(第1の熱媒体)が導入されるガス導入部材30と、コアケース20の他端に差し込まれて排気ガスが排出されるガス排出部材40と、からなる。
<Example>
See FIGS. 1 (a) and 1 (b). The EGR (Exhaust Gas Recirculation) cooler 10 (heat exchanger 10) has a rectangular body 16 composed of five heat exchange tubes 11 to 15, a tubular core case 20 surrounding the body 16, and a core case 20. A gas introduction member 30 into which the exhaust gas (first heat medium) inserted into one end of the core case 20 and discharged from the engine is introduced, and a gas discharge member 40 inserted into the other end of the core case 20 to discharge the exhaust gas. And consists of.
 コアケース20は、互いの開口側が対向しているU字状の一対のケース半体50、60からなる。第1のケース半体50は、排気ガスの流れ方向に延びている平板状の第1の基部51と、この第1の基部51の両端から第2のケース半体へ延びている第1の壁部半体52及び第2の壁部半体53と、からなる。第1の基部51は、冷却水(第2の熱媒体)を導入する水導入穴51a及び冷却水を排出する水排出穴51bを有する。 The core case 20 is composed of a pair of U-shaped case halves 50 and 60 whose opening sides face each other. The first case half body 50 has a flat plate-shaped first base portion 51 extending in the exhaust gas flow direction, and a first case half body extending from both ends of the first base portion 51 to the second case half body. It is composed of a wall half body 52 and a second wall half body 53. The first base 51 has a water introduction hole 51a for introducing cooling water (second heat medium) and a water discharge hole 51b for discharging cooling water.
 第2のケース半体60は、排気ガスの流れ方向に延びている平板状の第2の基部61と、第2の基部61の両端から第1のケース半体50へ延びている第3の壁部半体62及び第4の壁部半体63と、からなる。 The second case half body 60 has a flat plate-shaped second base 61 extending in the exhaust gas flow direction and a third case half body 60 extending from both ends of the second base 61 to the first case half body 50. It is composed of a wall half body 62 and a fourth wall half body 63.
 第1の壁部半体52及び第3の壁部半体62は、第1の壁部21を構成する。第2の壁部半体53及び第4の壁部半体63は、第2の壁部22を構成する。第1の基部51と、第2の基部61と、第1の壁部21と、第2の壁部22とは、両端が開口している筒状のコアケース20を構成する。 The first wall portion 52 and the third wall portion 62 constitute the first wall portion 21. The second wall portion 53 and the fourth wall portion 63 constitute the second wall portion 22. The first base 51, the second base 61, the first wall 21, and the second wall 22 form a tubular core case 20 having both ends open.
 図2を参照する。本体16は、第1の熱交換チューブ11~第5の熱交換チューブ15が積層することにより構成されている。以下、積層方向の中央に位置し一部にフィンが設けられていない第3の熱交換チューブ13(特定熱交換チューブ)について説明する。 Refer to Fig. 2. The main body 16 is formed by laminating the first heat exchange tubes 11 to the fifth heat exchange tubes 15. Hereinafter, a third heat exchange tube 13 (specific heat exchange tube) located at the center of the stacking direction and not provided with fins in a part thereof will be described.
 図3(a)、図3(b)を参照する。第3の熱交換チューブ13は、一対のU字状のチューブ半体81、82から構成されている扁平状のチューブ83と、このチューブ83に収納されている2つのフィン90、90と、からなる。第3の熱交換チューブ13は、第3の熱交換チューブ13の幅方向(断面の長手方向)の中心を基準として対称の構成である。 Refer to FIGS. 3 (a) and 3 (b). The third heat exchange tube 13 is composed of a flat tube 83 composed of a pair of U-shaped tube halves 81 and 82, and two fins 90 and 90 housed in the tube 83. Become. The third heat exchange tube 13 has a symmetrical configuration with respect to the center in the width direction (longitudinal direction of the cross section) of the third heat exchange tube 13.
 第1のチューブ半体81は、平板状の第1の扁平部84と、第1の扁平部84の両端から第2のチューブ半体82に向けて延びている2つの第1の縁部85、85と、からなる。第2のチューブ半体82は、平板状の第2の扁平部86と、第2の扁平部86の両端から第1のチューブ半体81に向けて延びている2つの第2の縁部87、87と、からなる。第1の縁部85と、第2の縁87とは、側壁部88を構成している。 The first tube half body 81 has a flat first flat portion 84 and two first edge portions 85 extending from both ends of the first flat portion 84 toward the second tube half body 82. , 85 and. The second tube half body 82 has a flat second flat portion 86 and two second edge portions 87 extending from both ends of the second flat portion 86 toward the first tube half body 81. , 87 and. The first edge portion 85 and the second edge portion 87 form a side wall portion 88.
 各々のフィン90は、全体としてパルス波状であり、第1の扁平部84に当接している複数の第1の当接部91と、第2の扁平部86に当接している複数の第2の当接部92と、各々の第1の当接部91の端部91a及び各々の第2の当接部92の端部92aの間を延びると共にチューブ83の内部を流れる排気ガスの熱を吸収する複数の吸熱部93と、からなる。なお、フィン90には、凹凸状の部位や、切り起こした部位を設けても良い。 Each fin 90 has a pulse wavy shape as a whole, and has a plurality of first contact portions 91 that are in contact with the first flat portion 84 and a plurality of second contacts that are in contact with the second flat portion 86. The heat of the exhaust gas that extends between the abutting portion 92 of the above, the end portion 91a of each of the first abutting portions 91, and the end portion 92a of each of the second abutting portions 92 and flows inside the tube 83. It is composed of a plurality of heat absorbing portions 93 that absorb the heat. The fin 90 may be provided with an uneven portion or a cut-up portion.
 複数の吸熱部93のうち、第3の熱交換チューブ13の幅方向の最も内側に位置している吸熱部93を隔壁部94とする。第3の熱交換チューブ13の内部は、2つの隔壁部94によって、3つに区画されているともいえる。 Of the plurality of heat absorbing portions 93, the heat absorbing portion 93 located on the innermost side in the width direction of the third heat exchange tube 13 is designated as the partition wall portion 94. It can be said that the inside of the third heat exchange tube 13 is divided into three by two partition walls 94.
 換言すると、第3の熱交換チューブ13の内部は、チューブ83の一方の側壁部88と一方の隔壁部94との間の第1の流路F1(フィン付き流路)と、チューブ83の他方の側壁部88と他方の隔壁部94との間の第1の流路F1(フィン付き流路)と、2つの隔壁部94、94同士の間の第2の流路F2(フィンなし流路)と、に区画されている。 In other words, the inside of the third heat exchange tube 13 is a first flow path F1 (flow path with fins) between one side wall portion 88 of the tube 83 and one partition wall portion 94, and the other of the tube 83. First flow path F1 (flow path with fins) between the side wall portion 88 and the other partition wall portion 94, and second flow path F2 (flow path without fins) between the two partition wall portions 94, 94. ) And.
 第2の流路F2の幅、即ち、2つの隔壁部94同士の間の寸法W1は、フィン90のピッチW2(互いに隣接する吸熱部93同士の間隔)よりも大きい。 The width of the second flow path F2, that is, the dimension W1 between the two partition walls 94, is larger than the pitch W2 of the fins 90 (the distance between the endothermic portions 93 adjacent to each other).
 第1の流路F1の流路面積は、第2の流路F2の流路面積よりも大きい。 The flow path area of the first flow path F1 is larger than the flow path area of the second flow path F2.
 図2を参照する。第3の熱交換チューブ13以外の熱交換チューブ11、12、14、15(一般熱交換チューブ)は、互いに同一の構成である。例として、第2の熱交換チューブ12の構成について説明する。この説明は他の熱交換チューブ11、14、15にも適合する。 Refer to Fig. 2. The heat exchange tubes 11, 12, 14, and 15 (general heat exchange tubes) other than the third heat exchange tube 13 have the same configuration as each other. As an example, the configuration of the second heat exchange tube 12 will be described. This description also applies to other heat exchange tubes 11, 14, 15.
 第2の熱交換チューブ12は、一対のU字状のチューブ半体71、72から構成されている扁平状のチューブ73と、このチューブ73に収納されている波状の単体のフィン74と、からなる。 The second heat exchange tube 12 is composed of a flat tube 73 composed of a pair of U-shaped tube halves 71 and 72, and a wavy single fin 74 housed in the tube 73. Become.
 第1のチューブ半体71は、平板状の第1の扁平部75と、第1の扁平部75の両端から第2のチューブ半体72に向けて延びている2つの第1の縁部76、76と、からなる。第2のチューブ半体72は、平板状の第2の扁平部77と、第2の扁平部77の両端から第1のチューブ半体71に向けて延びている2つの第2の縁部78、78と、からなる。 The first tube half body 71 has a flat first flat portion 75 and two first edge portions 76 extending from both ends of the first flat portion 75 toward the second tube half body 72. , 76 and. The second tube half body 72 has a flat second flat portion 77 and two second edge portions 78 extending from both ends of the second flat portion 77 toward the first tube half body 71. , 78 and.
 第3の熱交換チューブ13は、第2の熱交換チューブ12よりも厚い。換言すると、第3の熱交換チューブ13の内部の高さH1(吸熱部93が延びている方向の寸法)は、第2の熱交換チューブ12の内部の高さH2よりも高い。 The third heat exchange tube 13 is thicker than the second heat exchange tube 12. In other words, the internal height H1 of the third heat exchange tube 13 (the dimension in the direction in which the heat absorbing portion 93 extends) is higher than the internal height H2 of the second heat exchange tube 12.
  図1(b)、図4を参照する。チューブの厚み方向を基準として、第3の熱交換チューブ13の導入側の開口の寸法L1は、第3の熱交換チューブ13内の流路の寸法L2より広い。 Refer to FIGS. 1 (b) and 4. The size L1 of the opening on the introduction side of the third heat exchange tube 13 is wider than the size L2 of the flow path in the third heat exchange tube 13 with reference to the thickness direction of the tube.
 詳細には、第1の扁平部84のなかの、排気ガス導入側の端部84aは、隣り合う第4の熱交換チューブ14側にオフセットしている。第2の扁平部86のなかの、排気ガス導入側の端部86aは、隣り合う第2の熱交換チューブ12側にオフセットしている。 Specifically, in the first flat portion 84, the end portion 84a on the exhaust gas introduction side is offset to the adjacent fourth heat exchange tube 14 side. The end portion 86a on the exhaust gas introduction side of the second flat portion 86 is offset to the adjacent second heat exchange tube 12 side.
 熱交換チューブ11、12、14、15も同様の構成である。第1の扁平部75のなかの、排気ガス導入側の端部75aは、隣り合う第3の熱交換チューブ13側にオフセットしている。第2の扁平部77のなかの、排気ガス導入側の端部77aは、隣り合う第1の熱交換チューブ11側にオフセットしている。互いに隣り合う端部同士は、当接している。 The heat exchange tubes 11, 12, 14, and 15 have the same configuration. The end portion 75a on the exhaust gas introduction side of the first flat portion 75 is offset to the adjacent third heat exchange tube 13 side. The end 77a on the exhaust gas introduction side of the second flat portion 77 is offset to the adjacent first heat exchange tube 11 side. The ends adjacent to each other are in contact with each other.
 上記の構成により、5つの熱交換チューブ11~15を支持する支持部材(エンドプレート)は不要となる。なお、互いに隣り合う熱交換チューブ11~15同士間の隙間は、冷却水が流れる流路となる。 With the above configuration, the support member (end plate) that supports the five heat exchange tubes 11 to 15 becomes unnecessary. The gap between the heat exchange tubes 11 to 15 adjacent to each other serves as a flow path for the cooling water to flow.
 一方の隅(下方)に位置している第1の扁平部75の端部75aは、第1の壁部半体52に当接している。他方の隅(上方)に位置している第2の扁平部77の端部77aは、第2の壁部半体53に当接している。 The end portion 75a of the first flat portion 75 located at one corner (lower side) is in contact with the first wall portion half body 52. The end portion 77a of the second flat portion 77 located at the other corner (upper side) is in contact with the second wall portion half body 53.
 なお、各々の熱交換チューブ11~15の排気ガス排出側の端部も同様の構成である。説明は省略する。 The end of each heat exchange tube 11 to 15 on the exhaust gas discharge side has the same configuration. The description is omitted.
 図1(b)、図5を参照する。ガス導入部材30は、排気ガスを導入可能な導入穴31aを有する平板状の導入側底部31と、導入側底部31の周縁から排気ガスの流れ方向に延びている導入側周壁部32と、を有している。導入側周壁部32は、コアケース20の一端に重なっている。 Refer to FIGS. 1 (b) and 5. The gas introduction member 30 includes a flat plate-shaped introduction side bottom portion 31 having an introduction hole 31a into which exhaust gas can be introduced, and an introduction side peripheral wall portion 32 extending from the peripheral edge of the introduction side bottom portion 31 in the exhaust gas flow direction. Have. The introduction side peripheral wall portion 32 overlaps one end of the core case 20.
 ガス排出部材40は、排気ガスを排出可能な排出穴41aを有する平板状の排出側底部41と、排出側底部41の周縁から排気ガスの流れ方向と反対方向に延びている排出側周壁部42と、を有している。排出側周壁部42は、コアケース20の他端に重なっている。 The gas discharge member 40 includes a flat plate-shaped discharge side bottom 41 having a discharge hole 41a capable of discharging exhaust gas, and a discharge side peripheral wall portion 42 extending from the peripheral edge of the discharge side bottom 41 in a direction opposite to the flow direction of the exhaust gas. And have. The discharge side peripheral wall portion 42 overlaps the other end of the core case 20.
 実施例の効果について説明する。 The effect of the examples will be explained.
 図1、図5を参照する。エンジンから排出された排気ガスは、ガス導入部材30からコアケース20内に導入される。導入された排気ガスは、2つの流路F1及び流路F2を通過する。一方、熱交換チューブ11~15の外周には、水導入穴51aからコアケース20内に導入された冷却水が流れている。それぞれの熱交換チューブ11~15を通過する排気ガスは、外周を流れる冷却水によって冷却される。冷却された排気ガスは、ガス排出部材40から排出されてエンジンに戻される。一方、排気ガスの熱を吸収した冷却水は、水排出穴51bからコアケース20の外部へ排出される。 Refer to FIGS. 1 and 5. The exhaust gas discharged from the engine is introduced into the core case 20 from the gas introduction member 30. The introduced exhaust gas passes through the two flow paths F1 and the flow path F2. On the other hand, the cooling water introduced into the core case 20 flows from the water introduction hole 51a to the outer periphery of the heat exchange tubes 11 to 15. The exhaust gas passing through each of the heat exchange tubes 11 to 15 is cooled by the cooling water flowing on the outer circumference. The cooled exhaust gas is discharged from the gas discharge member 40 and returned to the engine. On the other hand, the cooling water that has absorbed the heat of the exhaust gas is discharged to the outside of the core case 20 from the water discharge hole 51b.
 図5、図6を参照する。図6には、排気ガスの流量と排気ガスの温度との関係が示されている。横軸は、排気ガスの流量[g/s]を示し、縦軸は、排気ガスの温度[℃]を示している。縦軸に記載されたTminは、EGRクーラから排出される排気ガスの温度として許容される温度の下限値である。縦軸に記載されたTmaxは、EGRクーラから排出される排気ガスの温度として許容される温度の上限値である。 Refer to FIGS. 5 and 6. FIG. 6 shows the relationship between the flow rate of the exhaust gas and the temperature of the exhaust gas. The horizontal axis shows the flow rate [g / s] of the exhaust gas, and the vertical axis shows the temperature [° C] of the exhaust gas. Tmin shown on the vertical axis is the lower limit of the temperature allowed as the temperature of the exhaust gas discharged from the EGR cooler. Tmax shown on the vertical axis is an upper limit of the temperature allowed as the temperature of the exhaust gas discharged from the EGR cooler.
 図6中、T1、T1は、各々の流路F1を通過した排気ガスの温度を示している。T2は、流路F2を通過した排気ガスの温度を示している。T3は、流路F1を通過した排気ガス及び流路F2を通過した排気ガスが混合したガス(以下、「混合ガス」と記す。)の温度を示している。 In FIG. 6, T1 and T1 indicate the temperature of the exhaust gas that has passed through the respective flow paths F1. T2 indicates the temperature of the exhaust gas that has passed through the flow path F2. T3 indicates the temperature of a gas in which the exhaust gas passing through the flow path F1 and the exhaust gas passing through the flow path F2 are mixed (hereinafter, referred to as “mixed gas”).
 T1、T2は、流量が少ない領域において排気ガスの温度が低く、流量が多い領域において排気ガスの温度が高くなっている。 In T1 and T2, the temperature of the exhaust gas is low in the region where the flow rate is low, and the temperature of the exhaust gas is high in the region where the flow rate is high.
 流路F1を通過した排気ガスの温度T1は、流量が少ない領域において、許容される温度の下限値Tminを下回っている。流量の少ない領域においては、流路F1を通過する排気ガスは、過剰に冷やされている、ということができる。 The temperature T1 of the exhaust gas that has passed through the flow path F1 is below the lower limit Tmin of the allowable temperature in the region where the flow rate is small. It can be said that the exhaust gas passing through the flow path F1 is excessively cooled in the region where the flow rate is low.
 流路F2を通過した排気ガスの温度T2は、全ての領域において、流路F1を通過した排気ガスの温度T1よりも高い。 The temperature T2 of the exhaust gas that has passed through the flow path F2 is higher than the temperature T1 of the exhaust gas that has passed through the flow path F1 in all regions.
 EGRクーラに導入された際の排気ガスの温度T0は、流路F1を通過する排気ガスも流路F2を通過する排気ガスも同じである。このため、流路F1が行う熱交換の熱量は、流路F2が行う熱交換の熱量よりも多い、ということができる。 The temperature T0 of the exhaust gas when it is introduced into the EGR cooler is the same for the exhaust gas passing through the flow path F1 and the exhaust gas passing through the flow path F2. Therefore, it can be said that the amount of heat exchanged by the flow path F1 is larger than the amount of heat exchanged by the flow path F2.
 流路F2を通過した排気ガスの温度T2は、全ての領域において、許容される温度の上限値であるTmaxを上回っている。 The temperature T2 of the exhaust gas that has passed through the flow path F2 exceeds Tmax, which is the upper limit of the allowable temperature, in all regions.
 混合ガスの温度T3は、全ての領域において、許容される温度であるTminからTmaxの間にある。流量の低い領域において、流路F1を通過した排気ガスと、流路F2を通過した排気ガスとが混合されることにより、混合ガスの温度T3は、許容される温度であるTminとTmaxとの間の温度になったものと考えられる。流量の多い領域において、混合ガスの温度T3が許容される温度であるTmaxを超えない理由については、後述する。 The temperature T3 of the mixed gas is between Tmin and Tmax, which is an acceptable temperature in all regions. By mixing the exhaust gas that has passed through the flow path F1 and the exhaust gas that has passed through the flow path F2 in the region where the flow rate is low, the temperature T3 of the mixed gas becomes the allowable temperature of Tmin and Tmax. It is probable that the temperature was between. The reason why the temperature T3 of the mixed gas does not exceed the allowable temperature Tmax in the region where the flow rate is high will be described later.
 流路F1を通過した排気ガスの温度T1において、最も低い温度と最も高い温度の差をΔT1とする。混合ガスの温度T3において、最も低い温度と最も高い温度の差をΔT3とする。ΔT1とΔT3とを比較すると、ΔT3の方が小さい。つまり、ΔT1>ΔT3であり、混合ガスの方が流路F1を通過した排気ガスよりも温度が安定していたということができる。 In the temperature T1 of the exhaust gas passing through the flow path F1, the difference between the lowest temperature and the highest temperature is defined as ΔT1. In the temperature T3 of the mixed gas, the difference between the lowest temperature and the highest temperature is defined as ΔT3. Comparing ΔT1 and ΔT3, ΔT3 is smaller. That is, it can be said that ΔT1> ΔT3, and the temperature of the mixed gas was more stable than that of the exhaust gas that passed through the flow path F1.
 EGRクーラ10において、流路F1を通過した排気ガスと、流路F1よりも熱交換の熱量が少ない流路F2を通過した排気ガスと、を混合させる。これにより、混合ガスの温度T3は、許容される温度であるTminからTmaxの間になると共に、排気ガスの温度も安定する。 In the EGR cooler 10, the exhaust gas that has passed through the flow path F1 and the exhaust gas that has passed through the flow path F2, which has a smaller amount of heat exchange than the flow path F1, are mixed. As a result, the temperature T3 of the mixed gas becomes between Tmin and Tmax, which is an allowable temperature, and the temperature of the exhaust gas also stabilizes.
 図7には、EGRクーラに導入された排気ガスの圧力と各熱交換チューブを通過した排気ガスの流量との関係が示されている。横軸は、EGRクーラに導入された排気ガスの圧力[N/m]を示し、縦軸は、各熱交換チューブを通過した排気ガスの流量[g/s]を示している。 FIG. 7 shows the relationship between the pressure of the exhaust gas introduced into the EGR cooler and the flow rate of the exhaust gas passing through each heat exchange tube. The horizontal axis shows the pressure [N / m 2 ] of the exhaust gas introduced into the EGR cooler, and the vertical axis shows the flow rate [g / s] of the exhaust gas passing through each heat exchange tube.
 図7中、Q1は、流路F1を通過した排気ガスの流量を示している。Q2は、流路F2を通過した排気ガスの流量を示している。 In FIG. 7, Q1 shows the flow rate of the exhaust gas that has passed through the flow path F1. Q2 indicates the flow rate of the exhaust gas that has passed through the flow path F2.
 流路F1、流路F2共に、排気ガスの圧力が上がることにより内部を流れる排気ガスの流量が増加する。全ての領域において、流路F1を通過した排気ガスの流量は、流路F2を通過した排気ガスの流量よりも多い。 In both the flow path F1 and the flow path F2, the flow rate of the exhaust gas flowing inside increases as the pressure of the exhaust gas increases. In all regions, the flow rate of the exhaust gas that has passed through the flow path F1 is higher than the flow rate of the exhaust gas that has passed through the flow path F2.
 流路F1を流れる排気ガスの流量と、流路F2を流れる排気ガスの流量の差であるΔQを比較する。排気ガスの圧力が最も低いときに、排気ガスの流量の差は、最も小さいΔQminであった。排気ガスの圧力が最も高いときに、排気ガスの流量の差は、最も大きいΔQmaxであった。ΔQminとΔQmaxとを比較すると、ΔQmaxの方が大きい。つまり、ΔQmin<ΔQmaxである。排気ガスの圧力が高くなるほど、相対的に流路F1により多くの排気ガスが流れるということができる。 Compare ΔQ, which is the difference between the flow rate of the exhaust gas flowing through the flow path F1 and the flow rate of the exhaust gas flowing through the flow path F2. When the exhaust gas pressure was the lowest, the difference in the exhaust gas flow rate was the smallest ΔQmin. When the exhaust gas pressure was the highest, the difference in the exhaust gas flow rate was the largest ΔQmax. Comparing ΔQmin and ΔQmax, ΔQmax is larger. That is, ΔQmin <ΔQmax. It can be said that the higher the pressure of the exhaust gas, the more exhaust gas flows in the flow path F1.
 流路F1と流路F2との間には、熱交換能力の差(ΔT1<ΔT2)があり、T2はT1と比べて排気ガスの流量が増えるほど温度が大きく上昇する。そのため、排気ガスの体積が大きくなり、排気ガスが流れる際の抵抗になるものと考えられる。結果、排気ガスの流量が増えるほど、より多くの排気ガスが流路F1に、流れるものと考えられる。このため、排気ガスの流量が増えるほど、混合ガスの温度T3は、流路F1を通過した排気ガスの温度T1の影響を受ける。結果、流量の多い領域においても、混合ガスの温度T3は、許容される温度であるTmaxを超えない。 There is a difference in heat exchange capacity (ΔT1 <ΔT2) between the flow path F1 and the flow path F2, and the temperature of T2 rises significantly as the flow rate of the exhaust gas increases as compared with T1. Therefore, it is considered that the volume of the exhaust gas becomes large and becomes a resistance when the exhaust gas flows. As a result, it is considered that as the flow rate of the exhaust gas increases, more exhaust gas flows into the flow path F1. Therefore, as the flow rate of the exhaust gas increases, the temperature T3 of the mixed gas is affected by the temperature T1 of the exhaust gas that has passed through the flow path F1. As a result, the temperature T3 of the mixed gas does not exceed the allowable temperature Tmax even in the region where the flow rate is high.
 以下、EGRクーラ10についてまとめる。 The following is a summary of the EGR cooler 10.
 図5を参照する。コアケース20に熱交換チューブ11~15が囲われ、熱交換チューブ11~15の内部に流される排気ガスを、熱交換チューブ11~15の外周であってコアケース20の内部に流される冷却水によって冷却するEGRクーラ10において、熱交換チューブ11~15は、それぞれ種類の異なる流路F1と、流路F2と、を含み、流路F1が行う熱交換の熱量は、流路F2が行う熱交換の熱量よりも多くなるよう設定されている。 Refer to FIG. The heat exchange tubes 11 to 15 are surrounded by the core case 20, and the exhaust gas flowing inside the heat exchange tubes 11 to 15 is the cooling water that flows inside the core case 20 on the outer periphery of the heat exchange tubes 11 to 15. In the EGR cooler 10 cooled by, the heat exchange tubes 11 to 15 include different types of flow paths F1 and F2, and the amount of heat exchanged by the flow path F1 is the heat performed by the flow path F2. It is set to be more than the amount of heat for replacement.
 図6を併せて参照する。排気ガスの流量が少ない領域において、流路F1では、適温に対し過剰な熱量の熱交換が行われる。流路F2は、流路F1に比べて、熱交換の行われる熱量が少ない。このため、流路F2から排出された排気ガスの温度T2は、より導入側の温度T0に近い。適温に対し過剰な熱量の熱交換が行われた排気ガス(流路F1を通過した排気ガス)に、より導入側の温度に近い排気ガス(流路F2を通過した排気ガス)が混合されることにより、流量の少ない領域において、排出される排気ガスの温度T3は、適温となる。 Refer to FIG. 6 as well. In the region where the flow rate of the exhaust gas is small, heat exchange of an excessive amount of heat is performed in the flow path F1 with respect to an appropriate temperature. The flow path F2 has a smaller amount of heat exchanged than the flow path F1. Therefore, the temperature T2 of the exhaust gas discharged from the flow path F2 is closer to the temperature T0 on the introduction side. Exhaust gas (exhaust gas that has passed through the flow path F1) that has undergone heat exchange in excess of the appropriate temperature is mixed with exhaust gas (exhaust gas that has passed through the flow path F2) that is closer to the temperature on the introduction side. As a result, the temperature T3 of the exhaust gas discharged becomes an appropriate temperature in the region where the flow rate is low.
 排気ガスの流量が多い領域において、流路F1から排出される排気ガスの温度は、適温となるよう設定されている。一方、流路F2は冷却する熱量が小さいため、排気ガスの流量が多い領域において、流路F2から排出される排気ガスは高温である。排気ガスが高温である場合において、流路F2内の排気ガスが抵抗となり、より多くの排気ガスが流路F1に流れる。流路F2を流れる排気ガスの流量が少ないため、流路F2を通過した排気ガスの影響は、相対的に低くなる。排気ガスの流量が多い領域において、流路F1を通過し適温とされた排気ガスに、流路F2を通過した高温の排気ガスが少量混合される。このため、排出される第1の熱媒体の温度は過剰に上昇することなく、適温のままEGRクーラ10の外部に排出される。 The temperature of the exhaust gas discharged from the flow path F1 is set to be an appropriate temperature in the region where the flow rate of the exhaust gas is large. On the other hand, since the flow path F2 has a small amount of heat for cooling, the exhaust gas discharged from the flow path F2 has a high temperature in a region where the flow rate of the exhaust gas is large. When the exhaust gas is at a high temperature, the exhaust gas in the flow path F2 becomes a resistance, and more exhaust gas flows into the flow path F1. Since the flow rate of the exhaust gas flowing through the flow path F2 is small, the influence of the exhaust gas passing through the flow path F2 is relatively low. In a region where the flow rate of the exhaust gas is large, a small amount of the high-temperature exhaust gas that has passed through the flow path F2 is mixed with the exhaust gas that has passed through the flow path F1 and has been adjusted to an appropriate temperature. Therefore, the temperature of the first heat medium to be discharged does not rise excessively and is discharged to the outside of the EGR cooler 10 at an appropriate temperature.
 排出される排気ガスの温度を安定させるためにバルブや外部制御が不要である。安価且つ小型でありながら、排出される第1の熱媒体の温度を安定させることができるEGRクーラ10を提供することができる。 No valve or external control is required to stabilize the temperature of the discharged exhaust gas. It is possible to provide an EGR cooler 10 that can stabilize the temperature of the first heat medium to be discharged while being inexpensive and compact.
 加えて、流路F2は、第3の熱交換チューブ13の内部に設けられている。そのため、熱交換の熱量の少ないチューブを別個に設ける場合と比較すると、EGRクーラ10を小型化することができる。 In addition, the flow path F2 is provided inside the third heat exchange tube 13. Therefore, the EGR cooler 10 can be downsized as compared with the case where a tube having a small amount of heat exchange is provided separately.
 加えて、流路F1の流路面積は、流路F2の流路面積よりも大きい。流路F1において熱交換される熱量をより増加させることができる。流量が多い領域において、流路F2を通過した排気ガスの影響を低減させることができる。 In addition, the flow path area of the flow path F1 is larger than the flow path area of the flow path F2. The amount of heat exchanged in the flow path F1 can be further increased. In a region where the flow rate is large, the influence of the exhaust gas passing through the flow path F2 can be reduced.
 図2を参照する。排気ガスの流れに沿う方向から見て、排出穴41a(導入穴31a)は、それぞれ、第2の流路F2と重なっている。詳細には、第2の流路F2は、排出穴41a(導入穴31a)の内部に位置している。そのため、流路F2に所定の量の排気ガスを確実に導くことができる。排気ガスの流量が少ない際にEGRクーラ10から排出されるガスの温度を、より確実に所定の温度より高くすることができる。これにより、排気ガスの温度の安定性を高めることができる。 Refer to Fig. 2. Each of the exhaust holes 41a (introduction hole 31a) overlaps with the second flow path F2 when viewed from the direction along the flow of the exhaust gas. Specifically, the second flow path F2 is located inside the discharge hole 41a (introduction hole 31a). Therefore, a predetermined amount of exhaust gas can be reliably guided to the flow path F2. When the flow rate of the exhaust gas is small, the temperature of the gas discharged from the EGR cooler 10 can be more reliably raised to a temperature higher than a predetermined temperature. Thereby, the stability of the temperature of the exhaust gas can be improved.
 加えて、第3の熱交換チューブ13は、第2の熱交換チューブ12よりも厚い。換言すると、第3の熱交換チューブ13の内部の高さH1(吸熱部93が延びている方向の寸法)は、第2の熱交換チューブ12の内部の高さH2よりも高い。すべての熱交換チューブが同一の厚みの場合と比較すると、第3の熱交換チューブ13の流路F2の流路面積は大きくなる。一方、熱交換チューブ11、12、14、15の厚みは維持される。即ち、流路F2の流路面積を大きく設定した場合であっても、EGRクーラ10が大型化することを抑制できる。 In addition, the third heat exchange tube 13 is thicker than the second heat exchange tube 12. In other words, the internal height H1 of the third heat exchange tube 13 (the dimension in the direction in which the heat absorbing portion 93 extends) is higher than the internal height H2 of the second heat exchange tube 12. Compared with the case where all the heat exchange tubes have the same thickness, the flow path area of the flow path F2 of the third heat exchange tube 13 becomes larger. On the other hand, the thicknesses of the heat exchange tubes 11, 12, 14 and 15 are maintained. That is, even when the flow path area of the flow path F2 is set large, it is possible to prevent the EGR cooler 10 from becoming large.
 図3を参照する。第3の熱交換チューブ13に対して、流路F1は2つ設けられており、各々の流路F1を構成するフィン90は同一形状である。そのため、部品点数を減らすことができる。加えて、2つの流路F1間には、流路F2が位置している。流路F2が中央に位置するため、EGRクーラ10の内部に導入されたガスを流路F2に誘導しやすくなる。 Refer to FIG. Two flow paths F1 are provided for the third heat exchange tube 13, and the fins 90 constituting each flow path F1 have the same shape. Therefore, the number of parts can be reduced. In addition, the flow path F2 is located between the two flow paths F1. Since the flow path F2 is located in the center, the gas introduced inside the EGR cooler 10 can be easily guided to the flow path F2.
<変形例>
 図8には、変形例による第3の熱交換チューブ13Aが示されている。第3の熱交換チューブ13Aでは、内部に設けられた4つのフィン90Aの構成が異なる。実施例と共通する構成については、実施例と同一の符号を付すると共に説明は省略する。
<Modification example>
FIG. 8 shows a third heat exchange tube 13A according to a modified example. In the third heat exchange tube 13A, the configurations of the four fins 90A provided inside are different. The configurations common to the examples are designated by the same reference numerals as those in the examples, and the description thereof will be omitted.
 第3の熱交換チューブ13Aの幅方向について、互いに隣接する2つのフィン90A、90Aは、幅方向の中央を基準として対称である。第3の熱交換チューブ13Aの高さ方向について、互いに隣接する2つのフィン90A、90Aは、高さ方向の中央を基準として対称である。 Regarding the width direction of the third heat exchange tube 13A, the two fins 90A and 90A adjacent to each other are symmetrical with respect to the center in the width direction. With respect to the height direction of the third heat exchange tube 13A, the two fins 90A and 90A adjacent to each other are symmetrical with respect to the center in the height direction.
 各々のフィン90Aは、チューブ83に当接している複数の第1の当接部91Aと、高さ方向に対称に配置されたフィン90Aに当接している複数の第2の当接部92Aと、第1の当接部91Aの端部と第2の当接部92の端部との間を延びて第3の熱交換チューブ13の内部を流れる排気ガスの熱を吸熱する複数の吸熱部93Aと、からなる。 Each fin 90A has a plurality of first contact portions 91A that are in contact with the tube 83, and a plurality of second contact portions 92A that are in contact with the fins 90A that are symmetrically arranged in the height direction. , A plurality of endothermic portions that extend between the end of the first abutting portion 91A and the end of the second abutting portion 92 and absorb the heat of the exhaust gas flowing inside the third heat exchange tube 13. It consists of 93A.
 複数の吸熱部93Aのなかで、最も内側に位置しているものを内側吸熱部94Aとする。高さ方向に隣接する2つの内側吸熱部94Aは、チューブ83内を区画する隔壁部95Aを構成している。 Of the plurality of endothermic portions 93A, the one located on the innermost side is referred to as the inner endothermic portion 94A. The two inner heat absorbing portions 94A adjacent to each other in the height direction constitute a partition wall portion 95A that partitions the inside of the tube 83.
 第3の熱交換チューブ13Aの内部は、2つの隔壁部95A、95A(一方の隔壁部95Aの符号のみ示されている)によって、3つに区画されているともいえる。換言すると、第3の熱交換チューブ13Aの内部は、チューブ83の一方の側壁部88と一方の隔壁部95Aとの間の第1の流路f1(フィン付き流路)と、チューブ83の他方の側壁部88と他方の隔壁部95Aとの間の第1の流路f1(フィン付き流路)と、2つの隔壁部95A、95Aとの間の第2の流路f2(フィンなし流路)と、に区画されている。 It can be said that the inside of the third heat exchange tube 13A is divided into three by two partition walls 95A and 95A (only the code of one partition wall 95A is shown). In other words, the inside of the third heat exchange tube 13A includes a first flow path f1 (flow path with fins) between one side wall portion 88 of the tube 83 and one partition wall portion 95A, and the other of the tube 83. First flow path f1 (flow path with fins) between the side wall portion 88 and the other partition wall portion 95A, and second flow path f2 (flow path without fins) between the two partition wall portions 95A and 95A. ) And.
 変形例は、実施例の効果に加え、以下の特有の効果を有する。 The modified example has the following unique effects in addition to the effects of the examples.
 第3の熱交換チューブ13Aに設けられた2つのフィン90A、90Aは、高さ方向に積層されている。フィン90Aを積層することにより、高さを調節することができる。フィン90Aの汎用性が高いため、製造コストを削減することができる。 The two fins 90A and 90A provided in the third heat exchange tube 13A are laminated in the height direction. The height can be adjusted by laminating the fins 90A. Since the fin 90A is highly versatile, the manufacturing cost can be reduced.
 加えて、隔壁部95A、95A同士の間隔W3は、第3の熱交換チューブ13内部の高さH3に等しい。即ち、流路f2の断面は正方形である。一般に、同一面積の長方形と正方形を比較した場合、正方形の周は長方形の周よりも短い。そのため、流路F2を流れる排気ガスの管摩擦損失を小さくすることができる。 In addition, the distance W3 between the partition walls 95A and 95A is equal to the height H3 inside the third heat exchange tube 13. That is, the cross section of the flow path f2 is square. In general, when comparing a rectangle and a square of the same area, the circumference of the square is shorter than the circumference of the rectangle. Therefore, the pipe friction loss of the exhaust gas flowing through the flow path F2 can be reduced.
 なお、本発明の熱交換器は、実施の形態ではEGRクーラに適用したが、その他の用途に適用可能である。さらに、気体と液体との熱交換に限らず、気体と気体とを熱交換する場合にも用いることができる。 Although the heat exchanger of the present invention was applied to the EGR cooler in the embodiment, it can be applied to other uses. Further, it can be used not only for heat exchange between gas and liquid but also for heat exchange between gas and gas.
 本発明は、作用及び効果を奏する限りにおいて、実施例及び変形例に限定されるものではない。例えば、実施例の構成要素と変形例の構成要素を適宜組み合わせてもよく、熱交換チューブの数も適宜変更してもよい。 The present invention is not limited to Examples and Modifications as long as it exerts actions and effects. For example, the components of the embodiment and the components of the modified example may be appropriately combined, and the number of heat exchange tubes may be appropriately changed.
 本発明の熱交換器は、EGRクーラに好適である。 The heat exchanger of the present invention is suitable for an EGR cooler.
10‥EGRクーラ(熱交換器)
12‥第2の熱交換チューブ(一般熱交換チューブ)
13‥第3の熱交換チューブ(特定熱交換チューブ)
20‥コアケース
90‥フィン
91‥第1の当接部
92‥第2の当接部
93‥吸熱部
F1‥第1の流路(フィン付き流路)
F2‥第2の流路(フィンなし流路)
10 EGR cooler (heat exchanger)
12 ... Second heat exchange tube (general heat exchange tube)
13 ‥ Third heat exchange tube (specific heat exchange tube)
20. Core case 90 ... Fins 91 ... First contact portion 92 ... Second contact portion 93 ... Endothermic portion F1 ... First flow path (flow path with fins)
F2: Second flow path (flow path without fins)

Claims (4)

  1.  内部を第1の熱媒体が流れる複数の扁平状の熱交換チューブと、これらの複数の熱交換チューブを収納しているコアケースと、を有し、
     前記コアケースの内部にて、前記熱交換チューブの外周を流れる第2の熱媒体と前記第1の熱媒体とが熱交換を行う熱交換器において、
     複数の前記熱交換チューブは、少なくとも1つの特定熱交換チューブを含み、
     この特定熱交換チューブの内部は、フィンを有しているフィン付き流路と、前記フィンを有していないことにより前記フィン付き流路よりも少ない熱量の熱交換を行うフィンなし流路と、に区画されている、ことを特徴とする熱交換器。
    It has a plurality of flat heat exchange tubes through which a first heat medium flows, and a core case for accommodating the plurality of heat exchange tubes.
    In a heat exchanger in which a second heat medium flowing around the outer periphery of the heat exchange tube and the first heat medium exchange heat inside the core case.
    The plurality of heat exchange tubes include at least one specific heat exchange tube.
    Inside the specific heat exchange tube, there are a fin-equipped flow path having fins, and a finless flow path that exchanges heat with a smaller amount of heat than the fin-equipped flow path because it does not have the fins. A heat exchanger characterized by being partitioned into.
  2.  複数の前記熱交換チューブのなかの、前記特定熱交換チューブ以外を一般熱交換チューブとすると、
     前記特定熱交換チューブは、前記一般熱交換チューブよりも厚い、ことを特徴とする請求項1記載の熱交換器。
    When a general heat exchange tube other than the specific heat exchange tube among the plurality of heat exchange tubes is used,
    The heat exchanger according to claim 1, wherein the specific heat exchange tube is thicker than the general heat exchange tube.
  3.  前記フィンなし流路の断面は正方形である、ことを特徴とする請求項1又は請求項2記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the cross section of the finless flow path is square.
  4.  1つの前記特定熱交換チューブに対して、前記フィン付き流路は2つ設けられており、各々の前記フィン付き流路を構成する前記フィンは同一形状であり、
     2つの前記フィン付き流路の間には、前記フィンなし流路が位置している、ことを特徴とする請求項1~請求項3記載の熱交換器。
    Two fin-equipped flow paths are provided for one specific heat exchange tube, and the fins constituting each fin-equipped flow path have the same shape.
    The heat exchanger according to claim 1 to 3, wherein the finless flow path is located between the two finned flow paths.
PCT/JP2020/033519 2019-09-27 2020-09-04 Heat exchanger WO2021059921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019176523A JP7136757B2 (en) 2019-09-27 2019-09-27 Heat exchanger
JP2019-176523 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059921A1 true WO2021059921A1 (en) 2021-04-01

Family

ID=75166669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033519 WO2021059921A1 (en) 2019-09-27 2020-09-04 Heat exchanger

Country Status (2)

Country Link
JP (1) JP7136757B2 (en)
WO (1) WO2021059921A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323491U (en) * 1977-06-10 1978-02-27
JP2004263616A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Flat tube for egr cooler
US20050274501A1 (en) * 2004-06-09 2005-12-15 Agee Keith D Decreased hot side fin density heat exchanger
JP2006038304A (en) * 2004-07-23 2006-02-09 Usui Kokusai Sangyo Kaisha Ltd Fin for fluid agitation, its manufacturing method, heat transfer tube internally provided with fin, and heat exchanger or heat exchange type gas cooling device
JP2007078194A (en) * 2005-09-09 2007-03-29 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger
US20080264609A1 (en) * 2007-04-26 2008-10-30 Behr Gmbh & Co. Kg Heat exchanger for exhaust gas cooling; method for operating a heat exchanger; system with a heat exchanger for exhaust gas cooling
KR100897269B1 (en) * 2007-12-14 2009-05-14 현대자동차주식회사 Exhaust gas recirculation of vehicle
US20090166020A1 (en) * 2004-07-28 2009-07-02 Smith Paul R Automotive heat exchanger assemblies having internal fins and methods of making the same
JP2011214786A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Heat exchanger
JP2012241597A (en) * 2011-05-18 2012-12-10 Toyota Motor Corp Exhaust gas cooler
JP2015036542A (en) * 2013-08-12 2015-02-23 現代自動車株式会社 Egr gas and engine oil cooling device and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916699Y2 (en) * 1978-02-27 1984-05-16 日本ラヂエーター株式会社 Stacked evaporator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323491U (en) * 1977-06-10 1978-02-27
JP2004263616A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Flat tube for egr cooler
US20050274501A1 (en) * 2004-06-09 2005-12-15 Agee Keith D Decreased hot side fin density heat exchanger
JP2006038304A (en) * 2004-07-23 2006-02-09 Usui Kokusai Sangyo Kaisha Ltd Fin for fluid agitation, its manufacturing method, heat transfer tube internally provided with fin, and heat exchanger or heat exchange type gas cooling device
US20090166020A1 (en) * 2004-07-28 2009-07-02 Smith Paul R Automotive heat exchanger assemblies having internal fins and methods of making the same
JP2007078194A (en) * 2005-09-09 2007-03-29 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger
US20080264609A1 (en) * 2007-04-26 2008-10-30 Behr Gmbh & Co. Kg Heat exchanger for exhaust gas cooling; method for operating a heat exchanger; system with a heat exchanger for exhaust gas cooling
KR100897269B1 (en) * 2007-12-14 2009-05-14 현대자동차주식회사 Exhaust gas recirculation of vehicle
JP2011214786A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Heat exchanger
JP2012241597A (en) * 2011-05-18 2012-12-10 Toyota Motor Corp Exhaust gas cooler
JP2015036542A (en) * 2013-08-12 2015-02-23 現代自動車株式会社 Egr gas and engine oil cooling device and control method thereof

Also Published As

Publication number Publication date
JP7136757B2 (en) 2022-09-13
JP2021055857A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US7984753B2 (en) Heat exchanger
US8596339B2 (en) U-flow stacked plate heat exchanger
JP5145718B2 (en) Heat exchanger
US9328968B2 (en) Low profile, split flow charge air cooler with uniform flow exit manifold
JP6276054B2 (en) Heat exchanger
JP2009501892A (en) Heat exchanger
GB2299397A (en) Plate heat exchanger
US10563624B2 (en) Exhaust gas heat exchanger having stacked flat tubes
US7774937B2 (en) Heat exchanger with divided coolant chamber
US10202880B2 (en) Exhaust heat exchanger
US10591220B2 (en) Multi-fluid heat exchanger
US20150253085A1 (en) Heat exchange for gas, particularly the exhaust gases of an engine
JP2006010130A (en) Multi-fluid heat exchanger
JP2009014220A (en) Heat exchanger
JP2003090693A (en) Exhaust gas heat exchanger
CN112368535B (en) Heat exchanger
JP2007232330A (en) Stacked heat exchanger
WO2021059921A1 (en) Heat exchanger
JP2009103404A (en) Heat exchanger
WO2017094366A1 (en) Fin for heat exchanger
US20190033016A1 (en) Heat Exchanger
WO2020110524A1 (en) Heat exchanger
WO2021059920A1 (en) Heat exchanger
JP2016200071A (en) EGR gas cooler
JP7461508B2 (en) Dumbbell-shaped plate fins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870197

Country of ref document: EP

Kind code of ref document: A1