WO2021059888A1 - Cold-insulating tool - Google Patents

Cold-insulating tool Download PDF

Info

Publication number
WO2021059888A1
WO2021059888A1 PCT/JP2020/033029 JP2020033029W WO2021059888A1 WO 2021059888 A1 WO2021059888 A1 WO 2021059888A1 JP 2020033029 W JP2020033029 W JP 2020033029W WO 2021059888 A1 WO2021059888 A1 WO 2021059888A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
cold
bag
portions
storage material
Prior art date
Application number
PCT/JP2020/033029
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 篠崎
夕香 内海
勝一 香村
輝心 黄
哲 本並
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2021059888A1 publication Critical patent/WO2021059888A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/10Cooling bags, e.g. ice-bags

Definitions

  • the present invention relates to a cold insulator.
  • the present application claims priority based on Japanese Patent Application No. 2019-177246 filed in Japan on September 27, 2019, the contents of which are incorporated herein by reference.
  • a conventional cold insulator is configured by storing a large number of separate and independent granular heat storage materials in an outer bag. With such a configuration, the contact property to the affected part of the human body having a curved surface and the wearing stability are improved.
  • one aspect of the present invention is to provide a cooling device capable of increasing the contact area with a cooling object such as a human body while ensuring a sufficient cooling time (temperature maintenance time). ..
  • One aspect of the cold insulator of the present invention includes a cold storage material whose volume at the solid phase is smaller than the volume at the liquid phase, and a backing portion extending in the first direction in which the inner surfaces of both ends of the film are sealed.
  • a tubular portion provided and filled with the cold storage material, and first and second sealing portions extending in a second direction intersecting the first direction in which both end portions of the tubular portion are sealed. It is characterized by comprising a packaging bag to have and at least one cold storage pack containing the bag.
  • the cold insulation device of one aspect of the present invention it is possible to increase the contact area with the object to be cooled while ensuring a sufficient cooling time.
  • FIG. 3A is a diagram showing a cross section when the cold storage material is in a liquid phase
  • FIG. 3B is a diagram showing a cross section of the cold storage material.
  • FIG. 3A is a diagram showing a cross section when the cold storage material is in a liquid phase
  • FIG. 3B is a diagram showing a cross section of the cold storage material.
  • FIG. 3B shows the cross section at the time of a solid phase. It is a figure for demonstrating the effect of the cool pack according to the Example of 1st Embodiment of this invention, and FIG.
  • FIG. 4 (a) shows the state of a liquid phase and a solid phase of a cold storage material in the cool pack of an Example.
  • FIG. 4B is a photograph of the cold storage material in the comparative example, in which the cold storage material is in a liquid phase state and a solid phase state. It is a figure for demonstrating the method of evaluating the contact property of the cold insulation device of an Example and the cold insulation device of a comparative example using thermography. It is a figure for demonstrating the effect of the cold insulation device of an Example by the evaluation method shown in FIG. 5, and FIG. 6A is a figure which shows the measurement result by thermography by the evaluation method shown in FIG. 5 of the cold insulation device of an Example.
  • FIG. 6 (b) is a diagram showing the measurement results by thermography by the evaluation method shown in FIG. 5 of the cold insulation device of the comparative example. It is the schematic which shows the structure of the cold insulation device of the 2nd Embodiment of this invention. It is a figure which shows the manufacturing method of the cold insulation equipment shown in FIG. 7. It is a figure which shows an example of the use method of the cold insulation equipment shown in FIG. 7. It is a figure which shows the modification of the cold insulation device shown in FIG. 7. It is a figure which shows another modification of the cold insulation device shown in FIG. 7. It is the schematic which shows the use example of the cold insulation device shown in FIG. It is the schematic which shows the structure of the cold insulation device of 3rd Embodiment of this invention. It is a figure which shows one step of the manufacturing method of the cold insulation device shown in FIG.
  • FIG. 1 is a schematic view showing the configuration of the cold insulation device 100 according to the first embodiment of the present invention.
  • 2 (a) and 2 (b) are views showing one step of a method for manufacturing the packaging bag 120 in the cold insulation tool 100 shown in FIG.
  • the cold insulation device 100 alone of the present embodiment is also referred to as a "cold storage pack".
  • the cold insulation device 100 of the first embodiment includes a cold storage material 110 and a packaging bag 120 having a tubular portion 121 filled with the cold storage material 110.
  • the cold storage material 110 is composed of a material whose volume shrinks when the phase changes from a liquid to a solid, that is, a material whose volume at the time of solid phase (freezing) is smaller than that at the time of liquid phase.
  • the packaging bag 120 extends in the backing portion 122 extending in the Y direction (first direction) and in the X direction (second direction) intersecting the Y direction, and is provided at both ends of the tubular portion 121. It has a seal portion 123 and a seal portion 124.
  • the packaging bag 120 is manufactured as follows. First, as shown in FIG. 2A, a cold storage pack film 125 is prepared. Next, as shown in FIGS. 2 (a) and 2 (b), the inner surfaces 126 of both ends of the cold storage pack film 125 are bonded to each other and sealed to form a back-attached portion 122. As a result, the tubular portion 121 is formed. After that, both end portions 127 and 128 of the tubular portion 121 shown in FIG. 2B are sealed to form the seal portion 123 and the seal portion 124 shown in FIG.
  • a tech barrier which is a laminated film of several ⁇ m Si (silicon) vapor deposition / 15 ⁇ m NY (nylon) / 15 ⁇ m PE (polyethylene) / 30 ⁇ m LLDP (low density polyethylene).
  • a nylon film which is a laminated film of 15 ⁇ m NY / 30 ⁇ m LLDP and an aluminum vapor-deposited film which is a laminated film of 15 ⁇ m NY / 12 ⁇ m VMPET (aluminum-deposited PET film) / 70 ⁇ m LLDP can be used.
  • the cold storage material 110 a material having a melting point at a desired temperature according to the object to be kept cold of the cold insulation tool 100 and having a volume smaller than that in the liquid phase is used as described above.
  • the material whose volume in the solid phase is smaller than the volume in the liquid phase include clathrate hydrate and quasi-cleathrate hydrate.
  • Clathrate hydrate is a relatively small molecule with a molecular weight of 200 or less, such as tetrahydrofuran or cyclohexane, in the voids in a cage-shaped clathrate lattice composed of hydrogen bonds of water molecules, which are host molecules.
  • the quasi-clathrate hydrate is a cage of hydrogen bonds such as a guest molecule with a relatively large molecular size such as a tetraalkylammonium cation so that the water molecule, which is the host molecule, avoids the alkyl chain of the guest molecule.
  • the cage-shaped inclusion lattice composed of hydrogen bonds of quasi-clathrate hydrate encloses guest molecules having a relatively large molecular size as described above, so that the cage-like inclusion lattice composed of hydrogen bonds of water molecules encloses the guest molecules. Unlike the tangent lattice, it crystallizes in a partially broken state. Therefore, it is called quasi-clathrate hydrate.
  • clathrate hydrates and quasi-clathrate hydrates as materials whose volume in the solid phase is smaller than that in the liquid phase, it is possible to give a melting point in the positive temperature zone.
  • a melting point in the positive temperature zone For example, as a material having a melting point at 12 ° C. and having a volume smaller than that in the liquid phase, a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point using water as a solvent can be mentioned. Be done. Further, for example, as a material having a melting point at 7 ° C.
  • a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point using water as a solvent is used.
  • examples include materials to which potassium nitrate is added.
  • a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point using water as a solvent is used. Examples include materials to which potassium bromide has been added.
  • the above-mentioned water having a melting point at 12 ° C. is used as a solvent.
  • the tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point is prepared by using the above-mentioned water having a melting point of about 95% and 7 ° C. as a solvent to prepare a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point.
  • the material to which potassium nitrate was added was about 98%, and the above-mentioned water having a melting point at 3 ° C. was used as a solvent, and the material to which potassium bromide was added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point was about 98. It becomes%. In contrast, water is about 105%. That is, water is a material whose volume in the solid phase is larger than that in the liquid phase.
  • an additive for the purpose of suppressing supercooling may be added.
  • the above-mentioned material having a melting point of 12 ° C. requires an environmental temperature of about ⁇ 5 ° C. for freezing. For example, when freezing at home, it is frozen in a freezer.
  • the melting point of the cold storage material 110 after taking out the cold storage material 100 in a frozen state of the cold storage material 110 that is, the temperature at which the cold storage material 100 is used 12 It will take a relatively long time to reach ° C.
  • the environmental temperature required for freezing is made higher than the above-mentioned ⁇ 5 ° C.
  • the time required for the material to reach the melting point of 12 ° C. from the frozen state can be shortened, so that the cold insulator 100 can be used in a short time after being taken out from the freezer.
  • Specific examples of the additive include calcium carbonate, sodium hydrogen phosphate and its hydrate, sodium carbonate, sodium tetraborate and its hydrate.
  • FIG. 3 is a schematic view of a cross section of the cold insulation tool 100 along the alternate long and short dash line C shown in FIG. 1, and FIG. 3 (a) shows a cross section when the cold storage material 110 is in the liquid phase, and is shown in FIG. 3 (b). ) Indicates a cross section when the cold storage material 110 is in a solid phase.
  • the cross-sectional shape of the cold insulation tool 100 is substantially elliptical as shown in FIG. 3A.
  • the cross-sectional shape of the cold insulation tool 100 is the surface F1 side with the back sticking portion 122 and the surface F1 with the back sticking portion 122.
  • the shape has two straight lines on the opposite surfaces F2 side and a curved line connecting the two straight lines on both sides of the two straight lines. That is, when the cold storage material 110 is in a solid phase, a substantially flat surface is formed on each of the surface F1 side and the surface F2 side of the cold insulation tool 100.
  • FIG. 3B is just a schematic view, and in reality, a completely flat surface as shown in the figure is not formed on the surface F1 side and the surface F2 side, but a surface having high flatness is formed. Is obtained.
  • the cold storage material 110 to be filled in the packaging bag 120 is made of a material whose volume at the solid phase is smaller than the volume at the liquid phase, and as shown in FIG. 1, the packaging bag 120 is used.
  • the packaging bag 120 is used.
  • the cold storage material 110 when the cold storage material 110 changes from the liquid phase to the solid phase, the cold storage material 110 is in a state where the restrictions on the shape change when freezing are small due to the shapes of the side portions L1 and L2 of the tubular portion 121. It will freeze while shrinking in volume.
  • the surface F1 having the backing portion 122 and the surface F2 facing the surface F1 can be made a highly flat surface.
  • the surface F1 and the surface F2 are flattened by freezing the cold storage material 110 (as a solid phase) and bringing the surface F1 or the surface F2 of the cold insulation tool 100 into contact with a cold insulation object such as a human body. Since it has a high property, it is possible to increase the contact area with the object to be cooled. Further, in the cold storage material 110 of the present embodiment, unlike the cold insulation tool of Patent Document 1, the cold storage material is not granular but is a lump at the time of solid phase, so that the surface area per unit weight can be reduced, and the surface area per unit weight can be reduced. Since the heat exchange is suppressed, a sufficient cooling time (temperature maintenance time) can be secured.
  • the back sticking portion 122 when the back sticking portion 122 is provided at a position close to either of both side portions L1 and L2 of the tubular portion 121, the shape of the side portion where the back sticking portion 122 is located near is changed to that side.
  • the limitation on the shape change when the cold storage material 110 freezes becomes large, and it may be difficult to obtain the desired flatness on the surfaces F1 and F2.
  • the backing portion 122 is provided so as to intersect at substantially the center of each of the seal portion 123 and the seal portion 124.
  • the length of the backing portion 122 is short, the restrictions by the sealing portion 123 and the sealing portion 124 on the shape change when the cold storage material 110 filled in the tubular portion 121 freezes become large, and the surfaces F1 and the surface become large. It may be difficult to obtain the desired flatness in F2. Therefore, as shown in FIG. 1, it is preferable that the length of the backing portion 122 is at least longer than the length of the sealing portion 123 and the sealing portion 124.
  • the length in the Y direction is 110 mm
  • the length of each of the seal portions 123 and 124 in the X direction is 55 mm
  • the seal portions 123 and 124 are respectively.
  • a packaging bag 120 having a length of 5 mm in the Y direction the above-mentioned water having a melting point of 3 ° C. as a cold storage material 110 was used as a solvent, and potassium bromide was added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonized melting point.
  • a material filled with 50 g of the material to which was added was prepared.
  • an aluminum vapor-deposited film which is a laminated film of 15 ⁇ m NY / 12 ⁇ m VMPET / 70 ⁇ m LLDP, was used.
  • the cold insulation tool 10 is formed by setting a film in an automatic packaging machine called a vertical pillow type, fixing the film in a tubular shape with a former, and pasting the inner surfaces of both ends of the film to form a back-pasted portion.
  • a cold storage material water is used as a solvent and near the harmonized melting point. It was prepared by filling a tetrabutylammonium bromide solution adjusted to the concentration of (a material obtained by adding potassium bromide) and feeding a film to seal the upper part (corresponding to the position of the sealing portion 124).
  • a packaging bag having the same structure and the same material as the cold insulator 10 of the embodiment was filled with 50 g of water, which is a material whose volume at the solid phase is larger than that at the liquid phase as a cold storage material. I prepared something.
  • FIG. 4A shows a state in which the cold storage material (a material in which water is used as a solvent and potassium bromide is added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point) is in the liquid phase in the cold insulation tool 10 of the example.
  • 4 (b) is a photograph of the state of the liquid phase and the state of the solid phase of the cold storage material (water) in the cold insulation tool 20 according to the comparative example.
  • the upper row (T :) is a photograph of the cold insulation device taken from the direction of the arrow T shown in FIG. 1
  • the lower row (S :) is the direction of the arrow S shown in FIG. Shows a picture of the cold storage equipment taken from.
  • both the cold insulation tool 10 of the example and the cold insulation tool 20 of the comparative example have a back-pasted surface and a back-pasted portion. Both the surface with the portion and the surface facing each other became substantially flat surfaces.
  • both the surface having the back-pasted portion and the surface facing the back-attached portion are substantially abbreviated.
  • a flat surface was obtained.
  • the ratio of the width and the thickness (corresponding to the width w and the thickness t shown in the cross-sectional view of the cold storage tool 100 in FIG. 3B) in the cross section of the cold storage tool 10 at this time was about 5: 1. ..
  • both the surface having the back-pasted portion and the surface facing the surface having the back-pasted portion have a distorted shape and low flatness. It became a face.
  • FIG. 5 is a diagram for explaining a method of evaluating the contact property between the cold insulation tool 10 of the example and the cold insulation tool 20 of the comparative example by using thermography.
  • the shape of the contact surface with the cold insulation tool 10 does not change depending on the weight of the cold insulation tool 10, and the cooling surface 2 has a sufficiently flat surface.
  • the object to be cooled (here, a desk is used) 1 and the cold storage material are in a solid phase state.
  • the cold insulation device 10 of a certain embodiment was prepared. Next, as shown in FIG.
  • the cold insulation tool 10 of the embodiment is placed on the cooling surface 2 of the object to be cooled 1, the surface F1 having the backing portion is facing up, and the surface F1 having the backing portion is facing up.
  • the surface F2 is removed from the cooling surface 2, and then, as shown in FIG. 5C, the object to be cooled is cooled by the thermography device 3.
  • the temperature of the region 4 cooled by the cooler 10 on the cooling surface 2 of 1 was measured. Further, although not shown, the same measurement is performed when the cooling tool 10 of the embodiment is placed on the cooling surface 2 of the object to be cooled 1 with the surface F2 facing up and the surface F1 is applied to the cooling surface 2. It was.
  • the cold insulation tool 20 of the comparative example in which the cold storage material (water) is in a solid phase state is placed on the cooling surface 2 of the cooling object 1 for 10 seconds.
  • the temperature of the region 4 cooled by the cooler 20 on the cooling surface 2 of the object 1 to be cooled was measured by the thermography device 3.
  • the surface F1 is turned up and the surface F2 is applied to the cooling surface 2
  • the surface F2 is turned up and the surface F1 is applied to the cooling surface 2. Measurements were made in both cases.
  • FIG. 6 is a diagram for explaining the effect of the cold insulation tool 10 of the embodiment by the evaluation method shown in FIG. 5, and FIG. 6 (a) shows the surface F1 of the cold insulation tool 10 of the embodiment applied to the cooling surface 2. After that, and after the surface F2 was applied to the cooling surface 2, the measurement results by thermography of the cooling surface 2 including each cooled region 4 are shown.
  • FIG. 6B shows the surface F1 of the cooling device 20 of the comparative example. The temperature measurement result by thermography of the cooling surface 2 including each cooled region 4 is shown after the surface F2 is applied to the cooling surface 2 and after the surface F2 is applied to the cooling surface 2.
  • the temperature of the region 4 cooled on the cooling surface 2 was originally around 30 ° C. on both the surface F1 and the surface F2, but is 20 ° C. or less. A portion of 30 cm 2 or more was obtained.
  • the portion where the temperature of the cooled region 4 on the cooling surface 2 is 20 ° C. or less is 14 cm 2 or less.
  • the portion of the cooling surface 2 where the temperature of the cooled region 4 was 20 ° C. or less was further narrowed to 4 cm 2 or less.
  • the cold insulation tool 10 of the example higher flatness is obtained on the surface F1 and the surface F2 at the solid phase of the cold storage material as compared with the cold insulation tool 20 of the comparative example, and the contact area with the object to be cooled is obtained. It was confirmed that a large amount can be taken.
  • the cold insulation device 200 of the second embodiment of the present invention will be described with reference to FIGS. 7 to 12.
  • the same components as those of the cold storage device (cold storage pack) 100 of the first embodiment described with reference to FIGS. 1 to 3 are designated by the same reference numerals, and duplicate description will be omitted as appropriate. To do.
  • FIG. 7 is a schematic view showing the configuration of the cold insulation device 200 according to the second embodiment of the present invention. Further, FIG. 8 is a diagram showing a method of manufacturing the cold insulation tool 200 shown in FIG. 7.
  • the cold storage device 200 of the second embodiment includes an outer bag 210 and four cold storage packs 100 shown in FIG.
  • the outer bag 210 has four bag portions 211 arranged side by side in the X direction (second direction), and a connecting portion 212 connecting adjacent bag portions 211 in the four bag portions 211.
  • the four cold storage packs 100 are stored in each of the four bag portions 211 so that the extending direction of the backing portion 122 of the cold storage pack 100 coincides with the Y direction.
  • the outer bag 210 of the present embodiment includes a seal portion 213 that seals the lower end portion in the Y direction and a seal portion 214 that seals the upper end portion in the Y direction, whereby the cold storage pack 100 is packed in the bag portion. It is prevented from going out of 211.
  • connection portion 212 of the outer bag 210 has flexibility so as to be flexible when the cold storage material 110 (see FIG. 1 and the like) in the cold storage pack 100 is in a solid phase, that is, when the cold storage material 110 is frozen. It is desirable to do. The reason will be described later.
  • the cold insulation device 200 of the present embodiment is manufactured as follows. First, as shown in FIG. 8A, a tubular outer bag film 220 having openings 221 and 222 at the top and bottom in the Y direction is prepared. Next, as shown in FIG. 8B, the inner surfaces of the outer bag film 220 are partially bonded to each other in the Y direction at intervals in the X direction to form three connecting portions 212. .. As a result, an outer bag 210 having three connecting portions 212 and four bag portions 211 divided in the X direction by the connecting portions 212 is formed. After that, as shown in FIG. 8C, the seal portion 213 is formed by sealing the lower end portion of the outer bag 210 in the Y direction.
  • the cold storage pack 100 is inserted into each of the four bag portions 211 so that the seal portion 123 of the cold storage pack 100 and the seal portion 213 of the outer bag 210 face each other.
  • the seal portion 214 is formed by sealing the upper end portion of the outer bag 210 in the Y direction as shown in FIG. 7.
  • Examples of the outer bag film 220 include a BNS (multilayer tube) film which is a laminated film of NY (nylon) / adhesive PE (polyethylene) / NY / adhesive PE / PE, and an EMMA (ethylene / methyl methacrylate copolymer resin) film. , PE / EVA (ethylene-vinyl acetate copolymer resin) / PE laminated film, EVA film can be used. Further, the same material as the above-mentioned cold storage pack film 125 constituting the cold storage pack 100 housed in the bag portion 211 may be used for the outer bag film 220. By using such a material for the outer bag 210, the connecting portion 212 of the outer bag 210 can be made bendable even at the solid phase of the cold storage material 110 as described above.
  • FIG. 7 and 8 show a state in which the cold storage pack 100 is stored in the bag portion 211 so that the seal portion 123 of the cold storage pack 100 is located on the seal portion 213 side of the outer bag 210.
  • the 100 may be stored in the bag portion 211 so that the seal portion 124 of the cold storage pack 100 is located on the seal portion 213 side of the outer bag 210.
  • each of the plurality of cold storage packs 100 is described above.
  • the cold storage pack (cold storage device) 100 of the first embodiment remains independent of each other. Therefore, as in the case of the cold storage pack 100 of the first embodiment, when the cold storage material 110 is in a solid phase, the surface F1 having the backing portion 122 and the surface F2 facing the surface F1 (see FIG. 3B) are flat. Since it can be a high surface, the contact area with the cooling target can be increased by using the surface F1 or the surface F2 of each cold storage pack 100 as the contact surface with the cooling target.
  • the cold storage pack 100 is housed in each of the plurality of bag portions 211 partitioned by the connecting portions 212 of the outer bag 210, so that, for example, as shown in an example of how to use the cold insulation tool 200 in FIG.
  • the cooling device 200 can be brought into contact with the cooling object 11 having a curved surface (for example, the neck, head, legs, arms, shoulders, palms, etc. of the human body), and each of the cold storage packs 100 Can take a large contact area with the object to be cooled 11, so that the object 11 to be cooled can be cooled efficiently.
  • the connecting portion 212 of the outer bag 210 by configuring the connecting portion 212 of the outer bag 210 so as to be bendable even when the cold storage material 110 is in a solid phase, the cooling object 11 is small even when it is small or thin.
  • the connecting portion 212 can be bent in accordance with the smallness and thinness, and the cooling device 200 can be brought into contact with the cooling object 11 to be cooled.
  • the cold storage tool 200 is set to 1 in the outer bag 210 having one bag portion 211. It may be configured to store individual cold storage packs 100.
  • the cold storage pack 100 and the outer bag 210 each have four bag portions 211, but the number of the cold storage pack 100 and the bag portion 211 may be one or more. It does not matter if there are more than one.
  • the cold storage tools 200A and 200B which are modifications of the cold storage device 200 shown in FIG. 7, will be described with reference to FIGS. 10 and 11.
  • the cooling object 12 is shown as a flat surface for simplification of the illustration, but in the cooling devices 200A and 200B, the cooling object 12 is a curved surface. It is particularly preferably used when it has.
  • FIG. 10 is a diagram showing a cold storage device 200A which is a modification of the cold storage device 200 of the present embodiment.
  • the cooler 200A is located between the cooler 200 shown in FIG. 7 and the cooler 200 (cold storage pack 100) and the cooling object 12 when the cooling object 12 is cooled. It is provided with a buffer layer 231 provided on the surface side of the refrigerating tool 200 facing the object 12 to be cooled.
  • the buffer layer 231 has a flat structure without unevenness, and has flexibility that allows the cold storage material 110 to bend at a solid phase.
  • the material constituting the buffer layer 231 is a material that does not freeze and has fluidity even when the cold storage material 110 (see FIG. 1 and the like) in the cold storage pack 100 is in a solid phase, that is, even in an environment where the cold storage material 110 is frozen. Any material may be used as long as it is used. Examples of the material constituting the buffer layer 231 include a material obtained by adding a thickener to an aqueous solution of sodium chloride having a mass percent concentration of 23%.
  • the presence of the buffer layer 231 in the portion of the outer bag 210 corresponding to the connection portion 212 enables the connection portion 212 to cool the object to be cooled 12. Further, the cooling efficiency can be improved by increasing the adhesion to the object to be cooled 12. Further, since the buffer layer 231 is flexible at the solid phase of the cold storage material 110, the buffer layer 231 is a cooling tool even for the cooling object 11 having a curved surface as shown in FIG. It can be bent together with 200, and the object to be cooled 11 can be cooled efficiently.
  • FIG. 11 is a diagram showing a cold storage device 200B which is another modification of the cold storage device 200 of the present embodiment.
  • the cold insulator 200B includes the cold insulator 200 shown in FIG. 7 and a buffer layer 232 containing the cold insulator 200.
  • the structure and constituent materials of the buffer layer 232 are the same as those of the buffer layer 231 in the cold insulation tool 200A shown in FIG. 10 except that the structure includes the cold insulation tool 200, and thus the description thereof will be omitted.
  • the buffer layer 232 exists not only on the surface side of the cooling device 200 facing the cooling object 12 but also on the surface side of the cooling device 200 not facing the cooling object 12, so that FIG.
  • the same effect as that of the buffer layer 231 in the cooling device 200A shown in the above can be obtained, and the cooling device 200 (cold storage pack 100) can be protected from an external impact.
  • FIGS. 10 and 11 show an example in which the surface of the cold storage pack 100 facing the back-attached portion 122 faces the cooling object 12, the back-attached surface of the cold storage pack 100 is attached.
  • the surface with the portion 122 may be configured to face the cooling object 12.
  • FIG. 12A and 12B are schematic views showing a usage example of the cold insulation tool 200A shown in FIG. 10, FIG. 12A is a schematic cross-sectional view for explaining the usage example, and FIG. 12B is the usage example. It is a figure which shows the specific example of.
  • the cooling object 12 has the cooling device 200A having the cooling device 200 and the buffer layer 231 in contact with the cooling object (for example, the human body) 12.
  • the fixing jig 240 is wrapped around the cooling tool 200A to fix the cooling tool 200A.
  • the cold insulation tool 200A can be used as a supporter by using the fixing jig 240, for example, when the leg is the object to be cooled 12.
  • the object to be cooled 12 is not limited to the legs, but may be the neck, head, arms, shoulders, palms, and the like.
  • the cold insulation device 300 of the third embodiment of the present invention will be described with reference to FIGS. 13 and 14.
  • the cold storage device (cold storage pack) 100 of the first embodiment described with reference to FIGS. 1 to 3 and the cold storage device of the second embodiment described with reference to FIGS. 7 to 12 The same components as those of 200 are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
  • FIG. 13 is a schematic view showing the configuration of the cold insulation device 300 according to the third embodiment of the present invention. Further, FIG. 14 is a diagram showing one step of the manufacturing method of the cold insulation tool 300 shown in FIG.
  • the cold storage device 300 of the third embodiment includes an outer bag 210 and 16 cold storage packs 100 shown in FIG.
  • the outer bag 210 is formed in 16 bag portions 311 and 16 bag portions 311 arranged in a matrix of 4 rows and 4 columns in the X direction (second direction) and the Y direction (first direction). It has a connecting portion 212 for connecting the bag portions 311 adjacent to the X direction and a connecting portion 312 for connecting the bag portions 311 adjacent to the Y direction, and the 16 cold storage packs 100 have 16 bag portions.
  • the backing portion 122 of the cold storage pack 100 is stored so that the extending direction coincides with the Y direction.
  • the cold storage pack 100 in the present embodiment has the same structure as the cold storage pack 100 in the first and second embodiments, but has a seal portion 123 and 124 more than the cold storage pack 100 in the second embodiment.
  • the ratio of the length of the backing portion 122 to the length is small.
  • the length of the cold storage pack 100 in the Y direction in the present embodiment is 1/4 or less of the length of the outer bag 210 in the Y direction.
  • the connecting portion 212 and the connecting portion 312 are the cold storage material 110 in the cold storage pack 100 (see FIG. 1 and the like), similarly to the connecting portion 212 of the outer bag 210 in the cold insulation tool 200 of the second embodiment. It is desirable that the product has flexibility that allows it to bend in the solid phase.
  • the refrigerating tool 300 of the present embodiment configured in this way, for example, it is possible to cool the object to be cooled by wrapping the object to be cooled having a spherical surface.
  • the cold insulation device 300 of the present embodiment is manufactured as follows. First, in the same manner as the manufacturing method of the cold insulation tool 200 of the second embodiment shown in FIGS. 8A to 8C, the tubular outer bag film 220, the four bag portions 211, and the connection portion The 212 and the seal portion 213 are formed. After that, as shown in FIG. 14, the cold storage pack 100 is inserted into each of the four bag portions 211 so that the seal portion 123 of the cold storage pack 100 and the seal portion 213 of the outer bag 210 face each other.
  • the inner surfaces of the outer bag 210 at a position not overlapping with the seal portion 124 at the upper portion in the Y direction of the seal portions 124 of the four cold storage packs 100 arranged on the seal portion 213 of the outer bag 210 are placed in the X direction.
  • the connecting portion 312 is formed by partially laminating them.
  • the bottommost bag portion 311 in the Y direction is formed.
  • the cold storage pack 100 and the outer bag 210 each have 16 bag portions 311.
  • the number of the cold storage pack 100 and the bag portion 311 may be any number that can be arranged in a matrix. Any number is acceptable.
  • the buffer layer is the cold insulation tool 100 and the third embodiment of the first embodiment. It can also be provided in the form of the cold insulation device 300.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

The present invention provides sufficient cooling time and increases the contact area with a site to be cooled. This cold-insulating tool comprises at least one cold storage pack which includes: a cold storage material which has a solid phase volume that is smaller than the liquid phase volume; and a packaging bag. The packaging bag includes: a tubular part which is formed by sealing the inner surfaces of both ends of a film so that a back-seal part extending in a first direction is provided and which is filled with the cold storage material; and first and second seal parts which seal respective ends of the tubular part and extend in a second direction intersecting the first direction.

Description

保冷具Cold storage
 本発明は、保冷具に関する。
 本願は、2019年9月27日に日本で出願された特願2019-177246号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cold insulator.
The present application claims priority based on Japanese Patent Application No. 2019-177246 filed in Japan on September 27, 2019, the contents of which are incorporated herein by reference.
 従来の保冷具は、例えば、特許文献1に示されているように、分離独立した粒状の蓄熱材が外装袋内に多数個収納されて構成されている。かかる構成により、曲面を有する人体の患部への接触性、装着安定性を向上させている。 As shown in Patent Document 1, for example, a conventional cold insulator is configured by storing a large number of separate and independent granular heat storage materials in an outer bag. With such a configuration, the contact property to the affected part of the human body having a curved surface and the wearing stability are improved.
特開平9-173373号公報Japanese Unexamined Patent Publication No. 9-1733373
 しかしながら、特許文献1の保冷具では、蓄熱材を粒状にしていることにより、単位重量あたりの表面積が大きくなる。その結果、外部との熱交換が促進され、粒状でない同じ重量の蓄熱材と比較して、温度維持時間が短くなる。 However, in the cold insulation device of Patent Document 1, the surface area per unit weight is increased because the heat storage material is granulated. As a result, heat exchange with the outside is promoted, and the temperature maintenance time is shortened as compared with the non-granular heat storage material of the same weight.
 したがって、本発明の一態様は、十分な冷却時間(温度維持時間)を確保しつつ、人体等の冷却対象物との接触面積を大きくすることが可能な保冷具を提供することを目的とする。 Therefore, one aspect of the present invention is to provide a cooling device capable of increasing the contact area with a cooling object such as a human body while ensuring a sufficient cooling time (temperature maintenance time). ..
 本発明の一態様の保冷具は、固相時の体積が液相時の体積より小さくなる蓄冷材と、フィルムの両端部の内面同士をシールした第1の方向に延在する背貼り部が設けられ前記蓄冷材が充填される筒部と、前記筒部の両端部それぞれをシールした前記第1の方向と交差する第2の方向に延在する第1及び第2のシール部と、を有する包装袋と、含む少なくとも一つの蓄冷パックを備えることを特徴とする。 One aspect of the cold insulator of the present invention includes a cold storage material whose volume at the solid phase is smaller than the volume at the liquid phase, and a backing portion extending in the first direction in which the inner surfaces of both ends of the film are sealed. A tubular portion provided and filled with the cold storage material, and first and second sealing portions extending in a second direction intersecting the first direction in which both end portions of the tubular portion are sealed. It is characterized by comprising a packaging bag to have and at least one cold storage pack containing the bag.
 本発明の一態様の保冷具によれば、十分な冷却時間を確保しつつ、冷却対象物との接触面積を大きくすることが可能となる。 According to the cold insulation device of one aspect of the present invention, it is possible to increase the contact area with the object to be cooled while ensuring a sufficient cooling time.
本発明の第1の実施形態の保冷具の構成を示す概略図である。It is the schematic which shows the structure of the cold insulation device of 1st Embodiment of this invention. 図1に示す保冷具における包装袋の製造方法の一工程を示す図である。It is a figure which shows one process of the manufacturing method of the packaging bag in the cold insulation device shown in FIG. 図1に示す一点鎖線に沿った保冷具の断面の模式図であり、図3(a)は、蓄冷材が液相であるときの断面を示す図、図3(b)は、蓄冷材が固相であるときの断面を示す図である。It is a schematic view of the cross section of the cold insulation tool along the alternate long and short dash line shown in FIG. 1, FIG. 3A is a diagram showing a cross section when the cold storage material is in a liquid phase, and FIG. 3B is a diagram showing a cross section of the cold storage material. It is a figure which shows the cross section at the time of a solid phase. 本発明の第1の実施形態の実施例による保冷具の効果を説明するための図であり、図4(a)は、実施例の保冷具において蓄冷材が液相の状態と固相の状態とを撮影した写真、図4(b)は、比較例の保冷具において蓄冷材が液相の状態と固相の状態とを撮影した写真である。It is a figure for demonstrating the effect of the cool pack according to the Example of 1st Embodiment of this invention, and FIG. 4 (a) shows the state of a liquid phase and a solid phase of a cold storage material in the cool pack of an Example. FIG. 4B is a photograph of the cold storage material in the comparative example, in which the cold storage material is in a liquid phase state and a solid phase state. サーモグラフィーを用いて、実施例の保冷具と比較例の保冷具の接触性を評価する方法を説明するための図である。It is a figure for demonstrating the method of evaluating the contact property of the cold insulation device of an Example and the cold insulation device of a comparative example using thermography. 図5に示す評価方法による実施例の保冷具の効果を説明するための図であり、図6(a)は、実施例の保冷具の図5に示す評価方法によるサーモグラフィーによる測定結果を示す図、図6(b)は、比較例の保冷具の図5に示す評価方法によるサーモグラフィーによる測定結果を示す図である。It is a figure for demonstrating the effect of the cold insulation device of an Example by the evaluation method shown in FIG. 5, and FIG. 6A is a figure which shows the measurement result by thermography by the evaluation method shown in FIG. 5 of the cold insulation device of an Example. 6 (b) is a diagram showing the measurement results by thermography by the evaluation method shown in FIG. 5 of the cold insulation device of the comparative example. 本発明の第2の実施形態の保冷具の構成を示す概略図である。It is the schematic which shows the structure of the cold insulation device of the 2nd Embodiment of this invention. 図7に示す保冷具の製造方法を示す図である。It is a figure which shows the manufacturing method of the cold insulation equipment shown in FIG. 7. 図7に示す保冷具の使用方法の一例を示す図である。It is a figure which shows an example of the use method of the cold insulation equipment shown in FIG. 7. 図7に示す保冷具の変形例を示す図である。It is a figure which shows the modification of the cold insulation device shown in FIG. 7. 図7に示す保冷具の別の変形例を示す図である。It is a figure which shows another modification of the cold insulation device shown in FIG. 7. 図10に示す保冷具の使用例を示す概略図である。It is the schematic which shows the use example of the cold insulation device shown in FIG. 本発明の第3の実施形態の保冷具の構成を示す概略図である。It is the schematic which shows the structure of the cold insulation device of 3rd Embodiment of this invention. 図13に示す保冷具の製造方法の一工程を示す図である。It is a figure which shows one step of the manufacturing method of the cold insulation device shown in FIG.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。 Hereinafter, a mode for carrying out the present invention will be described in detail with reference to the drawings.
[第1の実施形態]
 図1~3を用いて、本発明の第1の実施形態の保冷具100について説明する。
[First Embodiment]
The cold insulation device 100 of the first embodiment of the present invention will be described with reference to FIGS.
 図1は、本発明の第1の実施形態の保冷具100の構成を示す概略図である。また、図2(a)及び(b)は、図1に示す保冷具100における包装袋120の製造方法の一工程を示す図である。なお、本実施形態の保冷具100単体のことを「蓄冷パック」とも呼ぶ。 FIG. 1 is a schematic view showing the configuration of the cold insulation device 100 according to the first embodiment of the present invention. 2 (a) and 2 (b) are views showing one step of a method for manufacturing the packaging bag 120 in the cold insulation tool 100 shown in FIG. The cold insulation device 100 alone of the present embodiment is also referred to as a "cold storage pack".
 図1に示すように、第1の実施形態の保冷具100は、蓄冷材110と、蓄冷材110が充填された筒部121を有する包装袋120とを備えている。蓄冷材110は、液体から固体へ相変化する際、体積が収縮する材料、すなわち、固相(凍結)時の体積が液相時の体積より小さくなる材料で構成されている。包装袋120は、Y方向(第1の方向)に延在する背貼り部122と、Y方向と交差するX方向(第2の方向)に延在し、筒部121の両端部に設けられたシール部123及びシール部124とを有している。 As shown in FIG. 1, the cold insulation device 100 of the first embodiment includes a cold storage material 110 and a packaging bag 120 having a tubular portion 121 filled with the cold storage material 110. The cold storage material 110 is composed of a material whose volume shrinks when the phase changes from a liquid to a solid, that is, a material whose volume at the time of solid phase (freezing) is smaller than that at the time of liquid phase. The packaging bag 120 extends in the backing portion 122 extending in the Y direction (first direction) and in the X direction (second direction) intersecting the Y direction, and is provided at both ends of the tubular portion 121. It has a seal portion 123 and a seal portion 124.
 包装袋120は、次のようにして製造される。まず、図2(a)に示すように、蓄冷パック用フィルム125を用意する。次に、図2(a)及び(b)に示すように、蓄冷パック用フィルム125の両端部内面126同士を貼り合わせてシールし、背貼り部122を形成する。これにより、筒部121が形成される。その後、図2(b)に示す筒部121の両端部127、128それぞれをシールすることにより、図1に示すシール部123及びシール部124を形成する。 The packaging bag 120 is manufactured as follows. First, as shown in FIG. 2A, a cold storage pack film 125 is prepared. Next, as shown in FIGS. 2 (a) and 2 (b), the inner surfaces 126 of both ends of the cold storage pack film 125 are bonded to each other and sealed to form a back-attached portion 122. As a result, the tubular portion 121 is formed. After that, both end portions 127 and 128 of the tubular portion 121 shown in FIG. 2B are sealed to form the seal portion 123 and the seal portion 124 shown in FIG.
 蓄冷パック用フィルム125としては、例えば、数μmのSi(シリコン)蒸着/15μmのNY(ナイロン)/15μmのPE(ポリエチレン)/30μmのLLDP(低密度ポリエチレン)の積層膜であるテックバリア(登録商標)、15μmのNY/30μmのLLDPの積層膜であるナイロンフィルム、15μmのNY/12μmのVMPET(アルミ蒸着PETフィルム)/70μmのLLDPの積層膜であるアルミ蒸着フィルムを用いることができる。 As the cold storage pack film 125, for example, a tech barrier (registered) which is a laminated film of several μm Si (silicon) vapor deposition / 15 μm NY (nylon) / 15 μm PE (polyethylene) / 30 μm LLDP (low density polyethylene). A nylon film which is a laminated film of 15 μm NY / 30 μm LLDP and an aluminum vapor-deposited film which is a laminated film of 15 μm NY / 12 μm VMPET (aluminum-deposited PET film) / 70 μm LLDP can be used.
 また、蓄冷材110としては、保冷具100の保冷対象物に応じた所望の温度に融点を有し、かつ上述のとおり、固相時の体積が液相時の体積より小さくなる材料を用いる。固相時の体積が液相時の体積より小さくなる材料としては、例えば、包摂水和物や準包摂水和物が挙げられる。 Further, as the cold storage material 110, a material having a melting point at a desired temperature according to the object to be kept cold of the cold insulation tool 100 and having a volume smaller than that in the liquid phase is used as described above. Examples of the material whose volume in the solid phase is smaller than the volume in the liquid phase include clathrate hydrate and quasi-cleathrate hydrate.
 包接水和物とは、ホスト分子である水分子の水素結合で構成された籠状の包接格子内の空隙部にテトラヒドロフランやシクロヘキサンのような分子量200以下の比較的分子の大きさが小さいゲスト分子が取り込まれ結晶化する化合物をいう。 Clathrate hydrate is a relatively small molecule with a molecular weight of 200 or less, such as tetrahydrofuran or cyclohexane, in the voids in a cage-shaped clathrate lattice composed of hydrogen bonds of water molecules, which are host molecules. A compound in which guest molecules are incorporated and crystallized.
 また、準包接水和物とは、テトラアルキルアンモニウムカチオンのような比較的分子の大きさが大きいゲスト分子をホスト分子である水分子がゲスト分子のアルキル鎖を避けるように水素結合の籠状の包接格子を形成し、ゲスト分子を包み込むことにより結晶化する化合物をいう。準包接水和物の水素結合で構成された籠状の包接格子は、上述のように比較的分子サイズの大きいゲスト分子を包み込むため、水分子の水素結合で構成された籠状の包接格子とは異なり、部分的に壊れた状態で結晶化する。そのため、準包接水和物と呼ばれる。 The quasi-clathrate hydrate is a cage of hydrogen bonds such as a guest molecule with a relatively large molecular size such as a tetraalkylammonium cation so that the water molecule, which is the host molecule, avoids the alkyl chain of the guest molecule. A compound that forms an inclusion lattice and crystallizes by wrapping a guest molecule. The cage-shaped inclusion lattice composed of hydrogen bonds of quasi-clathrate hydrate encloses guest molecules having a relatively large molecular size as described above, so that the cage-like inclusion lattice composed of hydrogen bonds of water molecules encloses the guest molecules. Unlike the tangent lattice, it crystallizes in a partially broken state. Therefore, it is called quasi-clathrate hydrate.
 これら包摂水和物や準包摂水和物を固相時の体積が液相時の体積より小さくなる材料として用いることにより、プラスの温度帯に融点を持たせることができる。例えば、12℃に融点を有し、固相時の体積が液相時の体積より小さくなる材料としては、水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液等が挙げられる。また、例えば、7℃に融点を有し、固相時の体積が液相時の体積より小さくなる材料としては、水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に硝酸カリウムを添加した材料等が挙げられる。さらに、例えば、3℃に融点を有し、固相時の体積が液相時の体積より小さくなる材料としては、水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に臭化カリウムを添加した材料等が挙げられる。 By using these clathrate hydrates and quasi-clathrate hydrates as materials whose volume in the solid phase is smaller than that in the liquid phase, it is possible to give a melting point in the positive temperature zone. For example, as a material having a melting point at 12 ° C. and having a volume smaller than that in the liquid phase, a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point using water as a solvent can be mentioned. Be done. Further, for example, as a material having a melting point at 7 ° C. and the volume at the solid phase is smaller than the volume at the liquid phase, a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point using water as a solvent is used. Examples include materials to which potassium nitrate is added. Further, for example, as a material having a melting point at 3 ° C. and the volume at the solid phase is smaller than the volume at the liquid phase, a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point using water as a solvent is used. Examples include materials to which potassium bromide has been added.
 ここで、固相時の体積が液相時の体積より小さくなる材料の液相時に対する固相時の体積変化率の具体例を挙げると、例えば、12℃に融点を有する上述の水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液は、約95%、7℃に融点を有する上述の水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に硝酸カリウムを添加した材料は、約98%、3℃に融点を有する上述の水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に臭化カリウムを添加した材料は、約98%となる。これに対し、水は、約105%である。すなわち、水は、固相時の体積が液相時の体積より大きくなる材料である。 Here, to give a specific example of the volume change rate at the solid phase with respect to the liquid phase of a material whose volume at the solid phase is smaller than the volume at the liquid phase, for example, the above-mentioned water having a melting point at 12 ° C. is used as a solvent. The tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point is prepared by using the above-mentioned water having a melting point of about 95% and 7 ° C. as a solvent to prepare a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point. The material to which potassium nitrate was added was about 98%, and the above-mentioned water having a melting point at 3 ° C. was used as a solvent, and the material to which potassium bromide was added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point was about 98. It becomes%. In contrast, water is about 105%. That is, water is a material whose volume in the solid phase is larger than that in the liquid phase.
 なお、特に、12℃に融点を有し、固相時の体積が液相時の体積より小さくなる材料においては、過冷却抑制を目的とした添加剤を加えてもよい。12℃に融点を有する上述の材料は、凍結におよそ-5℃の環境温度が必要であり、例えば、一般家庭で凍結させる際には冷凍庫で凍結させることになる。当該材料を保冷具100の蓄冷材110として用いた場合、蓄冷材110が凍結した状態の保冷具100を冷凍庫から取り出してから蓄冷材110の融点、すなわち保冷具100の使用時の温度である12℃に到達するまでに比較的長い時間を要することになる。そこで、上述の材料に過冷却を抑制する添加剤を加えることにより、凍結に必要な環境温度を上記-5℃よりも高くする。これにより、当該材料が凍結状態から融点である12℃に到達するまでの時間を短くできるため、冷凍庫から保冷具100を取り出してから、短時間で使用することが可能になる。添加剤としては、具体的には、炭酸カルシウム、リン酸水素IIナトリウム及びその水和物、炭酸ナトリウム、四ホウ酸ナトリウム及びその水和物などが挙げられる。 In particular, for a material having a melting point at 12 ° C. and a volume at the solid phase smaller than the volume at the liquid phase, an additive for the purpose of suppressing supercooling may be added. The above-mentioned material having a melting point of 12 ° C. requires an environmental temperature of about −5 ° C. for freezing. For example, when freezing at home, it is frozen in a freezer. When the material is used as the cold storage material 110 of the cold storage material 100, the melting point of the cold storage material 110 after taking out the cold storage material 100 in a frozen state of the cold storage material 110, that is, the temperature at which the cold storage material 100 is used 12 It will take a relatively long time to reach ° C. Therefore, by adding an additive that suppresses supercooling to the above-mentioned material, the environmental temperature required for freezing is made higher than the above-mentioned −5 ° C. As a result, the time required for the material to reach the melting point of 12 ° C. from the frozen state can be shortened, so that the cold insulator 100 can be used in a short time after being taken out from the freezer. Specific examples of the additive include calcium carbonate, sodium hydrogen phosphate and its hydrate, sodium carbonate, sodium tetraborate and its hydrate.
 次に、上述のように構成された本実施形態の保冷具100の効果について説明する。 Next, the effect of the cold insulation device 100 of the present embodiment configured as described above will be described.
 図3は、図1に示す一点鎖線Cに沿った保冷具100の断面の模式図であり、図3(a)は、蓄冷材110が液相であるときの断面を示し、図3(b)は、蓄冷材110が固相であるときの断面を示している。 FIG. 3 is a schematic view of a cross section of the cold insulation tool 100 along the alternate long and short dash line C shown in FIG. 1, and FIG. 3 (a) shows a cross section when the cold storage material 110 is in the liquid phase, and is shown in FIG. 3 (b). ) Indicates a cross section when the cold storage material 110 is in a solid phase.
 蓄冷材110が液相であるときは、図3(a)に示すように、保冷具100の断面形状は、略楕円形状となる。 When the cold storage material 110 is in the liquid phase, the cross-sectional shape of the cold insulation tool 100 is substantially elliptical as shown in FIG. 3A.
 一方、蓄冷材110が固相であるときは、図3(b)に示すように、保冷具100の断面形状は、背貼り部122のある面F1側及び背貼り部122のある面F1と対向する面F2側に二本の直線を有し、当該二本の直線の両側それぞれに二本の直線を結ぶ曲線を有する形状となる。すなわち、蓄冷材110が固相であるときの保冷具100には、面F1側及び面F2側それぞれに略平坦な面が形成される。なお、図3(b)はあくまで模式図であり、実際には、面F1側及び面F2側に、図のような完全に平坦な面が形成されるわけではないが、平坦性の高い面が得られる。 On the other hand, when the cold storage material 110 is in a solid phase, as shown in FIG. 3B, the cross-sectional shape of the cold insulation tool 100 is the surface F1 side with the back sticking portion 122 and the surface F1 with the back sticking portion 122. The shape has two straight lines on the opposite surfaces F2 side and a curved line connecting the two straight lines on both sides of the two straight lines. That is, when the cold storage material 110 is in a solid phase, a substantially flat surface is formed on each of the surface F1 side and the surface F2 side of the cold insulation tool 100. Note that FIG. 3B is just a schematic view, and in reality, a completely flat surface as shown in the figure is not formed on the surface F1 side and the surface F2 side, but a surface having high flatness is formed. Is obtained.
 このように、本実施形態によれば、包装袋120に充填する蓄冷材110を固相時の体積が液相時の体積より小さくなる材料とし、かつ、図1に示すように、包装袋120をY方向に延在する背貼り部122とY方向と交差するX方向に延在するシール部123及びシール部124とを有する構成としていることにより、筒部121のX方向における両側部L1、L2のいずれにもシール部が存在しない形状となる。かかる構成により、蓄冷材110の液相から固相への変化時、蓄冷材110は、凍結していく際の形状変化に対する筒部121の側部L1、L2の形状による制限が小さい状態で、体積収縮しながら凍結していくことになる。これにより、背貼り部122のある面F1と面F1と対向する面F2(図3(b)参照)を平坦性の高い面とすることができる。 As described above, according to the present embodiment, the cold storage material 110 to be filled in the packaging bag 120 is made of a material whose volume at the solid phase is smaller than the volume at the liquid phase, and as shown in FIG. 1, the packaging bag 120 is used. By having a backing portion 122 extending in the Y direction, a seal portion 123 extending in the X direction intersecting the Y direction, and a seal portion 124, both side portions L1 of the tubular portion 121 in the X direction, The shape is such that there is no seal portion in any of L2. With this configuration, when the cold storage material 110 changes from the liquid phase to the solid phase, the cold storage material 110 is in a state where the restrictions on the shape change when freezing are small due to the shapes of the side portions L1 and L2 of the tubular portion 121. It will freeze while shrinking in volume. As a result, the surface F1 having the backing portion 122 and the surface F2 facing the surface F1 (see FIG. 3B) can be made a highly flat surface.
 したがって、本実施形態によれば、蓄冷材110を凍結させ(固相とし)、人体等の保冷対象物に保冷具100の面F1又は面F2を接触させることにより、面F1及び面F2が平坦性の高い面となっていることから、保冷対象物との接触面積を大きくとることが可能となる。また、本実施形態の蓄冷材110は、特許文献1の保冷具のように蓄冷材が粒状ではなく、固相時にひとかたまりであることから、単位重量あたりの表面積を小さくすることができ、外部との熱交換が抑制されるため、十分な冷却時間(温度維持時間)を確保することができる。 Therefore, according to the present embodiment, the surface F1 and the surface F2 are flattened by freezing the cold storage material 110 (as a solid phase) and bringing the surface F1 or the surface F2 of the cold insulation tool 100 into contact with a cold insulation object such as a human body. Since it has a high property, it is possible to increase the contact area with the object to be cooled. Further, in the cold storage material 110 of the present embodiment, unlike the cold insulation tool of Patent Document 1, the cold storage material is not granular but is a lump at the time of solid phase, so that the surface area per unit weight can be reduced, and the surface area per unit weight can be reduced. Since the heat exchange is suppressed, a sufficient cooling time (temperature maintenance time) can be secured.
 なお、本実施形態において、背貼り部122が筒部121の両側部L1、L2のいずれか一方に近い位置に設けられると、背貼り部122が近くに位置する側部の形状が、当該側部がシールされている場合の形状に近くなることにより、蓄冷材110が凍結していく際の形状変化に対する制限が大きくなり、面F1と面F2に所望の平坦性が得られにくくなる可能性がある。したがって、図1に示すように、背貼り部122は、シール部123及びシール部124それぞれの略中央で交差するように設けられていることが望ましい。 In the present embodiment, when the back sticking portion 122 is provided at a position close to either of both side portions L1 and L2 of the tubular portion 121, the shape of the side portion where the back sticking portion 122 is located near is changed to that side. By approaching the shape when the portion is sealed, the limitation on the shape change when the cold storage material 110 freezes becomes large, and it may be difficult to obtain the desired flatness on the surfaces F1 and F2. There is. Therefore, as shown in FIG. 1, it is desirable that the backing portion 122 is provided so as to intersect at substantially the center of each of the seal portion 123 and the seal portion 124.
 また、背貼り部122の長さが短いと、筒部121に充填された蓄冷材110が凍結していく際の形状変化に対するシール部123及びシール部124による制限が大きくなり、面F1と面F2に所望の平坦性が得られにくくなる可能性がある。したがって、図1に示すように、背貼り部122の長さは、少なくともシール部123及びシール部124の長さよりも長いことが好ましい。 Further, if the length of the backing portion 122 is short, the restrictions by the sealing portion 123 and the sealing portion 124 on the shape change when the cold storage material 110 filled in the tubular portion 121 freezes become large, and the surfaces F1 and the surface become large. It may be difficult to obtain the desired flatness in F2. Therefore, as shown in FIG. 1, it is preferable that the length of the backing portion 122 is at least longer than the length of the sealing portion 123 and the sealing portion 124.
 次に、図4~6を用いて、本実施形態の具体例である実施例による保冷具10の効果を比較例による保冷具20との比較により説明する。 Next, with reference to FIGS. 4 to 6, the effect of the cold storage device 10 according to the embodiment, which is a specific example of the present embodiment, will be described by comparison with the cold storage device 20 according to the comparative example.
 実施例の保冷具10として、図1に示した構造を有する保冷具100において、Y方向の長さを110mm、シール部123及び124それぞれのX方向の長さを55mm、シール部123及び124それぞれのY方向の長さを5mmとした包装袋120に、蓄冷材110として3℃に融点を有する上述の水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に臭化カリウムを添加した材料を50g充填したものを用意した。包装袋120には、15μmのNY/12μmのVMPET/70μmのLLDPの積層膜であるアルミ蒸着フィルムを用いた。 As the cold insulation tool 10 of the embodiment, in the cold insulation tool 100 having the structure shown in FIG. 1, the length in the Y direction is 110 mm, the length of each of the seal portions 123 and 124 in the X direction is 55 mm, and the seal portions 123 and 124 are respectively. In a packaging bag 120 having a length of 5 mm in the Y direction, the above-mentioned water having a melting point of 3 ° C. as a cold storage material 110 was used as a solvent, and potassium bromide was added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonized melting point. A material filled with 50 g of the material to which was added was prepared. For the packaging bag 120, an aluminum vapor-deposited film, which is a laminated film of 15 μm NY / 12 μm VMPET / 70 μm LLDP, was used.
 保冷具10は、縦ピロー型と呼ばれる自動包装機にフィルムをセットしてフォーマ―で筒状に固定し、フィルムの両端部内面同士を貼り合わせて背貼り部を形成した後、背貼り部の延在方向(Y方向)に対して垂直な方向(X方向)に設置されたヒートシーラーにより底部(シール部123の位置に相当)をシールした後、蓄冷材(水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に臭化カリウムを添加した材料)を充填し、フィルムを送って上部(シール部124の位置に相当)をシールすることにより作製した。 The cold insulation tool 10 is formed by setting a film in an automatic packaging machine called a vertical pillow type, fixing the film in a tubular shape with a former, and pasting the inner surfaces of both ends of the film to form a back-pasted portion. After sealing the bottom (corresponding to the position of the sealing part 123) with a heat sealer installed in the direction (X direction) perpendicular to the extending direction (Y direction), a cold storage material (water is used as a solvent and near the harmonized melting point). It was prepared by filling a tetrabutylammonium bromide solution adjusted to the concentration of (a material obtained by adding potassium bromide) and feeding a film to seal the upper part (corresponding to the position of the sealing portion 124).
 比較例の保冷具20として、実施例の保冷具10と同一構成・同一材料の包装袋に、蓄冷材として固相時の体積が液相時の体積より大きくなる材料である水を50g充填したものを用意した。 As the cold insulator 20 of the comparative example, a packaging bag having the same structure and the same material as the cold insulator 10 of the embodiment was filled with 50 g of water, which is a material whose volume at the solid phase is larger than that at the liquid phase as a cold storage material. I prepared something.
 図4(a)は、実施例の保冷具10において蓄冷材(水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に臭化カリウムを添加した材料)が液相の状態と固相の状態とを撮影した写真、図4(b)は、比較例による保冷具20において蓄冷材(水)が液相の状態と固相の状態とを撮影した写真である。図4(a)及び(b)それぞれにおいて、上段(T:)は、図1に示す矢印Tの方向から保冷具を撮影した写真、下段(S:)は、図1に示す矢印Sの方向から保冷具を撮影した写真を示している。 FIG. 4A shows a state in which the cold storage material (a material in which water is used as a solvent and potassium bromide is added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonic melting point) is in the liquid phase in the cold insulation tool 10 of the example. 4 (b) is a photograph of the state of the liquid phase and the state of the solid phase of the cold storage material (water) in the cold insulation tool 20 according to the comparative example. In each of FIGS. 4A and 4B, the upper row (T :) is a photograph of the cold insulation device taken from the direction of the arrow T shown in FIG. 1, and the lower row (S :) is the direction of the arrow S shown in FIG. Shows a picture of the cold storage equipment taken from.
 蓄冷材が液相の状態においては、図4(a)及び(b)に示すように、実施例の保冷具10、比較例の保冷具20のいずれも、背貼り部のある面及び背貼り部のある面と対向する面ともに、略平坦な面となった。 When the cold storage material is in a liquid phase, as shown in FIGS. 4A and 4B, both the cold insulation tool 10 of the example and the cold insulation tool 20 of the comparative example have a back-pasted surface and a back-pasted portion. Both the surface with the portion and the surface facing each other became substantially flat surfaces.
 一方、蓄冷材が固相の状態においては、図4(a)に示すように、実施例の保冷具10では、背貼り部のある面及び背貼り部のある面と対向する面ともに、略平坦な面が得られた。なお、このときの保冷具10の断面における幅と厚さ(図3(b)の保冷具100の断面図に示す幅wと厚さtに対応)の比は、およそ5:1であった。これに対し、図4(b)に示すように、比較例の保冷具20では、背貼り部のある面及び背貼り部のある面と対向する面ともに、いびつな形状となり、平坦性の低い面となった。 On the other hand, when the cold storage material is in a solid phase state, as shown in FIG. 4 (a), in the cold insulation tool 10 of the embodiment, both the surface having the back-pasted portion and the surface facing the back-attached portion are substantially abbreviated. A flat surface was obtained. The ratio of the width and the thickness (corresponding to the width w and the thickness t shown in the cross-sectional view of the cold storage tool 100 in FIG. 3B) in the cross section of the cold storage tool 10 at this time was about 5: 1. .. On the other hand, as shown in FIG. 4B, in the cold insulation tool 20 of the comparative example, both the surface having the back-pasted portion and the surface facing the surface having the back-pasted portion have a distorted shape and low flatness. It became a face.
 以上より、実施例の保冷具10によれば、比較例の保冷具20に比べて、固相時に高い平坦性が得られることが確認された。 From the above, it was confirmed that according to the cold insulation tool 10 of the example, higher flatness can be obtained at the solid phase as compared with the cold insulation tool 20 of the comparative example.
 図5は、サーモグラフィーを用いて、実施例の保冷具10と比較例の保冷具20の接触性を評価する方法を説明するための図である。 FIG. 5 is a diagram for explaining a method of evaluating the contact property between the cold insulation tool 10 of the example and the cold insulation tool 20 of the comparative example by using thermography.
 図5(a)に示すように、保冷具10を設置しても保冷具10との接触面の形状が保冷具10の重量によって変化せず、かつ、十分な平面である冷却面2を有する冷却対象物(ここでは机を用いた)1と、蓄冷材(水を溶媒とし、調和融点付近の濃度に調整されたテトラブチルアンモニウムブロミド溶液に臭化カリウムを添加した材料)が固相状態である実施例の保冷具10を用意した。次に、図5(b)に示すように、冷却対象物1の冷却面2の上に実施例の保冷具10を、背貼り部のある面F1を上にし、背貼り部のある面F1と対向する面F2を冷却面2に当てた状態で、10秒間載置した後、冷却面2上から除去し、その後、図5(c)に示すように、サーモグラフィー装置3によって、冷却対象物1の冷却面2の保冷具10により冷却された領域4の温度を測定した。また、図示は省略するが、冷却対象物1の冷却面2の上に実施例の保冷具10を、面F2を上にし、面F1を冷却面2に当てた場合についても同様の測定を行った。 As shown in FIG. 5A, even if the cold insulation tool 10 is installed, the shape of the contact surface with the cold insulation tool 10 does not change depending on the weight of the cold insulation tool 10, and the cooling surface 2 has a sufficiently flat surface. The object to be cooled (here, a desk is used) 1 and the cold storage material (a material in which potassium bromide is added to a tetrabutylammonium bromide solution adjusted to a concentration near the harmonious melting point using water as a solvent) are in a solid phase state. The cold insulation device 10 of a certain embodiment was prepared. Next, as shown in FIG. 5B, the cold insulation tool 10 of the embodiment is placed on the cooling surface 2 of the object to be cooled 1, the surface F1 having the backing portion is facing up, and the surface F1 having the backing portion is facing up. After placing the surface F2 facing the cooling surface 2 against the cooling surface 2 for 10 seconds, the surface F2 is removed from the cooling surface 2, and then, as shown in FIG. 5C, the object to be cooled is cooled by the thermography device 3. The temperature of the region 4 cooled by the cooler 10 on the cooling surface 2 of 1 was measured. Further, although not shown, the same measurement is performed when the cooling tool 10 of the embodiment is placed on the cooling surface 2 of the object to be cooled 1 with the surface F2 facing up and the surface F1 is applied to the cooling surface 2. It was.
 同様にして、実施例の保冷具10に換えて、冷却対象物1の冷却面2の上に、蓄冷材(水)が固相状態である比較例の保冷具20を10秒間載置した後、サーモグラフィー装置3によって、冷却対象物1の冷却面2の保冷具20により冷却された領域4の温度を測定した。比較例の保冷具20についても、実施例の保冷具10と同様、面F1を上にし、面F2を冷却面2に当てた場合と、面F2を上にし、面F1を冷却面2に当てた場合の両方について測定を行った。 Similarly, instead of the cold insulation tool 10 of the example, the cold insulation tool 20 of the comparative example in which the cold storage material (water) is in a solid phase state is placed on the cooling surface 2 of the cooling object 1 for 10 seconds. , The temperature of the region 4 cooled by the cooler 20 on the cooling surface 2 of the object 1 to be cooled was measured by the thermography device 3. Regarding the cold insulation tool 20 of the comparative example, as in the case of the cold insulation tool 10 of the embodiment, the surface F1 is turned up and the surface F2 is applied to the cooling surface 2, and the surface F2 is turned up and the surface F1 is applied to the cooling surface 2. Measurements were made in both cases.
 図6は、図5に示す評価方法による実施例の保冷具10の効果を説明するための図であり、図6(a)は、実施例の保冷具10の面F1を冷却面2に当てた後、及び面F2を冷却面2に当てた後それぞれの冷却された領域4を含む冷却面2のサーモグラフィーによる測定結果を示し、図6(b)は、比較例の保冷具20の面F1を冷却面2に当てた後、及び面F2を冷却面2に当てた後それぞれの冷却された領域4を含む冷却面2のサーモグラフィーによる温度測定結果を示している。 FIG. 6 is a diagram for explaining the effect of the cold insulation tool 10 of the embodiment by the evaluation method shown in FIG. 5, and FIG. 6 (a) shows the surface F1 of the cold insulation tool 10 of the embodiment applied to the cooling surface 2. After that, and after the surface F2 was applied to the cooling surface 2, the measurement results by thermography of the cooling surface 2 including each cooled region 4 are shown. FIG. 6B shows the surface F1 of the cooling device 20 of the comparative example. The temperature measurement result by thermography of the cooling surface 2 including each cooled region 4 is shown after the surface F2 is applied to the cooling surface 2 and after the surface F2 is applied to the cooling surface 2.
 図6(a)に示すように、実施例の保冷具10では、面F1、面F2ともに、冷却面2において冷却された領域4の温度が元々は30℃付近であったものが20℃以下となっている部分が30cm以上得られた。これに対し、図6(b)に示すように、比較例の保冷具20では、面F2では、冷却面2において冷却された領域4の温度が20℃以下となっている部分が14cm以下と狭く、面F1では、冷却面2において冷却された領域4の温度が20℃以下となっている部分が4cm以下とさらに狭くなった。 As shown in FIG. 6A, in the cold insulation tool 10 of the embodiment, the temperature of the region 4 cooled on the cooling surface 2 was originally around 30 ° C. on both the surface F1 and the surface F2, but is 20 ° C. or less. A portion of 30 cm 2 or more was obtained. On the other hand, as shown in FIG. 6B, in the cold insulator 20 of the comparative example, on the surface F2, the portion where the temperature of the cooled region 4 on the cooling surface 2 is 20 ° C. or less is 14 cm 2 or less. On the surface F1, the portion of the cooling surface 2 where the temperature of the cooled region 4 was 20 ° C. or less was further narrowed to 4 cm 2 or less.
 以上より、実施例の保冷具10によれば、比較例の保冷具20に比べて、蓄冷材の固相時に、面F1及び面F2に高い平坦性が得られ、冷却対象物との接触面積を大きくとれることが確認された。 From the above, according to the cold insulation tool 10 of the example, higher flatness is obtained on the surface F1 and the surface F2 at the solid phase of the cold storage material as compared with the cold insulation tool 20 of the comparative example, and the contact area with the object to be cooled is obtained. It was confirmed that a large amount can be taken.
[第2の実施形態]
 図7~12を用いて、本発明の第2の実施形態の保冷具200について説明する。なお、図7~12において、図1~3を用いて説明した第1の実施形態の保冷具(蓄冷パック)100と同一の構成要素には同一の符号を付し、重複する説明は適宜省略する。
[Second Embodiment]
The cold insulation device 200 of the second embodiment of the present invention will be described with reference to FIGS. 7 to 12. In FIGS. 7 to 12, the same components as those of the cold storage device (cold storage pack) 100 of the first embodiment described with reference to FIGS. 1 to 3 are designated by the same reference numerals, and duplicate description will be omitted as appropriate. To do.
 図7は、本発明の第2の実施形態の保冷具200の構成を示す概略図である。また、図8は、図7に示す保冷具200の製造方法を示す図である。 FIG. 7 is a schematic view showing the configuration of the cold insulation device 200 according to the second embodiment of the present invention. Further, FIG. 8 is a diagram showing a method of manufacturing the cold insulation tool 200 shown in FIG. 7.
 図7に示すように、第2の実施形態の保冷具200は、外装袋210と、図1に示す蓄冷パック100を4個備えている。外装袋210は、X方向(第2の方向)に並んで配置された4個の袋部211と、4個の袋部211において隣接する袋部211を接続する接続部212とを有しており、4個の蓄冷パック100は、4個の袋部211のそれぞれに、蓄冷パック100の背貼り部122の延在方向がY方向と一致するように収納されている。 As shown in FIG. 7, the cold storage device 200 of the second embodiment includes an outer bag 210 and four cold storage packs 100 shown in FIG. The outer bag 210 has four bag portions 211 arranged side by side in the X direction (second direction), and a connecting portion 212 connecting adjacent bag portions 211 in the four bag portions 211. The four cold storage packs 100 are stored in each of the four bag portions 211 so that the extending direction of the backing portion 122 of the cold storage pack 100 coincides with the Y direction.
 さらに、本実施形態の外装袋210は、Y方向の下端部をシールしたシール部213と、Y方向の上端部をシールしたシール部214とを備えており、これにより、蓄冷パック100が袋部211の外へ出ることが防止される。 Further, the outer bag 210 of the present embodiment includes a seal portion 213 that seals the lower end portion in the Y direction and a seal portion 214 that seals the upper end portion in the Y direction, whereby the cold storage pack 100 is packed in the bag portion. It is prevented from going out of 211.
 なお、外装袋210の接続部212は、蓄冷パック100内の蓄冷材110(図1等参照)の固相時、すなわち、蓄冷材110を凍結させた状態において、屈曲可能な可撓性を有していることが望ましい。その理由については、後述する。 The connection portion 212 of the outer bag 210 has flexibility so as to be flexible when the cold storage material 110 (see FIG. 1 and the like) in the cold storage pack 100 is in a solid phase, that is, when the cold storage material 110 is frozen. It is desirable to do. The reason will be described later.
 本実施形態の保冷具200は、次のようにして製造される。まず、図8(a)に示すように、Y方向の上下に開口221、222を有する筒状の外装袋用フィルム220を用意する。次に、図8(b)に示すように、X方向に間隔をあけて、外装袋用フィルム220の内面同士をY方向に部分的に貼り合わせることにより、3本の接続部212を形成する。これにより、3本の接続部212と、接続部212によってX方向に分けられた4個の袋部211とを有する外装袋210が形成される。その後、図8(c)に示すように、外装袋210のY方向の下端部をシールすることにより、シール部213を形成する。続いて、4個の袋部211のそれぞれに、蓄冷パック100のシール部123と外装袋210のシール部213とが対向するように、蓄冷パック100を挿入する。4個の袋部211全てに蓄冷パック100が挿入された後、図7に示すように、外装袋210のY方向の上端部をシールすることにより、シール部214を形成する。 The cold insulation device 200 of the present embodiment is manufactured as follows. First, as shown in FIG. 8A, a tubular outer bag film 220 having openings 221 and 222 at the top and bottom in the Y direction is prepared. Next, as shown in FIG. 8B, the inner surfaces of the outer bag film 220 are partially bonded to each other in the Y direction at intervals in the X direction to form three connecting portions 212. .. As a result, an outer bag 210 having three connecting portions 212 and four bag portions 211 divided in the X direction by the connecting portions 212 is formed. After that, as shown in FIG. 8C, the seal portion 213 is formed by sealing the lower end portion of the outer bag 210 in the Y direction. Subsequently, the cold storage pack 100 is inserted into each of the four bag portions 211 so that the seal portion 123 of the cold storage pack 100 and the seal portion 213 of the outer bag 210 face each other. After the cold storage pack 100 is inserted into all four bag portions 211, the seal portion 214 is formed by sealing the upper end portion of the outer bag 210 in the Y direction as shown in FIG. 7.
 外装袋用フィルム220としては、例えば、NY(ナイロン)/接着PE(ポリエチレン)/NY/接着PE/PEの積層膜であるBNS(多層チューブ)フィルム、EMMA(エチレン・メチルメタクリレート共重合樹脂)フィルム、PE/EVA(エチレン・酢酸ビニル共重合樹脂)/PEの積層膜であるEVAフィルムを用いることができる。また、袋部211に収納される蓄冷パック100を構成する上述の蓄冷パック用フィルム125と同じ材料を外装袋用フィルム220に用いてもよい。このような材料を外装袋210に用いることにより、外装袋210の接続部212を、上述のように、蓄冷材110の固相時においても屈曲可能とすることができる。 Examples of the outer bag film 220 include a BNS (multilayer tube) film which is a laminated film of NY (nylon) / adhesive PE (polyethylene) / NY / adhesive PE / PE, and an EMMA (ethylene / methyl methacrylate copolymer resin) film. , PE / EVA (ethylene-vinyl acetate copolymer resin) / PE laminated film, EVA film can be used. Further, the same material as the above-mentioned cold storage pack film 125 constituting the cold storage pack 100 housed in the bag portion 211 may be used for the outer bag film 220. By using such a material for the outer bag 210, the connecting portion 212 of the outer bag 210 can be made bendable even at the solid phase of the cold storage material 110 as described above.
 なお、図7及び図8には、蓄冷パック100のシール部123が外装袋210のシール部213側に位置するように蓄冷パック100を袋部211に収納した状態を示しているが、蓄冷パック100は、蓄冷パック100のシール部124が外装袋210のシール部213側に位置するように袋部211に収納されても構わない。 7 and 8 show a state in which the cold storage pack 100 is stored in the bag portion 211 so that the seal portion 123 of the cold storage pack 100 is located on the seal portion 213 side of the outer bag 210. The 100 may be stored in the bag portion 211 so that the seal portion 124 of the cold storage pack 100 is located on the seal portion 213 side of the outer bag 210.
 本実施形態によれば、蓄冷パック100自体の両側部L1、L2(図1参照)に接続部を設けて複数の蓄冷パック100を連結するのではなく、複数の蓄冷パック100のそれぞれは、上記第1の実施形態の蓄冷パック(保冷具)100の構成のまま互いに独立している。したがって、第1の実施形態の蓄冷パック100と同様、蓄冷材110の固相時に、背貼り部122のある面F1及び面F1と対向する面F2(図3(b)参照)を平坦性の高い面とすることができるため、各蓄冷パック100の面F1又は面F2を冷却対象物との接触面とすることにより、冷却対象物との接触面積を大きくすることができる。そして、かかる蓄冷パック100を外装袋210の接続部212で仕切られた複数の袋部211のそれぞれに収納した構成としていることにより、例えば、図9の保冷具200の使用方法の一例に示すように、曲面を有する冷却対象物11(例えば、人体の首、頭、脚、腕、肩、手掌部等)に保冷具200を沿わせるように当接させることができ、かつ各蓄冷パック100それぞれが冷却対象物11との接触面積を大きくとることができるため、効率的に冷却対象物11を冷却することが可能となる。 According to the present embodiment, instead of connecting the plurality of cold storage packs 100 by providing connecting portions on both side portions L1 and L2 (see FIG. 1) of the cold storage pack 100 itself, each of the plurality of cold storage packs 100 is described above. The cold storage pack (cold storage device) 100 of the first embodiment remains independent of each other. Therefore, as in the case of the cold storage pack 100 of the first embodiment, when the cold storage material 110 is in a solid phase, the surface F1 having the backing portion 122 and the surface F2 facing the surface F1 (see FIG. 3B) are flat. Since it can be a high surface, the contact area with the cooling target can be increased by using the surface F1 or the surface F2 of each cold storage pack 100 as the contact surface with the cooling target. The cold storage pack 100 is housed in each of the plurality of bag portions 211 partitioned by the connecting portions 212 of the outer bag 210, so that, for example, as shown in an example of how to use the cold insulation tool 200 in FIG. In addition, the cooling device 200 can be brought into contact with the cooling object 11 having a curved surface (for example, the neck, head, legs, arms, shoulders, palms, etc. of the human body), and each of the cold storage packs 100 Can take a large contact area with the object to be cooled 11, so that the object 11 to be cooled can be cooled efficiently.
 また、上述のように、外装袋210の接続部212を蓄冷材110の固相時においても屈曲可能に構成しておくことにより、冷却対象物11が小さい場合や、細い場合等でも、その小ささ、細さに対応して接続部212を屈曲させ、保冷具200を冷却対象物11に当接させ、冷却することができる。 Further, as described above, by configuring the connecting portion 212 of the outer bag 210 so as to be bendable even when the cold storage material 110 is in a solid phase, the cooling object 11 is small even when it is small or thin. The connecting portion 212 can be bent in accordance with the smallness and thinness, and the cooling device 200 can be brought into contact with the cooling object 11 to be cooled.
 さらに、本実施形態によれば、蓄冷パック100から、液相となった蓄冷材110が漏れてしまった場合でも、外装袋210が存在することにより、保冷具200の外へ蓄冷材が漏れて、冷却対象物11を汚染してしまうことを防止できるという効果も得られる。したがって、かかる効果を目的とする場合には、1個の蓄冷パック100を用いて保冷具を構成する場合であっても、保冷具200を、1個の袋部211を有する外装袋210に1個の蓄冷パック100を収納した構成としてもよい。 Further, according to the present embodiment, even if the cold storage material 110 which has become a liquid phase leaks from the cold storage pack 100, the cold storage material leaks to the outside of the cold insulation tool 200 due to the presence of the outer bag 210. It is also possible to prevent the object 11 to be cooled from being contaminated. Therefore, when the purpose is to achieve such an effect, even when the cold storage device is configured by using one cold storage pack 100, the cold storage tool 200 is set to 1 in the outer bag 210 having one bag portion 211. It may be configured to store individual cold storage packs 100.
 なお、本実施形態においては、蓄冷パック100及び外装袋210の袋部211がそれぞれ4個である例を示したが、蓄冷パック100及び袋部211の数は、1個以上あればよく、5個以上でも構わない。 In the present embodiment, an example is shown in which the cold storage pack 100 and the outer bag 210 each have four bag portions 211, but the number of the cold storage pack 100 and the bag portion 211 may be one or more. It does not matter if there are more than one.
 次に、図10及び図11を用いて、図7に示す保冷具200の変形例である保冷具200A及び200Bについて説明する。また、図12を用いて、保冷具200Aの使用例について説明する。なお、図10、図11、及び図12(a)では、図示の簡略化のため、冷却対象物12を平坦なものとして示しているが、保冷具200A及び200Bは、冷却対象物12が曲面を有している場合に、特に好適に用いられる。 Next, the cold storage tools 200A and 200B, which are modifications of the cold storage device 200 shown in FIG. 7, will be described with reference to FIGS. 10 and 11. In addition, an example of using the cold insulation device 200A will be described with reference to FIG. In FIGS. 10, 11, and 12 (a), the cooling object 12 is shown as a flat surface for simplification of the illustration, but in the cooling devices 200A and 200B, the cooling object 12 is a curved surface. It is particularly preferably used when it has.
 図10は本実施形態の保冷具200の変形例である保冷具200Aを示す図である。 FIG. 10 is a diagram showing a cold storage device 200A which is a modification of the cold storage device 200 of the present embodiment.
 図10に示すように、保冷具200Aは、図7に示す保冷具200と、冷却対象物12の冷却時に保冷具200(蓄冷パック100)と冷却対象物12との間に位置するように、保冷具200の冷却対象物12と対向する面側に設けられた緩衝層231とを備えている。緩衝層231は凹凸の無い平面構造であり、蓄冷材110の固相時において屈曲可能な可撓性を有している。緩衝層231を構成する材料は、蓄冷パック100内の蓄冷材110(図1等参照)が固相であるとき、すなわち、蓄冷材110を凍結させる環境下においても凍結せず流動性を有する材料であればどのような材料でもよい。緩衝層231を構成する材料としては、例えば、質量パーセント濃度23%の塩化ナトリウム水溶液に対して、増粘剤を添加したもの等が挙げられる。 As shown in FIG. 10, the cooler 200A is located between the cooler 200 shown in FIG. 7 and the cooler 200 (cold storage pack 100) and the cooling object 12 when the cooling object 12 is cooled. It is provided with a buffer layer 231 provided on the surface side of the refrigerating tool 200 facing the object 12 to be cooled. The buffer layer 231 has a flat structure without unevenness, and has flexibility that allows the cold storage material 110 to bend at a solid phase. The material constituting the buffer layer 231 is a material that does not freeze and has fluidity even when the cold storage material 110 (see FIG. 1 and the like) in the cold storage pack 100 is in a solid phase, that is, even in an environment where the cold storage material 110 is frozen. Any material may be used as long as it is used. Examples of the material constituting the buffer layer 231 include a material obtained by adding a thickener to an aqueous solution of sodium chloride having a mass percent concentration of 23%.
 保冷具200Aによれば、外装袋210の接続部212に対応する部分に緩衝層231が存在することにより、接続部212においても冷却対象物12の冷却が可能となる。また、冷却対象物12との密着性が増すことにより、冷却効率を高めることができる。さらに、緩衝層231が蓄冷材110の固相時において可撓性を有していることから、図9に示すような曲面を有する冷却対象物11に対しても、緩衝層231は、保冷具200とともに屈曲でき、効率的に冷却対象物11を冷却することができる。 According to the cold insulation tool 200A, the presence of the buffer layer 231 in the portion of the outer bag 210 corresponding to the connection portion 212 enables the connection portion 212 to cool the object to be cooled 12. Further, the cooling efficiency can be improved by increasing the adhesion to the object to be cooled 12. Further, since the buffer layer 231 is flexible at the solid phase of the cold storage material 110, the buffer layer 231 is a cooling tool even for the cooling object 11 having a curved surface as shown in FIG. It can be bent together with 200, and the object to be cooled 11 can be cooled efficiently.
 図11は、本実施形態の保冷具200の別の変形例である保冷具200Bを示す図である。 FIG. 11 is a diagram showing a cold storage device 200B which is another modification of the cold storage device 200 of the present embodiment.
 図11に示すように、保冷具200Bは、図7に示す保冷具200と、保冷具200を内包する緩衝層232とを備えている。緩衝層232の構造や構成材料は、保冷具200を内包する構造である以外は、図10に示す保冷具200Aにおける緩衝層231と同様であるため、説明は省略する。 As shown in FIG. 11, the cold insulator 200B includes the cold insulator 200 shown in FIG. 7 and a buffer layer 232 containing the cold insulator 200. The structure and constituent materials of the buffer layer 232 are the same as those of the buffer layer 231 in the cold insulation tool 200A shown in FIG. 10 except that the structure includes the cold insulation tool 200, and thus the description thereof will be omitted.
 保冷具200Bによれば、保冷具200の冷却対象物12と対向する面側だけでなく、保冷具200の冷却対象物12と対向しない面側にも緩衝層232が存在することにより、図10に示す保冷具200Aにおける緩衝層231と同様の効果が得られるとともに、保冷具200(蓄冷パック100)を外部からの衝撃から保護することも可能となる。 According to the cooling device 200B, the buffer layer 232 exists not only on the surface side of the cooling device 200 facing the cooling object 12 but also on the surface side of the cooling device 200 not facing the cooling object 12, so that FIG. The same effect as that of the buffer layer 231 in the cooling device 200A shown in the above can be obtained, and the cooling device 200 (cold storage pack 100) can be protected from an external impact.
 なお、図10及び図11には、蓄冷パック100の背貼り部122のある面と対向する面が冷却対象物12に対向するように構成した例を示しているが、蓄冷パック100の背貼り部122のある面を冷却対象物12に対向させるように構成してもよい。 Although FIGS. 10 and 11 show an example in which the surface of the cold storage pack 100 facing the back-attached portion 122 faces the cooling object 12, the back-attached surface of the cold storage pack 100 is attached. The surface with the portion 122 may be configured to face the cooling object 12.
 図12は、図10に示す保冷具200Aの使用例を示す概略図であり、図12(a)は、本使用例を説明するための概略断面図、図12(b)は、本使用例の具体例を示す図である。 12A and 12B are schematic views showing a usage example of the cold insulation tool 200A shown in FIG. 10, FIG. 12A is a schematic cross-sectional view for explaining the usage example, and FIG. 12B is the usage example. It is a figure which shows the specific example of.
 図12(a)に示すように、本使用例においては、保冷具200と緩衝層231とを有する保冷具200Aを冷却対象物(例えば、人体)12に当接した状態で、冷却対象物12及び保冷具200Aの周囲に固定治具240を巻き付けて、保冷具200Aを固定している。 As shown in FIG. 12A, in this use example, the cooling object 12 has the cooling device 200A having the cooling device 200 and the buffer layer 231 in contact with the cooling object (for example, the human body) 12. And the fixing jig 240 is wrapped around the cooling tool 200A to fix the cooling tool 200A.
 具体的には、保冷具200Aにより、図12(b)に示すように、例えば、脚を冷却対象物12とする場合、固定治具240を用いることにより、サポーターとして使用することができる。ここで、冷却対象物12は脚に限らず、首、頭、腕、肩、手掌部等とすることもできる。 Specifically, as shown in FIG. 12B, the cold insulation tool 200A can be used as a supporter by using the fixing jig 240, for example, when the leg is the object to be cooled 12. Here, the object to be cooled 12 is not limited to the legs, but may be the neck, head, arms, shoulders, palms, and the like.
 なお、本使用例においては、保冷具200Aに換えて、図11に示す保冷具200Bを用いることも可能である。 In this usage example, it is also possible to use the cold storage device 200B shown in FIG. 11 instead of the cold storage device 200A.
[第3の実施形態]
 図13及び図14を用いて、本発明の第3の実施形態の保冷具300について説明する。なお、図13及び図14において、図1~3を用いて説明した第1の実施形態の保冷具(蓄冷パック)100、及び図7~12を用いて説明した第2の実施形態の保冷具200と同一の構成要素には同一の符号を付し、重複する説明は適宜省略する。
[Third Embodiment]
The cold insulation device 300 of the third embodiment of the present invention will be described with reference to FIGS. 13 and 14. In addition, in FIGS. 13 and 14, the cold storage device (cold storage pack) 100 of the first embodiment described with reference to FIGS. 1 to 3 and the cold storage device of the second embodiment described with reference to FIGS. 7 to 12 The same components as those of 200 are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
 図13は、本発明の第3の実施形態の保冷具300の構成を示す概略図である。また、図14は、図13に示す保冷具300の製造方法の一工程を示す図である。 FIG. 13 is a schematic view showing the configuration of the cold insulation device 300 according to the third embodiment of the present invention. Further, FIG. 14 is a diagram showing one step of the manufacturing method of the cold insulation tool 300 shown in FIG.
 図13に示すように、第3の実施形態の保冷具300は、外装袋210と、図1に示す蓄冷パック100を16個備えている。外装袋210は、X方向(第2の方向)及びY方向(第1の方向)に4行4列のマトリクス状に配置された16個の袋部311と、16個の袋部311において、X方向に隣接する袋部311を接続する接続部212と、Y方向に隣接する袋部311を接続する接続部312とを有しており、16個の蓄冷パック100は、16個の袋部311のそれぞれに、蓄冷パック100の背貼り部122の延在方向がY方向と一致するように収納されている。 As shown in FIG. 13, the cold storage device 300 of the third embodiment includes an outer bag 210 and 16 cold storage packs 100 shown in FIG. The outer bag 210 is formed in 16 bag portions 311 and 16 bag portions 311 arranged in a matrix of 4 rows and 4 columns in the X direction (second direction) and the Y direction (first direction). It has a connecting portion 212 for connecting the bag portions 311 adjacent to the X direction and a connecting portion 312 for connecting the bag portions 311 adjacent to the Y direction, and the 16 cold storage packs 100 have 16 bag portions. In each of the 311s, the backing portion 122 of the cold storage pack 100 is stored so that the extending direction coincides with the Y direction.
 本実施形態における蓄冷パック100は、第1及び第2の実施形態における蓄冷パック100と同様の構造を有しているが、第2の実施形態における蓄冷パック100よりも、シール部123及び124の長さに対する背貼り部122の長さの比が小さくなっている。そして、本実施形態における蓄冷パック100のY方向の長さは、外装袋210のY方向の長さの1/4以下となっている。 The cold storage pack 100 in the present embodiment has the same structure as the cold storage pack 100 in the first and second embodiments, but has a seal portion 123 and 124 more than the cold storage pack 100 in the second embodiment. The ratio of the length of the backing portion 122 to the length is small. The length of the cold storage pack 100 in the Y direction in the present embodiment is 1/4 or less of the length of the outer bag 210 in the Y direction.
 本実施形態においても、接続部212及び接続部312は、第2の実施形態の保冷具200における外装袋210の接続部212と同様に、蓄冷パック100内の蓄冷材110(図1等参照)の固相時において屈曲可能な可撓性を有していることが望ましい。 Also in this embodiment, the connecting portion 212 and the connecting portion 312 are the cold storage material 110 in the cold storage pack 100 (see FIG. 1 and the like), similarly to the connecting portion 212 of the outer bag 210 in the cold insulation tool 200 of the second embodiment. It is desirable that the product has flexibility that allows it to bend in the solid phase.
 このように構成された本実施形態の保冷具300によれば、例えば、球面を有する冷却対象物を包み込むようにして冷却することが可能となる。 According to the refrigerating tool 300 of the present embodiment configured in this way, for example, it is possible to cool the object to be cooled by wrapping the object to be cooled having a spherical surface.
 本実施形態の保冷具300は、次のようにして製造される。まず、図8(a)~(c)に示した第2の実施形態の保冷具200の製造方法と同様にして、筒状の外装袋用フィルム220から、4個の袋部211、接続部212、及びシール部213を形成する。その後、図14に示すように、4個の袋部211のそれぞれに、蓄冷パック100のシール部123と外装袋210のシール部213とが対向するように、蓄冷パック100を挿入する。続いて、外装袋210のシール部213上に配置された4個の蓄冷パック100のシール部124よりもY方向の上部におけるシール部124と重ならない位置の外装袋210の内面同士をX方向に部分的に貼り合わせることにより、接続部312を形成する。これにより、マトリクス状に配置される袋部311のうち、Y方向の最下行の袋部311が形成される。かかる工程を繰り返し行い、最後に、外装袋210のY方向の上端部をシールしてシール部214を形成することにより、図13に示す保冷具300が完成する。 The cold insulation device 300 of the present embodiment is manufactured as follows. First, in the same manner as the manufacturing method of the cold insulation tool 200 of the second embodiment shown in FIGS. 8A to 8C, the tubular outer bag film 220, the four bag portions 211, and the connection portion The 212 and the seal portion 213 are formed. After that, as shown in FIG. 14, the cold storage pack 100 is inserted into each of the four bag portions 211 so that the seal portion 123 of the cold storage pack 100 and the seal portion 213 of the outer bag 210 face each other. Subsequently, the inner surfaces of the outer bag 210 at a position not overlapping with the seal portion 124 at the upper portion in the Y direction of the seal portions 124 of the four cold storage packs 100 arranged on the seal portion 213 of the outer bag 210 are placed in the X direction. The connecting portion 312 is formed by partially laminating them. As a result, of the bag portions 311 arranged in a matrix, the bottommost bag portion 311 in the Y direction is formed. By repeating this process and finally sealing the upper end portion of the outer bag 210 in the Y direction to form the sealing portion 214, the cold insulation tool 300 shown in FIG. 13 is completed.
 なお、本実施形態においては、蓄冷パック100及び外装袋210の袋部311がそれぞれ16個である例を示したが、蓄冷パック100及び袋部311の数は、マトリクス状に配置できる数であればいくつでも構わない。 In the present embodiment, an example is shown in which the cold storage pack 100 and the outer bag 210 each have 16 bag portions 311. However, the number of the cold storage pack 100 and the bag portion 311 may be any number that can be arranged in a matrix. Any number is acceptable.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention, and these are also the present invention. Needless to say, it is included in the range.
 例えば、第2の実施形態の保冷具200において、緩衝層を設ける例を示した(図10及び図11参照)が、当該緩衝層は、第1の実施形態の保冷具100及び第3の実施形態の保冷具300にも設けることが可能である。 For example, in the cold insulation tool 200 of the second embodiment, an example in which a buffer layer is provided is shown (see FIGS. 10 and 11), but the buffer layer is the cold insulation tool 100 and the third embodiment of the first embodiment. It can also be provided in the form of the cold insulation device 300.

Claims (9)

  1.  固相時の体積が液相時の体積より小さくなる蓄冷材と、
     フィルムの両端部の内面同士をシールした第1の方向に延在する背貼り部が設けられ前記蓄冷材が充填される筒部と、前記筒部の両端部それぞれをシールした前記第1の方向と交差する第2の方向に延在する第1及び第2のシール部と、を有する包装袋と、
    を含む少なくとも一つの蓄冷パックを備えることを特徴とする保冷具。
    A cold storage material whose volume in the solid phase is smaller than that in the liquid phase,
    A tubular portion provided with a backing portion extending in a first direction extending between the inner surfaces of both end portions of the film and filled with the cold storage material, and the first direction in which both end portions of the tubular portion are sealed. A packaging bag having first and second seals extending in a second direction intersecting with
    A cold storage device characterized by having at least one cold storage pack containing.
  2.  前記背貼り部は、前記第1及び第2のシール部それぞれの略中央で交差するように設けられていることを特徴とする請求項1に記載の保冷具。 The cold insulation device according to claim 1, wherein the back-pasting portion is provided so as to intersect at substantially the center of each of the first and second seal portions.
  3.  前記背貼り部の長さは、前記第1及び第2のシール部の長さよりも長いことを特徴とする請求項1又は2に記載の保冷具。 The cold insulation device according to claim 1 or 2, wherein the length of the backing portion is longer than the length of the first and second sealing portions.
  4.  前記少なくとも一つの蓄冷パックは複数の蓄冷パックであって、
     前記第2の方向に並んで配置された複数の袋部と、前記複数の袋部において隣接する袋部を接続する接続部とを有する外装袋をさらに備え、
     前記複数の蓄冷パックは、前記外装袋の前記複数の袋部のそれぞれに収納されていることを特徴とする請求項1乃至3のいずれか一項に記載の保冷具。
    The at least one cold storage pack is a plurality of cold storage packs.
    Further, an outer bag having a plurality of bag portions arranged side by side in the second direction and a connecting portion for connecting adjacent bag portions in the plurality of bag portions is further provided.
    The cold storage device according to any one of claims 1 to 3, wherein the plurality of cold storage packs are housed in each of the plurality of bag portions of the outer bag.
  5.  前記少なくとも一つの蓄冷パックは複数の蓄冷パックであって、
     前記第1及び第2の方向にマトリクス状に配置された複数の袋部と、前記複数の袋部において隣接する袋部を接続する接続部と、を有する外装袋をさらに備え、
     前記複数の蓄冷パックは、前記外装袋の前記複数の袋部のそれぞれに収納されていることを特徴とする請求項1乃至3のいずれか一項に記載の保冷具。
    The at least one cold storage pack is a plurality of cold storage packs.
    An outer bag having a plurality of bag portions arranged in a matrix in the first and second directions and a connecting portion for connecting adjacent bag portions in the plurality of bag portions is further provided.
    The cold storage device according to any one of claims 1 to 3, wherein the plurality of cold storage packs are housed in each of the plurality of bag portions of the outer bag.
  6.  前記接続部は、前記蓄冷材の固相時において可撓性を有していることを特徴とする請求項4又は5に記載の保冷具。 The cold storage device according to claim 4 or 5, wherein the connection portion has flexibility when the cold storage material is in a solid phase.
  7.  前記蓄冷パックと冷却対象物との間に位置するように、少なくとも前記蓄冷パックの前記冷却対象物と対向する面側に設けられた緩衝層をさらに備えることを特徴とする請求項1乃至6のいずれか一項に記載の保冷具。 Claims 1 to 6, further comprising a buffer layer provided at least on the surface side of the cold storage pack facing the cooling target so as to be located between the cold storage pack and the cooling target. The cold storage device described in any one of the items.
  8.  前記緩衝層は、前記蓄冷パックを内包していることを特徴とする請求項7に記載の保冷具。 The cold storage device according to claim 7, wherein the buffer layer contains the cold storage pack.
  9.  前記緩衝層は、前記蓄冷材が液相から固相へ相変化する環境下において可撓性を有していることを特徴とする請求項7又は8に記載の保冷具。 The cold storage device according to claim 7 or 8, wherein the buffer layer has flexibility in an environment in which the cold storage material changes phase from a liquid phase to a solid phase.
PCT/JP2020/033029 2019-09-27 2020-09-01 Cold-insulating tool WO2021059888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177246 2019-09-27
JP2019177246 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059888A1 true WO2021059888A1 (en) 2021-04-01

Family

ID=75165745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033029 WO2021059888A1 (en) 2019-09-27 2020-09-01 Cold-insulating tool

Country Status (1)

Country Link
WO (1) WO2021059888A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167422U (en) * 2011-02-09 2011-04-21 株式会社ヒラカワコーポレーション Matt cold insulation
JP2013116283A (en) * 2011-12-05 2013-06-13 Kobayashi Pharmaceutical Co Ltd Cooling device
WO2016190333A1 (en) * 2015-05-26 2016-12-01 シャープ株式会社 Heat-storage gel material, uses thereof, and production process therefor
WO2017187774A1 (en) * 2016-04-28 2017-11-02 シャープ株式会社 Cooling tool, and therapeutic tool used in cooling therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167422U (en) * 2011-02-09 2011-04-21 株式会社ヒラカワコーポレーション Matt cold insulation
JP2013116283A (en) * 2011-12-05 2013-06-13 Kobayashi Pharmaceutical Co Ltd Cooling device
WO2016190333A1 (en) * 2015-05-26 2016-12-01 シャープ株式会社 Heat-storage gel material, uses thereof, and production process therefor
WO2017187774A1 (en) * 2016-04-28 2017-11-02 シャープ株式会社 Cooling tool, and therapeutic tool used in cooling therapy

Similar Documents

Publication Publication Date Title
US20220144529A1 (en) Method and apparatus for thermally protecting and/or transporting temperature sensitive products
US9957099B2 (en) Insulated container system for maintaining a controlled payload temperature
US6482332B1 (en) Phase change formulation
US8607581B2 (en) Package having phase change materials and method of use in transport of temperature sensitive payload
US10919683B2 (en) Thermal energy storage pack, thermal exchange unit, and manufacturing method of thermal energy storage pack
WO2012117575A1 (en) Cooling device
JP2009184690A (en) Self-standing bag
JP2016211750A (en) Heat storage pack and heat exchange unit
WO2012176708A1 (en) Heat storage member and heat storage container
JP6134273B2 (en) Latent heat storage material and latent heat storage tank
US20170153054A1 (en) Cold insulation member
JP2009168303A (en) Room temperature heat retaining agent bag maintaining room temperature over long hours, heat retaining box, and heat retaining method
WO2021059888A1 (en) Cold-insulating tool
JP2016530915A (en) Plate for serving warm dishes
JPWO2018235951A1 (en) Cold storage material and cold storage pack
WO2019235279A1 (en) Cooling tool, packaging container, and method for transporting cooled object
JP6663508B2 (en) Heat storage materials, cooling equipment, logistics packaging containers and cooling units
WO2020003844A1 (en) Cold preservation tool, distribution packaging container, method for transporting object to be kept cold, and cold preservation tool manufacturing method
JP6745287B2 (en) Heat storage material, heat storage pack using the same, constant temperature container and transportation container
KR200396806Y1 (en) A Bag for Cold Storage
CN207497314U (en) Keep the temperature packaging system
WO2019230627A1 (en) Packing container, and method for transporting cold-storage articles
JP6134272B2 (en) Latent heat storage material and latent heat storage tank
JPH10234767A (en) Heat storage pack and heat storage pack tool
CN207001285U (en) The compound cold insulated cabinet of gas-liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP