WO2021059636A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2021059636A1
WO2021059636A1 PCT/JP2020/025236 JP2020025236W WO2021059636A1 WO 2021059636 A1 WO2021059636 A1 WO 2021059636A1 JP 2020025236 W JP2020025236 W JP 2020025236W WO 2021059636 A1 WO2021059636 A1 WO 2021059636A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
range
discharge amount
eop4
oil pump
Prior art date
Application number
PCT/JP2020/025236
Other languages
French (fr)
Japanese (ja)
Inventor
広宣 宮石
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2021548346A priority Critical patent/JP7169457B2/en
Publication of WO2021059636A1 publication Critical patent/WO2021059636A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • JP2016-61348A discloses that the electric oil pump is driven when the select lever is switched from the R range to the D range while the vehicle is traveling backward. According to this, it is possible to secure the necessary oil pressure to prevent the belt (drive chain) of the continuously variable transmission from slipping with respect to the pulley.
  • the present invention has been made in view of such technical problems, and an object of the present invention is to make it possible to deal with a plurality of scenes in securing the hydraulic pressure required to prevent the belt from slipping.
  • the electric oil is a control device for a vehicle having a belt continuously variable transmission to which flood control is supplied from an electric oil pump, and when the N range is selected while the vehicle is running, the electric oil.
  • a vehicle control device is provided that has a control unit that increases the discharge rate of the pump.
  • it is a control device of a vehicle having a belt continuously variable transmission to which flood control is supplied from an electric oil pump, and the traveling of the vehicle is started while the N range is selected.
  • a vehicle control device having a control unit for increasing the discharge amount of the electric oil pump is provided.
  • the discharge amount of the electric oil pump can be increased before the traveling range in the direction opposite to the traveling direction is selected, and the oil supply supplied to the belt continuously variable transmission can be secured.
  • the oil pressure required to prevent the belt from slipping a scene in which the traveling direction is the forward direction and the R range is selected, and a scene in which the traveling direction is the backward direction and the D range is selected. It becomes possible to correspond to the scene.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which the control device according to the embodiment of the present invention is applied.
  • FIG. 2 is a flowchart showing the contents of drive control of the electric oil pump.
  • FIG. 3 is a diagram showing the relationship between the state of the vehicle and the state of the electric oil pump.
  • FIG. 4 is a time chart for explaining how the drive control of the electric oil pump is performed.
  • FIG. 5 is a time chart for explaining the required hydraulic pressure of the pulley.
  • FIG. 1 is a schematic configuration diagram of the vehicle 100.
  • the vehicle 100 includes an engine 1, an automatic transmission 2 as a belt continuously variable transmission connected to the engine 1, a mechanical oil pump (hereinafter, referred to as “MOP”) 3, and an electric oil pump (hereinafter, “MOP”). It includes an EOP () 4, a drive wheel 5, and a controller 6 as a control device.
  • MOP mechanical oil pump
  • MOP electric oil pump
  • Engine 1 is an internal combustion engine that uses gasoline, light oil, etc. as fuel, and functions as a driving source for traveling.
  • the engine 1 is controlled in rotation speed, torque, and the like based on a command from the controller 6.
  • the automatic transmission 2 includes a torque converter 21, a forward / backward switching mechanism 22, a variator 23, a hydraulic control valve unit (hereinafter referred to as “valve unit”) 24, and an oil pan 25 for storing hydraulic oil. Be prepared.
  • the torque converter 21 is provided on the power transmission path between the engine 1 and the drive wheels 5.
  • the torque converter 21 transmits power via a fluid.
  • the torque converter 21 has a lockup clutch 21a. When the lockup clutch 21a is engaged, the input shaft 21b and the output shaft 21c of the torque converter 21 are directly connected, and the input shaft 21b and the output shaft 21c rotate at the same speed.
  • the forward / backward switching mechanism 22 is arranged on the power transmission path between the torque converter 21 and the variator 23.
  • the forward / backward switching mechanism 22 has a double pinion planetary gear set as a main component, the sun gear thereof is coupled to the engine 1 via a torque converter 21, and the carrier is coupled to the primary pulley 23a.
  • the forward / backward switching mechanism 22 further includes a forward clutch 22a that directly connects the sun gear and the carrier of the double pinion planetary gear set, and a reverse brake 22b that fixes the ring gear. When the forward clutch 22a is engaged, the engine 1 passes through the torque converter 21.
  • the input rotation is transmitted to the primary pulley 23a as it is, and when the reverse brake 22b is engaged, the input rotation from the engine 1 via the torque converter 21 is reversely decelerated and transmitted to the primary pulley 23a.
  • the forward clutch 22a and the reverse brake 22b are controlled by hydraulic oil adjusted by the valve unit 24 with the discharge pressures of MOP3 and EOP4 as the main pressures based on the command from the controller 6.
  • the variator 23 is arranged on the power transmission path between the forward / backward switching mechanism 22 and the drive wheels 5, and changes the gear ratio steplessly according to the vehicle speed, the accelerator pedal opening, and the like.
  • the variator 23 includes a primary pulley 23a, a secondary pulley 23b, and a belt 23c as a power transmission element wound around both pulleys 23a and 23b.
  • the movable pulley of the primary pulley 23a and the movable pulley of the secondary pulley 23b are moved in the axial direction by the pulley pressure, and the pulley contact radius of the belt 23c is changed to change the gear ratio steplessly.
  • the pulley pressure acting on the primary pulley 23a and the pulley pressure acting on the secondary pulley 23b are adjusted by the valve unit 24 with the discharge pressures of MOP3 and EOP4 as the original pressures.
  • a differential 7 is connected to the output shaft of the secondary pulley 23b of the variator 23 via a final reduction gear mechanism (not shown).
  • the drive wheels 5 are connected to the differential 7 via the drive shaft 8.
  • the MOP3 is driven by inputting the rotation of the engine 1 and using a part of the power of the engine 1.
  • the MOP 3 sucks up the hydraulic oil stored in the oil pan 25 and supplies the hydraulic oil to the valve unit 24.
  • the hydraulic oil supplied to the valve unit 24 is used for driving the primary pulley 23a and the secondary pulley 23b, driving the forward clutch 22a and the reverse brake 22b, lubricating each element of the automatic transmission 2, and the like.
  • the MOP3 is not driven and the hydraulic oil is not discharged from the MOP3.
  • EOP4 is driven by being supplied with electric power from a battery (not shown).
  • the EOP3 sucks up the hydraulic oil stored in the oil pan 25 and supplies the hydraulic oil to the valve unit 24.
  • the hydraulic oil supplied to the valve unit 24 is used for driving the primary pulley 23a and the secondary pulley 23b, driving the forward clutch 22a and the reverse brake 22b, lubricating each element of the automatic transmission 2, and the like.
  • hydraulic oil can be supplied to the valve unit 24 even when the engine 1 in which the MOP3 is not driven is stopped.
  • the controller 6 is composed of a microcomputer equipped with a central arithmetic unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 6 can also be configured by a plurality of microcomputers. Specifically, the controller 6 can also be configured by an ATCU that controls the automatic transmission 2, an SCU that controls the select range, an ECU that controls the engine 1, and the like.
  • the controller 6 controls each part of the vehicle 100 by the CPU reading and executing the program stored in the ROM.
  • the second rotation speed sensor 52 that detects (turbine rotation speed)
  • the third rotation speed sensor 53 that detects the rotation speed Np and the rotation direction of the primary pulley 23a
  • the fourth rotation speed sensor that detects the rotation speed Ns of the secondary pulley 23b.
  • Vehicle speed sensor 55 that detects vehicle speed
  • Inhibita that detects select range (state of select lever or select switch that switches forward (D) range, reverse (R) range, neutral (N) range and parking (P) range) Signals are input from the switch 56, the accelerator opening sensor 57 that detects the accelerator pedal opening, the pedaling force sensor 58 that detects the pedaling force of the brake, and the like.
  • the controller 6 controls various operations of the engine 1 and the automatic transmission 2 based on these input signals.
  • a traveling range in the direction opposite to the traveling direction may be selected during traveling.
  • the select range is switched from the D range to the R range while traveling forward.
  • the input torque to the variator 23 increases due to the fastening of the reverse brake 22b, and the engine rotation speed Ne decreases due to the load of the torque converter 20, so that the discharge amount of the MOP3 decreases.
  • the pulley pressure required to prevent slipping with respect to 23b cannot be secured.
  • the select range is switched from the R range to the D range while traveling backward.
  • the control unit of the controller 6 can secure the pulley pressure necessary for preventing the belt 23c from slipping with respect to the pulleys 23a and 23b corresponding to each of the above scenes.
  • the drive control of EOP4 is executed.
  • the control unit of the controller 6 is a virtual unit having a function of executing drive control of the EOP4 of the controller 6.
  • FIG. 2 is a flowchart showing the contents of the drive control of EOP4.
  • the controller 6 repeatedly executes the process shown in FIG. 2, for example, in the state where the ignition is ON.
  • the calculation cycle is, for example, 10 ms.
  • step S11 the controller 6 determines whether the vehicle 100 is running based on the signal input from the vehicle speed sensor 55 that detects the vehicle speed. Specifically, if the vehicle speed is not zero, it is determined that the vehicle 100 is running, and if the vehicle speed is zero, it is determined that the vehicle 100 is stopped. It should be noted that the vehicle 100 may be determined to be stopped when the state where the vehicle speed is zero continues for a predetermined time.
  • step S12 When the controller 6 determines that the vehicle 100 is running, the process proceeds to step S12. Further, when the controller 6 determines that the vehicle 100 is stopped, the process proceeds to step S21.
  • step S21 the controller 6 stops EOP4. If EOP4 has already stopped, the stopped state is maintained.
  • step S12 the controller 6 determines whether the select range is the N range based on the signal input from the inhibitor switch 56.
  • the controller 6 When the controller 6 detects that the select range is the N range, the controller 6 shifts the process to step S13. Further, when the controller 6 detects that the select range is other than the N range, the controller 6 shifts the process to step S14.
  • step S13 the controller 6 increases the discharge amount of EOP4.
  • the EOP4 is driven by the first output to increase the discharge amount.
  • the EOP 4 is driven on condition that the N range is selected and the vehicle 100 is running, regardless of the select range before (immediately before selection) the N range is selected.
  • the discharge amount of EOP4 is increased as compared with before the condition is satisfied.
  • increasing the discharge amount of EOP4 includes transitioning EOP4 from a stopped state to a driven state.
  • increasing the discharge amount of EOP4 includes further increasing the discharge amount when the EOP4 is already in the driving state.
  • EOP4 is driven by the total output of the output before N range selection (immediately before selection) plus the first output.
  • the N range is passed through. Therefore, by setting that the N range is selected while the vehicle 100 is running as a condition for increasing the discharge amount of the EOP 4, the automatic transmission 2 is supplied before the running range in the direction opposite to the running direction is selected.
  • the hydraulic pressure can be increased, and the belt 23c can be prevented from slipping with respect to the pulleys 23a and 23b.
  • the control to increase the discharge amount of EOP4 when the vehicle 100 starts traveling while the N range is selected is the traveling direction in the scene where the brake is released (brake OFF) while the N range is selected on a slope. This is a countermeasure when the traveling range in the opposite direction is selected. Therefore, by setting the start of traveling of the vehicle 100 as a condition for increasing the discharge amount of EOP4, the oil pressure supplied to the automatic transmission 2 is increased before the traveling range in the direction opposite to the traveling direction is selected. It is possible to prevent the belt 23c from slipping with respect to the pulleys 23a and 23b.
  • the control condition for increasing the discharge amount of the EOP4 is satisfied when the vehicle 100 starts running while the N range is selected, so that the EOP4 is driven. Will be done.
  • step S14 the controller 6 determines whether the traveling direction of the vehicle 100 is the forward direction based on the signal input from the third rotation speed sensor 53.
  • the third rotation speed sensor 53 can detect the rotation direction of the primary pulley 23a.
  • a sensor other than the third rotation speed sensor 53 may be used to determine the traveling direction of the vehicle 100.
  • a sensor capable of detecting the rotation direction as the fourth rotation speed sensor 54 or the vehicle speed sensor 55 may be used. It is conceivable to adopt it.
  • step S15 When the controller 6 determines that the traveling direction of the vehicle 100 is the forward direction, the controller 6 shifts the process to step S15. Further, when the controller 6 determines that the traveling direction of the vehicle 100 is not the forward direction, that is, the backward direction, the controller 6 shifts the process to step S18.
  • step S15 the controller 6 determines whether the select range is the D range based on the signal input from the inhibitor switch 56.
  • the controller 6 When the controller 6 detects that the select range is the D range, the controller 6 shifts the process to step S16. Further, when the controller 6 detects that the select range is other than the D range, that is, the R range, the controller 6 shifts the process to step S17.
  • step S16 the controller 6 stops the EOP4 to make the discharge amount zero.
  • the discharge amount may be simply reduced without stopping the EOP4.
  • the traveling direction of the vehicle 100 is the forward direction and the D range is selected, the possibility that the belt 23c slips is low. Therefore, in this case, the electricity cost or the fuel consumption is suppressed by reducing the discharge amount of EOP4.
  • reducing the discharge amount of EOP4 also includes stopping EOP4.
  • step S17 the controller 6 increases the discharge amount of EOP4.
  • the EOP 4 is driven by the second output, which is an output higher than the first output, to increase the discharge amount.
  • the traveling direction of the vehicle 100 is the forward direction and the R range is selected, there is a possibility that the pulley pressure required to prevent the belt 23c from slipping cannot be secured. Therefore, by operating the EOP 4 at the second output, which has a larger discharge amount than the first output, the belt 23c is prevented from slipping with respect to the pulleys 23a and 23b in earnest.
  • the EOP4 While the N range is selected, the EOP4 is operated at the first output, which has a smaller discharge amount than the second output (step S13). Since it is unclear whether or not the traveling range in the direction opposite to the traveling direction of the vehicle 100 is selected after selecting the N range, it is possible to set the output of EOP4 low while selecting the N range to reduce fuel consumption or electricity consumption. It suppresses fuel consumption.
  • step S18 the controller 6 determines whether the select range is the D range based on the signal input from the inhibitor switch 56.
  • the controller 6 When the controller 6 detects that the select range is the D range, the controller 6 shifts the process to step S19. Further, when the controller 6 detects that the select range is other than the D range, that is, the R range, the controller 6 shifts the process to step S20.
  • step S19 the controller 6 increases the discharge amount of EOP4.
  • the EOP 4 is driven by the second output, which is an output higher than the first output, to increase the discharge amount.
  • the traveling direction of the vehicle 100 is the backward direction and the D range is selected, there is a possibility that the pulley pressure required to prevent the belt 23c from slipping cannot be secured. Therefore, by operating the EOP 4 at the second output, which has a larger discharge amount than the first output, the belt 23c is prevented from slipping with respect to the pulleys 23a and 23b in earnest.
  • step S20 the controller 6 stops the EOP4 to make the discharge amount zero.
  • the discharge amount may be simply reduced without stopping the EOP4.
  • the traveling direction of the vehicle 100 is the backward direction and the R range is selected, the possibility that the belt 23c slips is low. Therefore, in this case, the electricity cost or the fuel consumption is suppressed by reducing the discharge amount of EOP4.
  • reducing the discharge amount of EOP4 also includes stopping EOP4.
  • the EOP 4 is in the stopped state (OFF) regardless of which of the D range, the N range, and the R range is selected.
  • EOP4 While the vehicle 100 is traveling forward, if the D range is selected, EOP4 will be in a stopped state. When the N range is selected, the EOP4 is driven at the first output. When the R range is selected, the EOP4 is driven by the second output.
  • EOP4 While the vehicle 100 is traveling backward, if the R range is selected, EOP4 is in a stopped state. When the N range is selected, the EOP4 is driven at the first output. When the D range is selected, the EOP4 is driven by the second output.
  • the controller 6 detects that the N range has been selected. Then, the EOP4 is driven, and then the driving of the EOP4 is continued even after the traveling range is selected.
  • the controller 6 indicates that the N range has been selected. Even if it is detected, EOP4 is not driven. However, as described above, this does not apply when the drive conditions in other drive controls are satisfied for EOP4.
  • the brake is ON and the vehicle 100 is stopped. Also, the N range is selected.
  • the forward clutch 22a When the D range is selected at time t1, the forward clutch 22a is started to be engaged. When the differential rotation between the turbine rotation speed Nt and the primary pulley rotation speed Np becomes a predetermined value or less due to the slip control of the forward clutch 22a, the forward clutch 22a is completely engaged.
  • EOP4 is driven by the second output. Further, the reverse brake 22b is started to be fastened.
  • the reverse brake 22b when the reverse brake 22b is engaged, the input rotation from the engine 1 via the torque converter 21 is reversely decelerated and transmitted to the primary pulley 23a. Therefore, when the difference rotation between the absolute value of the turbine rotation speed Nt and the primary pulley rotation speed Np becomes equal to or less than a predetermined value by the slip control of the reverse brake 22b, the reverse brake 22b is completely engaged.
  • the reverse brake 22b As the reverse brake 22b is engaged, the engine rotation speed Ne decreases due to the load of the torque converter 20. As a result, the discharge amount of MOP3 also decreases, and as shown in FIG. 5, the oil pressure supplied from MOP3 to the automatic transmission 2 decreases. On the other hand, when the reverse brake 22b is fastened, the input torque to the variator 23 increases, so that the pulley pressure (pulley required oil pressure) required to prevent the belt 23c from slipping increases.
  • the EOP4 when the R range is selected at time t4, the EOP4 is driven by the second output, and the amount of oil that is insufficient for the required oil for the pulley is reduced from the EOP4 to the automatic transmission 2 Is supplied to. As a result, the required oil pressure for the pulley is secured.
  • the forward speed of the vehicle 100 decreases. Then, at time t5, the traveling direction of the vehicle 100 changes from the forward direction to the backward direction.
  • the traveling direction of the vehicle 100 is the backward direction and the R range is selected, and the driving of the EOP 4 is stopped.
  • the controller 6 of the vehicle 100 having the automatic transmission 2 to which the flood control is supplied from the EOP 4 discharges the EOP 4 when the N range is selected while the vehicle 100 is traveling. Increase the amount.
  • controller 6 increases the discharge amount of the EOP 6 when the running of the vehicle 100 is started while the N range is selected.
  • the discharge amount of EOP4 can be increased before the traveling range in the direction opposite to the traveling direction is selected, and the oil supply supplied to the automatic transmission 2 can be secured.
  • the oil supply supplied to the automatic transmission 2 can be secured.
  • the increase in the discharge amount of EOP4 is to shift the EOP4 from the stopped state to the driven state.
  • the EOP4 is not always in the driving state, but is driven as needed. Therefore, electricity cost or fuel consumption can be suppressed.
  • the increase in the discharge amount of the EOP4 is to further increase the discharge amount when the EOP4 is in the driving state.
  • the fact that the EOP4 is in the driving state before the condition for increasing the discharge amount of the EOP4 is satisfied means that the automatic transmission 2 is in a state in which a large amount of oil is required. Therefore, in this case, it is important to further increase the discharge amount of EOP4 for suppressing the slip of the belt 23c.
  • controller 6 further increases the discharge amount of the EOP4 when the traveling range in the direction opposite to the traveling direction of the vehicle 100 is selected after increasing the discharge amount of the EOP4.
  • controller 6 reduces the discharge amount of the EOP4 when the traveling range in the same direction as the traveling direction of the vehicle 100 is selected after increasing the discharge amount of the EOP4.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A control device for a vehicle having a belt-type continuously variable transmission to which oil pressure is supplied from an electric oil pump, said control device having a control unit that increases the discharge amount of the electric oil pump when the N-range is selected during travel of the vehicle.

Description

車両の制御装置及び車両の制御方法Vehicle control device and vehicle control method
 本発明は、車両の制御装置及び車両の制御方法に関する。 The present invention relates to a vehicle control device and a vehicle control method.
 JP2016-61348Aには、車両が後退走行している状態でセレクトレバーがRレンジからDレンジに切り換えられた場合に、電動オイルポンプを駆動させることが開示されている。これによれば、無段変速機のベルト(駆動チェーン)がプーリに対してスリップすることを防止するために必要な油圧を確保することができる。 JP2016-61348A discloses that the electric oil pump is driven when the select lever is switched from the R range to the D range while the vehicle is traveling backward. According to this, it is possible to secure the necessary oil pressure to prevent the belt (drive chain) of the continuously variable transmission from slipping with respect to the pulley.
 JP2016-61348Aにおいては、RレンジからDレンジへ切り換えられた場合の対応のみしか開示されておらず、他のシーンに対する対応が考慮されていない。 In JP2016-61348A, only the correspondence when switching from the R range to the D range is disclosed, and the correspondence to other scenes is not considered.
 本発明は、このような技術的課題に鑑みてなされたもので、ベルトのスリップを防止するために必要な油圧を確保するに際して、複数のシーンに対応可能とすることを目的とする。 The present invention has been made in view of such technical problems, and an object of the present invention is to make it possible to deal with a plurality of scenes in securing the hydraulic pressure required to prevent the belt from slipping.
 本発明のある態様によれば、電動オイルポンプから油圧が供給されるベルト無段変速機を有する車両の制御装置であって、前記車両の走行中にNレンジが選択されると、前記電動オイルポンプの吐出量を増加させる制御部を有する、車両の制御装置が提供される。 According to an aspect of the present invention, the electric oil is a control device for a vehicle having a belt continuously variable transmission to which flood control is supplied from an electric oil pump, and when the N range is selected while the vehicle is running, the electric oil. A vehicle control device is provided that has a control unit that increases the discharge rate of the pump.
 また、本発明の別の態様によれば、電動オイルポンプから油圧が供給されるベルト無段変速機を有する車両の制御装置であって、Nレンジの選択中に前記車両の走行が開始されると、前記電動オイルポンプの吐出量を増加させる制御部を有する、車両の制御装置が提供される。 Further, according to another aspect of the present invention, it is a control device of a vehicle having a belt continuously variable transmission to which flood control is supplied from an electric oil pump, and the traveling of the vehicle is started while the N range is selected. A vehicle control device having a control unit for increasing the discharge amount of the electric oil pump is provided.
 また、これらに対応する車両の制御方法が提供される。 In addition, a vehicle control method corresponding to these is provided.
 これらの態様によれば、走行方向と逆方向の走行レンジが選択される前に電動オイルポンプの吐出量を増加させることができ、ベルト無段変速機に供給される油圧を確保できる。これにより、ベルトのスリップを防止するために必要な油圧を確保するに際して、走行方向が前進方向であってRレンジが選択されるシーンと、走行方向が後退方向であってDレンジが選択されるシーンと、に対応可能となる。 According to these aspects, the discharge amount of the electric oil pump can be increased before the traveling range in the direction opposite to the traveling direction is selected, and the oil supply supplied to the belt continuously variable transmission can be secured. As a result, when securing the oil pressure required to prevent the belt from slipping, a scene in which the traveling direction is the forward direction and the R range is selected, and a scene in which the traveling direction is the backward direction and the D range is selected. It becomes possible to correspond to the scene.
図1は、本発明の実施形態に係る制御装置が適用された車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle to which the control device according to the embodiment of the present invention is applied. 図2は、電動オイルポンプの駆動制御の内容を示すフローチャートである。FIG. 2 is a flowchart showing the contents of drive control of the electric oil pump. 図3は、車両の状態と電動オイルポンプの状態との関係を示す図である。FIG. 3 is a diagram showing the relationship between the state of the vehicle and the state of the electric oil pump. 図4は、電動オイルポンプの駆動制御が行われる様子について説明するためのタイムチャートである。FIG. 4 is a time chart for explaining how the drive control of the electric oil pump is performed. 図5は、プーリの必要油圧について説明するためのタイムチャートである。FIG. 5 is a time chart for explaining the required hydraulic pressure of the pulley.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、車両100の概略構成図である。車両100は、エンジン1と、エンジン1と接続されるベルト無段変速機としての自動変速機2と、機械式オイルポンプ(以下、「MOP」という。)3と、電動オイルポンプ(以下、「EOP」という。)4と、駆動輪5と、制御装置としてのコントローラ6と、を備える。 FIG. 1 is a schematic configuration diagram of the vehicle 100. The vehicle 100 includes an engine 1, an automatic transmission 2 as a belt continuously variable transmission connected to the engine 1, a mechanical oil pump (hereinafter, referred to as “MOP”) 3, and an electric oil pump (hereinafter, “MOP”). It includes an EOP () 4, a drive wheel 5, and a controller 6 as a control device.
 エンジン1は、ガソリン、軽油等を燃料とする内燃機関であり、走行用駆動源として機能する。エンジン1は、コントローラ6からの指令に基づいて、回転速度、トルク等が制御される。 Engine 1 is an internal combustion engine that uses gasoline, light oil, etc. as fuel, and functions as a driving source for traveling. The engine 1 is controlled in rotation speed, torque, and the like based on a command from the controller 6.
 自動変速機2は、トルクコンバータ21と、前後進切替機構22と、バリエータ23と、油圧コントロールバルブユニット(以下、「バルブユニット」という。)24と、作動油を貯留するオイルパン25と、を備える。 The automatic transmission 2 includes a torque converter 21, a forward / backward switching mechanism 22, a variator 23, a hydraulic control valve unit (hereinafter referred to as “valve unit”) 24, and an oil pan 25 for storing hydraulic oil. Be prepared.
 トルクコンバータ21は、エンジン1と駆動輪5との間の動力伝達経路上に設けられる。トルクコンバータ21は、流体を介して動力を伝達する。また、トルクコンバータ21は、ロックアップクラッチ21aを有する。ロックアップクラッチ21aが締結されると、トルクコンバータ21の入力軸21bと出力軸21cとが直結し、入力軸21bと出力軸21cとが同速回転する。 The torque converter 21 is provided on the power transmission path between the engine 1 and the drive wheels 5. The torque converter 21 transmits power via a fluid. Further, the torque converter 21 has a lockup clutch 21a. When the lockup clutch 21a is engaged, the input shaft 21b and the output shaft 21c of the torque converter 21 are directly connected, and the input shaft 21b and the output shaft 21c rotate at the same speed.
 前後進切替機構22は、トルクコンバータ21とバリエータ23との間の動力伝達経路上に配置される。前後進切替機構22は、ダブルピニオン遊星歯車組を主たる構成要素とし、そのサンギヤをトルクコンバータ21を介してエンジン1に結合し、キャリアをプライマリプーリ23aに結合する。前後進切替機構22は更に、ダブルピニオン遊星歯車組のサンギヤ及びキャリア間を直結する前進クラッチ22a、及びリングギヤを固定する後進ブレーキ22bを備え、前進クラッチ22aの締結時にエンジン1からトルクコンバータ21を経由した入力回転をそのままプライマリプーリ23aに伝達し、後進ブレーキ22bの締結時にエンジン1からトルクコンバータ21を経由した入力回転を逆転減速してプライマリプーリ23aへ伝達する。前進クラッチ22a及び後進ブレーキ22bは、コントローラ6からの指令に基づき、MOP3及びEOP4の吐出圧を元圧としてバルブユニット24によって調圧された作動油によって制御される。 The forward / backward switching mechanism 22 is arranged on the power transmission path between the torque converter 21 and the variator 23. The forward / backward switching mechanism 22 has a double pinion planetary gear set as a main component, the sun gear thereof is coupled to the engine 1 via a torque converter 21, and the carrier is coupled to the primary pulley 23a. The forward / backward switching mechanism 22 further includes a forward clutch 22a that directly connects the sun gear and the carrier of the double pinion planetary gear set, and a reverse brake 22b that fixes the ring gear. When the forward clutch 22a is engaged, the engine 1 passes through the torque converter 21. The input rotation is transmitted to the primary pulley 23a as it is, and when the reverse brake 22b is engaged, the input rotation from the engine 1 via the torque converter 21 is reversely decelerated and transmitted to the primary pulley 23a. The forward clutch 22a and the reverse brake 22b are controlled by hydraulic oil adjusted by the valve unit 24 with the discharge pressures of MOP3 and EOP4 as the main pressures based on the command from the controller 6.
 バリエータ23は、前後進切替機構22と駆動輪5との間の動力伝達経路上に配置され、車速やアクセルペダル開度等に応じて変速比を無段階に変更する。バリエータ23は、プライマリプーリ23aと、セカンダリプーリ23bと、両プーリ23a、23bに巻き掛けられた動力伝達要素としてのベルト23cと、を備える。プーリ圧によりプライマリプーリ23aの可動プーリとセカンダリプーリ23bの可動プーリとを軸方向に動かし、ベルト23cのプーリ接触半径を変化させることで、変速比を無段階に変更する。プライマリプーリ23aに作用するプーリ圧及びセカンダリプーリ23bに作用するプーリ圧は、MOP3及びEOP4の吐出圧を元圧としてバルブユニット24によって調圧される。 The variator 23 is arranged on the power transmission path between the forward / backward switching mechanism 22 and the drive wheels 5, and changes the gear ratio steplessly according to the vehicle speed, the accelerator pedal opening, and the like. The variator 23 includes a primary pulley 23a, a secondary pulley 23b, and a belt 23c as a power transmission element wound around both pulleys 23a and 23b. The movable pulley of the primary pulley 23a and the movable pulley of the secondary pulley 23b are moved in the axial direction by the pulley pressure, and the pulley contact radius of the belt 23c is changed to change the gear ratio steplessly. The pulley pressure acting on the primary pulley 23a and the pulley pressure acting on the secondary pulley 23b are adjusted by the valve unit 24 with the discharge pressures of MOP3 and EOP4 as the original pressures.
 バリエータ23のセカンダリプーリ23bの出力軸には、図示しない終減速ギヤ機構を介してディファレンシャル7が接続される。ディファレンシャル7には、ドライブシャフト8を介して駆動輪5が接続される。 A differential 7 is connected to the output shaft of the secondary pulley 23b of the variator 23 via a final reduction gear mechanism (not shown). The drive wheels 5 are connected to the differential 7 via the drive shaft 8.
 MOP3は、エンジン1の回転が入力されエンジン1の動力の一部を利用して駆動される。MOP3は、オイルパン25に貯留される作動油を吸い上げ、バルブユニット24に作動油を供給する。バルブユニット24に供給された作動油は、プライマリプーリ23a及びセカンダリプーリ23bの駆動や、前進クラッチ22a及び後進ブレーキ22bの駆動、自動変速機2の各要素の潤滑などに用いられる。エンジン1が停止している場合は、MOP3は駆動されず、作動油はMOP3から吐出されない。 The MOP3 is driven by inputting the rotation of the engine 1 and using a part of the power of the engine 1. The MOP 3 sucks up the hydraulic oil stored in the oil pan 25 and supplies the hydraulic oil to the valve unit 24. The hydraulic oil supplied to the valve unit 24 is used for driving the primary pulley 23a and the secondary pulley 23b, driving the forward clutch 22a and the reverse brake 22b, lubricating each element of the automatic transmission 2, and the like. When the engine 1 is stopped, the MOP3 is not driven and the hydraulic oil is not discharged from the MOP3.
 EOP4は、図示しないバッテリから電力が供給されて駆動する。EOP3は、オイルパン25に貯留される作動油を吸い上げ、バルブユニット24に作動油を供給する。バルブユニット24に供給された作動油は、プライマリプーリ23a及びセカンダリプーリ23bの駆動や、前進クラッチ22a及び後進ブレーキ22bの駆動、自動変速機2の各要素の潤滑などに用いられる。EOP4を駆動することで、MOP3が駆動されないエンジン1の停止中でも作動油をバルブユニット24に供給することができる。 EOP4 is driven by being supplied with electric power from a battery (not shown). The EOP3 sucks up the hydraulic oil stored in the oil pan 25 and supplies the hydraulic oil to the valve unit 24. The hydraulic oil supplied to the valve unit 24 is used for driving the primary pulley 23a and the secondary pulley 23b, driving the forward clutch 22a and the reverse brake 22b, lubricating each element of the automatic transmission 2, and the like. By driving the EOP4, hydraulic oil can be supplied to the valve unit 24 even when the engine 1 in which the MOP3 is not driven is stopped.
 コントローラ6は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ6は、複数のマイクロコンピュータで構成することも可能である。具体的には、コントローラ6は、自動変速機2を制御するATCU、セレクトレンジを制御するSCU、エンジン1の制御を行うECU等によって構成することもできる。コントローラ6は、CPUがROMに記憶されたプログラムを読み出して実行することで車両100の各部の制御を行う。 The controller 6 is composed of a microcomputer equipped with a central arithmetic unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). The controller 6 can also be configured by a plurality of microcomputers. Specifically, the controller 6 can also be configured by an ATCU that controls the automatic transmission 2, an SCU that controls the select range, an ECU that controls the engine 1, and the like. The controller 6 controls each part of the vehicle 100 by the CPU reading and executing the program stored in the ROM.
 コントローラ6には、エンジン1の回転速度Ne(=トルクコンバータ21の入力軸21bの回転速度(ポンプ回転速度))を検出する第1回転速度センサ51、トルクコンバータ21の出力軸21cの回転速度Nt(タービン回転速度)を検出する第2回転速度センサ52、プライマリプーリ23aの回転速度Np及び回転方向を検出する第3回転速度センサ53、セカンダリプーリ23bの回転速度Nsを検出する第4回転速度センサ54、車速を検出する車速センサ55、セレクトレンジ(前進(D)レンジ、後進(R)レンジ、ニュートラル(N)レンジ及びパーキング(P)レンジを切り替えるセレクトレバー又はセレクトスイッチの状態)を検出するインヒビタスイッチ56、アクセルペダル開度を検出するアクセル開度センサ57、ブレーキの踏力を検出する踏力センサ58、等からの信号が入力される。コントローラ6は、入力されるこれら信号に基づき、エンジン1及び自動変速機2の各種動作を制御する。 The controller 6 includes a first rotation speed sensor 51 that detects the rotation speed Ne of the engine 1 (= rotation speed of the input shaft 21b of the torque converter 21 (pump rotation speed)), and the rotation speed Nt of the output shaft 21c of the torque converter 21. The second rotation speed sensor 52 that detects (turbine rotation speed), the third rotation speed sensor 53 that detects the rotation speed Np and the rotation direction of the primary pulley 23a, and the fourth rotation speed sensor that detects the rotation speed Ns of the secondary pulley 23b. 54, Vehicle speed sensor 55 that detects vehicle speed, Inhibita that detects select range (state of select lever or select switch that switches forward (D) range, reverse (R) range, neutral (N) range and parking (P) range) Signals are input from the switch 56, the accelerator opening sensor 57 that detects the accelerator pedal opening, the pedaling force sensor 58 that detects the pedaling force of the brake, and the like. The controller 6 controls various operations of the engine 1 and the automatic transmission 2 based on these input signals.
 ところで、車両100においては、走行中に走行方向と逆方向の走行レンジが選択される場合がある。例えば、前進走行しているときにセレクトレンジがDレンジからRレンジに切り替えられるシーンである。この場合は、後進ブレーキ22bの締結によりバリエータ23への入力トルクが増大し、また、トルクコンバータ20の負荷によってエンジン回転速度Neが低下してMOP3の吐出量が低下するので、ベルト23cがプーリ23a、23bに対してスリップすることを防止するために必要なプーリ圧を確保できなくなる可能性がある。後退走行しているときにセレクトレンジがRレンジからDレンジに切り替えられるシーンにおいても同様である。 By the way, in the vehicle 100, a traveling range in the direction opposite to the traveling direction may be selected during traveling. For example, it is a scene in which the select range is switched from the D range to the R range while traveling forward. In this case, the input torque to the variator 23 increases due to the fastening of the reverse brake 22b, and the engine rotation speed Ne decreases due to the load of the torque converter 20, so that the discharge amount of the MOP3 decreases. , There is a possibility that the pulley pressure required to prevent slipping with respect to 23b cannot be secured. The same applies to the scene where the select range is switched from the R range to the D range while traveling backward.
 そこで、本実施形態では、コントローラ6の制御部は、上記の各シーンに対応してベルト23cがプーリ23a、23bに対してスリップすることを防止するために必要なプーリ圧を確保できるように、EOP4の駆動制御を実行する。なお、コントローラ6の制御部とは、コントローラ6のEOP4の駆動制御を実行する機能を仮想的なユニットとしたものである。 Therefore, in the present embodiment, the control unit of the controller 6 can secure the pulley pressure necessary for preventing the belt 23c from slipping with respect to the pulleys 23a and 23b corresponding to each of the above scenes. The drive control of EOP4 is executed. The control unit of the controller 6 is a virtual unit having a function of executing drive control of the EOP4 of the controller 6.
 以下、コントローラ6(制御部)が実行する制御の内容について、図2を参照しながら詳しく説明する。図2は、EOP4の駆動制御の内容を示すフローチャートである。コントローラ6は、例えばイグニッションONの状態において、図2に示す処理を繰り返し実行する。演算周期は、例えば10msである。 Hereinafter, the content of the control executed by the controller 6 (control unit) will be described in detail with reference to FIG. FIG. 2 is a flowchart showing the contents of the drive control of EOP4. The controller 6 repeatedly executes the process shown in FIG. 2, for example, in the state where the ignition is ON. The calculation cycle is, for example, 10 ms.
 なお、上述した状況は、トルクコンバータ21のロックアップクラッチ21aが非締結である低車速領域において発生し得る。よって、以下に説明するEOP4の駆動制御は、ロックアップクラッチ21aが非締結であることが前提となる。 The above-mentioned situation may occur in a low vehicle speed region in which the lockup clutch 21a of the torque converter 21 is not engaged. Therefore, the drive control of the EOP4 described below is premised on the fact that the lockup clutch 21a is not engaged.
 ステップS11では、コントローラ6は、車速を検出する車速センサ55から入力される信号に基づいて、車両100が走行中か判定する。具体的には、車速がゼロでない場合は、車両100が走行中であると判定し、車速がゼロの場合は、車両100が停車中であると判定する。なお、車速がゼロの状態が所定時間継続された場合に車両100が停車中であると判定するようにしてもよい。 In step S11, the controller 6 determines whether the vehicle 100 is running based on the signal input from the vehicle speed sensor 55 that detects the vehicle speed. Specifically, if the vehicle speed is not zero, it is determined that the vehicle 100 is running, and if the vehicle speed is zero, it is determined that the vehicle 100 is stopped. It should be noted that the vehicle 100 may be determined to be stopped when the state where the vehicle speed is zero continues for a predetermined time.
 コントローラ6は、車両100が走行中であると判定すると、処理をステップS12に移行する。また、コントローラ6は、車両100が停車中であると判定すると、処理をステップS21に移行する。 When the controller 6 determines that the vehicle 100 is running, the process proceeds to step S12. Further, when the controller 6 determines that the vehicle 100 is stopped, the process proceeds to step S21.
 ステップS21では、コントローラ6は、EOP4を停止する。EOP4が既に停止している場合は、停止状態が維持される。 In step S21, the controller 6 stops EOP4. If EOP4 has already stopped, the stopped state is maintained.
 車両100の停車中はベルト23cがプーリ23a、23bに対してスリップすることがない。よって、EOP4を停止して電費又は燃費を抑制する。 While the vehicle 100 is stopped, the belt 23c does not slip with respect to the pulleys 23a and 23b. Therefore, EOP4 is stopped to suppress electricity consumption or fuel consumption.
 なお、EOP4について他の駆動制御における駆動条件が成立している場合はこの限りではない。つまり、図2に示す処理は、EOP4の他の駆動制御に重畳して行われる。よって、ステップS21の処理が実行されても、他の駆動制御におけるEOP4の駆動条件が成立している場合は、当該他の駆動制御で決定された出力でEOP4が駆動される。 Note that this does not apply if the drive conditions in other drive controls are satisfied for EOP4. That is, the process shown in FIG. 2 is superimposed on the other drive control of EOP4. Therefore, even if the process of step S21 is executed, if the drive condition of EOP4 in the other drive control is satisfied, the EOP4 is driven by the output determined by the other drive control.
 ステップS12では、コントローラ6は、インヒビタスイッチ56から入力される信号に基づいて、セレクトレンジがNレンジか判定する。 In step S12, the controller 6 determines whether the select range is the N range based on the signal input from the inhibitor switch 56.
 コントローラ6は、セレクトレンジがNレンジであることを検知すると、処理をステップS13に移行する。また、コントローラ6は、セレクトレンジがNレンジ以外であることを検知すると、処理をステップS14に移行する。 When the controller 6 detects that the select range is the N range, the controller 6 shifts the process to step S13. Further, when the controller 6 detects that the select range is other than the N range, the controller 6 shifts the process to step S14.
 ステップS13では、コントローラ6は、EOP4の吐出量を増加させる。本実施形態では、EOP4を第1出力で駆動して吐出量を増加させる。これにより、Nレンジ選択前(選択直前)のセレクトレンジに関わらず、Nレンジ選択中且つ車両100が走行中であることを条件としてEOP4が駆動されることになる。 In step S13, the controller 6 increases the discharge amount of EOP4. In the present embodiment, the EOP4 is driven by the first output to increase the discharge amount. As a result, the EOP 4 is driven on condition that the N range is selected and the vehicle 100 is running, regardless of the select range before (immediately before selection) the N range is selected.
 このように、本実施形態では、Nレンジ選択中且つ車両100が走行中という条件が成立した後、当該条件が成立する前よりもEOP4の吐出量が増加される。 As described above, in the present embodiment, after the condition that the N range is selected and the vehicle 100 is running is satisfied, the discharge amount of EOP4 is increased as compared with before the condition is satisfied.
 なお、EOP4の吐出量を増加させることには、EOP4を停止状態から駆動状態に遷移させることが含まれる。 Note that increasing the discharge amount of EOP4 includes transitioning EOP4 from a stopped state to a driven state.
 また、EOP4の吐出量を増加させることには、EOP4が既に駆動状態であるときに更に吐出量を増加させることが含まれる。この場合は、EOP4は、Nレンジ選択前(選択直前)の出力に第1出力を加えた合計出力で駆動されることになる。 Further, increasing the discharge amount of EOP4 includes further increasing the discharge amount when the EOP4 is already in the driving state. In this case, EOP4 is driven by the total output of the output before N range selection (immediately before selection) plus the first output.
 走行方向と逆方向のセレクトレンジが選択される場合は、Nレンジが経由される。よって、車両100の走行中にNレンジが選択されたことをEOP4の吐出量を増加させる条件とすることで、走行方向と逆方向の走行レンジが選択される前に自動変速機2に供給される油圧を増加させることができ、ベルト23cがプーリ23a、23bに対してスリップすることを抑制できる。 When the select range in the direction opposite to the traveling direction is selected, the N range is passed through. Therefore, by setting that the N range is selected while the vehicle 100 is running as a condition for increasing the discharge amount of the EOP 4, the automatic transmission 2 is supplied before the running range in the direction opposite to the running direction is selected. The hydraulic pressure can be increased, and the belt 23c can be prevented from slipping with respect to the pulleys 23a and 23b.
 なお、図2に示す処理によれば、車両100の走行中にNレンジが選択されるとEOP4の吐出量を増加させる制御に加えて、Nレンジの選択中に車両100の走行が開始されるとEOP4の吐出量を増加させる制御も実行される。しかしながら、これらの制御は、併用してもよいし、いずれか一方のみを採用してもよい。 According to the process shown in FIG. 2, when the N range is selected while the vehicle 100 is running, the running of the vehicle 100 is started while the N range is selected, in addition to the control of increasing the discharge amount of the EOP4. And control to increase the discharge amount of EOP4 is also executed. However, these controls may be used in combination, or only one of them may be adopted.
 Nレンジの選択中に車両100の走行が開始されるとEOP4の吐出量を増加させる制御は、坂道でNレンジが選択された状態でブレーキが解除(ブレーキOFF)されるシーンにおいて、走行方向と逆方向の走行レンジが選択される場合の対策である。そのため、車両100の走行が開始されたことをEOP4の吐出量を増加させる条件とすることで、走行方向と逆方向の走行レンジが選択される前に自動変速機2に供給される油圧を増加させることができ、ベルト23cがプーリ23a、23bに対してスリップすることを抑制できる。 The control to increase the discharge amount of EOP4 when the vehicle 100 starts traveling while the N range is selected is the traveling direction in the scene where the brake is released (brake OFF) while the N range is selected on a slope. This is a countermeasure when the traveling range in the opposite direction is selected. Therefore, by setting the start of traveling of the vehicle 100 as a condition for increasing the discharge amount of EOP4, the oil pressure supplied to the automatic transmission 2 is increased before the traveling range in the direction opposite to the traveling direction is selected. It is possible to prevent the belt 23c from slipping with respect to the pulleys 23a and 23b.
 よって、Nレンジ選択中にブレーキOFFで車両100が動きだした場合は、Nレンジの選択中に車両100の走行が開始されるとEOP4の吐出量を増加させる制御の条件が成立するのでEOP4が駆動される。 Therefore, if the vehicle 100 starts to move when the brake is turned off while the N range is selected, the control condition for increasing the discharge amount of the EOP4 is satisfied when the vehicle 100 starts running while the N range is selected, so that the EOP4 is driven. Will be done.
 ステップS14では、コントローラ6は、第3回転速度センサ53から入力される信号に基づいて、車両100の走行方向が前進方向か判定する。上述したように、第3回転速度センサ53は、プライマリプーリ23aの回転方向を検出可能である。なお、第3回転速度センサ53以外のセンサ等を用いて車両100の進行方向を判定できるようにしてもよく、例えば、第4回転速度センサ54や車速センサ55として回転方向を検出可能なセンサを採用することが考えられる。 In step S14, the controller 6 determines whether the traveling direction of the vehicle 100 is the forward direction based on the signal input from the third rotation speed sensor 53. As described above, the third rotation speed sensor 53 can detect the rotation direction of the primary pulley 23a. A sensor other than the third rotation speed sensor 53 may be used to determine the traveling direction of the vehicle 100. For example, a sensor capable of detecting the rotation direction as the fourth rotation speed sensor 54 or the vehicle speed sensor 55 may be used. It is conceivable to adopt it.
 コントローラ6は、車両100の走行方向が前進方向であると判定すると、処理をステップS15に移行する。また、コントローラ6は、車両100の走行方向が前進方向でない、すなわち、後退方向であると判定すると、処理をステップS18に移行する。 When the controller 6 determines that the traveling direction of the vehicle 100 is the forward direction, the controller 6 shifts the process to step S15. Further, when the controller 6 determines that the traveling direction of the vehicle 100 is not the forward direction, that is, the backward direction, the controller 6 shifts the process to step S18.
 ステップS15では、コントローラ6は、インヒビタスイッチ56から入力される信号に基づいて、セレクトレンジがDレンジか判定する。 In step S15, the controller 6 determines whether the select range is the D range based on the signal input from the inhibitor switch 56.
 コントローラ6は、セレクトレンジがDレンジであることを検知すると、処理をステップS16に移行する。また、コントローラ6は、セレクトレンジがDレンジ以外、すなわちRレンジであることを検知すると、処理をステップS17に移行する。 When the controller 6 detects that the select range is the D range, the controller 6 shifts the process to step S16. Further, when the controller 6 detects that the select range is other than the D range, that is, the R range, the controller 6 shifts the process to step S17.
 ステップS16では、コントローラ6は、EOP4を停止して吐出量をゼロにする。なお、EOP4を停止せずに、単に吐出量を減少させるようにしてもよい。 In step S16, the controller 6 stops the EOP4 to make the discharge amount zero. The discharge amount may be simply reduced without stopping the EOP4.
 車両100の走行方向が前進方向であってDレンジが選択された場合は、ベルト23cがスリップする可能性が低い。よって、この場合は、EOP4の吐出量を減少させることで、電費又は燃費を抑制する。なお、EOP4の吐出量を減少させることには、EOP4を停止することも含まれる。 When the traveling direction of the vehicle 100 is the forward direction and the D range is selected, the possibility that the belt 23c slips is low. Therefore, in this case, the electricity cost or the fuel consumption is suppressed by reducing the discharge amount of EOP4. In addition, reducing the discharge amount of EOP4 also includes stopping EOP4.
 ステップS17では、コントローラ6は、EOP4の吐出量を増加させる。本実施形態では、EOP4を第1出力よりも高い出力である第2出力で駆動して吐出量を増加させる。 In step S17, the controller 6 increases the discharge amount of EOP4. In the present embodiment, the EOP 4 is driven by the second output, which is an output higher than the first output, to increase the discharge amount.
 車両100の走行方向が前進方向であってRレンジが選択された場合は、ベルト23cがスリップすることを防止するために必要なプーリ圧を確保できなくなる可能性がある。よって、第1出力よりも吐出量が多い第2出力でEOP4を作動させることで、ベルト23cがプーリ23a、23bに対してスリップすることを本格的に抑制する。 If the traveling direction of the vehicle 100 is the forward direction and the R range is selected, there is a possibility that the pulley pressure required to prevent the belt 23c from slipping cannot be secured. Therefore, by operating the EOP 4 at the second output, which has a larger discharge amount than the first output, the belt 23c is prevented from slipping with respect to the pulleys 23a and 23b in earnest.
 なお、Nレンジ選択中は、EOP4を第2出力よりも吐出量が少ない第1出力で作動させている(ステップS13)。Nレンジの選択後に車両100の走行方向と逆方向の走行レンジが選択されるか否かが不明であることから、Nレンジ選択中はEOP4の出力を低めに設定しておくことで、電費又は燃費を抑制している。 While the N range is selected, the EOP4 is operated at the first output, which has a smaller discharge amount than the second output (step S13). Since it is unclear whether or not the traveling range in the direction opposite to the traveling direction of the vehicle 100 is selected after selecting the N range, it is possible to set the output of EOP4 low while selecting the N range to reduce fuel consumption or electricity consumption. It suppresses fuel consumption.
 ステップS18では、コントローラ6は、インヒビタスイッチ56から入力される信号に基づいて、セレクトレンジがDレンジか判定する。 In step S18, the controller 6 determines whether the select range is the D range based on the signal input from the inhibitor switch 56.
 コントローラ6は、セレクトレンジがDレンジであることを検知すると、処理をステップS19に移行する。また、コントローラ6は、セレクトレンジがDレンジ以外、すなわちRレンジであることを検知すると、処理をステップS20に移行する。 When the controller 6 detects that the select range is the D range, the controller 6 shifts the process to step S19. Further, when the controller 6 detects that the select range is other than the D range, that is, the R range, the controller 6 shifts the process to step S20.
 ステップS19では、コントローラ6は、EOP4の吐出量を増加させる。本実施形態では、EOP4を第1出力よりも高い出力である第2出力で駆動して吐出量を増加させる。 In step S19, the controller 6 increases the discharge amount of EOP4. In the present embodiment, the EOP 4 is driven by the second output, which is an output higher than the first output, to increase the discharge amount.
 車両100の走行方向が後退方向であってDレンジが選択された場合は、ベルト23cがスリップすることを防止するために必要なプーリ圧を確保できなくなる可能性がある。よって、第1出力よりも吐出量が多い第2出力でEOP4を作動させることで、ベルト23cがプーリ23a、23bに対してスリップすることを本格的に抑制する。 If the traveling direction of the vehicle 100 is the backward direction and the D range is selected, there is a possibility that the pulley pressure required to prevent the belt 23c from slipping cannot be secured. Therefore, by operating the EOP 4 at the second output, which has a larger discharge amount than the first output, the belt 23c is prevented from slipping with respect to the pulleys 23a and 23b in earnest.
 ステップS20では、コントローラ6は、EOP4を停止して吐出量をゼロにする。なお、EOP4を停止せずに、単に吐出量を減少させるようにしてもよい。 In step S20, the controller 6 stops the EOP4 to make the discharge amount zero. The discharge amount may be simply reduced without stopping the EOP4.
 車両100の走行方向が後退方向であってRレンジが選択された場合は、ベルト23cがスリップする可能性が低い。よって、この場合は、EOP4の吐出量を減少させることで、電費又は燃費を抑制する。なお、EOP4の吐出量を減少させることには、EOP4を停止することも含まれる。 When the traveling direction of the vehicle 100 is the backward direction and the R range is selected, the possibility that the belt 23c slips is low. Therefore, in this case, the electricity cost or the fuel consumption is suppressed by reducing the discharge amount of EOP4. In addition, reducing the discharge amount of EOP4 also includes stopping EOP4.
 続いて、図3を参照しながら、車両100の状態とEOP4の状態との関係について説明する。 Subsequently, the relationship between the state of the vehicle 100 and the state of EOP4 will be described with reference to FIG.
 図3に示すように、車両100が停車中は、Dレンジ、Nレンジ、Rレンジのいずれが選択された場合でも、EOP4は停止状態(OFF)となる。 As shown in FIG. 3, while the vehicle 100 is stopped, the EOP 4 is in the stopped state (OFF) regardless of which of the D range, the N range, and the R range is selected.
 車両100が前進走行中は、Dレンジが選択された場合は、EOP4は停止状態となる。また、Nレンジが選択された場合は、EOP4は第1出力で駆動状態となる。また、Rレンジが選択された場合は、EOP4は第2出力で駆動状態となる。 While the vehicle 100 is traveling forward, if the D range is selected, EOP4 will be in a stopped state. When the N range is selected, the EOP4 is driven at the first output. When the R range is selected, the EOP4 is driven by the second output.
 車両100が後退走行中は、Rレンジが選択された場合は、EOP4は停止状態となる。また、Nレンジが選択された場合は、EOP4は第1出力で駆動状態となる。また、Dレンジが選択された場合は、EOP4は第2出力で駆動状態となる。 While the vehicle 100 is traveling backward, if the R range is selected, EOP4 is in a stopped state. When the N range is selected, the EOP4 is driven at the first output. When the D range is selected, the EOP4 is driven by the second output.
 つまり、車両100の走行中にセレクトレンジがRレンジ→Nレンジ→Dレンジとなる場合、又はDレンジ→Nレンジ→Rレンジとなる場合は、コントローラ6は、Nレンジが選択されたことを検知するとEOP4を駆動し、その後、走行レンジが選択された後もEOP4の駆動を継続する。 That is, when the select range changes from the R range to the N range to the D range while the vehicle 100 is running, or when the select range changes from the D range to the N range to the R range, the controller 6 detects that the N range has been selected. Then, the EOP4 is driven, and then the driving of the EOP4 is continued even after the traveling range is selected.
 一方、車両100が停車中に、セレクトレンジがRレンジ→Nレンジ→Dレンジとなる場合、又はDレンジ→Nレンジ→Rレンジとなる場合は、コントローラ6は、Nレンジが選択されたことを検知しても、EOP4を駆動しない。ただし、上述したように、EOP4について他の駆動制御における駆動条件が成立している場合はこの限りではない。 On the other hand, when the select range is R range-> N range-> D range or D range-> N range-> R range while the vehicle 100 is stopped, the controller 6 indicates that the N range has been selected. Even if it is detected, EOP4 is not driven. However, as described above, this does not apply when the drive conditions in other drive controls are satisfied for EOP4.
 続いて、図4、図5に示すタイムチャートを参照しながら、EOP4の駆動制御が行われる様子について説明する。 Next, the state in which the drive control of EOP4 is performed will be described with reference to the time charts shown in FIGS. 4 and 5.
 時刻t1よりも前は、ブレーキがONであり、車両100は停車中である。また、Nレンジが選択されている。 Before time t1, the brake is ON and the vehicle 100 is stopped. Also, the N range is selected.
 時刻t1でDレンジが選択されると、前進クラッチ22aの締結が開始される。前進クラッチ22aのスリップ制御によりタービン回転速度Ntとプライマリプーリ回転速度Npとの差回転が所定値以下になると、前進クラッチ22aが完全締結される。 When the D range is selected at time t1, the forward clutch 22a is started to be engaged. When the differential rotation between the turbine rotation speed Nt and the primary pulley rotation speed Np becomes a predetermined value or less due to the slip control of the forward clutch 22a, the forward clutch 22a is completely engaged.
 時刻t2でブレーキが解除(ブレーキOFF)されると、車両100が前進走行を開始して、タービン回転速度Nt及びプライマリプーリ回転速度Npが上昇する。 When the brake is released (brake OFF) at time t2, the vehicle 100 starts traveling forward, and the turbine rotation speed Nt and the primary pulley rotation speed Np increase.
 時刻t3でNレンジが選択されると、EOP4が第1出力で駆動される。また、前進クラッチ22aが解放されてタービン回転速度Ntが上昇する。 When the N range is selected at time t3, EOP4 is driven by the first output. Further, the forward clutch 22a is released and the turbine rotation speed Nt increases.
 時刻t4でRレンジが選択されると、EOP4が第2出力で駆動される。また、後進ブレーキ22bの締結が開始される。 When the R range is selected at time t4, EOP4 is driven by the second output. Further, the reverse brake 22b is started to be fastened.
 上述したように、後進ブレーキ22bの締結時にはエンジン1からトルクコンバータ21を経由した入力回転が逆転減速してプライマリプーリ23aへ伝達される。よって、後進ブレーキ22bのスリップ制御によりタービン回転速度Ntの絶対値とプライマリプーリ回転速度Npとの差回転が所定値以下になると、後進ブレーキ22bが完全締結される。 As described above, when the reverse brake 22b is engaged, the input rotation from the engine 1 via the torque converter 21 is reversely decelerated and transmitted to the primary pulley 23a. Therefore, when the difference rotation between the absolute value of the turbine rotation speed Nt and the primary pulley rotation speed Np becomes equal to or less than a predetermined value by the slip control of the reverse brake 22b, the reverse brake 22b is completely engaged.
 ここで、後進ブレーキ22bが締結されるのに伴って、トルクコンバータ20の負荷によりエンジン回転速度Neが低下する。これにより、MOP3の吐出量も減少し、図5に示すように、MOP3から自動変速機2に供給される油圧が低下する。一方で、後進ブレーキ22bの締結によりバリエータ23への入力トルクが増大することで、ベルト23cがスリップすることを防止するために必要なプーリ圧(プーリ必要油圧)が上昇する。 Here, as the reverse brake 22b is engaged, the engine rotation speed Ne decreases due to the load of the torque converter 20. As a result, the discharge amount of MOP3 also decreases, and as shown in FIG. 5, the oil pressure supplied from MOP3 to the automatic transmission 2 decreases. On the other hand, when the reverse brake 22b is fastened, the input torque to the variator 23 increases, so that the pulley pressure (pulley required oil pressure) required to prevent the belt 23c from slipping increases.
 図5では、時刻t4と時刻t5との間で、プーリ必要油圧がMOP3の供給油圧を上回っている。つまり、MOP3から自動変速機2に供給される油圧では、プーリ必要油圧を確保できないことが分かる。 In FIG. 5, between the time t4 and the time t5, the required oil pressure of the pulley exceeds the supply oil pressure of MOP3. That is, it can be seen that the required oil pressure for the pulley cannot be secured by the oil pressure supplied from the MOP 3 to the automatic transmission 2.
 これに対して、本実施形態では、時刻t4でRレンジが選択されると、EOP4が第2出力で駆動され、プーリ必要油圧に対して不足している分の油圧がEOP4から自動変速機2に供給される。これにより、プーリ必要油圧が確保されるようになっている。 On the other hand, in the present embodiment, when the R range is selected at time t4, the EOP4 is driven by the second output, and the amount of oil that is insufficient for the required oil for the pulley is reduced from the EOP4 to the automatic transmission 2 Is supplied to. As a result, the required oil pressure for the pulley is secured.
 後進ブレーキ22bの完全締結後は車両100の前進速度が低下する。そして、時刻t5で車両100の走行方向が前進方向から後退方向に変化する。 After the reverse brake 22b is completely engaged, the forward speed of the vehicle 100 decreases. Then, at time t5, the traveling direction of the vehicle 100 changes from the forward direction to the backward direction.
 これにより、車両100の走行方向が後退方向であってRレンジが選択された状態となり、EOP4の駆動が停止される。 As a result, the traveling direction of the vehicle 100 is the backward direction and the R range is selected, and the driving of the EOP 4 is stopped.
 以上述べたように、本実施形態によれば、EOP4から油圧が供給される自動変速機2を有する車両100のコントローラ6は、車両100の走行中にNレンジが選択されると、EOP4の吐出量を増加させる。 As described above, according to the present embodiment, the controller 6 of the vehicle 100 having the automatic transmission 2 to which the flood control is supplied from the EOP 4 discharges the EOP 4 when the N range is selected while the vehicle 100 is traveling. Increase the amount.
 また、コントローラ6は、Nレンジの選択中に車両100の走行が開始されると、EOP6の吐出量を増加させる。 Further, the controller 6 increases the discharge amount of the EOP 6 when the running of the vehicle 100 is started while the N range is selected.
 これらによれば、走行方向と逆方向の走行レンジが選択される前にEOP4の吐出量を増加させることができ、自動変速機2に供給される油圧を確保できる。これにより、ベルト23cのスリップを防止するために必要な油圧を確保するに際して、走行方向が前進方向であってRレンジが選択されるシーンと、走行方向が後退方向であってDレンジが選択されるシーンと、に対応可能となる。 According to these, the discharge amount of EOP4 can be increased before the traveling range in the direction opposite to the traveling direction is selected, and the oil supply supplied to the automatic transmission 2 can be secured. As a result, when securing the oil pressure required to prevent the belt 23c from slipping, a scene in which the traveling direction is the forward direction and the R range is selected, and a scene in which the traveling direction is the backward direction and the D range is selected. It becomes possible to correspond to the scene.
 また、EOP4の吐出量の増加は、EOP4を停止状態から駆動状態へ遷移させることである。 Further, the increase in the discharge amount of EOP4 is to shift the EOP4 from the stopped state to the driven state.
 これによれば、EOP4は、常に駆動状態となるのではなく、必要に応じて駆動される。よって、電費又は燃費を抑制できる。 According to this, the EOP4 is not always in the driving state, but is driven as needed. Therefore, electricity cost or fuel consumption can be suppressed.
 また、EOP4の吐出量の増加は、EOP4が駆動状態であるときに更に吐出量を増加させることである。 Further, the increase in the discharge amount of the EOP4 is to further increase the discharge amount when the EOP4 is in the driving state.
 EOP4の吐出量を増加させる条件が成立する前にEOP4が駆動状態であるということは、自動変速機2が多くの油を必要とする状態であることを意味する。よって、この場合は、ベルト23cのスリップ抑制用としてEOP4の吐出量を更に増加させることが重要となる。 The fact that the EOP4 is in the driving state before the condition for increasing the discharge amount of the EOP4 is satisfied means that the automatic transmission 2 is in a state in which a large amount of oil is required. Therefore, in this case, it is important to further increase the discharge amount of EOP4 for suppressing the slip of the belt 23c.
 また、コントローラ6は、EOP4の吐出量を増加させた後に車両100の進行方向と逆方向の走行レンジが選択されると、EOP4の吐出量を更に増加させる。 Further, the controller 6 further increases the discharge amount of the EOP4 when the traveling range in the direction opposite to the traveling direction of the vehicle 100 is selected after increasing the discharge amount of the EOP4.
 これによれば、ベルト23cがプーリ23a、23bに対してスリップすることを本格的に抑制できる。 According to this, it is possible to prevent the belt 23c from slipping with respect to the pulleys 23a and 23b in earnest.
 また、コントローラ6は、EOP4の吐出量を増加させた後に車両100の進行方向と同じ方向の走行レンジが選択されると、EOP4の吐出量を減少させる。 Further, the controller 6 reduces the discharge amount of the EOP4 when the traveling range in the same direction as the traveling direction of the vehicle 100 is selected after increasing the discharge amount of the EOP4.
 車両100の進行方向と同じ方向の走行レンジが選択された場合は、ベルト23cがプーリ23a、23bに対してスリップする可能性が低い。よって、この場合は、EOP4の吐出量を減少させることで、電費又は燃費を抑制する。 When a traveling range in the same direction as the traveling direction of the vehicle 100 is selected, the possibility that the belt 23c slips with respect to the pulleys 23a and 23b is low. Therefore, in this case, the electricity cost or the fuel consumption is suppressed by reducing the discharge amount of EOP4.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiment of the present invention has been described above, the above-described embodiment is only one of the application examples of the present invention, and the purpose of limiting the technical scope of the present invention to the specific configuration of the above-described embodiment. is not it.
 本願は2019年9月24日に日本国特許庁に出願された特願2019-173278に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2019-173278 filed with the Japan Patent Office on September 24, 2019, and the entire contents of this application are incorporated herein by reference.

Claims (8)

  1.  電動オイルポンプから油圧が供給されるベルト無段変速機を有する車両の制御装置であって、
     前記車両の走行中にNレンジが選択されると、前記電動オイルポンプの吐出量を増加させる制御部を有する、
    車両の制御装置。
    A control device for a vehicle having a belt continuously variable transmission to which flood control is supplied from an electric oil pump.
    It has a control unit that increases the discharge amount of the electric oil pump when the N range is selected while the vehicle is running.
    Vehicle control device.
  2.  電動オイルポンプから油圧が供給されるベルト無段変速機を有する車両の制御装置であって、
     Nレンジの選択中に前記車両の走行が開始されると、前記電動オイルポンプの吐出量を増加させる制御部を有する、
    車両の制御装置。
    A control device for a vehicle having a belt continuously variable transmission to which flood control is supplied from an electric oil pump.
    It has a control unit that increases the discharge amount of the electric oil pump when the running of the vehicle is started during the selection of the N range.
    Vehicle control device.
  3.  請求項1又は2に記載の車両の制御装置であって、
     前記電動オイルポンプの吐出量の増加は、前記電動オイルポンプを停止状態から駆動状態へ遷移させることである、
    車両の制御装置。
    The vehicle control device according to claim 1 or 2.
    The increase in the discharge amount of the electric oil pump is to shift the electric oil pump from the stopped state to the driven state.
    Vehicle control device.
  4.  請求項1又は2に記載の車両の制御装置であって、
     前記電動オイルポンプの吐出量の増加は、前記電動オイルポンプが駆動状態であるときに更に吐出量を増加させることである、
    車両の制御装置。
    The vehicle control device according to claim 1 or 2.
    The increase in the discharge amount of the electric oil pump is to further increase the discharge amount when the electric oil pump is in the driving state.
    Vehicle control device.
  5.  請求項1から4のいずれか1つに記載の車両の制御装置であって、
     前記制御部は、前記電動オイルポンプの吐出量を増加させた後に前記車両の進行方向と逆方向の走行レンジが選択されると、前記電動オイルポンプの吐出量を更に増加させる、
    車両の制御装置。
    The vehicle control device according to any one of claims 1 to 4.
    When the traveling range in the direction opposite to the traveling direction of the vehicle is selected after increasing the discharge amount of the electric oil pump, the control unit further increases the discharge amount of the electric oil pump.
    Vehicle control device.
  6.  請求項1から4のいずれか1つに記載の車両の制御装置であって、
     前記制御部は、前記電動オイルポンプの吐出量を増加させた後に前記車両の進行方向と同じ方向の走行レンジが選択されると、前記電動オイルポンプの吐出量を減少させる、
    車両の制御装置。
    The vehicle control device according to any one of claims 1 to 4.
    The control unit reduces the discharge amount of the electric oil pump when a traveling range in the same direction as the traveling direction of the vehicle is selected after increasing the discharge amount of the electric oil pump.
    Vehicle control device.
  7.  電動オイルポンプから油圧が供給されるベルト無段変速機を有する車両の制御方法であって、
     前記車両の走行中にNレンジが選択されると、前記電動オイルポンプの吐出量を増加させる、
    車両の制御方法。
    It is a control method for a vehicle having a belt continuously variable transmission in which flood control is supplied from an electric oil pump.
    When the N range is selected while the vehicle is running, the discharge amount of the electric oil pump is increased.
    How to control the vehicle.
  8.  電動オイルポンプから油圧が供給されるベルト無段変速機を有する車両の制御方法であって、
     Nレンジの選択中に前記車両の走行が開始されると、前記電動オイルポンプの吐出量を増加させる、
    車両の制御方法。
    It is a control method for a vehicle having a belt continuously variable transmission in which flood control is supplied from an electric oil pump.
    When the running of the vehicle is started while the N range is selected, the discharge amount of the electric oil pump is increased.
    How to control the vehicle.
PCT/JP2020/025236 2019-09-24 2020-06-26 Vehicle control device and vehicle control method WO2021059636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548346A JP7169457B2 (en) 2019-09-24 2020-06-26 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173278 2019-09-24
JP2019-173278 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021059636A1 true WO2021059636A1 (en) 2021-04-01

Family

ID=75165688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025236 WO2021059636A1 (en) 2019-09-24 2020-06-26 Vehicle control device and vehicle control method

Country Status (2)

Country Link
JP (1) JP7169457B2 (en)
WO (1) WO2021059636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166784A (en) * 2021-04-21 2022-11-02 本田技研工業株式会社 Control device and control method of vehicular continuously variable transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204625A (en) * 2012-03-27 2013-10-07 Toyota Motor Corp Control device for vehicle
JP2014062561A (en) * 2012-09-20 2014-04-10 Hitachi Automotive Systems Ltd Control device of electric oil pump for vehicle
JP2016061348A (en) * 2014-09-17 2016-04-25 富士重工業株式会社 Control device of continuously variable transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709235B2 (en) * 2018-01-10 2020-06-10 株式会社Subaru Hydraulic supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204625A (en) * 2012-03-27 2013-10-07 Toyota Motor Corp Control device for vehicle
JP2014062561A (en) * 2012-09-20 2014-04-10 Hitachi Automotive Systems Ltd Control device of electric oil pump for vehicle
JP2016061348A (en) * 2014-09-17 2016-04-25 富士重工業株式会社 Control device of continuously variable transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166784A (en) * 2021-04-21 2022-11-02 本田技研工業株式会社 Control device and control method of vehicular continuously variable transmission
JP7241124B2 (en) 2021-04-21 2023-03-16 本田技研工業株式会社 Control device and control method for continuously variable transmission for vehicle
US11739835B2 (en) 2021-04-21 2023-08-29 Honda Motor Co., Ltd. Control device and control method of continuously variable transmission

Also Published As

Publication number Publication date
JPWO2021059636A1 (en) 2021-04-01
JP7169457B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP5039815B2 (en) Idle stop vehicle
KR100907626B1 (en) Vehicle control device
JP5605504B2 (en) Control device for vehicle drive device
JP5756002B2 (en) Vehicle control apparatus and vehicle control method
JP6510948B2 (en) Vehicle control device
WO2014136280A1 (en) Vehicle hydraulic control device
KR20100108274A (en) Continuously variable transmission and method for controlling the same
JP6714701B2 (en) Vehicle control device and vehicle control method
JP6554545B2 (en) Belt continuously variable transmission and failure judgment method thereof
WO2021059636A1 (en) Vehicle control device and vehicle control method
JP6547010B2 (en) Control device of vehicle and control method of vehicle
WO2016017201A1 (en) Vehicle control device and control method
WO2021059637A1 (en) Vehicle control device and vehicle control method
JP6560758B2 (en) Vehicle control apparatus and vehicle control method
JP2007211619A (en) Fuel-cut control device of engine
JP6543540B2 (en) Belt continuously variable transmission and failure determination method thereof
WO2023162778A1 (en) Vehicle control device, vehicle control method, and program
JP7029550B2 (en) Vehicle control device and vehicle control method
JP5977271B2 (en) Continuously variable transmission and control method thereof
JP2019138320A (en) Vehicle control device and vehicle control method
JP7223134B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP6913258B2 (en) Control device and control method for continuously variable transmission
JP5673324B2 (en) Shift control device for continuously variable transmission for vehicle
JP2005350017A (en) Vehicle controller
WO2015194206A1 (en) Hydraulic control device for automatic transmission and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866980

Country of ref document: EP

Kind code of ref document: A1