WO2021059505A1 - Diarylethene compound, temperature indicator, temperature display device, and package - Google Patents

Diarylethene compound, temperature indicator, temperature display device, and package Download PDF

Info

Publication number
WO2021059505A1
WO2021059505A1 PCT/JP2019/038273 JP2019038273W WO2021059505A1 WO 2021059505 A1 WO2021059505 A1 WO 2021059505A1 JP 2019038273 W JP2019038273 W JP 2019038273W WO 2021059505 A1 WO2021059505 A1 WO 2021059505A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
group
compound
alkyl group
display device
Prior art date
Application number
PCT/JP2019/038273
Other languages
French (fr)
Japanese (ja)
Inventor
誠也 小畠
三本木 法光
佐藤 義則
Original Assignee
公立大学法人大阪
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪, セイコーインスツル株式会社 filed Critical 公立大学法人大阪
Priority to PCT/JP2019/038273 priority Critical patent/WO2021059505A1/en
Priority to JP2021548280A priority patent/JP7338901B2/en
Publication of WO2021059505A1 publication Critical patent/WO2021059505A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/18Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of materials which change translucency

Definitions

  • the present invention relates to a diarylethene compound, a temperature indicator, a temperature display device and a package.
  • thermolabel or the like using a temperature indicating ink material is known.
  • thermolabel is easy to handle, it does not have a temperature detection start function. Since the color-developing reaction of the temperature-indicating ink material is reversible, the target of temperature detection and the usage status are limited. In addition, thermolabels are difficult to measure with high accuracy.
  • Patent Document 1 discloses an optical functional element containing a photochromic material having a specific structure, and a temperature control technique using photochromism.
  • photochromism is a phenomenon in which a single chemical species reversibly produces two isomers (A, B) having different absorption spectra by the action of light without changing the molecular weight.
  • photochromism when isomer A is irradiated with light of a specific wavelength (for example, ultraviolet rays), the bonding mode or electronic state changes and is converted to isomer B, and as a result, the ultraviolet / visible absorption spectrum changes. It is a phenomenon that the color changes.
  • the optical functional element described in Patent Document 1 has the following three features. Patent Document 1 discloses that an optical functional element having such a feature is used as a temperature history display material. (I) It has a switch-on function. (Ii) Non-renewable decolorization occurs due to heating. (Iii) The colored state is visible and stable.
  • the photochromic material described in Patent Document 1 is suitable for temperature control in a temperature having a relatively high control temperature, specifically, a temperature range of about 10 to 70 ° C., it is suitable for temperature control in a low temperature environment, particularly refrigeration and freezing. And it is not suitable for temperature control in the ultra-low temperature range.
  • An object of the present invention is to provide a diarylethene compound, a temperature indicator, a temperature display device and a package suitable for temperature control in a low temperature environment.
  • the present inventors have found that the structure of the diarylethene compound affects the 10-hour half-life temperature. Then, they found the structure of a diarylethene compound having a 10-hour half-life temperature of room temperature or less, and completed the present invention.
  • diarylethene compound according to one aspect of the present invention is characterized by being represented by the following general formula (1).
  • ring A represents a 5-membered ring structure or a 6-membered ring structure.
  • X is a sulfur atom (S), NR 7 or an oxygen atom (O), and R 7 is a hydrogen atom (H) or an alkyl group.
  • Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively.
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
  • Y 1 is a carbon atom (C)
  • R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
  • Y 1 is a nitrogen atom (N), it is an electron pair.
  • R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
  • Y 2 is a nitrogen atom (N)
  • N nitrogen atom
  • R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
  • R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
  • the diarylethene compound is preferably represented by the following general formula (1A).
  • each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3, R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
  • R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
  • R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
  • R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or SiR 8 3 3 to 7 carbon atoms, in each of the three R 8 independently an alkyl group or an aromatic group having 1 to 6 carbon atoms, one of R 1 and R 2 is a cycloalkyl group of an alkyl group or a C 3-7 1 to 10 carbon atoms and the other at SiR 8 3 It is preferable to have.
  • the temperature indicator according to one aspect of the present invention is characterized by containing the diarylethene compound.
  • the temperature display device according to one aspect of the present invention is characterized by having the temperature indicator. It is preferable that the temperature display device has a base material and the temperature indicator is formed on one surface of the base material.
  • the temperature display device has a time information display unit, and it is preferable that the temperature indicator and the time information display unit are formed side by side in the plane direction on the base material in a plan view. In the temperature display device, it is preferable that an adhesive layer and a release layer are formed in this order on the other surface of the base material.
  • the temperature display device preferably has a protective layer formed on the temperature indicator. In the temperature display device, it is preferable that the temperature indicator has adhesiveness on at least one surface and a release layer is formed on the one surface.
  • the package according to one aspect of the present invention is characterized by having the temperature indicator.
  • FIG. 5 is a cross-sectional view taken along the line II-II of FIG. It is a figure which shows an example of the fading characteristic of the temperature indicator in the 3rd aspect of this invention. It is the schematic which shows the issuing apparatus of the temperature display device of the 3rd aspect of this invention. It is sectional drawing of the temperature display device of the 4th aspect of this invention. It is sectional drawing of the temperature display device of the 5th aspect of this invention. It is sectional drawing of the temperature display device of the 6th aspect of this invention. It is a perspective view of the package of the 7th aspect of this invention.
  • FIG. 1 It is a figure which shows the relationship between the absorbance at a wavelength of 581 nm and the irradiation time of ultraviolet rays in Example 1.
  • FIG. It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 1.
  • FIG. It is a figure which shows the relationship between the absorbance at a wavelength of 541 nm and the irradiation time of ultraviolet rays in Example 2.
  • FIG. It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 2.
  • FIG. 1 It is a figure which shows the relationship between the absorbance at a wavelength of 591 nm and the irradiation time of ultraviolet rays in Example 3.
  • FIG. It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 3.
  • FIG. It is a figure which shows the relationship between the absorbance at a wavelength of 548 nm and the irradiation time of ultraviolet rays in Example 4.
  • FIG. It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 4.
  • FIG. It is a figure which shows the relationship between the degree of fading (A / A 0) and the leaving time in Example 5.
  • FIG. 5 is a diagram in which the natural logarithm of the degree of fading (A / A 0 ) in Example 5 is plotted on the vertical axis and the leaving time is plotted on the horizontal axis.
  • FIG. 5 is a diagram in which the natural logarithm of the thermal decomposition rate constant (k) in Example 5 is plotted on the vertical axis, and the reciprocal of each temperature is plotted on the horizontal axis. It is a figure which shows the absorption spectrum before irradiation with ultraviolet rays in Example 12. It is a figure which shows the absorption spectrum in the light steady state (PSS) in Example 12. It is a figure which shows the absorption spectrum after fading in Example 12.
  • PSS light steady state
  • under a low temperature environment means room temperature or less.
  • Room temperature means 25 ° C.
  • the low temperature environment can be classified into, for example, constant temperature, refrigeration, freezing, ultra-low temperature and the like.
  • the constant temperature is, for example, a temperature range of about 5 to 25 ° C.
  • Refrigeration is, for example, a temperature range of about -18 to 10 ° C.
  • Freezing refers to a temperature range of, for example, about -40 to -18 ° C.
  • the ultra-low temperature is, for example, a temperature range of about ⁇ 40 ° C. or lower.
  • FIGS. 5 to 8 described later the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • diarylethene compound The diarylethene compound of the first aspect of the present invention is represented by the following general formula (1).
  • ring A represents a 5-membered ring structure or a 6-membered ring structure.
  • X is a sulfur atom (S), NR 7 or an oxygen atom (O), and R 7 is a hydrogen atom (H) or an alkyl group.
  • Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively.
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
  • Y 1 is a carbon atom (C)
  • R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
  • Y 1 is a nitrogen atom (N), it is an electron pair.
  • R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
  • Y 2 is a nitrogen atom (N)
  • N nitrogen atom
  • R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
  • R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
  • Ring A shows a 5-membered ring structure or a 6-membered ring structure.
  • the ring A may have either a 5-membered ring structure or a 6-membered ring structure, but a 5-membered ring structure is preferable.
  • X is a sulfur atom (S), NR 7 or an oxygen atom (O).
  • R 7 is a hydrogen atom (H) or an alkyl group.
  • the number of carbon atoms of the alkyl group in R 7 is preferably 1 to 6, and more preferably 1 to 3.
  • a sulfur atom (S) is preferable.
  • Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively. As Y 1 and Y 2 , carbon atoms (C) are preferable.
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, one of R 1 and R 2 is an alkyl group or a cycloalkyl group, the other is SiR 8 3.
  • the number of carbon atoms of the alkyl group in R 1 and R 2 is preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 4, and particularly preferably 1 to 3.
  • the alkyl group in R 1 and R 2 may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, but a primary alkyl group or a secondary alkyl group is preferable, and a primary alkyl group is preferable. Alkyl groups are more preferred.
  • the number of carbon atoms of the cycloalkyl group in R 1 and R 2 is preferably 3 to 7, and more preferably 3 to 5.
  • both R 8 are each independently an alkyl group or an aromatic group.
  • the number of carbon atoms in the alkyl group in R 8 is preferably 1-6, 1-4 is more preferable.
  • the aromatic group in R 8 include a phenyl group, a benzyl group, a tolyl group, a xsilyl group and the like, and a phenyl group (Ph) is preferable.
  • SiR 8 3 examples include Si (CH 3 ) 3 , Si (CH 2 CH 3 ) 3 , Si (CH (CH 3 ) 2 ) 3 , SiC (CH 3 ) 3 (CH 3 ) (CH 3 ). , SiC (CH 3 ) 3 (Ph) (Ph) and the like.
  • R 1 and R 2 are independently alkyl groups having 1 to 10 carbon atoms and 3 carbon atoms, respectively.
  • the combination of R 1 and R 2 may be determined according to the use (operating temperature) of the diarylethene compound.
  • R 1 and R 2 are alkyl groups having 1 to 10 carbon atoms and the other as combinations is SiR 8 3.
  • R 1 is a SiR 8 3
  • 10-hour half-life temperature of the diarylethene compound tends to be low.
  • R 1 is an alkyl group having 2 to 10 carbon atoms, a combination wherein R 2 is SiR 8 3, or R 1 is a SiR 8 3, the combination R 2 is an alkyl group having 1 to 10 carbon atoms are preferred.
  • R 1 is a primary alkyl group or a secondary alkyl group having 2 to 4 carbon atoms
  • R 2 is a trimethylsilyl group (Si (CH 3 ) 3 ) or a triethylsilyl group (Si (CH 2 CH 3 )).
  • R 1 is a trimethylsilyl group or a triethylsilyl group and R 2 is a primary alkyl group having 1 to 2 carbon atoms is more preferable.
  • R 1 is SiR 8 3
  • the combination R 2 is an alkyl group having 3 to 10 carbon atoms are preferred.
  • a combination in which R 1 is a trimethylsilyl group or a triethylsilyl group and R 2 is a primary alkyl group or a secondary alkyl group having 3 to 7 carbon atoms is more preferable.
  • R 1 is a methyl group or an isopropyl group in that it has a function of non-reproducible decolorization, that is, it is easy to obtain a diarylethene compound that does not easily recolor even if it is irradiated with light such as ultraviolet rays again after decolorization.
  • R 2 is a trimethylsilyl group, or R 1 is a trimethylsilyl group and R 2 is a methyl group or an isopropyl group.
  • R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
  • the number of carbon atoms of the alkyl group in R 3 is preferably 1 to 6, and more preferably 1 to 3.
  • the number of carbon atoms of the alkoxy group in R 3 is preferably 1 to 6, 1 to 3 more preferred. If Y 1 is a nitrogen atom (N), then R 3 is an electron pair.
  • Y 1 is a carbon atom (C)
  • R 3 is a hydrogen atom (H) or an alkyl group
  • R 3 is a hydrogen atom (H) or an alkyl group having 1 to 3 carbon atoms. More preferred.
  • R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
  • the number of carbon atoms of the alkyl group in R 5 is preferably 1-6, is 1-3 and more preferably.
  • the number of carbon atoms of the alkoxy group in R 5 is preferably 1-6, is 1-3 and more preferably. If Y 2 is a nitrogen atom (N), then R 5 is an electron pair.
  • Y 2 is a carbon atom (C)
  • R 5 is a hydrogen atom (H) or an alkyl group
  • R 3 is a hydrogen atom (H) or an alkyl group having 1 to 3 carbon atoms. More preferred.
  • the phenyl group, alkyl group, and alkoxy group in R 3 and R 5 may each have a substituent.
  • the substituent is not particularly limited, and examples thereof include a cyano group, an alkyl group, an alkoxy group, a chloro group, and a bromo group.
  • R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
  • the number of carbon atoms in the alkyl group for R 4 is preferably 1 to 10, 1 to 5 and more preferable.
  • the number of carbon atoms of the alkoxy group for R 4 is preferably 1 to 10, 1 to 5 and more preferable.
  • the R 4, a hydrogen atom (H), a alkyl group of the phenyl group or C 1-5 is preferred.
  • R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
  • the number of carbon atoms of the alkyl group in R 6 is preferably 1 to 10, and more preferably 1 to 5.
  • the number of carbon atoms of the alkoxy group in R 6 is preferably 1 to 10, and more preferably 1 to 5.
  • R 6 a hydrogen atom (H), a phenyl group, or an alkyl group having 1 to 5 carbon atoms is preferable. Among these, it is particularly preferable that R 4 and R 6 are phenyl groups, respectively.
  • the phenyl group, alkyl group, and alkoxy group in R 4 and R 6 may each have a substituent.
  • the substituent is not particularly limited, and examples thereof include a cyano group, an alkyl group, an alkoxy group, a chloro group, and a bromo group.
  • Preferred structures of the ring A include, for example, a structure represented by the following general formula (a1), the following general formula (a2), the following general formula (a3), or the following general formula (a4).
  • the six Zs are each independently a hydrogen atom (H) or a fluorine atom (F). It is preferable that all six Z's are fluorine atoms (F) or hydrogen atoms (H). It is more preferable that all six Z's are fluorine atoms (F) because they are excellent in stability under visible light.
  • R c, R d and R e are each independently phenyl group or an alkyl group.
  • R c, the number of carbon atoms in the alkyl group in R d and R e is preferably 1 to 10, 1 to 5 and more preferable.
  • the phenyl group and alkyl group in R c , R d and Re may each have a substituent.
  • the substituent is not particularly limited, and examples thereof include a cyano group, an alkyl group, an alkoxy group, a chloro group, and a bromo group.
  • R c , R d, and Re alkyl groups having 1 to 5 carbon atoms, which may have substituents, are preferable.
  • X is preferably a sulfur atom (S).
  • S sulfur atom
  • Y 1 and Y 2 are carbon atoms (C), respectively.
  • R 3 and R 4 are independently hydrogen atoms (H), phenyl groups, or alkyl groups having 1 to 5 carbon atoms, or R 3 and R 4 are bonded to each other to form a 6-membered ring structure. It is preferable to do so.
  • R 5 and R 6 are independently hydrogen atoms (H), phenyl groups or alkyl groups having 1 to 5 carbon atoms, or R 5 and R 6 are bonded to each other to form a 6-membered ring structure. It is preferable to do so. It is preferable that R 3 and R 4 are independently hydrogen atoms (H) or alkyl groups having 1 to 5 carbon atoms. Further, it is particularly preferable that R 5 and R 6 are phenyl groups, respectively.
  • the 6-membered ring structure in which R 3 and R 4 are bonded to each other and the 6-membered ring structure in which R 5 and R 6 are bonded to each other are not particularly limited, but from the viewpoint of effectively exerting the above functions, the structure is not particularly limited.
  • a benzene ring skeleton is preferable.
  • the diarylethene compound is preferably represented by the following general formula (1A).
  • each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3, R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
  • R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
  • R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
  • R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
  • R 3 and R 5 are independently hydrogen atoms (H) or alkyl groups having 1 to 5 carbon atoms.
  • R 4 and R 6 are phenyl groups, respectively.
  • R 3 and R 4 may be bonded to each other to form a benzene ring.
  • R 5 and R 6 may be bonded to each other to form a benzene ring.
  • all 6 Zs are preferably fluorine atoms or hydrogen atoms (H), and since they are excellent in stability under visible light, all 6Zs are fluorine atoms (F). Is particularly preferable.
  • the diarylethene compound of the present embodiment is more preferably represented by the following general formula (1B).
  • each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
  • R 3 is a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group.
  • R 5 is a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group.
  • R 1, R 2, R 3 and R 5 in the general formula (1B) is the same as R 1, R 2, R 3 and R 5 of each of the general formula (1).
  • R 3 and R 5 are independently hydrogen atoms (H) or methyl groups, respectively.
  • all 6 Zs are preferably fluorine atoms or hydrogen atoms (H), and since they are excellent in stability under visible light, all 6Zs are fluorine atoms (F). Is particularly preferable.
  • the diarylethene compounds represented by the general formula (1) the viewpoint of effectively exerting the above functions while controlling the 10-hour half-life temperature of the diarylethene compound to a temperature suitable for temperature control in a low temperature environment. Therefore, it is particularly preferable that the diarylethene compound is represented by the following general formula (1C).
  • R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, the three R 8 each independently represent an alkyl group or an aromatic group, R 1 and one of R 2 is an alkyl group or a cycloalkyl group, the other is SiR 8 3.
  • R 1 and R 2 in the general formula (1C) is the same as R 1 and R 2 of each of the general formula (1).
  • the method for producing the diarylethene compound represented by the general formula (1) is not particularly limited, and a known production method can be adopted. For example, first, a precursor of a diarylethene compound represented by the following general formula (2) (hereinafter, also referred to as “precursor (2)”) is produced. Next, the diarylethene compound represented by the general formula (1) is produced by oxidizing the sulfur atom (S) in the 5-membered ring skeleton (thiophene) and converting it into a sulfonyl group (SO 2). Can be done.
  • S sulfur atom
  • thiophene 5-membered ring skeleton
  • SO 2 sulfonyl group
  • the method of oxidizing S in the 5-membered ring skeleton of the precursor (2) to convert it into a sulfonyl group (SO 2 ) is not particularly limited, and for example, the precursor (2) is converted into m-chloroperbenzoic acid. Examples thereof include a method of oxidizing with a peracid such as an acid.
  • the diarylethene compound is represented by the following general formula (1-1) when the precursor represented by the following general formula (2A) is oxidized. It is obtained in the form of a mixture of the diarylethene compound and the diarylethene compound represented by the following general formula (1-2). These may be used isolated or in the form of a mixture.
  • 4 , R 5 and R 6 are the same as rings A, X, Y 1 , Y 2 , R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1), respectively. ..
  • the reaction conditions such as the starting material, the amount and ratio thereof used, the temperature, time, pressure, the atmosphere and the type and amount of the solvent should be appropriately set according to the structure of the diarylethene compound to be produced. Just do it.
  • the fact that the produced compound is the desired diarylethene compound (1) can be determined by a general organic analysis method such as nuclear magnetic resonance spectrum method (NMR) or mass spectrometry, as shown in Examples described later. You can check.
  • NMR nuclear magnetic resonance spectrum method
  • mass spectrometry mass spectrometry
  • X in the general formula (2) is a sulfur atom (S)
  • R 1 is SiR 8 3
  • R 2 is an alkyl group or a cycloalkyl group
  • compound (3) and compound (4) are reacted to obtain compound (5).
  • the compound (5) is reacted with the cyclic compound (A) from which the ring A is derived to obtain the compound (6).
  • the cyclic compound (A) includes cyclopentene, octafluorocyclopentene and the like.
  • compound (7) is reacted with bromine to obtain compound (8).
  • R 9 in compound (7) is an alkyl group or a cycloalkyl group.
  • R 9 in the compound (7) is a primary alkyl group
  • a commercially available product can be used as the compound (7), for example.
  • the compound (7) is prepared by reacting, for example, the compound (9) with the ketone compound (B) to obtain the compound (10), and then the compound. (10) is reduced to obtain compound (7).
  • R 9 in the compound (10) is an alkyl group or a cycloalkyl group other than the primary alkyl group.
  • ketone compound (B) examples include acetone, methyl ethyl ketone, 2-pentanone, diethyl ketone, 3-hexanone, 4-heptanone, 2,4-dimethyl-3-pentanone, cyclopentanone, cyclohexanone and the like.
  • Compound (10) can be reduced using, for example, aluminum chloride (AlCl 3 ) and lithium aluminum hydride (LiAlH 4).
  • the compound (9) is lithiated with an organic lithium compound, and then the obtained reaction product and an alkyl halide are used.
  • (R 9- X) is reacted to obtain compound (7).
  • the organic lithium compound include butyllithium and the like.
  • the alkyl halide (R 9- X) is not particularly limited as long as it has R 9 as an alkyl group, and is, for example, an alkyl iodide (R 9- I) such as methyl iodide, ethyl iodide, and propyl iodide. ); Alkyl bromide (R 9- Br) such as methyl bromide, ethyl bromide, propyl bromide and the like can be mentioned.
  • the compound (8) in which R 6 is a phenyl group is obtained, for example , the compound (7) in which R 6 is a hydrogen atom (H) is reacted with bromine, and then further reacted with an aromatic halogen compound.
  • the aromatic halogen compound include iodobenzene, bromobenzene, m-substituted iodobenzene, p-substituted iodobenzene and the like.
  • the diarylethene compound of the present embodiment is colored by forming (closing) a ring between two thiophene rings to which R 1 and R 2 are bonded by irradiation with ultraviolet light, for example, as represented by the following formula. (Switching function).
  • This coloring is stable under visible light and below a predetermined temperature ( ⁇ ), but is decomposed into by-products by being exposed (heated) to conditions above the predetermined temperature ( ⁇ ). Therefore, it is decolorized (faded).
  • This decoloring (fading) state is stable under ultraviolet light and visible light, and decolorization from coloring is irreversible.
  • the temperatures at which it is decomposed into by-products are R 1 and R. Affected by two types. As described above, the larger the number of carbon atoms in the alkyl group or cycloalkyl group of R 1 or R 2 , the lower the 10-hour half-life temperature of the diarylethene compound tends to be. That is, it is decomposed at a lower temperature and decolorized. Therefore, by adjusting the types of R 1 and R 2 , the 10-hour half-life temperature of the diarylethene compound can be controlled, and the coloring can be decolorized at a desired temperature.
  • the 10-hour half-life temperature of the diarylethene compound of the present embodiment is preferably room temperature or lower, more preferably 15 ° C. or lower, and even more preferably 0 ° C. or lower.
  • the lower limit of the 10-hour half-life temperature is not particularly limited, but when the diarylethene compound is used for temperature control in a refrigerated or frozen region, the 10-hour half-life temperature is preferably ⁇ 40 ° C. or higher, more preferably ⁇ 20 ° C. or higher.
  • the method for measuring the 10-hour half-life temperature of the diarylethene compound is as described in Examples described later.
  • the diarylethene compound of the present embodiment since the diarylethene compound of the present embodiment has a specific structure, it is suitable for temperature control in a low temperature environment.
  • the operating temperature functional temperature
  • the diarylethene compound of the present embodiment can be used as a photochromic material because it has a P-type photochromism performance capable of setting a desired operating temperature.
  • the diarylethene compound of the present embodiment may be microencapsulated in order to exhibit stable properties in a solvent.
  • microencapsulation is to process a diarylethene compound diffused in a solvent into minute capsules containing a melted solution.
  • the solvent include organic solvents and water.
  • the organic solvent include hydrocarbons such as hexane and toluene; alcohols such as methanol and ethanol; and ketones such as acetone.
  • Examples of the microencapsulation method include known interfacial polymerization methods, in-situ polymerization methods, in-liquid curing coating methods, phase separation methods from aqueous solutions, phase separation methods from organic solvents, melt-dispersion cooling methods, and air suspensions. Examples include a turbid coating method and a spray drying method.
  • the average particle size of the microcapsules is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and even more preferably 5 to 15 ⁇ m.
  • the temperature indicator of the second aspect of the present invention comprises the diarylethene compound of the first aspect of the present invention described above.
  • the temperature indicator has a function of initiating temperature detection by irradiation with light.
  • the temperature indicator is initialized by, for example, being irradiated with light of a specific wavelength, and the color intensity changes. By recognizing the color information, it is possible to confirm the temperature at which the temperature indicator was exposed and the elapsed time at the temperature at which the temperature indicator was exposed.
  • the diarylethene compound of the first aspect of the present invention is irreversibly discolored (colored) when irradiated with light of a specific wavelength, and irreversibly faded (decolorized) by heat. Therefore, the temperature indicator can be initialized by irradiating the temperature indicator with light having a specific wavelength to discolor it. That is, the temperature indicator is initialized by irradiating the temperature indicator with light just before the temperature indicator is actually used. Therefore, there are few restrictions on the temperature environment in which the temperature indicator is stored, that is, the temperature environment before the temperature indicator is initialized. For example, even a temperature indicator for temperature control in a low temperature environment can be stored at room temperature.
  • the content of the diarylethene compound contained in the temperature indicator is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass (total mass) of the temperature indicator.
  • the content of the diarylethene compound is 0.1% by mass or more, the initialization concentration does not become too thin and can be recognized well, so that the temperature detection accuracy can be maintained.
  • the reaction rate of the diarylethene compound is unlikely to decrease during initialization by light irradiation, and uninitialized portions are unlikely to occur. Therefore, light such as ultraviolet rays is irradiated again. However, it becomes more difficult for the color to recur.
  • the temperature indicator may include a binder in addition to the diarylethene compound.
  • the binder include polyvinyl acetal resin, silicone resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, polyurethane resin, polyester, epoxy resin, nitrocellulose (nitrified cotton), ethyl cellulose, polyamide, isoprene rubber and the like.
  • examples thereof include cyclized rubber, chlorinated polyolefin, maleic acid resin, phenol resin, ketone resin, xylene resin, petroleum resin, melamine resin, urea resin, polyisocyanate and the like.
  • the content of the binder contained in the temperature indicator is preferably 80 to 99.9% by mass, more preferably 90 to 99% by mass, based on the total mass (total mass) of the temperature indicator.
  • the binder content is 80% by mass or more, the temperature indicator can be easily formed.
  • the binder content is 99.9% by mass or less, the amount of the diarylethene compound in the temperature indicator becomes sufficient, the initialization concentration does not become too thin, and it can be recognized well, so that the temperature detection accuracy can be maintained.
  • the shape of the temperature indicator is not particularly limited, but a film shape is preferable.
  • its thickness is preferably 100 nm to 50 ⁇ m, more preferably 500 nm to 20 ⁇ m.
  • the initialization concentration does not become too thin and can be recognized well, so that the temperature detection accuracy can be maintained.
  • the thickness of the temperature indicator is 50 ⁇ m or less, the light can sufficiently reach the inside of the temperature indicator at the time of initialization by light irradiation. Therefore, the reaction rate of the diarylethene compound is unlikely to decrease, and uninitialized portions are unlikely to occur, so that recoloring is less likely to occur even if light such as ultraviolet rays is irradiated again.
  • FIG. 1 is a plan view showing a temperature display device 20 according to a third aspect of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the temperature display device 20 of FIG.
  • the temperature display device 20 of the present embodiment includes a base material 21, a reference unit 22, a temperature indicator 23, and a time information display unit 24.
  • the temperature indicator 23 is formed on one surface of the base material 21.
  • the reference unit 22, the temperature indicator 23, and the time information display unit 24 are formed side by side in the plane direction on the base material 21.
  • the temperature display device 20 is attached to a package or the like of an object (for example, food, pharmaceutical product, etc.) such as a product to be temperature-controlled. It is assumed that the temperature display device 20 is used by being attached to an object subject to temperature control. Therefore, the shape and size of the base material 21 are selected based on the specifications, size, usage, and the like of the product of the object.
  • an object for example, food, pharmaceutical product, etc.
  • the shape and size of the base material 21 are selected based on the specifications, size, usage, and the like of the product of the object.
  • the base material 21 examples include glass, plastic, synthetic paper, woodfree paper, and metal (for example, aluminum).
  • the base material 21 is preferably synthetic paper or high-quality paper.
  • synthetic paper When the temperature display device 20 is used at a low temperature and dew condensation may occur, it is preferable to use synthetic paper as the base material 21.
  • synthetic paper When synthetic paper is used as the base material 21, moisture does not easily permeate into the base material 21 and the strength is maintained.
  • the base material 21 may be plate-shaped, foil-shaped, or the like.
  • the base material 21 preferably has flexibility.
  • the base material 21 may be transparent or non-transparent to the light (for example, ultraviolet rays) irradiated to the temperature indicator 23.
  • the base material 21 may be, for example, a card shape having a substantially rectangular shape in a plan view.
  • the thickness of the base material 21 is not particularly limited as long as it can support the reference portion 22 and the temperature indicator 23, but is preferably 10 ⁇ m to 1.0 mm, more preferably 50 ⁇ m to 0.5 mm.
  • a material that is easy to print may be selected.
  • the material of the base material 21 may be selected in consideration of the formation of the temperature indicator 23, ink adhesion, pattern arrangement such as printing, etc., regardless of the recording method. For example, when at least a part of the surface region of the base material 21 is made of thermal paper, the region becomes a thermal paper region that develops color by heating. When a thermal recording type printing recording device is adopted, printing can be performed on the thermal paper area. Further, a heat-sensitive recording layer (not shown) may be provided between the base material 21, the reference unit 22, and the temperature indicator 23. From the viewpoint of improving print quality, the thickness of the heat-sensitive recording layer is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the reference unit 22 presents a reference color as an index for specifying the color of the temperature indicator 23.
  • the color of the temperature indicator 23 can be determined by visually comparing the temperature indicator 23 with the reference unit 22.
  • the configuration of the reference unit 22 is not particularly limited, but includes a material (for example, a pigment) that can maintain a desired color intensity without discoloration due to the influence of the external environment (temperature, light, etc.) and has excellent water resistance and light resistance. It is preferable to have.
  • the shape and size of the reference unit 22 are appropriately selected based on the specifications, size, usage method, and the like of the target product that is expected to be used by being attached to the target object for temperature detection.
  • the temperature indicator 23 is the temperature indicator of the second aspect of the present invention described above. That is, the temperature display device of the present embodiment has the temperature indicator of the second aspect of the present invention.
  • the time information display unit 24 is an area on which time information is printed.
  • the time information is, for example, character information (printed as characters), a bar code, a two-dimensional code, or the like.
  • the time information is time information indicating the time when the temperature display device 20 is started to be used.
  • the time information display unit 24 is a bar code, a two-dimensional code, or the like, it may include information about an object on which the temperature display device 20 is mounted.
  • the information about the object is, for example, a product name, identification information for identifying the object, and the like.
  • the time information display unit 24 may print the time information before the temperature display device 20 is initialized, or may print the time information when the temperature indicator 23 is initialized.
  • the shape and size of the time information display unit 24 are appropriately selected based on the specifications, size, usage method, and the like of the target product that is expected to be used by being attached to the target object for temperature detection. In the temperature display device 20 shown in FIG. 1, time information is printed on the time information display unit 24.
  • the temperature display device 20 of the present embodiment can be manufactured, for example, as follows.
  • the reference portion 22 is formed on the base material 21.
  • Examples of the method of forming the reference portion 22 include a method of preparing a solution containing a pigment and a solvent having a desired color intensity, printing the solution on a part of the base material 21, and then drying the solution.
  • Examples of the printing method include screen printing, letterpress printing, flexo printing, dry offset printing, gravure printing, gravure offset printing, pad printing, offset printing, silk printing, and printing using a bar coater.
  • a temperature indicator 23 is formed on the base material 21.
  • Examples of the method for forming the temperature indicator 23 include a method of preparing a solution containing a diarylethene compound, a binder, and a solvent, printing the solution on a part of the base material 21, and then drying the solution.
  • the solvent used to form the temperature indicator 23 depends on the material of the temperature indicator 23 and the substrate 21, such as mineral spirit, petroleum naphtha, terepine oil, n-butyl, toluene, xylene, cyclohexane.
  • Tetraline acetic acid, methoxybutyl acetate, acetone, methyl isobutyl ketone (MIBK), isophorone, diacetone alcohol, isopropyl alcohol (IPA), n-butanol, ethylene glycol monomethyl ether (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve) ), Ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monoethyl ether acetate (cellosolve acetate), ethylene glycol monobutyl ether acetate (butyl cellosolve acetate), diethylene glycol monobutyl ether (butyl carbitol) and the like. Two or more of these materials may be mixed and used as a solvent. Of these, toluene and acetone are preferable as the solvent.
  • the content of the diarylethene compound contained in the solution containing the diarylethene compound, the binder, and the solvent is such that the solution has appropriate viscosity and is less likely to bleed during printing, and the diarylethene compound is uniformly dispersed in the solution.
  • Examples of the printing method include a method similar to the printing method used when forming the reference portion 22.
  • the drying temperature is preferably determined between 20 and 100 ° C. in consideration of productivity and damage to the temperature indicator 23.
  • the temperature indicator 23 can be formed without using a solvent. That is, the temperature indicator 23 is formed by mixing the solvent-free resin and the diarylethene compound, printing the obtained mixture on the base material 21, and then curing the solvent-free resin by heating or drying. With this method, the emission of VOC (volatile organic compounds) can be suppressed.
  • a solvent-free resin such as a thermosetting resin or a water-based paint
  • microcapsules of the diarylethene compound are mixed with screen ink to a desired concentration, and then partially printed on the substrate 21 by screen printing.
  • the temperature indicator 23 may be formed.
  • the printing method is not limited to screen printing, and a method similar to the printing method used when forming the reference portion 22 may be used.
  • FIG. 3 is a diagram showing an example of the fading characteristic of the temperature indicator 23.
  • the vertical axis of FIG. 3 is the color intensity of the temperature indicator 23 (for example, the absorption amount of the light intensity of the light absorption wavelength and the color difference when the color difference before color development is used as the reference color), and the larger the color intensity, the darker the color.
  • the horizontal axis shows the elapsed time from the time of initialization of the temperature indicator 23.
  • the temperature indicator 23 fades (decolorizes) with time after being irradiated with light of a specific wavelength and becoming colored.
  • the reference numeral a indicates the change over time of the color at the first temperature.
  • Reference numeral b indicates a change in color over time at a second temperature higher than the first temperature.
  • Reference numeral c indicates a change in color over time at a third temperature higher than the second temperature.
  • the change in color intensity from the time when the diarylethane compound contained in the temperature indicator 23 is colored (that is, initialized) is measured in advance under a predetermined temperature condition, and a predetermined process is obtained. It can be determined based on the color intensity over time.
  • the color intensity of the reference unit 22 is defined as the color intensity obtained after a predetermined elapsed time from the initialization of the temperature display device 20 under the assumed temperature environment.
  • the color intensity obtained when the temperature display device 20 is held at 5 ° C. for 10 hours from the initialization is used.
  • the temperature indicator 23 of the temperature display device 20 is initialized by using the issuing device described later, and the initialized time is printed on the time information display unit 24.
  • the temperature display device 20 in which the temperature indicator 23 is initialized and the initialized time and the like are printed on the time information display unit 24 is defined as the temperature history management label.
  • the issuing device is provided with a temperature display device 20 in advance.
  • the temperature indicator 23 of the temperature display device 20 provided in the issuing device is irradiated with light from a light source provided in the issuing device, and the temperature indicator 23 is initialized.
  • the time information display unit 24 is printed with the time when the temperature indicator 23 is initialized by the print recording unit of the issuing device. Information such as the time may be coded and printed on the time information display unit 24.
  • the temperature indicator 23 is initialized, and the initialized time is printed on the time information display unit 24 to generate a temperature history management label.
  • the temperature history control label is taken out of the issuing device and immediately affixed to the product subject to temperature detection.
  • the color intensity of the reference unit 22 and the color intensity of the temperature indicator 23 are visually compared. If it is determined that the color intensity of the temperature indicator 23 is higher than the color intensity of the reference unit 22, it is presumed that the object was held at a temperature lower than 5 ° C. If the color intensity of the temperature indicator 23 is determined to be the same as the color intensity of the reference unit 22, it is estimated that the object was held at about 5 ° C. When the color intensity of the temperature indicator 23 is lower than the color intensity of the reference portion 22, it is presumed that the object was held at a temperature higher than 5 ° C.
  • the object to which the temperature history management label is attached is attached. Can be estimated whether or not the temperature environment was as expected.
  • the temperature display device 20 in the present embodiment is effective when the temperature control time of the object is set in advance.
  • the issuing device 50 of FIG. 4 can be used as the issuing device of the temperature display device.
  • the issuing device 50 includes a base material supply unit 55, a print recording unit 52, an irradiation unit 53, and a control unit 51. Further, the issuing device 50 includes a moving mechanism unit (not shown).
  • the base material supply unit 55 can include, for example, a roll 551 (for example, roll paper) around which a long temperature display device 20A is wound.
  • the temperature display device 20A is a form before the temperature display device 20 is cut, and a plurality of temperature display devices 20 are connected in a row.
  • the base material supply unit 55 may adopt a method (single-wafer type) capable of supplying a temperature display device cut to a predetermined size in advance.
  • the print recording unit 52 has various print recording methods such as a thermal recording type using a thermal head, an ink ribbon type, an inkjet type, an electrophotographic type, and a laser marking type (a method of irradiating a laser beam to perform surface processing). It can be adopted. Of these, a thermal printer using a thermal recording type is particularly preferable. Thermal printers have the advantages of extremely low operating noise, a relatively simple structure suitable for small size and light weight, and low cost. Further, since the thermal printer does not use inks such as ink ribbons and ink cartridges, the only consumable item is thermal paper, which has the advantage of being simple and reducing running costs.
  • the print recording unit 52 prints display information such as time and information on an object to which the temperature history management label 40 is attached on the temperature display device 20A on the time information display unit of the temperature display device.
  • the irradiation unit 53 includes a light source of irradiation light that irradiates the temperature indicator.
  • the wavelength of the irradiation light by the irradiation unit 53 is, for example, an ultraviolet light region (for example, 250 to 400 nm). Ultraviolet rays can color temperature indicators in a wide range from short wavelengths to long wavelengths close to the visible light region. It is desirable that the irradiation unit 53 has a configuration in which the wavelength of the irradiation light to be used can be selected based on the absorption spectra of the ring-opened body and the ring-closed body of the diarylethene compound.
  • the light source can be selected according to the specifications of the temperature display device and the specifications of the issuing device 50.
  • an ultraviolet LED it is preferable to use an ultraviolet LED as a light source. Since the ultraviolet LED has a narrow wavelength band, it is preferable to select a wavelength from the photochromic absorption spectrum of the temperature indicator portion of the temperature display device and select an ultraviolet LED capable of irradiating light of that wavelength.
  • a light source having a wide wavelength band such as a lamp type is used, it is possible to adjust the color development characteristics of the irradiation light by a filter according to the absorption spectrum of the temperature indicator unit.
  • the irradiation unit 53 does not leak the irradiation light to the outside of the issuing device 50 when the light is irradiated.
  • the irradiation unit 53 is provided on the downstream side of the print recording unit 52 (downstream side in the transport direction of the temperature display device 20A) and close to the outlet of the issuing device 50 (the carry-out outlet from which the temperature display device 20A is carried out). It may have been printed. Since the temperature indicator unit of the temperature display device 20A starts temperature detection by light irradiation, if the irradiation unit 53 is located near the outlet of the issuing device 50, the temperature display device can be displayed on the target product in a short time from the start of temperature detection. This is because it can be pasted.
  • the print recording unit 52 is on the upstream side of the irradiation unit 53 in the transport direction, the temperature detection is not started at the time of printing. Therefore, the heating during printing does not affect the temperature history of the temperature indicator. Therefore, it is possible to display an accurate temperature history.
  • the control unit 51 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) that are connected to each other. For example, the control unit 51 executes a pre-stored program by the CPU.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • control unit 51 includes an irradiation control unit, a print control unit, an information acquisition unit, a timekeeping unit, and a position control unit (all of which are not shown).
  • the irradiation control unit controls the irradiation of light to the temperature display device 20A by the irradiation unit 53.
  • the print control unit controls printing of display information on the temperature display device 20A by the print recording unit 52.
  • the display information is, for example, time information that is the start time of temperature detection of the temperature display device 20A, that is, time information that initializes the temperature display device 20A by irradiating the temperature indicator 23 with light, product information, or the like. ..
  • the information acquisition unit acquires time information and product information.
  • the timekeeping unit measures the irradiation time at which the temperature indicator is irradiated with light in the irradiation unit 53, and outputs time information (irradiation time). According to this configuration, an accurate time can be printed on the temperature display device 20A.
  • the position control unit controls, for example, the transfer of the temperature display device 20A supplied from the base material supply unit 55.
  • the position control unit outputs a control signal to the irradiation control unit and the print control unit according to the position of the temperature display device 20A, and operates the print recording unit 52 and the irradiation unit 53.
  • the moving mechanism unit feeds out the long temperature display device 20A from the roll 551 by a driving unit (not shown) such as a motor, and sends out the temperature display device via the print recording unit 52 and the irradiation unit 53. This issues a temperature display device.
  • a driving unit such as a motor
  • the issuing device 50 having the above configuration, it is possible to both initialize the temperature display device of the present invention and print the initialized time and the like.
  • the temperature display device 20 is not limited to the above.
  • a part of the temperature indicator 23 may soak into a part of the base material 21.
  • the degree to which the temperature indicator 23 soaks into a part of the base material 21 depends on the method of forming the temperature indicator 23. Therefore, in order to obtain the desired form of the temperature indicator 23, the method for forming the temperature indicator 23 may be appropriately selected.
  • the viscosity of the solution containing the diarylethene compound, the binder and the solvent may be specified.
  • the temperature display device 20 may have a blocking layer (not shown) between the temperature indicator 23 and the base material 21.
  • the area of the barrier layer is larger than the area of the temperature indicator 23.
  • the barrier layer is arranged so as to prevent the temperature indicator 23 from coming into direct contact with the base material 21.
  • By arranging the blocking layer it is possible to prevent the base material 21 from being discolored due to the solvent or binder for forming the temperature indicator 23 permeating into the base material 21. Further, by arranging the blocking layer, it is possible to suppress the influence of the base material 21 on the color development characteristics of the temperature indicator 23.
  • cyclized rubber such as vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, polyurethane resin, polyester, epoxy resin, nitrocellulose (nitrified cotton), ethylcellulose resin, polyamide, isoprene rubber, etc. , Chlorinated polyolefin, maleic acid resin, phenol resin, ketone resin, xylene resin, petroleum resin, melamine resin, urea resin, polyisocyanate and the like.
  • the above material may be a photocurable resin such as ultraviolet curable.
  • Acrylic resin is preferable as the material of the barrier layer. Examples of the method for forming the blocking layer include the following methods.
  • a solution containing the above-mentioned barrier layer material and solvent is prepared.
  • the barrier layer is formed by printing a solution containing the material and solvent of the barrier layer on the base material 21 and drying it before forming the temperature indicator 23. Examples of the printing method include a method similar to the printing method used when forming the reference portion 22.
  • the temperature display device 20 may have a reference unit 22 having a plurality of color intensities. It may also have a plurality of temperature indicators 23. If it has a plurality of reference parts and a plurality of temperature indicators, it is possible to easily visually determine how much the object to which the temperature display device 20 is attached deviates from the controlled temperature range. This is useful when you need to know how much you deviate from the temperature range to be controlled.
  • the temperature display device 20 in this embodiment does not need to be provided with the reference unit 22.
  • the reading processing device is, for example, a smartphone, a tablet terminal, a dedicated device, or the like having an imaging function.
  • the reading processing device reads the information of the temperature history management label (the image including the temperature indicator 23 and the time information display unit 24) through the imaging means, and based on the read information, the temperature history management label (temperature display device 20). Find the temperature and elapsed time that the object to which is affixed was exposed.
  • the reading processing device causes the display unit to display the temperature at which the obtained object was exposed, the elapsed time from the initialization of the temperature history management label, and the like. In this way, by reading the information on the temperature history management label using the reading processing device and performing temperature detection, the temperature history can be easily and more accurately performed at an arbitrary elapsed time after the temperature history management label is initialized. It is possible to control the temperature of the object to which the control label is affixed.
  • FIG. 5 is a cross-sectional view of the temperature display device 20B according to the fourth aspect of the present invention.
  • the temperature display device 20B of the present embodiment has a surface (base material) opposite to the surface (one surface of the base material) on which the reference portion 22, the temperature indicator 23, and the time information display unit 24 of the base material 21 are located.
  • the temperature display device of the third aspect is the same as that of the temperature display device of the third aspect, except that the adhesive layer 31 and the release layer 32 are provided on the other surface).
  • the adhesive layer 31 is located between the base material 21 and the release layer 32. That is, the adhesive layer 31 and the release layer 32 are formed on the other surface of the base material 21 in this order.
  • the material of the adhesive layer 31 is not particularly limited as long as the temperature display device 20B can be attached to the temperature detection object.
  • the material of the release layer 32 is not particularly limited as long as it can be easily separated from the adhesive layer 31.
  • the release layer 32 can be peeled off from the adhesive layer 31, and the temperature display device 20B from which the release layer 32 has been peeled off can be attached to an object for use.
  • FIG. 6 is a cross-sectional view of the temperature display device 20C according to the fifth aspect of the present invention.
  • the temperature display device 20C of the present embodiment is the same as the temperature display device of the third aspect except that the protective layer 33 is provided on the temperature indicator 23.
  • the protective layer 33 is formed on the temperature indicator 23 (the surface of the temperature indicator 23 opposite to the surface on which the base material 21 is located).
  • the area of the protective layer 33 is larger than the area of the temperature indicator 23.
  • the protective layer 33 is preferably arranged so as to cover the entire temperature indicator 23.
  • the protective layer 33 is preferably a thermally and chemically stable silicone-coated layer, but is not particularly limited as long as it is a thermally and chemically stable layer.
  • the protective layer 33 include an aqueous emulsion coating layer made of polyvinyl alcohol and the like, a laminated layer made of a transparent film made of an olefin resin such as polyethylene and polypropylene, and the like.
  • a method for forming the protective layer 33 for example, when a silicone coating layer is used as the protection layer 33, it is formed by applying a solution for forming the silicone coating layer so as to cover the entire temperature indicator 23 and drying it. Can be done.
  • the protective layer 33 can be formed by arranging the laminated layer so as to cover the entire temperature indicator 23 and fixing the laminated layer by crimping.
  • the dimensions of the temperature display device 20C and the layout of the temperature indicator 23 and the time information display unit 24 are stored in the printing device in advance, and the temperature indicator is stored.
  • the print range may be set so as to avoid the position of 23. By doing so, it is possible to print the time and other information without directly heating the temperature indicator 23 at the time of printing and without affecting the temperature characteristics of the temperature indicator 23.
  • the adhesive layer and the peeling layer both are) on the surface opposite to the surface on which the reference portion 22, the temperature indicator 23, the time information display portion 24 and the protective layer 33 of the base material 21 are located. (Not shown) may be provided in this order.
  • FIG. 7 is a cross-sectional view of the temperature display device 20D according to the sixth aspect of the present invention.
  • the temperature display device 20D of the present embodiment has a peeling layer 32, a temperature indicator 23D on the peeling layer 32, and a transparent base material 34 on the temperature indicator 23D.
  • the temperature indicator 23D is a thin layer containing the diarylethene compound of the first aspect of the present invention and a binder, and has adhesiveness on at least one surface.
  • the binder include an adhesive capable of attaching the temperature display device 20D to the temperature detection object and having a hardness of the temperature indicator 23D measured using a nanoindenter of 60 MPa or less.
  • the temperature indicator 23D has adhesiveness not only on one surface but also on a portion other than the one surface.
  • Examples of such an adhesive include an acrylic adhesive, a urethane adhesive, and a silicone adhesive.
  • the content of the diarylethene compound and the binder contained in the temperature indicator 23D is the same as that of the temperature indicator of the second aspect of the present invention.
  • the release layer 32 is formed on one surface of the temperature indicator 23D.
  • the material of the release layer 32 is not particularly limited as long as it can be easily separated from the temperature indicator 23D.
  • the transparent substrate 34 is formed on the other surface of the temperature indicator 23D.
  • the transparent base material 34 does not interfere with light irradiation when initializing the temperature indicator 23D, and does not interfere with visually confirming the color change after a lapse of a predetermined time or by checking with a reading processing apparatus.
  • the substrate is not particularly limited as long as it is a base material made of a material that transmits light.
  • the transparent base material 34 include a glass base material and a transparent resin base material.
  • the resin forming the transparent resin base material include polyester resins such as polyethylene terephthalate (PET), methacrylic resins, acrylic resins, polycarbonate resins, vinyl chloride resins, and polyolefin resins.
  • the temperature display device 20D can be manufactured, for example, by forming the temperature indicator 23D on the release layer 32 and then forming the transparent base material 34 on the temperature indicator 23D.
  • the method of forming the temperature indicator 23D is the same as the method of forming the temperature indicator on the base material in the third aspect of the present invention.
  • a method for forming the transparent base material 34 a method of attaching a separately prepared transparent base material 34 to the temperature indicator 23D, and a method of applying a solution containing a resin and a solvent for forming the transparent resin base material and drying the transparent base material 34. And so on.
  • the temperature indicator 23D may be formed on the transparent base material 34, and the release layer 32 may be attached on the temperature indicator 23D.
  • the peeling layer 32 is peeled off from the temperature indicator 23D immediately before using the temperature display device 20D, and the temperature display device 20D from which the peeling layer 32 is peeled off is an object. It can be used by pasting it on. Examples of the method of using the temperature display device 20D include a temperature detection method using the reading processing device described in the third aspect of the present invention.
  • FIG. 8 is a perspective view of the package 60 according to the seventh aspect of the present invention.
  • the package 60 of the present embodiment has a packaging material 61 for packaging an object (for example, food, pharmaceutical product, etc.) such as a product to be temperature-controlled, a reference unit 22, and a temperature indicator 23.
  • an object for example, food, pharmaceutical product, etc.
  • a reference unit 22 for example, a product to be temperature-controlled
  • a temperature indicator 23 In a plan view, the reference portion 22 and the temperature indicator 23 are formed side by side in the plane direction on the packaging material 61.
  • the form of packaging is not particularly limited, and may be individual packaging, interior packaging, or exterior packaging.
  • Examples of the packaging material 61 include corrugated cardboard, styrofoam, bags, boxes, cans, bottles, barrels, and the like.
  • Examples of the material of the packaging material 61 include paper, plastic, vinyl, cloth, metal, glass, wood and the like. The packaging material 61 and its material are determined according to the form of the packaging.
  • the reference unit 22 presents a reference color as an index for specifying the color of the temperature indicator 23.
  • Examples of the reference unit 22 include the reference unit exemplified above in the description of the third aspect of the present invention.
  • the temperature indicator 23 is the temperature indicator of the second aspect of the present invention described above. That is, the package 60 of the present embodiment has the temperature indicator of the second aspect of the present invention.
  • the package 60 of the present embodiment can be manufactured, for example, as follows.
  • the reference portion 22 is formed on the packaging material 61.
  • the method for forming the reference portion 22 is the same as the method for forming the reference portion exemplified above in the description of the third aspect of the present invention.
  • a temperature indicator 23 is formed on the packaging material 61.
  • a solution containing the diarylethene compound of the first aspect of the present invention, a binder, and a solvent was prepared, and this solution was printed or applied to a part on the packaging material 61. After that, a method of drying can be mentioned.
  • the binder include the binder exemplified above in the description of the second aspect of the present invention.
  • the solvent include the solvents exemplified above in the description of the third aspect of the present invention.
  • Examples of the printing method include inkjet printing, screen printing, letterpress printing, flexo printing, dry offset printing, gravure printing, gravure offset printing, pad printing, offset printing, silk printing, and printing using a bar coater.
  • Examples of the coating method include a spray coating method, a brush coating method, a roller coating method and the like.
  • the drying temperature is preferably determined between 20 and 100 ° C. in consideration of productivity and damage to the temperature indicator 23.
  • the temperature indicator 23 can be formed without using a solvent. That is, the temperature indicator 23 is formed by mixing the solvent-free resin and the diarylethene compound, printing or applying the obtained mixture on the packaging material 61, and then curing the solvent-free resin by heating or drying.
  • a solvent-free resin such as a thermosetting resin or a water-based paint
  • microcapsules of the diarylethene compound are mixed with screen ink to a desired concentration, and then partially printed on the packaging material 61 by screen printing.
  • the temperature indicator 23 may be formed.
  • the printing method is not limited to screen printing, and the printing method exemplified above may be used.
  • the temperature indicator 23 is irradiated with light to initialize the temperature indicator 23, and the temperature of the object is controlled.
  • the reference portion 22 and the temperature indicator 23 may be formed on the packaging material 61.
  • the package 60 of the seventh aspect of the present invention is not limited to the above.
  • the package 60 may have a reference portion 22 having a plurality of color intensities. It may also have a plurality of temperature indicators 23. Further, when the temperature is detected by using the reading processing device, the package 60 does not need to be provided with the reference portion 22.
  • the reading processing device include the reading processing device exemplified above in the description of the third aspect of the present invention.
  • a diarylethene compound represented by the general formula (1) A diarylethene compound represented by the general formula (1).
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or SiR 8 3 3 to 7 carbon atoms, in each of the three R 8 independently, carbon atoms a 1-6 alkyl group or an aromatic group, one of R 1 and R 2 is a cycloalkyl group of an alkyl group or a C 3-7 1 to 10 carbon atoms, and the other is SiR 8 3,
  • ⁇ 6> is an alkyl group of R 1 and one has 1 to 10 carbon atoms R 2, the other is SiR 8 3, wherein the diarylethene compound of ⁇ 5>.
  • R 1 is an alkyl group having 2 to 10 carbon atoms, wherein R 2 is SiR 8 3, wherein ⁇ 5> or diarylethene compound of ⁇ 6>.
  • R 1 is a primary alkyl group or a secondary alkyl group having 2 to 4 carbon atoms, and the R 2 is a trimethylsilyl group (Si (CH 3 ) 3 ) or a triethylsilyl group (Si (CH 2)).
  • CH 3 The diarylethene compound of ⁇ 7> according to 3).
  • ⁇ 15> A temperature indicator comprising any one of the diarylethene compounds ⁇ 1> to ⁇ 14>.
  • the temperature indicator of ⁇ 15> further including a binder.
  • ⁇ 17> A temperature display device having the temperature indicator of ⁇ 15> or ⁇ 16>.
  • ⁇ 18> The temperature display device according to ⁇ 17>, which has a base material and has the temperature indicator formed on one surface of the base material.
  • the temperature display device according to ⁇ 18> which has a time information display unit, and the temperature indicator and the time information display unit are formed side by side in a plane direction on the base material in a plan view.
  • ⁇ 20> The temperature display device according to ⁇ 18> or ⁇ 19>, wherein an adhesive layer and a release layer are formed on the other surface of the base material in this order.
  • ⁇ 21> The temperature display device according to any one of ⁇ 17> to ⁇ 20>, wherein a protective layer is formed on the temperature indicator.
  • ⁇ 22> The temperature display device according to ⁇ 17>, wherein the temperature indicator has adhesiveness on at least one surface and a release layer is formed on the one surface.
  • Mass spectrometry> As a mass spectrometer, use the model "FT-ICR / solariX (MALDI)” manufactured by Bruker BioSpin KK or the model “JMS-700 / 700S (FAB)” manufactured by Nippon Denshi Co., Ltd. Used to identify intermediate compounds and diarylethene compounds. For ionization, 3-nitrobenzyl alcohol was used in the matrix.
  • MALDI FT-ICR / solariX
  • FAB JMS-700 / 700S
  • Example 1 At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-11) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 581 nm and the irradiation time of ultraviolet rays is shown in FIG. 9A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 9B.
  • PPS light steady state
  • the ring-opened body that is, the compound (1-11) had an absorption spectrum at a wavelength of 285 nm
  • the ring-closed body that is, the compound in the light steady state had an absorption spectrum at a wavelength of 581 nm.
  • Example 2 At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-12) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 541 nm and the irradiation time of ultraviolet rays is shown in FIG. 10A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 10B.
  • PPS light steady state
  • the ring-opened body that is, the compound (1-12) had an absorption spectrum at a wavelength of 284 nm
  • the ring-closed body that is, the compound in the light steady state had an absorption spectrum at a wavelength of 541 nm.
  • Example 3 At -80 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-31) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 591 nm and the irradiation time of ultraviolet rays is shown in FIG. 11A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 11B.
  • PPS light steady state
  • the ring-opened body that is, the compound (1-31) had an absorption spectrum at a wavelength of 284 nm
  • the ring-closed body that is, the compound in the light steady state had an absorption spectrum at a wavelength of 591 nm.
  • Example 4 At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-32) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 548 nm and the irradiation time of ultraviolet rays is shown in FIG. 12A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 12B.
  • PPS light steady state
  • the ring-opened body that is, the compound (1-32) had an absorption spectrum at a wavelength of 283 nm
  • the ring-closed body that is, the compound in the light steady state had an absorption spectrum at a wavelength of 548 nm.
  • Example 5 At each temperature of 30 ° C., 35 ° C., 40 ° C., and 45 ° C., a toluene solution (concentration: about 10-5 mol / L) of the compound (1-12) obtained in Production Example 1 was placed in a quartz cell. After sealing, it was colored by irradiating with ultraviolet rays (wavelength 313 nm) for about 30 seconds. Then, the cells were allowed to stand at each temperature, the change in color in the cell was confirmed over time, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560").
  • FIG. 13A shows the relationship between the degree of fading (A / A 0 ) and the leaving time in terms of absorbance at a wavelength of 541 nm.
  • FIG. 13B shows a graph in which the natural logarithm of the degree of fading (A / A 0 ) is plotted on the vertical axis and the leaving time is plotted on the horizontal axis.
  • a 0 is the absorbance at a wavelength of 541 nm at 0 seconds after irradiation with ultraviolet rays
  • “A” is the absorbance at a wavelength of 541 nm at each standing time.
  • the measurement under each temperature was performed twice.
  • FIG. 13C shows a graph in which the natural logarithm of the pyrolysis rate constant (k) is plotted on the vertical axis and the reciprocal of each temperature is plotted on the horizontal axis. Then, the 10-hour half-life was determined as follows. First, assuming that the thermal decomposition reaction is a primary reaction equation, the following equation (i) holds.
  • t 1/2 ln2 / k ⁇ ⁇ ⁇ (ii)
  • Example 6 Using the compound (1-22) obtained in Production Example 2, absorption was carried out in the same manner as in Example 5 except that the temperatures at the time of ultraviolet irradiation and standing were changed to 15 ° C, 20 ° C, 25 ° C and 30 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 553 nm. The results are shown in Table 1.
  • Example 7 Using the compound (1-32) obtained in Production Example 3, absorption was carried out in the same manner as in Example 5 except that the temperatures at the time of irradiation with ultraviolet rays and when left to stand were changed to 0 ° C., 5 ° C., 10 ° C. and 15 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 548 nm. The results are shown in Table 1.
  • Example 8> Using the compound (1-11) obtained in Production Example 1, absorption was carried out in the same manner as in Example 5 except that the temperatures during ultraviolet irradiation and standing were changed to 0 ° C, 5 ° C, 10 ° C and 15 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 581 nm. The results are shown in Table 1.
  • Example 9 Using the compound (1-41) obtained in Production Example 4, the same procedure as in Example 5 except that the temperatures at the time of ultraviolet irradiation and standing were changed to ⁇ 5 ° C., 0 ° C., 5 ° C., and 10 ° C. The absorption spectrum was measured to determine the 10-hour half-life temperature and the like. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 584 nm. The results are shown in Table 1.
  • Example 10 Example 5 and Example 5 except that the compound (1-21) obtained in Production Example 2 was used and the temperatures at the time of ultraviolet irradiation and standing were changed to ⁇ 20 ° C., ⁇ 15 ° C., ⁇ 10 ° C., and ⁇ 5 ° C.
  • the absorption spectrum was measured in the same manner, and the 10-hour half-life temperature and the like were determined.
  • the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 581 nm. The results are shown in Table 1.
  • Example 11 Using the compound (1-31) obtained in Production Example 3, absorption was carried out in the same manner as in Example 5 except that the temperatures during ultraviolet irradiation and standing were changed to ⁇ 50 ° C., ⁇ 45 ° C., and ⁇ 40 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 591 nm. The results are shown in Table 1.
  • the diarylethene compound of the present invention is suitable for temperature control in a low temperature environment.
  • Example 12 At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-11) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) was irradiated for 120 seconds to color it, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 14A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 14B. Then, after leaving it at 40 ° C.
  • PPS light steady state
  • the light steady state (PSS) compound As shown in FIG. 14B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 581 nm.
  • the absorption spectrum could not be confirmed in the vicinity of the wavelength of 581 nm. That is, it was shown that the compound (1-11) did not recolor even if it was irradiated with ultraviolet rays again after fading.
  • Example 13 At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-12) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) was irradiated for 300 seconds to color it, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 15A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 15B. Then, after leaving it at 55 ° C.
  • PPS light steady state
  • the light steady state (PSS) compound As shown in FIG. 15B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 541 nm.
  • the absorption spectrum could not be confirmed in the vicinity of the wavelength of 541 nm. That is, it was shown that the compound (1-12) did not recolor even if it was irradiated with ultraviolet rays again after fading.
  • Example 14 At -80 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-31) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) was irradiated for 180 seconds for coloring, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 16A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 16B. Then, after leaving it at 0 ° C.
  • PPS light steady state
  • the light steady state (PSS) compound As shown in FIG. 16B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 591 nm.
  • the absorption spectrum could not be confirmed in the vicinity of the wavelength of 591 nm. That is, it was shown that the compound (1-31) did not recolor even if it was irradiated with ultraviolet rays again after fading.
  • Example 15 At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-32) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) was irradiated for 360 seconds for coloring, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 17A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 17B. Then, after leaving it at 40 ° C.
  • PPS light steady state
  • the light steady state (PSS) compound As shown in FIG. 17B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 548 nm.
  • the absorption spectrum could not be confirmed in the vicinity of the wavelength of 548 nm. That is, it was shown that the compound (1-32) did not recolor even if it was irradiated with ultraviolet rays again after fading.
  • the diarylethene compound, temperature indicator, temperature display device and package of the present invention are suitable for temperature control in a low temperature environment.
  • Temperature display device 21 ... Base material, 22 ... Reference part, 23, 23D ... Temperature indicator, 24 ... Time information display part, 31 ... Adhesive layer, 32 ... Peeling layer, 33 ... Protective layer, 34 ... transparent substrate, 40 ... temperature history control label, 60 ... package, 61 ... packaging material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

This diarylethene compound is represented by formula (1). This temperature indicator includes said diarylethene compound. This temperature display device includes said temperature indicator. This package has said temperature display device.

Description

ジアリールエテン化合物、温度インジケータ、温度表示デバイス及び包装体Diarylethene compounds, temperature indicators, temperature display devices and packaging
 本発明は、ジアリールエテン化合物、温度インジケータ、温度表示デバイス及び包装体に関する。 The present invention relates to a diarylethene compound, a temperature indicator, a temperature display device and a package.
 冷凍技術や冷蔵技術の発達により、長期間にわたり食品や医薬品等の製品の品質や安全性を保つことができるようになっている。また、低温輸送技術の発達と普及により、市場にも様々な冷凍食品や冷蔵食品が出回るようになってきている。このため、流通過程や貯蔵過程における物品の温度管理が重要になる。 With the development of freezing technology and refrigerating technology, it has become possible to maintain the quality and safety of products such as foods and pharmaceuticals for a long period of time. In addition, with the development and spread of low-temperature transportation technology, various frozen foods and refrigerated foods are becoming available in the market. For this reason, it is important to control the temperature of goods in the distribution process and storage process.
 例えば、設備インフラ業界や産業界においては、製品の温度管理が施設等のモニタリング及び製品化工程や品質管理上で重要な管理項目として知られている。現状では、製品が管理される設備に電子計測器を設置して温度管理が行われている。
 しかし、食品及び医薬品等の温度管理を目的とした電子計測器の利用は、動作原理がバッテリー駆動型であるため個々の食品や医薬品に対して高コストである、取扱い上の簡便性がない、などの理由により本用途に適していない。
 他の温度管理用ツールとしては、示温インク材料を利用したサーモラベル等が知られている。また、サーモラベルは、取扱いは簡便ではあるが、温度検知開始機能がない。示温インク材料は、発色反応が可逆的であるため、温度検知の対象や利用状況が限定される。加えて、サーモラベルは、高精度な温度測定が困難である。
For example, in the equipment infrastructure industry and the industrial world, product temperature control is known as an important control item in the monitoring of facilities and the commercialization process and quality control. At present, temperature control is performed by installing electronic measuring instruments in the equipment where products are managed.
However, the use of electronic measuring instruments for the purpose of temperature control of foods and pharmaceuticals is costly for individual foods and pharmaceuticals because the operating principle is battery-powered, and there is no convenience in handling. It is not suitable for this application due to such reasons.
As another temperature control tool, a thermolabel or the like using a temperature indicating ink material is known. Moreover, although the thermolabel is easy to handle, it does not have a temperature detection start function. Since the color-developing reaction of the temperature-indicating ink material is reversible, the target of temperature detection and the usage status are limited. In addition, thermolabels are difficult to measure with high accuracy.
 そのため、温度感受性の高い製品の保管時間並びに保管温度を簡便かつ正確に検知でき、その表示が可能なインジケータ、タグ、ラベル等が必要とされている。
 特許文献1には、特定の構造のフォトクロミック材料を含む光機能素子と、フォトクロミズムを利用した温度管理技術が開示されている。
Therefore, there is a need for indicators, tags, labels, etc. that can easily and accurately detect the storage time and storage temperature of temperature-sensitive products and can display them.
Patent Document 1 discloses an optical functional element containing a photochromic material having a specific structure, and a temperature control technique using photochromism.
 ここで、フォトクロミズムとは、光の作用により単一の化学種が分子量を変えることなく吸収スペクトルの異なる2つの異性体(A,B)を可逆的に生成する現象である。また、フォトクロミズムは、異性体Aに特定波長の光(例えば紫外線)を照射すると、結合様式あるいは電子状態に変化が生じ、異性体Bに変換し、その結果、紫外・可視吸収スペクトルが変化して色が変わる現象である。
 特許文献1に記載の光機能素子は、以下に示す3つの特徴を有している。特許文献1には、このような特徴を有する光機能素子を、温度履歴表示材として使用することが開示されている。
(i)スイッチオン機能を備える。
(ii)加熱により再生不可能な消色が起こる。
(iii)着色状態が可視化で安定である。
Here, photochromism is a phenomenon in which a single chemical species reversibly produces two isomers (A, B) having different absorption spectra by the action of light without changing the molecular weight. In photochromism, when isomer A is irradiated with light of a specific wavelength (for example, ultraviolet rays), the bonding mode or electronic state changes and is converted to isomer B, and as a result, the ultraviolet / visible absorption spectrum changes. It is a phenomenon that the color changes.
The optical functional element described in Patent Document 1 has the following three features. Patent Document 1 discloses that an optical functional element having such a feature is used as a temperature history display material.
(I) It has a switch-on function.
(Ii) Non-renewable decolorization occurs due to heating.
(Iii) The colored state is visible and stable.
 フォトクロミズムを利用した特許文献1に記載の技術は、外部刺激による色の変化を利用する原理であるため、電力消費はゼロである。また、曝される環境の温度変化を退色特性と経過時間による色の差から温度検知が行われることから、温度履歴の表示と記録及びエビデンス性を有する。
 また、特許文献1に記載の技術は、小型で薄膜なデバイス仕様の実現が可能なことから、特許文献1に記載の技術を利用する場所や対象が限定されない。また、フレキシビリティ性が見込めることから、温度検知対象のサイズ等、種類を選ばない。
 さらに、特許文献1に記載の技術を利用して、小型で薄膜なデバイスを実現する際は、ディスポーザル性、低コスト化、簡便性が期待でき、新たな温度インジケータとして有望である。
Since the technique described in Patent Document 1 using photochromism is based on the principle of utilizing a color change due to an external stimulus, power consumption is zero. In addition, since the temperature of the exposed environment is detected by the color fading characteristic and the difference in color due to the elapsed time, the temperature history can be displayed and recorded, and the evidence can be obtained.
Further, since the technology described in Patent Document 1 can realize a device specification having a small size and a thin film, the place and the target in which the technology described in Patent Document 1 is used are not limited. In addition, since flexibility can be expected, the size of the temperature detection target can be selected.
Further, when a small and thin device is realized by utilizing the technique described in Patent Document 1, disposability, cost reduction, and convenience can be expected, and it is promising as a new temperature indicator.
特開2014-15552号公報Japanese Unexamined Patent Publication No. 2014-15552
 しかしながら、特許文献1に記載のフォトクロミック材料は、管理温度が比較的高い温度、具体的には10~70℃程度の温度領域における温度管理には適しているものの、低温環境下、特に冷蔵、冷凍及び超低温の温度領域における温度管理には不向きである。 However, although the photochromic material described in Patent Document 1 is suitable for temperature control in a temperature having a relatively high control temperature, specifically, a temperature range of about 10 to 70 ° C., it is suitable for temperature control in a low temperature environment, particularly refrigeration and freezing. And it is not suitable for temperature control in the ultra-low temperature range.
 本発明は、低温環境下での温度管理に適したジアリールエテン化合物、温度インジケータ、温度表示デバイス及び包装体を提供することを目的とする。 An object of the present invention is to provide a diarylethene compound, a temperature indicator, a temperature display device and a package suitable for temperature control in a low temperature environment.
 フォトクロミック材料であるジアリールエテン化合物の10時間半減期温度、すなわち、10時間後の濃度が初期濃度の半分となる温度が低いほど、低温環境下での温度管理に適している。
 本発明者らは鋭意検討した結果、ジアリールエテン化合物の構造が10時間半減期温度に影響することを突き止めた。そして、10時間半減期温度が室温以下となるジアリールエテン化合物の構造を見出し、本発明を完成するに至った。
The lower the 10-hour half-life temperature of the diarylethene compound, which is a photochromic material, that is, the temperature at which the concentration after 10 hours becomes half of the initial concentration, the more suitable for temperature control in a low temperature environment.
As a result of diligent studies, the present inventors have found that the structure of the diarylethene compound affects the 10-hour half-life temperature. Then, they found the structure of a diarylethene compound having a 10-hour half-life temperature of room temperature or less, and completed the present invention.
 すなわち、本発明の一態様に係るジアリールエテン化合物は、下記一般式(1)で表されることを特徴とする。 That is, the diarylethene compound according to one aspect of the present invention is characterized by being represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、環Aは、5員環構造又は6員環構造を示しており、
 Xは、硫黄原子(S)、NR又は酸素原子(O)であり、Rは水素原子(H)又はアルキル基であり、
 Y及びYはそれぞれ独立に、炭素原子(C)又は窒素原子(N)であり、
 R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
 Rは、Yが炭素原子(C)である場合には、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、Yが窒素原子(N)である場合には、電子対であり、
 Rは、Yが炭素原子(C)である場合には、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、Yが窒素原子(N)である場合には、電子対であり、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。
In formula (1), ring A represents a 5-membered ring structure or a 6-membered ring structure.
X is a sulfur atom (S), NR 7 or an oxygen atom (O), and R 7 is a hydrogen atom (H) or an alkyl group.
Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively.
R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
When Y 1 is a carbon atom (C), R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure. When Y 1 is a nitrogen atom (N), it is an electron pair.
When Y 2 is a carbon atom (C), R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure. When Y 2 is a nitrogen atom (N), it is an electron pair.
R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
 前記ジアリールエテン化合物は、下記一般式(1A)で表されることが好ましい。 The diarylethene compound is preferably represented by the following general formula (1A).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1A)中、6つのZはそれぞれ独立に、水素原子(H)又はフッ素原子(F)であり、
 R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。
In formula (1A), each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
 前記ジアリールエテン化合物において、前記R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、炭素数1~6のアルキル基又は芳香族基であり、R及びRの一方が炭素数1~10のアルキル基又は炭素数3~7のシクロアルキル基であり、他方がSiR であることが好ましい。 In the diarylethene compound, wherein R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or SiR 8 3 3 to 7 carbon atoms, in each of the three R 8 independently an alkyl group or an aromatic group having 1 to 6 carbon atoms, one of R 1 and R 2 is a cycloalkyl group of an alkyl group or a C 3-7 1 to 10 carbon atoms and the other at SiR 8 3 It is preferable to have.
 本発明の一態様に係る温度インジケータは、前記ジアリールエテン化合物を含むことを特徴とする。
 本発明の一態様に係る温度表示デバイスは、前記温度インジケータを有することを特徴とする。
 前記温度表示デバイスは、基材を有し、前記基材の一方の面に前記温度インジケータが形成されていることが好ましい。
 前記温度表示デバイスは、時間情報表示部を有し、平面視において、前記温度インジケータと前記時間情報表示部とが前記基材上の面方向に並んで形成されていることが好ましい。
 前記温度表示デバイスは、前記基材の他方の面に粘着層及び剥離層がこの順で形成されていることが好ましい。
 前記温度表示デバイスは、前記温度インジケータ上に保護層が形成されていることが好ましい。
 前記温度表示デバイスにおいて、前記温度インジケータは少なくとも一方の面に粘着性を有し、前記一方の面に剥離層が形成されていることが好ましい。
 本発明の一態様に係る包装体は、前記温度インジケータを有することを特徴とする。
The temperature indicator according to one aspect of the present invention is characterized by containing the diarylethene compound.
The temperature display device according to one aspect of the present invention is characterized by having the temperature indicator.
It is preferable that the temperature display device has a base material and the temperature indicator is formed on one surface of the base material.
The temperature display device has a time information display unit, and it is preferable that the temperature indicator and the time information display unit are formed side by side in the plane direction on the base material in a plan view.
In the temperature display device, it is preferable that an adhesive layer and a release layer are formed in this order on the other surface of the base material.
The temperature display device preferably has a protective layer formed on the temperature indicator.
In the temperature display device, it is preferable that the temperature indicator has adhesiveness on at least one surface and a release layer is formed on the one surface.
The package according to one aspect of the present invention is characterized by having the temperature indicator.
 本発明によれば、低温環境下での温度管理に適したジアリールエテン化合物、温度インジケータ、温度表示デバイス及び包装体を提供できる。 According to the present invention, it is possible to provide a diarylethene compound, a temperature indicator, a temperature display device and a package suitable for temperature control in a low temperature environment.
本発明の第3の態様の温度表示デバイスの平面図である。It is a top view of the temperature display device of the 3rd aspect of this invention. 図1のII-II線における断面図である。FIG. 5 is a cross-sectional view taken along the line II-II of FIG. 本発明の第3の態様における温度インジケータの退色特性の一例を示す図である。It is a figure which shows an example of the fading characteristic of the temperature indicator in the 3rd aspect of this invention. 本発明の第3の態様の温度表示デバイスの発行装置を示す概略図である。It is the schematic which shows the issuing apparatus of the temperature display device of the 3rd aspect of this invention. 本発明の第4の態様の温度表示デバイスの断面図である。It is sectional drawing of the temperature display device of the 4th aspect of this invention. 本発明の第5の態様の温度表示デバイスの断面図である。It is sectional drawing of the temperature display device of the 5th aspect of this invention. 本発明の第6の態様の温度表示デバイスの断面図である。It is sectional drawing of the temperature display device of the 6th aspect of this invention. 本発明の第7の態様の包装体の斜視図である。It is a perspective view of the package of the 7th aspect of this invention. 実施例1における、波長581nmにおける吸光度と、紫外線の照射時間との関係を示す図である。It is a figure which shows the relationship between the absorbance at a wavelength of 581 nm and the irradiation time of ultraviolet rays in Example 1. FIG. 実施例1における、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 1. FIG. 実施例2における、波長541nmにおける吸光度と、紫外線の照射時間との関係を示す図である。It is a figure which shows the relationship between the absorbance at a wavelength of 541 nm and the irradiation time of ultraviolet rays in Example 2. FIG. 実施例2における、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 2. FIG. 実施例3における、波長591nmにおける吸光度と、紫外線の照射時間との関係を示す図である。It is a figure which shows the relationship between the absorbance at a wavelength of 591 nm and the irradiation time of ultraviolet rays in Example 3. FIG. 実施例3における、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 3. FIG. 実施例4における、波長548nmにおける吸光度と、紫外線の照射時間との関係を示す図である。It is a figure which shows the relationship between the absorbance at a wavelength of 548 nm and the irradiation time of ultraviolet rays in Example 4. FIG. 実施例4における、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) before irradiation with ultraviolet rays in Example 4. FIG. 実施例5における、退色度合い(A/A)と放置時間との関係を示す図である。It is a figure which shows the relationship between the degree of fading (A / A 0) and the leaving time in Example 5. FIG. 実施例5における、退色度合い(A/A)の自然対数を縦軸、放置時間を横軸にプロットした図である。FIG. 5 is a diagram in which the natural logarithm of the degree of fading (A / A 0 ) in Example 5 is plotted on the vertical axis and the leaving time is plotted on the horizontal axis. 実施例5における、熱分解速度定数(k)の自然対数を縦軸、各温度の逆数を横軸にプロットした図である。FIG. 5 is a diagram in which the natural logarithm of the thermal decomposition rate constant (k) in Example 5 is plotted on the vertical axis, and the reciprocal of each temperature is plotted on the horizontal axis. 実施例12における、紫外線を照射する前の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum before irradiation with ultraviolet rays in Example 12. 実施例12における、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) in Example 12. 実施例12における、退色後の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum after fading in Example 12. 実施例12における、紫外線を再度照射したときの吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum at the time of irradiation with ultraviolet rays again in Example 12. 実施例13における、紫外線を照射する前の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum before irradiation with ultraviolet rays in Example 13. 実施例13における、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) in Example 13. 実施例13における、退色後の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum after fading in Example 13. 実施例13における、紫外線を再度照射したときの吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum at the time of irradiating ultraviolet rays again in Example 13. 実施例14における、紫外線を照射する前の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum before irradiation with ultraviolet rays in Example 14. 実施例14における、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) in Example 14. 実施例14における、退色後の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum after fading in Example 14. 実施例14における、紫外線を再度照射したときの吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum at the time of irradiating ultraviolet rays again in Example 14. 実施例15における、紫外線を照射する前の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum before irradiation with ultraviolet rays in Example 15. 実施例15における、光定常状態(PSS)における吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum in the light steady state (PSS) in Example 15. 実施例15における、退色後の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum after fading in Example 15. 実施例15における、紫外線を再度照射したときの吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum at the time of irradiating ultraviolet rays again in Example 15.
 以下、本発明を詳細に説明する。
 ただし、以下に説明する実施の形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。本発明の趣旨を逸脱しない範囲で、数や、位置や、大きさ等についての変更、省略、追加及びその他の変更が可能である。
 なお、本明細書において、「低温環境下」とは、室温以下を意味する。「室温」とは、25℃を意味する。低温環境下は、例えば定温、冷蔵、冷凍、超低温等に分類できる。定温は、例えば5~25℃程度の温度領域のことである。冷蔵は、例えば-18~10℃程度の温度領域のことである。冷凍は、例えば-40~-18℃程度の温度領域のことである。超低温は、例えば-40℃以下程度の温度領域のことである。
 また、後述する図5~8において、図1と同じ構成要素には同じ符号を付して、その説明を省略する。
Hereinafter, the present invention will be described in detail.
However, the embodiments described below are specifically described in order to better understand the gist of the invention, and the contents of the invention are not limited unless otherwise specified. The number, position, size, etc. can be changed, omitted, added, or otherwise changed without departing from the spirit of the present invention.
In addition, in this specification, "under a low temperature environment" means room temperature or less. "Room temperature" means 25 ° C. The low temperature environment can be classified into, for example, constant temperature, refrigeration, freezing, ultra-low temperature and the like. The constant temperature is, for example, a temperature range of about 5 to 25 ° C. Refrigeration is, for example, a temperature range of about -18 to 10 ° C. Freezing refers to a temperature range of, for example, about -40 to -18 ° C. The ultra-low temperature is, for example, a temperature range of about −40 ° C. or lower.
Further, in FIGS. 5 to 8 described later, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
[ジアリールエテン化合物]
 本発明の第1の態様のジアリールエテン化合物は、下記一般式(1)で表される。
[Diarylethene compound]
The diarylethene compound of the first aspect of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、環Aは、5員環構造又は6員環構造を示しており、
 Xは、硫黄原子(S)、NR又は酸素原子(O)であり、Rは水素原子(H)又はアルキル基であり、
 Y及びYはそれぞれ独立に、炭素原子(C)又は窒素原子(N)であり、
 R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
 Rは、Yが炭素原子(C)である場合には、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、Yが窒素原子(N)である場合には、電子対であり、
 Rは、Yが炭素原子(C)である場合には、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、Yが窒素原子(N)である場合には、電子対であり、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。
In formula (1), ring A represents a 5-membered ring structure or a 6-membered ring structure.
X is a sulfur atom (S), NR 7 or an oxygen atom (O), and R 7 is a hydrogen atom (H) or an alkyl group.
Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively.
R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
When Y 1 is a carbon atom (C), R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure. When Y 1 is a nitrogen atom (N), it is an electron pair.
When Y 2 is a carbon atom (C), R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure. When Y 2 is a nitrogen atom (N), it is an electron pair.
R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
 環Aは、5員環構造又は6員環構造を示している。本実施形態のジアリールエテン化合物において、紫外光照射による着色、着色状態の可視光下での優れた安定性、さらに、低温環境下での温度上昇による再生不可能な消色という機能は、RとRとが結合した部位同士の反応性の影響を強く受ける一方、環Aの構造の影響はそれほど大きくない。そのため、立体構造的には、環Aは、5員環構造及び6員環構造いずれでもよいが、5員環構造が好ましい。 Ring A shows a 5-membered ring structure or a 6-membered ring structure. In diarylethene compound of this embodiment, coloration by ultraviolet irradiation, excellent stability under visible light of the colored state, and further, the function of decolorizing unreproducible due to the temperature rise in a low-temperature environment, and R 1 while strongly influenced by the reactivity of the sites with each other and R 2 are bonded, the influence of the structure of the ring a is not so large. Therefore, in terms of the three-dimensional structure, the ring A may have either a 5-membered ring structure or a 6-membered ring structure, but a 5-membered ring structure is preferable.
 Xは、硫黄原子(S)、NR又は酸素原子(O)である。
 NRにおいて、Rは水素原子(H)又はアルキル基である。Rにおけるアルキル基の炭素数は、1~6が好ましく、1~3がより好ましい。
 Xとしては、硫黄原子(S)が好ましい。
X is a sulfur atom (S), NR 7 or an oxygen atom (O).
In NR 7 , R 7 is a hydrogen atom (H) or an alkyl group. The number of carbon atoms of the alkyl group in R 7 is preferably 1 to 6, and more preferably 1 to 3.
As X, a sulfur atom (S) is preferable.
 Y及びYはそれぞれ独立に、炭素原子(C)又は窒素原子(N)である。
 Y及びYとしては、それぞれ炭素原子(C)が好ましい。
Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively.
As Y 1 and Y 2 , carbon atoms (C) are preferable.
 R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR である。
 R及びRにおけるアルキル基の炭素数は、1~10が好ましく、1~7がより好ましく、1~4がさらに好ましく、1~3が特に好ましい。R及びRにおけるアルキル基は、第一級アルキル基、第二級アルキル基、第三級アルキル基のいずれでもよいが、第一級アルキル基又は第二級アルキル基が好ましく、第一級アルキル基がより好ましい。
 R及びRにおけるシクロアルキル基の炭素数は、3~7が好ましく、3~5がより好ましい。
 SiR において、3つのRはそれぞれ独立に、アルキル基又は芳香族基である。Rにおけるアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。Rにおける芳香族基としては、フェニル基、ベンジル基、トリル基、キシリル基等が挙げられ、フェニル基(Ph)が好ましい。SiR の具体例としては、Si(CH、Si(CHCH、Si(CH(CH、SiC(CH(CH)(CH)、SiC(CH(Ph)(Ph)等が挙げられる。
R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, one of R 1 and R 2 is an alkyl group or a cycloalkyl group, the other is SiR 8 3.
The number of carbon atoms of the alkyl group in R 1 and R 2 is preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 4, and particularly preferably 1 to 3. The alkyl group in R 1 and R 2 may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, but a primary alkyl group or a secondary alkyl group is preferable, and a primary alkyl group is preferable. Alkyl groups are more preferred.
The number of carbon atoms of the cycloalkyl group in R 1 and R 2 is preferably 3 to 7, and more preferably 3 to 5.
In SiR 8 3, 3 both R 8 are each independently an alkyl group or an aromatic group. The number of carbon atoms in the alkyl group in R 8 is preferably 1-6, 1-4 is more preferable. Examples of the aromatic group in R 8 include a phenyl group, a benzyl group, a tolyl group, a xsilyl group and the like, and a phenyl group (Ph) is preferable. Specific examples of SiR 8 3 include Si (CH 3 ) 3 , Si (CH 2 CH 3 ) 3 , Si (CH (CH 3 ) 2 ) 3 , SiC (CH 3 ) 3 (CH 3 ) (CH 3 ). , SiC (CH 3 ) 3 (Ph) (Ph) and the like.
 ジアリールエテン化合物の10時間半減期温度を、低温環境下での温度管理に適した温度に制御しやすい観点から、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、炭素数1~6のアルキル基又は芳香族基であり、R及びRの一方が炭素数1~10のアルキル基又は炭素数3~7のシクロアルキル基であり、他方がSiR であることが好ましい。
 R及びRの組み合わせは、ジアリールエテン化合物の用途(使用温度)に応じて決定すればよい。アルキル基又はシクロアルキル基の炭素数が大きくなるほど、ジアリールエテン化合物の10時間半減期温度が低くなる傾向にある。
 R及びRの好ましい組み合わせとしては、R及びRの一方が炭素数1~10のアルキル基であり、他方がSiR である組み合わせが挙げられる。特に、RがSiR であると、ジアリールエテン化合物の10時間半減期温度が低くなる傾向にある。
From the viewpoint of easily controlling the 10-hour half-life temperature of the diarylethene compound to a temperature suitable for temperature control in a low temperature environment, R 1 and R 2 are independently alkyl groups having 1 to 10 carbon atoms and 3 carbon atoms, respectively. ~ 7 cycloalkyl group, or SiR 8 3 of each of the three R 8 independently an alkyl group or an aromatic group having 1 to 6 carbon atoms, R 1 and one having 1 to 10 carbon atoms R 2 an alkyl group or a cycloalkyl group having 3 to 7 carbon atoms, it is preferred the other is SiR 8 3.
The combination of R 1 and R 2 may be determined according to the use (operating temperature) of the diarylethene compound. As the number of carbon atoms in the alkyl group or cycloalkyl group increases, the 10-hour half-life temperature of the diarylethene compound tends to decrease.
Preferred combinations of R 1 and R 2, one of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms and the other as combinations is SiR 8 3. In particular, when R 1 is a SiR 8 3, 10-hour half-life temperature of the diarylethene compound tends to be low.
 冷蔵又は冷凍の温度領域における温度管理に最適なジアリールエテン化合物が得られやすくなる点では、Rが炭素数2~10のアルキル基であり、RがSiR である組み合わせ、又はRがSiR であり、Rが炭素数1~10のアルキル基である組み合わせが好ましい。特に、Rが炭素数2~4の第一級アルキル基又は第二級アルキル基であり、Rがトリメチルシリル基(Si(CH)又はトリエチルシリル基(Si(CHCH)である組み合わせ、又はRがトリメチルシリル基又はトリエチルシリル基であり、Rが炭素数1~2の第一級アルキル基である組み合わせがより好ましい。
 超低温の温度領域における温度管理に最適なジアリールエテン化合物が得られやすくなる点では、RがSiR であり、Rが炭素数3~10のアルキル基である組み合わせが好ましい。特に、Rがトリメチルシリル基又はトリエチルシリル基であり、Rが炭素数3~7の第一級アルキル基又は第二級アルキル基である組み合わせがより好ましい。
Optimal diarylethene compound in that can be easily obtained in the temperature management in refrigerated or frozen temperature range, R 1 is an alkyl group having 2 to 10 carbon atoms, a combination wherein R 2 is SiR 8 3, or R 1 is a SiR 8 3, the combination R 2 is an alkyl group having 1 to 10 carbon atoms are preferred. In particular, R 1 is a primary alkyl group or a secondary alkyl group having 2 to 4 carbon atoms, and R 2 is a trimethylsilyl group (Si (CH 3 ) 3 ) or a triethylsilyl group (Si (CH 2 CH 3 )). 3 ), or a combination in which R 1 is a trimethylsilyl group or a triethylsilyl group and R 2 is a primary alkyl group having 1 to 2 carbon atoms is more preferable.
In terms of easily optimal diarylethene compound temperature control is obtained at extremely low temperatures in the temperature range, R 1 is SiR 8 3, the combination R 2 is an alkyl group having 3 to 10 carbon atoms are preferred. In particular, a combination in which R 1 is a trimethylsilyl group or a triethylsilyl group and R 2 is a primary alkyl group or a secondary alkyl group having 3 to 7 carbon atoms is more preferable.
 再生不可能な消色という機能を有する、すなわち、消色後に紫外線等の光を再度照射しても再発色しにくいジアリールエテン化合物が得られやすくなる点では、Rがメチル基又はイソプロピル基であり、Rがトリメチルシリル基である組み合わせ、又はRがトリメチルシリル基であり、Rがメチル基又はイソプロピル基である組み合わせが好ましい。 R 1 is a methyl group or an isopropyl group in that it has a function of non-reproducible decolorization, that is, it is easy to obtain a diarylethene compound that does not easily recolor even if it is irradiated with light such as ultraviolet rays again after decolorization. , R 2 is a trimethylsilyl group, or R 1 is a trimethylsilyl group and R 2 is a methyl group or an isopropyl group.
 Yが炭素原子(C)である場合、Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。Rにおけるアルキル基の炭素数は、1~6が好ましく、1~3がより好ましい。Rにおけるアルコキシ基の炭素数は、1~6が好ましく、1~3がより好ましい。
 Yが窒素原子(N)である場合、Rは、電子対である。
 Yが炭素原子(C)であり、Rが水素原子(H)又はアルキル基であることが好ましく、Rが水素原子(H)又は炭素数が1~3のアルキル基であることがより好ましい。
When Y 1 is a carbon atom (C), R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure. The number of carbon atoms of the alkyl group in R 3 is preferably 1 to 6, and more preferably 1 to 3. The number of carbon atoms of the alkoxy group in R 3 is preferably 1 to 6, 1 to 3 more preferred.
If Y 1 is a nitrogen atom (N), then R 3 is an electron pair.
It is preferable that Y 1 is a carbon atom (C), R 3 is a hydrogen atom (H) or an alkyl group, and R 3 is a hydrogen atom (H) or an alkyl group having 1 to 3 carbon atoms. More preferred.
 Yが炭素原子(C)である場合、Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。Rにおけるアルキル基の炭素数は、1~6が好ましく、1~3がより好ましい。Rにおけるアルコキシ基の炭素数は、1~6が好ましく、1~3がより好ましい。
 Yが窒素原子(N)である場合、Rは、電子対である。
 Yが炭素原子(C)であり、Rが水素原子(H)又はアルキル基であることが好ましく、Rが水素原子(H)又は炭素数が1~3のアルキル基であることがより好ましい。
When Y 2 is a carbon atom (C), R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure. The number of carbon atoms of the alkyl group in R 5 is preferably 1-6, is 1-3 and more preferably. The number of carbon atoms of the alkoxy group in R 5 is preferably 1-6, is 1-3 and more preferably.
If Y 2 is a nitrogen atom (N), then R 5 is an electron pair.
It is preferable that Y 2 is a carbon atom (C), R 5 is a hydrogen atom (H) or an alkyl group, and R 3 is a hydrogen atom (H) or an alkyl group having 1 to 3 carbon atoms. More preferred.
 なお、R及びRにおけるフェニル基、アルキル基、アルコキシ基は、それぞれ、置換基を有していてもよい。当該置換基としては、特に制限されないが、例えばシアノ基、アルキル基、アルコキシ基、クロロ基、ブロモ基等が挙げられる。 The phenyl group, alkyl group, and alkoxy group in R 3 and R 5 may each have a substituent. The substituent is not particularly limited, and examples thereof include a cyano group, an alkyl group, an alkoxy group, a chloro group, and a bromo group.
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。Rにおけるアルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。Rにおけるアルコキシ基の炭素数は、1~10が好ましく、1~5がより好ましい。
 Rとしては、水素原子(H)、フェニル基又は炭素数1~5のアルキル基が好ましい。
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。Rにおけるアルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。Rにおけるアルコキシ基の炭素数は、1~10が好ましく、1~5がより好ましい。
 Rとしては、水素原子(H)、フェニル基又は炭素数1~5のアルキル基が好ましい。
 これらの中でも、R及びRは、それぞれ、フェニル基であることが特に好ましい。なお、R及びRにおけるフェニル基、アルキル基、アルコキシ基は、それぞれ、置換基を有していてもよい。当該置換基としては、特に制限されないが、例えばシアノ基、アルキル基、アルコキシ基、クロロ基、ブロモ基等が挙げられる。
R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure. The number of carbon atoms in the alkyl group for R 4 is preferably 1 to 10, 1 to 5 and more preferable. The number of carbon atoms of the alkoxy group for R 4 is preferably 1 to 10, 1 to 5 and more preferable.
The R 4, a hydrogen atom (H), a alkyl group of the phenyl group or C 1-5 is preferred.
R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure. The number of carbon atoms of the alkyl group in R 6 is preferably 1 to 10, and more preferably 1 to 5. The number of carbon atoms of the alkoxy group in R 6 is preferably 1 to 10, and more preferably 1 to 5.
As R 6 , a hydrogen atom (H), a phenyl group, or an alkyl group having 1 to 5 carbon atoms is preferable.
Among these, it is particularly preferable that R 4 and R 6 are phenyl groups, respectively. The phenyl group, alkyl group, and alkoxy group in R 4 and R 6 may each have a substituent. The substituent is not particularly limited, and examples thereof include a cyano group, an alkyl group, an alkoxy group, a chloro group, and a bromo group.
 環Aの好ましい構造としては、例えば、下記一般式(a1)、下記一般式(a2)、下記一般式(a3)又は下記一般式(a4)で表される構造が挙げられる。 Preferred structures of the ring A include, for example, a structure represented by the following general formula (a1), the following general formula (a2), the following general formula (a3), or the following general formula (a4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 これらの構造において、6つのZはそれぞれ独立に、水素原子(H)又はフッ素原子(F)である。6つのZは、全てフッ素原子(F)又は水素原子(H)であることが好ましい。可視光下における安定性に優れることから、6つのZは、全てフッ素原子(F)であることがより好ましい。
 R、R及びRはそれぞれ独立に、フェニル基又はアルキル基である。R、R及びRにおけるアルキル基の炭素数は、1~10が好ましく、1~5がより好ましい。なお、R、R及びRにおけるフェニル基、アルキル基は、それぞれ、置換基を有していてもよい。当該置換基としては、特に制限されないが、例えばシアノ基、アルキル基、アルコキシ基、クロロ基、ブロモ基等が挙げられる。
 R、R及びRとしてはそれぞれ独立に、置換基を有していてもよい炭素数が1~5のアルキル基が好ましい。
In these structures, the six Zs are each independently a hydrogen atom (H) or a fluorine atom (F). It is preferable that all six Z's are fluorine atoms (F) or hydrogen atoms (H). It is more preferable that all six Z's are fluorine atoms (F) because they are excellent in stability under visible light.
R c, R d and R e are each independently phenyl group or an alkyl group. R c, the number of carbon atoms in the alkyl group in R d and R e is preferably 1 to 10, 1 to 5 and more preferable. The phenyl group and alkyl group in R c , R d and Re may each have a substituent. The substituent is not particularly limited, and examples thereof include a cyano group, an alkyl group, an alkoxy group, a chloro group, and a bromo group.
As R c , R d, and Re , alkyl groups having 1 to 5 carbon atoms, which may have substituents, are preferable.
 紫外光照射による着色、着色状態の可視光下での優れた安定性、さらに、低温環境下での温度上昇による再生不可能な消色という機能を効果的に発揮する観点からは、前記一般式(1)において、Xは、硫黄原子(S)であることが好ましい。同様の観点から、Y及びYは、それぞれ炭素原子(C)であることが好ましい。また、R及びRはそれぞれ独立に、水素原子(H)、フェニル基もしくは炭素数1~5のアルキル基であるか、RとRとが互いに結合して6員環構造を形成していることが好ましい。さらに、R及びRはそれぞれ独立に、水素原子(H)、フェニル基もしくは炭素数1~5のアルキル基であるか、RとRとが互いに結合して6員環構造を形成していることが好ましい。R及びRはそれぞれ独立に、水素原子(H)又は炭素数1~5のアルキル基であることが好ましい。また、R及びRは、それぞれフェニル基であることが特に好ましい。 From the viewpoint of effectively exerting the functions of coloring by ultraviolet light irradiation, excellent stability of the colored state under visible light, and non-reproducible decolorization due to temperature rise in a low temperature environment, the above general formula is used. In (1), X is preferably a sulfur atom (S). From the same viewpoint, it is preferable that Y 1 and Y 2 are carbon atoms (C), respectively. Further, R 3 and R 4 are independently hydrogen atoms (H), phenyl groups, or alkyl groups having 1 to 5 carbon atoms, or R 3 and R 4 are bonded to each other to form a 6-membered ring structure. It is preferable to do so. Further, R 5 and R 6 are independently hydrogen atoms (H), phenyl groups or alkyl groups having 1 to 5 carbon atoms, or R 5 and R 6 are bonded to each other to form a 6-membered ring structure. It is preferable to do so. It is preferable that R 3 and R 4 are independently hydrogen atoms (H) or alkyl groups having 1 to 5 carbon atoms. Further, it is particularly preferable that R 5 and R 6 are phenyl groups, respectively.
 RとRとが互いに結合した6員環構造、RとRとが互いに結合した6員環構造としては、特に制限されないが、上記の機能を効果的に発揮する観点からは、好ましくはベンゼン環骨格が挙げられる。 The 6-membered ring structure in which R 3 and R 4 are bonded to each other and the 6-membered ring structure in which R 5 and R 6 are bonded to each other are not particularly limited, but from the viewpoint of effectively exerting the above functions, the structure is not particularly limited. A benzene ring skeleton is preferable.
 紫外光照射による着色、着色状態の可視光下での優れた安定性、さらに、低温環境下での温度上昇による再生不可能な消色という機能を効果的に発揮する観点から、本実施形態のジアリールエテン化合物は、下記一般式(1A)で表されることが好ましい。 From the viewpoint of effectively exerting the functions of coloring by ultraviolet light irradiation, excellent stability of the colored state under visible light, and non-reproducible decolorization due to temperature rise in a low temperature environment, the present embodiment is used. The diarylethene compound is preferably represented by the following general formula (1A).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1A)中、6つのZはそれぞれ独立に、水素原子(H)又はフッ素原子(F)であり、
 R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。
In formula (1A), each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure.
 一般式(1A)中のR、R、R、R、R及びRは、それぞれ前記一般式(1)中のR、R、R、R、R及びRと同じである。
 一般式(1A)においては、R及びRはそれぞれ独立に、水素原子(H)又は炭素数1~5のアルキル基であることが好ましい。R及びRは、それぞれフェニル基であることが好ましい。また、RとRとが互いに結合してベンゼン環を形成していてもよい。同様に、RとRとが互いに結合してベンゼン環を形成していてもよい。一般式(1A)において、6つZが全てフッ素原子又は水素原子(H)であることが好ましく、可視光下における安定性に優れることから、6つZが全てフッ素原子(F)であることが特に好ましい。
R 1 in the general formula (1A), R 2, R 3, R 4, R 5 and R 6, R 1 of each of the general formulas (1), R 2, R 3, R 4, R 5 and is the same as R 6.
In the general formula (1A), it is preferable that R 3 and R 5 are independently hydrogen atoms (H) or alkyl groups having 1 to 5 carbon atoms. It is preferable that R 4 and R 6 are phenyl groups, respectively. Further, R 3 and R 4 may be bonded to each other to form a benzene ring. Similarly, R 5 and R 6 may be bonded to each other to form a benzene ring. In the general formula (1A), all 6 Zs are preferably fluorine atoms or hydrogen atoms (H), and since they are excellent in stability under visible light, all 6Zs are fluorine atoms (F). Is particularly preferable.
 さらに具体的には、上記の機能を効果的に発揮する観点から、本実施形態のジアリールエテン化合物は、下記一般式(1B)で表されることがより好ましい。 More specifically, from the viewpoint of effectively exerting the above functions, the diarylethene compound of the present embodiment is more preferably represented by the following general formula (1B).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1B)中、6つのZはそれぞれ独立に、水素原子(H)又はフッ素原子(F)であり、
 R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基又はシアノ基であり、
 Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基又はシアノ基、である。
In formula (1B), each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
R 3 is a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group.
R 5 is a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group.
 一般式(1B)中のR、R、R及びRは、それぞれ前記一般式(1)中のR、R、R及びRと同じである。
 一般式(1B)においては、R及びRはそれぞれ独立に、水素原子(H)又はメチル基であることが好ましい。一般式(1B)において、6つZが全てフッ素原子又は水素原子(H)であることが好ましく、可視光下における安定性に優れることから、6つZが全てフッ素原子(F)であることが特に好ましい。
R 1, R 2, R 3 and R 5 in the general formula (1B) is the same as R 1, R 2, R 3 and R 5 of each of the general formula (1).
In the general formula (1B), it is preferable that R 3 and R 5 are independently hydrogen atoms (H) or methyl groups, respectively. In the general formula (1B), all 6 Zs are preferably fluorine atoms or hydrogen atoms (H), and since they are excellent in stability under visible light, all 6Zs are fluorine atoms (F). Is particularly preferable.
 一般式(1)で表されるジアリールエテン化合物の中でも、ジアリールエテン化合物の10時間半減期温度を、低温環境下での温度管理に適した温度に制御しつつ、上記の機能を効果的に発揮する観点から、ジアリールエテン化合物は下記一般式(1C)で表されることが特に好ましい。 Among the diarylethene compounds represented by the general formula (1), the viewpoint of effectively exerting the above functions while controlling the 10-hour half-life temperature of the diarylethene compound to a temperature suitable for temperature control in a low temperature environment. Therefore, it is particularly preferable that the diarylethene compound is represented by the following general formula (1C).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1C)中、R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR である。 Wherein (1C), R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, the three R 8 each independently represent an alkyl group or an aromatic group, R 1 and one of R 2 is an alkyl group or a cycloalkyl group, the other is SiR 8 3.
 一般式(1C)中のR及びRは、それぞれ前記一般式(1)中のR及びRと同じである。 R 1 and R 2 in the general formula (1C) is the same as R 1 and R 2 of each of the general formula (1).
 前記一般式(1)で表されるジアリールエテン化合物の製造方法としては、特に制限されず、公知の製造方法を採用することができる。例えば、まず、下記一般式(2)で表されるジアリールエテン化合物の前駆体(以下、「前駆体(2)」ともいう。)を製造する。次に、5員環骨格(チオフェン)中の硫黄原子(S)を酸化して、スルホニル基(SO)に変換することにより、前記一般式(1)で表されるジアリールエテン化合物を製造することができる。 The method for producing the diarylethene compound represented by the general formula (1) is not particularly limited, and a known production method can be adopted. For example, first, a precursor of a diarylethene compound represented by the following general formula (2) (hereinafter, also referred to as “precursor (2)”) is produced. Next, the diarylethene compound represented by the general formula (1) is produced by oxidizing the sulfur atom (S) in the 5-membered ring skeleton (thiophene) and converting it into a sulfonyl group (SO 2). Can be done.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前駆体(2)の5員環骨格中のSを酸化して、スルホニル基(SO)に変換する方法としては、特に制限されず、例えば、前駆体(2)を、m-クロロ過安息香酸などの過酸で酸化する方法などが挙げられる。 The method of oxidizing S in the 5-membered ring skeleton of the precursor (2) to convert it into a sulfonyl group (SO 2 ) is not particularly limited, and for example, the precursor (2) is converted into m-chloroperbenzoic acid. Examples thereof include a method of oxidizing with a peracid such as an acid.
 なお、一般式(2)中のXが硫黄原子(S)の場合、下記一般式(2A)で表される前駆体を酸化すると、ジアリールエテン化合物は下記一般式(1-1)で表されるジアリールエテン化合物と下記一般式(1-2)で表されるジアリールエテン化合物の混合物の状態で得られる。これらは、単離して用いてもよいし、混合物の状態で用いてもよい。 When X in the general formula (2) is a sulfur atom (S), the diarylethene compound is represented by the following general formula (1-1) when the precursor represented by the following general formula (2A) is oxidized. It is obtained in the form of a mixture of the diarylethene compound and the diarylethene compound represented by the following general formula (1-2). These may be used isolated or in the form of a mixture.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(2)、一般式(2A)、一般式(1-1)及び一般式(1-2)中の環A、X、Y、Y、R、R、R、R、R及びRは、それぞれ前記一般式(1)中の環A、X、Y、Y、R、R、R、R、R及びRと同じである。 Rings A, X, Y 1 , Y 2 , R 1 , R 2 , R 3 , R in the general formula (2), general formula (2A), general formula (1-1) and general formula (1-2). 4 , R 5 and R 6 are the same as rings A, X, Y 1 , Y 2 , R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1), respectively. ..
 なお、ジアリールエテン化合物の製造において、出発原料、それらの使用量や割合、温度、時間、圧力、雰囲気及び溶媒の種類や使用量などの反応条件は、製造するジアリールエテン化合物の構造に応じて適宜設定すればよい。また、製造された化合物が所望のジアリールエテン化合物(1)であることは、例えば後述する実施例に示すように、核磁気共鳴スペクトル法(NMR)、質量分析法などの一般的な有機分析手法により確認することができる。 In the production of the diarylethene compound, the reaction conditions such as the starting material, the amount and ratio thereof used, the temperature, time, pressure, the atmosphere and the type and amount of the solvent should be appropriately set according to the structure of the diarylethene compound to be produced. Just do it. Further, the fact that the produced compound is the desired diarylethene compound (1) can be determined by a general organic analysis method such as nuclear magnetic resonance spectrum method (NMR) or mass spectrometry, as shown in Examples described later. You can check.
 ここで、前駆体(2)の製造方法の一例を説明する。なお、以下の説明は、前記一般式(2)中のXが硫黄原子(S)であり、RがSiR であり、Rがアルキル基又はシクロアルキル基である前駆体を製造する方法であるが、これにより本発明は限定されない。 Here, an example of the method for producing the precursor (2) will be described. The following description, X in the general formula (2) is a sulfur atom (S), R 1 is SiR 8 3, to produce the precursor R 2 is an alkyl group or a cycloalkyl group Although it is a method, this does not limit the present invention.
 まず、後述する実施例に示すように、化合物(3)と化合物(4)とを反応させ、化合物(5)を得る。
 次いで、化合物(5)と環Aの由来となる環状化合物(A)とを反応させ、化合物(6)を得る。例えば、環Aが前記一般式(a1)で表される構造の場合、環状化合物(A)としてはシクロペンテン、オクタフルオロシクロペンテン等が挙げられる。
First, as shown in Examples described later, compound (3) and compound (4) are reacted to obtain compound (5).
Next, the compound (5) is reacted with the cyclic compound (A) from which the ring A is derived to obtain the compound (6). For example, when the ring A has a structure represented by the general formula (a1), the cyclic compound (A) includes cyclopentene, octafluorocyclopentene and the like.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 別途、後述する実施例に示すように、化合物(7)と臭素とを反応させて、化合物(8)を得る。なお、化合物(7)中のRは、アルキル基又はシクロアルキル基である。 Separately, as shown in Examples described later, compound (7) is reacted with bromine to obtain compound (8). R 9 in compound (7) is an alkyl group or a cycloalkyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 化合物(7)中のRが第一級アルキル基の場合、化合物(7)としては、例えば市販品を用いることができる。
 化合物(7)中のRが第一級アルキル基以外の場合、化合物(7)は、例えば化合物(9)とケトン化合物(B)とを反応させ、化合物(10)を得た後、化合物(10)を還元して化合物(7)を得る。なお、化合物(10)中のRは、第一級アルキル基以外のアルキル基又はシクロアルキル基である。
When R 9 in the compound (7) is a primary alkyl group, a commercially available product can be used as the compound (7), for example.
When R 9 in the compound (7) is other than the primary alkyl group, the compound (7) is prepared by reacting, for example, the compound (9) with the ketone compound (B) to obtain the compound (10), and then the compound. (10) is reduced to obtain compound (7). R 9 in the compound (10) is an alkyl group or a cycloalkyl group other than the primary alkyl group.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 ケトン化合物(B)としては、例えばアセトン、メチルエチルケトン、2-ペンタノン、ジエチルケトン、3-ヘキサノン、4-ヘプタノン、2,4-ジメチル-3-ペンタノン、シクロペンタノン、シクロヘキサノン等が挙げられる。
 化合物(10)は例えば塩化アルミニウム(AlCl)と水素化アルミニウムリチウム(LiAlH)とを用いて還元できる。
Examples of the ketone compound (B) include acetone, methyl ethyl ketone, 2-pentanone, diethyl ketone, 3-hexanone, 4-heptanone, 2,4-dimethyl-3-pentanone, cyclopentanone, cyclohexanone and the like.
Compound (10) can be reduced using, for example, aluminum chloride (AlCl 3 ) and lithium aluminum hydride (LiAlH 4).
 なお、Rが第一級アルキル基である化合物(7)の市販品がない場合は、有機リチウム化合物を用いて化合物(9)をリチオ化した後、得られた反応生成物とハロゲン化アルキル(R-X)とを反応させて、化合物(7)を得る。
 有機リチウム化合物としては、例えばブチルリチウム等が挙げられる。
 ハロゲン化アルキル(R-X)としては、アルキル基としてRを有するものであれば特に限定されず、例えばヨウ化メチル、ヨウ化エチル、ヨウ化プロピルなどのヨウ化アルキル(R-I);臭化メチル、臭化エチル、臭化プロピルなどの臭化アルキル(R-Br)等が挙げられる。
If there is no commercially available compound (7) in which R 9 is a primary alkyl group, the compound (9) is lithiated with an organic lithium compound, and then the obtained reaction product and an alkyl halide are used. (R 9- X) is reacted to obtain compound (7).
Examples of the organic lithium compound include butyllithium and the like.
The alkyl halide (R 9- X) is not particularly limited as long as it has R 9 as an alkyl group, and is, for example, an alkyl iodide (R 9- I) such as methyl iodide, ethyl iodide, and propyl iodide. ); Alkyl bromide (R 9- Br) such as methyl bromide, ethyl bromide, propyl bromide and the like can be mentioned.
 また、Rがフェニル基である化合物(8)を得る場合は、例えばRが水素原子(H)である化合物(7)と臭素とを反応させた後、さらに芳香族ハロゲン化合物と反応させればよい。芳香族ハロゲン化合物としては、例えばヨードベンゼン、ブロモベンゼン、m-置換ヨードベンゼン、p-置換ヨードベンゼン等が挙げられる。 When the compound (8) in which R 6 is a phenyl group is obtained, for example , the compound (7) in which R 6 is a hydrogen atom (H) is reacted with bromine, and then further reacted with an aromatic halogen compound. Just do it. Examples of the aromatic halogen compound include iodobenzene, bromobenzene, m-substituted iodobenzene, p-substituted iodobenzene and the like.
 次いで、化合物(6)と化合物(8)とを反応させて、化合物(2B)を得る。 Next, the compound (6) and the compound (8) are reacted to obtain the compound (2B).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本実施形態のジアリールエテン化合物は、例えば、下記の式で表されるように、紫外光照射により、R及びRが結合している2つのチオフェン環同士が環を形成(閉環)し、着色する(スイッチング機能)。この着色は、可視光下や、所定の温度(Δ)未満では安定であるが、この所定の温度(Δ)以上の条件に曝される(加熱される)ことにより、副生成物に分解されるため、消色(退色)する。この消色(退色)状態は、紫外光や可視光下で安定であり、着色から消色は不可逆的である。 The diarylethene compound of the present embodiment is colored by forming (closing) a ring between two thiophene rings to which R 1 and R 2 are bonded by irradiation with ultraviolet light, for example, as represented by the following formula. (Switching function). This coloring is stable under visible light and below a predetermined temperature (Δ), but is decomposed into by-products by being exposed (heated) to conditions above the predetermined temperature (Δ). Therefore, it is decolorized (faded). This decoloring (fading) state is stable under ultraviolet light and visible light, and decolorization from coloring is irreversible.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 紫外光照射により、本実施形態のジアリールエテン化合物が環構造を形成して、前記一般式(11)で示される化合物となった後、副生成物に分解される際の温度は、R及びRの種類による影響を受ける。上述したように、R又はRのアルキル基又はシクロアルキル基の炭素数が大きくなるほど、ジアリールエテン化合物の10時間半減期温度が低くなる傾向にある。すなわち、より低温で分解されて、消色する。よって、R及びRの種類を調整することによって、ジアリールエテン化合物の10時間半減期温度を制御でき、所望の温度で着色を消色させることができる。 After the diarylethene compound of the present embodiment forms a ring structure by ultraviolet light irradiation to become the compound represented by the general formula (11), the temperatures at which it is decomposed into by-products are R 1 and R. Affected by two types. As described above, the larger the number of carbon atoms in the alkyl group or cycloalkyl group of R 1 or R 2 , the lower the 10-hour half-life temperature of the diarylethene compound tends to be. That is, it is decomposed at a lower temperature and decolorized. Therefore, by adjusting the types of R 1 and R 2 , the 10-hour half-life temperature of the diarylethene compound can be controlled, and the coloring can be decolorized at a desired temperature.
 本実施形態のジアリールエテン化合物の10時間半減期温度は、室温以下が好ましく、15℃以下がより好ましく、0℃以下がさらにこのましい。10時間半減期温度の下限値は特に制限されないが、ジアリールエテン化合物を冷蔵又は冷凍領域における温度管理に使用する場合、10時間半減期温度は-40℃以上が好ましく、-20℃以上がより好ましい。
 ジアリールエテン化合物の10時間半減期温度の測定方法は、後述する実施例に記載のとおりである。
The 10-hour half-life temperature of the diarylethene compound of the present embodiment is preferably room temperature or lower, more preferably 15 ° C. or lower, and even more preferably 0 ° C. or lower. The lower limit of the 10-hour half-life temperature is not particularly limited, but when the diarylethene compound is used for temperature control in a refrigerated or frozen region, the 10-hour half-life temperature is preferably −40 ° C. or higher, more preferably −20 ° C. or higher.
The method for measuring the 10-hour half-life temperature of the diarylethene compound is as described in Examples described later.
 このように、本実施形態のジアリールエテン化合物は、特定の構造を有しているので、低温環境下での温度管理に適している。本実施形態のジアリールエテン化合物を温度センサーに利用する際には、作動温度(機能温度)を変化させることができる。本実施形態のジアリールエテン化合物は、所望の作動温度を設定し得るP型のフォトクロミズムの性能を有することから、フォトクロミック材料として用いることができる。 As described above, since the diarylethene compound of the present embodiment has a specific structure, it is suitable for temperature control in a low temperature environment. When the diarylethene compound of the present embodiment is used for a temperature sensor, the operating temperature (functional temperature) can be changed. The diarylethene compound of the present embodiment can be used as a photochromic material because it has a P-type photochromism performance capable of setting a desired operating temperature.
 本実施形態のジアリールエテン化合物は、溶媒中では安定的な特性を示すためマイクロカプセル化されていてもよい。
 ここで、「マイクロカプセル化」とは、溶媒にジアリールエテン化合物を拡散し溶融した溶液を内包する微小なカプセルに加工することである。
 溶媒としては、有機溶媒、水等が挙げられる。有機溶媒としては、例えばヘキサン、トルエン等の炭化水素類;メタノール、エタノール等のアルコール類;アセトン等のケトン類などが挙げられる。
 マイクロカプセル化の方法としては、例えば公知の界面重合法、in-situ重合法、液中硬化被覆法、水溶液からの相分離法、有機溶媒からの相分離法、融解分散冷却法、気中懸濁被覆法、スプレードライング法等が挙げられる。
 マイクロカプセルの平均粒子径は0.1~100μmが好ましく、1~50μmがより好ましく、5~15μmがさらに好ましい。
The diarylethene compound of the present embodiment may be microencapsulated in order to exhibit stable properties in a solvent.
Here, "microencapsulation" is to process a diarylethene compound diffused in a solvent into minute capsules containing a melted solution.
Examples of the solvent include organic solvents and water. Examples of the organic solvent include hydrocarbons such as hexane and toluene; alcohols such as methanol and ethanol; and ketones such as acetone.
Examples of the microencapsulation method include known interfacial polymerization methods, in-situ polymerization methods, in-liquid curing coating methods, phase separation methods from aqueous solutions, phase separation methods from organic solvents, melt-dispersion cooling methods, and air suspensions. Examples include a turbid coating method and a spray drying method.
The average particle size of the microcapsules is preferably 0.1 to 100 μm, more preferably 1 to 50 μm, and even more preferably 5 to 15 μm.
[温度インジケータ]
 本発明の第2の態様の温度インジケータは、上述した本発明の第1の態様のジアリールエテン化合物を含む。
 温度インジケータは、光の照射により温度の検知が開始される機能を有する。温度インジケータは、例えば、特定の波長の光が照射されることにより初期化されて色強度が変化する。色情報を認識することで、温度インジケータが曝されていた温度、曝されていた温度における経過時間を確認することができる。
[Temperature indicator]
The temperature indicator of the second aspect of the present invention comprises the diarylethene compound of the first aspect of the present invention described above.
The temperature indicator has a function of initiating temperature detection by irradiation with light. The temperature indicator is initialized by, for example, being irradiated with light of a specific wavelength, and the color intensity changes. By recognizing the color information, it is possible to confirm the temperature at which the temperature indicator was exposed and the elapsed time at the temperature at which the temperature indicator was exposed.
 本発明の第1の態様のジアリールエテン化合物は、特定の波長の光が照射されることにより不可逆的に変色(有色化)し、熱により不可逆的に退色(消色)する。よって、温度インジケータに特定の波長の光を照射して変色させることにより、温度インジケータを初期化することができる。
 すなわち、温度インジケータが実際に使用される直前に、温度インジケータに光を照射することによって温度インジケータが初期化される。よって、温度インジケータが保存される温度環境、すなわち温度インジケータが初期化される以前における温度環境には制約が少ない。例えば、低温環境下における温度管理をするための温度インジケータであっても、室温における保存が可能である。
The diarylethene compound of the first aspect of the present invention is irreversibly discolored (colored) when irradiated with light of a specific wavelength, and irreversibly faded (decolorized) by heat. Therefore, the temperature indicator can be initialized by irradiating the temperature indicator with light having a specific wavelength to discolor it.
That is, the temperature indicator is initialized by irradiating the temperature indicator with light just before the temperature indicator is actually used. Therefore, there are few restrictions on the temperature environment in which the temperature indicator is stored, that is, the temperature environment before the temperature indicator is initialized. For example, even a temperature indicator for temperature control in a low temperature environment can be stored at room temperature.
 温度インジケータに含まれるジアリールエテン化合物の含有量は、温度インジケータの全体の質量(総質量)に対して、0.1~20質量%が好ましく、1~10質量%がより好ましい。ジアリールエテン化合物の含有量が0.1質量%以上であれば、初期化濃度が薄くなりすぎず、良好に認識できるため、温度検知精度を維持できる。ジアリールエテン化合物の含有量が20質量%以下であれば、光照射による初期化の際、ジアリールエテン化合物の反応率が低下しにくく、未初期化部分が発生しにくいため、紫外線等の光を再度照射してもより再発色しにくくなる。 The content of the diarylethene compound contained in the temperature indicator is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass (total mass) of the temperature indicator. When the content of the diarylethene compound is 0.1% by mass or more, the initialization concentration does not become too thin and can be recognized well, so that the temperature detection accuracy can be maintained. When the content of the diarylethene compound is 20% by mass or less, the reaction rate of the diarylethene compound is unlikely to decrease during initialization by light irradiation, and uninitialized portions are unlikely to occur. Therefore, light such as ultraviolet rays is irradiated again. However, it becomes more difficult for the color to recur.
 温度インジケータは、ジアリールエテン化合物に加え、バインダを含んでいてもよい。
 バインダとしては、例えばポリビニルアセタール樹脂、シリコーン樹脂、塩化ビニル樹脂、塩化ビニル-酢酸ビニル共重合体、アクリル樹脂、ポリウレタン樹脂、ポリエステル、エポキシ樹脂、ニトロセルロース(硝化綿)、エチルセルロース、ポリアミド、イソプレンゴム等の環化ゴム、塩素化ポリオレフィン、マレイン酸樹脂、フェノール樹脂、ケトン樹脂、キシレン樹脂、石油樹脂、メラミン樹脂、尿素樹脂、ポリイソシアネート等が挙げられる。
The temperature indicator may include a binder in addition to the diarylethene compound.
Examples of the binder include polyvinyl acetal resin, silicone resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, polyurethane resin, polyester, epoxy resin, nitrocellulose (nitrified cotton), ethyl cellulose, polyamide, isoprene rubber and the like. Examples thereof include cyclized rubber, chlorinated polyolefin, maleic acid resin, phenol resin, ketone resin, xylene resin, petroleum resin, melamine resin, urea resin, polyisocyanate and the like.
 温度インジケータに含まれるバインダの含有量は、温度インジケータの全体の質量(総質量)に対して、80~99.9質量%が好ましく、90~99質量%がより好ましい。バインダの含有量が80質量%以上であれば、温度インジケータを成膜しやすい。バインダの含有量が99.9質量%以下であれば、温度インジケータ中のジアリールエテン化合物の量が充分となり、初期化濃度が薄くなりすぎず、良好に認識できるため、温度検知精度を維持できる。 The content of the binder contained in the temperature indicator is preferably 80 to 99.9% by mass, more preferably 90 to 99% by mass, based on the total mass (total mass) of the temperature indicator. When the binder content is 80% by mass or more, the temperature indicator can be easily formed. When the binder content is 99.9% by mass or less, the amount of the diarylethene compound in the temperature indicator becomes sufficient, the initialization concentration does not become too thin, and it can be recognized well, so that the temperature detection accuracy can be maintained.
 温度インジケータの形状は特に制限されないが、膜状が好ましい。
 温度インジケータが膜状の場合、その厚さは、100nm~50μmが好ましく、500nm~20μmがより好ましい。温度インジケータの厚さが100nm以上であれば、初期化濃度が薄くなりすぎず、良好に認識できるため、温度検知精度を維持できる。温度インジケータの厚さが50μm以下であれば、光照射による初期化の際、温度インジケータの内部にまで光が充分に到達できる。よって、ジアリールエテン化合物の反応率が低下しにくく、未初期化部分が発生しにくいため、紫外線等の光を再度照射してもより再発色しにくくなる。
The shape of the temperature indicator is not particularly limited, but a film shape is preferable.
When the temperature indicator is in the form of a film, its thickness is preferably 100 nm to 50 μm, more preferably 500 nm to 20 μm. When the thickness of the temperature indicator is 100 nm or more, the initialization concentration does not become too thin and can be recognized well, so that the temperature detection accuracy can be maintained. When the thickness of the temperature indicator is 50 μm or less, the light can sufficiently reach the inside of the temperature indicator at the time of initialization by light irradiation. Therefore, the reaction rate of the diarylethene compound is unlikely to decrease, and uninitialized portions are unlikely to occur, so that recoloring is less likely to occur even if light such as ultraviolet rays is irradiated again.
[温度表示デバイス]
<第3の態様>
 本発明の第3の態様の温度表示デバイスについて、図1及び図2を参照して説明する。
 図1は、本発明の第3の態様の温度表示デバイス20を示す平面図である。図2は、図1の温度表示デバイス20のII-II線における断面図である。
[Temperature display device]
<Third aspect>
The temperature display device according to the third aspect of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a plan view showing a temperature display device 20 according to a third aspect of the present invention. FIG. 2 is a cross-sectional view taken along the line II-II of the temperature display device 20 of FIG.
 図1及び図2に示すように、本実施形態の温度表示デバイス20は、基材21と、参照部22と、温度インジケータ23と、時間情報表示部24とを有する。温度インジケータ23は、基材21の一方の面に形成されている。平面視において、参照部22と、温度インジケータ23と、時間情報表示部24とは、基材21上の面方向に並んで形成されている。 As shown in FIGS. 1 and 2, the temperature display device 20 of the present embodiment includes a base material 21, a reference unit 22, a temperature indicator 23, and a time information display unit 24. The temperature indicator 23 is formed on one surface of the base material 21. In a plan view, the reference unit 22, the temperature indicator 23, and the time information display unit 24 are formed side by side in the plane direction on the base material 21.
 温度表示デバイス20は、温度管理を行う対象となる製品等の対象物(例えば食品、医薬品等)のパッケージ等に装着される。
 温度表示デバイス20は、温度管理の対象となる対象物に貼付して使用することが想定される。このため、対象物の製品の仕様、サイズ、使用方法などに基づいて、基材21の形状及び大きさが選択される。
The temperature display device 20 is attached to a package or the like of an object (for example, food, pharmaceutical product, etc.) such as a product to be temperature-controlled.
It is assumed that the temperature display device 20 is used by being attached to an object subject to temperature control. Therefore, the shape and size of the base material 21 are selected based on the specifications, size, usage, and the like of the product of the object.
 基材21の材質としては、ガラス、プラスチック、合成紙、上質紙、金属(例えばアルミニウム等)などを挙げることができる。基材21は、合成紙又は上質紙であることが好ましい。温度表示デバイス20が低温下で使用され、結露が生じる可能性がある場合には、基材21として合成紙を使用することが好ましい。基材21として合成紙を使用すると、水分が基材21に染み込みにくく、強度が保たれる。 Examples of the material of the base material 21 include glass, plastic, synthetic paper, woodfree paper, and metal (for example, aluminum). The base material 21 is preferably synthetic paper or high-quality paper. When the temperature display device 20 is used at a low temperature and dew condensation may occur, it is preferable to use synthetic paper as the base material 21. When synthetic paper is used as the base material 21, moisture does not easily permeate into the base material 21 and the strength is maintained.
 基材21は、板状、箔状等であってよい。基材21は、可撓性を有することが好ましい。基材21は、温度インジケータ23に照射される光(例えば紫外線)に対して透過性であってもよいし、非透過性であってもよい。基材21は、例えば平面視略矩形のカード状であってよい。 The base material 21 may be plate-shaped, foil-shaped, or the like. The base material 21 preferably has flexibility. The base material 21 may be transparent or non-transparent to the light (for example, ultraviolet rays) irradiated to the temperature indicator 23. The base material 21 may be, for example, a card shape having a substantially rectangular shape in a plan view.
 基材21の厚さは、参照部22及び温度インジケータ23を支持できる厚さであれば特に限定されないが、10μm~1.0mmが好ましく、50μm~0.5mmがより好ましい。 The thickness of the base material 21 is not particularly limited as long as it can support the reference portion 22 and the temperature indicator 23, but is preferably 10 μm to 1.0 mm, more preferably 50 μm to 0.5 mm.
 基材21の材質は、印字がしやすいものを選択するようにしてもよい。基材21の材質は、記録方式によらず、温度インジケータ23の形成、インク付着性、印字等のパターン配置等を考慮して選択してもよい。例えば、基材21の表面領域の少なくとも一部を感熱紙で構成した場合、当該領域は、加熱により発色する感熱紙領域となる。感熱記録式の印字記録装置を採用する場合は、前記感熱紙領域に印字することができる。
 また、基材21と、参照部22及び温度インジケータ23との間に、感熱記録層(図示略)を設けてもよい。印字品質が向上する観点から、感熱記録層の厚さは、0.1~50μmが好ましく、0.1~10μmがより好ましい。
As the material of the base material 21, a material that is easy to print may be selected. The material of the base material 21 may be selected in consideration of the formation of the temperature indicator 23, ink adhesion, pattern arrangement such as printing, etc., regardless of the recording method. For example, when at least a part of the surface region of the base material 21 is made of thermal paper, the region becomes a thermal paper region that develops color by heating. When a thermal recording type printing recording device is adopted, printing can be performed on the thermal paper area.
Further, a heat-sensitive recording layer (not shown) may be provided between the base material 21, the reference unit 22, and the temperature indicator 23. From the viewpoint of improving print quality, the thickness of the heat-sensitive recording layer is preferably 0.1 to 50 μm, more preferably 0.1 to 10 μm.
 参照部22は、温度インジケータ23の色を特定するための指標となる基準色を呈する。目視により温度インジケータ23を参照部22と比較することによって、温度インジケータ23の色を判定することができる。
 参照部22の構成は特に限定されないが、外部環境(温度、光など)の影響で変色することなく所望の色強度を維持でき、耐水性、耐光性に優れた材料(例えば顔料)を含んでいることが好ましい。
 参照部22は、温度検知の対象となる対象物に装着して使用することが想定される対象の製品の仕様、サイズ、使用方法などに基づいて形状及び大きさが適宜選択される。
The reference unit 22 presents a reference color as an index for specifying the color of the temperature indicator 23. The color of the temperature indicator 23 can be determined by visually comparing the temperature indicator 23 with the reference unit 22.
The configuration of the reference unit 22 is not particularly limited, but includes a material (for example, a pigment) that can maintain a desired color intensity without discoloration due to the influence of the external environment (temperature, light, etc.) and has excellent water resistance and light resistance. It is preferable to have.
The shape and size of the reference unit 22 are appropriately selected based on the specifications, size, usage method, and the like of the target product that is expected to be used by being attached to the target object for temperature detection.
 温度インジケータ23は、上述した本発明の第2の態様の温度インジケータである。すなわち、本実施形態の温度表示デバイスは、本発明の第2の態様の温度インジケータを有する。 The temperature indicator 23 is the temperature indicator of the second aspect of the present invention described above. That is, the temperature display device of the present embodiment has the temperature indicator of the second aspect of the present invention.
 時間情報表示部24は、時間情報が印字される領域である。時間情報は、例えば、文字情報(文字としての印字)、バーコード、二次元コード等である。時間情報は、温度表示デバイス20を利用開始した時刻を示す時間情報である。なお、時間情報表示部24がバーコード、二次元コード等の場合、温度表示デバイス20が装着されている対象物に関する情報を含んでいてもよい。対象物に関する情報とは、例えば、製品名、対象物を識別するための識別情報等である。 The time information display unit 24 is an area on which time information is printed. The time information is, for example, character information (printed as characters), a bar code, a two-dimensional code, or the like. The time information is time information indicating the time when the temperature display device 20 is started to be used. When the time information display unit 24 is a bar code, a two-dimensional code, or the like, it may include information about an object on which the temperature display device 20 is mounted. The information about the object is, for example, a product name, identification information for identifying the object, and the like.
 時間情報表示部24は、温度表示デバイス20が初期化される前に時間情報が印字されていてもよいし、温度インジケータ23が初期化される時に時間情報が印字されてもよい。
 時間情報表示部24は、温度検知の対象となる対象物に装着して使用することが想定される対象の製品の仕様、サイズ、使用方法などに基づいて形状及び大きさが適宜選択される。
 なお、図1に示す温度表示デバイス20では、時間情報表示部24に時間情報が印字されている。
The time information display unit 24 may print the time information before the temperature display device 20 is initialized, or may print the time information when the temperature indicator 23 is initialized.
The shape and size of the time information display unit 24 are appropriately selected based on the specifications, size, usage method, and the like of the target product that is expected to be used by being attached to the target object for temperature detection.
In the temperature display device 20 shown in FIG. 1, time information is printed on the time information display unit 24.
 本実施形態の温度表示デバイス20は、例えば以下のようにして製造できる。
 基材21上に、参照部22を形成する。参照部22を形成する方法としては、所望の色強度となるような顔料及び溶剤を含む溶液を調製し、この溶液を基材21上の一部に印刷した後、乾燥させる方法が挙げられる。
 印刷方法としては、スクリーン印刷、凸版印刷、フレキソ印刷、ドライオフセット印刷、グラビア印刷、グラビアオフセット印刷、パッド印刷、オフセット印刷、シルク印刷、バーコーターを用いた印刷等が挙げられる。
The temperature display device 20 of the present embodiment can be manufactured, for example, as follows.
The reference portion 22 is formed on the base material 21. Examples of the method of forming the reference portion 22 include a method of preparing a solution containing a pigment and a solvent having a desired color intensity, printing the solution on a part of the base material 21, and then drying the solution.
Examples of the printing method include screen printing, letterpress printing, flexo printing, dry offset printing, gravure printing, gravure offset printing, pad printing, offset printing, silk printing, and printing using a bar coater.
 基材21上に、温度インジケータ23を形成する。温度インジケータ23を形成する方法としては、例えばジアリールエテン化合物と、バインダと、溶剤とを含む溶液を調製し、この溶液を基材21上の一部に印刷した後、乾燥させる方法が挙げられる。
 温度インジケータ23を形成する際に使用される溶剤は、温度インジケータ23や基材21の材料に応じて決定されるが、例えばミネラルスピリット、石油ナフサ、テレピン油、n-ブチル、トルエン、キシレン、シクロヘキサン、テトラリン、酢酸、酢酸メトキシブチル、アセトン、メチルイソブチルケトン(MIBK)、イソホロン、ジアセトンアルコール、イソプロピルアルコール(IPA)、n-ブタノール、エチレングリコールモノメチルエーテル(メチルセロソルブ)、2-エトキシエタノール(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノエチルエーテルアセテート(セロソルブアセテート)、エチレングリコールモノブチルエーテルアセタート(ブチルセロソルブアセテート)、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等が挙げられる。これらの材料を二種以上混合して溶剤として用いてもよい。中でも溶剤としては、トルエン、アセトンが好ましい。
A temperature indicator 23 is formed on the base material 21. Examples of the method for forming the temperature indicator 23 include a method of preparing a solution containing a diarylethene compound, a binder, and a solvent, printing the solution on a part of the base material 21, and then drying the solution.
The solvent used to form the temperature indicator 23 depends on the material of the temperature indicator 23 and the substrate 21, such as mineral spirit, petroleum naphtha, terepine oil, n-butyl, toluene, xylene, cyclohexane. , Tetraline, acetic acid, methoxybutyl acetate, acetone, methyl isobutyl ketone (MIBK), isophorone, diacetone alcohol, isopropyl alcohol (IPA), n-butanol, ethylene glycol monomethyl ether (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve) ), Ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monoethyl ether acetate (cellosolve acetate), ethylene glycol monobutyl ether acetate (butyl cellosolve acetate), diethylene glycol monobutyl ether (butyl carbitol) and the like. Two or more of these materials may be mixed and used as a solvent. Of these, toluene and acetone are preferable as the solvent.
 ジアリールエテン化合物と、バインダと、溶剤とを含む溶液に含まれるジアリールエテン化合物の含有量は、前記溶液に適度な粘性が生じ、印刷の際に滲みにくく、前記溶液中にジアリールエテン化合物を均一に分散させることができるように適宜設定される。
 印刷方法としては、参照部22を形成する際の印刷方法と同様の方法が挙げられる。
 乾燥温度は、20~100℃の間で、生産性と温度インジケータ23のダメージを考慮して決定することが好ましい。
The content of the diarylethene compound contained in the solution containing the diarylethene compound, the binder, and the solvent is such that the solution has appropriate viscosity and is less likely to bleed during printing, and the diarylethene compound is uniformly dispersed in the solution. Is set as appropriate so that
Examples of the printing method include a method similar to the printing method used when forming the reference portion 22.
The drying temperature is preferably determined between 20 and 100 ° C. in consideration of productivity and damage to the temperature indicator 23.
 なお、バインダとして熱硬化性樹脂や水性塗料などの無溶剤系樹脂を用いれば、溶剤を用いることなく温度インジケータ23を形成できる。すなわち、無溶剤系樹脂とジアリールエテン化合物とを混合し、得られた混合物を基材21上に印刷した後に加熱や乾燥により無溶剤系樹脂を硬化させることで、温度インジケータ23を形成する。この方法であれば、VOC(揮発性有機化合物)の排出を抑制できる。 If a solvent-free resin such as a thermosetting resin or a water-based paint is used as the binder, the temperature indicator 23 can be formed without using a solvent. That is, the temperature indicator 23 is formed by mixing the solvent-free resin and the diarylethene compound, printing the obtained mixture on the base material 21, and then curing the solvent-free resin by heating or drying. With this method, the emission of VOC (volatile organic compounds) can be suppressed.
 また、ジアリールエテン化合物としてマイクロカプセル化されたものを用いる場合、例えばジアリールエテン化合物のマイクロカプセルをスクリーンインキに所望の濃度になるように混ぜた後、スクリーン印刷により基材21上に一部に印刷して、温度インジケータ23を形成してもよい。印刷方法としては、スクリーン印刷に限定されず、参照部22を形成する際の印刷方法と同様の方法を用いてもよい。 When a microencapsulated diarylethene compound is used, for example, microcapsules of the diarylethene compound are mixed with screen ink to a desired concentration, and then partially printed on the substrate 21 by screen printing. , The temperature indicator 23 may be formed. The printing method is not limited to screen printing, and a method similar to the printing method used when forming the reference portion 22 may be used.
 次に、温度表示デバイス20の使用方法の一例について説明する。図3は、温度インジケータ23の退色特性の一例を示す図である。図3の縦軸は、温度インジケータ23の色強度(例えば光吸収波長の光強度の吸収量や発色前を基準色とした場合の色差)であり、色強度が大きいほど濃い色である。横軸は、温度インジケータ23の初期化時からの経過時間を示す。 Next, an example of how to use the temperature display device 20 will be described. FIG. 3 is a diagram showing an example of the fading characteristic of the temperature indicator 23. The vertical axis of FIG. 3 is the color intensity of the temperature indicator 23 (for example, the absorption amount of the light intensity of the light absorption wavelength and the color difference when the color difference before color development is used as the reference color), and the larger the color intensity, the darker the color. The horizontal axis shows the elapsed time from the time of initialization of the temperature indicator 23.
 図3に示すように、温度インジケータ23は、特定の波長の光が照射されて有色となった後、時間とともに退色(消色)する。図3において、符号aは、第1の温度における色の経時変化を示す。符号bは、第1の温度より高い第2の温度における色の経時変化を示す。符号cは、第2の温度より高い第3の温度における色の経時変化を示す。このように、温度インジケータ23は、温度が高いほど退色(消色)が速くなる。色の強度は温度に応じた値となるため、色の強度に基づいて、温度表示デバイス20が置かれた環境の温度を知ることができる。 As shown in FIG. 3, the temperature indicator 23 fades (decolorizes) with time after being irradiated with light of a specific wavelength and becoming colored. In FIG. 3, the reference numeral a indicates the change over time of the color at the first temperature. Reference numeral b indicates a change in color over time at a second temperature higher than the first temperature. Reference numeral c indicates a change in color over time at a third temperature higher than the second temperature. As described above, the higher the temperature of the temperature indicator 23, the faster the fading (decoloring) becomes. Since the color intensity is a value corresponding to the temperature, the temperature of the environment in which the temperature display device 20 is placed can be known based on the color intensity.
 参照部22における色強度は、温度インジケータ23に含まれるジアリールエテン化合物を有色とした(つまり初期化した)時点からの色強度の変化を、所定の温度条件下で予め測定しておき、所定の経過時間における色強度に基づいて定めることができる。例えば、参照部22の色強度を、想定された温度環境下における温度表示デバイス20の初期化時からの所定の経過時間後に得られる色強度とする。ここでは、温度表示デバイス20を5℃下で初期化から10時間保持した時に得られる色強度とする。 As for the color intensity in the reference unit 22, the change in color intensity from the time when the diarylethane compound contained in the temperature indicator 23 is colored (that is, initialized) is measured in advance under a predetermined temperature condition, and a predetermined process is obtained. It can be determined based on the color intensity over time. For example, the color intensity of the reference unit 22 is defined as the color intensity obtained after a predetermined elapsed time from the initialization of the temperature display device 20 under the assumed temperature environment. Here, the color intensity obtained when the temperature display device 20 is held at 5 ° C. for 10 hours from the initialization is used.
 次に、温度表示デバイス20を使用して対象物の温度管理を行う方法の一例について説明する。
 まず、後述する発行装置を用いて、温度表示デバイス20の温度インジケータ23を初期化し、初期化された時刻を時間情報表示部24に印字する。なお本実施形態において、温度インジケータ23が初期化され、初期化された時刻等が時間情報表示部24に印字された状態の温度表示デバイス20を温度履歴管理ラベルと定義する。
Next, an example of a method of controlling the temperature of an object using the temperature display device 20 will be described.
First, the temperature indicator 23 of the temperature display device 20 is initialized by using the issuing device described later, and the initialized time is printed on the time information display unit 24. In the present embodiment, the temperature display device 20 in which the temperature indicator 23 is initialized and the initialized time and the like are printed on the time information display unit 24 is defined as the temperature history management label.
 発行装置には、あらかじめ温度表示デバイス20が備えられている。発行装置に備えられた温度表示デバイス20の温度インジケータ23は、発行装置に設けられた光源から光が照射され、温度インジケータ23が初期化される。時間情報表示部24には、発行装置の印字記録部により温度インジケータ23が初期化された時刻等が印字される。時刻等の情報は、コード化されて時間情報表示部24に印字されてもよい。温度インジケータ23が初期化され、初期化された時刻が時間情報表示部24に印字されることにより、温度履歴管理ラベルが生成される。温度履歴管理ラベルは、発行装置から搬出され、温度検知の対象となる製品に直ちに貼付される。 The issuing device is provided with a temperature display device 20 in advance. The temperature indicator 23 of the temperature display device 20 provided in the issuing device is irradiated with light from a light source provided in the issuing device, and the temperature indicator 23 is initialized. The time information display unit 24 is printed with the time when the temperature indicator 23 is initialized by the print recording unit of the issuing device. Information such as the time may be coded and printed on the time information display unit 24. The temperature indicator 23 is initialized, and the initialized time is printed on the time information display unit 24 to generate a temperature history management label. The temperature history control label is taken out of the issuing device and immediately affixed to the product subject to temperature detection.
 温度インジケータ23が初期化されてから10時間後、参照部22の色強度と、温度インジケータ23の色強度とを目視により比較する。温度インジケータ23の色強度が参照部22の色強度より高いと判断される場合、対象物は5℃より低い温度で保持されていたと推定される。温度インジケータ23の色強度が参照部22の色強度と同一と判断される場合、対象物は約5℃で保持されていたと推定される。温度インジケータ23の色強度が参照部22の色強度より低い場合、対象物は5℃より高い温度で保持されていたと推定される。 Ten hours after the temperature indicator 23 is initialized, the color intensity of the reference unit 22 and the color intensity of the temperature indicator 23 are visually compared. If it is determined that the color intensity of the temperature indicator 23 is higher than the color intensity of the reference unit 22, it is presumed that the object was held at a temperature lower than 5 ° C. If the color intensity of the temperature indicator 23 is determined to be the same as the color intensity of the reference unit 22, it is estimated that the object was held at about 5 ° C. When the color intensity of the temperature indicator 23 is lower than the color intensity of the reference portion 22, it is presumed that the object was held at a temperature higher than 5 ° C.
 以上のように、温度表示デバイス20が初期化されてから所定の時間経過後に目視により参照部22の色強度と温度インジケータ23の色強度とを比べることにより、温度履歴管理ラベルを取り付けた対象物が想定通りの温度環境にあったか否かを推定できる。本実施形態における温度表示デバイス20は、前記対象物の温度管理時間があらかじめ設定されている場合に有効である。 As described above, by visually comparing the color intensity of the reference unit 22 with the color intensity of the temperature indicator 23 after a lapse of a predetermined time after the temperature display device 20 is initialized, the object to which the temperature history management label is attached is attached. Can be estimated whether or not the temperature environment was as expected. The temperature display device 20 in the present embodiment is effective when the temperature control time of the object is set in advance.
 なお、温度表示デバイスの発行装置として、例えば図4の発行装置50を用いることができる。発行装置50は、基材供給部55、印字記録部52、照射部53及び制御部51を備えている。また、発行装置50は、移動機構部(図示略)を備えている。 As the issuing device of the temperature display device, for example, the issuing device 50 of FIG. 4 can be used. The issuing device 50 includes a base material supply unit 55, a print recording unit 52, an irradiation unit 53, and a control unit 51. Further, the issuing device 50 includes a moving mechanism unit (not shown).
 基材供給部55は、例えば、長尺の温度表示デバイス20Aが巻回されたロール551(例えばロール紙)を備えることができる。温度表示デバイス20Aは、温度表示デバイス20の切断前の形態であり、複数の温度表示デバイス20が連なって構成されている。
 なお、基材供給部55は、予め所定の大きさに切断された温度表示デバイスを供給できる方式(枚葉式)を採用してもよい。
The base material supply unit 55 can include, for example, a roll 551 (for example, roll paper) around which a long temperature display device 20A is wound. The temperature display device 20A is a form before the temperature display device 20 is cut, and a plurality of temperature display devices 20 are connected in a row.
The base material supply unit 55 may adopt a method (single-wafer type) capable of supplying a temperature display device cut to a predetermined size in advance.
 印字記録部52は、サーマルヘッドを用いた感熱記録式、インクリボン式、インクジェット式、電子写真式、レーザーマーキング式(レーザ光を照射して表面加工を行う方式)等、種々の印字記録方式が採用可能である。なかでも特に、感熱記録式を用いたサーマルプリンタが好ましい。サーマルプリンタは、動作音が非常に小さく、小型軽量に適した比較的簡単な構造で、コストが抑えられるという特長がある。また、サーマルプリンタは、インクリボン、インクカートリッジといったインク類を使用しないため、唯一の消耗品は感熱紙のみであり、簡便でランニングコストが抑えられるという利点もある。
 印字記録部52は、温度表示デバイス20Aに、時刻や温度履歴管理ラベル40が取り付けられる対象物の情報等の表示情報を、温度表示デバイスにおける時間情報表示部に印字する。
The print recording unit 52 has various print recording methods such as a thermal recording type using a thermal head, an ink ribbon type, an inkjet type, an electrophotographic type, and a laser marking type (a method of irradiating a laser beam to perform surface processing). It can be adopted. Of these, a thermal printer using a thermal recording type is particularly preferable. Thermal printers have the advantages of extremely low operating noise, a relatively simple structure suitable for small size and light weight, and low cost. Further, since the thermal printer does not use inks such as ink ribbons and ink cartridges, the only consumable item is thermal paper, which has the advantage of being simple and reducing running costs.
The print recording unit 52 prints display information such as time and information on an object to which the temperature history management label 40 is attached on the temperature display device 20A on the time information display unit of the temperature display device.
 照射部53は、温度インジケータに照射する照射光の光源を備えている。照射部53による照射光の波長は、例えば紫外光領域(例えば250~400nm)である。紫外線は、短波長から、可視光領域に近い長波長に至る広い範囲で温度インジケータの着色が可能である。照射部53は、ジアリールエテン化合物の開環体と閉環体の吸収スペクトルに基づいて、使用する照射光の波長を選択できる構成であることが望ましい。 The irradiation unit 53 includes a light source of irradiation light that irradiates the temperature indicator. The wavelength of the irradiation light by the irradiation unit 53 is, for example, an ultraviolet light region (for example, 250 to 400 nm). Ultraviolet rays can color temperature indicators in a wide range from short wavelengths to long wavelengths close to the visible light region. It is desirable that the irradiation unit 53 has a configuration in which the wavelength of the irradiation light to be used can be selected based on the absorption spectra of the ring-opened body and the ring-closed body of the diarylethene compound.
 光源としては、LED式、ランプ式等がある。光源は、温度表示デバイスの仕様、及び発行装置50の仕様に応じて選択することができる。小型の発行装置50においては、紫外線LEDを光源として用いるのが好適である。紫外線LEDは波長帯域が狭いため、温度表示デバイスの温度インジケータ部のフォトクロミック吸収スペクトルから波長を選択し、その波長の光を照射できる紫外線LEDを選択するのが好ましい。ランプ式のように広い波長帯域の光源を用いる場合は、温度インジケータ部の吸収スペクトルに応じて、フィルターにより照射光の発色特性を調整することも可能である。 There are LED type, lamp type, etc. as the light source. The light source can be selected according to the specifications of the temperature display device and the specifications of the issuing device 50. In the small issuing device 50, it is preferable to use an ultraviolet LED as a light source. Since the ultraviolet LED has a narrow wavelength band, it is preferable to select a wavelength from the photochromic absorption spectrum of the temperature indicator portion of the temperature display device and select an ultraviolet LED capable of irradiating light of that wavelength. When a light source having a wide wavelength band such as a lamp type is used, it is possible to adjust the color development characteristics of the irradiation light by a filter according to the absorption spectrum of the temperature indicator unit.
 照射部53は、光の照射時において発行装置50外に照射光が漏れないことが好ましい。照射部53は、印字記録部52より下流側(温度表示デバイス20Aの搬送方向の下流側)であって、発行装置50の出口(温度表示デバイス20Aが搬出される搬出口)に近い位置に設けられていてもよい。光照射により温度表示デバイス20Aの温度インジケータ部が温度検知を開始することから、照射部53が発行装置50の出口に近い位置にあると、温度検知の開始から短時間で対象製品に温度表示デバイスを貼付できるためである。また、印字記録部52が照射部53より搬送方向の上流側にあるため、印字の時点では温度検知が開始されていない。そのため、印字の際の加熱が温度インジケータの温度履歴に影響を与えない。よって、正確な温度履歴を表示することが可能となる。 It is preferable that the irradiation unit 53 does not leak the irradiation light to the outside of the issuing device 50 when the light is irradiated. The irradiation unit 53 is provided on the downstream side of the print recording unit 52 (downstream side in the transport direction of the temperature display device 20A) and close to the outlet of the issuing device 50 (the carry-out outlet from which the temperature display device 20A is carried out). It may have been printed. Since the temperature indicator unit of the temperature display device 20A starts temperature detection by light irradiation, if the irradiation unit 53 is located near the outlet of the issuing device 50, the temperature display device can be displayed on the target product in a short time from the start of temperature detection. This is because it can be pasted. Further, since the print recording unit 52 is on the upstream side of the irradiation unit 53 in the transport direction, the temperature detection is not started at the time of printing. Therefore, the heating during printing does not affect the temperature history of the temperature indicator. Therefore, it is possible to display an accurate temperature history.
 制御部51は、例えば、相互に接続されたCPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)を備える。例えば、制御部51は、予め記憶されたプログラムをCPUにより実行する。 The control unit 51 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) that are connected to each other. For example, the control unit 51 executes a pre-stored program by the CPU.
 また、制御部51は、照射制御部、印字制御部、情報取得部、計時部及び位置制御部(いずれも図示略)を備えている。
 照射制御部は、照射部53による温度表示デバイス20Aへの光の照射を制御する。印字制御部は、印字記録部52による温度表示デバイス20Aへの表示情報の印字を制御する。前記表示情報は、例えば、温度表示デバイス20Aの温度検知の開始時間になる時間情報、すなわち温度インジケータ23に光を照射することにより温度表示デバイス20Aを初期化した時刻情報や、商品情報等である。
 情報取得部は、時間情報、商品情報を取得する。計時部は、照射部53において温度インジケータに光を照射する照射時刻を計時し、時刻情報(照射時刻)を出力する。この構成によれば、正確な時刻を温度表示デバイス20Aに印字できる。
 位置制御部は、例えば基材供給部55から供給される温度表示デバイス20Aの搬送を制御する。位置制御部は、温度表示デバイス20Aの位置に合わせて照射制御部及び印字制御部に制御信号を出力し、印字記録部52及び照射部53を動作させる。
Further, the control unit 51 includes an irradiation control unit, a print control unit, an information acquisition unit, a timekeeping unit, and a position control unit (all of which are not shown).
The irradiation control unit controls the irradiation of light to the temperature display device 20A by the irradiation unit 53. The print control unit controls printing of display information on the temperature display device 20A by the print recording unit 52. The display information is, for example, time information that is the start time of temperature detection of the temperature display device 20A, that is, time information that initializes the temperature display device 20A by irradiating the temperature indicator 23 with light, product information, or the like. ..
The information acquisition unit acquires time information and product information. The timekeeping unit measures the irradiation time at which the temperature indicator is irradiated with light in the irradiation unit 53, and outputs time information (irradiation time). According to this configuration, an accurate time can be printed on the temperature display device 20A.
The position control unit controls, for example, the transfer of the temperature display device 20A supplied from the base material supply unit 55. The position control unit outputs a control signal to the irradiation control unit and the print control unit according to the position of the temperature display device 20A, and operates the print recording unit 52 and the irradiation unit 53.
 移動機構部は、モータ等の駆動部(図示略)によって長尺の温度表示デバイス20Aをロール551から繰り出し、印字記録部52及び照射部53を経て温度表示デバイスを送り出す。これによって温度表示デバイスが発行される。 The moving mechanism unit feeds out the long temperature display device 20A from the roll 551 by a driving unit (not shown) such as a motor, and sends out the temperature display device via the print recording unit 52 and the irradiation unit 53. This issues a temperature display device.
 以上の構成を有する発行装置50を用いれば、本発明の温度表示デバイスの初期化と、初期化された時刻等の印字の双方を行うことが可能である。 By using the issuing device 50 having the above configuration, it is possible to both initialize the temperature display device of the present invention and print the initialized time and the like.
 本発明の第3の態様の温度表示デバイス20は、上述したものに限定されない。例えば、温度インジケータ23の一部が基材21の一部に染み込んでいてもよい。
 温度インジケータ23が基材21の一部に染み込む程度は、温度インジケータ23の形成方法に依存する。そのため、所望の温度インジケータ23の形態を得るには、温度インジケータ23の形成方法を適宜選択すればよい。例えば、温度インジケータ23の位置を制御するために、ジアリールエテン化合物、バインダ及び溶剤を含む溶液の粘度を規定してもよい。
The temperature display device 20 according to the third aspect of the present invention is not limited to the above. For example, a part of the temperature indicator 23 may soak into a part of the base material 21.
The degree to which the temperature indicator 23 soaks into a part of the base material 21 depends on the method of forming the temperature indicator 23. Therefore, in order to obtain the desired form of the temperature indicator 23, the method for forming the temperature indicator 23 may be appropriately selected. For example, in order to control the position of the temperature indicator 23, the viscosity of the solution containing the diarylethene compound, the binder and the solvent may be specified.
 温度表示デバイス20は、温度インジケータ23と基材21との間に、遮断層(図示略)を有していてもよい。遮断層の面積は、温度インジケータ23の面積より大きい。遮断層は、温度インジケータ23が基材21に直接接することを妨げるように配置される。遮断層を配置することにより、温度インジケータ23を形成するための溶剤やバインダ等が基材21に染み込むことで基材21が変色することを防ぐことができる。また、遮断層を配置することにより、基材21による温度インジケータ23の発色特性への影響を抑制することができる。
 遮断層の材料としては、塩化ビニル樹脂、塩化ビニル-酢酸ビニル共重合体、アクリル樹脂、ポリウレタン樹脂、ポリエステル、エポキシ樹脂、ニトロセルロース(硝化綿)、エチルセルロース樹脂、ポリアミド、イソプレンゴム等の環化ゴム、塩素化ポリオレフィン、マレイン酸樹脂、フェノール樹脂、ケトン樹脂、キシレン樹脂、石油樹脂、メラミン樹脂、尿素樹脂、ポリイソシアネート等が挙げられる。上記の材料は、紫外線硬化性等の光硬化性の樹脂であってもよい。遮断層の材料として、アクリル樹脂が好ましい。
 遮断層の形成方法としては、以下の方法が挙げられる。まず上述の遮断層の材料及び溶剤を含む溶液を調製する。遮断層は、温度インジケータ23を形成する前に、基材21に遮断層の材料及び溶剤を含む溶液を印刷して乾燥することにより形成される。印刷方法としては、参照部22を形成する際の印刷方法と同様の方法が挙げられる。
The temperature display device 20 may have a blocking layer (not shown) between the temperature indicator 23 and the base material 21. The area of the barrier layer is larger than the area of the temperature indicator 23. The barrier layer is arranged so as to prevent the temperature indicator 23 from coming into direct contact with the base material 21. By arranging the blocking layer, it is possible to prevent the base material 21 from being discolored due to the solvent or binder for forming the temperature indicator 23 permeating into the base material 21. Further, by arranging the blocking layer, it is possible to suppress the influence of the base material 21 on the color development characteristics of the temperature indicator 23.
As the material of the barrier layer, cyclized rubber such as vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, polyurethane resin, polyester, epoxy resin, nitrocellulose (nitrified cotton), ethylcellulose resin, polyamide, isoprene rubber, etc. , Chlorinated polyolefin, maleic acid resin, phenol resin, ketone resin, xylene resin, petroleum resin, melamine resin, urea resin, polyisocyanate and the like. The above material may be a photocurable resin such as ultraviolet curable. Acrylic resin is preferable as the material of the barrier layer.
Examples of the method for forming the blocking layer include the following methods. First, a solution containing the above-mentioned barrier layer material and solvent is prepared. The barrier layer is formed by printing a solution containing the material and solvent of the barrier layer on the base material 21 and drying it before forming the temperature indicator 23. Examples of the printing method include a method similar to the printing method used when forming the reference portion 22.
 温度表示デバイス20は、複数の色強度を有する参照部22を有していてもよい。また複数の温度インジケータ23を有していてもよい。
 複数の参照部及び複数の温度インジケータを有していれば、温度表示デバイス20が貼付された対象物が管理温度範囲からどの程度逸脱したかを目視により容易に判定することが可能であり、本来管理されるべき温度範囲からどの程度逸脱したかを把握する必要がある場合に有用である。
The temperature display device 20 may have a reference unit 22 having a plurality of color intensities. It may also have a plurality of temperature indicators 23.
If it has a plurality of reference parts and a plurality of temperature indicators, it is possible to easily visually determine how much the object to which the temperature display device 20 is attached deviates from the controlled temperature range. This is useful when you need to know how much you deviate from the temperature range to be controlled.
 温度表示デバイス20のその他の使用方法として、読取処理装置を用いた温度検知方法が挙げられる。この態様における温度表示デバイス20は、参照部22を設けなくてもよい。
 読取処理装置は、撮像機能を有する、例えばスマートフォン、タブレット端末、専用装置等である。読取処理装置は、その撮像手段を介して温度履歴管理ラベルの情報(温度インジケータ23、時間情報表示部24を含む画像)を読み取り、読み取った情報に基づいて温度履歴管理ラベル(温度表示デバイス20)が貼付されている対象物が曝されていた温度と経過時間等を求める。読取処理装置は、求めた対象物が曝されていた温度と温度履歴管理ラベルの初期化時からの経過時間等を表示部に表示させる。
 このように、読取処理装置を用いて温度履歴管理ラベルの情報を読み取って温度検知を行うことにより、温度履歴管理ラベルを初期化してからの任意の経過時間において、簡便に、より正確に温度履歴管理ラベルが貼付されている対象物の温度管理を行うことが可能である。
As another method of using the temperature display device 20, a temperature detection method using a reading processing device can be mentioned. The temperature display device 20 in this embodiment does not need to be provided with the reference unit 22.
The reading processing device is, for example, a smartphone, a tablet terminal, a dedicated device, or the like having an imaging function. The reading processing device reads the information of the temperature history management label (the image including the temperature indicator 23 and the time information display unit 24) through the imaging means, and based on the read information, the temperature history management label (temperature display device 20). Find the temperature and elapsed time that the object to which is affixed was exposed. The reading processing device causes the display unit to display the temperature at which the obtained object was exposed, the elapsed time from the initialization of the temperature history management label, and the like.
In this way, by reading the information on the temperature history management label using the reading processing device and performing temperature detection, the temperature history can be easily and more accurately performed at an arbitrary elapsed time after the temperature history management label is initialized. It is possible to control the temperature of the object to which the control label is affixed.
<第4の態様>
 本発明の第4の態様の温度表示デバイスについて、図5を参照して説明する。
 図5は、本発明の第4の態様の温度表示デバイス20Bの断面図である。
 本実施形態の温度表示デバイス20Bは、基材21の参照部22、温度インジケータ23及び時間情報表示部24が位置している面(基材の一方の面)とは反対側の面(基材の他方の面)に、粘着層31と、剥離層32とを有している以外は、第3の態様の温度表示デバイスと同じである。
<Fourth aspect>
The temperature display device according to the fourth aspect of the present invention will be described with reference to FIG.
FIG. 5 is a cross-sectional view of the temperature display device 20B according to the fourth aspect of the present invention.
The temperature display device 20B of the present embodiment has a surface (base material) opposite to the surface (one surface of the base material) on which the reference portion 22, the temperature indicator 23, and the time information display unit 24 of the base material 21 are located. The temperature display device of the third aspect is the same as that of the temperature display device of the third aspect, except that the adhesive layer 31 and the release layer 32 are provided on the other surface).
 粘着層31は、基材21と剥離層32との間に位置している。すなわち、基材21の他方の面に、粘着層31及び剥離層32がこの順で形成されている。
 粘着層31の材料は、温度検知対象物に温度表示デバイス20Bを貼付することが可能であれば特に限定されない。
 剥離層32の材料は、粘着層31から容易に剥離することが可能であれば特に限定されない。
 温度表示デバイス20Bを使用する直前に剥離層32を粘着層31から剥がし、剥離層32が剥離された温度表示デバイス20Bを対象物に貼付して使用することができる。
The adhesive layer 31 is located between the base material 21 and the release layer 32. That is, the adhesive layer 31 and the release layer 32 are formed on the other surface of the base material 21 in this order.
The material of the adhesive layer 31 is not particularly limited as long as the temperature display device 20B can be attached to the temperature detection object.
The material of the release layer 32 is not particularly limited as long as it can be easily separated from the adhesive layer 31.
Immediately before using the temperature display device 20B, the release layer 32 can be peeled off from the adhesive layer 31, and the temperature display device 20B from which the release layer 32 has been peeled off can be attached to an object for use.
<第5の態様>
 本発明の第5の態様の温度表示デバイスについて、図6を参照して説明する。
 図6は、本発明の第5の態様の温度表示デバイス20Cの断面図である。
 本実施形態の温度表示デバイス20Cは、温度インジケータ23上に保護層33を有している以外は、第3の態様の温度表示デバイスと同じである。
<Fifth aspect>
The temperature display device according to the fifth aspect of the present invention will be described with reference to FIG.
FIG. 6 is a cross-sectional view of the temperature display device 20C according to the fifth aspect of the present invention.
The temperature display device 20C of the present embodiment is the same as the temperature display device of the third aspect except that the protective layer 33 is provided on the temperature indicator 23.
 保護層33は温度インジケータ23上(温度インジケータ23の基材21が位置している面とは反対側の面)に形成されている。保護層33の面積は、温度インジケータ23の面積より大きい。保護層33は、温度インジケータ23全体を覆うように配置されることが好ましい。保護層33を設けることにより、温度インジケータ23に対する温度、湿度、薬品等の影響を抑制することができる。また、保護層33は、時間情報表示部24への印字の際に、温度インジケータ23が加熱されることを防止する。温度表示デバイス20Cに保護層33を設けることにより、印字に用いられるサーマルプリンタ等の印字装置の印字位置精度が低い場合においても、温度インジケータ23への熱の影響を抑えることが可能である。保護層33は、温度インジケータ23上だけでなく、温度表示デバイス20Cの表面全体を覆っていてもよい。 The protective layer 33 is formed on the temperature indicator 23 (the surface of the temperature indicator 23 opposite to the surface on which the base material 21 is located). The area of the protective layer 33 is larger than the area of the temperature indicator 23. The protective layer 33 is preferably arranged so as to cover the entire temperature indicator 23. By providing the protective layer 33, the influence of temperature, humidity, chemicals, etc. on the temperature indicator 23 can be suppressed. Further, the protective layer 33 prevents the temperature indicator 23 from being heated when printing on the time information display unit 24. By providing the protective layer 33 on the temperature display device 20C, it is possible to suppress the influence of heat on the temperature indicator 23 even when the printing position accuracy of a printing device such as a thermal printer used for printing is low. The protective layer 33 may cover not only the temperature indicator 23 but also the entire surface of the temperature display device 20C.
 保護層33は、熱的及び化学的に安定なシリコーン塗布層であることが好ましいが、熱的及び化学的に安定な層であれば、特に限定されない。例えば、保護層33として、ポリビニルアルコール等からなる水性エマルジョンコーティング層、ポリエチレン、ポリプロピレン等のオレフィン樹脂からなる透明なフィルムからなるラミネート層などが挙げられる。
 保護層33の形成方法としては、例えば、保護層33としてシリコーン塗布層を用いる場合、温度インジケータ23全体を覆うようにシリコーン塗布層を形成するための溶液を塗布して乾燥することにより形成することができる。他の方法として、保護層33としてラミネート層を用いる場合、温度インジケータ23全体を覆うようにラミネート層を配置し、圧着することでラミネート層を固定することで保護層33を形成することができる。
The protective layer 33 is preferably a thermally and chemically stable silicone-coated layer, but is not particularly limited as long as it is a thermally and chemically stable layer. For example, examples of the protective layer 33 include an aqueous emulsion coating layer made of polyvinyl alcohol and the like, a laminated layer made of a transparent film made of an olefin resin such as polyethylene and polypropylene, and the like.
As a method for forming the protective layer 33, for example, when a silicone coating layer is used as the protection layer 33, it is formed by applying a solution for forming the silicone coating layer so as to cover the entire temperature indicator 23 and drying it. Can be done. As another method, when a laminated layer is used as the protective layer 33, the protective layer 33 can be formed by arranging the laminated layer so as to cover the entire temperature indicator 23 and fixing the laminated layer by crimping.
 なお、温度表示デバイス20Cに保護層33を設けない場合であっても、温度表示デバイス20Cの寸法と、温度インジケータ23、時間情報表示部24のレイアウトを予め印字装置に記憶させておき、温度インジケータ23の位置を避けるように印字範囲を設定しておけばよい。このようにすることで、印字の際に温度インジケータ23を直接加熱することがなく、温度インジケータ23の温度特性に影響を与えずに時刻及びその他の情報を印字することが可能である。
 また、本実施形態において、基材21の参照部22、温度インジケータ23、時間情報表示部24及び保護層33が位置している面とは反対側の面に、粘着層及び剥離層(いずれも図示略)がこの順で設けられていてもよい。
Even when the temperature display device 20C is not provided with the protective layer 33, the dimensions of the temperature display device 20C and the layout of the temperature indicator 23 and the time information display unit 24 are stored in the printing device in advance, and the temperature indicator is stored. The print range may be set so as to avoid the position of 23. By doing so, it is possible to print the time and other information without directly heating the temperature indicator 23 at the time of printing and without affecting the temperature characteristics of the temperature indicator 23.
Further, in the present embodiment, the adhesive layer and the peeling layer (both are) on the surface opposite to the surface on which the reference portion 22, the temperature indicator 23, the time information display portion 24 and the protective layer 33 of the base material 21 are located. (Not shown) may be provided in this order.
<第6の態様>
 本発明の第6の態様の温度表示デバイスについて、図7を参照して説明する。
 図7は、本発明の第6の態様の温度表示デバイス20Dの断面図である。
 本実施形態の温度表示デバイス20Dは、剥離層32と、剥離層32上の温度インジケータ23Dと、温度インジケータ23D上の透明基材34とを有する。
<Sixth aspect>
The temperature display device according to the sixth aspect of the present invention will be described with reference to FIG.
FIG. 7 is a cross-sectional view of the temperature display device 20D according to the sixth aspect of the present invention.
The temperature display device 20D of the present embodiment has a peeling layer 32, a temperature indicator 23D on the peeling layer 32, and a transparent base material 34 on the temperature indicator 23D.
 温度インジケータ23Dは、本発明の第1の態様のジアリールエテン化合物と、バインダとを含む薄層であり、少なくとも一方の面に粘着性を有する。
 バインダとしては、温度検知対象物に温度表示デバイス20Dを貼付することが可能であり、かつ、ナノインデンターを用いて測定した温度インジケータ23Dの硬度が60MPa以下となるような粘着剤が挙げられる。バインダとして粘着剤を用いることにより、温度インジケータ23Dは一方の面に加えて、一方の面以外の部分も粘着性を有する。
 このような粘着剤としては、例えばアクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。
The temperature indicator 23D is a thin layer containing the diarylethene compound of the first aspect of the present invention and a binder, and has adhesiveness on at least one surface.
Examples of the binder include an adhesive capable of attaching the temperature display device 20D to the temperature detection object and having a hardness of the temperature indicator 23D measured using a nanoindenter of 60 MPa or less. By using an adhesive as the binder, the temperature indicator 23D has adhesiveness not only on one surface but also on a portion other than the one surface.
Examples of such an adhesive include an acrylic adhesive, a urethane adhesive, and a silicone adhesive.
 温度インジケータ23Dに含まれるジアリールエテン化合物及びバインダの含有量は、本発明の第2の態様の温度インジケータと同様である。 The content of the diarylethene compound and the binder contained in the temperature indicator 23D is the same as that of the temperature indicator of the second aspect of the present invention.
 剥離層32は、温度インジケータ23Dの一方の面に形成されている。
 剥離層32の材料は、温度インジケータ23Dから容易に剥離することが可能であれば特に限定されない。
The release layer 32 is formed on one surface of the temperature indicator 23D.
The material of the release layer 32 is not particularly limited as long as it can be easily separated from the temperature indicator 23D.
 透明基材34は、温度インジケータ23Dの他方の面に形成されている。
 透明基材34としては、温度インジケータ23Dを初期化する際の光照射の妨げにならず、かつ、所定の時間経過後の色の変化を目視や読取処理装置にて確認する際の妨げとならない、光を透過する材料からなる基材であれば特に制限されない。
 透明基材34としては、ガラス基材、透明樹脂基材などが挙げられる。透明樹脂基材を形成する樹脂としては、例えばポリエチレンテレフタレート(PET)等のポリエステル系樹脂、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリオレフィン樹脂などが挙げられる。
The transparent substrate 34 is formed on the other surface of the temperature indicator 23D.
The transparent base material 34 does not interfere with light irradiation when initializing the temperature indicator 23D, and does not interfere with visually confirming the color change after a lapse of a predetermined time or by checking with a reading processing apparatus. The substrate is not particularly limited as long as it is a base material made of a material that transmits light.
Examples of the transparent base material 34 include a glass base material and a transparent resin base material. Examples of the resin forming the transparent resin base material include polyester resins such as polyethylene terephthalate (PET), methacrylic resins, acrylic resins, polycarbonate resins, vinyl chloride resins, and polyolefin resins.
 温度表示デバイス20Dは、例えば剥離層32上に温度インジケータ23Dを形成した後、温度インジケータ23D上に透明基材34を形成することで製造できる。
 温度インジケータ23Dを形成する方法としては、本発明の第3の態様における、基材上に温度インジケータを形成する方法と同様である。
 透明基材34の形成方法としては、別途作製しておいた透明基材34を温度インジケータ23Dに貼り付ける方法、透明樹脂基材を形成する樹脂と溶剤とを含む溶液を塗布して乾燥する方法などが挙げられる。
 また、透明基材34上に温度インジケータ23Dを形成しておき、この温度インジケータ23D上に剥離層32を貼り付けてもよい。
The temperature display device 20D can be manufactured, for example, by forming the temperature indicator 23D on the release layer 32 and then forming the transparent base material 34 on the temperature indicator 23D.
The method of forming the temperature indicator 23D is the same as the method of forming the temperature indicator on the base material in the third aspect of the present invention.
As a method for forming the transparent base material 34, a method of attaching a separately prepared transparent base material 34 to the temperature indicator 23D, and a method of applying a solution containing a resin and a solvent for forming the transparent resin base material and drying the transparent base material 34. And so on.
Further, the temperature indicator 23D may be formed on the transparent base material 34, and the release layer 32 may be attached on the temperature indicator 23D.
 温度インジケータ23Dを構成するバインダは粘着性を有しているので、温度表示デバイス20Dを使用する直前に剥離層32を温度インジケータ23Dから剥がし、剥離層32が剥離された温度表示デバイス20Dを対象物に貼付して使用することができる。
 温度表示デバイス20Dの使用方法としては、本発明の第3の態様で説明した読取処理装置を用いた温度検知方法が挙げられる。
Since the binder constituting the temperature indicator 23D has adhesiveness, the peeling layer 32 is peeled off from the temperature indicator 23D immediately before using the temperature display device 20D, and the temperature display device 20D from which the peeling layer 32 is peeled off is an object. It can be used by pasting it on.
Examples of the method of using the temperature display device 20D include a temperature detection method using the reading processing device described in the third aspect of the present invention.
[包装体]
 本発明の第7の態様の包装体について、図8を参照して説明する。
 図8は、本発明の第7の態様の包装体60の斜視図である。
 本実施形態の包装体60は、温度管理を行う対象となる製品等の対象物(例えば食品、医薬品等)を包装する包装材61と、参照部22と、温度インジケータ23とを有する。平面視において、参照部22と、温度インジケータ23とは、包装材61上の面方向に並んで形成されている。
[Packaging]
The packaging body of the seventh aspect of the present invention will be described with reference to FIG.
FIG. 8 is a perspective view of the package 60 according to the seventh aspect of the present invention.
The package 60 of the present embodiment has a packaging material 61 for packaging an object (for example, food, pharmaceutical product, etc.) such as a product to be temperature-controlled, a reference unit 22, and a temperature indicator 23. In a plan view, the reference portion 22 and the temperature indicator 23 are formed side by side in the plane direction on the packaging material 61.
 包装の形態としては特に限定されず、個装、内装、外装のいずれでもよい。
 包装材61としては、段ボール、発泡スチロール、袋、箱、缶、瓶、樽等が挙げられる。
 包装材61の材質としては、紙、プラスチック、ビニール、布、金属、ガラス、木等が挙げられる。
 包装材61及びその材質は、包装の形態に応じて決定される。
The form of packaging is not particularly limited, and may be individual packaging, interior packaging, or exterior packaging.
Examples of the packaging material 61 include corrugated cardboard, styrofoam, bags, boxes, cans, bottles, barrels, and the like.
Examples of the material of the packaging material 61 include paper, plastic, vinyl, cloth, metal, glass, wood and the like.
The packaging material 61 and its material are determined according to the form of the packaging.
 参照部22は、温度インジケータ23の色を特定するための指標となる基準色を呈する。
 参照部22としては、本発明の第3の態様の説明において先に例示した参照部が挙げられる。
The reference unit 22 presents a reference color as an index for specifying the color of the temperature indicator 23.
Examples of the reference unit 22 include the reference unit exemplified above in the description of the third aspect of the present invention.
 温度インジケータ23は、上述した本発明の第2の態様の温度インジケータである。すなわち、本実施形態の包装体60は、本発明の第2の態様の温度インジケータを有する。 The temperature indicator 23 is the temperature indicator of the second aspect of the present invention described above. That is, the package 60 of the present embodiment has the temperature indicator of the second aspect of the present invention.
 本実施形態の包装体60は、例えば以下のようにして製造できる。
 包装材61上に、参照部22を形成する。参照部22を形成する方法は、本発明の第3の態様の説明において先に例示した参照部の形成方法と同様である。
The package 60 of the present embodiment can be manufactured, for example, as follows.
The reference portion 22 is formed on the packaging material 61. The method for forming the reference portion 22 is the same as the method for forming the reference portion exemplified above in the description of the third aspect of the present invention.
 包装材61上に温度インジケータ23を形成する。温度インジケータ23を形成する方法としては、例えば本発明の第1の態様のジアリールエテン化合物と、バインダと、溶剤とを含む溶液を調製し、この溶液を包装材61上の一部に印刷又は塗布した後、乾燥させる方法が挙げられる。バインダとしては、本発明の第2の態様の説明において先に例示したバインダが挙げられる。溶剤としては、本発明の第3の態様の説明において先に例示した溶剤が挙げられる。 A temperature indicator 23 is formed on the packaging material 61. As a method for forming the temperature indicator 23, for example, a solution containing the diarylethene compound of the first aspect of the present invention, a binder, and a solvent was prepared, and this solution was printed or applied to a part on the packaging material 61. After that, a method of drying can be mentioned. Examples of the binder include the binder exemplified above in the description of the second aspect of the present invention. Examples of the solvent include the solvents exemplified above in the description of the third aspect of the present invention.
 印刷方法としては、インクジェット印刷、スクリーン印刷、凸版印刷、フレキソ印刷、ドライオフセット印刷、グラビア印刷、グラビアオフセット印刷、パッド印刷、オフセット印刷、シルク印刷、バーコーターを用いた印刷等が挙げられる。
 塗布方法としては、スプレー塗装法、刷毛塗り法、ローラ塗装法等が挙げられる。
 乾燥温度は、20~100℃の間で、生産性と温度インジケータ23のダメージを考慮して決定することが好ましい。
Examples of the printing method include inkjet printing, screen printing, letterpress printing, flexo printing, dry offset printing, gravure printing, gravure offset printing, pad printing, offset printing, silk printing, and printing using a bar coater.
Examples of the coating method include a spray coating method, a brush coating method, a roller coating method and the like.
The drying temperature is preferably determined between 20 and 100 ° C. in consideration of productivity and damage to the temperature indicator 23.
 なお、バインダとして熱硬化性樹脂や水性塗料などの無溶剤系樹脂を用いれば、溶剤を用いることなく温度インジケータ23を形成できる。すなわち、無溶剤系樹脂とジアリールエテン化合物とを混合し、得られた混合物を包装材61上に印刷又は塗布した後に加熱や乾燥により無溶剤系樹脂を硬化させることで、温度インジケータ23を形成する。 If a solvent-free resin such as a thermosetting resin or a water-based paint is used as the binder, the temperature indicator 23 can be formed without using a solvent. That is, the temperature indicator 23 is formed by mixing the solvent-free resin and the diarylethene compound, printing or applying the obtained mixture on the packaging material 61, and then curing the solvent-free resin by heating or drying.
 また、ジアリールエテン化合物としてマイクロカプセル化されたものを用いる場合、例えばジアリールエテン化合物のマイクロカプセルをスクリーンインキに所望の濃度になるように混ぜた後、スクリーン印刷により包装材61上に一部に印刷して、温度インジケータ23を形成してもよい。印刷方法としては、スクリーン印刷に限定されず、先に例示した印刷方法を用いてもよい。 When a microencapsulated diarylethene compound is used, for example, microcapsules of the diarylethene compound are mixed with screen ink to a desired concentration, and then partially printed on the packaging material 61 by screen printing. , The temperature indicator 23 may be formed. The printing method is not limited to screen printing, and the printing method exemplified above may be used.
 こうして得られた包装体60で対象物を包装した後に、温度インジケータ23に光を照射して温度インジケータ23を初期化し、対象物の温度管理を行う。
 なお、対象物を包装材61で包装した後に、包装材61上に参照部22及び温度インジケータ23を形成してもよい。
After packaging the object with the package 60 thus obtained, the temperature indicator 23 is irradiated with light to initialize the temperature indicator 23, and the temperature of the object is controlled.
After packaging the object with the packaging material 61, the reference portion 22 and the temperature indicator 23 may be formed on the packaging material 61.
 本発明の第7の態様の包装体60は、上述したものに限定されない。例えば、包装体60は、複数の色強度を有する参照部22を有していてもよい。また複数の温度インジケータ23を有していてもよい。
 また、読取処理装置を用いて温度検知する場合には、包装体60は参照部22を設けなくてもよい。読取処理装置としては、本発明の第3の態様の説明において先に例示した読取処理装置が挙げられる。
The package 60 of the seventh aspect of the present invention is not limited to the above. For example, the package 60 may have a reference portion 22 having a plurality of color intensities. It may also have a plurality of temperature indicators 23.
Further, when the temperature is detected by using the reading processing device, the package 60 does not need to be provided with the reference portion 22. Examples of the reading processing device include the reading processing device exemplified above in the description of the third aspect of the present invention.
 本発明のその他の態様としては、以下の通りである。
<1> 前記一般式(1)で表される、ジアリールエテン化合物。
<2> 前記一般式(1A)で表される、前記<1>のジアリールエテン化合物。
<3> 前記一般式(1B)で表される、前記<2>のジアリールエテン化合物。
<4> 前記一般式(1C)で表される、前記<3>のジアリールエテン化合物。
<5> 前記R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、炭素数1~6のアルキル基又は芳香族基であり、R及びRの一方が炭素数1~10のアルキル基又は炭素数3~7のシクロアルキル基であり、他方がSiR である、前記<1>~<4>のいずれか1つのジアリールエテン化合物。
<6> 前記R及びRの一方が炭素数1~10のアルキル基であり、他方がSiR である、前記<5>のジアリールエテン化合物。
<7> 前記Rが炭素数2~10のアルキル基であり、前記RがSiR である、前記<5>又は<6>のジアリールエテン化合物。
<8> 前記Rが炭素数2~4の第一級アルキル基又は第二級アルキル基であり、前記Rがトリメチルシリル基(Si(CH)又はトリエチルシリル基(Si(CHCH)である、前記<7>のジアリールエテン化合物。
<9> 前記RがSiR であり、前記Rが炭素数1~10のアルキル基である、前記<5>又は<6>のジアリールエテン化合物。
<10> 前記Rがトリメチルシリル基又はトリエチルシリル基であり、前記Rが炭素数1~2の第一級アルキル基である、前記<9>のジアリールエテン化合物。
<11> 前記RがSiR であり、前記Rが炭素数3~10のアルキル基である、前記<5>又は<6>のジアリールエテン化合物。
<12> 前記Rがトリメチルシリル基又はトリエチルシリル基であり、前記Rが炭素数3~7の第一級アルキル基又は第二級アルキル基である、前記<11>のジアリールエテン化合物。
<13> 前記Rがメチル基又はイソプロピル基であり、前記Rがトリメチルシリル基である、前記<5>又は<6>のジアリールエテン化合物。
<14> 前記Rがトリメチルシリル基であり、前記Rがメチル基又はイソプロピル基である、前記<5>又は<6>のジアリールエテン化合物。
<15> 前記<1>~<14>のいずれか1つのジアリールエテン化合物を含む、温度インジケータ。
<16> バインダをさらに含む、前記<15>の温度インジケータ。
<17> 前記<15>又は<16>の温度インジケータを有する、温度表示デバイス。
<18> 基材を有し、前記基材の一方の面に前記温度インジケータが形成されている、前記<17>の温度表示デバイス。
<19> 時間情報表示部を有し、平面視において、前記温度インジケータと前記時間情報表示部とが前記基材上の面方向に並んで形成されている、前記<18>の温度表示デバイス。
<20> 前記基材の他方の面に粘着層及び剥離層がこの順で形成されている、前記<18>又は<19>の温度表示デバイス。
<21> 前記温度インジケータ上に保護層が形成されている、前記<17>~<20>のいずれか1つの温度表示デバイス。
<22> 前記温度インジケータは少なくとも一方の面に粘着性を有し、前記一方の面に剥離層が形成されている、前記<17>の温度表示デバイス。
<23> 前記<15>又は<16>の温度インジケータを有する、包装体。
Other aspects of the present invention are as follows.
<1> A diarylethene compound represented by the general formula (1).
<2> The diarylethene compound of <1> represented by the general formula (1A).
<3> The diarylethene compound of <2> represented by the general formula (1B).
<4> The diarylethene compound of <3> represented by the general formula (1C).
<5> to R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or SiR 8 3 3 to 7 carbon atoms, in each of the three R 8 independently, carbon atoms a 1-6 alkyl group or an aromatic group, one of R 1 and R 2 is a cycloalkyl group of an alkyl group or a C 3-7 1 to 10 carbon atoms, and the other is SiR 8 3, The diarylethene compound according to any one of <1> to <4>.
<6> is an alkyl group of R 1 and one has 1 to 10 carbon atoms R 2, the other is SiR 8 3, wherein the diarylethene compound of <5>.
<7> wherein R 1 is an alkyl group having 2 to 10 carbon atoms, wherein R 2 is SiR 8 3, wherein <5> or diarylethene compound of <6>.
<8> The R 1 is a primary alkyl group or a secondary alkyl group having 2 to 4 carbon atoms, and the R 2 is a trimethylsilyl group (Si (CH 3 ) 3 ) or a triethylsilyl group (Si (CH 2)). CH 3 ) The diarylethene compound of <7> according to 3).
<9> wherein R 1 is SiR 8 3, wherein R 2 is an alkyl group having 1 to 10 carbon atoms, wherein <5> or diarylethene compound of <6>.
<10> The diarylethene compound of <9>, wherein R 1 is a trimethylsilyl group or a triethylsilyl group, and R 2 is a primary alkyl group having 1 to 2 carbon atoms.
<11> wherein R 1 is SiR 8 3, wherein R 2 is an alkyl group having 3-10 carbon atoms, wherein <5> or diarylethene compound of <6>.
<12> The diarylethene compound of <11>, wherein R 1 is a trimethylsilyl group or a triethylsilyl group, and R 2 is a primary alkyl group or a secondary alkyl group having 3 to 7 carbon atoms.
<13> The diarylethene compound of <5> or <6>, wherein R 1 is a methyl group or an isopropyl group and R 2 is a trimethylsilyl group.
<14> The diarylethene compound of <5> or <6>, wherein R 1 is a trimethylsilyl group and R 2 is a methyl group or an isopropyl group.
<15> A temperature indicator comprising any one of the diarylethene compounds <1> to <14>.
<16> The temperature indicator of <15>, further including a binder.
<17> A temperature display device having the temperature indicator of <15> or <16>.
<18> The temperature display device according to <17>, which has a base material and has the temperature indicator formed on one surface of the base material.
<19> The temperature display device according to <18>, which has a time information display unit, and the temperature indicator and the time information display unit are formed side by side in a plane direction on the base material in a plan view.
<20> The temperature display device according to <18> or <19>, wherein an adhesive layer and a release layer are formed on the other surface of the base material in this order.
<21> The temperature display device according to any one of <17> to <20>, wherein a protective layer is formed on the temperature indicator.
<22> The temperature display device according to <17>, wherein the temperature indicator has adhesiveness on at least one surface and a release layer is formed on the one surface.
<23> A package having the temperature indicator of <15> or <16>.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、ジアリールエテン化合物及びその中間化合物の同定には、以下のH-NMR、13C-NMR、質量分析法の1つ以上を用いた。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
For the identification of the diarylethene compound and its intermediate compound, one or more of the following 1 H-NMR, 13 C-NMR, and mass spectrometry was used.
H-NMR、13C-NMR>
 核磁気共鳴スペクトル装置(ブルカーバイオスピン株式会社(Bruker BioSpin K.K.)製、型式「AV-300N」)を用いて、中間化合物及びジアリールエテン化合物を同定した。溶媒として重クロロホルムを用い、基準物質としてテトラメチルシラン(TMS)を用いた。
< 1 1 H-NMR, 13 C-NMR>
An intermediate compound and a diallylethene compound were identified using a nuclear magnetic resonance spectrum apparatus (Bruker BioSpin KK, model "AV-300N"). Deuterated chloroform was used as the solvent, and tetramethylsilane (TMS) was used as the reference substance.
<質量分析法>
 質量分析装置として、ブルカーバイオスピン株式会社(Bruker BioSpin K. K.)製の型式「FT-ICR/solariX(MALDI)」又は日本電子株式会社製の型式「JMS-700/700S(FAB)」を用いて、中間化合物及びジアリールエテン化合物を同定した。イオン化には、3-ニトロベンジルアルコールをマトリックスに用いた。
<Mass spectrometry>
As a mass spectrometer, use the model "FT-ICR / solariX (MALDI)" manufactured by Bruker BioSpin KK or the model "JMS-700 / 700S (FAB)" manufactured by Nippon Denshi Co., Ltd. Used to identify intermediate compounds and diarylethene compounds. For ionization, 3-nitrobenzyl alcohol was used in the matrix.
<製造例1>
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテンの合成)
 化合物(5-1)と環状化合物(A-1)とを反応させ、化合物(6-1)を得た。TMSはトリメチルシリル基である。
 なお、化合物(5-1)である3-ブロモ-2-トリメチルシリル-5-フェニルチオフェンは、S. Kobatake et al., New J. Chem., 2009,33(6),1362-1367に記載された方法により合成した。
<Manufacturing example 1>
(Synthesis of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene)
Compound (5-1) was reacted with cyclic compound (A-1) to obtain compound (6-1). TMS is a trimethylsilyl group.
The compound (5-1), 3-bromo-2-trimethylsilyl-5-phenylthiophene, is described in S.I. Kobatake et al. , New J. Chem. , 2009, 33 (6), 1362-1637.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 アルゴン雰囲気にした四ツ口フラスコに化合物(5-1)である3-ブロモ-2-トリメチルシリル-5-フェニルチオフェン2g(6.4mmol)を入れ、無水エーテル50mLに溶かした。-78℃で1.6Mのn-BuLiヘキサン溶液5mL(8mmol)をゆっくりと滴下し、1.5時間撹拌した。環状化合物(A-1)としてオクタフルオロシクロペンテン2mL(15mmol) を含む無水エーテル5mLをすばやく滴下し、5時間撹拌した。室温に戻して水でクエンチし、エーテルで抽出した。有機層を取り出し塩析を行い、硫酸マグネシウムを用いて乾燥させ、濾過した後、残った溶媒を留去した。その後、シリカゲルカラムクロマトグラフィー(溶離液:n-ヘキサン)で分離精製し、リサイクル分取HPLCでさらに精製し、化合物(6-1)を1.9g(4.5mmol)、収率70%で得た。
 H-NMR及び13C-NMRと、質量分析法により、得られた化合物(6-1)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=0.339 and 0.342(s,9H),7.3-7.5(m,4H),7.5-7.5(m,2H).13C-NMR(75MHz,CDCl,TMS)δ=-0.054,125.0,126.3,128.3,128.5,129.2,133.2,143.6,150.7.HR-MS(MALDI):m/z=424.0546(M).Calcd for C1815SSi=424.0547.
2 g (6.4 mmol) of the compound (5-1) 3-bromo-2-trimethylsilyl-5-phenylthiophene was placed in a four-necked flask in an argon atmosphere and dissolved in 50 mL of anhydrous ether. 5 mL (8 mmol) of a 1.6 M n-BuLi hexane solution was slowly added dropwise at −78 ° C., and the mixture was stirred for 1.5 hours. 5 mL of anhydrous ether containing 2 mL (15 mmol) of octafluorocyclopentene as the cyclic compound (A-1) was quickly added dropwise, and the mixture was stirred for 5 hours. It was returned to room temperature, quenched with water and extracted with ether. The organic layer was taken out, salted out, dried over magnesium sulfate, filtered, and the remaining solvent was distilled off. Then, it was separated and purified by silica gel column chromatography (eluent: n-hexane) and further purified by recycle preparative HPLC to obtain 1.9 g (4.5 mmol) of compound (6-1) in a yield of 70%. It was.
By 1 H-NMR and 13 C-NMR and mass spectrometry, it was confirmed that the obtained compound (6-1) was 1- (2-trimethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene. ..
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 0.339 and 0.342 (s, 9H), 7.3-7.5 (m, 4H), 7.5-7.5 (m) , 2H). 13 C-NMR (75 MHz, CDCl 3 , TMS) δ = -0.054, 125.0, 126.3, 128.3, 128.5, 129.2, 133.2, 143.6, 150.7 .. HR-MS (MALDI): m / z = 424.0546 (M + ). Calcd for C 18 H 15 F 7 SSi + = 424.0547.
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの合成)
 化合物(6-1)と化合物(8-1)とを反応させ、化合物(2-1)を得た。Meはメチル基である。
 なお、化合物(8-1)である3-ブロモ-2-メチル-5-フェニルチオフェンは、M. Irie et al., J. Am. Chem. Soc.,2000,122(20),4871-4876に記載された方法により合成した。
(Synthesis of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (6-1) and compound (8-1) were reacted to obtain compound (2-1). Me is a methyl group.
The compound (8-1), 3-bromo-2-methyl-5-phenylthiophene, was prepared from M. Irie et al. , J. Am. Chem. Soc. , 2000, 122 (20), 4871-4876.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 アルゴン雰囲気にした三ツ口フラスコに化合物(8-1)である3-ブロモ-2-メチル-5-フェニルチオフェン290mg(1.1mmol)を入れ、無水THF10mLに溶かした。-78℃で1.6Mのn-BuLiヘキサン溶液0.9mL(1.4mmol)をゆっくりと滴下し、1時間撹拌した。無水THF5mLに溶かした化合物(6-1)である1-(2-トリメチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテン480mg(1.1mmol)を入れ、3時間撹拌した。その後、室温に戻し、水でクエンチした後、THFを留去し、エーテルで抽出した。有機層を取り出し塩析を行い、硫酸マグネシウムを用いて乾燥させ、濾過した後、残った溶媒を留去した。その後、シリカゲルカラムクロマトグラフィー (溶離液:n-ヘキサン:酢酸エチル=95:5)で分離精製し、さらにリサイクル分取HPLC及び順相シリカゲルカラムを用いたHPLC (溶離液:n-ヘキサン:酢酸エチル=95:5)で精製し、化合物(2-1)を440mg(0.76mmol)、収率69%で得た。
 H-NMRにより、得られた化合物(2-1)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=0.06(s,9H),2.02(s,3H),7.19(s,1H),7.2-7.7(m,11H).
290 mg (1.1 mmol) of the compound (8-1) 3-bromo-2-methyl-5-phenylthiophene was placed in a three-necked flask in an argon atmosphere and dissolved in 10 mL of anhydrous THF. 0.9 mL (1.4 mmol) of a 1.6 M n-BuLi hexane solution was slowly added dropwise at −78 ° C., and the mixture was stirred for 1 hour. 480 mg (1.1 mmol) of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene, which is a compound (6-1) dissolved in 5 mL of anhydrous THF, was added, and the mixture was stirred for 3 hours. Then, the temperature was returned to room temperature, the mixture was quenched with water, THF was distilled off, and the mixture was extracted with ether. The organic layer was taken out, salted out, dried over magnesium sulfate, filtered, and the remaining solvent was distilled off. Then, it is separated and purified by silica gel column chromatography (eluent: n-hexane: ethyl acetate = 95: 5), and further reclaimed preparative HPLC and HPLC using a normal phase silica gel column (eluent: n-hexane: ethyl acetate). Purification was carried out in 95: 5) to obtain 440 mg (0.76 mmol) of compound (2-1) in a yield of 69%.
1 The compound (2-1) obtained by 1 H-NMR is 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene. I confirmed that there was.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 0.06 (s, 9H), 2.02 (s, 3H), 7.19 (s, 1H), 7.2-7.7 ( m, 11H).
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化反応)
 化合物(2-1)を酸化させ、化合物(1-11)及び化合物(1-12)を得た。
(Oxidation reaction of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (2-1) was oxidized to obtain compound (1-11) and compound (1-12).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物(2-1)である1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテン110mg(0.19mmol)と、ジクロロメタン5mLとを入れたナス型フラスコに、70質量%のm-クロロ過安息香酸110mg(0.45mmol)を加えて暗所で終夜撹拌した。炭酸水素ナトリウム水溶液で中和して、ジクロロメタンで抽出、塩析した後、溶媒を留去した。ショートカラム (溶離液:n-ヘキサン:酢酸エチル=8:2)を通した後、リサイクル分取HPLCと順相シリカゲルカラムを用いたHPLC (溶離液:n-ヘキサン:酢酸エチル=9:1)で分離精製し、化合物(1-11)を18mg(0.029mmol)、収率15%で得た。同様に、化合物(1-12)を42mg(0.069mmol)、収率36%で得た。
 H-NMRにより、得られた化合物(1-11)及び化合物(1-12)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化物であることを確認した。
 化合物(1-11)のH-NMR(300MHz,CDCl,TMS):δ=0.26(s,9H),2.13(s,3H),6.56(s,1H),7.3-7.7(m,9H),7.6-7.7(m,2H).
 化合物(1-12)のH-NMR(300MHz,CDCl,TMS):δ=0.14(s,9H),2.36(s,3H),6.81(s,1H),7.24(s,1H),7.3-7.6(m,8H),7.7-7.8(m,2H).
Compound (2-1) 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene 110 mg (0.19 mmol) and dichloromethane 70% by mass of m-chloroperbenzoic acid (110 mg, 0.45 mmol) was added to a eggplant-shaped flask containing 5 mL, and the mixture was stirred overnight in the dark. After neutralization with an aqueous sodium hydrogen carbonate solution, extraction with dichloromethane and salting out, the solvent was distilled off. After passing through a short column (eluent: n-hexane: ethyl acetate = 8: 2), recycle preparative HPLC and HPLC using a normal phase silica gel column (eluent: n-hexane: ethyl acetate = 9: 1) The compound (1-11) was obtained in 18 mg (0.029 mmol) with a yield of 15%. Similarly, compound (1-12) was obtained in 42 mg (0.069 mmol) in 36% yield.
1 The compound (1-11) and compound (1-12) obtained by 1 H-NMR are 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-). It was confirmed that it was an oxide of 3-thienyl) perfluorocyclopentene.
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-11): δ = 0.26 (s, 9H), 2.13 (s, 3H), 6.56 (s, 1H), 7 .3-7.7 (m, 9H), 7.6-7.7 (m, 2H).
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-12): δ = 0.14 (s, 9H), 2.36 (s, 3H), 6.81 (s, 1H), 7 .24 (s, 1H), 7.3-7.6 (m, 8H), 7.7-7.8 (m, 2H).
<製造例2>
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-エチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの合成)
 化合物(6-1)と化合物(8-2)とを反応させ、化合物(2-2)を得た。Etはエチル基である。
 なお、化合物(8-2)である3-ブロモ-2-エチル-5-フェニルチオフェンは、S. Kobatake et al., J. Am. Chem. Soc., 2000,122(49),12135-12141に記載された方法により合成した。
<Manufacturing example 2>
(Synthesis of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-ethyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (6-1) and compound (8-2) were reacted to obtain compound (2-2). Et is an ethyl group.
The compound (8-2), 3-bromo-2-ethyl-5-phenylthiophene, is described in S.I. Kobatake et al. , J. Am. Chem. Soc. , 2000, 122 (49), 121351-12141.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 アルゴン雰囲気にした三ツ口フラスコに化合物(8-2)である3-ブロモ-2-エチル-5-フェニルチオフェン400mg(1.5mmol)を入れ、無水THF10mLに溶かした。-78℃で1.6Mのn-BuLiヘキサン溶液1.0mL(1.6mmol)をゆっくりと滴下し、1.5時間撹拌した。無水THF5mLに溶かした化合物(6-1)である1-(2-トリメチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテン650mg(1.5mmol)を入れ、2.5時間撹拌した。その後、室温に戻し、水でクエンチした後、THFを留去し、エーテルで抽出した。有機層を取り出し塩析を行い、硫酸マグネシウムを用いて乾燥させ、濾過した後、残った溶媒を留去した。その後、シリカゲルカラムクロマトグラフィー(溶離液:n-ヘキサン)で分離精製し、リサイクル分取HPLCでさらに精製し、化合物(2-2)を550mg(0.93mmol)、収率62%で得た。
 H-NMRにより、得られた化合物(2-2)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-エチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=0.07(s,9H),0.95(t,J=7.5Hz,3H),2.37(q,J=7.5Hz,2H),7.2-7.7(m,12H).
400 mg (1.5 mmol) of the compound (8-2) 3-bromo-2-ethyl-5-phenylthiophene was placed in a three-necked flask in an argon atmosphere and dissolved in 10 mL of anhydrous THF. 1.0 mL (1.6 mmol) of a 1.6 M n-BuLi hexane solution was slowly added dropwise at −78 ° C., and the mixture was stirred for 1.5 hours. 650 mg (1.5 mmol) of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene, which is a compound (6-1) dissolved in 5 mL of anhydrous THF, was added, and the mixture was stirred for 2.5 hours. Then, the temperature was returned to room temperature, the mixture was quenched with water, THF was distilled off, and the mixture was extracted with ether. The organic layer was taken out, salted out, dried over magnesium sulfate, filtered, and the remaining solvent was distilled off. Then, it was separated and purified by silica gel column chromatography (eluent: n-hexane) and further purified by recycle preparative HPLC to obtain 550 mg (0.93 mmol) of compound (2-2) in a yield of 62%.
1 The compound (2-2) obtained by 1 H-NMR is 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-ethyl-5-phenyl-3-thienyl) perfluorocyclopentene. I confirmed that there was.
1 1 H-NMR (300MHz, CDCl 3 , TMS): δ = 0.07 (s, 9H), 0.95 (t, J = 7.5Hz, 3H), 2.37 (q, J = 7.5Hz) , 2H), 7.2-7.7 (m, 12H).
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-エチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化反応)
 化合物(2-2)を酸化させ、化合物(1-21)及び化合物(1-22)を得た。
(Oxidation reaction of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-ethyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (2-2) was oxidized to obtain compound (1-21) and compound (1-22).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物(2-2)である1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-エチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテン140mg(0.24mmol)と、ジクロロメタン5mLとを入れたナス型フラスコに、70質量%のm-クロロ過安息香酸140mg(0.57mmol)を加えて暗所で終夜撹拌した。炭酸水素ナトリウム水溶液で中和して、ジクロロメタンで抽出、塩析した後、溶媒を留去した。ショートカラム (溶離液:n-ヘキサン:酢酸エチル=8:2)を通した後、リサイクル分取HPLCと順相シリカゲルカラムを用いたHPLC (溶離液:n-ヘキサン:酢酸エチル=9:1)で分離精製し、化合物(1-21)を20mg(0.032mmol)、収率13%で得た。同様に、化合物(1-22)を60mg(0.096mmol)、収率40%で得た。
 H-NMRにより、得られた化合物(1-21)及び化合物(1-22)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-エチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化物であることを確認した。
 化合物(1-21)のH-NMR(300MHz,CDCl,TMS):δ=0.28(s,9H),1.04(t,J=7.5Hz,3H),2.54(q,J=7.5Hz,2H),6.58(s,1H),7.3-7.7(m,11H).
 化合物(1-22)のH-NMR(300MHz,CDCl,TMS):δ=0.14(s,9H),1.27(t,J=7.5Hz,3H),2.64(q,J=7.5Hz,2H),6.80(s,1H),7.22(s,1H),7.3-7.6(m,8H),7.7-7.8(m,2H).
Compound (2-2) 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-ethyl-5-phenyl-3-thienyl) perfluorocyclopentene 140 mg (0.24 mmol) and dichloromethane To a eggplant-shaped flask containing 5 mL, 140 mg (0.57 mmol) of 70% by mass of m-chloroperbenzoic acid was added, and the mixture was stirred overnight in the dark. After neutralization with an aqueous sodium hydrogen carbonate solution, extraction with dichloromethane and salting out, the solvent was distilled off. After passing through a short column (eluent: n-hexane: ethyl acetate = 8: 2), recycle preparative HPLC and HPLC using a normal phase silica gel column (eluent: n-hexane: ethyl acetate = 9: 1) The compound (1-21) was obtained in 20 mg (0.032 mmol) with a yield of 13%. Similarly, compound (1-22) was obtained in 60 mg (0.096 mmol), yield 40%.
1 The compound (1-21) and compound (1-22) obtained by 1 H-NMR are 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-ethyl-5-phenyl-). It was confirmed that it was an oxide of 3-thienyl) perfluorocyclopentene.
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-21): δ = 0.28 (s, 9H), 1.04 (t, J = 7.5 Hz, 3H), 2.54 ( q, J = 7.5Hz, 2H), 6.58 (s, 1H), 7.3-7.7 (m, 11H).
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-22): δ = 0.14 (s, 9H), 1.27 (t, J = 7.5 Hz, 3H), 2.64 ( q, J = 7.5Hz, 2H), 6.80 (s, 1H), 7.22 (s, 1H), 7.3-7.6 (m, 8H), 7.7-7.8 ( m, 2H).
<製造例3>
(2-(2-ヒドロキシ-2-プロピル)チオフェンの合成)
 化合物(9-3)とケトン化合物(B-3)とを反応させ、化合物(10-3)を得た。
<Manufacturing example 3>
(Synthesis of 2- (2-hydroxy-2-propyl) thiophene)
Compound (9-3) was reacted with a ketone compound (B-3) to obtain compound (10-3).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 アルゴン雰囲気下で四つ口フラスコに化合物(9-3)としてチオフェン9.3g(110mmol)と、エーテル100mLを加えた。0℃で1.6Mのn-BuLiヘキサン溶液83mL(130mmol)をゆっくりと滴下した。その後、1時間還流し、0℃でケトン化合物(B-3)として無水アセトン9.8mL(130mmol)を滴下し、室温で1時間撹拌した。その後、水を入れ、希塩酸で酸性にして、エーテルで抽出を行い、硫酸マグネシウムで乾燥させた。その後、シリカゲルカラムクロマトグラフィー(溶離液:n-ヘキサン:酢酸エチル=7:3)で分離精製、化合物(10-3)を11g(77mmol)、収率70%で得た。
 H-NMRにより、得られた化合物(10-3)が2-(2-ヒドロキシ-2-プロピル)チオフェンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=1.67(s,6H),2.06(s,1H),6.92-6.98(m,2H),7.19(dd,J=4.7,1.5Hz,1H).
Under an argon atmosphere, 9.3 g (110 mmol) of thiophene as compound (9-3) and 100 mL of ether were added to a four-necked flask. At 0 ° C., 83 mL (130 mmol) of a 1.6 M n-BuLi hexane solution was slowly added dropwise. Then, the mixture was refluxed for 1 hour, 9.8 mL (130 mmol) of anhydrous acetone was added dropwise as a ketone compound (B-3) at 0 ° C., and the mixture was stirred at room temperature for 1 hour. Then, water was added, acidified with dilute hydrochloric acid, extracted with ether, and dried over magnesium sulfate. Then, it was separated and purified by silica gel column chromatography (eluent: n-hexane: ethyl acetate = 7: 3) to obtain 11 g (77 mmol) of compound (10-3) in a yield of 70%.
1 It was confirmed by 1 H-NMR that the obtained compound (10-3) was 2- (2-hydroxy-2-propyl) thiophene.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 1.67 (s, 6H), 2.06 (s, 1H), 6.92-6.98 (m, 2H), 7.19 ( dd, J = 4.7, 1.5Hz, 1H).
(2-イソプロピルチオフェンの合成)
 化合物(10-3)を還元して化合物(7-3)を得た。
(Synthesis of 2-isopropylthiophene)
Compound (10-3) was reduced to give compound (7-3).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 アルゴン雰囲気下でフラスコに塩化アルミニウム36g(270mmol)を入れ、氷冷しながら、無水エーテル80mLをゆっくり滴下した。次いで、水素化リチウムアルミニウム5g(130mmol)を加え、化合物(10-3)である2-(2-ヒドロキシ-2-プロピル)チオフェン11g(77mmol)の無水エーテル100mL溶液をゆっくり滴下した。その後、1.5時間還流し、20質量%の希硫酸で処理した。次いで、エーテルで抽出し、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し、溶媒を留去した。その後、減圧蒸留 (55 C/3.9kPa)で精製し、化合物(7-3)を2.2g(17mmol)、収率23%で得た。
 H-NMRにより、得られた化合物(7-3)が2-イソプロピルチオフェンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=1.34(d,J=6.9Hz,6H),3.19(sep,J=6.9Hz,1H),6.80(d,J=3.6Hz,1H),6.92(dd,J=5.1,3.6Hz,1H),7.11(d,J=5.1Hz,1H).
36 g (270 mmol) of aluminum chloride was placed in a flask under an argon atmosphere, and 80 mL of anhydrous ether was slowly added dropwise while cooling with ice. Then, 5 g (130 mmol) of lithium aluminum hydride was added, and a 100 mL solution of 11 g (77 mmol) of 2- (2-hydroxy-2-propyl) thiophene as compound (10-3) was slowly added dropwise. Then, the mixture was refluxed for 1.5 hours and treated with 20% by mass of dilute sulfuric acid. Then, it was extracted with ether, washed with saturated brine, dried over magnesium sulfate, and the solvent was evaporated. Then, it was purified by vacuum distillation (55 C / 3.9 kPa) to obtain 2.2 g (17 mmol) of compound (7-3) in a yield of 23%.
1 It was confirmed by 1 H-NMR that the obtained compound (7-3) was 2-isopropylthiophene.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 1.34 (d, J = 6.9 Hz, 6H), 3.19 (sep, J = 6.9 Hz, 1H), 6.80 (d) , J = 3.6Hz, 1H), 6.92 (dd, J = 5.1, 3.6Hz, 1H), 7.11 (d, J = 5.1Hz, 1H).
(3-ブロモ-2-イソプロピル-5-フェニルチオフェンの合成)
 化合物(7-3)と臭素とを反応させた後、得られた中間体と芳香族ハロゲン化合物と反応させ、化合物(8-3)を得た。
(Synthesis of 3-bromo-2-isopropyl-5-phenylthiophene)
After reacting compound (7-3) with bromine, the obtained intermediate was reacted with an aromatic halogen compound to obtain compound (8-3).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 フラスコに酢酸15mLと、水1mLと、化合物(7-3)である2-イソプロピルチオフェン2.2g(17mmol)を入れ、氷冷しながら 臭素6g(38mmol)をゆっくり滴下した。その後、水浴で終夜攪拌した。その後、 水酸化ナトリウム水溶液で中和し、エーテルで抽出した。チオ硫酸ナトリウム水溶液、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し、溶媒を留去した。その後、カラムクロマトグラフィー (溶離液:n-ヘキサン)で分離精製、中間体を3g(11mmol)、収率61%で得た。
 H-NMRにより、得られた中間体が3,5-ジブロモ-2-イソプロピルチオフェンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=1.27(d,J=6.8Hz,6H),3.30(sep,J=6.8Hz,1H),6.85(s,1H).
15 mL of acetic acid, 1 mL of water, and 2.2 g (17 mmol) of 2-isopropylthiophene as a compound (7-3) were placed in a flask, and 6 g (38 mmol) of bromine was slowly added dropwise while cooling with ice. Then, it was stirred in a water bath overnight. Then, it was neutralized with an aqueous sodium hydroxide solution and extracted with ether. After washing with an aqueous sodium thiosulfate solution and a saturated brine, the mixture was dried over magnesium sulfate and the solvent was distilled off. Then, it was separated and purified by column chromatography (eluent: n-hexane) to obtain 3 g (11 mmol) of the intermediate in a yield of 61%.
1 It was confirmed by 1 H-NMR that the obtained intermediate was 3,5-dibromo-2-isopropylthiophene.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 1.27 (d, J = 6.8 Hz, 6H), 3.30 (sep, J = 6.8 Hz, 1H), 6.85 (s) , 1H).
 次いで、アルゴン雰囲気にした四つ口フラスコに中間体である3,5-ジブロモ-2-イソプロピルチオフェン1.1g(3.9mmol)を無水THF20mLに入れ、-78℃で1.6Mのn-BuLiヘキサン溶液2.6mL(4.2mmol)をゆっくりと滴下した。1時間攪拌した後、ホウ酸トリ-n-ブチル2.2mL(8mmol)をさらに滴下し、攪拌した。1時間攪拌した後、水でクエンチして反応を止め、20質量%の炭酸ナトリウム水溶液7mLと、Pd(PPh84mg(0.074mmol)と、ヨードベンゼン0.75g(3.7mmol)とを加え、9時間加熱還流した。その後、希塩酸で中和し、エーテルで抽出し、硫酸マグネシウムで乾燥し、溶媒を留去した。その後、カラムクロマトマトフィー (溶離液:n-ヘキサン)で分離精製し、化合物(8-3)を730mg(2.6mmol)、収率67%で得た。
 H-NMRにより、得られた化合物(8-3)が3-ブロモ-2-イソプロピル-5-フェニルチオフェンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=1.33(d,J=6.8Hz,6H),3.34(sep,J=6.8Hz,3H),7.10(s,1H),7.20-7.55(m,5H).
Next, 1.1 g (3.9 mmol) of the intermediate 3,5-dibromo-2-isopropylthiophene was placed in 20 mL of anhydrous THF in a four-necked flask in an argon atmosphere, and 1.6 M n-BuLi at −78 ° C. 2.6 mL (4.2 mmol) of the hexane solution was slowly added dropwise. After stirring for 1 hour, 2.2 mL (8 mmol) of tri-n-butyl borate was further added dropwise, and the mixture was stirred. After stirring for 1 hour, quenched with quenched with water, and 20 wt% aqueous solution of sodium carbonate 7 mL, and Pd (PPh 3) 4 84mg ( 0.074mmol), and iodobenzene 0.75 g (3.7 mmol) Was added, and the mixture was heated under reflux for 9 hours. Then, it was neutralized with dilute hydrochloric acid, extracted with ether, dried over magnesium sulfate, and the solvent was distilled off. Then, it was separated and purified by column chromatophy (eluent: n-hexane) to obtain 730 mg (2.6 mmol) of compound (8-3) in a yield of 67%.
1 It was confirmed by 1 H-NMR that the obtained compound (8-3) was 3-bromo-2-isopropyl-5-phenylthiophene.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 1.33 (d, J = 6.8 Hz, 6H), 3.34 (sep, J = 6.8 Hz, 3H), 7.10 (s) , 1H), 7.20-7.55 (m, 5H).
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの合成)
 化合物(6-1)と化合物(8-3)とを反応させ、化合物(2-3)を得た。
 なお、iPrはイソプロピル基である。
(Synthesis of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-isopropyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (6-1) and compound (8-3) were reacted to obtain compound (2-3).
IPr is an isopropyl group.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気にした三ツ口フラスコに化合物(8-3)である3-ブロモ-2-イソプロピル-5-フェニルチオフェン450mg(1.6mmol)を入れ、無水THF10mLに溶かした。-78℃で1.6Mのn-BuLiヘキサン溶液1.2mL(1.9mmol)をゆっくりと滴下し、1時間撹拌した。無水THF5mLに溶かした化合物(6-1)である1-(2-トリメチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテン680mg(1.6mmol)を入れ、5時間撹拌した。その後、室温に戻し、水でクエンチした後、THFを留去し、エーテルで抽出した。有機層を取り出し塩析を行い、硫酸マグネシウムを用いて乾燥させ、濾過した後、残った溶媒を留去した。その後、シリカゲルカラムクロマトグラフィー(溶離液:n-ヘキサン:酢酸エチル=95:5)で分離精製し、リサイクル分取HPLCでさらに精製し、化合物(2-3)を750mg(1.2mmol)、収率75%で得た。
 H-NMR及び13C-NMRと、質量分析法により、得られた化合物(2-3)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=0.09(s,9H),0.92(d,J=6.7Hz,6H),2.84(sep,J=6.7Hz,1H),7.21(s,1H),7.2-7.7(m,1H).13C-NMR(75MHz,CDCl,TMS)δ=0.03,25.4,30.0,122.6,122.9,125.7,125.9,126.3,128.0,128.4,129.1,129.2,133.5,133.8,134.3,142.0,150.3,156.4.MS(MALDI):m/z=606.1300(M).Calcd for C3128Si=606.1300.
450 mg (1.6 mmol) of the compound (8-3) 3-bromo-2-isopropyl-5-phenylthiophene was placed in a three-necked flask in an argon atmosphere and dissolved in 10 mL of anhydrous THF. 1.2 mL (1.9 mmol) of a 1.6 M n-BuLi hexane solution was slowly added dropwise at −78 ° C., and the mixture was stirred for 1 hour. 680 mg (1.6 mmol) of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene, which is a compound (6-1) dissolved in 5 mL of anhydrous THF, was added, and the mixture was stirred for 5 hours. Then, the temperature was returned to room temperature, the mixture was quenched with water, THF was distilled off, and the mixture was extracted with ether. The organic layer was taken out, salted out, dried over magnesium sulfate, filtered, and the remaining solvent was distilled off. Then, it was separated and purified by silica gel column chromatography (eluent: n-hexane: ethyl acetate = 95: 5), further purified by recycle preparative HPLC, and the compound (2-3) was collected in 750 mg (1.2 mmol). Obtained at a rate of 75%.
The compound (2-3) obtained by 1 H-NMR and 13 C-NMR and mass spectrometry is 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-isopropyl-5). -Phenyl-3-thienyl) It was confirmed that it was perfluorocyclopentene.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 0.09 (s, 9H), 0.92 (d, J = 6.7 Hz, 6H), 2.84 (sep, J = 6.7 Hz) , 1H), 7.21 (s, 1H), 7.2-7.7 (m, 1H). 13 C-NMR (75 MHz, CDCl 3 , TMS) δ = 0.03, 25.4, 30.0, 122.6, 122.9, 125.7, 125.9, 126.3, 128.0, 128.4, 129.1, 129.2, 133.5, 133.8, 134.3, 142.0, 150.3, 156.4. MS (MALDI): m / z = 606.1300 (M + ). Calcd for C 31 H 28 F 6 S 2 Si + = 606.1300.
(1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化反応)
 化合物(2-3)を酸化させ、化合物(1-31)及び化合物(1-32)を得た。
(Oxidation reaction of 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-isopropyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (2-3) was oxidized to obtain compound (1-31) and compound (1-32).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物(2-3)である1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテン120mg(0.20mmol)と、ジクロロメタン5mLとを入れたナス型フラスコに、70質量%のm-クロロ過安息香酸120mg(0.49mmol)を加えて暗所で終夜撹拌した。炭酸水素ナトリウム水溶液で中和して、ジクロロメタンで抽出、塩析した後、溶媒を留去した。ショートカラム (溶離液:n-ヘキサン:酢酸エチル=9:1)を通した後、リサイクル分取HPLCと順相シリカゲルカラムを用いたHPLC (溶離液:n-ヘキサン:酢酸エチル=9:1)で分離精製し、化合物(1-31)を23mg(0.036mmol)、収率18%で得た。同様に、化合物(1-32)を46mg(0.072mmol)、収率36%で得た。
 H-NMRにより、得られた化合物(1-31)及び化合物(1-32)が1-(2-トリメチルシリル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化物であることを確認した。
 化合物(1-31)のH-NMR(300MHz,CDCl,TMS):δ=0.30(s,9H),1.15(d,J=7.0Hz,6H),2.88(sep,J=7.0Hz,1H),6.79(s,1H),7.24(s,1H),7.3-7.7(m,10H).
 化合物(1-32)のH-NMR(300MHz,CDCl,TMS):δ=0.16(s,9H),1.23(d,J=6.7Hz,6H),2.95(sep,J=6.7Hz,1H),6.78(s,1H),7.16(s,1H),7.3-7.6(m,8H),7.7-7.8(m,2H).
Compound (2-3) 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-isopropyl-5-phenyl-3-thienyl) perfluorocyclopentene 120 mg (0.20 mmol) and dichloromethane 70% by mass of m-chloroperbenzoic acid (120 mg, 0.49 mmol) was added to a eggplant-shaped flask containing 5 mL, and the mixture was stirred overnight in the dark. After neutralization with an aqueous sodium hydrogen carbonate solution, extraction with dichloromethane and salting out, the solvent was distilled off. After passing through a short column (eluent: n-hexane: ethyl acetate = 9: 1), recycle preparative HPLC and HPLC using a normal phase silica gel column (eluent: n-hexane: ethyl acetate = 9: 1) The compound (1-31) was obtained in 23 mg (0.036 mmol) with a yield of 18%. Similarly, compound (1-32) was obtained in 46 mg (0.072 mmol) in 36% yield.
1 The compound (1-31) and compound (1-32) obtained by 1 H-NMR are 1- (2-trimethylsilyl-5-phenyl-3-thienyl) -2- (2-isopropyl-5-phenyl-). It was confirmed that it was an oxide of 3-thienyl) perfluorocyclopentene.
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-31): δ = 0.30 (s, 9H), 1.15 (d, J = 7.0 Hz, 6H), 2.88 ( sep, J = 7.0Hz, 1H), 6.79 (s, 1H), 7.24 (s, 1H), 7.3-7.7 (m, 10H).
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-32): δ = 0.16 (s, 9H), 1.23 (d, J = 6.7 Hz, 6H), 2.95 ( sep, J = 6.7Hz, 1H), 6.78 (s, 1H), 7.16 (s, 1H), 7.3-7.6 (m, 8H), 7.7-7.8 ( m, 2H).
<製造例4>
(1-(2-トリエチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの合成)
 化合物(6-4)と化合物(8-1)とを反応させ、化合物(2-4)を得た。TESはトリエチルシリル基である。
 なお、化合物(6-4)である1-(2-トリエチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテンは、D. Kitagawa et al., J. Mater. Chem. C, 2017,5(25),6210-6215に記載された方法により合成した。
<Manufacturing example 4>
(Synthesis of 1- (2-triethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (6-4) and compound (8-1) were reacted to obtain compound (2-4). TES is a triethylsilyl group.
The compound (6-4) 1- (2-triethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene is described in D.I. Kitagawa et al. , J. Mater. Chem. It was synthesized by the method described in C, 2017, 5 (25), 6210-6215.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 アルゴン雰囲気にした三ツ口フラスコに化合物(8-1)である3-ブロモ-2-メチル-5-フェニルチオフェン410mg(1.6mmol)を入れ、無水THF10mLに溶かした。-78℃で1.6Mのn-BuLiヘキサン溶液1.1mL(1.8mmol)をゆっくりと滴下し、1時間撹拌した。無水THF5mLに溶かした化合物(6-4)である1-(2-トリエチルシリル-5-フェニル-3-チエニル)ヘプタフルオロシクロペンテン760mg(1.6mmol)を入れ、1時間撹拌した。その後、室温に戻し、水でクエンチした後、THFを留去し、エーテルで抽出した。有機層を取り出し塩析を行い、硫酸マグネシウムを用いて乾燥させ、濾過した後、残った溶媒を留去した。その後、シリカゲルカラムクロマトグラフィー (溶離液:n-ヘキサン)で分離精製し、化合物(2-4)を490mg(0.79mmol)、収率49%で得た。
 H-NMRにより、得られた化合物(2-4)が1-(2-トリエチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンであることを確認した。
 H-NMR(300MHz,CDCl,TMS):δ=0.55(br,6H),0.81(br,9H),2.04(s,3H),7.18(s,1H),7.2-7.5(m,9H),7.6-7.7(m,2H).
410 mg (1.6 mmol) of the compound (8-1) 3-bromo-2-methyl-5-phenylthiophene was placed in a three-necked flask in an argon atmosphere and dissolved in 10 mL of anhydrous THF. 1.1 mL (1.8 mmol) of a 1.6 M n-BuLi hexane solution was slowly added dropwise at −78 ° C., and the mixture was stirred for 1 hour. 760 mg (1.6 mmol) of 1- (2-triethylsilyl-5-phenyl-3-thienyl) heptafluorocyclopentene, which is a compound (6-4) dissolved in 5 mL of anhydrous THF, was added, and the mixture was stirred for 1 hour. Then, the temperature was returned to room temperature, the mixture was quenched with water, THF was distilled off, and the mixture was extracted with ether. The organic layer was taken out, salted out, dried over magnesium sulfate, filtered, and the remaining solvent was distilled off. Then, it was separated and purified by silica gel column chromatography (eluent: n-hexane) to obtain 490 mg (0.79 mmol) of compound (2-4) in a yield of 49%.
1 The compound (2-4) obtained by 1 H-NMR is 1- (2-triethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene. I confirmed that.
1 1 H-NMR (300 MHz, CDCl 3 , TMS): δ = 0.55 (br, 6H), 0.81 (br, 9H), 2.04 (s, 3H), 7.18 (s, 1H) , 7.2-7.5 (m, 9H), 7.6-7.7 (m, 2H).
(1-(2-トリエチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化反応)
 化合物(2-4)を酸化させ、化合物(1-41)及び化合物(1-42)を得た。
(Oxidation reaction of 1- (2-triethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene)
Compound (2-4) was oxidized to obtain compound (1-41) and compound (1-42).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 化合物(2-4)である1-(2-トリエチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテン120mg(0.19mmol)と、ジクロロメタン5mLとを入れたナス型フラスコに、70質量%のm-クロロ過安息香酸120mg(0.49mmol)を加えて暗所で終夜撹拌した。炭酸水素ナトリウム水溶液で中和して、ジクロロメタンで抽出、塩析した後、溶媒を留去した。ショートカラム (溶離液:n-ヘキサン:酢酸エチル=9:1)を通した後、リサイクル分取HPLCと順相シリカゲルカラムを用いたHPLC (溶離液:n-ヘキサン:酢酸エチル=9:1)で分離精製し、化合物(1-41)を37mg(0.057mmol)、収率30%で得た。同様に、化合物(1-42)を24mg(0.037mmol)、収率19%で得た。
 H-NMRにより、得られた化合物(1-41)及び化合物(1-42)が1-(2-トリエチルシリル-5-フェニル-3-チエニル)-2-(2-メチル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの酸化物であることを確認した。
 化合物(1-41)のH-NMR(300MHz,CDCl,TMS):δ=0.73(q,J=7.7Hz,6H),0.90(t,J=7.7Hz,9H),2.16(s,3H),6.53(s,1H),7.3-7.5(m,9H),7.6-7.7(m,2H).
 化合物(1-42)のH-NMR(300MHz,CDCl,TMS):δ=0.67(q,J=7.7Hz,6H),0.84(t,J=7.7Hz,9H),2.39(s,3H),6.83(s,1H),7.21(s,1H),7.3-7.5(m,8H),7.7-7.8(m,2H).
Compound (2-4) 1- (2-triethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene 120 mg (0.19 mmol) and To a eggplant-shaped flask containing 5 mL of dichloromethane, 120 mg (0.49 mmol) of 70% by mass of m-chloroperbenzoic acid was added, and the mixture was stirred overnight in the dark. After neutralization with an aqueous sodium hydrogen carbonate solution, extraction with dichloromethane and salting out, the solvent was distilled off. After passing through a short column (eluent: n-hexane: ethyl acetate = 9: 1), recycle preparative HPLC and HPLC using a normal phase silica gel column (eluent: n-hexane: ethyl acetate = 9: 1) The compound (1-41) was obtained in 37 mg (0.057 mmol) with a yield of 30%. Similarly, compound (1-42) was obtained in 24 mg (0.037 mmol) in 19% yield.
1 The compound (1-41) and compound (1-42) obtained by 1 H-NMR are 1- (2-triethylsilyl-5-phenyl-3-thienyl) -2- (2-methyl-5-phenyl). It was confirmed that it was an oxide of -3-thienyl) perfluorocyclopentene.
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-41): δ = 0.73 (q, J = 7.7 Hz, 6H), 0.90 (t, J = 7.7 Hz, 9H). ), 2.16 (s, 3H), 6.53 (s, 1H), 7.3-7.5 (m, 9H), 7.6-7.7 (m, 2H).
1 H-NMR (300 MHz, CDCl 3 , TMS) of compound (1-42): δ = 0.67 (q, J = 7.7 Hz, 6H), 0.84 (t, J = 7.7 Hz, 9H). ), 2.39 (s, 3H), 6.83 (s, 1H), 7.21 (s, 1H), 7.3-7.5 (m, 8H), 7.7-7.8 ( m, 2H).
<製造例5>
(1-(1,1-ジオキシド-2-イソプロピル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの合成)
 特開2014-15552号公報に記載された方法により、化合物(1-5)である1-(1,1-ジオキシド-2-イソプロピル-5-フェニル-3-チエニル)-2-(2-イソプロピル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンを得た。
<Manufacturing example 5>
(Synthesis of 1- (1,1-dioxide-2-isopropyl-5-phenyl-3-thienyl) -2- (2-isopropyl-5-phenyl-3-thienyl) perfluorocyclopentene)
1- (1,1-dioxide-2-isopropyl-5-phenyl-3-thienyl) -2- (2-isopropyl), which is compound (1-5), by the method described in JP-A-2014-15552. -5-Phenyl-3-thienyl) Perfluorocyclopentene was obtained.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<製造例6>
(1-(1,1-ジオキシド-2-シクロヘキシル-5-フェニル-3-チエニル)-2-(2-シクロヘキシル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンの合成)
 特開2014-15552号公報に記載された方法により、化合物(1-6)である1-(1,1-ジオキシド-2-シクロヘキシル-5-フェニル-3-チエニル)-2-(2-シクロヘキシル-5-フェニル-3-チエニル)ペルフルオロシクロペンテンを得た。
<Manufacturing example 6>
(Synthesis of 1- (1,1-dioxide-2-cyclohexyl-5-phenyl-3-thienyl) -2- (2-cyclohexyl-5-phenyl-3-thienyl) perfluorocyclopentene)
1- (1,1-dioxide-2-cyclohexyl-5-phenyl-3-thienyl) -2- (2-cyclohexyl), which is compound (1-6), by the method described in JP-A-2014-15552. -5-Phenyl-3-thienyl) perfluorocyclopentene was obtained.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<実施例1>
 -60℃下において、製造例1で得られた化合物(1-11)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を照射し、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。波長581nmにおける吸光度と、紫外線の照射時間との関係を図9Aに示す。また、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを図9Bに示す。
 化合物(1-11)に紫外線を照射すると、着色することが確認できた。これは、以下に示すように、化合物(1-11)の2つのチオフェン環同士が紫外線の照射により環を形成(閉環)したことを意味する。
<Example 1>
At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-11) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 581 nm and the irradiation time of ultraviolet rays is shown in FIG. 9A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 9B.
It was confirmed that when the compound (1-11) was irradiated with ultraviolet rays, it was colored. This means that, as shown below, the two thiophene rings of compound (1-11) form a ring (ring closure) by irradiation with ultraviolet rays.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 図9Bに示すように、開環体、すなわち化合物(1-11)は波長285nmに吸収スペクトルを有し、閉環体、すなわち光定常状態の化合物は波長581nmに吸収スペクトルを有していた。 As shown in FIG. 9B, the ring-opened body, that is, the compound (1-11) had an absorption spectrum at a wavelength of 285 nm, and the ring-closed body, that is, the compound in the light steady state had an absorption spectrum at a wavelength of 581 nm.
<実施例2>
 -60℃下において、製造例1で得られた化合物(1-12)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を照射し、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。波長541nmにおける吸光度と、紫外線の照射時間との関係を図10Aに示す。また、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを図10Bに示す。
 化合物(1-12)に紫外線を照射すると、着色することが確認できた。これは、以下に示すように、化合物(1-12)の2つのチオフェン環同士が紫外線の照射により環を形成(閉環)したことを意味する。
<Example 2>
At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-12) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 541 nm and the irradiation time of ultraviolet rays is shown in FIG. 10A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 10B.
It was confirmed that when the compound (1-12) was irradiated with ultraviolet rays, it was colored. This means that the two thiophene rings of compound (1-12) formed a ring (ring closure) by irradiation with ultraviolet rays, as shown below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 図10Bに示すように、開環体、すなわち化合物(1-12)は波長284nmに吸収スペクトルを有し、閉環体、すなわち光定常状態の化合物は波長541nmに吸収スペクトルを有していた。 As shown in FIG. 10B, the ring-opened body, that is, the compound (1-12) had an absorption spectrum at a wavelength of 284 nm, and the ring-closed body, that is, the compound in the light steady state had an absorption spectrum at a wavelength of 541 nm.
<実施例3>
 -80℃下において、製造例3で得られた化合物(1-31)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を照射し、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。波長591nmにおける吸光度と、紫外線の照射時間との関係を図11Aに示す。また、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを図11Bに示す。
 化合物(1-31)に紫外線を照射すると、着色することが確認できた。これは、以下に示すように、化合物(1-31)の2つのチオフェン環同士が紫外線の照射により環を形成(閉環)したことを意味する。
<Example 3>
At -80 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-31) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 591 nm and the irradiation time of ultraviolet rays is shown in FIG. 11A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 11B.
It was confirmed that when the compound (1-31) was irradiated with ultraviolet rays, it was colored. This means that the two thiophene rings of compound (1-31) formed a ring (ring closure) by irradiation with ultraviolet rays, as shown below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 図11Bに示すように、開環体、すなわち化合物(1-31)は波長284nmに吸収スペクトルを有し、閉環体、すなわち光定常状態の化合物は波長591nmに吸収スペクトルを有していた。 As shown in FIG. 11B, the ring-opened body, that is, the compound (1-31) had an absorption spectrum at a wavelength of 284 nm, and the ring-closed body, that is, the compound in the light steady state had an absorption spectrum at a wavelength of 591 nm.
<実施例4>
 -60℃下において、製造例3で得られた化合物(1-32)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を照射し、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。波長548nmにおける吸光度と、紫外線の照射時間との関係を図12Aに示す。また、紫外線を照射する前と、光定常状態(PSS)における吸収スペクトルを図12Bに示す。
 化合物(1-32)に紫外線を照射すると、着色することが確認できた。これは、以下に示すように、化合物(1-32)の2つのチオフェン環同士が紫外線の照射により環を形成(閉環)したことを意味する。
<Example 4>
At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-32) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ), And the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The relationship between the absorbance at a wavelength of 548 nm and the irradiation time of ultraviolet rays is shown in FIG. 12A. Further, the absorption spectra before irradiation with ultraviolet rays and in the light steady state (PSS) are shown in FIG. 12B.
It was confirmed that when the compound (1-32) was irradiated with ultraviolet rays, it was colored. This means that, as shown below, the two thiophene rings of compound (1-32) form a ring (ring closure) by irradiation with ultraviolet rays.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 図12Bに示すように、開環体、すなわち化合物(1-32)は波長283nmに吸収スペクトルを有し、閉環体、すなわち光定常状態の化合物は波長548nmに吸収スペクトルを有していた。 As shown in FIG. 12B, the ring-opened body, that is, the compound (1-32) had an absorption spectrum at a wavelength of 283 nm, and the ring-closed body, that is, the compound in the light steady state had an absorption spectrum at a wavelength of 548 nm.
<実施例5>
 30℃、35℃、40℃、45℃の各温度下において、製造例1で得られた化合物(1-12)のトルエン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を約30秒照射して着色させた。次いで、各温度のまま放置して、経時的にセル中の色の変化を確認し、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。波長541nmにおける吸光度において、退色度合い(A/A)と放置時間との関係を図13Aに示す。また、退色度合い(A/A)の自然対数を縦軸、放置時間を横軸にプロットしたグラフを図13Bに示す。
 なお、「A」は紫外線照射後0秒における波長541nmの吸光度であり、「A」は各放置時間における波長541nmの吸光度である。また、各温度下での測定は2回行った。
<Example 5>
At each temperature of 30 ° C., 35 ° C., 40 ° C., and 45 ° C., a toluene solution (concentration: about 10-5 mol / L) of the compound (1-12) obtained in Production Example 1 was placed in a quartz cell. After sealing, it was colored by irradiating with ultraviolet rays (wavelength 313 nm) for about 30 seconds. Then, the cells were allowed to stand at each temperature, the change in color in the cell was confirmed over time, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). FIG. 13A shows the relationship between the degree of fading (A / A 0 ) and the leaving time in terms of absorbance at a wavelength of 541 nm. Further, FIG. 13B shows a graph in which the natural logarithm of the degree of fading (A / A 0 ) is plotted on the vertical axis and the leaving time is plotted on the horizontal axis.
In addition, "A 0 " is the absorbance at a wavelength of 541 nm at 0 seconds after irradiation with ultraviolet rays, and "A" is the absorbance at a wavelength of 541 nm at each standing time. Moreover, the measurement under each temperature was performed twice.
 次いで、図13Bから、各温度での熱分解速度定数(k)を求めた。熱分解速度定数(k)の自然対数を縦軸、各温度の逆数を横軸にプロットしたグラフを図13Cに示す。
 次いで、以下のようにして10時間半減期を求めた。
 まず、熱分解反応を一次反応式とすると、下記式(i)が成り立つ。
 ln(C/C)=kt  ・・・(i)
 式(i)中、「C」は化合物の初期濃度、「C」は化合物のt時間後の濃度、「k」は熱分解速度定数、tは反応時間である。
Then, from FIG. 13B, the thermal decomposition rate constant (k) at each temperature was obtained. FIG. 13C shows a graph in which the natural logarithm of the pyrolysis rate constant (k) is plotted on the vertical axis and the reciprocal of each temperature is plotted on the horizontal axis.
Then, the 10-hour half-life was determined as follows.
First, assuming that the thermal decomposition reaction is a primary reaction equation, the following equation (i) holds.
ln (C 0 / C t ) = kt ・ ・ ・ (i)
In formula (i), "C 0 " is the initial concentration of the compound, "C t " is the concentration of the compound after t hours, "k" is the thermal decomposition rate constant, and t is the reaction time.
 半減期は、化合物の濃度が初期濃度の半分に減少する時間、すなわちC=C/2となる時間である。よって、半減期と熱分解速度定数(k)とは下記式(ii)の関係となる。
 t1/2=ln2/k  ・・・(ii)
The half-life is the time at which the concentration of the compound is reduced to half of the initial concentration, that is, the time at which C t = C 0/2 . Therefore, the half-life and the thermal decomposition rate constant (k) have the relationship of the following equation (ii).
t 1/2 = ln2 / k ・ ・ ・ (ii)
 一方、速度定数の温度依存性はアレニウスの式で表されることから、下記式(iii)が成り立つ。
 k=A・exp(-E/RT)  ・・・(iii)
 式(iii)中、「A」は頻度因子、「E」は活性化エネルギー、「R」は気体定数(8.314J/mol・K)、「T」は絶対温度(K)である。
On the other hand, since the temperature dependence of the rate constant is expressed by the Arrhenius equation, the following equation (iii) holds.
k = A ・ exp (−E a / RT) ・ ・ ・ (iii)
In formula (iii), "A" is a frequency factor, "E a " is activation energy, "R" is a gas constant (8.314 J / mol · K), and “T” is absolute temperature (K).
 図13Cに示す直線の傾きから化合物の活性化エネルギー(E)を求め、そのy切片から頻度因子(A)を求めた。これらを式(iii)に代入し、式(ii)中においてt1/2=10hとなるときの温度(10時間半減期温度T)を求めた。結果を表1に示す。また、活性化エネルギー(E)及び頻度因子(A)と、0℃での半減期を表1に示す。
 なお、表1中のR及びRは、前記一般式(1C)中のR及びRに相当する。
Seeking activation energy (E a) of the compound from the slope of the straight line shown in FIG. 13C, was determined frequency factor (A) from the y-intercept. By substituting these into the formula (iii), the temperature (10-hour half-life temperature T) when t 1/2 = 10 h in the formula (ii) was obtained. The results are shown in Table 1. Furthermore, activation energy (E a) and the frequency factor and (A), Table 1 shows the half-life at 0 ° C..
Incidentally, R 1 and R 2 in Table 1 correspond to R 1 and R 2 in the general formula (1C).
<実施例6>
 製造例2で得られた化合物(1-22)を用い、紫外線照射時及び放置時の温度を15℃、20℃、25℃、30℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長553nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Example 6>
Using the compound (1-22) obtained in Production Example 2, absorption was carried out in the same manner as in Example 5 except that the temperatures at the time of ultraviolet irradiation and standing were changed to 15 ° C, 20 ° C, 25 ° C and 30 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 553 nm. The results are shown in Table 1.
<実施例7>
 製造例3で得られた化合物(1-32)を用い、紫外線照射時及び放置時の温度を0℃、5℃、10℃、15℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長548nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Example 7>
Using the compound (1-32) obtained in Production Example 3, absorption was carried out in the same manner as in Example 5 except that the temperatures at the time of irradiation with ultraviolet rays and when left to stand were changed to 0 ° C., 5 ° C., 10 ° C. and 15 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 548 nm. The results are shown in Table 1.
<実施例8>
 製造例1で得られた化合物(1-11)を用い、紫外線照射時及び放置時の温度を0℃、5℃、10℃、15℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長581nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Example 8>
Using the compound (1-11) obtained in Production Example 1, absorption was carried out in the same manner as in Example 5 except that the temperatures during ultraviolet irradiation and standing were changed to 0 ° C, 5 ° C, 10 ° C and 15 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 581 nm. The results are shown in Table 1.
<実施例9>
 製造例4で得られた化合物(1-41)を用い、紫外線照射時及び放置時の温度を-5℃、0℃、5℃、10℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長584nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Example 9>
Using the compound (1-41) obtained in Production Example 4, the same procedure as in Example 5 except that the temperatures at the time of ultraviolet irradiation and standing were changed to −5 ° C., 0 ° C., 5 ° C., and 10 ° C. The absorption spectrum was measured to determine the 10-hour half-life temperature and the like. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 584 nm. The results are shown in Table 1.
<実施例10>
 製造例2で得られた化合物(1-21)を用い、紫外線照射時及び放置時の温度を-20℃、-15℃、-10℃、-5℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長581nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Example 10>
Example 5 and Example 5 except that the compound (1-21) obtained in Production Example 2 was used and the temperatures at the time of ultraviolet irradiation and standing were changed to −20 ° C., −15 ° C., −10 ° C., and −5 ° C. The absorption spectrum was measured in the same manner, and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 581 nm. The results are shown in Table 1.
<実施例11>
 製造例3で得られた化合物(1-31)を用い、紫外線照射時及び放置時の温度を-50℃、-45℃、-40℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長591nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Example 11>
Using the compound (1-31) obtained in Production Example 3, absorption was carried out in the same manner as in Example 5 except that the temperatures during ultraviolet irradiation and standing were changed to −50 ° C., −45 ° C., and −40 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 591 nm. The results are shown in Table 1.
<比較例1>
 製造例5で得られた化合物(1-5)を用い、紫外線照射時及び放置時の温度を60℃、70℃、80℃、90℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長550nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Comparative example 1>
Using the compound (1-5) obtained in Production Example 5, absorption was carried out in the same manner as in Example 5 except that the temperatures at the time of ultraviolet irradiation and standing were changed to 60 ° C, 70 ° C, 80 ° C and 90 ° C. The spectrum was measured and the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 550 nm. The results are shown in Table 1.
<比較例2>
 製造例6で得られた化合物(1-6)を用い、紫外線照射時及び放置時の温度を60℃、70℃、80℃に変更した以外は、実施例5と同様にして吸収スペクトルを測定し、10時間半減期温度等を求めた。ただし、10時間半減期温度等を求める際は、波長554nmにおける吸光度に基づいて図13A~図13Cと同様のグラフを作成した。結果を表1に示す。
<Comparative example 2>
Using the compound (1-6) obtained in Production Example 6, the absorption spectrum was measured in the same manner as in Example 5 except that the temperatures at the time of ultraviolet irradiation and standing were changed to 60 ° C, 70 ° C, and 80 ° C. Then, the 10-hour half-life temperature and the like were determined. However, when determining the 10-hour half-life temperature and the like, the same graphs as in FIGS. 13A to 13C were created based on the absorbance at a wavelength of 554 nm. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表1に示すように、実施例6~11で用いた化合物は、10時間半減期温度が22℃以下であった。
 一方、比較例1、2で用いた化合物は、10時間半減期温度が60℃以上と高かった。
 よって、本発明のジアリールエテン化合物は、低温環境下での温度管理に適している。
As shown in Table 1, the compounds used in Examples 6 to 11 had a 10-hour half-life temperature of 22 ° C. or lower.
On the other hand, the compounds used in Comparative Examples 1 and 2 had a high 10-hour half-life temperature of 60 ° C. or higher.
Therefore, the diarylethene compound of the present invention is suitable for temperature control in a low temperature environment.
<実施例12>
 -60℃下において、製造例1で得られた化合物(1-11)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を120秒照射して着色させ、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。紫外線を照射する前の吸収スペクトルを図14Aに示し、光定常状態(PSS)における吸収スペクトルを図14Bに示す。
 次いで、退色するまで40℃で放置した後、-60℃で吸収スペクトルを測定した。結果を図14Cに示す。
 次いで、紫外線(波長313nm)を480秒照射し、吸収スペクトルを測定した。結果を図14Dに示す。
<Example 12>
At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-11) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) Was irradiated for 120 seconds to color it, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 14A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 14B.
Then, after leaving it at 40 ° C. until discoloration, the absorption spectrum was measured at −60 ° C. The results are shown in FIG. 14C.
Then, ultraviolet rays (wavelength 313 nm) were irradiated for 480 seconds, and the absorption spectrum was measured. The results are shown in FIG. 14D.
 図14Bに示すように、光定常状態(PSS)の化合物、すなわち閉環体は波長581nmに吸収スペクトルを有していた。
 一方、図14Dでは、波長581nm付近に吸収スペクトルは確認できなかった。すなわち、化合物(1-11)は、退色後、再び紫外線を照射しても再着色しないことが示された。
As shown in FIG. 14B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 581 nm.
On the other hand, in FIG. 14D, the absorption spectrum could not be confirmed in the vicinity of the wavelength of 581 nm. That is, it was shown that the compound (1-11) did not recolor even if it was irradiated with ultraviolet rays again after fading.
<実施例13>
 -60℃下において、製造例1で得られた化合物(1-12)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を300秒照射して着色させ、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。紫外線を照射する前の吸収スペクトルを図15Aに示し、光定常状態(PSS)における吸収スペクトルを図15Bに示す。
 次いで、退色するまで55℃で放置した後、-60℃で吸収スペクトルを測定した。結果を図15Cに示す。
 次いで、紫外線(波長313nm)を600秒照射し、吸収スペクトルを測定した。結果を図15Dに示す。
<Example 13>
At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-12) obtained in Production Example 1 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) Was irradiated for 300 seconds to color it, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 15A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 15B.
Then, after leaving it at 55 ° C. until discoloration, the absorption spectrum was measured at −60 ° C. The results are shown in FIG. 15C.
Then, ultraviolet rays (wavelength 313 nm) were irradiated for 600 seconds, and the absorption spectrum was measured. The results are shown in FIG. 15D.
 図15Bに示すように、光定常状態(PSS)の化合物、すなわち閉環体は波長541nmに吸収スペクトルを有していた。
 一方、図15Dでは、波長541nm付近に吸収スペクトルは確認できなかった。すなわち、化合物(1-12)は、退色後、再び紫外線を照射しても再着色しないことが示された。
As shown in FIG. 15B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 541 nm.
On the other hand, in FIG. 15D, the absorption spectrum could not be confirmed in the vicinity of the wavelength of 541 nm. That is, it was shown that the compound (1-12) did not recolor even if it was irradiated with ultraviolet rays again after fading.
<実施例14>
 -80℃下において、製造例3で得られた化合物(1-31)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を180秒照射して着色させ、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。紫外線を照射する前の吸収スペクトルを図16Aに示し、光定常状態(PSS)における吸収スペクトルを図16Bに示す。
 次いで、退色するまで0℃で放置した後、-80℃で吸収スペクトルを測定した。結果を図16Cに示す。
 次いで、紫外線(波長313nm)を600秒照射し、吸収スペクトルを測定した。結果を図16Dに示す。
<Example 14>
At -80 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-31) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) Was irradiated for 180 seconds for coloring, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 16A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 16B.
Then, after leaving it at 0 ° C. until discoloration, the absorption spectrum was measured at −80 ° C. The results are shown in FIG. 16C.
Then, ultraviolet rays (wavelength 313 nm) were irradiated for 600 seconds, and the absorption spectrum was measured. The results are shown in FIG. 16D.
 図16Bに示すように、光定常状態(PSS)の化合物、すなわち閉環体は波長591nmに吸収スペクトルを有していた。
 一方、図16Dでは、波長591nm付近に吸収スペクトルは確認できなかった。すなわち、化合物(1-31)は、退色後、再び紫外線を照射しても再着色しないことが示された。
As shown in FIG. 16B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 591 nm.
On the other hand, in FIG. 16D, the absorption spectrum could not be confirmed in the vicinity of the wavelength of 591 nm. That is, it was shown that the compound (1-31) did not recolor even if it was irradiated with ultraviolet rays again after fading.
<実施例15>
 -60℃下において、製造例3で得られた化合物(1-32)のn-ヘキサン溶液(濃度:約10-5mol/L)を石英セルに入れ、熔封した後、紫外線(波長313nm)を360秒照射して着色させ、吸光光度計(日本分光株式会社製、型式「V-560」)を用いて吸収スペクトルを測定した。紫外線を照射する前の吸収スペクトルを図17Aに示し、光定常状態(PSS)における吸収スペクトルを図17Bに示す。
 次いで、退色するまで40℃で放置した後、-60℃で吸収スペクトルを測定した。結果を図17Cに示す。
 次いで、紫外線(波長313nm)を780秒照射し、吸収スペクトルを測定した。結果を図17Dに示す。
<Example 15>
At -60 ° C, an n-hexane solution (concentration: about 10-5 mol / L) of the compound (1-32) obtained in Production Example 3 was placed in a quartz cell, sealed, and then ultraviolet rays (wavelength 313 nm). ) Was irradiated for 360 seconds for coloring, and the absorption spectrum was measured using an absorptiometer (manufactured by JASCO Corporation, model "V-560"). The absorption spectrum before irradiation with ultraviolet rays is shown in FIG. 17A, and the absorption spectrum in the light steady state (PSS) is shown in FIG. 17B.
Then, after leaving it at 40 ° C. until discoloration, the absorption spectrum was measured at −60 ° C. The results are shown in FIG. 17C.
Then, ultraviolet rays (wavelength 313 nm) were irradiated for 780 seconds, and the absorption spectrum was measured. The results are shown in FIG. 17D.
 図17Bに示すように、光定常状態(PSS)の化合物、すなわち閉環体は波長548nmに吸収スペクトルを有していた。
 一方、図17Dでは、波長548nm付近に吸収スペクトルは確認できなかった。すなわち、化合物(1-32)は、退色後、再び紫外線を照射しても再着色しないことが示された。
As shown in FIG. 17B, the light steady state (PSS) compound, the ring closure, had an absorption spectrum at a wavelength of 548 nm.
On the other hand, in FIG. 17D, the absorption spectrum could not be confirmed in the vicinity of the wavelength of 548 nm. That is, it was shown that the compound (1-32) did not recolor even if it was irradiated with ultraviolet rays again after fading.
 本発明のジアリールエテン化合物、温度インジケータ、温度表示デバイス及び包装体は、低温環境下での温度管理に適している。 The diarylethene compound, temperature indicator, temperature display device and package of the present invention are suitable for temperature control in a low temperature environment.
 20,20A,20B,20C,20D…温度表示デバイス、21…基材、22…参照部、23,23D…温度インジケータ、24…時間情報表示部、31…粘着層、32…剥離層、33…保護層、34…透明基材、40…温度履歴管理ラベル、60…包装体、61…包装材。 20, 20A, 20B, 20C, 20D ... Temperature display device, 21 ... Base material, 22 ... Reference part, 23, 23D ... Temperature indicator, 24 ... Time information display part, 31 ... Adhesive layer, 32 ... Peeling layer, 33 ... Protective layer, 34 ... transparent substrate, 40 ... temperature history control label, 60 ... package, 61 ... packaging material.

Claims (11)

  1.  下記一般式(1)で表される、ジアリールエテン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、環Aは、5員環構造又は6員環構造を示しており、
     Xは、硫黄原子(S)、NR又は酸素原子(O)であり、Rは水素原子(H)又はアルキル基であり、
     Y及びYはそれぞれ独立に、炭素原子(C)又は窒素原子(N)であり、
     R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
     Rは、Yが炭素原子(C)である場合には、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、Yが窒素原子(N)である場合には、電子対であり、
     Rは、Yが炭素原子(C)である場合には、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、Yが窒素原子(N)である場合には、電子対であり、
     Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
     Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。)
    A diarylethene compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), the ring A shows a 5-membered ring structure or a 6-membered ring structure.
    X is a sulfur atom (S), NR 7 or an oxygen atom (O), and R 7 is a hydrogen atom (H) or an alkyl group.
    Y 1 and Y 2 are independently carbon atoms (C) or nitrogen atoms (N), respectively.
    R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
    When Y 1 is a carbon atom (C), R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure. When Y 1 is a nitrogen atom (N), it is an electron pair.
    When Y 2 is a carbon atom (C), R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure. When Y 2 is a nitrogen atom (N), it is an electron pair.
    R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
    R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure. )
  2.  下記一般式(1A)で表される、請求項1に記載のジアリールエテン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1A)中、6つのZはそれぞれ独立に、水素原子(H)又はフッ素原子(F)であり、
     R及びRはそれぞれ独立に、アルキル基、シクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、アルキル基又は芳香族基であり、R及びRの一方がアルキル基又はシクロアルキル基であり、他方がSiR であり、
     Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
     Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
     Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成しており、
     Rは、水素原子(H)、フェニル基、アルキル基、アルコキシ基もしくはシアノ基、又はRと互いに結合して環構造を形成している。)
    The diarylethene compound according to claim 1, which is represented by the following general formula (1A).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (1A), each of the six Zs is independently a hydrogen atom (H) or a fluorine atom (F).
    R 1 and R 2 are each independently an alkyl group, a cycloalkyl group, or SiR 8 3, in each of the three R 8 independently an alkyl group or an aromatic group, one of R 1 and R 2 are alkyl a group or a cycloalkyl group, the other is SiR 8 3,
    R 3 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 4 to form a ring structure.
    R 5 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 6 to form a ring structure.
    R 4 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 3 to form a ring structure.
    R 6 is bonded to each other with a hydrogen atom (H), a phenyl group, an alkyl group, an alkoxy group or a cyano group, or R 5 to form a ring structure. )
  3.  前記R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基又はSiR であり、3つのRはそれぞれ独立に、炭素数1~6のアルキル基又は芳香族基であり、R及びRの一方が炭素数1~10のアルキル基又は炭素数3~7のシクロアルキル基であり、他方がSiR である、請求項1又は2に記載のジアリールエテン化合物。 Wherein R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or SiR 8 3 3 to 7 carbon atoms, in each of the three R 8 independently, 1 to 6 carbon atoms an alkyl group or an aromatic group, one of R 1 and R 2 is a cycloalkyl group of an alkyl group or a C 3-7 1 to 10 carbon atoms, and the other is SiR 8 3, claim 1 Or the diarylethene compound according to 2.
  4.  請求項1~3のいずれか一項に記載のジアリールエテン化合物を含む、温度インジケータ。 A temperature indicator comprising the diarylethene compound according to any one of claims 1 to 3.
  5.  請求項4に記載の温度インジケータを有する、温度表示デバイス。 A temperature display device having the temperature indicator according to claim 4.
  6.  基材を有し、前記基材の一方の面に前記温度インジケータが形成されている、請求項5に記載の温度表示デバイス。 The temperature display device according to claim 5, which has a base material and has the temperature indicator formed on one surface of the base material.
  7.  時間情報表示部を有し、平面視において、前記温度インジケータと前記時間情報表示部とが前記基材上の面方向に並んで形成されている、請求項6に記載の温度表示デバイス。 The temperature display device according to claim 6, further comprising a time information display unit, wherein the temperature indicator and the time information display unit are formed side by side in a plane direction on the base material in a plan view.
  8.  前記基材の他方の面に粘着層及び剥離層がこの順で形成されている、請求項6又は7に記載の温度表示デバイス。 The temperature display device according to claim 6 or 7, wherein an adhesive layer and a release layer are formed on the other surface of the base material in this order.
  9.  前記温度インジケータ上に保護層が形成されている、請求項5~8のいずれか一項に記載の温度表示デバイス。 The temperature display device according to any one of claims 5 to 8, wherein a protective layer is formed on the temperature indicator.
  10.  前記温度インジケータは少なくとも一方の面に粘着性を有し、前記一方の面に剥離層が形成されている、請求項5に記載の温度表示デバイス。 The temperature display device according to claim 5, wherein the temperature indicator has adhesiveness on at least one surface and a peeling layer is formed on the one surface.
  11.  請求項4に記載の温度インジケータを有する、包装体。 A package having the temperature indicator according to claim 4.
PCT/JP2019/038273 2019-09-27 2019-09-27 Diarylethene compound, temperature indicator, temperature display device, and package WO2021059505A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/038273 WO2021059505A1 (en) 2019-09-27 2019-09-27 Diarylethene compound, temperature indicator, temperature display device, and package
JP2021548280A JP7338901B2 (en) 2019-09-27 2019-09-27 DIARYLETHENE COMPOUND, TEMPERATURE INDICATOR, TEMPERATURE INDICATION DEVICE AND PACKAGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038273 WO2021059505A1 (en) 2019-09-27 2019-09-27 Diarylethene compound, temperature indicator, temperature display device, and package

Publications (1)

Publication Number Publication Date
WO2021059505A1 true WO2021059505A1 (en) 2021-04-01

Family

ID=75166879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038273 WO2021059505A1 (en) 2019-09-27 2019-09-27 Diarylethene compound, temperature indicator, temperature display device, and package

Country Status (2)

Country Link
JP (1) JP7338901B2 (en)
WO (1) WO2021059505A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015552A (en) * 2012-07-10 2014-01-30 Osaka City Univ Photochromic material containing diarylethene compound and optical function element
JP2014067989A (en) * 2012-03-06 2014-04-17 Kyushu Univ Organic light-emitting element, luminescence material precursor, luminescence material, chemical compound, and process of manufacturing organic light-emitting element
WO2018038145A1 (en) * 2016-08-25 2018-03-01 公立大学法人大阪市立大学 Diarylethene compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067989A (en) * 2012-03-06 2014-04-17 Kyushu Univ Organic light-emitting element, luminescence material precursor, luminescence material, chemical compound, and process of manufacturing organic light-emitting element
JP2014015552A (en) * 2012-07-10 2014-01-30 Osaka City Univ Photochromic material containing diarylethene compound and optical function element
WO2018038145A1 (en) * 2016-08-25 2018-03-01 公立大学法人大阪市立大学 Diarylethene compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IMAGAWA HIROYUKI: "Photochromic reaction behavior of unsymmetrical diarylethene with trimethylsilyl group at the reaction site", LECTURE PREPRINTS III OF THE 90TH SPRING ANNUAL MEETING OF CSJ, vol. 90, no. 3, 2010, pages 947 *

Also Published As

Publication number Publication date
JPWO2021059505A1 (en) 2021-04-01
JP7338901B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
CN1914509B (en) Time-temperature indicator based on valence isomerizations
EP2102307B1 (en) Photostabilized time temperature indicator
US20110059545A1 (en) Time-temperature indicator based on oligomeric spiroaromatics
US20100043695A1 (en) Color changing indicator
KR20020086597A (en) Activatable time-temperature indicator system
JP6998168B2 (en) Temperature display device and temperature history management label
Zhang et al. Highly dichroic benzo-2, 1, 3-thiadiazole dyes containing five linearly π-conjugated aromatic residues, with fluorescent emission ranging from green to red, in a liquid crystal guest–host system
JP5920780B2 (en) Photochromic material and difunctional device containing diarylethene compound
JP2008310324A (en) Inkless reimageable printing paper and method
WO2021059505A1 (en) Diarylethene compound, temperature indicator, temperature display device, and package
CN109804382A (en) Laser can mark RFID label tag
JP4814454B2 (en) Method for producing photochromic material
WO2018038145A1 (en) Diarylethene compound
Bourque Investigations of reversible thermochromism in three-component systems
US20110269242A1 (en) Time temperature indicator comprising indolenin based spiropyrans
US20110287549A1 (en) Time temperature indicator based on thioalkyl and thioaryl substituted spiroaromatics
Szalóki et al. Properties and applications of indolinooxazolidines as photo-, electro-, and acidochromic units
JP7313950B2 (en) temperature display device
JP7313949B2 (en) temperature display device
WO2018159796A1 (en) Diarylethene compound, photochromic material and ultraviolet light sensor
CN114672197A (en) Rapid color development ink and application thereof in color development paper
JP2585675B2 (en) Novel leuco dye and recording material using the same
JP2020001188A (en) Temperature-sensitive color developing resin composition and temperature-sensitive color developing film using the same
JP2002127287A (en) Reversibly thermal-discoloring laminate and method for manufacturing the same
GB2503645A (en) Diacetylenes and their use in forming an image on a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946902

Country of ref document: EP

Kind code of ref document: A1