WO2021059465A1 - Extrusion press device, and platen for extrusion press device - Google Patents

Extrusion press device, and platen for extrusion press device Download PDF

Info

Publication number
WO2021059465A1
WO2021059465A1 PCT/JP2019/038082 JP2019038082W WO2021059465A1 WO 2021059465 A1 WO2021059465 A1 WO 2021059465A1 JP 2019038082 W JP2019038082 W JP 2019038082W WO 2021059465 A1 WO2021059465 A1 WO 2021059465A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer element
platen
extrusion
inner element
extrusion press
Prior art date
Application number
PCT/JP2019/038082
Other languages
French (fr)
Japanese (ja)
Inventor
武治 山本
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to PCT/JP2019/038082 priority Critical patent/WO2021059465A1/en
Priority to JP2021548106A priority patent/JP7107446B2/en
Publication of WO2021059465A1 publication Critical patent/WO2021059465A1/en
Priority to US17/649,745 priority patent/US20220152678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/005Continuous extrusion starting from solid state material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/01Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/211Press driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/212Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels

Definitions

  • the present invention relates to an extrusion press device used for extrusion molding of a metal, for example, an aluminum alloy, and particularly to a platen.
  • the billet is pressed against the die placed on the platen via a pressure ring with extrusion force.
  • This extrusion force is applied by the main cylinder provided in the extrusion press device.
  • the platen is bent. As the platen bends, the pressure ring and die bend. This platen is sometimes referred to as the end platen.
  • FIG. 9 shows the deflection generated in the platen 220.
  • the reaction force f of the extrusion acting force F acts on the substantially central portion of the platen 220 in the extrusion direction via the die 260 and the pressure ring 250.
  • the extrusion direction is shown in the same direction as the white arrow indicating the extrusion force F.
  • a drag force f'in the opposite direction to the reaction force f is generated in the tie rod 287.
  • the tie rod 287 resists this reaction force f by deforming (stretching) in the elastic region parallel to the extrusion direction.
  • the platen 220 generates a bending moment M that tends to bend the substantially central portion of the platen 220 so as to project in the extrusion direction.
  • the platen 220 in which the discharge path 242 penetrating in the thickness direction is formed in order to continuously extrude (discharge) the product behind the platen 220 resists the bending moment M in the vicinity of the discharge path 242. It is physically difficult to secure sufficient rigidity. Therefore, in the extrusion process, bending and bending deformation as shown in the lower figure of FIG. 9 occur.
  • FIG. 9 is a schematic plan view, since the tie rods 287 are arranged at the four corners of the platen 220, the platen 220 is bent as in the plan view even when viewed from the side. That is, three-dimensionally, the bending is such that the substantially central portion of the platen 220 protrudes in the extrusion direction.
  • the pressure ring 250 and the die 260 fixed to the platen 220 are also deformed in response to this bending.
  • the extrusion force acting on the platen during the extrusion process fluctuates from the start of extrusion to the completion of extrusion, and specifically decreases as shown in FIG. 10, so that the deflection of the platen 220 decreases during the extrusion process.
  • the deformation of the pressure ring and dice can also be reduced. Therefore, the dimensions of the product extruded from the die fluctuate from the start to the completion of the extrusion process, and it becomes difficult to obtain the desired dimensional accuracy for the product depending on the degree of fluctuation in the deformation of the die.
  • the decrease in the extrusion force during the extrusion step described above is due to the decrease in the frictional force fb. Further, the required push output Fa is constant and does not fluctuate during the extrusion process if the heat effect is ignored.
  • Patent Document 1 discloses a pressure ring capable of suppressing bending during an extrusion process and an extrusion breath device using this pressure ring.
  • the pressure ring of Patent Document 1 has a double structure including an outer member and an inner member, and the outer member is shrink-fitted on the inner member. According to the pressure ring of Patent Document 1, since the outer member is shrink-fitted to the inner member, stress is applied to the inner member from the outer side to the inner side in the radial direction. Therefore, even if a load is applied in the axial direction of the pressure ring, the stress from the outside to the inside opposes the load, so that the deflection is suppressed.
  • Patent Document 1 bending of the pressure ring can be suppressed.
  • the deflection of the pressure ring is based on the deflection of the platen, and even if a stress is generated from the outside to the inside of the double-structured pressure ring, the deflection of the platen is not eliminated. Therefore, it is difficult to suppress fluctuations in pressure ring and die deformation during the extrusion process to a sufficient extent to obtain high dimensional accuracy for the product.
  • an object of the present invention is to provide an extrusion press device provided with a platen capable of suppressing the occurrence of bending.
  • the extrusion press device includes a die for extruding a work material, a cylinder for applying a pressing force for pressing the work material to the die, and a platen for receiving the pressing force from the die.
  • the platen according to the present invention includes an outer element and an inner element coaxially arranged with the outer element inside the outer element.
  • the inner element according to the present invention is provided by sandwiching the outer element from both the front and back sides of the outer element.
  • the outer element and the inner element are fitted together, a tensile stress is generated in the inner element in the axial direction (C), and a compressive stress corresponding to the tensile stress is generated in the outer element. It has occurred.
  • the inner element according to the present invention is preferably provided by sandwiching the outer element by fastening.
  • the outer element and the inner element to be fitted to each other have a gap in a portion not related to the fitting.
  • the inner element according to the present invention preferably includes a large-diameter portion provided on the front side, a small-diameter portion connected to the large-diameter portion, and a fastening member fastened to the small-diameter portion.
  • Tensile stress is generated by pressing the outer element of the fastening member by being tightened to the small diameter portion in advance and applying a preliminary load equal to or larger than the load acting during the extrusion process.
  • compressive stress is preferably generated in the region sandwiched by the inner element.
  • the outer element according to the present invention is preferably fitted to the outside of the first outer element adjacent to the inner element and to the outside of the first outer element adjacent to the inner element.
  • the second outer element is provided.
  • the inner element is provided by sandwiching the first outer element from both the front and back sides of the first outer element.
  • the inner element preferably has a tensile stress in the axial direction (C), and the first outer element has a compressive stress corresponding to the tensile stress.
  • the first outer element and the second outer element are fitted by a shrink fit.
  • the inner element according to the present invention preferably has a fluid supply structure 160 that supplies a cooling medium to the extruded product.
  • the inner element according to the present invention is preferably made of a metal material having substantially the same Young's modulus as the outer element, or a metal material having a Young's modulus larger than that of the outer element.
  • the inner element sandwiches the outer element from the front and back of the outer element.
  • tensile stress can be generated in the inner element and compressive stress can be generated in the outer element. Therefore, even if a load is applied in the extrusion direction during the extrusion process, the tensile stress generated in the inner element and the compressive stress generated in the outer element are reduced but maintained. Therefore, even if the outer element is bent, the portion where the tensile stress and the compressive stress are generated is unlikely to be bent.
  • the extrusion press device has a platen composed of a plurality of elements divided in the radial direction.
  • the pressure ring is fixed to the element arranged inside in the plurality of divisions, and the element is sandwiched from the front and back through the element arranged outside the element.
  • the platen according to the present embodiment can suppress bending during the extrusion process.
  • the present embodiment includes a first embodiment having a structure divided into two in the radial direction and a second embodiment having a structure divided into three in the radial direction.
  • the first embodiment and the second embodiment will be described in this order.
  • the extrusion press device 1 has an extrusion portion 10 from which billet B, which is a work material, is extruded, a holding portion 70 that accommodates and holds the billet B, and a billet B accommodated in the holding portion 70. It includes a pressure generating unit 80 that generates a load that presses against the extrusion unit 10.
  • the platen 20 is a main element constituting the extruded portion 10.
  • the extruded portion 10 includes a platen 20, a pressure ring 50 supported by the platen 20, and a die 60 supported by the pressure ring 50.
  • the platen 20 includes an outer element 30 and an inner element 40 coaxially supported inside the outer element 30 by fitting, and has a two-layer structure divided in the radial direction.
  • the outer element 30 is a rectangular parallelepiped-shaped member including a thick-walled portion 31 provided on the rear side and a thin-walled portion 33 connected to the thick-walled portion 31 and provided on the front side. ..
  • the "thickness" of the thick portion 31 and the thin portion 33 indicates the distance from the inner peripheral surface of the holding hole 35, which will be described later, to the outer peripheral surface of the outer element 30.
  • the outer element 30 is provided inside the thick portion 31 and the thin portion 33, and is provided with a holding hole 35 for penetrating in the front-rear direction and for aligning the inner element 40.
  • the holding hole 35 includes a small inner diameter portion 36 corresponding to the thick wall portion 31 and a large inner diameter portion 37 corresponding to the thin wall portion 33, and is formed in a stepped shape in the front-rear direction.
  • the outer element 30 is usually made of cast iron. The same applies to the inner element 40.
  • the side (F) shown in FIG. 1 is defined as the front side, and the side (B) is defined as the rear side. Further, the radial dimension is determined with reference to the central axis C shown in FIGS. 1 and 2.
  • the inner element 40 is connected to the large diameter portion 41 on which the mounting surface 48 of the pressure ring 50 is provided and the large diameter portion 41, and is provided so as to penetrate the thick portion 31 in the front-rear direction. It is a cylindrical member including a small diameter portion 43 to be formed.
  • the inner element 40 is similar in appearance to a bolt, with the large diameter portion 41 corresponding to the head and the small diameter portion 43 corresponding to the body portion.
  • the outer diameter of the inner element 40 is smaller than the length of the outer surface (upper and lower surfaces and both side surfaces) of the outer element 30, and is considered to replace a part of the inner diameter side of the outer element 30.
  • the following surface pressure ⁇ P corresponding to the preliminary load is generated on the pressure receiving surface 32 of the outer element 30 (thick wall portion 31) in FIG.
  • the large diameter portion of the inner element 40 that determines the area of the ring-shaped pressure receiving surface 32 so that the surface pressure ⁇ P is lower than the yield point of the material strength of the outer element 30 and the surface pressure allows for a safety factor.
  • the diameter of each of the 41 and the small diameter portion 43 is determined in consideration of the diameter of the die 60 used and the diameter of the pressure ring 50.
  • F Extrusion force (preliminary load MF)
  • A Area of pressure receiving surface 32 ⁇ D: Outer diameter of large diameter portion 41 ⁇ d: Outer diameter of small diameter portion 43
  • the inner element 40 is provided with a discharge path 42 penetrating in the front-rear direction from the large diameter portion 41 to the small diameter portion 43.
  • the extruded product extruded through the die 60 is discharged rearward from the extrusion press device 1 through the discharge path 42.
  • the inner element 40 has a screw 44 cut at the outer peripheral end portion on the rear side of the small diameter portion 43.
  • the screw 44 of the small diameter portion 43 is tightened with the female screw 47 of the fastening member 46 described later.
  • the inner element 40 includes a pressure receiving surface 45 connecting the large diameter portion 41 and the small diameter portion 43.
  • the pressure receiving surface 45 is a surface that receives pressure in a direction parallel to the central axis C from the outer element 30, that is, in the axial direction.
  • the pressure receiving surface 45 and the pressure receiving surface 32 of the outer element 30 are exemplified by a plane orthogonal to the central axis C, but may have other shapes as long as they can receive pressure from each other.
  • a tapered surface inclined in the extrusion direction Ed (FIG. 1), a stepped surface, or the like can be applied.
  • the inner element 40 includes a fastening member 46 for fixing the large diameter portion 41 and the small diameter portion 43 to the outer element 30.
  • the fastening member 46 has the same shape as a nut, and a male screw 44 formed on the small diameter portion 43 and a female screw 47 to be tightened are cut on the inner peripheral surface.
  • the fastening member 46 is previously tightened from the rear side of the platen 20 to the small diameter portion 43 in a state where a preliminary load MF is generated, so that the central axis C is attached to the inner element 40. It is characterized in that a tensile stress PF parallel to is constantly generated.
  • the preload MF is set to a value equal to or higher than the rated load acting on the inner element 40 during the extrusion process via the pressure ring 50 and the die 60. An example of the procedure for generating the preload MF will be described later.
  • the male screw 44 of the small diameter portion 43 is projected to the rear of the outer element 30, and the female screw 47 of the fastening member 46 is tightened to the male screw 44.
  • the thick portion 31 of the outer element 30 is sandwiched by the inner element 40 and the fastening member 46.
  • the fastening member 46 can be screwed into the screw 44 of the inner element 40 from the rear side of the platen 20, and a discharge path 42 for discharging the product extruded from the die 60 from the platen 20 can be formed. It is a necessary requirement. If this requirement is satisfied, as shown in FIG. 4, a portion protruding from the screw 44'and the fastening member 46'to the inner peripheral surface of the small diameter portion 43 because the inner peripheral surface of the small diameter portion 43 of the inner element 40 is machined. It may be in a form in which the male screw 47'processed on the outer peripheral surface of the above is tightened.
  • the pressure ring 50 is attached to the mounting surface 48 of the inner element 40 with a bolt or the like (not shown), receives a pressing force from the die 60, and applies a pressing force to the inner element 40. introduce.
  • the pressure ring 50 includes a passage 51 leading to the discharge passage 42 of the inner element 40.
  • the pressure ring 50 is made of a higher strength material than the outer element 30 and the inner element 40, such as tool steel.
  • the holding unit 70 holds a container 71 for holding the billet B, a container holder 73 for holding the container 71, and a container cylinder 75 for pressing the container 71 against the die 60 via the container holder 73.
  • the container 71 includes a holding chamber 72 that penetrates in the front-rear direction while being supported by the container holder 73.
  • the billet B is held in the container 71 in a state of being housed in the holding chamber 72.
  • the container holder 73 holds the container 71.
  • the container 71 held by the container holder 73 can reciprocate in the front-rear direction integrally with the container holder 73.
  • the container cylinder 75 includes a cylinder 76 fixed to the platen 20 and a piston rod 77 provided so as to be able to advance and retreat with respect to the cylinder 76.
  • the tip of the piston rod 77 is fixed to the container holder 73, and the container 71 can be pressed against the die 60 via the container holder 73 by operating the container cylinder 75.
  • the pressure generating unit 80 includes a main cylinder housing 81 arranged so as to face the platen 20, and a main cylinder 83 supported substantially in the center of the main cylinder housing 81. Further, the pressure generating unit 80 includes a side cylinder 85 supported by the main cylinder housing 81 around the main cylinder 83, and a tie rod 87 supported by the main cylinder housing 81 around the main cylinder 83.
  • the main cylinder 83 includes a main ram 84, a main crosshead 86 fixed to the tip of the main ram 84, and an extrusion stem 88 attached to the main crosshead 86. When the main cylinder 83 operates the main ram 84 toward the platen 20, the extrusion stem 88 presses the billet B toward the die 60.
  • the tie rod 87 connects the main cylinder housing 81 and the platen 20 together with the tie rod nut 89.
  • the tie rod 87 and the tie rod nut 89 connect the four corners of the platen 20 and the corresponding four corners of the main cylinder housing 81.
  • the reaction force of the force acts.
  • the tie rod nut 89 which constitutes the large diameter portion of the tie rod 87, resists this reaction force and restrains the movement of the platen 20 and the main cylinder housing 81.
  • the tie rod 87 is configured to have a strength to resist the reaction force of the pressing force while allowing the tie rod 87 to stretch in the elastic region.
  • the billet B is pressed against the die 60 by the extrusion stem 88, and a predetermined product is continuously extruded from the die hole 61 of the die 60 to the rear.
  • This process is called an extrusion process.
  • the cylinder rod of the side cylinder 85 is also fixed to the main crosshead 86, and the side cylinder 85 is driven during the extrusion process, that is, when the main crosshead 86 is advanced and when the main crosshead 86 is retracted.
  • the opening diameter of the storage chamber 39 in which the large diameter portion 41 is housed is larger than the outer diameter of the large diameter portion 41 of the inner element 40 (FIG. 2), and a predetermined clearance S is secured.
  • the opening diameter of the accommodation chamber 39 is the inner diameter of the large inner diameter portion 37 of the holding hole 35. This clearance S will be described later.
  • a part of the screw 44 of the small diameter portion 43 of the inner element 40 is exposed behind the outer element 30.
  • a preliminary load MF equal to or larger than the load acting on the extrusion direction Ed during the extrusion process is applied between the platen 20 and the main cylinder housing 81.
  • a dummy die having no opening that imitates the product shape or the like is arranged on the pressure ring 50 by a holding means (not shown), and the billet B is provided on the dummy die by the container cylinder 75. Press the uncontained container 71.
  • the main cylinder 83 and the side cylinder 85 are driven, and the extrusion stem 88 to which an extrusion jig or the like (not shown) is attached to the tip is moved to the platen 20 side in the holding chamber 72 of the container 71 and extruded.
  • the extrusion force is directly applied to the dummy die by the jig.
  • the extrusion force acting between the platen 20 and the main cylinder housing 81 via the dummy die (preliminary load MF) is equal to or greater than the load acting on the extrusion direction Ed during the extrusion process (rated load).
  • the reserve load MF is preferably 105 to 110% of the rated load.
  • the platen 20 is compressed more than during the extrusion process at the rated load through the pressure receiving surface 45 of the inner element 40.
  • the preload MF when the preload MF is released after screwing the fastening member 46 into the small diameter portion 43 of the inner element 40 without applying a large screwing force, the preload MF conforms to the preload MF parallel to the central axis C on the inner element 40. Tensile stress PF can be generated at all times.
  • This effect includes a first effect by generating the stress state described above between the outer element 30 and the inner element 40, and a second effect by providing the clearance S. Hereinafter, they will be described in order.
  • the inner element 40 sandwiches the outer element 30 from the front and back of the outer element 30.
  • a tensile stress PF is generated in the inner element 40 in parallel with the central axis C
  • a compressive stress CF is generated in the portion of the outer element 30 sandwiched between the pressure receiving surface 45 of the inner element 40 and the fastening member 46.
  • These tensile stress PF and compressive stress CF are stresses according to the preliminary load MF, which is larger than the rated load.
  • the tensile stress PF generated in the inner element 40 and the compressive stress CF generated in the outer element 30 are present. It is maintained while decreasing. Therefore, even if the tie rod 87 is extended and the outer element 30 of the platen 20 is bent, the fastening state of the inner element 40 and the fastening member 46 at the substantially central portion of the platen 20 is maintained, and the bending is less likely to occur. ..
  • the fastening state of the substantially central portion of the platen 20 by the inner element 40 and the fastening member 46 and the compressive stress CF due to this fastening state are maintained. Therefore, even if the inner element 40 is formed with a discharge path 42 for pushing out and discharging the product on the rear side of the platen 20, a bending moment M (FIG. 10 (a)) that causes bending of the outer element 30 of the platen 20 in particular. Sufficient rigidity to counteract the above can be ensured at the portion of the thick portion 31 of the outer element 30 held by the inner element 40 (large diameter portion 41) and the fastening member 46 in the vicinity of the discharge path 42. it can. In this way, according to the first embodiment, the first effect of suppressing the bending of the platen 20 can be achieved.
  • the deflection of the outer element 30 does not directly affect the deformation of the pressure ring 50. Therefore, even if the outer element 30 is bent and the bending (deflection amount) fluctuates due to the fluctuation (decrease) of the extrusion force F, the die 60 arranged by the holding means (not shown) on the pressure ring 50 is deformed. The second effect of not causing it to occur can be achieved. Further, as described above, the positioning reference of the inner element 40 with respect to the outer element 30 is between the outer diameter of the small diameter portion 43 of the inner element 40 and the opening diameter of the holding hole 35 into which the small diameter portion 43 is inserted. It only has a clearance that meets the requirements.
  • the outer side is ensured by maintaining the fastening state of the substantially central portion of the outer element 30 by the inner element 40 and the fastening member 46 and maintaining the compressive stress CF by this fastening state.
  • the rigidity for countering the bending moment M that causes the element 30 to bend can be structurally ensured even if the inner element 40 is made of a metal material having substantially the same Young's modulus as the platen 20. Therefore, by manufacturing the inner element 40 with a metal material having a Young's modulus larger than that of the platen 20, the strength itself of the central portion is improved in addition to the compressive stress CF generated in the substantially central portion of the platen 20. It is also possible to further increase this rigidity.
  • the inner element 40 and the fastening member 46 generate tensile stress PF in the inner element 40 and compressive stress CF in the outer element 30, thereby improving the rigidity of the substantially central portion of the outer element 30 and extruding. It is possible to suppress the deflection (deflection amount) of the outer element 30 during the process.
  • the outer peripheral surface of the large diameter portion 41 of the inner element 40 and the large diameter Due to the configuration in which the inner peripheral surface of the holding hole 35 of the outer element 30 on which the portion 41 is arranged does not come into contact with each other, a predetermined clearance S is secured while being reduced, so that the deflection of the outer element 30 is a deformation of the pressure ring 50. Does not directly affect.
  • the deformation (deformation amount) of the pressure ring 50 and the die 60 and its fluctuation during the extrusion process can be significantly suppressed, and the extrusion process can be started. From to completion, the product extruded from the die 60 can be obtained with the desired dimensional accuracy.
  • the platen 120 according to the second embodiment of the present invention has a three-layer structure including a second outer element 130, a first outer element 140, and an inner element 150.
  • the second outer element 130 is a rectangular parallelepiped member.
  • the first outer element 140 and the inner element 150 are cylindrical members and are arranged coaxially on the central axis C.
  • the first outer element 140 is fitted inside the second outer element 130, and the inner element 150 is fitted inside the first outer element 140.
  • the inner element 150 is provided by sandwiching the first outer element 150 from both the front and back sides of the first outer element 150.
  • the second outer element 130 includes a thick-walled portion 131 provided on the rear side and a thin-walled portion 133 connected to the thick-walled portion 131 and provided on the front side.
  • the second outer element 130 is provided inside the thick portion 131 and the thin portion 133, and is provided with a holding hole 135 for penetrating in the front-rear direction and for aligning the first outer element 140.
  • the holding hole 135 includes a small inner diameter portion 136 corresponding to the thick wall portion 131 and a large inner diameter portion 137 corresponding to the thin wall portion 133, and is formed in a stepped shape in the front-rear direction.
  • the first outer element 140 As shown in FIGS. 5, 6 and 7, the first outer element 140 includes a small diameter portion 141 provided on the rear side and a large diameter portion 143 connected to the small diameter portion 141 and provided on the front side.
  • the first outer element 140 is provided with a holding hole 145 for penetrating the small diameter portion 141 and the large diameter portion 143 and for aligning the adjacent inner elements 150.
  • the holding hole 145 includes a small inner diameter portion 146 and a large inner diameter portion 147, and is formed in a stepped shape in the front-rear direction.
  • the second outer element 130 and the first outer element 140 are fitted by a shrinkage fit.
  • a compressive stress is generated in the radial direction between the second outer element 130 and the first outer element 140. Therefore, the portions of the second outer element 130 and the first outer element 140 have higher rigidity than the portions having an integral structure.
  • the Young's modulus of the material constituting the first outer element 140 is larger than that of the material constituting the second outer element 130, the rigidity of the second outer element 130 can be further improved. As described above, if sufficient rigidity can be secured for the second outer element 130, the clearance S provided in the first embodiment can be minimized or omitted. Shrink-fitting and cold-fitting are known as shrink-fitting.
  • the second outer element 130 and the first outer element 140 are fitted together in a state where the second outer element 130 is heated to a predetermined temperature and expanded in the radial direction.
  • the second outer element 130 and the first outer element 140 are fitted in a state where the first outer element 140 is cooled to a predetermined temperature and contracted in the radial direction.
  • the inner element 150 As shown in FIGS. 5, 6 and 7, the inner element 150 is connected to the large diameter portion 151 provided with the mounting recess of the pressure ring 50 and the large diameter portion 151, and penetrates the accommodating chamber 39 in the front-rear direction. It is provided with a small diameter portion 153 provided.
  • the inner element 150 is provided with a discharge path 152 that penetrates in the front-rear direction from the large diameter portion 151 to the small diameter portion 153.
  • the extruded product extruded through the die 60 is discharged rearward from the extrusion press device 1 through the discharge path 152.
  • the inner element 150 has a screw 154 cut at the outer peripheral end portion on the rear side of the small diameter portion 153.
  • the screw 154 of the small diameter portion 153 is tightened with the female screw 157 of the fastening member 156.
  • the inner element 150 includes a pressure receiving surface 155 that connects the large diameter portion 151 and the small diameter portion 153.
  • the pressure receiving surface 155 is a surface that receives pressure parallel to the central axis C from the second outer element 130 and the first outer element 140.
  • the inner element 150 includes a fastening member 156 for fixing the large diameter portion 151 and the small diameter portion 153 to the first outer element 140.
  • the fastening member 156 has a shape similar to that of a nut, and a male screw 154 formed on the small diameter portion 153 and a female screw 157 to be tightened are cut on the inner peripheral surface.
  • the central axis C is attached to the inner element 140 by previously tightening the fastening member 156 from the rear side of the platen 20 to the small diameter portion 153 in a state where the preliminary load MF is generated at the time of assembling the extrusion press device 1.
  • the inner element 140 is arranged substantially inside the center of the platen 120 in a state where the tensile stress PF parallel to the platen 120 is constantly generated.
  • the inner element 150 is fixed to the first outer element 140 in a state where a tensile stress PF is generated in advance in the extrusion direction by a preliminary load MF equal to or larger than the load acting in the extrusion direction during the extrusion process. This relationship is the same as the stress relationship between the outer element 30 and the inner element 40 of the first embodiment.
  • the inner element 150 comprises a fluid supply structure 160.
  • the fluid supply structures 160 are provided at four locations, for example, at equal intervals in the circumferential direction.
  • the fluid supply structure 160 supplies a first structure 161 that supplies a fluid consisting of a liquid or a gas that cools the extruded product, and air for forming an air curtain.
  • the second structure 165 and the like are provided.
  • the first structure 161 includes a first flow path 162 for flowing a cooling medium from a supply source (not shown), and first nozzles 163 and 163 for discharging the cooling medium flowing through the first flow path 162.
  • the first flow path 162 extends from the rear to the front inside the small diameter portion 153 of the inner element 150.
  • the first nozzles 163 and 163 are connected to the tip of the first flow path 162, and the discharge port thereof is directed inward in the radial direction of the small diameter portion 153.
  • the second structure 165 includes a second flow path 166 through which air supplied from a supply source (not shown) flows, and a second nozzle 167 provided at the tip of the second flow path 166.
  • the second flow path 166 extends from the rear to the front inside the small diameter portion 153 of the inner element 150.
  • the second nozzle 167 is connected to the tip of the second flow path 166, and its discharge port is directed inward in the radial direction of the small diameter portion 153.
  • the first structure 161 is hardened into the extruded product by supplying a cooling medium to the extruded product that has just passed through the discharge path 152, that is, immediately after extrusion, and cooling the extruded product so as to follow a desired temperature history, and by other heat treatment. It is provided to obtain effects such as strength improvement.
  • the cooling medium to be supplied is selected from air, a gas such as an inert gas, and a liquid such as water, but from the viewpoint of cooling capacity, it is preferable to spray a liquid, particularly water.
  • a second structure 165 is provided as a preferred embodiment. That is, by providing the second structure 165 on the front side closer to the die 60 than the first structure 161 and supplying air from the second structure 165, the liquid sprayed from the first structure 161 reaches the die 60. Form an air curtain to prevent.
  • the liquid is sprayed from the first structure 161 onto the extruded product, but the gas can be sprayed from the first structure 161 onto the extruded product.
  • the second structure 165 can be omitted.
  • the fluid supply structure 160 may be provided with the first nozzle 163 and the second nozzle 167 exposed to the inside of the inner element 150 via a short pipe.
  • the first nozzle 163 and the second nozzle 167 can be provided in the recess formed on the inner peripheral surface of the inner element 150. In the former case, it is preferable to provide a protective body 164 that covers the first nozzle 163 and the second nozzle 167.
  • the platen 120 according to the second embodiment is composed of a second outer element 130, a first outer element 140, and an inner element 150, and has a three-layer structure in the radial direction, but is between the first outer element 140 and the inner element 150.
  • a stress structure by pinching is provided as in the first embodiment. Therefore, as in the first embodiment, the deformation of the platen 120 during the extrusion process is suppressed. Further, if the second outer element 130 and the first outer element 140 are fitted by shrinkage fitting, a compressive stress is generated in the radial direction between the second outer element 130 and the first outer element 140.
  • the portions of the second outer element 130 and the first outer element 140 have higher rigidity than the portions having an integral structure, and the deformation of the platen 120 during the extrusion process is further suppressed. it can. As described above, if sufficient rigidity can be secured for the second outer element 130, the clearance S provided in the first embodiment can be minimized or omitted.
  • the rigidity of the second outer element 130 and the first outer element 140 of the platen 120 can be ensured as described below.
  • drilling is performed in order to provide the first flow path 162 and the second flow path 166 of the fluid supply structure 160 around the discharge path 242 of the platen 220, which is integrally formed as shown in FIG. ..
  • the platen 220 bends, stress is concentrated on the cut hole machined portion, which may cause damage to the platen 220.
  • the pipes constituting the first flow path 162 and the second flow path 166 can be arranged on the peripheral edge of the discharge path 242.
  • the first flow path 162, the second flow path 166, the first nozzle 163, and the second nozzle 167 are arranged inside the inner element 150.
  • Most of the surface (inner peripheral surface of the small inner diameter portion 36) is deformed in a direction away from the outer peripheral surface of the small diameter portion 43 of the inner element 40.
  • the inner peripheral surface of the opening (small inner peripheral surface of the small inner diameter portion 146) of the second outer element 130 into which the small diameter portion 153 is inserted is large.
  • the portion is deformed in a direction away from the outer peripheral surface of the small diameter portion 153 of the inner element 150. Therefore, for the inner element 150, stress concentration due to the deflection of the second outer element 130 cannot occur, and the preload MF larger than the rated load, which is always generated parallel to the central axis C of the inner element 150, is applied.
  • the tensile stress PF cannot cause a decrease in rigidity.
  • the portion including the small diameter portion 141 of the first outer element 140, which is a part of the platen 120 is gripped, and the compressive stress CF of the portion is maintained.
  • a stress structure by pinching similar to that of the embodiment is provided. Due to this stress structure, sufficient rigidity is secured to counter the bending moment M that causes the platen 120 to bend, and the bending itself during the extrusion process of the platen 120 is suppressed. Therefore, it is possible to avoid stress concentration and a decrease in rigidity on the first outer element 140 and the second outer element 130 provided outside the inner element 150. Further, it is easier to drill a hole in the inner element 150, which is smaller in size and weight than the integrated platen 220, than to drill a hole in the platen 220.
  • the configurations listed in the above embodiments can be selected or replaced with other configurations as long as the gist of the present invention is not deviated.
  • the fluid supply structure 160 can be provided on the inner element 40 of the first embodiment.
  • Extrusion press device 10 Extrusion part 20 Platen 30 Outer element 31 Thick part 32 Pressure receiving surface 33 Thin part 33A surface 33B surface 35 Holding hole 36 Small inner diameter part 37 Large inner diameter part 38 Inner peripheral surface 39 Storage chamber 40 Inner element 41 Large diameter Part 42 Discharge path 43 Small diameter part 45 Pressure receiving surface 46 Fastening member 46'Fastening member 48 Mounting surface 50 Pressure ring 60 Die 70 Holding part 71 Container 72 Holding chamber 73 Container holder 75 Container cylinder 76 Cylinder 77 Piston rod 80 Pressure generating part 81 Main Cylinder Housing 83 Main Cylinder 84 Main Ram 85 Side Cylinder 86 Main Crosshead 87 Tie Rod 88 Extrusion Stem 89 Tie Rod Nut 120 Platen 130 Second Outer Element 131 Thick Wall 133 Thin Wall 135 Holding Hole 136 Small Inner Diameter 137 Large Inner Diameter 140 1 Outer element 141 Small diameter part 143 Large diameter part 145 Holding hole 146 Small inner diameter part 147 Large inner diameter part 150 Inner element 151 Large diameter

Abstract

This extrusion press device is provided with a die 60 for extrusion molding a workpiece, a cylinder 83 for imparting a pressing force pressing the workpiece against the die, and a platen 20 for accepting the pressing force from the die 60, wherein the platen 20 is provided with an outside element 30, and an inside element 40 disposed coaxially with the outside element 30, inside the outside element 30. The inside element 40 is provided sandwiching the outside element 30 from both the front and rear sides of the outside element 30.

Description

押出プレス装置および押出プレス装置のプラテンExtrusion press and platen of extrusion press
 本発明は、金属、例えばアルミニウム合金の押出成形に用いられる押出プレス装置に関し、特にプラテンに関する。 The present invention relates to an extrusion press device used for extrusion molding of a metal, for example, an aluminum alloy, and particularly to a platen.
 押出プレス装置により金属材料を押出成形するには、プレッシャーリングを介してプラテンに配置されたダイスにビレットが押出作用力をもって押し付けられる。この押出作用力は、押出プレス装置が備えるメインシリンダにより付与される。押出工程中において、押出作用力の反力がプラテンおよびメインシリンダハウジングに作用すると、プラテンに撓みが発生する。プラテンの撓みにともなって、プレッシャーリングおよびダイスに撓みが生じる。このプラテンは、エンドプラテンと称されることもある。 To extrude a metal material with an extrusion press, the billet is pressed against the die placed on the platen via a pressure ring with extrusion force. This extrusion force is applied by the main cylinder provided in the extrusion press device. During the extrusion process, when the reaction force of the extrusion force acts on the platen and the main cylinder housing, the platen is bent. As the platen bends, the pressure ring and die bend. This platen is sometimes referred to as the end platen.
 図9は、プラテン220に発生する撓みを示している。
 図9の上側の図に示すように、押出作用力Fの反力fは、プラテン220の略中央部にダイス260およびプレッシャーリング250を介して押出方向に作用する。押出方向は押出作用力Fを示す白抜き矢印と同じ向きで示される。一方、この反力fに対しては、タイロッド287には反力fと逆向きの抗力f’が生じる。タイロッド287は押出方向に平行に弾性域内で変形(伸張)することによりこの反力fに抗する。その結果、プラテン220には、プラテン220の略中央部を押出方向に突出させるように弯曲させようとする曲げモーメントMが発生する。しかしながら、その後方に製品を連続して押出成形(排出)するために、厚さ方向に貫通する排出路242が形成されているプラテン220は、排出路242の近傍に、曲げモーメントMに抗する十分な剛性を確保することが物理的に困難である。したがって、押出工程において、図9の下側の図に示すような撓み、弯曲変形が発生する。
FIG. 9 shows the deflection generated in the platen 220.
As shown in the upper figure of FIG. 9, the reaction force f of the extrusion acting force F acts on the substantially central portion of the platen 220 in the extrusion direction via the die 260 and the pressure ring 250. The extrusion direction is shown in the same direction as the white arrow indicating the extrusion force F. On the other hand, with respect to this reaction force f, a drag force f'in the opposite direction to the reaction force f is generated in the tie rod 287. The tie rod 287 resists this reaction force f by deforming (stretching) in the elastic region parallel to the extrusion direction. As a result, the platen 220 generates a bending moment M that tends to bend the substantially central portion of the platen 220 so as to project in the extrusion direction. However, the platen 220 in which the discharge path 242 penetrating in the thickness direction is formed in order to continuously extrude (discharge) the product behind the platen 220 resists the bending moment M in the vicinity of the discharge path 242. It is physically difficult to secure sufficient rigidity. Therefore, in the extrusion process, bending and bending deformation as shown in the lower figure of FIG. 9 occur.
 なお、図9は概略平面図であるが、タイロッド287はプラテン220の四隅に配置されているため、側面からの矢視においても平面図と同様にプラテン220の撓みが発生する。すなわち、3次元的にはプラテン220の略中央部が押出方向に突出するような撓みとなる。 Although FIG. 9 is a schematic plan view, since the tie rods 287 are arranged at the four corners of the platen 220, the platen 220 is bent as in the plan view even when viewed from the side. That is, three-dimensionally, the bending is such that the substantially central portion of the platen 220 protrudes in the extrusion direction.
 また、押出工程における押出作用力Fによりプラテン220が撓むと、この撓みに対応してプラテン220に固定されているプレッシャーリング250およびダイス260も変形する。 Further, when the platen 220 is bent by the extrusion force F in the extrusion process, the pressure ring 250 and the die 260 fixed to the platen 220 are also deformed in response to this bending.
 プラテンに作用する押出工程中の押出作用力は押出開始時から押出完了時にかけて変動、具体的には図10に示すように減少するため、押出工程中にプラテン220の撓みは減少する。この撓みの減少に伴って、プレッシャーリングおよびダイスの変形も減少し得る。そのため、押出工程の開始から完了までの間、ダイスから押出成形される製品の寸法が変動し、ダイスの変形の変動の程度によっては、製品について所望する寸法精度を得ることが難しくなる。なお、図10に示すグラフの横軸は、押出工程中のビレットの長さLを示し、縦軸はビレットを押出成形するために要する押出作用力Fを示す。押出作用力Fは、ビレットを介してダイスに作用する所要押出力Faと、ビレット外周面及びビレットが収納されるコンテナ内周面の摩擦力fbとの和、すなわち、F=Fa+fbで表される。前述した押出工程中の押出作用力の減少は、摩擦力fbの減少によるものである。また、所要押出力Faは熱影響を無視すれば押出工程中は一定で変動しない。 The extrusion force acting on the platen during the extrusion process fluctuates from the start of extrusion to the completion of extrusion, and specifically decreases as shown in FIG. 10, so that the deflection of the platen 220 decreases during the extrusion process. With this reduction in deflection, the deformation of the pressure ring and dice can also be reduced. Therefore, the dimensions of the product extruded from the die fluctuate from the start to the completion of the extrusion process, and it becomes difficult to obtain the desired dimensional accuracy for the product depending on the degree of fluctuation in the deformation of the die. The horizontal axis of the graph shown in FIG. 10 indicates the length L of the billet during the extrusion process, and the vertical axis indicates the extrusion force F required for extrusion molding the billet. The extrusion force F is represented by the sum of the required push force Fa acting on the die via the billet and the frictional force fb on the outer peripheral surface of the billet and the inner peripheral surface of the container in which the billet is housed, that is, F = Fa + fb. .. The decrease in the extrusion force during the extrusion step described above is due to the decrease in the frictional force fb. Further, the required push output Fa is constant and does not fluctuate during the extrusion process if the heat effect is ignored.
 特許文献1には、押出工程中の撓みを抑制することができるプレッシャーリングと、このプレッシャーリングを用いた押出ブレス装置が開示されている。特許文献1のプレッシャーリングは、外側部材と内側部材とを備える2重構造をなし、外側部材が内側部材に焼きばめされている。特許文献1のプレッシャーリングによれば、外側部材が内側部材に焼きばめされているので、内側部材には径方向の外側から内側に向かう応力が付与されている。したがって、プレッシャーリングの軸線方向に荷重を受けても、外側から内側に向かう応力が当該荷重に対抗するので、撓みが抑制される。 Patent Document 1 discloses a pressure ring capable of suppressing bending during an extrusion process and an extrusion breath device using this pressure ring. The pressure ring of Patent Document 1 has a double structure including an outer member and an inner member, and the outer member is shrink-fitted on the inner member. According to the pressure ring of Patent Document 1, since the outer member is shrink-fitted to the inner member, stress is applied to the inner member from the outer side to the inner side in the radial direction. Therefore, even if a load is applied in the axial direction of the pressure ring, the stress from the outside to the inside opposes the load, so that the deflection is suppressed.
特開平10-258309号公報Japanese Unexamined Patent Publication No. 10-258309
 特許文献1によれば、プレッシャーリングの撓みを抑えることができる。しかし、プレッシャーリングの撓みはプラテンの撓みに基づいており、2重構造のプレッシャーリングに外側から内側に向かう応力を生じさせたとしても、プラテンの撓みがなくなるわけではない。したがって、押出工程中におけるプレッシャーリングおよびダイスの変形の変動を、製品について高い寸法精度を得るために十分な程度まで抑えることは難しい。 According to Patent Document 1, bending of the pressure ring can be suppressed. However, the deflection of the pressure ring is based on the deflection of the platen, and even if a stress is generated from the outside to the inside of the double-structured pressure ring, the deflection of the platen is not eliminated. Therefore, it is difficult to suppress fluctuations in pressure ring and die deformation during the extrusion process to a sufficient extent to obtain high dimensional accuracy for the product.
 そこで本発明は、撓みが発生するのを抑えることのできるプラテンを備える押出プレス装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an extrusion press device provided with a platen capable of suppressing the occurrence of bending.
 本発明に係る押出プレス装置は、被加工材を押出成形するダイスと、ダイスに被加工材を押し付ける押圧力を付与するシリンダと、ダイスからの押圧力を受けるプラテンと、を備える。
 本発明に係るプラテンは、外側要素と、外側要素の内側に外側要素と同軸上に配置される内側要素と、を備える。
 本発明に係る内側要素は、外側要素の表裏の両側から、外側要素を挟持して設けられる。
The extrusion press device according to the present invention includes a die for extruding a work material, a cylinder for applying a pressing force for pressing the work material to the die, and a platen for receiving the pressing force from the die.
The platen according to the present invention includes an outer element and an inner element coaxially arranged with the outer element inside the outer element.
The inner element according to the present invention is provided by sandwiching the outer element from both the front and back sides of the outer element.
 本発明に係るプラテンは、好ましくは、外側要素と内側要素が嵌合さ、内側要素には、軸線方向(C)に引張応力が発生し、外側要素には、引張応力に対応する圧縮応力が発生している。 In the platen according to the present invention, preferably, the outer element and the inner element are fitted together, a tensile stress is generated in the inner element in the axial direction (C), and a compressive stress corresponding to the tensile stress is generated in the outer element. It has occurred.
 本発明に係る内側要素は、好ましくは、締結により外側要素を挟持して設けられる。 The inner element according to the present invention is preferably provided by sandwiching the outer element by fastening.
 本発明に係るプラテンは、好ましくは、互いに嵌合される外側要素と内側要素は、嵌合に関わらない部位は隙間が空けられる。 In the platen according to the present invention, preferably, the outer element and the inner element to be fitted to each other have a gap in a portion not related to the fitting.
 本発明に係る内側要素は、好ましくは、前方側に設けられる大径部と、大径部に連なる小径部と、小径部に締結される締結部材と、を備える。
 締結部材は、予め小径部に締め付けられることにより外側要素を押圧して、押出工程中に作用する荷重以上の予備荷重を付与することにより、引張応力が発生している。
The inner element according to the present invention preferably includes a large-diameter portion provided on the front side, a small-diameter portion connected to the large-diameter portion, and a fastening member fastened to the small-diameter portion.
Tensile stress is generated by pressing the outer element of the fastening member by being tightened to the small diameter portion in advance and applying a preliminary load equal to or larger than the load acting during the extrusion process.
 本発明に係る外側要素は、好ましくは、内側要素により挟持される領域に、圧縮応力が発生している。 In the outer element according to the present invention, compressive stress is preferably generated in the region sandwiched by the inner element.
 本発明に係る外側要素は、好ましくは、内側要素に隣接して内側要素の外側に嵌合される第1外側要素と、第1外側要素に隣接して第1外側要素の外側に嵌合される第2外側要素と、を備える。この内側要素は、第1外側要素の表裏両側から、第1外側要素を挟持して設けられる。 The outer element according to the present invention is preferably fitted to the outside of the first outer element adjacent to the inner element and to the outside of the first outer element adjacent to the inner element. The second outer element is provided. The inner element is provided by sandwiching the first outer element from both the front and back sides of the first outer element.
 この内側要素には、好ましくは、軸線方向(C)に引張応力が発生し、第1外側要素には、引張応力に対応する圧縮応力が発生している。 The inner element preferably has a tensile stress in the axial direction (C), and the first outer element has a compressive stress corresponding to the tensile stress.
 本発明に係る外側要素は、好ましくは、第1外側要素と第2外側要素とは、収縮ばめにより嵌合される。 In the outer element according to the present invention, preferably, the first outer element and the second outer element are fitted by a shrink fit.
 本発明に係る内側要素は、好ましくは、押出製品に冷却媒体を供給する流体供給構造160が配置される。 The inner element according to the present invention preferably has a fluid supply structure 160 that supplies a cooling medium to the extruded product.
 本発明に係る内側要素は、好ましくは、外側要素と縦弾性係数が略同じ金属材料、または、外側要素よりも縦弾性係数の大きな金属材料からなる。 The inner element according to the present invention is preferably made of a metal material having substantially the same Young's modulus as the outer element, or a metal material having a Young's modulus larger than that of the outer element.
 本発明によれば、内側要素は外側要素の表裏から外側要素を挟持する。この挟持により、内側要素には引張応力を発生させるとともに、外側要素には圧縮応力を発生させることができる。そのため、押出工程中に押出方向に荷重が作用したとしても、内側要素に発生する引張応力および外側要素に発生する圧縮応力は減少しつつも維持される。そのため、外側要素に撓みが発生しても、引張応力圧縮応力が発生している部分は撓みが生じにくい。 According to the present invention, the inner element sandwiches the outer element from the front and back of the outer element. By this pinching, tensile stress can be generated in the inner element and compressive stress can be generated in the outer element. Therefore, even if a load is applied in the extrusion direction during the extrusion process, the tensile stress generated in the inner element and the compressive stress generated in the outer element are reduced but maintained. Therefore, even if the outer element is bent, the portion where the tensile stress and the compressive stress are generated is unlikely to be bent.
第1実施形態に係るプラテンを備える押出プレス装置の概略構成を示す部分断面平面図である。It is a partial cross-sectional plan view which shows the schematic structure of the extrusion press apparatus which comprises the platen which concerns on 1st Embodiment. 図1のプラテンの構成を示す部分断面平面図およびその一部の拡大図である。It is a partial sectional plan view which shows the structure of the platen of FIG. 1, and is an enlarged view of a part thereof. 図2のプラテンを軸線方向に分解して示す図である。It is a figure which shows the platen of FIG. 2 decomposed in the axial direction. 図2のプラテンの他の形態を示す図である。It is a figure which shows the other form of the platen of FIG. 第2実施形態に係るプラテンを示す正面図である。It is a front view which shows the platen which concerns on 2nd Embodiment. 図5のプラテンの構成を示す部分断面平面図である。It is a partial cross-sectional plan view which shows the structure of the platen of FIG. 図6のプラテンを軸線方向に分解して示す図である。It is a figure which shows the platen of FIG. 6 decomposed in the axial direction. 図6のプラテンに設けられる流体供給構造160の構成を示す断面図である。It is sectional drawing which shows the structure of the fluid supply structure 160 provided in the platen of FIG. プラテンに生ずる撓みを説明する図である。It is a figure explaining the bending which occurs in a platen. 押出作用力Fの押出工程中の変動を示すグラフである。It is a graph which shows the fluctuation of the extrusion force F during the extrusion process.
 以下、本発明に係る押出プレス装置を実施形態に基づいて説明する。本実施形態に係る押出プレス装置は、径方向に複数に分割された要素からなるプラテンを有する。複数に分割された中で内側に配置される要素は、プレッシャーリングが固定されるとともに、それよりも外側に配置される要素を貫通して表裏から当該要素を挟み込む。本実施形態に係るプラテンは、この構造を備えることにより、押出工程中の撓みを抑えることができる。
 本実施形態は、径方向に2つに分割された構造を有する第1実施形態と径方向に3つに分割された構造を有する第2実施形態とを含んでいる。以下、第1実施形態、第2実施形態の順に説明する。
Hereinafter, the extrusion press device according to the present invention will be described based on the embodiment. The extrusion press device according to the present embodiment has a platen composed of a plurality of elements divided in the radial direction. The pressure ring is fixed to the element arranged inside in the plurality of divisions, and the element is sandwiched from the front and back through the element arranged outside the element. By providing this structure, the platen according to the present embodiment can suppress bending during the extrusion process.
The present embodiment includes a first embodiment having a structure divided into two in the radial direction and a second embodiment having a structure divided into three in the radial direction. Hereinafter, the first embodiment and the second embodiment will be described in this order.
〔第1実施形態〕
 第1実施形態に係る押出プレス装置1に基づいて本実施形態に係るプラテン20を説明する。
 押出プレス装置1は、図1に示すように、被加工材であるビレットBが押し出される押出部10と、ビレットBを収容し保持する保持部70と、保持部70に収容されるビレットBを押出部10に向けて押圧する負荷を生成する圧力生成部80と、を備える。プラテン20は、押出部10を構成する主たる要素である。
[First Embodiment]
The platen 20 according to the present embodiment will be described based on the extrusion press device 1 according to the first embodiment.
As shown in FIG. 1, the extrusion press device 1 has an extrusion portion 10 from which billet B, which is a work material, is extruded, a holding portion 70 that accommodates and holds the billet B, and a billet B accommodated in the holding portion 70. It includes a pressure generating unit 80 that generates a load that presses against the extrusion unit 10. The platen 20 is a main element constituting the extruded portion 10.
[押出部10]
 押出部10は、図1、図2および図3に示すように、プラテン20と、プラテン20に支持されるプレッシャーリング50と、プレッシャーリング50に支持されるダイス60と、を備える。
 プラテン20は、外側要素30と、外側要素30の内側に同軸上に嵌合により支持される内側要素40と、を備え、径方向に分割される2層構造を有している。
[Extruded section 10]
As shown in FIGS. 1, 2 and 3, the extruded portion 10 includes a platen 20, a pressure ring 50 supported by the platen 20, and a die 60 supported by the pressure ring 50.
The platen 20 includes an outer element 30 and an inner element 40 coaxially supported inside the outer element 30 by fitting, and has a two-layer structure divided in the radial direction.
[外側要素30]
 外側要素30は、図2および図3に示すように、後方側に設けられる厚肉部31と、厚肉部31に連なり前方側に設けられる薄肉部33と、を備える直方体形状の部材である。なお、厚肉部31と薄肉部33の“肉厚”は、後述する保持孔35の内周面から外側要素30の外周面までの距離を示すものである。外側要素30は、厚肉部31および薄肉部33の内側に設けられ、前後方向に貫通するとともに、内側要素40を篏合させるための保持孔35を備える。保持孔35は、厚肉部31に対応する小内径部36と、薄肉部33に対応する大内径部37と、を備え、前後方向に階段状に形成されている。外側要素30は、通常、鋳鉄により作製される。内側要素40も同様である。
 なお、押出プレス装置1において、図1に示す(F)の側を前、(B)の側を後と定義する。また、径方向の寸法は、図1、図2に示す中心軸線Cを基準に定められる。
[Outer element 30]
As shown in FIGS. 2 and 3, the outer element 30 is a rectangular parallelepiped-shaped member including a thick-walled portion 31 provided on the rear side and a thin-walled portion 33 connected to the thick-walled portion 31 and provided on the front side. .. The "thickness" of the thick portion 31 and the thin portion 33 indicates the distance from the inner peripheral surface of the holding hole 35, which will be described later, to the outer peripheral surface of the outer element 30. The outer element 30 is provided inside the thick portion 31 and the thin portion 33, and is provided with a holding hole 35 for penetrating in the front-rear direction and for aligning the inner element 40. The holding hole 35 includes a small inner diameter portion 36 corresponding to the thick wall portion 31 and a large inner diameter portion 37 corresponding to the thin wall portion 33, and is formed in a stepped shape in the front-rear direction. The outer element 30 is usually made of cast iron. The same applies to the inner element 40.
In the extrusion press device 1, the side (F) shown in FIG. 1 is defined as the front side, and the side (B) is defined as the rear side. Further, the radial dimension is determined with reference to the central axis C shown in FIGS. 1 and 2.
[内側要素40]
 内側要素40は、図2および図3に示すように、プレッシャーリング50の取付面48が設けられる大径部41と、大径部41に連なり、厚肉部31を前後方向に貫通して設けられる小径部43と、を備える円筒状の部材である。内側要素40は、外観上、ボルトに似ており、大径部41が頭部に対応し、小径部43が胴部に対応する。
 内側要素40の外径は、外側要素30の外面(上下面及び両側面)の長さに比べて小さく、外側要素30の内径側の一部を代替しているものとみなされる。予備荷重を作用させた際、図2の、外側要素30(厚肉部31)の受圧面32に予備荷重に相当する以下の面圧ΔPが発生する。この面圧ΔPが、外側要素30の材料強度の降伏点を下回り、さらに安全率を見込んだ面圧になるように、リング状の受圧面32の面積を決定する、内側要素40の大径部41および小径部43それぞれの直径が、使用されるダイス60の直径やプレッシャーリング50の直径も考慮されて決定される。
 ΔP=A/F
 A=π・(D-d)/4
 ΔP:受圧面32の面圧  F:押出作用力(予備荷重MF)
 A:受圧面32の面積  ΦD:大径部41の外径 Φd:小径部43の外径
[Inner element 40]
As shown in FIGS. 2 and 3, the inner element 40 is connected to the large diameter portion 41 on which the mounting surface 48 of the pressure ring 50 is provided and the large diameter portion 41, and is provided so as to penetrate the thick portion 31 in the front-rear direction. It is a cylindrical member including a small diameter portion 43 to be formed. The inner element 40 is similar in appearance to a bolt, with the large diameter portion 41 corresponding to the head and the small diameter portion 43 corresponding to the body portion.
The outer diameter of the inner element 40 is smaller than the length of the outer surface (upper and lower surfaces and both side surfaces) of the outer element 30, and is considered to replace a part of the inner diameter side of the outer element 30. When a preliminary load is applied, the following surface pressure ΔP corresponding to the preliminary load is generated on the pressure receiving surface 32 of the outer element 30 (thick wall portion 31) in FIG. The large diameter portion of the inner element 40 that determines the area of the ring-shaped pressure receiving surface 32 so that the surface pressure ΔP is lower than the yield point of the material strength of the outer element 30 and the surface pressure allows for a safety factor. The diameter of each of the 41 and the small diameter portion 43 is determined in consideration of the diameter of the die 60 used and the diameter of the pressure ring 50.
ΔP = A / F
A = π ・ (D 2- d 2 ) / 4
ΔP: Surface pressure of pressure receiving surface 32 F: Extrusion force (preliminary load MF)
A: Area of pressure receiving surface 32 ΦD: Outer diameter of large diameter portion 41 Φd: Outer diameter of small diameter portion 43
 内側要素40は、大径部41から小径部43に亘って前後方向に貫通する排出路42が設けられる。ダイス60を通過して押し出された押出製品は排出路42を通って押出プレス装置1から後方に排出される。また、内側要素40は、小径部43の後方側の外周端部におねじ44が切られている。小径部43のおねじ44は、後述する締結部材46のめねじ47と締め付けられる。さらに、内側要素40は、大径部41と小径部43を繋ぐ受圧面45を備える。受圧面45は、外側要素30からの中心軸線Cに平行な方向、つまり軸線方向の圧力を受ける面である。受圧面45と外側要素30の受圧面32は、中心軸線Cに直交する平面が例示されているが、互いに圧力を受けることができるのであれば、他の形状であってもよい。例えば、押出方向Ed(図1)に傾くテーパ面、階段状の面などを適用できる。 The inner element 40 is provided with a discharge path 42 penetrating in the front-rear direction from the large diameter portion 41 to the small diameter portion 43. The extruded product extruded through the die 60 is discharged rearward from the extrusion press device 1 through the discharge path 42. Further, the inner element 40 has a screw 44 cut at the outer peripheral end portion on the rear side of the small diameter portion 43. The screw 44 of the small diameter portion 43 is tightened with the female screw 47 of the fastening member 46 described later. Further, the inner element 40 includes a pressure receiving surface 45 connecting the large diameter portion 41 and the small diameter portion 43. The pressure receiving surface 45 is a surface that receives pressure in a direction parallel to the central axis C from the outer element 30, that is, in the axial direction. The pressure receiving surface 45 and the pressure receiving surface 32 of the outer element 30 are exemplified by a plane orthogonal to the central axis C, but may have other shapes as long as they can receive pressure from each other. For example, a tapered surface inclined in the extrusion direction Ed (FIG. 1), a stepped surface, or the like can be applied.
 内側要素40は、大径部41および小径部43を外側要素30に固定するための締結部材46を備える。締結部材46はナットと同様の形態をなしており、小径部43に形成されたおねじ44と締め付けられるめねじ47が内周面に切られている。第1実施形態は、押出プレス装置1の組立時に、予備荷重MFを発生させた状態において、予め締結部材46をプラテン20の後方側から小径部43に締め付けることにより、内側要素40に中心軸線Cに平行な引張応力PFを常時発生させるところに特徴を有している。
 予備荷重MFは、プレッシャーリング50およびダイス60を介して、押出工程中に内側要素40に作用する定格荷重以上の値に設定される。予備荷重MFの発生手順の例は後述される。
The inner element 40 includes a fastening member 46 for fixing the large diameter portion 41 and the small diameter portion 43 to the outer element 30. The fastening member 46 has the same shape as a nut, and a male screw 44 formed on the small diameter portion 43 and a female screw 47 to be tightened are cut on the inner peripheral surface. In the first embodiment, when the extrusion press device 1 is assembled, the fastening member 46 is previously tightened from the rear side of the platen 20 to the small diameter portion 43 in a state where a preliminary load MF is generated, so that the central axis C is attached to the inner element 40. It is characterized in that a tensile stress PF parallel to is constantly generated.
The preload MF is set to a value equal to or higher than the rated load acting on the inner element 40 during the extrusion process via the pressure ring 50 and the die 60. An example of the procedure for generating the preload MF will be described later.
 第1実施形態においては、小径部43の少なくともおねじ44が外側要素30の後方に突出されるとともに、締結部材46のめねじ47がこのおねじ44に締め付けられる。これにより、外側要素30の厚肉部31は内側要素40と締結部材46による締結により挟持される。 In the first embodiment, at least the male screw 44 of the small diameter portion 43 is projected to the rear of the outer element 30, and the female screw 47 of the fastening member 46 is tightened to the male screw 44. As a result, the thick portion 31 of the outer element 30 is sandwiched by the inner element 40 and the fastening member 46.
 締結部材46は、プラテン20の後方側から内側要素40のおねじ44にねじ込むことが可能であって、また、ダイス60から押し出される製品をプラテン20から排出させる排出路42が形成されることが必要な要件である。この要件を備えていれば、図4に示すように、内側要素40の小径部43の内周面に加工されためねじ44’と締結部材46’から小径部43の内周面へ突出する部位の外周面に加工されたおねじ47’とが締め付けられる形態であってもよい。 The fastening member 46 can be screwed into the screw 44 of the inner element 40 from the rear side of the platen 20, and a discharge path 42 for discharging the product extruded from the die 60 from the platen 20 can be formed. It is a necessary requirement. If this requirement is satisfied, as shown in FIG. 4, a portion protruding from the screw 44'and the fastening member 46'to the inner peripheral surface of the small diameter portion 43 because the inner peripheral surface of the small diameter portion 43 of the inner element 40 is machined. It may be in a form in which the male screw 47'processed on the outer peripheral surface of the above is tightened.
[プレッシャーリング50]
 プレッシャーリング50は、図1~図3に示すように、内側要素40の取付面48に図示を省略するボルト等で取り付けられ、ダイス60からの押圧力を受けるとともに、内側要素40に押圧力を伝達する。プレッシャーリング50は、内側要素40の排出路42に通じる通過路51を備えている。プレッシャーリング50は、外側要素30および内側要素40よりも高強度材料、例えば工具鋼から作製される。
[Pressure ring 50]
As shown in FIGS. 1 to 3, the pressure ring 50 is attached to the mounting surface 48 of the inner element 40 with a bolt or the like (not shown), receives a pressing force from the die 60, and applies a pressing force to the inner element 40. introduce. The pressure ring 50 includes a passage 51 leading to the discharge passage 42 of the inner element 40. The pressure ring 50 is made of a higher strength material than the outer element 30 and the inner element 40, such as tool steel.
[保持部70]
 保持部70は、図1に示すように、ビレットBを保持するコンテナ71と、コンテナ71を保持するコンテナホルダ73と、コンテナホルダ73を介してコンテナ71をダイス60に押し付けるコンテナシリンダ75と、を備えている。
 コンテナ71は、コンテナホルダ73に支持された状態で前後方向に貫通する保持室72を備えている。ビレットBは、この保持室72に収容された状態でコンテナ71に保持される。
 コンテナホルダ73はコンテナ71を保持する。コンテナホルダ73に保持されるコンテナ71はコンテナホルダ73と一体的に前後方向に往復移動が可能である。
 コンテナシリンダ75は、プラテン20に固定されるシリンダ76と、シリンダ76に対して進退可能に設けられるピストンロッド77と、を備えている。ピストンロッド77はその先端部分がコンテナホルダ73に固定されており、コンテナシリンダ75を動作させることによりコンテナホルダ73を介してコンテナ71をダイス60に押し付けることができる。
[Holding unit 70]
As shown in FIG. 1, the holding unit 70 holds a container 71 for holding the billet B, a container holder 73 for holding the container 71, and a container cylinder 75 for pressing the container 71 against the die 60 via the container holder 73. I have.
The container 71 includes a holding chamber 72 that penetrates in the front-rear direction while being supported by the container holder 73. The billet B is held in the container 71 in a state of being housed in the holding chamber 72.
The container holder 73 holds the container 71. The container 71 held by the container holder 73 can reciprocate in the front-rear direction integrally with the container holder 73.
The container cylinder 75 includes a cylinder 76 fixed to the platen 20 and a piston rod 77 provided so as to be able to advance and retreat with respect to the cylinder 76. The tip of the piston rod 77 is fixed to the container holder 73, and the container 71 can be pressed against the die 60 via the container holder 73 by operating the container cylinder 75.
[圧力生成部80]
 圧力生成部80は、図1に示すように、プラテン20と対向するように配置されるメインシリンダハウジング81と、メインシリンダハウジング81の略中央に支持されるメインシリンダ83と、を備える。また、圧力生成部80は、メインシリンダ83の周囲においてメインシリンダハウジング81に支持されるサイドシリンダ85と、メインシリンダ83の周囲においてメインシリンダハウジング81に支持されるタイロッド87と、を備える。
 メインシリンダ83は、メインラム84と、メインラム84の先端部に固定されるメインクロスヘッド86と、メインクロスヘッド86に取り付けられる押出ステム88と、を備えている。メインシリンダ83がメインラム84をプラテン20の側に向けて動作させれば、押出ステム88がビレットBをダイス60に向けて押し付ける。
[Pressure generator 80]
As shown in FIG. 1, the pressure generating unit 80 includes a main cylinder housing 81 arranged so as to face the platen 20, and a main cylinder 83 supported substantially in the center of the main cylinder housing 81. Further, the pressure generating unit 80 includes a side cylinder 85 supported by the main cylinder housing 81 around the main cylinder 83, and a tie rod 87 supported by the main cylinder housing 81 around the main cylinder 83.
The main cylinder 83 includes a main ram 84, a main crosshead 86 fixed to the tip of the main ram 84, and an extrusion stem 88 attached to the main crosshead 86. When the main cylinder 83 operates the main ram 84 toward the platen 20, the extrusion stem 88 presses the billet B toward the die 60.
 タイロッド87は、タイロッドナット89とともにメインシリンダハウジング81とプラテン20を連結する。タイロッド87およびタイロッドナット89はプラテン20の四隅および対応するメインシリンダハウジング81の四隅を連結する。押出工程中に、プラテン20にはダイス60およびプレッシャーリング50を介して、また、メインシリンダ83を介して、メインシリンダハウジング81にはプラテン20およびメインシリンダハウジング81を互いに離間させる方向への押出作用力の反力が作用する。タイロッド87の大径部を構成するタイロッドナット89は、この反力に抗して、プラテン20及びメインシリンダハウジング81の移動を拘束する。そして、タイロッド87は、タイロッド87の弾性領域での伸張を許容しつつ、押圧作用力の反力に抗する強度を有するように構成されている。 The tie rod 87 connects the main cylinder housing 81 and the platen 20 together with the tie rod nut 89. The tie rod 87 and the tie rod nut 89 connect the four corners of the platen 20 and the corresponding four corners of the main cylinder housing 81. During the extrusion process, the platen 20 is extruded through the die 60 and the pressure ring 50, and the main cylinder housing 81 is extruded in a direction in which the platen 20 and the main cylinder housing 81 are separated from each other. The reaction force of the force acts. The tie rod nut 89, which constitutes the large diameter portion of the tie rod 87, resists this reaction force and restrains the movement of the platen 20 and the main cylinder housing 81. The tie rod 87 is configured to have a strength to resist the reaction force of the pressing force while allowing the tie rod 87 to stretch in the elastic region.
[押出プレス装置1の動作]
 以上の構成を備える押出プレス装置1の動作を説明する。
 押出プレス装置1により被加工材であるビレットBを押出成形する場合、図示しない保持手段により、プラテン20にプレッシャーリング50を介して配置されたダイス60に、コンテナシリンダ75でコンテナ71を押し付ける。そして、押出ステム88をプラテン20の側に移動させて、コンテナ71内に収納されたビレットBをダイス60に押圧させる。この工程をアプセット工程という。メインラム84をさらにプラテン20の側に移動させることにより、ビレットBを押出ステム88によりダイス60に押圧させて、ダイス60のダイス孔61から後方へ、所定の製品を連続して押出成形する。この工程を押出工程という。なお、メインクロスヘッド86には、サイドシリンダ85のシリンダロッドも固定され、サイドシリンダ85は押出工程時、つまりメインクロスヘッド86の前進時およびメインクロスヘッド86の後退時に駆動される。
[Operation of extrusion press device 1]
The operation of the extrusion press device 1 having the above configuration will be described.
When the billet B, which is a work material, is extruded by the extrusion press device 1, the container 71 is pressed by the container cylinder 75 against the die 60 arranged on the platen 20 via the pressure ring 50 by a holding means (not shown). Then, the extrusion stem 88 is moved to the side of the platen 20, and the billet B stored in the container 71 is pressed against the die 60. This process is called the upset process. By further moving the main ram 84 toward the platen 20, the billet B is pressed against the die 60 by the extrusion stem 88, and a predetermined product is continuously extruded from the die hole 61 of the die 60 to the rear. This process is called an extrusion process. The cylinder rod of the side cylinder 85 is also fixed to the main crosshead 86, and the side cylinder 85 is driven during the extrusion process, that is, when the main crosshead 86 is advanced and when the main crosshead 86 is retracted.
[引張応力PFの発生手順]
 次に、予備荷重MFにより、内側要素40に、予め中心軸線Cに平行に引張応力PFを発生させる手順の一例について簡単に説明する。なお、図1~図3を適宜参照願いたい。
[Procedure for generating tensile stress PF]
Next, an example of a procedure for generating a tensile stress PF on the inner element 40 in parallel with the central axis C in advance by the preliminary load MF will be briefly described. Please refer to FIGS. 1 to 3 as appropriate.
[外側要素30と内側要素40の仮固定]
 最初に、プレッシャーリング50を図示しないボルト等でプラテン20の内側要素40の取付面48に固定する。この時点では、締結部材46は外されている。
 引き続き、プレッシャーリング50が固定された内側要素40をクレーンや、専用の挿入治具等でプラテン20の外側要素30の保持孔35に挿入させる。内側要素40の小径部43の外径と保持孔35の小内径部36の内径とが、外側要素30に対する内側要素40の位置決め基準を満たすクリアランスを有している。したがって、外側要素30に対する内側要素40の位置決めは特に必要ない。一方、内側要素40の大径部41の外径に対して、大径部41が収容される収容室39の開口径は大きく(図2)、所定のクリアランスSが確保される。収容室39の開口径とは保持孔35の大内径部37の内径のことである。このクリアランスSについては後述する。この状態において、内側要素40の小径部43のおねじ44の一部が外側要素30よりも後方に露出する。このおねじ44に締結部材46のめねじ47をクレーンや専用の挿入治具等を用いてねじ込ませることで、締結部材46を小径部43に仮締めさせる。
[Temporary fixing of outer element 30 and inner element 40]
First, the pressure ring 50 is fixed to the mounting surface 48 of the inner element 40 of the platen 20 with a bolt or the like (not shown). At this point, the fastening member 46 has been removed.
Subsequently, the inner element 40 to which the pressure ring 50 is fixed is inserted into the holding hole 35 of the outer element 30 of the platen 20 by a crane, a dedicated insertion jig, or the like. The outer diameter of the small diameter portion 43 of the inner element 40 and the inner diameter of the small inner diameter portion 36 of the holding hole 35 have a clearance that satisfies the positioning reference of the inner element 40 with respect to the outer element 30. Therefore, positioning of the inner element 40 with respect to the outer element 30 is not particularly necessary. On the other hand, the opening diameter of the storage chamber 39 in which the large diameter portion 41 is housed is larger than the outer diameter of the large diameter portion 41 of the inner element 40 (FIG. 2), and a predetermined clearance S is secured. The opening diameter of the accommodation chamber 39 is the inner diameter of the large inner diameter portion 37 of the holding hole 35. This clearance S will be described later. In this state, a part of the screw 44 of the small diameter portion 43 of the inner element 40 is exposed behind the outer element 30. By screwing the female screw 47 of the fastening member 46 into the male screw 44 using a crane, a dedicated insertion jig, or the like, the fastening member 46 is temporarily tightened to the small diameter portion 43.
[予備荷重MFの作用]
 次に、プラテン20およびメインシリンダハウジング81の間に、押出工程中に押出方向Edに作用する荷重(定格荷重)以上の予備荷重MFを作用させる。具体的には、ダイス60の代わりに、製品形状を模した開口部のないダミーダイス等を、図示しない保持手段によりプレッシャーリング50に配置させ、このダミーダイスに、コンテナシリンダ75で、ビレットBが収容されていないコンテナ71を押し付ける。
[Action of reserve load MF]
Next, a preliminary load MF equal to or larger than the load acting on the extrusion direction Ed during the extrusion process is applied between the platen 20 and the main cylinder housing 81. Specifically, instead of the die 60, a dummy die having no opening that imitates the product shape or the like is arranged on the pressure ring 50 by a holding means (not shown), and the billet B is provided on the dummy die by the container cylinder 75. Press the uncontained container 71.
 そして、メインシリンダ83およびサイドシリンダ85を駆動させて、図示が省略される押出治具等を先端に取り付けた押出ステム88をコンテナ71の保持室72内でプラテン20の側に移動させて、押出治具によりダミーダイスに押出作用力を直に作用させる。この時、ダミーダイスを介して、プラテン20およびメインシリンダハウジング81の間に作用させる押出作用力(予備荷重MF)が、押出工程中に押出方向Edに作用する荷重(定格荷重)以上になるよう、メインシリンダ83およびサイドシリンダ85へ供給する作動油圧力を制御する。予備荷重MFは、定格荷重の105~110%とすることが好ましい。 Then, the main cylinder 83 and the side cylinder 85 are driven, and the extrusion stem 88 to which an extrusion jig or the like (not shown) is attached to the tip is moved to the platen 20 side in the holding chamber 72 of the container 71 and extruded. The extrusion force is directly applied to the dummy die by the jig. At this time, the extrusion force acting between the platen 20 and the main cylinder housing 81 via the dummy die (preliminary load MF) is equal to or greater than the load acting on the extrusion direction Ed during the extrusion process (rated load). , Controls the hydraulic oil pressure supplied to the main cylinder 83 and the side cylinder 85. The reserve load MF is preferably 105 to 110% of the rated load.
 定格荷重よりも大きなこの予備荷重MFを作用させることにより、プラテン20は、内側要素40の受圧面45を介して、定格荷重での押出工程時よりも大きく圧縮される。 By applying this preload MF, which is larger than the rated load, the platen 20 is compressed more than during the extrusion process at the rated load through the pressure receiving surface 45 of the inner element 40.
[締結部材46の増し締め]
 そして、この状態において、専用のねじ込み治具等で、仮締めされていた締結部材46を、プラテン20の後方側から内側要素40の小径部43のおねじ44にねじ込んで増し締めする。内側要素40には予備荷重MFが押出方向Edに作用しているため、外側要素30に対する内側要素40の相対的な回転運動を拘束させる周り止め手段は不要である。また、受圧面45の押出方向Edへの投影面積に含まれる外側要素30が、定格荷重での押出工程時よりもさらに圧縮されている。そのため、大きなねじ込み力を掛けずとも、締結部材46を内側要素40の小径部43にねじ込んだ後、予備荷重MFを開放すると、内側要素40に中心軸線Cに平行に、予備荷重MFに準じた引張応力PFを常時発生させることができる。
[Tightening the fastening member 46]
Then, in this state, the temporarily tightened fastening member 46 is screwed into the screw 44 of the small diameter portion 43 of the inner element 40 from the rear side of the platen 20 with a dedicated screwing jig or the like to further tighten. Since the preload MF acts on the inner element 40 in the extrusion direction Ed, there is no need for a detenting means for restraining the relative rotational movement of the inner element 40 with respect to the outer element 30. Further, the outer element 30 included in the projected area of the pressure receiving surface 45 in the extrusion direction Ed is further compressed as compared with the extrusion process under the rated load. Therefore, when the preload MF is released after screwing the fastening member 46 into the small diameter portion 43 of the inner element 40 without applying a large screwing force, the preload MF conforms to the preload MF parallel to the central axis C on the inner element 40. Tensile stress PF can be generated at all times.
[第1実施形態の効果]
 次に、第1実施形態に係るプラテン20が奏する効果について説明する。この効果は、外側要素30と内側要素40の間に以上で説明した応力状態を発生させることによる第1の効果と、クリアランスSを設けることによる第2の効果を含む。以下、順に説明する。
[Effect of the first embodiment]
Next, the effect of the platen 20 according to the first embodiment will be described. This effect includes a first effect by generating the stress state described above between the outer element 30 and the inner element 40, and a second effect by providing the clearance S. Hereinafter, they will be described in order.
[外側要素30と内側要素40の応力状態による第1の効果]
 第1実施形態において、内側要素40は外側要素30の表裏から外側要素30を挟持する。これにより、内側要素40には中心軸線Cに平行に引張応力PFが発生し、内側要素40の受圧面45と締結部材46との間に挟まれる外側要素30の部位には圧縮応力CFが発生する。これら引張応力PFおよび圧縮応力CFは、定格荷重よりも大きな予備荷重MFに準じた応力である。そのため、押出工程中に押出方向Edに作用する荷重が、最大、定格荷重と略同じであったとしても、内側要素40に発生する引張応力PF、および、外側要素30に発生する圧縮応力CFは減少しつつも維持される。そのため、タイロッド87が伸長し、かつ、プラテン20の外側要素30に撓みが発生しても、内側要素40および締結部材46による、プラテン20の略中央部の締結状態が維持され、撓みが生じにくい。
[First effect due to stress state of outer element 30 and inner element 40]
In the first embodiment, the inner element 40 sandwiches the outer element 30 from the front and back of the outer element 30. As a result, a tensile stress PF is generated in the inner element 40 in parallel with the central axis C, and a compressive stress CF is generated in the portion of the outer element 30 sandwiched between the pressure receiving surface 45 of the inner element 40 and the fastening member 46. To do. These tensile stress PF and compressive stress CF are stresses according to the preliminary load MF, which is larger than the rated load. Therefore, even if the load acting on the extrusion direction Ed during the extrusion process is substantially the same as the maximum and rated load, the tensile stress PF generated in the inner element 40 and the compressive stress CF generated in the outer element 30 are present. It is maintained while decreasing. Therefore, even if the tie rod 87 is extended and the outer element 30 of the platen 20 is bent, the fastening state of the inner element 40 and the fastening member 46 at the substantially central portion of the platen 20 is maintained, and the bending is less likely to occur. ..
 このように、本実施形態によれば、押出工程中、内側要素40および締結部材46による、プラテン20の略中央部の締結状態およびこの締結状態による圧縮応力CFが維持される。したがって、プラテン20の後方側に製品を押し出して排出させる排出路42が内側要素40に形成されていても、プラテン20の特に外側要素30に撓みを発生させる曲げモーメントM(図10(a))に対抗するための十分な剛性を、排出路42の近傍の、内側要素40(大径部41)及び締結部材46により把持された、外側要素30の厚肉部31の部位に確保することができる。こうして、第1実施形態によれば、プラテン20の撓みを抑制するという第1の効果を奏することができる。 As described above, according to the present embodiment, during the extrusion process, the fastening state of the substantially central portion of the platen 20 by the inner element 40 and the fastening member 46 and the compressive stress CF due to this fastening state are maintained. Therefore, even if the inner element 40 is formed with a discharge path 42 for pushing out and discharging the product on the rear side of the platen 20, a bending moment M (FIG. 10 (a)) that causes bending of the outer element 30 of the platen 20 in particular. Sufficient rigidity to counteract the above can be ensured at the portion of the thick portion 31 of the outer element 30 held by the inner element 40 (large diameter portion 41) and the fastening member 46 in the vicinity of the discharge path 42. it can. In this way, according to the first embodiment, the first effect of suppressing the bending of the platen 20 can be achieved.
[クリアランスSを設けることによる第2の効果]
 第1実施形態は、クリアランスSを備えることにより、プラテン20に撓みが発生しても、この撓みのプレッシャーリング50への影響を抑制することができる。以下、図2の部分拡大図を参照して説明する。
 この部分拡大図において、外側要素30に撓みが発生する前を2点鎖線で示し、撓みが発生した後を実線で示している。外側要素30と内側要素40の間にはクリアランスSが設けられている。クリアランスSは、外側要素30と内側要素40の嵌合に関わらない部位に設けられた隙間である。
このクリアランスSは、プラテン20、特に外側要素30に図示するような撓みが生じたとしても、収容室39を区画する内周面38が内側要素40の大径部41に接触しないように設定される。
[Second effect of providing clearance S]
In the first embodiment, by providing the clearance S, even if the platen 20 is bent, the influence of the bending on the pressure ring 50 can be suppressed. Hereinafter, description will be made with reference to the partially enlarged view of FIG.
In this partially enlarged view, the outer element 30 is shown by a two-dot chain line before the bending occurs, and the solid line is shown after the bending occurs. A clearance S is provided between the outer element 30 and the inner element 40. The clearance S is a gap provided in a portion not related to the fitting of the outer element 30 and the inner element 40.
This clearance S is set so that the inner peripheral surface 38 for partitioning the accommodation chamber 39 does not come into contact with the large diameter portion 41 of the inner element 40 even if the platen 20, particularly the outer element 30 is bent as shown in the drawing. Clearance.
 この構成によれば、外側要素30の撓みがプレッシャーリング50の変形に直接影響しない。そのため、外側要素30に撓みが発生し、押出作用力Fの変動(減少)によりこの撓み(撓み量)が変動した場合でも、プレッシャーリング50に図示しない保持手段により配置されているダイス60を変形させることがないという第2の効果を奏することができる。また、先に説明したように、内側要素40の小径部43の外径と小径部43が挿入される保持孔35の開口部径との間には、外側要素30に対する内側要素40の位置決め基準を満たすクリアランスしか有していない。しかし、外側要素30の撓みが発生する状態において、小径部43が挿入される外側要素30の開口部内周面(小内径部36の内周面)の大部分は、内側要素40の小径部43の外周面から離間する方向に変形する。そのため、外側要素30が撓む際に、このクリアランスの小ささがプレッシャーリング50の変形に影響する虞はない。なお、図2における所定のクリアランスSおよび外側要素30の撓みは、説明の理解を容易にするために誇張して示している。 According to this configuration, the deflection of the outer element 30 does not directly affect the deformation of the pressure ring 50. Therefore, even if the outer element 30 is bent and the bending (deflection amount) fluctuates due to the fluctuation (decrease) of the extrusion force F, the die 60 arranged by the holding means (not shown) on the pressure ring 50 is deformed. The second effect of not causing it to occur can be achieved. Further, as described above, the positioning reference of the inner element 40 with respect to the outer element 30 is between the outer diameter of the small diameter portion 43 of the inner element 40 and the opening diameter of the holding hole 35 into which the small diameter portion 43 is inserted. It only has a clearance that meets the requirements. However, in a state where the outer element 30 is bent, most of the inner peripheral surface of the opening of the outer element 30 into which the small diameter portion 43 is inserted (the inner peripheral surface of the small inner diameter portion 36) is the small diameter portion 43 of the inner element 40. Deforms in the direction away from the outer peripheral surface of. Therefore, when the outer element 30 bends, there is no possibility that the small clearance will affect the deformation of the pressure ring 50. The predetermined clearance S and the deflection of the outer element 30 in FIG. 2 are exaggerated for the sake of easy understanding of the explanation.
 一方、押出工程中、内側要素40および締結部材46による、外側要素30の略中央部の締結状態が維持されることと、この締結状態により圧縮応力CFが維持されることで確保される、外側要素30の撓みを発生させる曲げモーメントMに対抗するための剛性は、内側要素40がプラテン20と縦弾性係数が略同じ金属材料であっても構造上確保することが可能である。そのため、内側要素40をプラテン20よりも縦弾性係数が大きな金属材料で製造することにより、プラテン20の略中央部に発生させる圧縮応力CFに加えて、この中央部の強度自体を向上させて、この剛性をさらに高めることも可能である。 On the other hand, during the extrusion process, the outer side is ensured by maintaining the fastening state of the substantially central portion of the outer element 30 by the inner element 40 and the fastening member 46 and maintaining the compressive stress CF by this fastening state. The rigidity for countering the bending moment M that causes the element 30 to bend can be structurally ensured even if the inner element 40 is made of a metal material having substantially the same Young's modulus as the platen 20. Therefore, by manufacturing the inner element 40 with a metal material having a Young's modulus larger than that of the platen 20, the strength itself of the central portion is improved in addition to the compressive stress CF generated in the substantially central portion of the platen 20. It is also possible to further increase this rigidity.
 このように、内側要素40および締結部材46により、内側要素40には引張応力PF、外側要素30には圧縮応力CFを発生させることにより、外側要素30の略中央部の剛性を向上し、押出工程中の外側要素30の撓み(撓み量)を抑制することができる。 In this way, the inner element 40 and the fastening member 46 generate tensile stress PF in the inner element 40 and compressive stress CF in the outer element 30, thereby improving the rigidity of the substantially central portion of the outer element 30 and extruding. It is possible to suppress the deflection (deflection amount) of the outer element 30 during the process.
 また、外側要素30の撓み(撓み量)が発生し、押出作用力Fの変動(減少)により、押出工程中に変動したとしても、内側要素40の大径部41の外周面と、大径部41が配置される外側要素30の保持孔35の内周面と、が接触しない構成により、所定のクリアランスSが減少しつつも確保されるため、外側要素30の撓みがプレッシャーリング50の変形に直接影響しない。 Further, even if the outer element 30 is bent (amount of bending) and fluctuates during the extrusion process due to the fluctuation (decrease) of the extrusion force F, the outer peripheral surface of the large diameter portion 41 of the inner element 40 and the large diameter Due to the configuration in which the inner peripheral surface of the holding hole 35 of the outer element 30 on which the portion 41 is arranged does not come into contact with each other, a predetermined clearance S is secured while being reduced, so that the deflection of the outer element 30 is a deformation of the pressure ring 50. Does not directly affect.
 その結果、特許文献1に開示された押出プレス装置に対して、押出工程中の、プレッシャーリング50やダイス60の変形(変形量)およびその変動を大幅に抑制することができ、押出工程の開始から完了までの間、ダイス60から押出成形される製品について、所望する寸法精度で得ることができる。 As a result, with respect to the extrusion press apparatus disclosed in Patent Document 1, the deformation (deformation amount) of the pressure ring 50 and the die 60 and its fluctuation during the extrusion process can be significantly suppressed, and the extrusion process can be started. From to completion, the product extruded from the die 60 can be obtained with the desired dimensional accuracy.
〔第2実施形態〕
 次に、本発明の第2実施形態に係るプラテン120を図5~図8を参照して説明する。
 第2実施形態に係るプラテン120は、図5および図6に示すように、第2外側要素130、第1外側要素140および内側要素150を備える3層構造を有している。第2外側要素130は直方体形状の部材である。また、第1外側要素140および内側要素150は円筒状の部材であり、中心軸線C上に同軸に配置されている。第2外側要素130の内側に第1外側要素140が嵌合され、第1外側要素140の内側に内側要素150が嵌合されている。内側要素150は、第1外側要素150の表裏両側から、第1外側要素150を挟持して設けられる。
[Second Embodiment]
Next, the platen 120 according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 8.
As shown in FIGS. 5 and 6, the platen 120 according to the second embodiment has a three-layer structure including a second outer element 130, a first outer element 140, and an inner element 150. The second outer element 130 is a rectangular parallelepiped member. Further, the first outer element 140 and the inner element 150 are cylindrical members and are arranged coaxially on the central axis C. The first outer element 140 is fitted inside the second outer element 130, and the inner element 150 is fitted inside the first outer element 140. The inner element 150 is provided by sandwiching the first outer element 150 from both the front and back sides of the first outer element 150.
[第2外側要素130]
 第2外側要素130は、図5、図6および図7に示すように、後方側に設けられる厚肉部131と、厚肉部131に連なり前方側に設けられる薄肉部133と、を備える。第2外側要素130は、厚肉部131および薄肉部133の内側に設けられ、前後方向に貫通するとともに、第1外側要素140を篏合させるための保持孔135を備える。保持孔135は、厚肉部131に対応する小内径部136と、薄肉部133に対応する大内径部137と、を備え、前後方向に階段状に形成されている。
[Second outer element 130]
As shown in FIGS. 5, 6 and 7, the second outer element 130 includes a thick-walled portion 131 provided on the rear side and a thin-walled portion 133 connected to the thick-walled portion 131 and provided on the front side. The second outer element 130 is provided inside the thick portion 131 and the thin portion 133, and is provided with a holding hole 135 for penetrating in the front-rear direction and for aligning the first outer element 140. The holding hole 135 includes a small inner diameter portion 136 corresponding to the thick wall portion 131 and a large inner diameter portion 137 corresponding to the thin wall portion 133, and is formed in a stepped shape in the front-rear direction.
[第1外側要素140]
 第1外側要素140は、図5、図6および図7に示すように、後方側に設けられる小径部141と、小径部141に連なり前方側に設けられる大径部143と、を備える。第1外側要素140は、小径部141と大径部143を貫通するとともに、隣接する内側要素150を篏合させるための保持孔145を備える。保持孔145は、小内径部146と大内径部147と、を備え、前後方向に階段状に形成されている。
[First outer element 140]
As shown in FIGS. 5, 6 and 7, the first outer element 140 includes a small diameter portion 141 provided on the rear side and a large diameter portion 143 connected to the small diameter portion 141 and provided on the front side. The first outer element 140 is provided with a holding hole 145 for penetrating the small diameter portion 141 and the large diameter portion 143 and for aligning the adjacent inner elements 150. The holding hole 145 includes a small inner diameter portion 146 and a large inner diameter portion 147, and is formed in a stepped shape in the front-rear direction.
 ここで、第2外側要素130と第1外側要素140とは収縮ばめ(shrinkage fit)により嵌合されていることが好ましい。収縮ばめにより嵌合されることにより、第2外側要素130と第1外側要素140の間には径方向に圧縮応力が発生する。そのために、第2外側要素130と第1外側要素140の部分は、当該部分が一体構造であるのに比べて剛性が高くなる。また、第1外側要素140を構成する素材の縦弾性係数が、第2外側要素130を構成する素材よりも大きければ、第2外側要素130の剛性をさらに向上できる。
 このように、第2外側要素130に十分な剛性を確保できれば、第1実施形態が備えていたクリアランスSは最小にできるか、省くことができる。
 収縮ばめとしては、焼きばめと冷やしばめが知られている。焼きばめを適用する場合には、第2外側要素130を所定の温度まで加熱して径方向に膨張させた状態で、第2外側要素130と第1外側要素140を嵌合させる。冷やしばめを適用する場合には、第1外側要素140を所定の温度まで冷却して径方向に収縮させた状態で、第2外側要素130と第1外側要素140を嵌合させる。
Here, it is preferable that the second outer element 130 and the first outer element 140 are fitted by a shrinkage fit. By being fitted by the shrink fit, a compressive stress is generated in the radial direction between the second outer element 130 and the first outer element 140. Therefore, the portions of the second outer element 130 and the first outer element 140 have higher rigidity than the portions having an integral structure. Further, if the Young's modulus of the material constituting the first outer element 140 is larger than that of the material constituting the second outer element 130, the rigidity of the second outer element 130 can be further improved.
As described above, if sufficient rigidity can be secured for the second outer element 130, the clearance S provided in the first embodiment can be minimized or omitted.
Shrink-fitting and cold-fitting are known as shrink-fitting. When applying shrink-fitting, the second outer element 130 and the first outer element 140 are fitted together in a state where the second outer element 130 is heated to a predetermined temperature and expanded in the radial direction. When the cooling fit is applied, the second outer element 130 and the first outer element 140 are fitted in a state where the first outer element 140 is cooled to a predetermined temperature and contracted in the radial direction.
[内側要素150]
 内側要素150は、図5、図6および図7に示すように、プレッシャーリング50の取付凹部が設けられる大径部151と、大径部151に連なり、収容室39を前後方向に貫通して設けられる小径部153と、を備えている。
[Inner element 150]
As shown in FIGS. 5, 6 and 7, the inner element 150 is connected to the large diameter portion 151 provided with the mounting recess of the pressure ring 50 and the large diameter portion 151, and penetrates the accommodating chamber 39 in the front-rear direction. It is provided with a small diameter portion 153 provided.
 内側要素150は、大径部151から小径部153に亘って前後方向に貫通する排出路152が設けられる。ダイス60を通過して押し出された押出製品は排出路152を通って押出プレス装置1から後方に排出される。また、内側要素150は、小径部153の後方側の外周端部におねじ154が切られている。小径部153のおねじ154は、締結部材156のめねじ157と締め付けられている。さらに、内側要素150は、大径部151および小径部153を連続させる受圧面155を備える。受圧面155は、第2外側要素130および第1外側要素140からの中心軸線Cに平行な圧力を受ける面である。 The inner element 150 is provided with a discharge path 152 that penetrates in the front-rear direction from the large diameter portion 151 to the small diameter portion 153. The extruded product extruded through the die 60 is discharged rearward from the extrusion press device 1 through the discharge path 152. Further, the inner element 150 has a screw 154 cut at the outer peripheral end portion on the rear side of the small diameter portion 153. The screw 154 of the small diameter portion 153 is tightened with the female screw 157 of the fastening member 156. Further, the inner element 150 includes a pressure receiving surface 155 that connects the large diameter portion 151 and the small diameter portion 153. The pressure receiving surface 155 is a surface that receives pressure parallel to the central axis C from the second outer element 130 and the first outer element 140.
 内側要素150は、大径部151および小径部153を第1外側要素140に固定するための締結部材156を備える。締結部材156はナットと同様の形態をなしており、小径部153に形成されたおねじ154と締め付けられるめねじ157が内周面に切られている。第2実施形態も、押出プレス装置1の組立時に、予備荷重MFを発生させた状態において、予め締結部材156をプラテン20の後方側から小径部153に締め付けることにより、内側要素140に中心軸線Cに平行な引張応力PFを常時発生させた状態で、内側要素140がプラテン120の略中央内部に配置されている。 The inner element 150 includes a fastening member 156 for fixing the large diameter portion 151 and the small diameter portion 153 to the first outer element 140. The fastening member 156 has a shape similar to that of a nut, and a male screw 154 formed on the small diameter portion 153 and a female screw 157 to be tightened are cut on the inner peripheral surface. In the second embodiment as well, the central axis C is attached to the inner element 140 by previously tightening the fastening member 156 from the rear side of the platen 20 to the small diameter portion 153 in a state where the preliminary load MF is generated at the time of assembling the extrusion press device 1. The inner element 140 is arranged substantially inside the center of the platen 120 in a state where the tensile stress PF parallel to the platen 120 is constantly generated.
 内側要素150は、押出工程中に押出方向に作用する荷重以上の予備荷重MFにより、予め押出方向に引張応力PFを発生させた状態で、第1外側要素140に固定される。この関係は、第1実施形態の外側要素30と内側要素40の応力関係と同じである。 The inner element 150 is fixed to the first outer element 140 in a state where a tensile stress PF is generated in advance in the extrusion direction by a preliminary load MF equal to or larger than the load acting in the extrusion direction during the extrusion process. This relationship is the same as the stress relationship between the outer element 30 and the inner element 40 of the first embodiment.
 内側要素150は、流体供給構造160を備える。流体供給構造160は、図5に示すように、例えば、周方向に均等な間隔を開けて4か所に設けられる。
 流体供給構造160は、図6~図8に示すように、押し出された押出製品を冷却する液体または気体からなる流体を供給する第1構造161と、エアカーテンを形成するためのエアを供給する第2構造165と、を備える。
 第1構造161は、図示を省略する供給源から冷却媒体を流す第1流路162と、第1流路162を流れてきた冷却媒体を吐出する第1ノズル163,163と、を備える。第1流路162は、内側要素150の小径部153の内部を後方から前方に向けて延設される。第1ノズル163,163は、第1流路162の先端に接続され、その吐出口が小径部153の径方向の内側に向けられている。
 第2構造165は、図示を省略する供給源から供給されるエアが流れる第2流路166と、第2流路166の先端に設けられる第2ノズル167と、を備える。第2流路166は、内側要素150の小径部153の内部を後方から前方に向けて延設される。第2ノズル167は、第2流路166の先端に接続され、その吐出口が小径部153の径方向の内側に向けられている。
The inner element 150 comprises a fluid supply structure 160. As shown in FIG. 5, the fluid supply structures 160 are provided at four locations, for example, at equal intervals in the circumferential direction.
As shown in FIGS. 6 to 8, the fluid supply structure 160 supplies a first structure 161 that supplies a fluid consisting of a liquid or a gas that cools the extruded product, and air for forming an air curtain. The second structure 165 and the like are provided.
The first structure 161 includes a first flow path 162 for flowing a cooling medium from a supply source (not shown), and first nozzles 163 and 163 for discharging the cooling medium flowing through the first flow path 162. The first flow path 162 extends from the rear to the front inside the small diameter portion 153 of the inner element 150. The first nozzles 163 and 163 are connected to the tip of the first flow path 162, and the discharge port thereof is directed inward in the radial direction of the small diameter portion 153.
The second structure 165 includes a second flow path 166 through which air supplied from a supply source (not shown) flows, and a second nozzle 167 provided at the tip of the second flow path 166. The second flow path 166 extends from the rear to the front inside the small diameter portion 153 of the inner element 150. The second nozzle 167 is connected to the tip of the second flow path 166, and its discharge port is directed inward in the radial direction of the small diameter portion 153.
 第1構造161は、排出路152を通過したばかり、つまり押出直後の押出製品に冷却媒体を供給して所望する温度履歴をたどるように冷却することにより、押出製品に焼き入れ、その他の熱処理による強度向上などの効果を得るために設けられる。供給される冷却媒体は、エア、不活性ガスなどの気体、水などの液体から選択されるが、冷却能力からすると、液体、特に水を噴霧して用いることが好ましい。 The first structure 161 is hardened into the extruded product by supplying a cooling medium to the extruded product that has just passed through the discharge path 152, that is, immediately after extrusion, and cooling the extruded product so as to follow a desired temperature history, and by other heat treatment. It is provided to obtain effects such as strength improvement. The cooling medium to be supplied is selected from air, a gas such as an inert gas, and a liquid such as water, but from the viewpoint of cooling capacity, it is preferable to spray a liquid, particularly water.
 冷却媒体を液体にすると、噴霧した液体が付着した部位の腐食が懸念される。例えば、噴霧された液体が、内側要素150の排出路152およびプレッシャーリング50の通過路51を経由してダイス60に付着し、ダイス60が錆びる、あるいは、発生した錆が押出製品に混入するといった問題が発生するのを避けたい。そこで本実施形態においては、好ましい形態として、第2構造165を備える。つまり、第1構造161よりも第2構造165をダイス60に近い前方側に設け、第2構造165からエアを供給することにより、第1構造161から噴霧された液体がダイス60に達するのを防ぐエアカーテンを形成する。 When the cooling medium is made liquid, there is a concern that the sprayed liquid will corrode the part to which it adheres. For example, the sprayed liquid adheres to the die 60 via the discharge path 152 of the inner element 150 and the passage 51 of the pressure ring 50, causing the die 60 to rust, or the generated rust to be mixed into the extruded product. I want to avoid problems. Therefore, in the present embodiment, a second structure 165 is provided as a preferred embodiment. That is, by providing the second structure 165 on the front side closer to the die 60 than the first structure 161 and supplying air from the second structure 165, the liquid sprayed from the first structure 161 reaches the die 60. Form an air curtain to prevent.
 ここでは好ましい形態として、第1構造161から液体を押出製品に噴霧することを前提として説明したが、第1構造161から気体を押出製品に噴霧することができる。この場合、ダイス60などに腐食のおそれはないから、第2構造165を省くことができる。
 また、流体供給構造160は、図8の上側の図に示すように、第1ノズル163と第2ノズル167を短管を介して内側要素150の内側に露出して設けることもできるし、図8の下側の図に示すように、第1ノズル163と第2ノズル167を内側要素150の内周面に加工した凹部に設けることもできる。前者の場合、第1ノズル163と第2ノズル167を覆う保護体164を設けることが好ましい。
Here, as a preferred embodiment, the liquid is sprayed from the first structure 161 onto the extruded product, but the gas can be sprayed from the first structure 161 onto the extruded product. In this case, since there is no risk of corrosion of the die 60 or the like, the second structure 165 can be omitted.
Further, as shown in the upper diagram of FIG. 8, the fluid supply structure 160 may be provided with the first nozzle 163 and the second nozzle 167 exposed to the inside of the inner element 150 via a short pipe. As shown in the lower figure of 8, the first nozzle 163 and the second nozzle 167 can be provided in the recess formed on the inner peripheral surface of the inner element 150. In the former case, it is preferable to provide a protective body 164 that covers the first nozzle 163 and the second nozzle 167.
[第2実施形態が奏する効果]
 次に、第2実施形態が奏する効果を説明する。
 第2実施形態に係るプラテン120は、第2外側要素130、第1外側要素140および内側要素150からなり、径方向に3層構造を有するが、第1外側要素140と内側要素150の間に、第1実施形態と同様の挟持による応力構造を設けている。したがって、第1実施形態と同様に、押出工程中のプラテン120の変形が抑制される。
 また、第2外側要素130と第1外側要素140とが収縮ばめにより嵌合されれば、第2外側要素130と第1外側要素140の間の径方向に圧縮応力が発生する。そのために、第2外側要素130と第1外側要素140の部分は、当該部分が一体構造であるのに比べて剛性が高くなり、押出工程中のプラテン120の変形がさらに抑制されることが期待できる。このように、第2外側要素130に十分な剛性を確保できれば、第1実施形態が備えていたクリアランスSを最小にできるか、省くことができる。
[Effects of the second embodiment]
Next, the effect of the second embodiment will be described.
The platen 120 according to the second embodiment is composed of a second outer element 130, a first outer element 140, and an inner element 150, and has a three-layer structure in the radial direction, but is between the first outer element 140 and the inner element 150. , A stress structure by pinching is provided as in the first embodiment. Therefore, as in the first embodiment, the deformation of the platen 120 during the extrusion process is suppressed.
Further, if the second outer element 130 and the first outer element 140 are fitted by shrinkage fitting, a compressive stress is generated in the radial direction between the second outer element 130 and the first outer element 140. Therefore, it is expected that the portions of the second outer element 130 and the first outer element 140 have higher rigidity than the portions having an integral structure, and the deformation of the platen 120 during the extrusion process is further suppressed. it can. As described above, if sufficient rigidity can be secured for the second outer element 130, the clearance S provided in the first embodiment can be minimized or omitted.
 次に、第2実施形態は、内側要素150に流体供給構造160を設けているので、以下説明するように、プラテン120の第2外側要素130および第1外側要素140の剛性を担保できる。
 例えば、図9に示す全体が一体として構成されるプラテン220の排出路242の周囲に流体供給構造160の第1流路162、第2流路166を設けるためにきり孔加工を行うものとする。そうすると、プラテン220が撓むと、きり孔加工部に応力が集中しプラテン220の破損の要因となり得る。
 きり孔加工をするのに代えて、第1流路162、第2流路166を構成する配管を排出路242の周縁に配置することもできる。しかし、この代替手段を採用するには、第1ノズル163、第2ノズル167に対応する冷却ノズルの立ち上がり高さを含めて、排出路242の開口径を大きくする必要がある。したがって、この代替手段を採用すると、プラテン220の剛性を低下させる。
Next, in the second embodiment, since the fluid supply structure 160 is provided on the inner element 150, the rigidity of the second outer element 130 and the first outer element 140 of the platen 120 can be ensured as described below.
For example, it is assumed that drilling is performed in order to provide the first flow path 162 and the second flow path 166 of the fluid supply structure 160 around the discharge path 242 of the platen 220, which is integrally formed as shown in FIG. .. Then, when the platen 220 bends, stress is concentrated on the cut hole machined portion, which may cause damage to the platen 220.
Instead of drilling holes, the pipes constituting the first flow path 162 and the second flow path 166 can be arranged on the peripheral edge of the discharge path 242. However, in order to adopt this alternative means, it is necessary to increase the opening diameter of the discharge path 242, including the rising height of the cooling nozzles corresponding to the first nozzle 163 and the second nozzle 167. Therefore, if this alternative means is adopted, the rigidity of the platen 220 is reduced.
 以上に対して、第2実施形態は、第1流路162、第2流路166、第1ノズル163および第2ノズル167を内側要素150の内部に配置している。ここで、先に第1実施形態(段落0048)において説明したように、第1実施形態の、外側要素30の撓みが発生する状態において、小径部43が挿入される外側要素30の開口部内周面(小内径部36内周面)の大部分は、内側要素40の小径部43の外周面から離間する方向に変形する。同様に、第2実施形態の、第2外側要素130に撓みが発生した場合でも、小径部153が挿入される第2外側要素130の開口部内周面(小内径部146内周面)の大部分は、内側要素150の小径部153の外周面から離間する方向に変形する。したがって、内側要素150については、第2外側要素130の撓みによる応力集中は生じ得ず、内側要素150の中心軸線Cに平行に常時発生している、定格荷重よりも大きな予備荷重MFに準じた引張応力PFにより剛性の低下も生じ得ない。
 さらに、内側要素150および締結部材156による締結により、プラテン120の一部である、第1外側要素140の小径部141を含む部位が把持され、その部位の圧縮応力CFが維持される、第1実施形態と同様の挟持による応力構造が設けられている。この応力構造により、プラテン120に撓みを発生させる曲げモーメントMに対抗するための十分な剛性が確保され、プラテン120の押出工程中の撓み自体が抑制される。そのため、内側要素150よりも外側に設けられる第1外側要素140および第2外側要素130への応力集中、剛性の低下を避けることができる。
 また、一体型のプラテン220に比べて寸法および重量の小さい内側要素150にきり孔加工をするのは、プラテン220にきり孔加工するよりも、加工が容易である。
In contrast to the above, in the second embodiment, the first flow path 162, the second flow path 166, the first nozzle 163, and the second nozzle 167 are arranged inside the inner element 150. Here, as described earlier in the first embodiment (paragraph 0048), the inner circumference of the opening of the outer element 30 into which the small diameter portion 43 is inserted in the state where the outer element 30 is bent in the first embodiment. Most of the surface (inner peripheral surface of the small inner diameter portion 36) is deformed in a direction away from the outer peripheral surface of the small diameter portion 43 of the inner element 40. Similarly, even when the second outer element 130 of the second embodiment is bent, the inner peripheral surface of the opening (small inner peripheral surface of the small inner diameter portion 146) of the second outer element 130 into which the small diameter portion 153 is inserted is large. The portion is deformed in a direction away from the outer peripheral surface of the small diameter portion 153 of the inner element 150. Therefore, for the inner element 150, stress concentration due to the deflection of the second outer element 130 cannot occur, and the preload MF larger than the rated load, which is always generated parallel to the central axis C of the inner element 150, is applied. The tensile stress PF cannot cause a decrease in rigidity.
Further, by fastening with the inner element 150 and the fastening member 156, the portion including the small diameter portion 141 of the first outer element 140, which is a part of the platen 120, is gripped, and the compressive stress CF of the portion is maintained. A stress structure by pinching similar to that of the embodiment is provided. Due to this stress structure, sufficient rigidity is secured to counter the bending moment M that causes the platen 120 to bend, and the bending itself during the extrusion process of the platen 120 is suppressed. Therefore, it is possible to avoid stress concentration and a decrease in rigidity on the first outer element 140 and the second outer element 130 provided outside the inner element 150.
Further, it is easier to drill a hole in the inner element 150, which is smaller in size and weight than the integrated platen 220, than to drill a hole in the platen 220.
 以上、本発明の好適な実施形態を説明したが、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に置き換えたりすることができる。たとえば、流体供給構造160は、第1実施形態の内側要素40に設けることができる。 Although the preferred embodiments of the present invention have been described above, the configurations listed in the above embodiments can be selected or replaced with other configurations as long as the gist of the present invention is not deviated. For example, the fluid supply structure 160 can be provided on the inner element 40 of the first embodiment.
1   押出プレス装置
10  押出部
20  プラテン
30  外側要素
31  厚肉部
32  受圧面
33  薄肉部
33A 面
33B 面
35  保持孔
36  小内径部
37  大内径部
38  内周面
39  収容室
40  内側要素
41  大径部
42  排出路
43  小径部
45  受圧面
46  締結部材
46’ 締結部材
48  取付面
50  プレッシャーリング
60  ダイス
70  保持部
71  コンテナ
72  保持室
73  コンテナホルダ
75  コンテナシリンダ
76  シリンダ
77  ピストンロッド
80  圧力生成部
81  メインシリンダハウジング
83  メインシリンダ
84  メインラム
85  サイドシリンダ
86  メインクロスヘッド
87  タイロッド
88  押出ステム
89  タイロッドナット
120  プラテン
130  第2外側要素
131  厚肉部
133  薄肉部
135  保持孔
136  小内径部
137  大内径部
140  第1外側要素
141  小径部
143  大径部
145  保持孔
146  小内径部
147  大内径部
150  内側要素
151  大径部
152  排出路
153  小径部
155  受圧面
156  締結部材
160  流体供給構造
161  第1構造
162  第1流路
163  第1ノズル
165  第2構造
166  第2流路
167  第2ノズル
220  プラテン
242  排出路
250  プレッシャーリング
260  ダイス
287  タイロッド
B ビレット
C 中心軸線
S クリアランス
1 Extrusion press device 10 Extrusion part 20 Platen 30 Outer element 31 Thick part 32 Pressure receiving surface 33 Thin part 33A surface 33B surface 35 Holding hole 36 Small inner diameter part 37 Large inner diameter part 38 Inner peripheral surface 39 Storage chamber 40 Inner element 41 Large diameter Part 42 Discharge path 43 Small diameter part 45 Pressure receiving surface 46 Fastening member 46'Fastening member 48 Mounting surface 50 Pressure ring 60 Die 70 Holding part 71 Container 72 Holding chamber 73 Container holder 75 Container cylinder 76 Cylinder 77 Piston rod 80 Pressure generating part 81 Main Cylinder Housing 83 Main Cylinder 84 Main Ram 85 Side Cylinder 86 Main Crosshead 87 Tie Rod 88 Extrusion Stem 89 Tie Rod Nut 120 Platen 130 Second Outer Element 131 Thick Wall 133 Thin Wall 135 Holding Hole 136 Small Inner Diameter 137 Large Inner Diameter 140 1 Outer element 141 Small diameter part 143 Large diameter part 145 Holding hole 146 Small inner diameter part 147 Large inner diameter part 150 Inner element 151 Large diameter part 152 Outlet path 153 Small diameter part 155 Pressure receiving surface 156 Fastening member 160 Fluid supply structure 161 First structure 162 First 1 Flow path 163 1st nozzle 165 2nd structure 166 2nd flow path 167 2nd nozzle 220 Platen 242 Discharge path 250 Pressure ring 260 Die 287 Tie rod B Billet C Center axis S Clearance

Claims (12)

  1.  被加工材を押出成形するダイスと、
     前記ダイスに前記被加工材を押し付ける押圧力を付与するシリンダと、
     前記ダイスからの前記押圧力を受けるプラテンと、を備え、
     前記プラテンは、
     外側要素と、前記外側要素の内側に前記外側要素と同軸上に配置される内側要素と、を備え、
     前記内側要素は、
     前記外側要素の表裏の両側から、前記外側要素を挟持して設けられる、
    ことを特徴とする押出プレス装置。
    A die for extruding the work material and
    A cylinder that applies a pressing force that presses the work material against the die,
    A platen that receives the pressing force from the die, and
    The platen is
    An outer element and an inner element arranged coaxially with the outer element inside the outer element are provided.
    The inner element
    The outer element is sandwiched and provided from both sides of the front and back of the outer element.
    An extrusion press device characterized by the fact that.
  2.  前記外側要素と前記内側要素が嵌合され、
     前記内側要素には、軸線方向に引張応力が発生し、
     前記外側要素には、前記引張応力に対応する圧縮応力が発生している、請求項1に記載の押出プレス装置。
    The outer element and the inner element are fitted and
    Tensile stress is generated in the inner element in the axial direction, and
    The extrusion press device according to claim 1, wherein a compressive stress corresponding to the tensile stress is generated in the outer element.
  3.  前記内側要素は、
     締結により前記外側要素を挟持して設けられる、
    請求項1または請求項2に記載の押出プレス装置。
    The inner element
    Provided by sandwiching the outer element by fastening.
    The extrusion press device according to claim 1 or 2.
  4.  互いに嵌合される前記外側要素と前記内側要素は、嵌合に関わらない部位は隙間が空けられる、
    請求項1乃至請求項3のいずれか一項に記載の押出プレス装置。
    The outer element and the inner element that are fitted to each other have a gap in a portion that is not involved in the fitting.
    The extrusion press device according to any one of claims 1 to 3.
  5.  前記内側要素は、
     前方側に設けられる大径部と、前記大径部に連なる小径部と、前記小径部に締結される締結部材と、を備え、
     前記締結部材は、
     予め前記小径部に締め付けられることにより前記外側要素を押圧して、押出工程中に作用する荷重以上の予備荷重を付与することにより、前記引張応力が発生している、
    請求項2に記載の押出プレス装置。
    The inner element
    A large-diameter portion provided on the front side, a small-diameter portion connected to the large-diameter portion, and a fastening member to be fastened to the small-diameter portion are provided.
    The fastening member is
    The tensile stress is generated by pressing the outer element by being tightened to the small diameter portion in advance and applying a preliminary load equal to or greater than the load acting during the extrusion process.
    The extrusion press device according to claim 2.
  6.  前記外側要素は、前記内側要素により挟持される領域に、前記圧縮応力が発生している、
    請求項5に記載の押出プレス装置。
    In the outer element, the compressive stress is generated in the region sandwiched by the inner element.
    The extrusion press device according to claim 5.
  7.  前記外側要素は、
     前記内側要素に隣接して前記内側要素の外側に嵌合される第1外側要素と、
     前記第1外側要素に隣接して前記第1外側要素の外側に嵌合される第2外側要素と、を備え、
     前記内側要素は、
     前記第1外側要素の表裏両側から、前記第1外側要素を挟持して設けられる、
    請求項1に記載の押出プレス装置。
    The outer element
    A first outer element that is adjacent to the inner element and fitted to the outside of the inner element,
    A second outer element that is adjacent to the first outer element and fitted to the outside of the first outer element.
    The inner element
    The first outer element is sandwiched and provided from both the front and back sides of the first outer element.
    The extrusion press device according to claim 1.
  8.  前記内側要素には、軸線方向に引張応力が発生し、
     前記第1外側要素には、前記引張応力に対応する圧縮応力が発生している、
    請求項7に記載の押出プレス装置。
    Tensile stress is generated in the inner element in the axial direction, and
    A compressive stress corresponding to the tensile stress is generated in the first outer element.
    The extrusion press device according to claim 7.
  9.  前記第1外側要素と前記第2外側要素とは、収縮ばめにより嵌合される、請求項7または請求項8に記載の押出プレス装置。
    The extrusion press device according to claim 7, wherein the first outer element and the second outer element are fitted by a shrink fit.
  10.  前記内側要素は、押出製品に冷却媒体を供給する流体供給構造が配置される、
    請求項1乃至請求項8のいずれか1項に記載の押出プレス装置。
    The inner element is arranged with a fluid supply structure that supplies a cooling medium to the extruded product.
    The extrusion press device according to any one of claims 1 to 8.
  11.  前記内側要素が、前記外側要素と縦弾性係数が略同じ金属材料、または、前記外側要素より縦弾性係数の大きな金属材料からなる、
    請求項1乃至請求項10のいずれか1項に記載の押出プレス装置。
    The inner element is made of a metal material having substantially the same Young's modulus as the outer element, or a metal material having a Young's modulus larger than that of the outer element.
    The extrusion press device according to any one of claims 1 to 10.
  12.  ダイスの押出成形による押圧力を受ける、押出プレス装置のプラテンであって、
     前記プラテンは、
     外側要素と、前記外側要素の内側に前記外側要素と同軸上に配置される内側要素と、を備え、
     前記内側要素は、
     押出工程中に作用する荷重以上の予備荷重により、予め軸線方向に引張応力を発生させた状態で、前記外側要素の内側に配置される、
    押出プレス装置のプラテン。
    A platen of an extrusion press that receives pressing force from extrusion molding of dies.
    The platen is
    An outer element and an inner element arranged coaxially with the outer element inside the outer element are provided.
    The inner element
    It is arranged inside the outer element in a state where tensile stress is generated in the axial direction in advance by a preliminary load equal to or larger than the load acting during the extrusion process.
    Platen for extrusion press equipment.
PCT/JP2019/038082 2019-09-27 2019-09-27 Extrusion press device, and platen for extrusion press device WO2021059465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/038082 WO2021059465A1 (en) 2019-09-27 2019-09-27 Extrusion press device, and platen for extrusion press device
JP2021548106A JP7107446B2 (en) 2019-09-27 2019-09-27 Extrusion presses and platens for extrusion presses
US17/649,745 US20220152678A1 (en) 2019-09-27 2022-02-02 Extrusion press machine and platen for extrusion press machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038082 WO2021059465A1 (en) 2019-09-27 2019-09-27 Extrusion press device, and platen for extrusion press device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/649,745 Continuation US20220152678A1 (en) 2019-09-27 2022-02-02 Extrusion press machine and platen for extrusion press machine

Publications (1)

Publication Number Publication Date
WO2021059465A1 true WO2021059465A1 (en) 2021-04-01

Family

ID=75165055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038082 WO2021059465A1 (en) 2019-09-27 2019-09-27 Extrusion press device, and platen for extrusion press device

Country Status (3)

Country Link
US (1) US20220152678A1 (en)
JP (1) JP7107446B2 (en)
WO (1) WO2021059465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240009725A1 (en) * 2022-07-05 2024-01-11 Battelle Memorial Institute Shear Assisted Extrusion Apparatus, Tools, and Methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255061B (en) * 2022-07-19 2023-03-21 山东大学 Production process of aluminum alloy ultrahigh-strength bent section

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021527A1 (en) * 1995-01-11 1996-07-18 Sms Schloemann Gmbh Horizontal metal bar extrusion press
US20120186319A1 (en) * 2009-10-02 2012-07-26 Luca Gracili Pressure ring for extrusion press and extrusion press comprising such a pressure ring
WO2019163432A1 (en) * 2018-02-23 2019-08-29 宇部興産機械株式会社 Extrusion press device and extrusion press method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645622A (en) * 1987-06-29 1989-01-10 Showa Aluminum Corp Die slide for extruding machine
JPH01104413A (en) * 1988-06-28 1989-04-21 Showa Alum Corp Extrusion working apparatus
JP2546957Y2 (en) * 1992-04-24 1997-09-03 宇部興産株式会社 Extrusion press with extruded product shearing device
JPH10258309A (en) * 1996-10-02 1998-09-29 Furukawa Electric Co Ltd:The Pressure ring of extruder and extruder using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021527A1 (en) * 1995-01-11 1996-07-18 Sms Schloemann Gmbh Horizontal metal bar extrusion press
US20120186319A1 (en) * 2009-10-02 2012-07-26 Luca Gracili Pressure ring for extrusion press and extrusion press comprising such a pressure ring
WO2019163432A1 (en) * 2018-02-23 2019-08-29 宇部興産機械株式会社 Extrusion press device and extrusion press method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240009725A1 (en) * 2022-07-05 2024-01-11 Battelle Memorial Institute Shear Assisted Extrusion Apparatus, Tools, and Methods

Also Published As

Publication number Publication date
JP7107446B2 (en) 2022-07-27
US20220152678A1 (en) 2022-05-19
JPWO2021059465A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2021059465A1 (en) Extrusion press device, and platen for extrusion press device
CN102049695B (en) Processing method and technological equipment for cylindrical thin and long thin-walled workpiece
JP3206505B2 (en) Hydraulic bulge processing method and hydraulic bulge processing apparatus for metal tube
CA2235853C (en) Method and apparatus for hydroforming metallic tube
CN106041503A (en) Tensioning device for pre-stressing assembly with threaded rod
JPH0724912B2 (en) Male conical screw forming method and apparatus used therefor
RU2095179C1 (en) Liner manufacture method
EP3170571B1 (en) Pipe expander
CN108787845B (en) Hydraulic forming device for large-diameter thin-wall metal pipe fitting
CN209850261U (en) Composite tool for thrust chamber preparation process
JP2009090444A (en) Method of manufacturing thin-wall bottomed cylindrical metal member
JP2023099002A (en) Method and apparatus for manufacturing hollow inner cooling valve
US20080164695A1 (en) Ferrules Manufactured From Hollow Stock
JP2005000951A (en) Hydraulic bulging method and device, and bulge article
JP4452202B2 (en) Axial punch used for hydroforming
JP5102017B2 (en) Extrusion die and extruded material manufacturing method
JP6642613B2 (en) End platen for extrusion press equipment
WO2016013405A1 (en) Method for manufacturing oval swaged collar
US20180345349A1 (en) Method and arrangement for manufacturing of tubes by continuous hydraulic expansion
JP2006043738A (en) Fuel feed pipe manufacturing method
JP6805772B2 (en) Flange fastening structure at the tip of the side cylinder rod of a fluid pressure press
RU2703075C1 (en) Puncheon for closed matrix of hot die
CN209648291U (en) A kind of thin wall cylinder tooling
JP2024510474A (en) die casting machine
JP2004042077A (en) Nozzle for hydroforming and hydroforming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946351

Country of ref document: EP

Kind code of ref document: A1