WO2021059453A1 - 無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム - Google Patents

無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム Download PDF

Info

Publication number
WO2021059453A1
WO2021059453A1 PCT/JP2019/037972 JP2019037972W WO2021059453A1 WO 2021059453 A1 WO2021059453 A1 WO 2021059453A1 JP 2019037972 W JP2019037972 W JP 2019037972W WO 2021059453 A1 WO2021059453 A1 WO 2021059453A1
Authority
WO
WIPO (PCT)
Prior art keywords
power receiving
rfid
power
wireless power
beacon signal
Prior art date
Application number
PCT/JP2019/037972
Other languages
English (en)
French (fr)
Inventor
市川 勝英
保夫 矢作
秋山 仁
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to CN201980100410.4A priority Critical patent/CN114402504A/zh
Priority to PCT/JP2019/037972 priority patent/WO2021059453A1/ja
Priority to JP2021548098A priority patent/JP7171936B2/ja
Priority to US17/763,737 priority patent/US20220320910A1/en
Publication of WO2021059453A1 publication Critical patent/WO2021059453A1/ja
Priority to JP2022176628A priority patent/JP7439212B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones

Definitions

  • the present invention relates to a wireless power receiving device, a wireless power transmitting device, and a wireless power transmitting / receiving technology using the same, and for example, a wireless charging device or a rotating body that non-contactly charges a battery of a small portable device such as an IoT device or a mobile terminal.
  • a wireless charging device or a rotating body that non-contactly charges a battery of a small portable device such as an IoT device or a mobile terminal.
  • wireless power supply technology for mounted sensors and the like Regarding wireless power supply technology for mounted sensors and the like.
  • wireless power supply those using radio waves such as microwaves and electromagnetic induction methods using magnetic field coupling are being studied.
  • the electromagnetic induction method has a transmission distance of about several cm, but the transmission efficiency of the coil used for power transmission and reception is as high as about 90%, so it is a product of wireless charging equipment for mobile devices. The conversion is progressing.
  • microwave power supply using the GHz band has poor transmission efficiency, but a transmission distance of several meters can be expected. Therefore, for example, charging by wireless power transmission while talking with a mobile device, gas or water supply Since wireless charging of IoT devices such as sensors installed to detect usage can be expected, practical application is desired.
  • Patent Document 1 realizes wireless power transmission using microwaves.
  • the beacon signal from the beacon signal oscillator mounted on the power receiving device is received by the phased array antenna of the power transmitting device.
  • the power transmission device transmits power by adjusting the phase of the phased array antenna so as to transmit from the phase information of the received signal in the direction opposite to the propagation path of the beacon signal. For this reason, even if there is an obstacle between power transmission and reception, a propagation path is formed to avoid it, so that relatively high efficiency can be expected even with microwave power feeding, which is said to have low efficiency.
  • Patent Document 1 since the beacon signal from the beacon signal oscillator mounted on the power receiving device is received by the phased array antenna of the power transmitting device and transmitted in the direction opposite to the reception propagation path, the remaining battery level of the power receiving device is low. If the beacon signal oscillator cannot be driven, the power transmission direction from the power transmission device to the power reception device is not required, and there is a problem that power transmission cannot be performed.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a technique capable of wirelessly supplying power even when the remaining battery level is low, while reducing the size and cost of the power receiving device. To do.
  • the present invention has the configuration described in the claims.
  • the present invention is a wireless power receiving device, which is an RFID responder, a beacon signal oscillator that generates a beacon signal, a power receiving antenna, the beacon signal oscillator, the RFID responder, and the power receiving.
  • the RFID-beacon changeover switch connected to each of the antennas and a power receiving side control circuit for controlling the changeover of the RFID-beacon changeover switch are provided, and the beacon signal is provided at the first input end of the RFID-beacon changeover switch.
  • the RFID responder is connected to the second input end of the RFID-beacon changeover switch
  • the power receiving antenna is connected to the first output end of the RFID-beacon changeover switch
  • the wireless power receiving device is connected to the power receiving device.
  • the power receiving side control circuit connects the RFID responder and the power receiving antenna and controls the connection of the beacon signal oscillator to the first system which is disconnected from the power receiving antenna.
  • the power receiving side control circuit connects the beacon signal oscillator and the power receiving antenna, and the RFID responder is not connected to the power receiving antenna. The feature is that the connection is controlled to the second system.
  • the figure which shows the structure of the power transmission / reception system which concerns on 1st Embodiment The figure which shows the structure of the RFID-beacon changeover switch. Timing chart when power supply is started from the state where the battery level of the power receiving device is low and the beacon signal cannot be output. Timing chart when the battery of the power receiving device is full and the beacon signal can be transmitted. A flowchart showing the operation of the power transmission device of the power transmission / reception system according to the first embodiment. A flowchart showing the operation of the power receiving device of the power transmitting / receiving system according to the first embodiment.
  • the figure which shows the structure of the power transmission / reception system which concerns on 2nd Embodiment The figure which shows the structure of the power transmission / reception system which concerns on 3rd Embodiment
  • the figure which shows the structure of the power transmission / reception system which concerns on 4th Embodiment The figure which shows the structure of the power transmission / reception system which concerns on 5th Embodiment
  • the figure which shows the structure of the power transmission / reception system which concerns on 7th Embodiment The figure which shows the state which the wireless earphone is attached to the head
  • the figure which shows the structure of the power transmission / reception system which concerns on 8th Embodiment The figure which shows the structure of the power transmission / reception system which concerns on 9th Embodiment
  • FIG. 1 is a diagram showing a configuration of a power transmission / reception system 100 according to the first embodiment.
  • the power transmission / reception system 100 is a system that supplies power from a wireless power transmission device (hereinafter abbreviated as “power transmission device”) 101 to a wireless power reception device (hereinafter abbreviated as “power reception device”) 102.
  • the transmission device 101 transmits modulation data signals from an RFID reader (antenna 111, transmission amplifier 112, RFID amplifier 113 for transmitting power to read RFID, RFID modulation circuit 114 for writing to RFID, and RFID responder. (Consists of including an RFID demodulation circuit 121 for demodulating), a first changeover switch 115, a circulator 116 that separates transmission on the transmission side and reading at the RFID reader and reception of a beacon signal in the signal direction, and power is supplied to each antenna element.
  • Phased array antenna 117 that can adjust the phase of the signal to be used to give antenna directivity in a desired direction, beacon receiving circuit 122 that receives the beacon signal from the power receiving device 102, the second changeover switch 123, and the first changeover.
  • the phase control of the phased array antenna 117 To perform communication with the switching control of the switch 115 and the second switching switch 123, the phase control of the phased array antenna 117, the transmitting side control circuit 124 controlling the operation of the beacon receiving circuit 122 and the transmitting side radio 125, and the power receiving device 102.
  • Including the power transmission side radio frequency identification 125 As the power transmission side radio 125, for example, Bluetooth (registered trademark) in the 2.4 GHz band is used.
  • the 5.8 GHz band which allows the antenna to be miniaturized, is used in the ISM band, which can be used relatively easily other than wireless communication.
  • the power receiving device 102 includes a power receiving antenna 141, an RFID-beacon changeover switch 142 (shown as “RFID-beacon changeover SW”), an RFID responder 143, an input filter 144, and a rectenna 145 that converts the received power into a DC power supply.
  • Power receiving side control that controls matching circuit 146, power supply circuit 147, battery 148, beacon signal oscillator 151, power receiving side radio 152 for wireless communication with power transmission device 101, RFID-beacon selector switch 142, beacon signal oscillator 151, etc. Includes circuit 153.
  • the operation modes of the power transmission device 101 and the power reception device 102 are switched according to the switching operation of the RFID-beacon changeover switch 142. Next, each operation mode in the power transmission device 101 will be described.
  • the transmission side control circuit 124 switches the first changeover switch 115 to the RFID modulation circuit 114 side and the second changeover switch 123 to the RFID demodulation circuit 121 side.
  • the signal from the oscillator 111 is amplified by the RFID amplifier 113, and if writing to the RFID is required by the RFID modulation circuit 114, the signal is amplitude-modulated and input to the phased array antenna 117 via the first changeover switch 115 and the circulator 116. Will be done.
  • the RFID reader signal is output in a desired direction by the phase control of the power transmission side control circuit 124.
  • the response signal becomes a reflected wave of the RFID reader signal and is received by the phased array antenna 117.
  • the reflected wave of the RFID reader signal is input to the RFID demodulation circuit 121 via the circulator 116 and the second changeover switch 123, and the signal from the RFID responder is demodulated.
  • the phase information of each antenna element of the phased array antenna 117 received at this time is input to the power transmission side control circuit 124.
  • the frequency of the RFID reader signal is the same as 5.8 GHz used for wireless power feeding.
  • beacon reception mode In the beacon reception mode, the power transmission side control circuit 124 switches the second changeover switch 123 to the beacon reception circuit 122 side. As a result, the beacon signal from the power receiving device 102 is received by the phased array antenna 117 and input to the beacon receiving circuit 122 via the circulator 116 and the second changeover switch 123. The beacon reception signal at this time and the phase information of the phased array antenna 117 are input to the power transmission side control circuit 124.
  • the power transmission side control circuit 124 switches the first changeover switch 115 to the power transmission amplifier 112 side.
  • the signal of the oscillator 111 is amplified by the power transmission amplifier 112 and transmitted from the phased array antenna 117 via the first changeover switch 115 and the circulator 116.
  • the power transmission side control circuit 124 adjusts the directivity of the phased array antenna 117.
  • the power transmission side control circuit 124 transmits power in the adjusted directivity.
  • RFID mode In RFID mode, the power receiving side control circuit 153 switches the RFID-beacon selector switch 142 to the RFID responder 143 side. As a result, the RFID responder 143 is connected to the power receiving antenna 141, and when the RFID reader signal from the power transmission device 101 is received, the corresponding response signal is output.
  • beacon output mode In the beacon output mode, the power receiving side control circuit 153 switches the RFID-beacon changeover switch 142 to the beacon signal oscillator 151 side. As a result, the beacon signal oscillator 151 is connected to the power receiving antenna 141, and the beacon signal is output from the power receiving device 102. The beacon signal is output only when the power receiving side control circuit 153 determines that the battery needs to be charged, and is not transmitted when the battery is fully charged.
  • the power receiving side control circuit 153 switches the RFID-beacon changeover switch 142 to the input filter 144 side.
  • the input filter 144 is connected to the power receiving antenna 141, the received power is converted into a DC voltage by the rectena 145, impedance matching is achieved by the matching circuit 146, and then converted into a constant voltage by the power supply circuit 147, and the battery is used. It is charged to 148.
  • control such as adjustment of the transmitted power at the time of charging is performed by communicating with the transmission side radio 125 of the power transmission device 101 via the power receiving side radio 152.
  • the power transmitting device 101 when the power transmitting device 101 is in the RFID reader mode, the power receiving device 102 is in the RFID mode. Further, when the power receiving device 102 is in the beacon output mode, the power transmitting device 101 is in the beacon receiving mode, and when the power transmitting device 101 is in the power transmitting mode, the power receiving device 102 is in the power receiving mode, so that communication and wireless communication and wireless communication can be performed between power transmission and reception. Power transmission becomes possible. In particular, in the RFID mode, it is possible to operate even when the battery level of the power receiving device is low or a device without a battery. When the phased array antenna 117 receives a signal close to the transmission frequency, it may not transmit power or may avoid the direction of arrival of the signal.
  • FIG. 2 is a diagram showing the configuration of the RFID-beacon changeover switch 142.
  • the RFID-beacon selector switch 142 has a detection circuit 201, a first field effect transistor 202, a second field effect transistor 203, a third field effect transistor 204, a first resistor 205, and a second resistor 206. It includes a third resistor 207 and a fourth resistor 208.
  • the RFID-beacon changeover switch 142 has a configuration in which a detection circuit 201 is connected to the input of the power receiving antenna 141 and outputs a detection voltage when there is received power. Further, drains and source terminals of the first field effect transistor 202, the second field effect transistor 203, and the third field effect transistor 204 are connected to both ends of the RFID responder 143, the beacon signal oscillator 151, and the input filter 144, respectively. At the same time, they are connected in series with the power receiving antenna 141.
  • the remaining amount of the battery 148 of the power receiving device 102 is small, and the first field effect transistor 202, the second field effect transistor 203, and the third field effect transistor 204 of the RFID-beacon changeover switch 142 are each. Since these circuits are connected in series even when the power cannot be turned on, they have a certain impedance with the power receiving antenna 141.
  • the output of the detection circuit 201 causes the output end of the beacon signal oscillator 151 to be short-circuited via the fourth resistor 208 due to the transmitted power of the power transmission device 101.
  • the RFID responder 143 and the input filter 144 are connected in series, but since the input impedance of the input filter 144 is relatively low, the power received by the RFID reader is substantially applied to both ends of the RFID responder 143. Therefore, the RFID responder 143 can be operated.
  • the power receiving side control circuit 153 lowers the gate voltage of the second field effect transistor 203 to turn it off, and applies an on voltage to the gates of the first field effect transistor 202 and the third field effect transistor 204.
  • the output end of the beacon signal oscillator 151 is connected to the power receiving antenna 141.
  • the beacon signal is output from the power receiving antenna 141.
  • the power receiving antenna 141 receives higher power than the RFID reader, a higher voltage is also output to the detection circuit 201. Therefore, at the output of the detection circuit 201, the voltage divided by the first resistor 205 and the second resistor 206 turns on the gate of the first field effect transistor 202 via the third resistor 207, and the beacon signal is signaled.
  • the second field effect transistor 203 connected to both output ends of the oscillator 151 is also turned on. Further, the power receiving side control circuit 153 turns off the third field effect transistor 204, so that the power received by the power receiving antenna 141 is converted into a DC voltage by the rectenna 145 via the input filter 144.
  • the RFID-beacon selector switch 142 is in a state where the remaining amount of the battery 148 is low and the first field effect transistor 202, the second field effect transistor 203, and the third field effect transistor 204 cannot operate.
  • it has a configuration that can be connected to the RFID responder 143, and can also switch between the beacon transmission mode and the power receiving mode.
  • FIG. 3 is a timing chart when power supply is started from a state where the battery level of the power receiving device 102 is low and the beacon signal cannot be output.
  • the transmission device 101 when the battery capacity is low and the beacon signal cannot be output, the transmission device 101 is in the RFID reader mode and the power receiving device 102 is in the RFID mode.
  • the RFID responder 143 responds with data such as identification information of the power receiving device 102, charging priority, and received signal level.
  • the power transmission device 101 waits for the RFID reaction while changing the directivity of the phased array antenna 117 (T301).
  • the power transmission device 101 switches to the power transmission mode to transmit power in the direction in which the RFID responds, and the power receiving device 102 enters the power receiving mode to charge the battery 148 (T303).
  • the power transmission device 1011 in order to confirm whether or not the beacon signal has been transmitted from the power receiving device 102 side, the power transmission device 1011 sometimes switches to the beacon receiving mode and waits for the transmission of the beacon signal.
  • the power receiving device 102 enters the beacon output mode, and the power transmitting device 101 receives the beacon signal (T304).
  • the power transmission device 101 determines the direction of the power reception device 102 as seen from the power transmission device 101 based on the reception direction of the beacon signal.
  • the power transmission device 101 When the power transmission device 101 receives the beacon, it enters the power transmission mode and transmits power. In this power transmission mode, the power transmission device 101 concentrates radio waves in the direction of the power receiving device 102 (narrows the output direction) and transmits power. Therefore, the power receiving device 102 is charged more efficiently, that is, faster than the power transmission of the T 303.
  • the power transmission mode of T303 is called a wide area power transmission mode
  • the power transmission mode of T305 is called a centralized power transmission mode.
  • the power receiving device 102 If the power receiving device 102 cannot receive power for some reason such as the power receiving device 102 moving during the centralized power transmission mode, the power receiving device 102 switches to the beacon output mode. Therefore, since the power transmission device 101 receives the beacon signal again, the directivity of the phased array antenna 117 can be adjusted.
  • FIG. 4 shows a timing chart when the power receiving device 102 has a remaining battery level and a beacon signal can be transmitted.
  • the power receiving device 102 is in the beacon mode because the battery level is remaining.
  • the power transmission device 101 detects the power receiving device 102 that has no remaining battery power and is in the RFID mode, it acts as an RFID reader for a while and searches for a power receiving device 102 in the RFID mode in the surroundings (T401). After a while, when it is found that there is no power receiving device 102 in the RFID mode, the power transmitting device 101 shifts to the beacon receiving mode.
  • the power transmitting device 101 When the beacon signal of the power receiving device 102 is received (T402), the power transmitting device 101 is in the centralized power transmission mode, the power receiving device 102 is in the power receiving mode, and charging of the battery 148 is started (T403). Since it is necessary to periodically adjust the directivity of the phased array antenna 117 as in the case where the battery is exhausted, the power transmission device 101 switches to the beacon reception mode, and the power receiving device 102 also switches to the beacon output mode. This makes it possible to adjust the directivity of the phased array antenna 117 during the centralized power transmission mode (T404). Further, when the charging of the power receiving device 102 is completed, the beacon signal output is stopped. As a result, the power transmission device 101 stops power transmission (T405).
  • FIG. 5 is a flowchart showing the operation of the power transmission device 101 of the power transmission / reception system 100 according to the first embodiment.
  • the power transmission device 101 switches to the RFID reader mode and scans for a certain period of time for RFID reaction (S502). This scan is performed while changing the directivity of the phased array 107.
  • the power transmission device 101 is switched to the wide area power transmission mode and power transmission is started (S504). At this time, power transmission is performed using the same directivity of the phased array 107 as at the time of RFID detection. After a certain period of time has elapsed, the power transmission device 101 switches to the beacon reception mode (S505).
  • the mode shifts to the wide area power transmission mode, and power transmission is performed again in the wide area power transmission mode (returns to S504).
  • the power transmission device 101 switches to the centralized power transmission mode to transmit power (S509).
  • the power transmission device 101 In order to grasp the position of the power receiving device and adjust the directivity of the phased array antenna 117 while transmitting power in the centralized power transmission mode, the power transmission device 101 periodically receives a beacon after starting power transmission in the centralized power transmission mode. Switch to mode. The power receiving device 102 also periodically switches to the beacon output mode.
  • the power receiving device 102 periodically confirms the presence or absence of the beacon during the centralized power transmission mode, and determines whether or not the charging of the power receiving device 102 is completed based on the presence or absence of the beacon (S510).
  • the power receiving device 102 stops the transmission of the beacon. Therefore, if the beacon cannot be received, it is determined that the charging of the power transmission device 101 is completed (S510: Yes), and the power transmission is stopped (S511). If the beacon can be received (S510: No), the centralized power transmission mode is continued (S509).
  • the charge end determination may be made by transmitting the charge end information from the power receiving side radio 152 to the power transmitting side radio 125.
  • step S502 when the power transmission device 101 scans the RFID mode for a certain period of time to see if there is any response from the RFID (S503: No), the power transmission device 101 switches to the beacon mode (S507). If there is no beacon signal from the power receiving device 102 (S508: No), since the power receiving device 102 does not exist, the power transmitting device 101 enters the RFID mode, returns to step S502, and starts scanning again for any RFID reaction.
  • step S508 when the beacon signal is detected in step S508 (S508: Yes), the power transmission device 101 is switched to the centralized power transmission mode to start power transmission (S509), and power transmission is performed until charging is completed (S510, S511).
  • FIG. 6 is a flowchart showing the operation of the power receiving device of the power transmitting / receiving system 100 according to the first embodiment.
  • this process starts from the point where the power receiving device 102 confirms the state of the remaining battery level (S601).
  • the power receiving device 102 holds the RFID mode (S603) and holds the RFID mode until there is a signal from the RFID reader.
  • the power receiving device 102 When the power receiving device 102 receives the RFID response signal (S604: Yes), the power receiving device 102 switches to the rectenna power receiving mode (S605). At this time, since the power transmission device 101 is in the wide area power transmission mode, the power transmission power is received and the battery 148 is charged until the beacon operates (S606).
  • the power receiving device 102 shifts to the beacon output mode (S607). After transmitting the beacon signal for a while, the power transmission device 101 shifts to the centralized power transmission mode, and the power receiving device 102 shifts to the rectenna power receiving mode for charging (S608).
  • the power transmission device 101 Periodically switches to the beacon receiving mode, and the power receiving device 102 switches to the beacon output mode.
  • the power receiving device 102 When the charging of the power receiving device 102 is completed (S609: Yes), the power receiving device 102 does not transition to the beacon transmission mode, while the power transmission device 101 periodically shifts to the beacon receiving mode. At this time, since the beacon signal is not received from the power receiving device 102, the power transmission device 101 stops power transmission (S610).
  • step S602 if there is a remaining battery level (S602: Yes), the process proceeds to step S607.
  • the RFID responder 143 mounted on the power receiving device 102 is attached to the RFID reader mounted on the power transmission device 101.
  • the RFID reader can be given directivity by using the phased array antenna 117 of the power transmission device 101, and power can be supplied in the wide area power transmission mode. Then, the battery 148 can be charged until the power receiving device 102 can transmit the beacon signal.
  • the direction relative to the power receiving device 102 can be known with higher accuracy than the response result of the RFID based on the beacon signal. It is possible to charge the battery in the normal wireless power supply operation (centralized power transmission mode).
  • FIG. 7 is a diagram showing the configuration of the power transmission / reception system 100a according to the second embodiment.
  • the power transmitting / receiving system 100a includes a power receiving device 102a having a configuration different from that of the power receiving device 102 of the first embodiment.
  • the power receiving device 102a used in the power transmitting / receiving system 100a has an RFID responder 143 connected to an RFID antenna (also referred to as “5.8 GHz antenna”) 701. 143 is not connected to the power receiving side control circuit 153. That is, the RFID responder 143 continues to perform passive operation regardless of the remaining amount of the battery 148 of the power receiving device 102a and without being controlled by the power receiving side control circuit 153.
  • the power receiving antenna 141 also serves as the function of the RFID antenna 701, but in the second embodiment, the RFID antenna 701 is provided separately from the power receiving antenna 141.
  • a beacon-power system changeover switch 703 is connected to the power receiving antenna 141. Further, the beacon-power system changeover switch 703 is connected to the output end of the beacon signal oscillator 151 and the input end of the input filter 144, and is configured to select either one.
  • the beacon-power system changeover switch 703 is the RFID-beacon changeover switch 142 according to the first embodiment, in which the connection to the RFID responder 143 and the changeover function thereof are deleted.
  • the same effect as that of the first embodiment can be obtained, and the RFID antenna 701 connected to the RFID responder 143 is controlled by the battery 148 and the power receiving side control circuit 153. Since it is a separate system from the driving system, a changeover switch for RFID response is not required. Therefore, since the level drop can be reduced with respect to the reflected wave of the RFID responder having a relatively low signal level, the detection sensitivity in the RFID mode can be achieved and the changeover switch can be simplified.
  • FIG. 8 is a diagram showing the configuration of the power transmission / reception system 100b according to the third embodiment.
  • the power transmission device 101a used in the power transmission / reception system 100b according to the third embodiment is different in that the power transmission side radio 125 is deleted from the power transmission device 101 used in the first and second embodiments.
  • the power receiving device 102b is different in that the power receiving side radio 152 is deleted from the power receiving device 102a used in the second embodiment and that the RFID responder 143 is connected to the power receiving side control circuit 153.
  • the power transmission device 101a can apply amplitude modulation to the RFID reader signal in the RFID modulation circuit 114 in the RFID mode.
  • the RFID reader signal subjected to this amplitude modulation is demodulated by the RFID responder 143 of the power receiving device 102, so that data can be received.
  • data such as the identification information of the power receiving device 102b, the received signal level, the remaining battery level, and the priority of charging becomes the reflection of the RFID reader signal, and the RFID demodulation circuit 121 of the power transmitting device 101 It is demodulated and input to the transmission side control circuit 124. From the data, the power transmission side control circuit 124 determines the priority of charging when there are a plurality of power receiving devices 102b, and performs charging control such as starting charging from a device having a low battery level.
  • the power transmission / reception device is simplified while obtaining the same effect as that of the second embodiment by deleting the power transmission side radio 125 and the power reception side radio 152 and using RFID instead. And low power consumption can be achieved.
  • FIG. 9 is a diagram showing the configuration of the power transmission / reception system 100c according to the fourth embodiment.
  • the power receiving device 102c according to the fourth embodiment is different in that the battery 148 and the beacon signal oscillator 151 of the power receiving device 102b according to the third embodiment are deleted, and the load circuit 901 is connected instead.
  • the position of the power receiving device 102c and the charge control can be controlled by RFID, the same effect as that of the third embodiment can be obtained, and power can be supplied to a device without a battery. It becomes.
  • FIG. 10 is a diagram showing a configuration of a power transmission / reception system 100d according to a fifth embodiment.
  • the power transmission / reception system 100d includes a power transmission device 101 mounted on the power transmission device housing 1001 and a power reception device 102 mounted on the mobile terminal 1002.
  • any of the power transmission devices and the power receiving devices of the first to fourth embodiments may be used.
  • charging is possible by using RFID even if the remaining battery level of the mobile terminal 1002 is low and the beacon signal cannot be transmitted. Further, during charging, the direction of the phased array antenna 117 shifts when the mobile terminal 1002 moves, so that the beacon signal can be periodically transmitted to adjust the charging direction. Therefore, charging is possible even while moving the mobile terminal 1002. Further, as the radio used for charge control, the circuit of the power receiving device can be simplified by using Bluetooth (registered trademark) generally mounted on the mobile terminal 1002.
  • FIG. 11 is a diagram showing a configuration of a power transmission / reception system 100e according to a sixth embodiment.
  • the wireless earphone 1101 shown in FIG. 11 includes a power receiving antenna 1102 and a speaker 1103. Since the wireless earphone 1101 is symmetrical, only one of them is numbered.
  • the wireless earphone 1101 is equipped with the power receiving device 102 of the first to fourth embodiments, and the power receiving antenna 1102 is mounted on a protruding portion on which the battery or the like of the wireless earphone 1101 is mounted.
  • the power transmission device 101 charges the mobile terminal 1002 and also charges the left and right wireless earphones 1101.
  • the mobile terminal 1002 transmits music data to the wireless earphone 1101 by Bluetooth (registered trademark).
  • the power receiving device 102 of the mobile terminal 1002 uses the power transmission device 101 and Bluetooth (registered trademark) to control charging, while the mobile terminal 1002 also uses Bluetooth (registered trademark) to transmit music data. Therefore, the power transmission device 101 communicates with the wireless earphone 1101 via the mobile terminal 1002 by superimposing the charge control data on the wireless earphone 1101 from the mobile terminal 1002 by time division or the like. It is possible.
  • the communication distance of the wireless earphone 1101 can be increased by performing wireless communication with the power transmission device 101 via the mobile terminal 1002.
  • FIG. 12 is a diagram showing a configuration of a power transmission / reception system 100f according to a seventh embodiment.
  • the LED device incorporates a power receiving device.
  • the LED device includes the LED 1202 on the outer surface of the housing 1201, and the power receiving device 102c of the fourth embodiment is mounted inside the housing 1201.
  • the LED 1202 corresponds to the load circuit 901.
  • the power transmission device 101 has a configuration in which the direction of the power reception device 102c is detected by using RFID to enter the power transmission mode, and is not equipped with a beacon signal or a battery.
  • the power receiving device 102c can be realized with a simple configuration, a configuration suitable for supplying power to an LED or the like can be obtained.
  • FIG. 13 is a diagram showing a state in which the wireless earphone 1101 is attached to the head 1301.
  • 1302 indicates the height from the ante to the face.
  • the distance d between the power receiving antenna 1102 and the skin of the face is one-fourth the wavelength of the radio wave used for wireless communication with the mobile terminal 1002.
  • the radio wave from the mobile terminal 1002 is reflected by the skin and the reflected wave has the opposite phase
  • the distance d becomes equal to a quarter wavelength the reflected wave and the direct wave become in phase, so that the antenna gain Can be raised.
  • the quarter wavelength when 5.8 GHz is used as the frequency is 1.29 cm
  • the antenna gain can be increased by designing the distance between the antenna and the skin to be 1.29 cm. be able to.
  • the distance between the extension line (extension surface) of the tip surface of the most protruding part of the wireless earphone 1101, for example, the part to be inserted into the ear, and the power receiving antenna 1102 is regarded as the distance d, which is a quarter wavelength. It may be configured to be.
  • FIG. 14 is a diagram showing a configuration of a power transmission / reception system 100 g according to an eighth embodiment.
  • the power transmission device 101 used in the power transmission / reception system 100g is built in the power transmission device housing 1001. Further, a display 1401 is provided on the outer surface of the power transmission device housing 1001. The display 1401 displays the number and name of the mobile terminal (shown by "A1" and "A2" in FIG. 14) to which the power transmission device 101 is currently supplying power. This makes it possible to confirm which mobile terminal the power transmission device 101 is supplying power to.
  • the power receiving device 102 used in the present embodiment may be a mobile terminal, a wireless earphone, or an LED device, and the type thereof does not matter.
  • FIG. 15 is a diagram showing a configuration of a power transmission / reception system 100h according to a ninth embodiment.
  • the power transmission / reception system 100h displays the state of which mode, such as the charging mode or the RFID mode, and the power reception level on the liquid crystal screen 1501 of the mobile terminal 1002 having the power receiving device 102 built-in.
  • the liquid crystal screens 1502 and 1503 show display examples of the liquid crystal screen 1501. From this display, the user can know at what level the power receiving device 102 is receiving power. Then, in the unlikely event that the power receiving level is low, the mobile terminal 1002 can be moved to an efficient position.
  • Power transmission / reception system 101 Power transmission device 102: Power reception device 141: Power reception antenna 142: RFID-beacon selector switch 143: RFID responder 145: Rectenna 151: Beacon signal oscillator 153: Power reception side control circuit

Abstract

無線受電装置にRFID応答器及びビーコン信号発振器を搭載し、ビーコン信号の送信に必要な電力がない場合はRFID応答を発信する。無線送電装置は、RFID応答を受信した方向に向けて広角に送電する広域送電モードで動作する。無線受電装置が広域送電モードにより受電し、ビーコン信号の送信が可能になるとビーコン信号を発信する。無線送電装置は、ビーコン信号を受信した方向に向けて、より狭い角度で送電する集中送電モードで動作する。集中送電モード中も、周期的にビーコン信号の送受信を行い、無線受電装置と無線送電装置との位置を確認する。

Description

無線受電装置、無線送電装置、ワイヤレスイヤホン、LED装置及び無線送受電システム
 本発明は、無線受電装置、無線送電装置及びそれらを用いた無線送受電技術に係り、例えば、IoT機器や携帯端末など小型携帯機器のバッテリに非接触により充電を行う無線充電や回転体などに実装されたセンサなどへの無線給電技術に関する。
 携帯端末などの携帯機器などでは小型、薄型化が進んだ反面、充電の時のコネクタ接続が煩わしい状況にあり、無線給電による充電の要求が高まっている。無線給電には、マイクロ波などの電波を用いるものや磁界結合を用いた電磁誘導方式などが検討されている。これらのうち、電磁誘導方式は伝送距離が数cm程度であるが送受電に用いられるコイルの伝送効率は90%程度の高い効率が得られていることから、携帯機器向けの無線充電機器の製品化が進んでいる。これに対し、GHz帯を用いたマイクロ波給電は伝送効率が悪い反面、数m程度の伝送距離が期待できるため、例えば、携帯機器で通話をしながらの無線電力伝送による充電やガスや水道の使用量を検出するために設置されたセンサ類などのIoT機器への無線充電も期待できることから実用化が望まれている。
 特許文献1は、マイクロ波を用いた無線電力伝送を実現するものである。特許文献1において、受電装置に搭載されたビーコン信号発振器からのビーコン信号は送電装置のフェーズドアレイアンテナにより受信される。このとき送電装置は、受信した信号の位相情報から、ビーコン信号の伝搬経路とは逆方向に伝送するようにフェーズドアレイアンテナの位相を調整して電力を送電する。このため、送受電間に障害物などがある場合でもそれを避けるような伝搬経路が形成されるため、効率が低いと言われるマイクロ波給電でも比較的高い効率が期待できる。
特開2014-223018号公報
 特許文献1では、受電装置に搭載されたビーコン信号発振器からのビーコン信号を送電装置のフェーズドアレイアンテナで受信することでその受信伝搬経路と逆方向に送電するため、受電装置のバッテリ残量が少なくビーコン信号発振器を駆動することができないと送電装置から受電装置への送電方向が求められず送電できないという課題を有していた。
 本発明は上記課題を解決するためになされたものであり、受電装置の小型化、及び低コスト化を図りつつ、バッテリ残量が少ない場合にも無線給電ができる技術を提供することを目的とする。
 上記課題を解決するため、本発明は、請求の範囲に記載の構成を備える。その一例をあげるならば、本発明は、無線受電装置であって、RFID応答器と、ビーコン信号を生成するビーコン信号発振器と、受電アンテナと、前記ビーコン信号発振器、前記RFID応答器、及び前記受電アンテナの其々に接続されたRFID-ビーコン切替スイッチと、前記RFID-ビーコン切替スイッチの切替制御を行う受電側制御回路と、を備え、前記RFID-ビーコン切替スイッチの第1入力端に前記ビーコン信号発振器が接続され、前記RFID-ビーコン切替スイッチの第2入力端に前記RFID応答器が接続され、前記RFID-ビーコン切替スイッチの第1出力端に前記受電アンテナが接続され、前記無線受電装置に前記ビーコン信号を送信する電力がない場合、前記受電側制御回路は、前記RFID応答器と前記受電アンテナとを接続すると共に前記ビーコン信号発振器は前記受電アンテナと非接続にする第1系統に接続制御し、前記無線受電装置に前記ビーコン信号を送信する電力がある場合は、前記受電側制御回路は、前記ビーコン信号発振器と前記受電アンテナとを接続すると共に前記RFID応答器は前記受電アンテナと非接続にする第2系統に接続制御する、ことを特徴とする。
 本発明の一態様によれば、受電装置の小型化、及び低コスト化を図りつつ、バッテリ残量が少ない場合にも無線給電ができる技術を提供することができる。前述した以外の課題、構成及び効果は、以下の実施形態の説明によって明らかにされる。
第1実施形態に係る送受電システムの構成を示す図 RFID-ビーコン切替スイッチの構成を示す図 受電装置のバッテリ残量が少なくビーコン信号が出力できない状態から給電を開始した時のタイミングチャート 受電装置のバッテリ残量がありビーコン信号が送信できる場合のタイミングチャート 第1実施形態に係る送受電システムの送電装置の動作を示すフローチャート 第1実施形態に係る送受電システムの受電装置の動作を示すフローチャート 第2実施形態に係る送受電システムの構成を示す図 第3実施形態に係る送受電システムの構成を示す図 第4実施形態に係る送受電システムの構成を示す図 第5実施形態に係る送受電システムの構成を示す図 第6実施形態に係る送受電システムの構成を示す図 第7実施形態に係る送受電システムの構成を示す図 ワイヤレスイヤホンを頭部に装着した状態を示す図 第8実施形態に係る送受電システムの構成を示す図 第9実施形態に係る送受電システムの構成を示す図
<第1実施形態>
 図1は、第1実施形態に係る送受電システム100の構成を示す図である。
 図1に示すように、送受電システム100は、無線送電装置(以下「送電装置」と略記)101から無線受電装置(以下「受電装置」と略記)102へ給電するシステムである。送電装置101は、RFIDリーダ(発振器111、送電アンプ112、RFIDを読み取るために送電を行うためのRFIDアンプ113、RFIDに書き込みを行うためのRFID変調回路114、RFID応答器からの変調データ信号を復調するRFID復調回路121を含んで構成される)、第1切替スイッチ115、送電側の送信とRFIDリーダ時の読み取りやビーコン信号の受信を信号の方向で分離するサーキュレータ116、各アンテナ素子に給電する信号の位相を調整して所望の方向にアンテナ指向性を持たせることができるフェーズドアレイアンテナ117、受電装置102からのビーコン信号を受信するビーコン受信回路122、第2切替スイッチ123、第1切替スイッチ115及び第2切替スイッチ123の切替制御、フェーズドアレイアンテナ117の位相の制御、ビーコン受信回路122及び送電側無線機125の動作を制御する送電側制御回路124、受電装置102と通信を行うための送電側無線機125を含む。送電側無線機125は、例えば、2.4GHz帯のBluetooth(登録商標)などが用いられる。なお、送電周波数には、無線通信以外の利用が比較的容易にできるISM帯において、アンテナの小型化が図れる5.8GHz帯を用いている。
 また、受電装置102は、受電アンテナ141、RFID-ビーコン切替スイッチ142(「RFID-ビーコン切替SW」と図示)、RFID応答器143、入力フィルタ144、受電した電力を直流電源に変換するレクテナ145、整合回路146、電源回路147、バッテリ148、ビーコン信号発振器151、送電装置101と無線通信を行うための受電側無線機152、RFID-ビーコン切替スイッチ142やビーコン信号発振器151などを制御する受電側制御回路153を含む。
 送受電システム100は、RFID-ビーコン切替スイッチ142の切り替え動作に伴い、送電装置101及び受電装置102の動作モードが切り替わる。次に送電装置101での各動作モードについて説明する。
 (RFIDリーダモード)
 RFIDリーダモードでは、送電側制御回路124が、第1切替スイッチ115をRFID変調回路114側に、第2切替スイッチ123をRFID復調回路121側に切り替える。これにより、発振器111からの信号はRFIDアンプ113により増幅され、RFID変調回路114によりRFIDに書き込みが必要な場合は振幅変調されて第1切替スイッチ115およびサーキュレータ116を介してフェーズドアレイアンテナ117に入力される。フェーズドアレイアンテナ117では、送電側制御回路124の位相制御により所望の方向にRFIDリーダ信号が出力される。このとき、受電装置102に搭載されたRFID応答器143から応答があった場合、その応答信号はRFIDリーダ信号の反射波となってフェーズドアレイアンテナ117で受信される。そして、RFIDリーダ信号の反射波はサーキュレータ116と第2切替スイッチ123を介してRFID復調回路121に入力され、RFID応答器からの信号を復調する。また、このとき受信したフェーズドアレイアンテナ117の各アンテナ素子の位相情報が送電側制御回路124に入力される。なお、RFIDリーダ信号の周波数は、無線給電に用いられる5.8GHzと同じ周波数が用いられる。
 (ビーコン受信モード)
 ビーコン受信モードでは、送電側制御回路124が、第2切替スイッチ123をビーコン受信回路122側に切り替える。これにより、受電装置102からのビーコン信号をフェーズドアレイアンテナ117により受信し、サーキュレータ116、第2切替スイッチ123を介してビーコン受信回路122に入力される。このときのビーコン受信信号とフェーズドアレイアンテナ117の位相情報は送電側制御回路124に入力される。
 (送電モード)
 送電モードでは、送電側制御回路124が、第1切替スイッチ115を送電アンプ112側に切り替える。これにより、発振器111の信号が送電アンプ112により増幅され第1切替スイッチ115とサーキュレータ116を介しフェーズドアレイアンテナ117から送電される。このとき、送電側制御回路124はフェーズドアレイアンテナ117の指向性を調整する。これにより、送電側制御回路124が調整した指向性で送電される。
 また、受電装置102の各動作モードについて説明する。
(RFIDモード)
 RFIDモードでは、受電側制御回路153が、RFID-ビーコン切替スイッチ142をRFID応答器143側に切り替える。これにより、RFID応答器143が受電アンテナ141と接続され、送電装置101からのRFIDリーダ信号を受信するとそれに対応した応答信号を出力する。
(ビーコン出力モード)
 ビーコン出力モードでは、受電側制御回路153が、RFID-ビーコン切替スイッチ142をビーコン信号発振器151側に切り替える。これにより、ビーコン信号発振器151が受電アンテナ141と接続され、受電装置102からビーコン信号が出力される。なお、ビーコン信号は、受電側制御回路153がバッテリの充電が必要と判断した場合にのみ出力され、満充電の場合は送信されない。
(受電モード)
 受電モードでは、受電側制御回路153が、RFID-ビーコン切替スイッチ142を入力フィルタ144側に切り替える。これにより、入力フィルタ144が受電アンテナ141と接続され、受電した電力はレクテナ145により直流電圧に変換され整合回路146によりインピーダンス整合が図られた後、電源回路147により一定の電圧に変換され、バッテリ148に充電される。このときの充電時の送電電力調整などの制御は受電側無線機152を介して送電装置101の送電側無線機125と通信することで行われる。
 以上の構成では、送電装置101がRFIDリーダモードのとき、受電装置102は、RFIDモードとなる。また、受電装置102がビーコン出力モードのときは、送電装置101がビーコン受信モードとなり、送電装置101が送電モードのときは、受電装置102は受電モードとなることで、送受電間で通信や無線電力伝送が可能となる。特に、RFIDモードでは、受電装置のバッテリ残量が少ない場合やバッテリがない機器でも動作可能となる。なお、フェーズドアレイアンテナ117により、送電周波数に近い信号を受信した場合は、送電を行わないか、信号の到来方向を避けて送電すればよい。
 図2は、RFID-ビーコン切替スイッチ142の構成を示す図である。図2に示すように、RFID-ビーコン切替スイッチ142は、検波回路201、第1電界効果トランジスタ202、第2電界効果トランジスタ203、第3電界効果トランジスタ204、第1抵抗205、第2抵抗206、第3抵抗207、及び第4抵抗208を含む。
 RFID-ビーコン切替スイッチ142は、受電アンテナ141の入力に検波回路201が接続され受電電力があると検波電圧を出力する構成となっている。また、RFID応答器143、ビーコン信号発振器151および入力フィルタ144の両端にはそれぞれ第1電界効果トランジスタ202、第2電界効果トランジスタ203、第3電界効果トランジスタ204の各ドレインと各ソース端子が接続されるとともに、これらは、受電アンテナ141に対し直列に接続されている。このような構成とすることで、受電装置102のバッテリ148の残量が少なくRFID-ビーコン切替スイッチ142の第1電界効果トランジスタ202、第2電界効果トランジスタ203、第3電界効果トランジスタ204の其々がオンできない状態であってもこれらの回路は直列に接続されているため、受電アンテナ141とある程度のインピーダンスを持つ。
 RFIDモード時には、送電装置101の送電電力により検波回路201の出力は第4抵抗208を介してビーコン信号発振器151の出力端をショート状態にする。これにより、RFID応答器143と入力フィルタ144が直列接続となるが、入力フィルタ144の入力インピーダンスは比較的低いので、RFIDリーダによる受電電力はRFID応答器143の両端にほぼ印加される。よって、RFID応答器143の動作が可能となる。
 ビーコン出力モードでは、受電側制御回路153が第2電界効果トランジスタ203のゲート電圧を下げてオフ状態にするとともに、第1電界効果トランジスタ202、第3電界効果トランジスタ204のゲートにオン電圧を印加することで受電アンテナ141はビーコン信号発振器151の出力端が接続される。これにより、受電アンテナ141からビーコン信号が出力される。
 受電モードでは、受電アンテナ141にはRFIDリーダよりも高い電力が受電されるため、検波回路201にも高い電圧が出力される。このため、検波回路201の出力には第1抵抗205と第2抵抗206により分圧された電圧が第3抵抗207を介して第1電界効果トランジスタ202のゲートをオン状態とするとともに、ビーコン信号発振器151の両出力端に接続された第2電界効果トランジスタ203もオン状態となる。さらに、受電側制御回路153は第3電界効果トランジスタ204をオフ状態とすることで、受電アンテナ141で受電した電力は入力フィルタ144を介してレクテナ145により直流電圧に変換される。
 以上の構成とすることで、RFID-ビーコン切替スイッチ142は、バッテリ148の残量が少なく、第1電界効果トランジスタ202、第2電界効果トランジスタ203、第3電界効果トランジスタ204が動作できない状態であっても、RFID応答器143に接続可能な構成であり、その他、ビーコン送信モード、受電モードとも切り替えが可能である。
 図3は、受電装置102のバッテリ残量が少なくビーコン信号が出力できない状態から給電を開始した時のタイミングチャートである。
 図3に示すように、バッテリ容量が少なくビーコン信号が出力できない場合、送電装置101はRFIDリーダモード、受電装置102はRFIDモードとなり、RFIDリーダからの信号を受信した場合は、RFIDリーダに対し、受電装置102の識別情報や充電の優先順位や受信信号レベルなどのデータをRFID応答器143により応答する。しかし、このとき、送電装置101からみた受電装置102が位置する方向が分からないため、送電装置101は、フェーズドアレイアンテナ117の指向性を変えながらRFIDの反応を待つ(T301)。
 RFIDの応答があった場合(T302)、送電装置101は送電モードに切り替えてRFIDの反応があった方向に電力を送電し、受電装置102は受電モードとなりバッテリ148に充電を行う(T303)。このとき、受電装置102側よりビーコン信号が送信されたかどうかを確認するため、送電装置1011はときどきビーコン受信モードに切り替わりビーコン信号の送信を待つ。
 そして、ビーコン信号を出力するのに必要な電力が受電装置102のバッテリ148に蓄電されると、受電装置102はビーコン出力モードとなり、送電装置101がビーコン信号を受信する(T304)。送電装置101はビーコン信号の受信方向を基に、送電装置101からみた受電装置102の方向を判断する。
 送電装置101は、ビーコンを受信すると送電モードとなり電力を送電する。この送電モードでは、送電装置101は受電装置102の方向に電波を集中させて(出力方向を狭めて)送電する。従って、T303の送電に比べて受電装置102は効率的に、すなわちより速く充電がされる。T303の送電モードを広域送電モード、T305の送電モードを集中送電モードという。充電中、特に集中送電モードでは、受電装置102が移動すると送電のフェーズドアレイアンテナ117の指向性を調整する必要があるため、送電装置101は定期的にビーコン受信モードとなる(T306)。集中送電モード中に、受電装置102が移動するなどの何らかの理由で受電装置102が受電できなくなった場合、受電装置102はビーコン出力モードに切り替わる。したがって、再度、送電装置101がビーコン信号を受信するのでフェーズドアレイアンテナ117の指向性の調整が可能となる。
 図4は、受電装置102のバッテリ残量がありビーコン信号が送信できる場合のタイミングチャートを示したものである。
 図4に示すように、受電装置102はバッテリ残量があるため、ビーコンモードとなっている。一方、送電装置101は、バッテリ残量がなくRFIDモードになっている受電装置102を検知するため、しばらくはRFIDリーダとなって周囲にRFIDモードの受電装置102がないか探す(T401)。しばらくして、RFIDモードの受電装置102がないと分かると送電装置101はビーコン受信モードに遷移する。
 受電装置102のビーコン信号を受信すると(T402)、送電装置101は集中送電モード、受電装置102は受電モードとなり、バッテリ148への充電が開始される(T403)。なお、バッテリ残量がない場合と同様に、フェーズドアレイアンテナ117の指向性を定期的に調整する必要があるため、送電装置101はビーコン受信モードに、受電装置102もビーコン出力モードに切り替わる。これにより、集中送電モード中にフェーズドアレイアンテナ117の指向性の調整が可能となる(T404)。また、受電装置102の充電が完了した場合は、ビーコン信号出力を停止する。これにより、送電装置101は送電をストップする(T405)。
 図5は、第1実施形態に係る送受電システム100の送電装置101の動作を示すフローチャートである。
 図5に示すように、送電装置101の電源をオンにして処理が開始すると(S501)、送電装置101はRFIDリーダモードに切り替え、RFIDの反応がないか一定の時間スキャンする(S502)。このスキャンは、フェーズドアレイ107の指向性を変えながら実施する。
 もし、RFIDの反応があった場合(S503:Yes)、送電装置101を広域送電モードに切り替え、送電を開始する(S504)。このとき、RFID検知時と同一のフェーズドアレイ107の指向性を用いて送電を行う。一定時間が経過したら、送電装置101はビーコン受信モードに切り替える(S505)。
 ビーコン信号が検知できない場合(S506:No)、広域送電モードに遷移し、再度広域送電モードで送電を行う(S504に戻る)。
 ビーコン受電モード時にビーコン信号を検出したら(S506:Yes)、送電装置101は集中送電モードに切り替えて送電を行う(S509)。集中送電モードで送電している間、受電装置の位置を把握してフェーズドアレイアンテナ117の指向性を調整するために、送電装置101は、集中送電モードによる送電を開始後、定期的にビーコン受信モードに切り替える。なお、受電装置102も定期的にビーコン出力モードに切り替わる。
 このように、受電装置102は、集中送電モード中は定期的にビーコンの有無を確認しており、ビーコンの有無で受電装置102の充電が終了したか判定する(S510)。充電が完了すると受電装置102はビーコンの送信をストップするため、ビーコンが受信できなかった場合は送電装置101の充電終了と判定して(S510:Yes)、送電をストップする(S511)。ビーコンが受信できた場合は(S510:No)、集中送電モードを継続する(S509)。なお、充電終了判定は、受電側無線機152から送電側無線機125に充電終了情報を送信することで行ってもよい。
 なお、ステップS502において、送電装置101がRFIDモードで一定時間、RFIDの反応がないかをスキャンした結果、反応がない場合(S503:No)、送電装置101はビーコンモードに切り替える(S507)。受電装置102からのビーコン信号がない場合は(S508:No)、受電装置102が存在しないことから、送電装置101はRFIDモードとなりステップS502に戻り、RFIDの反応がないか再度スキャンを開始する。
 一方、ステップS508においてビーコン信号を検出した場合(S508:Yes)、送電装置101を集中送電モードに切り替えて送電を開始し(S509)、充電が終了するまで送電を行う(S510、S511)。
 図6は、第1実施形態に係る送受電システム100の受電装置の動作を示すフローチャートである。
 図6に示すように、受電装置102がバッテリ残量の状態を確認するところから本処理は開始する(S601)。バッテリ残量がなくビーコン信号を送信できない場合(S602:No)、受電装置102は、RFIDモードを保持し(S603)、RFIDリーダの信号があるまでRFIDモードを保持する。
 受電装置102がRFID応答信号を受信すると(S604:Yes)、受電装置102はレクテナ受電モードに切り替える(S605)。このとき、送電装置101は広域送電モードとなっているので、ビーコンが動作するまで送電電力を受電してバッテリ148に充電を行う(S606)。
 ビーコン信号発振器151が動作するまで充電ができたら、受電装置102はビーコン出力モードに遷移する(S607)。しばらくビーコン信号を送信したら、送電装置101が集中送電モードに遷移し、受電装置102はレクテナ受電モードに遷移して充電を行う(S608)。
 なお、図5で示した送電装置101の動作を示したフローチャートと同様に充電中は受電装置102が移動すると送電装置101のフェーズドアレイアンテナ117の指向性を調整する必要があるため、送電装置101は定期的にビーコン受信モードに、受電装置102はビーコン出力モードに切り替わる。
 受電装置102の充電が完了すると(S609:Yes)、受電装置102はビーコン送信モードに遷移しない一方、送電装置101は定期的にビーコン受信モードに遷移する。このとき、受電装置102からビーコン信号を受信しないので、送電装置101は送電を停止する(S610)。
 なお、ステップS602において、バッテリ残量がある場合(S602:Yes)はステップS607へ遷移する。
 第1実施形態によれば、受電装置102のバッテリ残量が少なくビーコン信号を送信できる電力がなくても、受電装置102に搭載されたRFID応答器143が送電装置101に搭載されたRFIDリーダに応答することで、その応答結果に基づき、送電装置101のフェーズドアレイアンテナ117を用いてRFIDリーダに指向性を持たせて広域送電モードにより給電することができる。そして、受電装置102がビーコン信号を送信できるまでバッテリ148に充電できる。受電装置102から送電装置101にビーコン信号を送信し、送電装置101が受信すると、ビーコン信号を基にRFIDの応答結果よりも更に高精度に受電装置102に相対的な方向がわかるので、その方向に向けて通常の無線給電動作(集中送電モード)で充電を行うことができる。
<第2実施形態>
 図7は、第2実施形態に係る送受電システム100aの構成を示す図である。送受電システム100aは、第1実施形態の受電装置102とは異なる構成の受電装置102aを含んで構成される。
 図7に示すように、第2実施形態に係る送受電システム100aで用いられる受電装置102aは、RFIDアンテナ(「5.8GHzアンテナ」ともいう)701にRFID応答器143を接続し、RFID応答器143は受電側制御回路153に接続されてない。即ち、RFID応答器143は、受電装置102aのバッテリ148の残量に関らず、かつ受電側制御回路153による制御を受けることなく、パッシブ動作を行い続ける。第1実施形態では、受電アンテナ141がRFIDアンテナ701の機能を兼任していたが、第2実施形態では、受電アンテナ141とは別体のRFIDアンテナ701を備える点で異なる。
 受電アンテナ141には、ビーコン-電力系切替スイッチ703が接続される。さらに、ビーコン-電力系切替スイッチ703はビーコン信号発振器151の出力端、及び入力フィルタ144の入力端に接続され、どちらかを選択する構成となっている。ビーコン-電力系切替スイッチ703は、第1実施形態におけるRFID-ビーコン切替スイッチ142において、RFID応答器143への接続およびその切り替え機能を削除した構成である。
 第2実施形態に係る送受電システム100aによれば、第1実施形態と同様の効果が得られるとともに、RFID応答器143に接続されるRFIDアンテナ701がバッテリ148や受電側制御回路153の制御によって駆動する系統とは別系統となっているため、RFID応答のための切替スイッチが不要となる。従って、比較的信号レベルの低いRFID応答器の反射波に対してレベル低下の低減が図れるため、RFIDモードでの検知感度が図れるとともに、切替スイッチの簡略化が図れる。
<第3実施形態>
 図8は、第3実施形態に係る送受電システム100bの構成を示す図である。第3実施形態に係る送受電システム100bに用いられる送電装置101aは、第1、第2実施形態で用いられた送電装置101から送電側無線機125が削除されている点で異なる。また受電装置102bは、第2実施形態で用いられた受電装置102aから受電側無線機152が削除されている点、及びRFID応答器143が受電側制御回路153に接続される点で異なる。
 送電装置101aは、RFIDモードのときにRFID変調回路114において、RFIDリーダ信号に振幅変調をかけることができる。この振幅変調がかかったRFIDリーダ信号は、受電装置102のRFID応答器143において復調されることでデータの受信が可能となる。一方、RFID応答器143からは、受電装置102bの識別情報、受信信号レベル、バッテリ残量、充電の優先順位などのデータがRFIDリーダ信号の反射となって、送電装置101のRFID復調回路121で復調され、送電側制御回路124に入力される。送電側制御回路124では、それらのデータから、複数の受電装置102bがあった場合の充電の優先順位の決定や、バッテリの残量の少ない機器から充電を開始するなどの充電制御を行う。
 第3実施形態によれば、送電側無線機125及び受電側無線機152を削除し、その代わりにRFIDを用いることで、第2実施形態と同様の効果を得つつ、送受電装置の簡略化と低消費電力化が図れる。
<第4実施形態>
 図9は、第4実施形態に係る送受電システム100cの構成を示す図である。第4実施形態に係る受電装置102cは、第3実施形態に係る受電装置102bのバッテリ148及びビーコン信号発振器151が削除され、代わりに負荷回路901が接続される点で異なる。
 第4実施形態によれば、RFIDにより受電装置102cの位置検知と充電制御が可能であることから、第3実施形態と同様な効果が得られるのに加え、バッテリがない機器への給電も可能となる。
<第5実施形態>
 図10は、第5実施形態に係る送受電システム100dの構成を示す図である。送受電システム100dは、送電装置筐体1001に搭載される送電装置101と、携帯端末1002に搭載される受電装置102と、を含んで構成される。
 送電装置101および受電装置102は、第1実施形態から第4実施形態の各送電装置、受電装置のどれを用いてもよい。
 第5実施形態によれば、携帯端末1002のバッテリ残量が少なくビーコン信号を送信できなくともRFIDを用いることで充電が可能となる。さらに、充電中は、携帯端末1002が移動した場合にフェーズドアレイアンテナ117の方向がずれるため、定期的にビーコン信号を送信させて充電方向を調整することができる。従って、携帯端末1002を移動しながらでも充電が可能となる。また、充電制御に用いられる無線機は、携帯端末1002に一般的に搭載されているBluetooth(登録商標)を用いることで受電装置の回路簡略化が可能である。
<第6実施形態>
 図11は、第6実施形態に係る送受電システム100eの構成を示す図である。図11に示すワイヤレスイヤホン1101は、受電アンテナ1102及びスピーカ1103を含む。なお、ワイヤレスイヤホン1101は左右対称形であるので一方のみに番号を付す。ワイヤレスイヤホン1101は、第1実施形態から第4実施形態の受電装置102が搭載されており、ワイヤレスイヤホン1101のバッテリなどが搭載される突起状の部分に受電アンテナ1102が搭載されている。
 また図11において、送電装置101は、携帯端末1002を充電するとともに、左右のワイヤレスイヤホン1101の充電を行う。携帯端末1002はワイヤレスイヤホン1101へ音楽データをBluetooth(登録商標)により伝送する。携帯端末1002の受電装置102は送電装置101とBluetooth(登録商標)を用いて充電制御を行っているが、携帯端末1002はBluetooth(登録商標)を用いて音楽データの伝送も行う。このため、ワイヤレスイヤホン1101に対して携帯端末1002から充電制御データを音楽データと時分割などにより重畳して伝送することにより、送電装置101は携帯端末1002を経由してワイヤレスイヤホン1101と通信を行うことが可能である。一般に、ワイヤレスイヤホンは小型であるため、Bluetooth(登録商標)などの無線通信距離を長くとることはできない。しかし、携帯端末1002を介して送電装置101と無線通信を行うことで、ワイヤレスイヤホン1101の通信距離の拡大が図れる。
<第7実施形態>
 図12は、第7実施形態に係る送受電システム100fの構成を示す図である。本実施形態では、LED装置が受電装置を内蔵する。LED装置は、筐体1201の外表面にLED1202を備え、筐体1201の内部に第4実施形態の受電装置102cが搭載される。LED1202は負荷回路901に相当する。送電装置101は、RFIDを用いて受電装置102cの方向検出を行い送電モードとなる構成であり、ビーコン信号やバッテリは搭載していない。
 以上の構成では、受電装置102cが簡易な構成で実現できることから、LEDなどを給電する場合に適した構成が得られる。
 図13は、ワイヤレスイヤホン1101を頭部1301に装着した状態を示す図である。1302はアンテから顔までの高さを示したものである。ワイヤレスイヤホン1101を頭部1301に装着した状態において、受電アンテナ1102と顔の皮膚までの距離dが携帯端末1002との無線通信に使用する電波の4分の1波長になることが望ましい。携帯端末1002からの電波が皮膚で反射され、その反射波が逆相となることを考えると、距離dが4分の1波長に等しくなると、反射波と直接波が同相となるため、アンテナ利得を高くすることができる。一例として、周波数として5.8GHzを用いた場合の4分の1波長は、1.29cmであることから、アンテナと皮膚までの距離を1.29cmとなるように設計すればアンテナ利得を高くすることができる。
 設計時には、ワイヤレスイヤホン1101において最も突出した部分、たとえば耳に挿入する部分の先端面の延長線(延長面)と、受電アンテナ1102との距離を距離dと見做し、これが4分の1波長になるように構成してもよい。
<第8実施形態>
 図14は、第8実施形態に係る送受電システム100gの構成を示す図である。送受電システム100gに用いられる送電装置101は、送電装置筐体1001に内蔵される。また、送電装置筐体1001の外表面には表示器1401が備えられる。表示器1401には、送電装置101が現在、給電を行っている携帯端末の番号や名称(図14では“A1”、“A2”で図示)が表示される。これにより送電装置101が、どの携帯端末に給電しているかを確認することができる。なお、本実施形態で用いられる受電装置102は、携帯端末でもよいし、ワイヤレスイヤホン、LED装置でもよく、その種類は問わない。
<第9実施形態>
 図15は、第9実施形態に係る送受電システム100hの構成を示す図である。送受電システム100hは、受電装置102を内蔵する携帯端末1002の液晶画面1501に、充電モードやRFIDモードなど、どのモードであるかの状態と受電のレベルを表示する。液晶画面1502、1503は液晶画面1501の表示例を示す。この表示により、受電装置102はどの程度の受電レベルで受電しているかをユーザが知ることができる。そして、万一、受電レベルが低い場合は、効率の良い位置に携帯端末1002を持って移動することができる。
 上記した各実施形態は、本発明を限定するものではない。本発明の趣旨を逸脱しない様々な変更態様は、本発明に含まれる。
100:送受電システム
101:送電装置
102:受電装置
141:受電アンテナ
142:RFID-ビーコン切替スイッチ
143:RFID応答器
145:レクテナ
151:ビーコン信号発振器
153:受電側制御回路
 

Claims (13)

  1.  無線受電装置であって、
     RFID応答器と、
     ビーコン信号を生成するビーコン信号発振器と、
     受電アンテナと、
     前記ビーコン信号発振器、前記RFID応答器、及び前記受電アンテナの其々に接続されたRFID-ビーコン切替スイッチと、
     前記RFID-ビーコン切替スイッチの切替制御を行う受電側制御回路と、を備え、
     前記RFID-ビーコン切替スイッチの第1入力端に前記ビーコン信号発振器が接続され、
     前記RFID-ビーコン切替スイッチの第2入力端に前記RFID応答器が接続され、
     前記RFID-ビーコン切替スイッチの第1出力端に前記受電アンテナが接続され、
     前記無線受電装置に前記ビーコン信号を送信する電力がない場合、前記受電側制御回路は、前記RFID応答器と前記受電アンテナとを接続すると共に前記ビーコン信号発振器は前記受電アンテナと非接続にする第1系統に接続制御し、前記無線受電装置に前記ビーコン信号を送信する電力がある場合は、前記受電側制御回路は、前記ビーコン信号発振器と前記受電アンテナとを接続すると共に前記RFID応答器は前記受電アンテナと非接続にする第2系統に接続制御する、
     ことを特徴とする無線受電装置。
  2.  請求項1に記載の無線受電装置において、
     前記受電アンテナが受電した電力を整流するレクテナと、
     バッテリと、を更に備え、
     前記レクテナは、前記RFID-ビーコン切替スイッチの第2出力端と前記バッテリとの間に接続され、前記レクテナが整流した電力が前記バッテリに充電され、
     前記受電側制御回路は、前記バッテリの残量が前記ビーコン信号の送信に必要な残量未満の場合は前記第1系統に接続制御し、前記バッテリの残量が前記ビーコン信号の送信に必要な残量以上の場合は前記第2系統に接続制御し、前記受電アンテナが受電している場合は、前記受電アンテナと前記レクテナとを接続すると共に前記ビーコン信号発振器及び前記RFID応答器のいずれにも非接続とする第3系統に接続制御する、
     ことを特徴とする無線受電装置。
  3.  請求項2に記載の無線受電装置であって、
     前記受電側制御回路は、前記第3系統に接続制御した後、予め定められた周期で前記第2系統と前記第3系統とに交互に切替制御する、
     ことを特徴とする無線受電装置。
  4.  請求項2に記載の無線受電装置において、
     前記RFID応答器、前記ビーコン信号発振器、及び前記レクテナは直列に接続され、
     前記RFID-ビーコン切替スイッチは、前記RFID応答器と前記ビーコン信号発振器との間にドレインとソースとが接続された第1電界効果トランジスタ、前記ビーコン信号発振器と前記レクテナとの間にドレインとソースとが接続された第2電界効果トランジスタ、及び前記ビーコン信号発振器と前記受電側制御回路との間にドレインとソースとが接続された第3電界効果トランジスタを含んで構成される、
     ことを特徴とする無線受電装置。
  5.  無線受電装置であって、
     RFID応答器と、
     前記RFID応答器に接続され、RFID応答信号を送信するRFIDアンテナと、
     ビーコン信号を生成するビーコン信号発振器と、
     受電アンテナと、
     前記ビーコン信号発振器及び前記受電アンテナの其々に接続されたビーコン-電力系切替スイッチと、
     前記受電アンテナが受電した電力を整流するレクテナと、
     前記ビーコン-電力系切替スイッチの切替制御を行う受電側制御回路と、を備え、
     前記RFID応答器は、前記受電側制御回路からの制御指示を受けることなく前記RFID応答信号を前記RFIDアンテナから送信し、
     前記無線受電装置に前記ビーコン信号を送信する電力がない場合、前記受電側制御回路は、前記受電アンテナと前記レクテナとを接続すると共に前記受電アンテナと前記ビーコン信号発振器とは非接続にする第4系統に接続制御し、前記無線受電装置に前記ビーコン信号を送信する電力がある場合は、前記受電側制御回路は、前記ビーコン信号発振器と前記受電アンテナとを接続すると共に前記レクテナと前記受電アンテナとを非接続にする第5系統に接続制御する、
     ことを特徴とする無線受電装置。
  6.  請求項5に記載の無線受電装置において、
     前記レクテナが整流した電力を充電するバッテリを更に備え、
     前記受電側制御回路は、前記バッテリの残量が前記ビーコン信号の送信に必要な残量未満の場合は前記第4系統に接続制御し、前記バッテリの残量が前記ビーコン信号の送信に必要な残量以上の場合は前記第5系統に接続制御する、
     ことを特徴とする無線受電装置。
  7.  請求項6に記載の無線受電装置であって、
     前記受電側制御回路は、前記第5系統に接続制御した後、予め定められた周期で前記第4系統と前記第5系統とに交互に切替制御する、
     ことを特徴とする無線受電装置。
  8.  無線受電装置であって、
     RFID応答器と、
     前記RFID応答器に接続され、RFID応答信号を送信するRFIDアンテナと、
     受電アンテナと、
     前記受電アンテナが受電した電力を整流するレクテナと、
     前記レクテナが整流した電力で作動する負荷回路と、
     を備えることを特徴とする無線受電装置。
  9.  請求項1から7のいずれか一つに記載の無線受電装置を搭載したワイヤレスイヤホン。
  10.  請求項8に記載の無線受電装置を搭載したLED装置。
  11.  無線送電装置であって、
     送電アンプと、
     RFID変調回路及びRFID復調回路と、
     ビーコン受信回路と
     フェーズドアレイアンテナと、
     前記フェーズドアレイアンテナと、前記送電アンプ及び前記RFID変調回路の其々との接続を切り替える第1切替回路と、
     前記フェーズドアレイアンテナと、前記RFID復調回路及び前記ビーコン受信回路の其々との接続を切り替える第2切替回路と、
     前記第1切替回路、前記第2切替回路、及び前記フェーズドアレイアンテナの動作を制御する送電側制御回路と、を備え、
     前記フェーズドアレイアンテナは、前記第1切替回路及び前記第2切替回路の其々と接続され、
     前記送電側制御回路は、前記第1切替回路を介して前記RFID変調回路と前記フェーズドアレイアンテナとを接続制御し、前記第2切替回路を介して前記RFID復調回路と前記フェーズドアレイアンテナとを接続制御し、無線受電装置が発したRFID応答を前記フェーズドアレイアンテナが受信すると、前記RFID応答を受信した方向を含む相対的に広角な方向に向けて前記フェーズドアレイアンテナから電力を送電する広域送電モードで送電制御し、
     前記第2切替回路を介して前記ビーコン受信回路と前記フェーズドアレイアンテナとを接続制御し、無線受電装置が発したビーコン信号を前記フェーズドアレイアンテナが受信すると、前記ビーコン信号を受信した方向を含む相対的に狭角な方向に向けて前記フェーズドアレイアンテナから電力を送電する集中送電モードによる送電制御する、
     ことを特徴とする無線送電装置。
  12.  請求項11に記載の無線送電装置であって、
     送電対象となる前記無線受電装置の識別情報を表示する表示器を更に備える、
     ことを特徴とする無線送電装置。
  13.  請求項11又は12に記載の無線送電装置から、請求項1から8のいずれか一つに記載の無線受電装置に向けて無線送電を行う無線送受電システム。
     
PCT/JP2019/037972 2019-09-26 2019-09-26 無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム WO2021059453A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980100410.4A CN114402504A (zh) 2019-09-26 2019-09-26 无线受电装置、无线送电装置、无线耳机、led装置以及无线送电受电系统
PCT/JP2019/037972 WO2021059453A1 (ja) 2019-09-26 2019-09-26 無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム
JP2021548098A JP7171936B2 (ja) 2019-09-26 2019-09-26 無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム
US17/763,737 US20220320910A1 (en) 2019-09-26 2019-09-26 Wireless power receiving device, wireless power transmitting device, wireless earphone, led device, and wireless power transmiiting and receiving system
JP2022176628A JP7439212B2 (ja) 2019-09-26 2022-11-02 無線送電装置、無線受電装置、及び無線送電装置から無線受電装置に向けて無線送電を行う無線送受電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037972 WO2021059453A1 (ja) 2019-09-26 2019-09-26 無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム

Publications (1)

Publication Number Publication Date
WO2021059453A1 true WO2021059453A1 (ja) 2021-04-01

Family

ID=75165670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037972 WO2021059453A1 (ja) 2019-09-26 2019-09-26 無線受電装置、無線送電装置、ワイヤレスイヤホン、led装置及び無線送受電システム

Country Status (4)

Country Link
US (1) US20220320910A1 (ja)
JP (2) JP7171936B2 (ja)
CN (1) CN114402504A (ja)
WO (1) WO2021059453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220368172A1 (en) * 2021-05-17 2022-11-17 Tamkang University Smart hub

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199857A (ja) * 2007-02-15 2008-08-28 Fujifilm Corp レクテナ装置
JP2013511955A (ja) * 2009-11-17 2013-04-04 クアルコム,インコーポレイテッド 許可ベースのワイヤレス電力受信
JP2017212849A (ja) * 2016-05-27 2017-11-30 マクセルホールディングス株式会社 送電装置および受電装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632889B2 (ja) 2005-07-19 2011-02-16 三菱電機株式会社 飛翔体への給電システムおよびそれに使用される飛翔体への送電装置と飛翔体
JP2008204061A (ja) 2007-02-19 2008-09-04 Fujifilm Corp マイクロ波電力伝送システム、およびマイクロ波電力伝送方法
JP6967867B2 (ja) 2017-04-04 2021-11-17 キヤノン株式会社 送電装置およびその制御方法、並びにプログラム
JP7005259B2 (ja) 2017-10-04 2022-01-21 キヤノン株式会社 送電装置、送電装置の制御方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199857A (ja) * 2007-02-15 2008-08-28 Fujifilm Corp レクテナ装置
JP2013511955A (ja) * 2009-11-17 2013-04-04 クアルコム,インコーポレイテッド 許可ベースのワイヤレス電力受信
JP2017212849A (ja) * 2016-05-27 2017-11-30 マクセルホールディングス株式会社 送電装置および受電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220368172A1 (en) * 2021-05-17 2022-11-17 Tamkang University Smart hub
US11699926B2 (en) * 2021-05-17 2023-07-11 Tamkang University Smart hub

Also Published As

Publication number Publication date
JP7439212B2 (ja) 2024-02-27
JP2023022032A (ja) 2023-02-14
JP7171936B2 (ja) 2022-11-15
US20220320910A1 (en) 2022-10-06
JPWO2021059453A1 (ja) 2021-04-01
CN114402504A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
US8095159B2 (en) Radio power-fed terminal, system, and method
EP2747195B1 (en) Antenna arrangement for wireless powering
US9246351B2 (en) Antenna sharing for wirelessly powered devices
JP4911148B2 (ja) 非接触給電装置
KR101574322B1 (ko) 휴대 단말기용 무선통신 다중 안테나
US20160359357A1 (en) Wireless power receiver
US9054548B2 (en) Contactless power feeding system
US20100176934A1 (en) Radio frequency charging system
US20130137455A1 (en) Wireless energy transfer system
KR20150073275A (ko) 무선 전력 송수신 장치
US20160126639A1 (en) Coil structure and wireless power receiving apparatus including the same
CN111756411B (zh) 无线通信装置
ATE417563T1 (de) Transponder mit überlappenden spulenantennen auf einem gemeinsamen kern
KR101956536B1 (ko) 사용자 단말에 탈부착되는 무선 충전 지원 액세서리 및 이에 기반한 무선 충전 시스템
US9176551B2 (en) Wireless power transmission apparatus and method of transmitting wireless power using the same
KR101805930B1 (ko) 안테나 자세 제어 장치 및 이를 이용한 무선 전력 전송 장치, 무선 전력 전송 시스템
JP7439212B2 (ja) 無線送電装置、無線受電装置、及び無線送電装置から無線受電装置に向けて無線送電を行う無線送受電システム
JP6305686B2 (ja) 受電装置及び給電システム
JP2012070529A (ja) 非接触電力伝送および通信システム
EP3588739A1 (en) Power feeding device, electronic device, control method and program thereof, and wireless power transmission system
CN112448489A (zh) 无线充电接收装置、发射装置、系统和移动终端
US10361751B2 (en) Modulation index setting circuits of near field communication (NFC) devices, NFC devices, and methods of operating NFC devices
WO2023040847A1 (zh) 电子设备及控制方法
EP3393007A1 (en) Wireless charging system for selectively using antenna
US20080136548A1 (en) Impedance matching device of sensor node and impedance matching method of sensor node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947319

Country of ref document: EP

Kind code of ref document: A1