WO2021059339A1 - Monitoring camera system - Google Patents

Monitoring camera system Download PDF

Info

Publication number
WO2021059339A1
WO2021059339A1 PCT/JP2019/037335 JP2019037335W WO2021059339A1 WO 2021059339 A1 WO2021059339 A1 WO 2021059339A1 JP 2019037335 W JP2019037335 W JP 2019037335W WO 2021059339 A1 WO2021059339 A1 WO 2021059339A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
image
luminance
control device
brightness
Prior art date
Application number
PCT/JP2019/037335
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 哲也
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2021548008A priority Critical patent/JP7284280B2/en
Priority to PCT/JP2019/037335 priority patent/WO2021059339A1/en
Publication of WO2021059339A1 publication Critical patent/WO2021059339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a surveillance camera system that monitors the vicinity of a train door with a camera image.
  • the train driver can check the boarding and alighting of passengers on the monitor of the driver's cab when the train is stopped, and can operate the train.
  • analog systems that did not cause delay were used with priority, but in recent years, advances in IP technology have made low-delay transmission possible. , All devices are now connected to the IP network.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and provides a surveillance camera system capable of suppressing a decrease in visibility of a camera image captured in the vicinity of a vehicle door. The purpose.
  • the surveillance camera system is configured as follows. That is, the surveillance camera system according to the present invention is attached to the outside of the vehicle of the train and captures the vicinity of the door of the vehicle, a monitor that displays the camera image captured by the camera, and features of the camera image. Control that determines the visibility of the camera image based on the amount, and when it is determined that the visibility of the camera image has deteriorated, instructs the camera to execute image processing for improving the visibility of the camera image. It is characterized by being equipped with a device.
  • the camera may be configured to analyze its own camera image, calculate a feature amount, and transmit the feature amount in association with the camera image.
  • control device may be configured to wait for an instruction to execute the image processing until the number of times it is determined that the visibility of the camera image has deteriorated exceeds a predetermined threshold value.
  • control device may be configured to record information on the determination result when it is determined that the visibility of the camera image has deteriorated.
  • control device may be configured to display the necessity of maintenance for the camera on the monitor based on the information of the determination result.
  • a surveillance camera system capable of suppressing a decrease in visibility of a camera image captured in the vicinity of a vehicle door.
  • FIG. 1 It is a figure which shows the schematic configuration example of the surveillance camera system which concerns on one Embodiment of this invention. It is a figure which illustrates the flowchart of the image processing at the time of stopping at a station by the surveillance camera system of FIG. It is a figure which illustrates the flowchart of the feature amount processing in the image processing of FIG. It is a figure which illustrates the flowchart of the high-luminance correspondence processing in the feature amount processing of FIG. It is a figure which illustrates the flowchart of the low-luminance correspondence processing in the feature amount processing of FIG. It is a figure which illustrates the flowchart of the haze correspondence processing in the feature quantity processing of FIG. It is a figure which illustrates the histogram of a normal image.
  • FIG. 1 shows a schematic configuration example of an in-vehicle vehicle monitoring CCTV system, which is a surveillance camera system according to an embodiment of the present invention.
  • FIG. 1 shows a 4-car train consisting of four cars, No. 1 car 10-1, No. 2 car 10-2, No. 3 car 10-3, and No. 4 car 10-4.
  • One switching hub 11 is arranged in each vehicle 10-1 to 10-4, and an IP network is constructed by cascading these. Further, on the outer side surface of each of the vehicles 10-1 to 10-4, a camera 13 is attached toward the door 12 of the vehicle so that a passenger can take an image of getting on and off the train. That is, the camera 13 is configured to take a picture of the vicinity of the door.
  • the leading vehicles, car 1 10-1 and car 4 10-4, are equipped with monitors 14 that display camera images taken by the cameras 13 of each vehicle.
  • a control device 16 for controlling this system vehicle monitoring CCTV
  • a recording device 15 for recording camera images are also installed in the first car 10-1.
  • the control device 16 includes hardware resources such as a memory and a processor, and reads a program stored in a data storage device such as a hard disk or a flash memory onto the main memory and executes the program by the processor. It is configured to implement processing.
  • the function of the control device 16 is not limited to the configuration realized by such software, and may be realized by dedicated hardware.
  • FIG. 2 illustrates a flowchart of video processing when the station is stopped in the surveillance camera system of this example.
  • the control device 16 performs the following processing. It is assumed that "0" is set as an initial value in the car number counter indicating the vehicle for which the image is to be acquired.
  • the control device 16 first determines whether or not the train door 12 is open (step S11), and when it is confirmed that the train door 12 is open, the car number counter is incremented (“1” is added) (step S12). ). Next, it is determined whether or not the car No. counter indicates the No. 5 car (step S13). Since car 5 does not exist, if the car counter indicates car 5 (step S13; Yes), the car counter is cleared (“1” is set in this example) (step S14). That is, the vehicle for which the image is to be acquired is looped in the order of the first car to the fourth car.
  • the camera image is acquired from the camera 13 of the vehicle corresponding to the car number counter (steps S15 to S21). That is, when the car No. counter indicates the car No. 1 (step S15; Yes), the camera image is acquired from the camera 13 of the car No. 1 10-1 (step S18), and the car No. counter indicates the car No. 2 (step).
  • S16; Yes acquires the camera image from the camera 13 of the second car 10-2 (step S19), and when the car counter indicates the third car (step S17; Yes), it is from the camera 13 of the third car 10-3.
  • the camera image is acquired (step S20), and in other cases (step S17; No), the camera image is acquired from the camera 13 of car No. 4 10-4 (step S21).
  • step S30 After acquiring the camera image, the control device 16 executes the feature amount processing (step S30) described later. After that, it is determined whether or not the train door 12 is closed (step S23), and if it is not closed (step S23; No), the process returns to the increment of the car number counter (step S12). On the other hand, when it can be confirmed that the train door 12 is closed (step S23; Yes), the process ends.
  • step S30 in the video processing of FIG. 2 will be described with reference to the flowchart of FIG.
  • the control device 16 acquires the feature amount of the camera image from the header information of the camera image.
  • the average luminance value and the luminance gradation width which are a kind of feature quantities related to the luminance of the entire camera image, are acquired (steps S31 and S32).
  • the average brightness value is the average value of the brightness of each pixel constituting the camera image.
  • the luminance gradation width is a luminance gradation width (range) in which the appearance frequency is equal to or higher than the reference value in the histogram of the appearance frequency of the brightness of each pixel constituting the camera image.
  • control device 16 executes high-luminance correspondence processing (step S40), low-luminance correspondence processing (step S60), and haze correspondence processing (step S80), respectively, based on the acquired feature amount of the camera image.
  • step S40 high-luminance correspondence processing
  • step S60 low-luminance correspondence processing
  • step S80 haze correspondence processing
  • the high-luminance processing (step S40) in the feature amount processing of FIG. 3 will be described with reference to the flowchart of FIG.
  • the control device 16 determines whether the low-luminance function of the camera 13 is ON or OFF (step S41).
  • the low-luminance function is a function that executes low-luminance processing that lowers the brightness value of the entire image (all pixels) by image processing, and has been commercialized by various methods. Normally, since the low-luminance function is OFF, the processing in that case will be described first, and then the processing when the low-luminance function is ON will be described.
  • step S41 When the low brightness function is not ON (step S41; No), the control device 16 determines whether the condition that the average brightness value is larger than A1 and smaller than A2 (A1 ⁇ average brightness value ⁇ A2) is satisfied (Ste S42).
  • A1 and A2 are threshold values for determining whether the overall brightness of the image is abnormally high, and are set in advance. When this condition is satisfied, the overall brightness of the image is abnormally high, indicating that the image is overexposed.
  • step S42 When A1 ⁇ average brightness value ⁇ A2 (step S42; Yes), that is, when the camera image is in a high brightness state, the control device 16 executes the following processing. First, the high-luminance counter is incremented (“1” is added) (step S43). The high-luminance counter counts the continuation status of the high-luminance state, and it is assumed that "0" is set as an initial value.
  • D1 is a threshold value for providing a time grace so as not to repeat ON (start) and OFF (stop) of the low brightness function in a short time, and is set in advance. If the value of the high-brightness counter is larger than D1, after performing the high-brightness warning display process (step S45), the high-brightness recording process (step S46), and the low-brightness ON process (step S47), the high-brightness counter is displayed as ". 0 ”is set and initialized (step S48).
  • the control device 16 causes the monitor 13 to display that the average brightness of the image is high-luminance.
  • the control device 16 uses information indicating that the average brightness of the video is high-luminance as an event, and stores the event occurrence time and the occurrence camera ID (event generation source video) in its own storage area. Is recorded together with the generated camera identification information).
  • the control device 16 transmits a control signal for turning on the low-brightness function to the camera 13 that generated the event source image. As a result, the camera 13 in which the camera image is in the high brightness state starts the low brightness processing for the camera image.
  • step S41 When the low brightness function is ON (step S41; Yes), the control device 16 determines whether the condition that the average brightness value is larger than A1 and smaller than A2 (A1 ⁇ average brightness value ⁇ A2) is satisfied (Ste S52).
  • the same thresholds as the thresholds A1 and A2 used in step S42 are used in step S52, but different thresholds A1'and A2' may be used.
  • step S52 When A1 ⁇ average luminance value ⁇ A2 (step S52; No), that is, when the camera image is in a non-luminance state, the control device 16 executes the following processing. First, the non-brightness counter is incremented (“1” is added) (step S53). The non-brightness counter counts the continuation status of the non-brightness state, and it is assumed that "0" is set as an initial value.
  • D2 is a threshold value for providing a time grace so that the low-luminance function is not repeatedly turned on and off in a short time, and is set in advance. D2 may have the same value as D1 or may have a different value from D1. If the value of the non-brightness counter is larger than D2, after performing the non-brightness recording process (step S56) and the low-brightness OFF process (step S57), the non-brightness counter is initially set to "0". (Step S58).
  • the control device 16 records information indicating that the average brightness of the image is no longer high-luminance as an event in its own storage area together with the event occurrence time and the occurrence camera ID. ..
  • the control device 16 transmits a control signal for turning off the low-brightness function to the camera 13 that generated the event source video. As a result, in the camera 13 where the camera image is no longer in the high brightness state, the low brightness processing for the camera image is stopped.
  • the low-luminance processing (step S60) in the feature amount processing of FIG. 3 will be described with reference to the flowchart of FIG.
  • the control device 16 determines whether the high-luminance function of the camera 13 is ON or OFF (step S61).
  • the high-luminance function is a function that executes high-luminance processing for increasing the brightness value of the entire image (all pixels) by image processing, and has been commercialized by various methods. Normally, since the high-luminance function is OFF, the processing in that case will be described first, and then the processing in the case where the high-luminance function is ON will be described.
  • step S61 When the high brightness function is not ON (step S61; No), the control device 16 determines whether the condition that the average brightness value is larger than B1 and smaller than B2 (B1 ⁇ average brightness value ⁇ B2) is satisfied (Ste S62).
  • B1 and B2 are threshold values for determining whether the overall brightness of the image is abnormally low, and are set in advance. When this condition is satisfied, the overall brightness of the image is abnormally low, indicating that the image is dark.
  • step S62 When B1 ⁇ average brightness value ⁇ B2 (step S62; Yes), that is, when the camera image is in a low brightness state, the control device 16 executes the following processing. First, the low-luminance counter is incremented (“1” is added) (step S63). The low-luminance counter counts the continuation status of the low-luminance state, and it is assumed that "0" is set as an initial value.
  • E1 is a threshold value for providing a time grace so as not to repeat ON (start) and OFF (stop) of the brightness enhancement function in a short time, and is set in advance. If the value of the low-brightness counter is larger than E1, after performing the low-brightness warning display process (step S65), the low-brightness recording process (step S66), and the high-brightness ON process (step S67), the low-brightness counter is set to ". 0 ”is set and initialized (step S68).
  • the control device 16 causes the monitor 13 to display that the average brightness of the image is low.
  • the control device 16 uses information indicating that the average brightness of the video is low-luminance as an event, and stores the event occurrence time and the occurrence camera ID (event generation source video) in its own storage area. Is recorded together with the generated camera identification information).
  • the control device 16 transmits a control signal for turning on the high-luminance function to the camera 13 that generated the event source image. As a result, the camera 13 in which the camera image is in the low-luminance state starts the high-luminance process for the camera image.
  • step S61 When the high brightness function is ON (step S61; Yes), the control device 16 determines whether the condition that the average brightness value is larger than B1 and smaller than B2 (B1 ⁇ average brightness value ⁇ B2) is satisfied (B1). Step S72).
  • the same thresholds as the thresholds B1 and B2 used in step S62 are used in step S72, but different thresholds B1'and B2' may be used.
  • step S72 When B1 ⁇ average luminance value ⁇ B2 (step S72; No), that is, when the camera image is in a non-luminance state, the control device 16 executes the following processing. First, the non-low brightness counter is incremented (“1” is added) (step S73). The non-low-luminance counter counts the continuation status of the non-low-luminance state, and it is assumed that "0" is set as an initial value.
  • E2 is a threshold value for providing a time grace so as not to repeat ON and OFF of the brightness enhancement function in a short time, and is set in advance. E2 may have the same value as E1 or may have a different value from E1. If the value of the non-low brightness counter is larger than E2, after performing the non-low brightness recording process (step S76) and the high brightness OFF process (step S77), the non-low brightness counter is set to "0" for initialization. (Step S78).
  • the control device 16 records information indicating that the average brightness of the image is no longer low-luminance as an event in its own storage area together with the event occurrence time and the occurrence camera ID. ..
  • the control device 16 transmits a control signal for turning off the high-luminance function to the camera 13 that generated the event source image. As a result, in the camera 13 in which the camera image is no longer in the low brightness state, the high brightness processing for the camera image is stopped.
  • the haze-corresponding process (step S80) in the feature amount process of FIG. 3 will be described with reference to the flowchart of FIG.
  • the control device 16 determines whether the haze correction function of the camera 13 is ON or OFF (step S81).
  • the haze correction function is a function that executes a haze correction process for correcting gradation by image processing so that a histogram as shown in FIG. 8 becomes a histogram as shown in FIG. 7, and has been commercialized by various methods. .. Normally, the haze correction function is OFF, so the processing in that case will be described first, and then the processing when the haze correction function is ON will be described.
  • the control device 16 determines whether or not the condition that the luminance gradation width is smaller than C (luminance gradation width ⁇ C) is satisfied (step S82).
  • the luminance gradation width is calculated by, for example, subtracting the minimum value L1 from the maximum value L2 of the luminance whose appearance frequency exceeds H1 (see the histogram examples of FIGS. 7 and 8).
  • C is a threshold value for determining whether or not the image is in a haze state (hereinafter referred to as “haze state”), and is set in advance.
  • the haze state occurs not only when it is covered with haze, but also when the lens window of the camera is dirty or when it is backlit by sunlight. When this condition is satisfied, that is, when the luminance gradation width is narrow as shown in the histogram example of FIG. 8, it indicates that the image is in a haze state.
  • step S82 When the luminance gradation width ⁇ C (step S82; Yes), that is, when the camera image is in a haze state, the control device 16 executes the following processing. First, the haze state counter is incremented (“1” is added) (step S83). The haze state counter counts the continuation status of the haze state, and it is assumed that "0" is set as an initial value.
  • F1 is a threshold value for providing a time grace so as not to repeat ON (start) and OFF (stop) of the haze correction function in a short time, and is set in advance. If the value of the haze state counter is larger than F1, after performing the haze state recording process (step S86) and the haze correction ON process (step S87), the haze state counter is set to "0" and initialized (step). S88).
  • the control device 16 uses the information indicating that the image is in the haze state as an event, and generates the event occurrence time and the occurrence camera ID (event generation source image) in its own storage area. Record with camera identification information).
  • the control device 16 transmits a control signal for turning on the haze correction function to the camera 13 that generated the event source image. As a result, the camera 13 in which the camera image is in the haze state starts the haze correction process for the camera image.
  • step S81 When the haze correction function is ON (step S81; Yes), the control device 16 determines whether or not the condition that the luminance gradation width is smaller than C (luminance gradation width ⁇ C) is satisfied (step S92).
  • the same threshold value as the threshold value C used in step S82 is used in step S92, but another threshold value C'may be used.
  • step S92 When the luminance gradation width ⁇ C (step S92; No), that is, when the camera image is in a non-haze state, the control device 16 executes the following processing. First, the non-haze state counter is incremented (“1” is added) (step S93). The non-haze state counter counts the continuation status of the non-haze state, and it is assumed that "0" is set as an initial value.
  • F2 is a threshold value for providing a time grace so that the haze correction function is not repeatedly turned on and off in a short time, and is set in advance. F2 may have the same value as F1 or may have a different value from F1. If the value of the non-haze state counter is larger than F2, after performing the haze correction OFF recording process (step S56) and the haze correction OFF process (step S97), set “0” to the non-haze state counter and initialize it. (Step S98).
  • the control device 16 records information indicating that the image is not in the haze state as an event in its own storage area together with the event occurrence time and the occurrence camera ID.
  • the control device 16 transmits a control signal for turning off the haze correction function to the camera 13 that generated the event source image. As a result, the haze correction process for the camera image is stopped at the camera 13 in which the camera image is no longer in the haze state.
  • the control device 16 determines the image defect (decreased visibility) based on the feature amount of the image of the camera 13, and improves the visibility according to the detected image defect.
  • a control signal instructing the execution of the process is transmitted to the camera 13.
  • the control device 16 records by the above-mentioned high-luminance / non-high-luminance recording, low-luminance / non-low-luminance recording, haze correction ON / OFF recording, or the like. Based on the received information, the state of the camera 13 is determined, and the determination result is displayed on the monitor 14 to notify the maintenance staff.
  • the control device 16 may display the information itself recorded by the high-luminance / non-high-luminance recording, the low-luminance / non-low-luminance recording, the haze correction ON / OFF recording, and the like on the monitor 14.
  • FIG. 11 illustrates a determination table used for determining the camera state.
  • the camera state is determined as "dirty", and when the high brightness function is ON for a long time, the camera state is defined as "lens window blockage". It is stipulated that the camera state is determined as "camera abnormality” when the low brightness function is ON for a long time, and the camera state is determined as "normal” when none of the above applies. That is, the control device 16 of this example calculates the ON state time for each of the haze correction function, the high brightness function, and the low brightness function, and depending on whether or not the ON state time is equal to or greater than a predetermined threshold value. The state of the camera 13 is determined.
  • FIG. 12 shows a display example of the determination result of the camera state.
  • the monitor 14 displays information indicating the camera state (that is, information indicating the need for maintenance) for each of the cameras 13 mounted on the train. Therefore, by checking the display on the monitor 14 when servicing the train, the maintenance staff can easily determine what kind of camera state each of the cameras 13 mounted on the train is in and the need for maintenance. It becomes possible to recognize.
  • the surveillance camera system of this example includes a camera 13 which is attached to the outside of the vehicle 10 of the train and images the vicinity of the door of the vehicle 10, a monitor 14 which displays a camera image captured by the camera 13.
  • the visibility of the camera image is determined based on the feature amount of the camera image, and when it is determined that the visibility of the camera image is deteriorated, image processing (low brightness processing, high brightness) for improving the visibility of the camera image is performed. It is provided with a control device 16 that instructs the camera 13 to execute the conversion process, the haze correction process, and the like.
  • the camera 13 automatically executes image processing corresponding to the mode of the decrease in visibility according to the decrease in the visibility of the camera image captured in the vicinity of the door of the vehicle. ..
  • image processing corresponding to the mode of the decrease in visibility according to the decrease in the visibility of the camera image captured in the vicinity of the door of the vehicle. ..
  • the camera 13 has a configuration in which the camera 13 analyzes its own camera image, calculates a feature amount, and transmits the feature amount along with the camera image. Therefore, since the feature amount can be calculated from the camera image (original camera image) before the image processing for improving the visibility of the camera image is performed, there is no concern that the feature amount of the camera image will be changed by the image processing. Further, the processing load of the control device 16 can be reduced.
  • control device 16 gives an instruction to execute image processing for improving the visibility of the camera image until the number of times it is determined that the visibility of the camera image has deteriorated exceeds a predetermined threshold value. It is configured to wait for. Therefore, it is possible to prevent the start and end of the image processing from being repeated in a short time.
  • the control device 16 when it is determined that the visibility of the camera image is deteriorated, the control device 16 is configured to record the information of the determination result. Therefore, for example, the maintenance staff can confirm the state of deterioration of the visibility of the camera image after the fact (after the train is stopped, etc.).
  • control device 16 is configured to display the necessity of maintenance for the camera 13 on the monitor 14 based on the information of the determination result. Therefore, for example, the maintenance staff can easily recognize the necessity of maintenance for the camera 13 such as cleaning the lens window only by checking the display on the monitor 14.
  • the control device 16 has a function of controlling the camera 13 based on the feature amount of the camera image, but another device (for example, the monitor 14 or the recording device 15) has the function. It may be configured. Further, in the above description, the camera 13 is configured to perform image processing for improving the visibility of the camera image, but the image processing is performed by another device (for example, a monitor 14, a recording device 15 or a control device 16). May be the configuration performed by.
  • the present invention has been described in detail above, it goes without saying that the present invention is not limited to the above configuration and may be realized by a configuration other than the above.
  • the present invention can be applied to various types of trains such as monorails and trams, in addition to trains traveling on railways.
  • the present invention provides, for example, a method or method for executing a process according to the present invention, a program for realizing such a method or method by a computer having hardware resources such as a processor or memory, and such a program. It can also be provided as a storage medium for storage.
  • the present invention can be used in a surveillance camera system that monitors the vicinity of a train door with a camera image.
  • 10-1, 10-2, 10-3, 10-4 Vehicle, 11: Switching hub, 12: Door, 13: Camera, 14: Monitor, 15: Recording device, 16: Control device

Abstract

Provided is a monitoring camera system with which it is possible to suppress any decrease in the visibility of a camera video in which the periphery of a car door is captured. The monitoring camera system of the present example comprises: a camera 13 for imaging the periphery of the door of a train car 10, the camera 13 being attached to the outside of the car 10; a monitor 14 for displaying a camera video captured by the camera 13; and a control device 16 for assessing the visibility of the camera video on the basis of the feature quantity of the camera video and, when it is assessed that the visibility of the camera video has decreased, commanding the camera 13 to implement image processing (e.g., a luminance lowering process, a luminance heightening process, or a blur correction process) for improving the visibility of the camera video.

Description

監視カメラシステムSurveillance camera system
 本発明は、列車のドア付近をカメラ映像で監視する監視カメラシステムに関する。 The present invention relates to a surveillance camera system that monitors the vicinity of a train door with a camera image.
 列車に乗降する際の乗客の安全確保は、列車運行にとって重要な課題である。このような安全対策の一環として、車両の側面に取り付けられたカメラでドア付近を撮影し、そのカメラ映像を運転台のモニタに表示させる車両監視CCTV(Closed Circuit Television)システムが開発されている(例えば、特許文献1参照)。 Ensuring the safety of passengers when getting on and off the train is an important issue for train operation. As part of such safety measures, a vehicle monitoring CCTV (Closed Circuit Television) system has been developed that photographs the vicinity of the door with a camera attached to the side of the vehicle and displays the camera image on the monitor of the driver's cab (Closed Circuit Television). For example, see Patent Document 1).
 このようなシステムを利用することで、列車のドライバは、駅停車時に運転台のモニタで乗客の乗降を確認し、列車の運行を行うことが可能となる。従来は、乗客の安全の監視にはリアルタイム性が求められるため、遅延が発生しないアナログシステムが優先して用いられていたが、近年では、IP技術の進歩により低遅延伝送が可能となったので、全ての装置がIPネットワークに接続されるようになった。 By using such a system, the train driver can check the boarding and alighting of passengers on the monitor of the driver's cab when the train is stopped, and can operate the train. In the past, since real-time performance was required to monitor passenger safety, analog systems that did not cause delay were used with priority, but in recent years, advances in IP technology have made low-delay transmission possible. , All devices are now connected to the IP network.
特開2018-113602号公報JP-A-2018-113602
 車両の側面にカメラを取り付けた場合、太陽光などの逆光の状態、埃や塵、汚れ、乗客による悪戯(例えば、レンズ窓への異物貼付)などによって、正常なカメラ映像が得られない場合がある。その結果、カメラ映像の視認性が低下してしまい、列車のドライバが乗客の乗降を確認する作業が困難になりかねない。なお、上記の映像不良は、車両の外側にカメラを取り付けた場合に発生しやすいが、車両の内側にカメラを取り付ける場合にも同様の懸念がある。 If the camera is mounted on the side of the vehicle, normal camera images may not be obtained due to backlight conditions such as sunlight, dust, dust, dirt, and mischief by passengers (for example, sticking foreign matter on the lens window). is there. As a result, the visibility of the camera image is lowered, and it may be difficult for the train driver to confirm the passengers getting on and off. The above-mentioned image defects are likely to occur when the camera is mounted on the outside of the vehicle, but there is a similar concern when the camera is mounted on the inside of the vehicle.
 本発明は、上記のような従来の事情に鑑みて為されたものであり、車両のドア付近を撮像したカメラ映像の視認性の低下を抑制することが可能な監視カメラシステムを提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional circumstances, and provides a surveillance camera system capable of suppressing a decrease in visibility of a camera image captured in the vicinity of a vehicle door. The purpose.
 本発明では、上記目的を達成するために、監視カメラシステムを以下のように構成した。
 すなわち、本発明に係る監視カメラシステムは、列車の車両の外側に取り付けられ、前記車両のドア付近を撮像するカメラと、前記カメラにより撮像されたカメラ映像を表示するモニタと、前記カメラ映像の特徴量に基づいて前記カメラ映像の視認性を判定し、前記カメラ映像の視認性が低下したと判定された場合に、前記カメラ映像の視認性を向上させる画像処理の実行を前記カメラに指示する制御装置と、を備えたことを特徴とする。
In the present invention, in order to achieve the above object, the surveillance camera system is configured as follows.
That is, the surveillance camera system according to the present invention is attached to the outside of the vehicle of the train and captures the vicinity of the door of the vehicle, a monitor that displays the camera image captured by the camera, and features of the camera image. Control that determines the visibility of the camera image based on the amount, and when it is determined that the visibility of the camera image has deteriorated, instructs the camera to execute image processing for improving the visibility of the camera image. It is characterized by being equipped with a device.
 ここで、前記カメラは、自身のカメラ映像を解析して特徴量を算出し、その特徴量を前記カメラ映像に付随させて送信するように構成してもよい。 Here, the camera may be configured to analyze its own camera image, calculate a feature amount, and transmit the feature amount in association with the camera image.
 また、前記制御装置は、前記カメラ映像の視認性が低下したと判定された回数が所定の閾値を超えるまで、前記画像処理の実行の指示を待機するように構成してもよい。 Further, the control device may be configured to wait for an instruction to execute the image processing until the number of times it is determined that the visibility of the camera image has deteriorated exceeds a predetermined threshold value.
 また、前記制御装置は、前記カメラ映像の視認性が低下したと判定された場合に、その判定結果の情報を記録するように構成してもよい。 Further, the control device may be configured to record information on the determination result when it is determined that the visibility of the camera image has deteriorated.
 また、前記制御装置は、前記判定結果の情報に基づいて、前記カメラに対する保守の必要性を前記モニタに表示させるように構成してもよい。 Further, the control device may be configured to display the necessity of maintenance for the camera on the monitor based on the information of the determination result.
 本発明によれば、車両のドア付近を撮像したカメラ映像の視認性の低下を抑制することが可能な監視カメラシステムを提供することができる。 According to the present invention, it is possible to provide a surveillance camera system capable of suppressing a decrease in visibility of a camera image captured in the vicinity of a vehicle door.
本発明の一実施形態に係る監視カメラシステムの概略的な構成例を示す図である。It is a figure which shows the schematic configuration example of the surveillance camera system which concerns on one Embodiment of this invention. 図1の監視カメラシステムによる駅停車時の映像処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the image processing at the time of stopping at a station by the surveillance camera system of FIG. 図2の映像処理における特徴量処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the feature amount processing in the image processing of FIG. 図3の特徴量処理における高輝度対応処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the high-luminance correspondence processing in the feature amount processing of FIG. 図3の特徴量処理における低輝度対応処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the low-luminance correspondence processing in the feature amount processing of FIG. 図3の特徴量処理における霞対応処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the haze correspondence processing in the feature quantity processing of FIG. 正常な映像のヒストグラムを例示する図である。It is a figure which illustrates the histogram of a normal image. 霞状態の映像のヒストグラムを例示する図である。It is a figure which illustrates the histogram of the image of the haze state. 高輝度状態の映像のヒストグラムを例示する図である。It is a figure which illustrates the histogram of the image in a high brightness state. 低輝度状態の映像のヒストグラムを例示する図である。It is a figure which illustrates the histogram of the image in a low brightness state. 図1の監視カメラシステムによるカメラ状態の判定に使用する判定表を例示する図である。It is a figure which illustrates the determination table used for the determination of the camera state by the surveillance camera system of FIG. 図1の監視カメラシステムによるカメラ状態の判定結果の表示例を示す図である。It is a figure which shows the display example of the determination result of the camera state by the surveillance camera system of FIG.
 本発明の一実施形態に係る監視カメラシステムについて、図面を参照して説明する。
 図1には、本発明の一実施形態に係る監視カメラシステムである車載型の車両監視CCTVシステムの概略的な構成例を示してある。図1は、1号車10-1、2号車10-2、3号車10-3、4号車10-4の4台を連結した4両編成の列車を示している。
A surveillance camera system according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration example of an in-vehicle vehicle monitoring CCTV system, which is a surveillance camera system according to an embodiment of the present invention. FIG. 1 shows a 4-car train consisting of four cars, No. 1 car 10-1, No. 2 car 10-2, No. 3 car 10-3, and No. 4 car 10-4.
 各車両10-1~10-4にはスイッチングハブ11が1台ずつ配置されており、これらをカスケード接続することでIPネットワークを構築している。また、各車両10-1~10-4の外側の側面には、乗客が列車に乗降する様子を撮像できるように、その車両のドア12に向けてカメラ13を取り付けてある。すなわち、カメラ13でドア付近を撮影するように構成されている。 One switching hub 11 is arranged in each vehicle 10-1 to 10-4, and an IP network is constructed by cascading these. Further, on the outer side surface of each of the vehicles 10-1 to 10-4, a camera 13 is attached toward the door 12 of the vehicle so that a passenger can take an image of getting on and off the train. That is, the camera 13 is configured to take a picture of the vicinity of the door.
 先頭車両である1号車10-1及び4号車10-4には、各車両のカメラ13で撮影されたカメラ映像を表示するモニタ14が設置されている。また、1号車10-1には、本システム(車両監視CCTV)を制御する制御装置16と、カメラ映像を録画する録画装置15も設置されている。 The leading vehicles, car 1 10-1 and car 4 10-4, are equipped with monitors 14 that display camera images taken by the cameras 13 of each vehicle. In addition, a control device 16 for controlling this system (vehicle monitoring CCTV) and a recording device 15 for recording camera images are also installed in the first car 10-1.
 制御装置16は、メモリやプロセッサなどのハードウェア資源を備えており、ハードディスクやフラッシュメモリ等のデータ記憶装置に記憶されているプログラムをメインメモリ上に読み出してプロセッサにより実行することで、後述する各処理を実現するように構成されている。なお、制御装置16の機能は、このようなソフトウェアにより実現する構成に限定されず、専用ハードウェアにより実現してもよい。 The control device 16 includes hardware resources such as a memory and a processor, and reads a program stored in a data storage device such as a hard disk or a flash memory onto the main memory and executes the program by the processor. It is configured to implement processing. The function of the control device 16 is not limited to the configuration realized by such software, and may be realized by dedicated hardware.
 図2には、本例の監視カメラシステムにおける駅停車時の映像処理のフローチャートを例示してある。列車が駅に停車すると、制御装置16により以下の処理が行われる。なお、映像の取得対象の車両を示す号車カウンタに、初期値として“0”がセットされているものとする。 FIG. 2 illustrates a flowchart of video processing when the station is stopped in the surveillance camera system of this example. When the train stops at the station, the control device 16 performs the following processing. It is assumed that "0" is set as an initial value in the car number counter indicating the vehicle for which the image is to be acquired.
 制御装置16は、まず、列車のドア12が開いたか否かを判定し(ステップS11)、開いていることが確認できた場合に、号車カウンタをインクリメント(“1”を加算)する(ステップS12)。次に、号車カウンタが5号車を示しているか否かを判定する(ステップS13)。5号車は存在しない車両なので、号車カウンタが5号車を示している場合(ステップS13;Yes)には、号車カウンタをクリア(本例では“1”をセット)する(ステップS14)。つまり、映像の取得対象の車両を1号車から4号車の順にループさせる。 The control device 16 first determines whether or not the train door 12 is open (step S11), and when it is confirmed that the train door 12 is open, the car number counter is incremented (“1” is added) (step S12). ). Next, it is determined whether or not the car No. counter indicates the No. 5 car (step S13). Since car 5 does not exist, if the car counter indicates car 5 (step S13; Yes), the car counter is cleared (“1” is set in this example) (step S14). That is, the vehicle for which the image is to be acquired is looped in the order of the first car to the fourth car.
 次に、号車カウンタに対応する車両のカメラ13からカメラ映像を取得する(ステップS15~S21)。すなわち、号車カウンタが1号車を示している場合(ステップS15;Yes)は1号車10-1のカメラ13からカメラ映像を取得し(ステップS18)、号車カウンタが2号車を示している場合(ステップS16;Yes)は2号車10-2のカメラ13からカメラ映像を取得し(ステップS19)、号車カウンタが3号車を示している場合(ステップS17;Yes)は3号車10-3のカメラ13からカメラ映像を取得し(ステップS20)、他の場合(ステップS17;No)は4号車10-4のカメラ13からカメラ映像を取得する(ステップS21)。 Next, the camera image is acquired from the camera 13 of the vehicle corresponding to the car number counter (steps S15 to S21). That is, when the car No. counter indicates the car No. 1 (step S15; Yes), the camera image is acquired from the camera 13 of the car No. 1 10-1 (step S18), and the car No. counter indicates the car No. 2 (step). S16; Yes) acquires the camera image from the camera 13 of the second car 10-2 (step S19), and when the car counter indicates the third car (step S17; Yes), it is from the camera 13 of the third car 10-3. The camera image is acquired (step S20), and in other cases (step S17; No), the camera image is acquired from the camera 13 of car No. 4 10-4 (step S21).
 制御装置16は、カメラ映像を取得した後、後述の特徴量処理(ステップS30)を実行する。その後、列車のドア12が閉じたか否かを判定し(ステップS23)、閉じていない場合(ステップS23;No)には、号車カウンタのインクリメント(ステップS12)に戻る。一方、列車のドア12が閉じたことを確認できた場合(ステップS23;Yes)には、処理を終了する。 After acquiring the camera image, the control device 16 executes the feature amount processing (step S30) described later. After that, it is determined whether or not the train door 12 is closed (step S23), and if it is not closed (step S23; No), the process returns to the increment of the car number counter (step S12). On the other hand, when it can be confirmed that the train door 12 is closed (step S23; Yes), the process ends.
 図2の映像処理における特徴量処理(ステップS30)について、図3のフローチャートを参照して説明する。
 特徴量処理ではまず、制御装置16により、カメラ映像のヘッダ情報からカメラ映像の特徴量が取得される。本例では、カメラ映像全体の輝度に関する特徴量の一種である平均輝度値及び輝度階調幅が取得される(ステップS31,S32)。
The feature amount processing (step S30) in the video processing of FIG. 2 will be described with reference to the flowchart of FIG.
In the feature amount processing, first, the control device 16 acquires the feature amount of the camera image from the header information of the camera image. In this example, the average luminance value and the luminance gradation width, which are a kind of feature quantities related to the luminance of the entire camera image, are acquired (steps S31 and S32).
 平均輝度値は、カメラ映像を構成する各画素の輝度の平均値である。輝度階調幅は、カメラ映像を構成する各画素の輝度の出現頻度のヒストグラムにおいて、出現頻度が基準値以上となる輝度の階調幅(範囲)である。これら特徴量は、カメラ13が自身のカメラ映像を解析して算出しており、カメラ映像のヘッダ情報に格納されている。特徴量の計算は、視認性を向上させる画像処理(後述する低輝度化処理、高輝度化処理、霞補正処理など)を施す前のカメラ映像を解析して行われる。 The average brightness value is the average value of the brightness of each pixel constituting the camera image. The luminance gradation width is a luminance gradation width (range) in which the appearance frequency is equal to or higher than the reference value in the histogram of the appearance frequency of the brightness of each pixel constituting the camera image. These features are calculated by the camera 13 analyzing its own camera image, and are stored in the header information of the camera image. The feature amount is calculated by analyzing the camera image before performing image processing for improving visibility (low-luminance processing, high-luminance processing, haze correction processing, etc., which will be described later).
 次いで、制御装置16は、取得したカメラ映像の特徴量に基づいて、高輝度対応処理(ステップS40)、低輝度対応処理(ステップS60)、霞対応処理(ステップS80)をそれぞれ実行する。なお、これら処理(ステップS40,S60,S80)を実行する順序は任意である。 Next, the control device 16 executes high-luminance correspondence processing (step S40), low-luminance correspondence processing (step S60), and haze correspondence processing (step S80), respectively, based on the acquired feature amount of the camera image. The order in which these processes (steps S40, S60, S80) are executed is arbitrary.
 図3の特徴量処理における高輝度対応処理(ステップS40)について、図4のフローチャートを参照して説明する。
 高輝度対応処理ではまず、制御装置16により、カメラ13の低輝度化機能がONかOFFかが判定される(ステップS41)。低輝度化機能は、画像処理により映像全体(全画素)の輝度値を低くする低輝度化処理を実行する機能であり、様々な方式で製品化されている。通常は低輝度化機能がOFFなので、その場合の処理について先に説明し、その後、低輝度化機能がONの場合の処理について説明する。
The high-luminance processing (step S40) in the feature amount processing of FIG. 3 will be described with reference to the flowchart of FIG.
In the high-luminance processing, first, the control device 16 determines whether the low-luminance function of the camera 13 is ON or OFF (step S41). The low-luminance function is a function that executes low-luminance processing that lowers the brightness value of the entire image (all pixels) by image processing, and has been commercialized by various methods. Normally, since the low-luminance function is OFF, the processing in that case will be described first, and then the processing when the low-luminance function is ON will be described.
 低輝度化機能がONではない場合(ステップS41;No)、制御装置16は、平均輝度値がA1より大きく且つA2より小さい(A1<平均輝度値<A2)という条件を満たすかを判定する(ステップS42)。A1,A2は、図9のヒストグラム例に示すように、映像の全体的な輝度が異常に高いかを判定するための閾値であり、予め設定されている。本条件を満たす場合は、映像の全体的な輝度が異常に高く、映像が白飛びしていることを示している。 When the low brightness function is not ON (step S41; No), the control device 16 determines whether the condition that the average brightness value is larger than A1 and smaller than A2 (A1 <average brightness value <A2) is satisfied ( Step S42). As shown in the histogram example of FIG. 9, A1 and A2 are threshold values for determining whether the overall brightness of the image is abnormally high, and are set in advance. When this condition is satisfied, the overall brightness of the image is abnormally high, indicating that the image is overexposed.
 A1<平均輝度値<A2である場合(ステップS42;Yes)、つまり、カメラ映像が高輝度状態の場合は、制御装置16は以下の処理を実行する。
 まず、高輝度カウンタをインクリメント(“1”を加算)する(ステップS43)。高輝度カウンタは、高輝度状態の継続状況をカウントするものであり、初期値として“0”がセットされているものとする。
When A1 <average brightness value <A2 (step S42; Yes), that is, when the camera image is in a high brightness state, the control device 16 executes the following processing.
First, the high-luminance counter is incremented (“1” is added) (step S43). The high-luminance counter counts the continuation status of the high-luminance state, and it is assumed that "0" is set as an initial value.
 次に、高輝度カウンタの値がD1より大きい(カウンタ値>D1)という条件を満たすかを判定する(ステップS44)。D1は、低輝度化機能のON(起動)とOFF(停止)を短時間で繰り返さないように時間的猶予を設けるための閾値であり、予め設定されている。高輝度カウンタの値がD1より大きい場合は、高輝度警告表示処理(ステップS45)、高輝度記録処理(ステップS46)及び低輝度化ON処理(ステップS47)を実施した後に、高輝度カウンタに “0”をセットして初期化する(ステップS48)。 Next, it is determined whether or not the condition that the value of the high-luminance counter is larger than D1 (counter value> D1) is satisfied (step S44). D1 is a threshold value for providing a time grace so as not to repeat ON (start) and OFF (stop) of the low brightness function in a short time, and is set in advance. If the value of the high-brightness counter is larger than D1, after performing the high-brightness warning display process (step S45), the high-brightness recording process (step S46), and the low-brightness ON process (step S47), the high-brightness counter is displayed as ". 0 ”is set and initialized (step S48).
 高輝度警告表示処理(ステップS45)では、制御装置16が、映像の平均輝度が高輝度である旨をモニタ13に表示させる。高輝度記録処理(ステップS46)では、制御装置16が、映像の平均輝度が高輝度である旨の情報をイベントとして、自身の記憶領域に、イベント発生時刻や発生カメラID(イベントの発生元映像を生成したカメラの識別情報)などと共に記録する。低輝度化ON処理(ステップS47)では、制御装置16が、イベントの発生元映像を生成したカメラ13に対して低輝度化機能をONにする制御信号を送信する。これにより、カメラ映像が高輝度状態になったカメラ13で、カメラ映像に対する低輝度化処理が開始されることになる。 In the high-luminance warning display process (step S45), the control device 16 causes the monitor 13 to display that the average brightness of the image is high-luminance. In the high-luminance recording process (step S46), the control device 16 uses information indicating that the average brightness of the video is high-luminance as an event, and stores the event occurrence time and the occurrence camera ID (event generation source video) in its own storage area. Is recorded together with the generated camera identification information). In the low-brightness ON process (step S47), the control device 16 transmits a control signal for turning on the low-brightness function to the camera 13 that generated the event source image. As a result, the camera 13 in which the camera image is in the high brightness state starts the low brightness processing for the camera image.
 低輝度化機能がONである場合(ステップS41;Yes)、制御装置16は、平均輝度値がA1より大きく且つA2より小さい(A1<平均輝度値<A2)という条件を満たすかを判定する(ステップS52)。本例では、ステップS42で用いる閾値A1,A2と同じ閾値をステップS52で用いているが、別の閾値A1’,A2’を用いてもよい。 When the low brightness function is ON (step S41; Yes), the control device 16 determines whether the condition that the average brightness value is larger than A1 and smaller than A2 (A1 <average brightness value <A2) is satisfied ( Step S52). In this example, the same thresholds as the thresholds A1 and A2 used in step S42 are used in step S52, but different thresholds A1'and A2' may be used.
 A1<平均輝度値<A2でない場合(ステップS52;No)、つまり、カメラ映像が非高輝度状態の場合は、制御装置16は以下の処理を実行する。
 まず、非高輝度カウンタをインクリメント(“1”を加算)する(ステップS53)。非高輝度カウンタは、非高輝度状態の継続状況をカウントするものであり、初期値として“0”がセットされているものとする。
When A1 <average luminance value <A2 (step S52; No), that is, when the camera image is in a non-luminance state, the control device 16 executes the following processing.
First, the non-brightness counter is incremented (“1” is added) (step S53). The non-brightness counter counts the continuation status of the non-brightness state, and it is assumed that "0" is set as an initial value.
 次に、非高輝度カウンタの値がD2より大きい(カウンタ値>D2)という条件を満たすかを判定する(ステップS54)。D2は、低輝度化機能のONとOFFを短時間で繰り返さないように時間的猶予を設けるための閾値であり、予め設定されている。D2は、D1と同じ値でもよいし、D1とは異なる値でもよい。非高輝度カウンタの値がD2より大きい場合は、非高輝度記録処理(ステップS56)及び低輝度化OFF処理(ステップS57)を実施した後に、非高輝度カウンタに “0”をセットして初期化する(ステップS58)。 Next, it is determined whether or not the condition that the value of the non-brightness counter is larger than D2 (counter value> D2) is satisfied (step S54). D2 is a threshold value for providing a time grace so that the low-luminance function is not repeatedly turned on and off in a short time, and is set in advance. D2 may have the same value as D1 or may have a different value from D1. If the value of the non-brightness counter is larger than D2, after performing the non-brightness recording process (step S56) and the low-brightness OFF process (step S57), the non-brightness counter is initially set to "0". (Step S58).
 非高輝度記録処理(ステップS56)では、制御装置16が、映像の平均輝度が高輝度でなくなった旨の情報をイベントとして、自身の記憶領域に、イベント発生時刻や発生カメラIDなどと共に記録する。低輝度化OFF処理(ステップS57)では、制御装置16が、イベントの発生元映像を生成したカメラ13に対して低輝度化機能をOFFにする制御信号を送信する。これにより、カメラ映像が高輝度状態ではなくなったカメラ13で、カメラ映像に対する低輝度化処理が停止されることになる。 In the non-high-luminance recording process (step S56), the control device 16 records information indicating that the average brightness of the image is no longer high-luminance as an event in its own storage area together with the event occurrence time and the occurrence camera ID. .. In the low-brightness OFF process (step S57), the control device 16 transmits a control signal for turning off the low-brightness function to the camera 13 that generated the event source video. As a result, in the camera 13 where the camera image is no longer in the high brightness state, the low brightness processing for the camera image is stopped.
 図3の特徴量処理における低輝度対応処理(ステップS60)について、図5のフローチャートを参照して説明する。
 低輝度対応処理ではまず、制御装置16により、カメラ13の高輝度化機能がONかOFFかが判定される(ステップS61)。高輝度化機能は、画像処理により映像全体(全画素)の輝度値を高くする高輝度化処理を実行する機能であり、様々な方式で製品化されている。通常は高輝度化機能がOFFなので、その場合の処理について先に説明し、その後、高輝度化機能がONの場合の処理について説明する。
The low-luminance processing (step S60) in the feature amount processing of FIG. 3 will be described with reference to the flowchart of FIG.
In the low-luminance processing, first, the control device 16 determines whether the high-luminance function of the camera 13 is ON or OFF (step S61). The high-luminance function is a function that executes high-luminance processing for increasing the brightness value of the entire image (all pixels) by image processing, and has been commercialized by various methods. Normally, since the high-luminance function is OFF, the processing in that case will be described first, and then the processing in the case where the high-luminance function is ON will be described.
 高輝度化機能がONではない場合(ステップS61;No)、制御装置16は、平均輝度値がB1より大きく且つB2より小さい(B1<平均輝度値<B2)という条件を満たすかを判定する(ステップS62)。B1,B2は、図10のヒストグラム例に示すように、映像の全体的な輝度が異常に低いかを判定するための閾値であり、予め設定されている。本条件を満たす場合は、映像の全体的な輝度が異常に低く、映像が暗くなっていることを示している。 When the high brightness function is not ON (step S61; No), the control device 16 determines whether the condition that the average brightness value is larger than B1 and smaller than B2 (B1 <average brightness value <B2) is satisfied ( Step S62). As shown in the histogram example of FIG. 10, B1 and B2 are threshold values for determining whether the overall brightness of the image is abnormally low, and are set in advance. When this condition is satisfied, the overall brightness of the image is abnormally low, indicating that the image is dark.
 B1<平均輝度値<B2である場合(ステップS62;Yes)、つまり、カメラ映像が低輝度状態の場合は、制御装置16は以下の処理を実行する。
 まず、低輝度カウンタをインクリメント(“1”を加算)する(ステップS63)。低輝度カウンタは、低輝度状態の継続状況をカウントするものであり、初期値として“0”がセットされているものとする。
When B1 <average brightness value <B2 (step S62; Yes), that is, when the camera image is in a low brightness state, the control device 16 executes the following processing.
First, the low-luminance counter is incremented (“1” is added) (step S63). The low-luminance counter counts the continuation status of the low-luminance state, and it is assumed that "0" is set as an initial value.
 次に、低輝度カウンタの値がE1より大きい(カウンタ値>E1)という条件を満たすかを判定する(ステップS64)。E1は、高輝度化機能のON(起動)とOFF(停止)を短時間で繰り返さないように時間的猶予を設けるための閾値であり、予め設定されている。低輝度カウンタの値がE1より大きい場合は、低輝度警告表示処理(ステップS65)、低輝度記録処理(ステップS66)及び高輝度化ON処理(ステップS67)を実施した後に、低輝度カウンタに “0”をセットして初期化する(ステップS68)。 Next, it is determined whether or not the condition that the value of the low-luminance counter is larger than E1 (counter value> E1) is satisfied (step S64). E1 is a threshold value for providing a time grace so as not to repeat ON (start) and OFF (stop) of the brightness enhancement function in a short time, and is set in advance. If the value of the low-brightness counter is larger than E1, after performing the low-brightness warning display process (step S65), the low-brightness recording process (step S66), and the high-brightness ON process (step S67), the low-brightness counter is set to ". 0 ”is set and initialized (step S68).
 低輝度警告表示処理(ステップS65)では、制御装置16が、映像の平均輝度が低輝度である旨をモニタ13に表示させる。低輝度記録処理(ステップS66)では、制御装置16が、映像の平均輝度が低輝度である旨の情報をイベントとして、自身の記憶領域に、イベント発生時刻や発生カメラID(イベントの発生元映像を生成したカメラの識別情報)などと共に記録する。高輝度化ON処理(ステップS67)では、制御装置16が、イベントの発生元映像を生成したカメラ13に対して高輝度化機能をONにする制御信号を送信する。これにより、カメラ映像が低輝度状態になったカメラ13で、カメラ映像に対する高輝度化処理が開始されることになる。 In the low-luminance warning display process (step S65), the control device 16 causes the monitor 13 to display that the average brightness of the image is low. In the low-luminance recording process (step S66), the control device 16 uses information indicating that the average brightness of the video is low-luminance as an event, and stores the event occurrence time and the occurrence camera ID (event generation source video) in its own storage area. Is recorded together with the generated camera identification information). In the high-luminance ON process (step S67), the control device 16 transmits a control signal for turning on the high-luminance function to the camera 13 that generated the event source image. As a result, the camera 13 in which the camera image is in the low-luminance state starts the high-luminance process for the camera image.
 高輝度化機能がONである場合(ステップS61;Yes)、制御装置16は、平均輝度値がB1より大きく且つB2より小さい(B1<平均輝度値<B2)という条件を満たすかを判定する(ステップS72)。本例では、ステップS62で用いる閾値B1,B2と同じ閾値をステップS72で用いているが、別の閾値B1’,B2’を用いてもよい。 When the high brightness function is ON (step S61; Yes), the control device 16 determines whether the condition that the average brightness value is larger than B1 and smaller than B2 (B1 <average brightness value <B2) is satisfied (B1). Step S72). In this example, the same thresholds as the thresholds B1 and B2 used in step S62 are used in step S72, but different thresholds B1'and B2' may be used.
 B1<平均輝度値<B2でない場合(ステップS72;No)、つまり、カメラ映像が非低輝度状態の場合は、制御装置16は以下の処理を実行する。
 まず、非低輝度カウンタをインクリメント(“1”を加算)する(ステップS73)。非低輝度カウンタは、非低輝度状態の継続状況をカウントするものであり、初期値として“0”がセットされているものとする。
When B1 <average luminance value <B2 (step S72; No), that is, when the camera image is in a non-luminance state, the control device 16 executes the following processing.
First, the non-low brightness counter is incremented (“1” is added) (step S73). The non-low-luminance counter counts the continuation status of the non-low-luminance state, and it is assumed that "0" is set as an initial value.
 次に、非低輝度カウンタの値がE2より大きい(カウンタ値>E2)という条件を満たすかを判定する(ステップS74)。E2は、高輝度化機能のONとOFFを短時間で繰り返さないように時間的猶予を設けるための閾値であり、予め設定されている。E2は、E1と同じ値でもよいし、E1とは異なる値でもよい。非低輝度カウンタの値がE2より大きい場合は、非低輝度記録処理(ステップS76)及び高輝度化OFF処理(ステップS77)を実施した後に、非低輝度カウンタに “0”をセットして初期化する(ステップS78)。 Next, it is determined whether the condition that the value of the non-low brightness counter is larger than E2 (counter value> E2) is satisfied (step S74). E2 is a threshold value for providing a time grace so as not to repeat ON and OFF of the brightness enhancement function in a short time, and is set in advance. E2 may have the same value as E1 or may have a different value from E1. If the value of the non-low brightness counter is larger than E2, after performing the non-low brightness recording process (step S76) and the high brightness OFF process (step S77), the non-low brightness counter is set to "0" for initialization. (Step S78).
 非低輝度記録処理(ステップS76)では、制御装置16が、映像の平均輝度が低輝度でなくなった旨の情報をイベントとして、自身の記憶領域に、イベント発生時刻や発生カメラIDなどと共に記録する。高輝度化OFF処理(ステップS77)では、制御装置16が、イベントの発生元映像を生成したカメラ13に対して高輝度化機能をOFFにする制御信号を送信する。これにより、カメラ映像が低輝度状態ではなくなったカメラ13で、カメラ映像に対する高輝度化処理が停止されることになる。 In the non-low-luminance recording process (step S76), the control device 16 records information indicating that the average brightness of the image is no longer low-luminance as an event in its own storage area together with the event occurrence time and the occurrence camera ID. .. In the high-luminance OFF process (step S77), the control device 16 transmits a control signal for turning off the high-luminance function to the camera 13 that generated the event source image. As a result, in the camera 13 in which the camera image is no longer in the low brightness state, the high brightness processing for the camera image is stopped.
 図3の特徴量処理における霞対応処理(ステップS80)について、図6のフローチャートを参照して説明する。
 霞対応処理ではまず、制御装置16により、カメラ13の霞補正機能がONかOFFかが判定される(ステップS81)。霞補正機能は、図8のようなヒストグラムが図7のようなヒストグラムになるように、画像処理により階調を補正する霞補正処理を実行する機能であり、様々な方式で製品化されている。通常は霞補正機能がOFFなので、その場合の処理について先に説明し、その後、霞補正機能がONの場合の処理について説明する。
The haze-corresponding process (step S80) in the feature amount process of FIG. 3 will be described with reference to the flowchart of FIG.
In the haze handling process, first, the control device 16 determines whether the haze correction function of the camera 13 is ON or OFF (step S81). The haze correction function is a function that executes a haze correction process for correcting gradation by image processing so that a histogram as shown in FIG. 8 becomes a histogram as shown in FIG. 7, and has been commercialized by various methods. .. Normally, the haze correction function is OFF, so the processing in that case will be described first, and then the processing when the haze correction function is ON will be described.
 霞補正機能がONではない場合(ステップS81;No)、制御装置16は、輝度階調幅がCより小さい(輝度階調幅<C)という条件を満たすかを判定する(ステップS82)。輝度階調幅は、例えば、出現頻度がH1を超える輝度の最大値L2から最小値L1を減算することで算出される(図7、図8のヒストグラム例を参照)。Cは、映像に霞がかかったような状態(以下、「霞状態」という)かを判定するための閾値であり、予め設定されている。霞状態は、霞がかかっている場合のほか、カメラのレンズ窓が汚れている場合や、太陽光により逆光となる場合などでも発生する。本条件を満たす場合、つまり、図8のヒストグラム例に示すように輝度階調幅が狭い場合は、映像が霞状態であることを示している。 When the haze correction function is not ON (step S81; No), the control device 16 determines whether or not the condition that the luminance gradation width is smaller than C (luminance gradation width <C) is satisfied (step S82). The luminance gradation width is calculated by, for example, subtracting the minimum value L1 from the maximum value L2 of the luminance whose appearance frequency exceeds H1 (see the histogram examples of FIGS. 7 and 8). C is a threshold value for determining whether or not the image is in a haze state (hereinafter referred to as “haze state”), and is set in advance. The haze state occurs not only when it is covered with haze, but also when the lens window of the camera is dirty or when it is backlit by sunlight. When this condition is satisfied, that is, when the luminance gradation width is narrow as shown in the histogram example of FIG. 8, it indicates that the image is in a haze state.
 輝度階調幅<Cである場合(ステップS82;Yes)、つまり、カメラ映像が霞状態の場合は、制御装置16は以下の処理を実行する。
 まず、霞状態カウンタをインクリメント(“1”を加算)する(ステップS83)。霞状態カウンタは、霞状態の継続状況をカウントするものであり、初期値として“0”がセットされているものとする。
When the luminance gradation width <C (step S82; Yes), that is, when the camera image is in a haze state, the control device 16 executes the following processing.
First, the haze state counter is incremented (“1” is added) (step S83). The haze state counter counts the continuation status of the haze state, and it is assumed that "0" is set as an initial value.
 次に、霞状態カウンタの値がF1より大きい(カウンタ値>F1)という条件を満たすかを判定する(ステップS84)。F1は、霞補正機能のON(起動)とOFF(停止)を短時間で繰り返さないように時間的猶予を設けるための閾値であり、予め設定されている。霞状態カウンタの値がF1より大きい場合は、霞状態記録処理(ステップS86)及び霞補正ON処理(ステップS87)を実施した後に、霞状態カウンタに “0”をセットして初期化する(ステップS88)。 Next, it is determined whether or not the condition that the value of the haze state counter is larger than F1 (counter value> F1) is satisfied (step S84). F1 is a threshold value for providing a time grace so as not to repeat ON (start) and OFF (stop) of the haze correction function in a short time, and is set in advance. If the value of the haze state counter is larger than F1, after performing the haze state recording process (step S86) and the haze correction ON process (step S87), the haze state counter is set to "0" and initialized (step). S88).
 霞状態記録処理(ステップS86)では、制御装置16が、映像が霞状態である旨の情報をイベントとして、自身の記憶領域に、イベント発生時刻や発生カメラID(イベントの発生元映像を生成したカメラの識別情報)などと共に記録する。霞補正ON処理(ステップS87)では、制御装置16が、イベントの発生元映像を生成したカメラ13に対して霞補正機能をONにする制御信号を送信する。これにより、カメラ映像が霞状態になったカメラ13で、カメラ映像に対する霞補正処理が開始されることになる。 In the haze state recording process (step S86), the control device 16 uses the information indicating that the image is in the haze state as an event, and generates the event occurrence time and the occurrence camera ID (event generation source image) in its own storage area. Record with camera identification information). In the haze correction ON process (step S87), the control device 16 transmits a control signal for turning on the haze correction function to the camera 13 that generated the event source image. As a result, the camera 13 in which the camera image is in the haze state starts the haze correction process for the camera image.
 霞補正機能がONである場合(ステップS81;Yes)、制御装置16は、輝度階調幅がCより小さい(輝度階調幅<C)という条件を満たすかを判定する(ステップS92)。本例では、ステップS82で用いる閾値Cと同じ閾値をステップS92で用いているが、別の閾値C’を用いてもよい。 When the haze correction function is ON (step S81; Yes), the control device 16 determines whether or not the condition that the luminance gradation width is smaller than C (luminance gradation width <C) is satisfied (step S92). In this example, the same threshold value as the threshold value C used in step S82 is used in step S92, but another threshold value C'may be used.
 輝度階調幅<Cでない場合(ステップS92;No)、つまり、カメラ映像が非霞状態の場合は、制御装置16は以下の処理を実行する。
 まず、非霞状態カウンタをインクリメント(“1”を加算)する(ステップS93)。非霞状態カウンタは、非霞状態の継続状況をカウントするものであり、初期値として“0”がセットされているものとする。
When the luminance gradation width <C (step S92; No), that is, when the camera image is in a non-haze state, the control device 16 executes the following processing.
First, the non-haze state counter is incremented (“1” is added) (step S93). The non-haze state counter counts the continuation status of the non-haze state, and it is assumed that "0" is set as an initial value.
 次に、非霞状態カウンタの値がF2より大きい(カウンタ値>F2)という条件を満たすかを判定する(ステップS94)。F2は、霞補正機能のONとOFFを短時間で繰り返さないように時間的猶予を設けるための閾値であり、予め設定されている。F2は、F1と同じ値でもよいし、F1とは異なる値でもよい。非霞状態カウンタの値がF2より大きい場合は、霞補正OFF記録処理(ステップS56)及び霞補正OFF処理(ステップS97)を実施した後に、非霞状態カウンタに “0”をセットして初期化する(ステップS98)。 Next, it is determined whether or not the condition that the value of the non-haze state counter is larger than F2 (counter value> F2) is satisfied (step S94). F2 is a threshold value for providing a time grace so that the haze correction function is not repeatedly turned on and off in a short time, and is set in advance. F2 may have the same value as F1 or may have a different value from F1. If the value of the non-haze state counter is larger than F2, after performing the haze correction OFF recording process (step S56) and the haze correction OFF process (step S97), set “0” to the non-haze state counter and initialize it. (Step S98).
 霞補正OFF記録処理(ステップS96)では、制御装置16が、映像が霞状態でない旨の情報をイベントとして、自身の記憶領域に、イベント発生時刻や発生カメラIDなどと共に記録する。霞補正OFF処理(ステップS97)では、制御装置16が、イベントの発生元映像を生成したカメラ13に対して霞補正機能をOFFにする制御信号を送信する。これにより、カメラ映像が霞状態ではなくなったカメラ13で、カメラ映像に対する霞補正処理が停止されることになる。 In the haze correction OFF recording process (step S96), the control device 16 records information indicating that the image is not in the haze state as an event in its own storage area together with the event occurrence time and the occurrence camera ID. In the haze correction OFF process (step S97), the control device 16 transmits a control signal for turning off the haze correction function to the camera 13 that generated the event source image. As a result, the haze correction process for the camera image is stopped at the camera 13 in which the camera image is no longer in the haze state.
 以上のようにして、制御装置16は、列車の駅停車時に、カメラ13の映像の特徴量に基づいて映像不良(視認性低下)に関する判定を行い、検出された映像不良に応じた視認性向上処理の実行を指示する制御信号をカメラ13に送信する。 As described above, when the train station is stopped, the control device 16 determines the image defect (decreased visibility) based on the feature amount of the image of the camera 13, and improves the visibility according to the detected image defect. A control signal instructing the execution of the process is transmitted to the camera 13.
 その後、列車の運行が終了して列車の保守が行われる際に、制御装置16は、上述した高輝度/非高輝度記録、低輝度/非低輝度記録、霞補正ON/OFF記録などで記録された情報に基づいて、カメラ13の状態を判定し、判定結果をモニタ14に表示させて保守員に通知する。なお、制御装置16は、高輝度/非高輝度記録、低輝度/非低輝度記録、霞補正ON/OFF記録などで記録された情報そのものを、モニタ14に表示させてもよい。 After that, when the train operation is completed and the train is maintained, the control device 16 records by the above-mentioned high-luminance / non-high-luminance recording, low-luminance / non-low-luminance recording, haze correction ON / OFF recording, or the like. Based on the received information, the state of the camera 13 is determined, and the determination result is displayed on the monitor 14 to notify the maintenance staff. The control device 16 may display the information itself recorded by the high-luminance / non-high-luminance recording, the low-luminance / non-low-luminance recording, the haze correction ON / OFF recording, and the like on the monitor 14.
 図11には、カメラ状態の判定に使用する判定表を例示してある。図11の判定表では、霞補正機能が長時間ONになっている場合にカメラ状態を「汚れ」と判定し、高輝度化機能が長時間ONの場合にカメラ状態を「レンズ窓塞ぎ」と判定し、低輝度化機能が長時間ONの場合にカメラ状態を「カメラ異常」と判定し、上記のいずれにも該当しない場合にカメラ状態を「正常」と判定することが規定されている。つまり、本例の制御装置16は、霞補正機能、高輝度化機能、低輝度化機能の各々についてON状態の時間を計算し、ON状態の時間が所定の閾値以上か否かに応じて、カメラ13の状態を判定する。 FIG. 11 illustrates a determination table used for determining the camera state. In the judgment table of FIG. 11, when the haze correction function is ON for a long time, the camera state is determined as "dirty", and when the high brightness function is ON for a long time, the camera state is defined as "lens window blockage". It is stipulated that the camera state is determined as "camera abnormality" when the low brightness function is ON for a long time, and the camera state is determined as "normal" when none of the above applies. That is, the control device 16 of this example calculates the ON state time for each of the haze correction function, the high brightness function, and the low brightness function, and depending on whether or not the ON state time is equal to or greater than a predetermined threshold value. The state of the camera 13 is determined.
 図12には、カメラ状態の判定結果の表示例を示してある。同図に示すように、モニタ14には、列車に搭載されているカメラ13の各々について、そのカメラ状態を示す情報(つまり、保守の必要性を示す情報)が表示される。したがって、保守員は、列車の保守の際にモニタ14の表示を確認することで、列車に搭載されているカメラ13の各々がどのようなカメラ状態であり、保守の必要性があるかを容易に認識することが可能となる。 FIG. 12 shows a display example of the determination result of the camera state. As shown in the figure, the monitor 14 displays information indicating the camera state (that is, information indicating the need for maintenance) for each of the cameras 13 mounted on the train. Therefore, by checking the display on the monitor 14 when servicing the train, the maintenance staff can easily determine what kind of camera state each of the cameras 13 mounted on the train is in and the need for maintenance. It becomes possible to recognize.
 以上のように、本例の監視カメラシステムは、列車の車両10の外側に取り付けられ、車両10のドア付近を撮像するカメラ13と、カメラ13により撮像されたカメラ映像を表示するモニタ14と、カメラ映像の特徴量に基づいてカメラ映像の視認性を判定し、カメラ映像の視認性が低下したと判定された場合に、カメラ映像の視認性を向上させる画像処理(低輝度化処理、高輝度化処理、霞補正処理など)の実行をカメラ13に指示する制御装置16とを備えている。 As described above, the surveillance camera system of this example includes a camera 13 which is attached to the outside of the vehicle 10 of the train and images the vicinity of the door of the vehicle 10, a monitor 14 which displays a camera image captured by the camera 13. The visibility of the camera image is determined based on the feature amount of the camera image, and when it is determined that the visibility of the camera image is deteriorated, image processing (low brightness processing, high brightness) for improving the visibility of the camera image is performed. It is provided with a control device 16 that instructs the camera 13 to execute the conversion process, the haze correction process, and the like.
 したがって、本例の監視カメラシステムによれば、車両のドア付近を撮像したカメラ映像の視認性の低下に応じて、視認性の低下態様に対応する画像処理が自動的にカメラ13で実行される。これにより、カメラ映像の視認性が低下して列車のドライバが乗客の乗降を確認する作業に支障が生じてしまうことを抑制できるようになる。 Therefore, according to the surveillance camera system of this example, the camera 13 automatically executes image processing corresponding to the mode of the decrease in visibility according to the decrease in the visibility of the camera image captured in the vicinity of the door of the vehicle. .. As a result, it becomes possible to prevent the visibility of the camera image from being lowered and the train driver from having trouble in confirming the boarding and alighting of passengers.
 また、本例の監視カメラシステムでは、カメラ13が、自身のカメラ映像を解析して特徴量を算出し、その特徴量をカメラ映像に付随させて送信する構成となっている。したがって、カメラ映像の視認性を向上させる画像処理を施す前のカメラ映像(オリジナルのカメラ映像)から特徴量を算出できるので、画像処理によってカメラ映像の特徴量が変化してしまう懸念がない。また、制御装置16の処理負担を軽減することもできる。 Further, in the surveillance camera system of this example, the camera 13 has a configuration in which the camera 13 analyzes its own camera image, calculates a feature amount, and transmits the feature amount along with the camera image. Therefore, since the feature amount can be calculated from the camera image (original camera image) before the image processing for improving the visibility of the camera image is performed, there is no concern that the feature amount of the camera image will be changed by the image processing. Further, the processing load of the control device 16 can be reduced.
 また、本例の監視カメラシステムでは、制御装置16が、カメラ映像の視認性が低下したと判定された回数が所定の閾値を超えるまで、カメラ映像の視認性を向上させる画像処理の実行の指示を待機する構成となっている。したがって、画像処理の開始と終了が短時間で繰り返されてしまうことを防止できる。 Further, in the surveillance camera system of this example, the control device 16 gives an instruction to execute image processing for improving the visibility of the camera image until the number of times it is determined that the visibility of the camera image has deteriorated exceeds a predetermined threshold value. It is configured to wait for. Therefore, it is possible to prevent the start and end of the image processing from being repeated in a short time.
 また、本例の監視カメラシステムでは、制御装置16が、カメラ映像の視認性が低下したと判定された場合に、その判定結果の情報を記録する構成となっている。したがって、例えば保守員が、事後的(列車の停止後など)にカメラ映像の視認性の低下状況を確認することが可能となる。 Further, in the surveillance camera system of this example, when it is determined that the visibility of the camera image is deteriorated, the control device 16 is configured to record the information of the determination result. Therefore, for example, the maintenance staff can confirm the state of deterioration of the visibility of the camera image after the fact (after the train is stopped, etc.).
 本例の監視カメラシステムでは、制御装置16が、判定結果の情報に基づいて、カメラ13に対する保守の必要性をモニタ14に表示させる構成となっている。したがって、例えば保守員は、モニタ14の表示を確認するだけで、レンズ窓の清掃などのカメラ13に対する保守の必要性を容易に認識することが可能となる。 In the surveillance camera system of this example, the control device 16 is configured to display the necessity of maintenance for the camera 13 on the monitor 14 based on the information of the determination result. Therefore, for example, the maintenance staff can easily recognize the necessity of maintenance for the camera 13 such as cleaning the lens window only by checking the display on the monitor 14.
 なお、上記の説明では、4両編成の列車を例にして説明したが、車両の編成数は任意であることは言うまでもない。また、上記の説明では、制御装置16がカメラ映像の特徴量に基づいてカメラ13の制御を行う機能を備えているが、その機能を他の装置(例えば、モニタ14又は録画装置15)が備える構成としてもよい。また、上記の説明では、カメラ13がカメラ映像の視認性を向上させる画像処理を行う構成となっているが、その画像処理を他の装置(例えば、モニタ14、録画装置15又は制御装置16)が行う構成としてもよい。 In the above explanation, a 4-car train was used as an example, but it goes without saying that the number of trains is arbitrary. Further, in the above description, the control device 16 has a function of controlling the camera 13 based on the feature amount of the camera image, but another device (for example, the monitor 14 or the recording device 15) has the function. It may be configured. Further, in the above description, the camera 13 is configured to perform image processing for improving the visibility of the camera image, but the image processing is performed by another device (for example, a monitor 14, a recording device 15 or a control device 16). May be the configuration performed by.
 以上、本発明について詳細に説明したが、本発明は上記のような構成に限定されるものではなく、上記以外の構成により実現してもよいことは言うまでもない。例えば、本発明は、鉄道上を走行する列車のほか、モノレールや路面電車など、種々の形式の列車に適用することが可能である。 Although the present invention has been described in detail above, it goes without saying that the present invention is not limited to the above configuration and may be realized by a configuration other than the above. For example, the present invention can be applied to various types of trains such as monorails and trams, in addition to trains traveling on railways.
 また、本発明は、例えば、本発明に係る処理を実行する方法や方式、そのような方法や方式をプロセッサやメモリ等のハードウェア資源を有するコンピュータにより実現するためのプログラム、そのようなプログラムを記憶する記憶媒体などとして提供することも可能である。 Further, the present invention provides, for example, a method or method for executing a process according to the present invention, a program for realizing such a method or method by a computer having hardware resources such as a processor or memory, and such a program. It can also be provided as a storage medium for storage.
 本発明は、列車のドア付近をカメラ映像で監視する監視カメラシステムに利用することができる。 The present invention can be used in a surveillance camera system that monitors the vicinity of a train door with a camera image.
 10-1,10-2,10-3,10-4:車両、 11:スイッチングハブ、 12:ドア、 13:カメラ、 14:モニタ、 15:録画装置、 16:制御装置 10-1, 10-2, 10-3, 10-4: Vehicle, 11: Switching hub, 12: Door, 13: Camera, 14: Monitor, 15: Recording device, 16: Control device

Claims (5)

  1.  列車の車両の外側に取り付けられ、前記車両のドア付近を撮像するカメラと、
     前記カメラにより撮像されたカメラ映像を表示するモニタと、
     前記カメラ映像の特徴量に基づいて前記カメラ映像の視認性を判定し、前記カメラ映像の視認性が低下したと判定された場合に、前記カメラ映像の視認性を向上させる画像処理の実行を前記カメラに指示する制御装置と、を備えたことを特徴とする車載型の監視カメラシステム。
    A camera mounted on the outside of the train car that captures the vicinity of the car door,
    A monitor that displays the camera image captured by the camera, and
    The visibility of the camera image is determined based on the feature amount of the camera image, and when it is determined that the visibility of the camera image is deteriorated, the execution of image processing for improving the visibility of the camera image is performed. An in-vehicle surveillance camera system characterized by being equipped with a control device that instructs the camera.
  2.  請求項1に記載の監視カメラシステムにおいて、
     前記カメラは、自身のカメラ映像を解析して特徴量を算出し、その特徴量を前記カメラ映像に付随させて送信することを特徴とする監視カメラシステム。
    In the surveillance camera system according to claim 1,
    The camera is a surveillance camera system characterized in that it analyzes its own camera image, calculates a feature amount, and transmits the feature amount in association with the camera image.
  3.  請求項1又は請求項2に記載の監視カメラシステムにおいて、
     前記制御装置は、前記カメラ映像の視認性が低下したと判定された回数が所定の閾値を超えるまで、前記画像処理の実行の指示を待機することを特徴とする監視カメラシステム。
    In the surveillance camera system according to claim 1 or 2.
    The control device is a surveillance camera system characterized in that it waits for an instruction to execute the image processing until the number of times it is determined that the visibility of the camera image has deteriorated exceeds a predetermined threshold value.
  4.  請求項1乃至請求項3のいずれかに記載の監視カメラシステムにおいて、
     前記制御装置は、前記カメラ映像の視認性が低下したと判定された場合に、その判定結果の情報を記録することを特徴とする監視カメラシステム。
    In the surveillance camera system according to any one of claims 1 to 3.
    The control device is a surveillance camera system characterized in that when it is determined that the visibility of the camera image is deteriorated, information on the determination result is recorded.
  5.  請求項4に記載の監視カメラシステムにおいて、
     前記制御装置は、前記判定結果の情報に基づいて、前記カメラに対する保守の必要性を前記モニタに表示させることを特徴とする監視カメラシステム。
    In the surveillance camera system according to claim 4.
    The control device is a surveillance camera system characterized in that the monitor displays the necessity of maintenance for the camera based on the information of the determination result.
PCT/JP2019/037335 2019-09-24 2019-09-24 Monitoring camera system WO2021059339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021548008A JP7284280B2 (en) 2019-09-24 2019-09-24 surveillance camera system
PCT/JP2019/037335 WO2021059339A1 (en) 2019-09-24 2019-09-24 Monitoring camera system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037335 WO2021059339A1 (en) 2019-09-24 2019-09-24 Monitoring camera system

Publications (1)

Publication Number Publication Date
WO2021059339A1 true WO2021059339A1 (en) 2021-04-01

Family

ID=75165197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037335 WO2021059339A1 (en) 2019-09-24 2019-09-24 Monitoring camera system

Country Status (2)

Country Link
JP (1) JP7284280B2 (en)
WO (1) WO2021059339A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174642A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Smear detecting method and image processor employing the smear detecting method
JP2005349997A (en) * 2004-06-11 2005-12-22 Toshiba Corp Device for detecting foreign matter at passenger door in railway vehicle
JP2009121144A (en) * 2007-11-15 2009-06-04 Fuji Electric Systems Co Ltd Safety check system for vehicle door
JP2011130131A (en) * 2009-12-16 2011-06-30 Canon Inc Image processing apparatus and image processing method
JP2013131835A (en) * 2011-12-20 2013-07-04 Mitsubishi Electric Corp Image recorder
WO2014007153A1 (en) * 2012-07-03 2014-01-09 クラリオン株式会社 Vehicle surrounding monitoring device
JP2017212597A (en) * 2016-05-25 2017-11-30 株式会社デンソー Image processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174642A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Smear detecting method and image processor employing the smear detecting method
JP2005349997A (en) * 2004-06-11 2005-12-22 Toshiba Corp Device for detecting foreign matter at passenger door in railway vehicle
JP2009121144A (en) * 2007-11-15 2009-06-04 Fuji Electric Systems Co Ltd Safety check system for vehicle door
JP2011130131A (en) * 2009-12-16 2011-06-30 Canon Inc Image processing apparatus and image processing method
JP2013131835A (en) * 2011-12-20 2013-07-04 Mitsubishi Electric Corp Image recorder
WO2014007153A1 (en) * 2012-07-03 2014-01-09 クラリオン株式会社 Vehicle surrounding monitoring device
JP2017212597A (en) * 2016-05-25 2017-11-30 株式会社デンソー Image processing apparatus

Also Published As

Publication number Publication date
JP7284280B2 (en) 2023-05-30
JPWO2021059339A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP4738778B2 (en) Image processing device, driving support device, and driving support system
US8208022B2 (en) Apparatus and method for removing blooming of camera image
US20030189655A1 (en) Method of adaptive noise smoothing/restoration in spatio-temporal domain and high-definition image capturing device thereof
US20090213218A1 (en) System and method for multi-resolution storage of images
EP1883050A2 (en) Vision-based method of determining cargo status by boundary detection
JP6845306B2 (en) Monitoring system and monitoring method
US9001209B2 (en) Monitoring apparatus
CN104869286A (en) Image signal processing apparatus, image signal processing method, and image capturing apparatus
TWI530409B (en) Automatic tracking collision avoidance system and method thereof
WO2019026159A1 (en) Video display system and video display method
WO2021059339A1 (en) Monitoring camera system
CN112584030B (en) Driving video recording method and electronic equipment
US20070177815A1 (en) Method, video display system and automobile video display system
JP5710230B2 (en) Monitoring system and monitoring method
CN116246206A (en) Coal conveying system coal overflow identification system based on marker edge detection
JP2001024943A (en) Image pickup device
US10636131B2 (en) Inspection video radiation filter
US20110292210A1 (en) Measurement device, control device, and storage medium
WO2022044370A1 (en) Drive recorder, control method for drive recorder, and shooting control program
WO2023171030A1 (en) Image processing device, image processing method, and program
JP2003143488A (en) Image pickup device
JP4599136B2 (en) Image state determination apparatus, image state determination method, and image state determination program
WO2024062543A1 (en) Train monitoring system
US20160381333A1 (en) Video signal processing device and projection-type display device
WO2021191998A1 (en) Monitoring system and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947086

Country of ref document: EP

Kind code of ref document: A1