WO2021058029A1 - 一种控制业务流传输的方法、装置及系统 - Google Patents

一种控制业务流传输的方法、装置及系统 Download PDF

Info

Publication number
WO2021058029A1
WO2021058029A1 PCT/CN2020/118897 CN2020118897W WO2021058029A1 WO 2021058029 A1 WO2021058029 A1 WO 2021058029A1 CN 2020118897 W CN2020118897 W CN 2020118897W WO 2021058029 A1 WO2021058029 A1 WO 2021058029A1
Authority
WO
WIPO (PCT)
Prior art keywords
ambr
tmbr
session
network element
gbr service
Prior art date
Application number
PCT/CN2020/118897
Other languages
English (en)
French (fr)
Inventor
于游洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20869327.5A priority Critical patent/EP4027691A4/en
Publication of WO2021058029A1 publication Critical patent/WO2021058029A1/zh
Priority to US17/706,274 priority patent/US20220217569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, and system for controlling service stream transmission.
  • the 3GPP standard group formulated the next generation system for mobile communication, called the fifth generation.
  • the 5G network architecture not only supports the terminals to access the 5G core network (core network, CN) and supports non-(non)-3GPP access technology to access the core network side through non-3GPP interworking function (N3IWF) or next generation packet data gateway (ngPDG).
  • N3IWF non-3GPP interworking function
  • ngPDG next generation packet data gateway
  • the subsequent 5G core network can also support fixed network/wired network access.
  • 5GC supports residential gateway (RG) access through wired network.
  • RG residential gateway
  • the home gateway supports cellular access in addition to fixed/wired access, such a home gateway is a user terminal device with hybrid access capability or multiple access capabilities.
  • PDU packet data unit
  • GRR Guaranteed Bit Rate
  • TMBR Total Maximum Bit Rate
  • the embodiments of the present application provide a method, device, and system for controlling service flow transmission, which are used to realize the QoS parameter control requirement that meets the requirements of the first access technology when the TMBR is defined for the session.
  • an embodiment of the present application provides a method for controlling service flow transmission, including: a session management network element obtains a first maximum total bandwidth TMBR of a service flow transmitted through a first access technology in a session, and a first guarantee The guaranteed bandwidth of the bit rate GBR service flow; TMBR is used to indicate the upper limit of the bandwidth of all service flows transmitted through the first access technology in the session; the session management network element sends the first information to the data plane network element, and the first information is used The data plane network element determines any one or more of the following information: the first maximum aggregate bandwidth AMBR of the session, the second AMBR corresponding to the first access technology in the session, the first TMBR, the second TMBR, the second AMBR is used to indicate the upper limit of the aggregate maximum bandwidth of the non-GBR service flow transmitted through the first access technology in the session.
  • the embodiment of the present application provides a method for controlling service flow transmission, in which the session management network element obtains the first TMBR of the service flow transmitted through the first access technology in the session and the guaranteed bandwidth of the first GBR service flow, And send the first information to the data plane network element, so that the data plane network element can determine the first maximum aggregate bandwidth AMBR of the session, the second AMBR, the first TMBR, and the second AMBR corresponding to the first access technology in the session. TMBR.
  • the subsequent data plane network element can control the service flow transmitted through the first access technology in the session according to at least one of the second AMBR, the first TMBR, and the second TMBR, so that the QoS parameter control requirements required by the first access technology can be met. .
  • the first information includes any one or more of the following information: the first maximum aggregate bandwidth AMBR, the second AMBR, and the second TMBR.
  • the second AMBR and the second TMBR can be calculated by the session management network element, and the calculation step of the data plane network element is omitted. That is, the data plane network element can directly use any one or more of the second AMBR and the second TMBR to control the service flow in the session.
  • the first information further includes: any one or more of the first access technology indication or the tunnel identifier corresponding to the first access technology. This facilitates the data plane network element to determine that any one or more of the second AMBR and the second TMBR is related to the first access technology or the tunnel corresponding to the first access technology.
  • the method provided in the embodiment of the present application further includes: the session management network element determines at least one of the second AMBR and the second TMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow .
  • the session management network element determines the second AMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow, including: the session management network element determines the second AMBR according to the guaranteed bandwidth of the first GBR service flow The total guaranteed bandwidth of one or more GBR service streams transmitted through the first access technology in the session.
  • the session management network element determines the second AMBR according to the first TMBR and the total guaranteed bandwidth of one or more GBR service streams. Since the first TMBR is used to describe the upper limit of the bandwidth of all service flows transmitted through the first access technology in the session, the total guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session is calculated.
  • the second AMBR can be calculated based on the sum of the guaranteed bandwidth of the first TMBR and one or more GBR service flows.
  • the session management network element determines the second AMBR according to the first TMBR and the total guaranteed bandwidth of one or more GBR service flows, including: the session management network element determines that the second AMBR is the first TMBR and The difference between the total guaranteed bandwidth of one or more GBR service flows. That is, the session management network element directly uses the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service streams as the second AMBR.
  • the method provided in the embodiment of the present application further includes: the session management network element obtains the first AMBR corresponding to the session, where the first AMBR is used to indicate the upper limit of the aggregate maximum bandwidth of all non-GBR service flows in the session ; Correspondingly, the session management network element determines the second AMBR according to the first TMBR and the sum of guaranteed bandwidths of one or more GBR service flows, including: between the first TMBR and the sum of guaranteed bandwidths of one or more GBR service flows In the case where the difference between is greater than the first AMBR, the session management network element determines that the second AMBR is the first AMBR.
  • the session management network element determines that the second AMBR is the first TMBR and one or more The difference between the total guaranteed bandwidth of the GBR service flow. That is, the session management network element compares the relationship between the first AMBR and (the difference between the first TMBR and the total guaranteed bandwidth of the one or more GBR service flows), and determines the smallest of the two as the first AMBR. Two AMBR.
  • the session management network element determines the second TMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow, including: the session management network element corresponds to the first TMBR and the first access technology
  • the sum of the guaranteed bandwidths of one or more GBR service flows that are offloaded on the upstream classifier of the second TMBR is determined.
  • the second TMBR can be calculated accurately.
  • the second TMBR is the difference obtained by subtracting the first TMBR from the total guaranteed bandwidth of one or more GBR service streams offloaded on the uplink classifier corresponding to the first access technology.
  • the method provided in the embodiment of the present application further includes: the session management network element sends the session identifier and any one or more of the following information to the access network gateway corresponding to the first access technology: The second AMBR, the first TMBR.
  • the access network gateway corresponding to the first access technology it is convenient for the access network gateway corresponding to the first access technology to control the service flow transmitted through the first access technology in the session according to the second AMBR and the first TMBR.
  • the method provided in the embodiment of the present application further includes: the session management network element sends the second AMBR or the first TMBR of the session to the uplink classifier corresponding to the first access technology. This facilitates the uplink classifier corresponding to the first access technology to determine the parameters for controlling the service flow.
  • the data plane network element in the embodiment of the present application is a terminal, or the data plane network element in the embodiment of the present application is a user plane network element.
  • the session provided in the embodiment of the present application is a multi-access session supporting the first access technology and the second access technology.
  • the session is a single access session supporting the first access technology.
  • the first information includes any one or more of the following information: the first TMBR, the second TMBR, or one or more GBR service flows transmitted through the first access technology in the session Guaranteed bandwidth for each GBR service flow.
  • the session management network element in the first aspect may be replaced by a policy control network element.
  • the policy control network element calculates at least one of the second AMBR and the second TMBR,
  • the policy control network element may send the first information to the data plane network element through the session management network element, and send related parameters to other nodes (for example, an access network gateway or an access network device).
  • the method provided in the embodiment of the present application further includes: the session management network element sends instruction information to the data plane network element, the instruction information indicating when the GBR service is transmitted through the first access technology in the session
  • the guaranteed bandwidth resource of the aforementioned GBR service stream can be used by the non-GBR service stream transmitted through the first access technology.
  • the second AMBR of the non-GBR service flow transmitted through the first access technology in the session is the sum of the target second AMBR allocated for the non-GBR service flow and the guaranteed bandwidth value of the inactive GBR service flow , Or the second AMBR is the first AMBR.
  • the above-mentioned target second AMBR is the second AMBR calculated by the session management network element for the non-GBR service flow, and is sent by the session management gateway to the data plane network element.
  • the second AMBR when the sum of the guaranteed bandwidth value of the target second AMBR and the inactive GBR service flow is less than the first AMBR, the second AMBR is the target second AMBR and the inactive state.
  • the second AMBR is the first AMBR. It can be guaranteed that when the bandwidth resources of the session are fully utilized, the upper limit of the maximum bandwidth of the session will not be exceeded.
  • the indication information is any one or more of the second AMBR or the resource dynamic adjustment indication or the first access technology indication or the tunnel identifier corresponding to the first access technology.
  • an embodiment of the present application provides a method for controlling service flow transmission, including: a data plane network element receiving first information from a session management network element.
  • the first information is used by the data plane network element to determine any one or more of the following information: the first maximum aggregate bandwidth AMBR of the session, the second maximum aggregate bandwidth AMBR corresponding to the first access technology in the session, and the first TMBR, the second TMBR.
  • the second AMBR is used to indicate the upper limit of the aggregate maximum bandwidth of the non-guaranteed bit rate GBR service flow transmitted through the first access technology in the session
  • the TMBR is used to indicate the bandwidth of all service flows transmitted through the first access technology in the session. Limit.
  • the data plane network element controls the service flow transmitted through the first access technology in the session according to at least one of the second AMBR, the first TMBR, and the second TMBR.
  • the first information includes any one or more of the following information: the first maximum aggregate bandwidth AMBR, the second AMBR, and the second TMBR.
  • the first information further includes: any one or more of the first access technology indication or the tunnel identifier corresponding to the first access technology.
  • the second AMBR is the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session.
  • the second AMBR is the first AMBR.
  • the second TMBR is the difference between the first TMBR and the sum of guaranteed bandwidths of one or more GBR service streams offloaded on the uplink classifier corresponding to the first access technology.
  • the second AMBR is the first TMBR and the session The difference between the total guaranteed bandwidth of one or more GBR service streams transmitted through the first access technology.
  • the data plane network element controls the service flow transmitted through the first access technology in the session according to at least one of the second AMBR and the second TMBR, including: the data plane network element controls the service flow transmitted through the first access technology in the session according to the second AMBR and the second TMBR.
  • AMBR controls all non-GBR service flows transmitted through the first access technology in the session; and/or, the data plane network element controls all non-GBR service flows and all GBR services transmitted through the first access technology in the session
  • the total bandwidth of the stream is less than or equal to the second TMBR.
  • the method provided in the embodiment of the present application further includes: the data plane network element obtains the first AMBR; and the data plane network element controls all non-transmitted data in the session through the first access technology according to the second AMBR.
  • -GBR service flow including: the aggregate bandwidth of the non-GBR service flow transmitted through the first access technology or the tunnel corresponding to the first access technology in the data plane network element control session is less than or equal to the second AMBR; and/ Or, the sum of the bandwidth of all non-GBR service flows transmitted through the first access technology and the aggregate bandwidth of all non-GBR service flows transmitted through the second access technology in the session is less than or equal to the first AMBR.
  • the first information includes any one or more of the following information: the first TMBR, the second TMBR, or one or more GBR service flows transmitted through the first access technology in the session
  • the method provided in the embodiment of this application further includes: the data plane network element determines the guaranteed bandwidth of each GBR service flow in the first TMBR or the second TMBR, one or more GBR service flows The second AMBR.
  • the data plane network element determines the second AMBR according to the first TMBR or the second TMBR, and the guaranteed bandwidth of each GBR service flow in one or more GBR service flows, including: data plane network element According to the guaranteed bandwidth of each GBR service flow, determine the total guaranteed bandwidth of one or more GBR service flows; the data plane network element determines that the second AMBR is the first difference, and the first difference is the first TMBR or the second TMBR The difference with the sum of the guaranteed bandwidth of one or more GBR service flows.
  • the data plane network element determines the second AMBR according to the first TMBR or the second TMBR, and the guaranteed bandwidth of each GBR service flow in one or more GBR service flows, including: data plane network element According to the guaranteed bandwidth of each GBR service flow, determine the total guaranteed bandwidth of one or more GBR service flows; in the case that the first difference is greater than the first AMBR, the data plane network element determines that the second AMBR is the first AMBR.
  • the data plane network element determines the second AMBR according to the first TMBR or the second TMBR, and the guaranteed bandwidth of each GBR service flow in one or more GBR service flows, including: data plane network element According to the guaranteed bandwidth of each GBR service flow, the total guaranteed bandwidth of one or more GBR service flows is determined; the data plane network element determines that the second AMBR is any value smaller than the first difference.
  • the first difference is the difference between the first TMBR or the second TMBR and the total guaranteed bandwidth of the one or more GBR service flows.
  • the data plane network element determines the second AMBR according to the first TMBR or the second TMBR, and the guaranteed bandwidth of each GBR service flow in one or more GBR service flows, including: data plane network element According to the guaranteed bandwidth of each GBR service flow, determine the total guaranteed bandwidth of one or more GBR service flows; in the case that the first difference is less than the first AMBR, the data plane network element determines that the second AMBR is the first difference.
  • the first difference is the difference between the first TMBR or the second TMBR and the total guaranteed bandwidth of one or more GBR service streams.
  • the data plane network element controls the service flow transmitted through the first access technology in the session according to the second AMBR, including: the data plane network element controls the traffic transmitted through the first access technology in the session
  • the sum of the aggregate bandwidth of all non-GBR service flows is less than or equal to the second AMBR.
  • the method provided in the embodiment of the present application further includes: the data plane network element sends the second AMBR to the access network gateway and the uplink classifier corresponding to the first access technology.
  • the data plane network element controls the service flow transmitted through the first access technology in the session according to the first TMBR or the second TMBR, including: the data plane network element controls the session using the first access technology.
  • the sum of the aggregate bandwidth of all GBR service flows and non-GBR service flows transmitted by the incoming technology is less than or equal to the first TMBR or the second TMBR.
  • the method provided in the embodiment of the present application further includes: the data plane network element receives indication information from the session management network element, where the indication information indicates that when passing the first session in the session
  • the second AMBR of the non-GBR service flow transmitted through the first access technology in the session is the target allocated for the non-GBR service flow
  • the sum of the second AMBR and the guaranteed bandwidth value of the GBR service flow in the inactive state, or the second AMBR is the first AMBR.
  • the data plane network element determines the sum of the target second AMBR allocated by the second AMBR for the non-GBR service flow and the guaranteed bandwidth value of the GBR service flow in the inactive state according to the indication information, or the second AMBR For the first AMBR.
  • the second AMBR is the target second AMBR And the sum of the guaranteed bandwidth value of the GBR service flow in the inactive state;
  • the second AMBR is the first AMBR.
  • the present application provides an apparatus for controlling service flow transmission.
  • the apparatus for controlling service flow transmission can implement the first aspect or the method in any possible implementation manner of the first aspect, and therefore can also implement the first aspect or The beneficial effects in any possible implementation of the first aspect.
  • the device for controlling service flow transmission may be a session management network element, or a device that can support the session management network element to implement the method in the first aspect or any possible implementation of the first aspect, for example, applied to the session management network element In the chip.
  • the device for controlling service flow transmission can implement the above method by software, hardware, or by hardware executing corresponding software.
  • the present application provides an apparatus for controlling service flow transmission, including: a processing unit, configured to process information.
  • the communication unit is used to obtain the first maximum total bandwidth TMBR of the service flow transmitted through the first access technology in the session, and the guaranteed bandwidth of the first guaranteed bit rate GBR service flow; TMBR is used to indicate that the session passes through the first access The upper limit of the bandwidth of all service streams transmitted by the incoming technology; the communication unit is also used to send first information to the data plane network element, and the first information is used by the data plane network element to determine any one or more of the following information: The first maximum aggregate bandwidth AMBR of the session, the second AMBR, the first TMBR, and the second TMBR corresponding to the first access technology in the session, and the second AMBR is used to indicate that the session is transmitted through the first access technology The upper limit of the aggregate maximum bandwidth of the non-GBR service flow.
  • the first information includes any one or more of the following information: the first maximum aggregate bandwidth AMBR, the second AMBR, and the second TMBR.
  • the processing unit is further configured to determine at least one of the second AMBR and the second TMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow.
  • the processing unit is specifically configured to determine, according to the guaranteed bandwidth of the first GBR service flow, the total guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session; the processing unit , Specifically used to determine the second AMBR according to the first TMBR and the total guaranteed bandwidth of one or more GBR service streams.
  • the communication unit is also used to obtain the first AMBR corresponding to the session, and the first AMBR is used to indicate the upper limit of the aggregate maximum bandwidth of all non-GBR service flows in the session; correspondingly, the processing unit is specifically It is used to determine that the second AMBR is the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service streams. Alternatively, the difference between the first TMBR and the total guaranteed bandwidth of the one or more GBR service flows is greater than the first AMBR, and the processing unit is specifically configured to determine that the second AMBR is the first AMBR.
  • the processing unit is specifically configured to determine the second TMBR according to the first TMBR and the total guaranteed bandwidth of one or more GBR service streams offloaded on the uplink classifier corresponding to the first access technology.
  • the communication unit is further configured to send the session identifier and any one or more of the following information to the access network gateway corresponding to the first access technology: the second AMBR and the first TMBR.
  • the communication unit is further configured to send the second AMBR or the first TMBR of the session to the uplink classifier corresponding to the first access technology.
  • the first information includes any one or more of the following information: the first TMBR, the second TMBR, or one or more GBR service flows transmitted through the first access technology in the session Guaranteed bandwidth for each GBR service flow.
  • the communication unit is further configured to send instruction information to the data plane network element, where the instruction information indicates that the GBR service flow transmitted through the first access technology in the session
  • the second AMBR of the non-GBR service flow transmitted through the first access technology in the session is the target second AMBR allocated by the non-GBR service flow and the inactive state
  • the sum of guaranteed bandwidth values of the GBR service flow, or the second AMBR is the first AMBR.
  • the second AMBR is the target second AMBR And the sum of the guaranteed bandwidth value of the GBR service flow in the inactive state;
  • the second AMBR is the first AMBR.
  • an embodiment of the present application provides an apparatus for controlling service flow transmission.
  • the apparatus for controlling service flow transmission may be a session management network element, or a chip or a chip system in the session management network element.
  • the device for controlling service stream transmission may include a processing unit and a communication unit.
  • the processing unit may be a processor
  • the communication unit may be a communication interface or an interface circuit.
  • the apparatus for controlling service flow transmission may further include a storage unit, and the storage unit may be a memory.
  • the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit to enable the session management network element to implement a control service described in the first aspect or any one of the possible implementations of the first aspect
  • the method of streaming When the device for controlling service flow transmission is a chip or a chip system in a session management network element, the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface can be an input/output interface, a pin, or a circuit.
  • the processing unit executes the instructions stored in the storage unit, so that the session management network element implements the method for controlling service flow transmission described in the first aspect or any one of the possible implementation manners of the first aspect.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the session management network element .
  • the present application provides an apparatus for controlling service flow transmission.
  • the apparatus for controlling service flow transmission can implement the second aspect or any possible implementation method of the second aspect, and therefore can also implement the second aspect or The beneficial effects of any possible implementation of the second aspect.
  • the device for controlling service flow transmission may be a data plane network element, or a device that can support the data plane network element to implement the method in the second aspect or any possible implementation manner of the second aspect, for example, applied to the data plane network element In the chip.
  • the device for controlling service flow transmission can implement the above method by software, hardware, or by hardware executing corresponding software.
  • an embodiment of the present application provides a device for controlling service stream transmission, including: a communication unit, configured to receive first information from a session management network element, and the first information is used by a processing unit of the device to determine which of the following information Any one or more: the first maximum aggregate bandwidth AMBR of the session, the second maximum aggregate bandwidth AMBR corresponding to the first access technology in the session, the first TMBR, the second TMBR, and the second AMBR is used for Represents the upper limit of the aggregate maximum bandwidth of the non-guaranteed bit rate GBR service flow transmitted through the first access technology in the session, and TMBR is used to represent the upper limit of the bandwidth of all service flows transmitted through the first access technology in the session; processing unit , Used to control the service flow transmitted through the first access technology in the session according to at least one of the second AMBR, the first TMBR, and the second TMBR.
  • the first information includes any one or more of the following information: the first maximum aggregate bandwidth AMBR, the second AMBR, and the second TMBR.
  • the second AMBR is the difference between the first TMBR and the sum of the guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session; or, the first TMBR and The difference between the total guaranteed bandwidth of one or more GBR service streams transmitted through the first access technology in the session is greater than the first AMBR, the second AMBR is the first AMBR; the second TMBR is the first TMBR and the first access The difference between the total guaranteed bandwidth of one or more GBR service streams offloaded on the uplink classifier corresponding to the incoming technology.
  • the processing unit is configured to control the service flow transmitted through the first access technology in the session according to at least one of the second AMBR and the second TMBR, including: controlling the traffic flow according to the second AMBR All non-GBR service flows transmitted through the first access technology in the session; and/or, control the total bandwidth of all non-GBR service flows and all GBR service flows transmitted through the first access technology in the session to be less than or equal to The second TMBR.
  • the communication unit is also used to obtain the first AMBR; the processing unit is specifically used to control the non-GBR service transmitted through the first access technology or the tunnel corresponding to the first access technology in the session
  • the sum of the aggregate bandwidth of the flow is less than or equal to the second AMBR; and/or, the bandwidth of all non-GBR service flows transmitted through the first access technology and all non-GBR service flows transmitted through the second access technology in the session
  • the sum of aggregate bandwidths is less than or equal to the first AMBR.
  • the first information includes any one or more of the following information: the first TMBR, the second TMBR, or one or more GBR service flows transmitted through the first access technology in the session
  • the guaranteed bandwidth of each GBR service flow, the processing unit is also used to determine the second AMBR according to the guaranteed bandwidth of each GBR service flow in the first TMBR or the second TMBR, one or more GBR service flows.
  • the processing unit is configured to determine the total guaranteed bandwidth of one or more GBR service streams according to the guaranteed bandwidth of each GBR service stream; the processing unit is configured to determine that the second AMBR is the first difference
  • the first difference is the difference between the first TMBR or the second TMBR and the total guaranteed bandwidth of one or more GBR service streams.
  • the first difference is greater than the first AMBR, and the processing unit is configured to determine that the second AMBR is the first AMBR; or, the processing unit is configured to determine that the second AMBR is any value less than the first difference.
  • the first difference is smaller than the first AMBR, and the processing unit is configured to determine that the second AMBR is the first difference.
  • the processing unit is configured to control that the sum of the aggregate bandwidth of all non-GBR service flows transmitted using the first access technology in the session is less than or equal to the second AMBR.
  • the communication unit is further configured to send the second AMBR to the access network gateway and the uplink classifier corresponding to the first access technology.
  • the processing unit is configured to control the service flow transmitted through the first access technology in the session according to the first TMBR or the second TMBR, including: the processing unit is configured to control the use of the first TMBR in the session
  • the sum of the aggregate bandwidth of all GBR service flows and non-GBR service flows transmitted by the access technology is less than or equal to the first TMBR or the second TMBR.
  • the communication unit is further configured to receive instruction information from the session management network element, where the instruction information indicates when the GBR service is transmitted through the first access technology in the session
  • the second AMBR of the non-GBR service flow transmitted through the first access technology in the session is the target second AMBR allocated to the non-GBR service flow and the inactive state
  • the sum of the guaranteed bandwidth values of the GBR service flow, or the second AMBR is the first AMBR.
  • the processing unit is further configured to determine the sum of the target second AMBR allocated by the second AMBR for the non-GBR service flow and the guaranteed bandwidth value of the GBR service flow in the inactive state according to the indication information, or The second AMBR is the first AMBR.
  • the second AMBR when the sum of the guaranteed bandwidth value of the target second AMBR and the inactive GBR service flow is less than the first AMBR, the second AMBR is the target second AMBR And the guaranteed bandwidth value of the GBR service flow in the inactive state; or, when the sum of the target second AMBR and the guaranteed bandwidth value of the GBR service flow in the inactive state is greater than or equal to the first AMBR At this time, the second AMBR is the first AMBR.
  • an embodiment of the present application provides an apparatus for controlling service flow transmission.
  • the apparatus for controlling service flow transmission may be a data plane network element, or a chip or a chip system in the data plane network element.
  • the device for controlling service stream transmission may include a processing unit and a communication unit.
  • the processing unit may be a processor
  • the communication unit may be a communication interface or an interface circuit.
  • the apparatus for controlling service flow transmission may further include a storage unit, and the storage unit may be a memory.
  • the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit to enable the data plane network element to implement a control service described in the second aspect or any one of the possible implementations of the second aspect
  • the method of streaming When the device for controlling service flow transmission is a chip or a chip system in a data plane network element, the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface can be an input/output interface, a pin, or a circuit.
  • the processing unit executes the instructions stored in the storage unit, so that the data plane network element implements the method for controlling service flow transmission described in the second aspect or any one of the possible implementation manners of the second aspect.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the data plane network element .
  • the embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction runs on a computer, the computer executes the operations as described in the first aspect to the first aspect.
  • the method for controlling service flow transmission described in any one of the possible implementations on the one hand.
  • the embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction runs on a computer, the computer executes the operations as described in the second aspect to the first aspect.
  • the method for controlling service flow transmission described in any one of the possible implementations of the second aspect.
  • the embodiments of the present application provide a computer program product including instructions.
  • the instructions run on a computer, the computer executes a control service described in the first aspect or various possible implementation manners of the first aspect.
  • the method of streaming is a computer program product including instructions.
  • this application provides a computer program product that includes instructions, which when the instructions run on a computer, cause the computer to execute the second aspect or a control service stream transmission described in the various possible implementations of the second aspect Methods.
  • an embodiment of the present application provides a communication system, which includes: the session management network element described in the third aspect and various possible implementation manners, and the fourth aspect and various possible aspects of the fourth aspect The data plane network element described in the implementation mode.
  • the communication system may further include: an access network gateway corresponding to the first access technology, an uplink classifier, or an access network device corresponding to the second access technology, and an access network device corresponding to the second access technology.
  • the upstream classifier may further include: an access network gateway corresponding to the first access technology, an uplink classifier, or an access network device corresponding to the second access technology, and an access network device corresponding to the second access technology.
  • the upstream classifier may further include: an access network gateway corresponding to the first access technology, an uplink classifier, or an access network device corresponding to the second access technology, and an access network device corresponding to the second access technology.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a storage medium.
  • the storage medium stores instructions. When the instructions are executed by the processor, various possibilities such as the first aspect or the first aspect are realized.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a storage medium.
  • the storage medium stores instructions. When the instructions are executed by the processor, they can implement various aspects such as the second aspect or the second aspect. Possible implementations describe the method of controlling service flow transmission.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, the processor is coupled to a memory, and the memory stores instructions.
  • the instructions are executed by the processor, the communication device as described in the first aspect or the first aspect is implemented.
  • Various possible implementations describe methods for controlling service flow transmission.
  • the coupling of the processor and the memory may also be understood as the connection between the memory and the processor.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, the processor is coupled to a memory, and the memory stores instructions. When the instructions are executed by the processor, they can implement the second aspect or the second aspect.
  • Various possible implementations describe methods for controlling service flow transmission.
  • the memory in the communication device described in the twelfth aspect or the thirteenth aspect may be an internal memory of the communication device or an external memory, which is not limited in the embodiment of the present application.
  • the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions. , To perform the method for controlling service flow transmission described in any one of the first aspect to any one of the possible implementation manners of the first aspect.
  • the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the chip or chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • FIG. 1 is an architecture diagram of control parameters at each node during service flow offloading according to an embodiment of the application
  • Figure 2 is a schematic diagram of a multi-access session provided by an embodiment of the application
  • FIG. 3a is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 3b is a schematic structural diagram of another communication system provided by an embodiment of this application.
  • FIG. 4a is a schematic diagram of a 5G network architecture provided by an embodiment of this application.
  • FIG. 4b is a schematic diagram of another 5G network architecture provided by an embodiment of this application.
  • FIG. 5 is an architecture diagram of a multi-access technology provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart 1 of a method for controlling service flow transmission according to an embodiment of this application.
  • FIG. 8 is a second schematic flowchart of a method for controlling service flow transmission according to an embodiment of this application.
  • FIG. 9 is a third schematic flowchart of a method for controlling service flow transmission according to an embodiment of this application.
  • FIG. 10 is a schematic diagram of calculating service flow control parameters by a session management network element according to an embodiment of this application.
  • FIG. 11 is a schematic diagram of calculating service flow control parameters by a user plane network element according to an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of an apparatus for controlling service flow transmission provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another device for controlling service stream transmission provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • the session is the data transmission channel established by the session management network element to connect the terminal and the user plane network element to the data network.
  • session A can access the core network side through the first access technology, and can also access the core network side through the second access technology.
  • PDU packet data unit
  • a multi-access session is a (multi-access PDU session, MA-PDU).
  • Single access session that is, the session supports one access technology.
  • the single-access session in the embodiment of the present application refers to that the session supports the first access technology. That is, the session can be accessed to the core network side through the first access technology.
  • Terminal-maximum aggregate bandwidth (aggregate maximum bit rate, AMBR), which is a terminal granularity parameter, also called terminal AMBR (UE-AMBR), used to represent all non-GBR (non-guaranteed bit rate) services of the terminal The upper limit of the aggregate maximum bandwidth of the stream.
  • AMBR aggregate maximum bit rate
  • UE-AMBR terminal granularity parameter
  • non-GBR non-guaranteed bit rate
  • Session-maximum bit rate session-aggregate maximum bit rate, Session-AMBR
  • Session-AMBR session-aggregate maximum bit rate
  • Guaranteed bit rate (GBR) of service flow is a service flow granularity parameter used to indicate the guaranteed bandwidth value that the network side of a specific service flow can provide for it, that is, the minimum transmission bandwidth value, which is divided into uplink and downlink guarantees Bandwidth value. Applicable to GBR business flow.
  • QoS Quality of Service
  • the guaranteed bandwidth value of this QoS flow is the sum of the guaranteed bandwidth values of the aforementioned GBR service flows, which is defined as GFBR (Guaranteed Flow Bit Rate). So GFBR is a QoS flow granularity parameter.
  • the maximum bit rate of the service flow is a granularity parameter of the service flow, which is used to indicate the maximum bandwidth value that the network side of the specific service flow can provide for it, and is divided into the maximum bandwidth value of uplink and downlink. Applicable to GBR business flow.
  • the maximum bandwidth value of this QoS flow is the sum of the maximum bandwidth values of the aforementioned GBR service flows, which is defined as MFBR (Maximum Flow Bit Rate). Therefore, MFBR is a QoS flow granularity parameter.
  • Session total maximum bit rate (Session-TMBR), which is a session granularity parameter used to indicate all service flows (for example, GBR service flow and non- The upper limit of the aggregate maximum bandwidth of GBR service flow).
  • words such as “first” and “second” are used to distinguish the same items or similar items that have substantially the same function and effect.
  • the first access technology and the second access technology are only used to distinguish different access technologies, and the order of their order is not limited.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • the 5G communication system and the new radio (NR) are the next-generation communication systems under study, as well as non3GPP access systems, such as WLAN access network and Wireline access network.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • Figure 3a shows a communication system to which a method for controlling service stream transmission provided by an embodiment of the present application is applied.
  • the communication system includes: a session management network element 10 and a communication system that communicates with the session management network element 10.
  • User plane network element 20 User plane network element 20.
  • the communication system in the embodiment of the present application may further include: one or more terminals 30, and the terminals 30 access the core network through the access network.
  • the session management network element 10 and the user plane network element 20 are all network elements in the core network.
  • the access network includes an access network gateway 40 that supports the first access technology.
  • Any one of the user plane network element 20 and the terminal 30 in the embodiment of the present application may be used as a data plane network element.
  • the communication system may further include: an uplink classifier (UL CL) 60, the uplink classifier 60 has a function of offloading the service flow transmitted in a session, of course,
  • the uplink classifier may also be called a branching point (branching point).
  • the uplink classifier 60 communicates with the session management network element 10 and the user plane network element 20.
  • the uplink classifier 60 can obtain the offloading rule, the second AMBR and the first TMBR from the session management network element 10, and then offload the service flow according to the offloading rule.
  • the uplink classifier 60 is also used to control the passing of the first AMBR according to the terminal AMBR or the terminal TMBR.
  • the service flow transmitted by the access technology may be used to control the passing of the first AMBR according to the terminal AMBR or the terminal TMBR.
  • FIG. 3a there is a session between at least one terminal and the user plane network element 20 in one or more terminals 30 in the embodiment of the present application, and the session may be a single access session supporting the first access technology .
  • a terminal may have one or more sessions.
  • Each session in the one or more sessions corresponds to a first AMBR (Session-AMBR), and each terminal has a terminal AMBR (UE-AMBR).
  • UE-AMBR terminal AMBR
  • the GBR service flow must satisfy the first AMBR of the session, and the access network gateway can sort all the sessions of a terminal.
  • Fig. 3b shows a communication system to which a method for controlling service flow transmission provided by an embodiment of the present application is applied.
  • the difference between Fig. 3b and Fig. 3a is that the terminal 30 in Fig. 3b uses different connections.
  • the terminal 30 can communicate with the network elements in the core network through the access network gateway 40 supporting the first access technology and the access network device 50 supporting the second access technology.
  • the communication system shown in FIG. 3b may further include: an uplink classifier 70 corresponding to the second access technology, and the uplink classifier 70 is further configured to control through the second access according to the first AMBR The business flow of technology transmission.
  • the uplink classifier 70 corresponding to the second access technology and the uplink classifier 60 corresponding to the first access technology may be the same uplink classifier.
  • the uplink classifier can pass the first access technology.
  • the service flow transmitted by one access technology is shunted, and the service flow corresponding to the second access technology may also be shunted.
  • FIG. 3b there is a session between at least one terminal and the user plane network element 20 in one or more terminals 30 in the embodiment of the present application, and the session may be a multiple that supports the first access technology and the second access technology. Access the session.
  • the second access technology in the embodiment of the present application may be an access technology that complies with the 3GPP standard specifications.
  • the third generation partnership project 3rd generation partnership project, 3GPP
  • 3GPP third generation partnership project
  • LTE long term evolution
  • 2G, 3G, 4G, or 5G systems are used in access technologies.
  • the access network adopting the 3GPP access technology is called a radio access network (RAN).
  • the terminal 30 may use the 3GPP access technology to access the wireless network through the access network equipment in the 2G, 3G, 4G or 5G system.
  • the first access technology may be a wireless access technology not defined in the 3GPP standard specification. For example, it is called a non-3rd generation partnership project (non-3GPP) access technology.
  • the non-3GPP access technology can be an untrusted non-3GPP access technology or a trusted non-3GPP access technology.
  • Non-3GPP access technologies may include: wireless fidelity (WIFI), worldwide interoperability for microwave access (WiMAX), code division multiple access (CDMA), wireless local area network (wireless local area network). local area networks, WLAN), fixed network access technology or wired access technology (wireline access), etc.
  • WIFI wireless fidelity
  • WiMAX worldwide interoperability for microwave access
  • CDMA code division multiple access
  • wireless local area network wireless local area network
  • WLAN wireless local area networks
  • WLAN fixed network access technology or wired access technology (wireline access), etc.
  • the terminal 30 can access the network through an air interface technology represented by WIFI.
  • the access network gateway corresponding to the first access technology may be a non-3GPP access network gateway (Non-3GPP, N3G).
  • a non-3GPP access network gateway may include any of the following: non-3GPP interworking function (N3IWF)/untrusted WLAN access gateway, trusted non-3GPP gateway function (Trusted Non-3GPP Gateway Function) , TNGF)/trusted non-3GPP access network gateway, fixed access gateway function/wireline access gateway function (wireline access gateway function, W-AGF), etc.
  • the terminals may be distributed in a wireless network, and each terminal may be static or mobile.
  • the session management network element 10 is responsible for establishing a corresponding session on the network side when the user initiates a service, and provides specific services for the terminal 30, especially based on the interface between the session management network element 10 and the user plane network element 20 to the user plane network Element 20 issues data packet forwarding strategies, QoS strategies, etc.
  • the user plane network element 20 is a user plane gateway, which is mainly responsible for packet data packet forwarding, quality of service (Quality of Service, QoS) control, and accounting information statistics.
  • the user plane data is transmitted to the data network through the user plane network element 20.
  • the data network is used to provide services for the terminal 30, such as providing mobile operator services, Internet services, or third-party services.
  • the session management network element 10 may be a mobility management entity (MME).
  • MME mobility management entity
  • the user plane network element 20 may be a packet data network user plane ((PGW-User Plane, PGW-U) and a serving gateway user plane (SGW-User Plane, SGW-U).
  • PGW-User Plane PGW-U
  • SGW-User Plane SGW-U
  • the network element or entity corresponding to the session management network element 10 may be a session management function (session management function, SMF) network element
  • user plane network element 20 is a user plane function (UPF) network element in 5G.
  • SMF session management function
  • UPF user plane function
  • the 5G network may also include: policy control function (PCF) network elements, access and mobility management function (access and mobility management function, AMF) network elements, Application function (AF) network element, access network equipment (for example, access network (AN)), can also be called radio access network (RAN), authentication server function (authentication server function, AUSF) network element, unified data management (unified data management, UDM) network element, data network (data network, DN), etc., which are not specifically limited in the embodiment of the present application.
  • PCF policy control function
  • AMF access and mobility management function
  • AF Application function
  • RAN radio access network
  • authentication server function authentication server function
  • UDM unified data management
  • data network data network
  • the terminal communicates with the AMF network element through the N1 interface (N1 for short).
  • the AMF network element communicates with the SMF network element through the N11 interface (N11 for short).
  • the SMF network element communicates with one or more UPF network elements through the N4 interface (N4 for short). Any two UPF network elements among one or more UPF network elements communicate through an N9 interface (abbreviated as N9).
  • the UPF network element communicates with the DN through the N6 interface (N6 for short).
  • the terminal accesses the network through an access network device (for example, a RAN device).
  • the access network device communicates with the AMF network element through the N2 interface (N2 for short).
  • the SMF network element communicates with the PCF network element through the N7 interface (N7 for short), and the PCF network element communicates with the AF network element through the N5 interface.
  • the access network device communicates with the UPF network element through the N3 interface (N3 for short). Any two or more AMF network elements communicate through the N14 interface (N14 for short).
  • the SMF network element communicates with the UDM network element through the N10 interface (N10 for short).
  • the AMF network element communicates with the AUSF network element through the N12 interface (N12 for short).
  • the AUSF network element communicates with the UDM network element through the N13 interface (N13 for short).
  • the AMF network element communicates with the UDM network element through the N8 interface (N8 for short).
  • the name of the interface between the network elements in FIG. 4a or FIG. 4b is only an example, and the name of the interface may be other names in a specific implementation, which is not specifically limited in the embodiment of the present application.
  • the access network device AF network element, AMF network element, SMF network element, AUSF network element, UDM network element, UPF network element, and PCF network element in Figure 4a or Figure 4b are just one name. There is no limitation on the device itself.
  • the network elements corresponding to the access network equipment, AF network elements, AMF network elements, SMF network elements, AUSF network elements, UDM network elements, UPF network elements and PCF network elements can also be Other names are not specifically limited in the embodiments of this application.
  • the UDM network element may also be replaced with a user home server (home subscriber server, HSS) or user subscription database (user subscription database, USD) or a database entity, etc., which will be uniformly explained here and will not be repeated in the following .
  • HSS home subscriber server
  • USD user subscription database
  • the access network equipment involved in the embodiments of this application refers to equipment that accesses the core network, such as a base station, a broadband network service gateway (Broadband Network Gateway, BNG), and an aggregation switch.
  • BNG Broadband Network Gateway
  • 3GPP Generation Partnership Project
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and so on.
  • the AMF network element involved in the embodiment of the present application may also be responsible for functions such as the registration process when the terminal is accessed, the location management during the movement of the terminal, and lawful interception, which is not specifically limited in the embodiment of the present application.
  • the SMF network elements involved in the embodiments of this application are used for session management, including: session establishment, session modification, session release, and Internet Protocol (IP) address allocation for the interconnection between the terminals of the network And management, UPF network element selection and control, lawful monitoring and other control functions related to the session.
  • IP Internet Protocol
  • the UPF network element involved in the embodiment of this application not only has the functions of the user plane function network element shown in Figure 4a or Figure 4b, but also can implement a Serving Gateway (SGW) and a packet data network gateway. (Packet Data Network Gateway, PGW) user plane function.
  • SGW Serving Gateway
  • PGW Packet Data Network Gateway
  • the UPF network element may also be a software defined network (Software Defined Network, SDN) switch (Switch), which is not specifically limited in the embodiment of the present application.
  • SDN Software Defined Network
  • the AUSF network element functions as an authentication server, which is mainly responsible for authenticating the terminal and determining the legitimacy of the terminal. For example, the terminal is authenticated based on user subscription data of the terminal.
  • the UDM network element is a unified user data management, which is mainly used to store the subscription data of the terminal.
  • the UDM network element also includes functions such as authentication, processing terminal identification information, and contract management, which are not specifically limited in the embodiment of the present application.
  • the PCF network element is mainly used to issue business-related policies to the AMF network element or SMF network element.
  • the AF network element sends application-related requirements to the PCF network element, so that the PCF network element generates a corresponding strategy.
  • DN provides services for the terminal, such as providing mobile operator services, Internet services or third-party services.
  • a terminal is a device that provides users with voice and/or data connectivity, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • the terminal can also be called User Equipment (UE), Access Terminal (Access Terminal), User Unit (User Unit), User Station (User Station), Mobile Station (Mobile Station), Mobile Station (Mobile), and Remote Station (Remote Station), Remote Terminal (Remote Terminal), Mobile Equipment (Mobile Equipment), User Terminal (User Terminal), Wireless Communication Equipment (Wireless Telecom Equipment), User Agent (User Agent), User Equipment (User Equipment) or User device.
  • UE User Equipment
  • Access Terminal Access Terminal
  • User Unit User Unit
  • User Station User Station
  • Mobile Station Mobile Station
  • Mobile Station Mobile Station
  • Remote Station Remote Terminal
  • Remote Terminal Remote Terminal
  • Mobile Equipment Mobile Equipment
  • User Terminal User Terminal
  • Wireless Communication Equipment Wireless Telecom Equipment
  • User Agent User Agent
  • User Equipment User Equipment
  • the terminal can be a station (Station, STA) in a wireless local area network (Wireless Local Area Networks, WLAN), a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, and a wireless local loop (Wireless Local Loop). , WLL) stations, Personal Digital Assistant (PDA) equipment, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems (such as , The terminal in the fifth-generation (Fifth-Generation, 5G) communication network) or the terminal in the future evolution of the public land mobile network (Public Land Mobile Network, PLMN) network, etc. Among them, 5G can also be called New Radio (NR).
  • NR New Radio
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • FIG. 5 shows a schematic diagram of an architecture in which a terminal uses multiple access technologies to access a network in an embodiment of the present application.
  • an architecture in which a terminal uses 3GPP access technology and non-3GPP access technology As shown in Figure 5, the terminal can be connected to the access and mobility management function network element through 3GPP access technology and non-3GPP access technology.
  • the terminal when the terminal uses the non-3GPP access technology to access the access and mobility management function network element, it can access the network element through the non-3GPP interworking function (non-3GPP interworking function, N3IWF) entity. Access and mobility management function network element.
  • non-3GPP interworking function non-3GPP interworking function, N3IWF
  • Access and mobility management function network element When 3GPP and non-3GPP belong to the same PLMN, the terminal selects the same access and mobility management function network element. When 3GPP and non-3GPP belong to different PLMNs, different access and mobility management function network elements can be selected.
  • the session management function network element is selected by the access and mobility management function network element. Different session management function network elements can be selected for different sessions, but the same session management function network element must be selected for the same session.
  • the session management function network element can select the user plane function network element for the session.
  • a session can have multiple user plane function network elements. Therefore, the session management function network element may select multiple user plane function network elements to create a tunnel connection for a session.
  • the AUSF network element and the authentication storage function (ARPF)/UDM network element constitute the home public land mobile network (HPLMN).
  • HPLMN home public land mobile network
  • the terminal accesses the network through different access technologies, it can Having different visited public land mobile networks (VPLMN) may also have the same visited public land mobile network.
  • VPN visited public land mobile networks
  • FIG. 6 shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device includes a processor 61, a communication line 64 and at least one communication interface 63.
  • the processor 61 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 64 may include a path to transmit information between the aforementioned components.
  • the communication interface 63 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, and WLAN.
  • the communication device may further include a memory 62.
  • the memory 62 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 64. The memory can also be integrated with the processor.
  • the memory 62 is used to store computer execution instructions for executing the solution of the present application, and the processor 61 controls the execution.
  • the processor 61 is configured to execute computer-executable instructions stored in the memory 62, so as to implement a method for controlling service flow transmission provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 61 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6.
  • the communication device may include multiple processors, such as the processor 61 and the processor 65 in FIG. 6.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the GBR service flow in the embodiment of this application can be transmitted in one access technology, for example, in the first access technology or the second access technology, or the GBR service flow can also be transmitted in multiple technologies at the same time. For example, transmission in the first access technology and the second access technology.
  • the non-GBR service flow can be transmitted in one access technology, or, at the same time, in multiple technologies, for example, in the first access technology and the second access technology. The following is an example of GBR service flow being transmitted in one access technology and non-GBR service flow being transmitted in multiple technologies.
  • the non-GBR service flow must meet the first AMBR of the session, and the access network equipment will respond to a terminal Organize all the sessions of the terminal.
  • GBR service flow 1 is transmitted in the second access technology, and GBR service flow 2 is transmitted in the second access technology. Transmission in the first access technology.
  • Figure 1 shows how each node handles QoS parameters.
  • the same session service flow can be transmitted in multiple access technologies at the same time.
  • the bandwidth of the GBR service flow can be guaranteed end-to-end.
  • QoS control is the bandwidth aggregation value of session granularity and terminal granularity. Therefore, the sum of the aggregate bandwidth values of the access side (NG-RAN, N3G gateway) is different from the aggregate bandwidth values of the two ends (terminals, user plane network elements).
  • the first AMBR on the access network device side and the access network gateway are respectively 10Mbps, then the sum of the two is 20Mbps, and the first AMBR aggregation value of the above-mentioned session of the terminal and the user plane network element is only It is 10Mpbs.
  • Session-TMBR Session Total Maximum Bit Rate
  • the GBR service flow in the MA PDU session can be moved between the first access technology and the second access technology, including the GBR service flow being switched to another access technology as a whole, or part of the GBR service flow data can be switched to another access Technology, and the first TMBR is related to whether the GBR service flow currently occupies part of the bandwidth on the first access technology side, which brings difficulties to the QoS control on the first access technology side.
  • the embodiment of the present application provides a method for controlling service flow transmission.
  • the method obtains the first TMBR of the service flow transmitted through the first access technology in the session and the first GBR service flow through the session management network element.
  • the bandwidth is guaranteed, and the first information is sent to the user plane network element, so that the user plane network element can determine at least one of the second maximum aggregate bandwidth AMBR and the second TMBR corresponding to the first access technology, and based on the second AMBR and the first At least one of the two TMBRs controls the service flow transmitted through the first access technology in the session, so that the QoS parameter control requirements required by the first access technology can be met.
  • the specific structure of the execution subject of the method for controlling service flow transmission is not particularly limited in the embodiment of the present application, as long as the operation record of the method for controlling service flow transmission of the embodiment of this application can be recorded.
  • the program of the code can be communicated using a method for controlling service flow transmission according to an embodiment of the present application.
  • the execution subject of the method for controlling service flow transmission provided by an embodiment of the present application may be a session management network element.
  • the execution subject of the method for controlling service flow transmission may be a functional module in a user plane network element that can call and execute the program, or a communication device applied to the user plane network element, such as a chip. .
  • This application does not limit this.
  • the following embodiments are described with an example in which the execution subject of a method for controlling service flow transmission is a user plane network element and a session management network element.
  • an embodiment of the present application provides a method for controlling service flow transmission.
  • the method takes the data plane network element as the user plane network element 20 as an example, and the method includes:
  • Step 701 The session management network element 10 obtains the first TMBR of the service flow transmitted through the first access technology in the session and the guaranteed bandwidth of the first GBR service flow.
  • TMBR is used to indicate the upper limit of the aggregate bandwidth of all service flows transmitted through the first access technology in the session.
  • the guaranteed bandwidth of the first GBR service flow in the embodiment of this application may refer to the guarantee of each GBR service flow in all GBR service flows (including at least one or more activated GBR service flows) transmitted through the first access technology in the session.
  • Bandwidth, the guaranteed bandwidth value of each GBR service flow mentioned above can be obtained based on the QoS policy sent by the PCF network element, or based on the local policy of the session management network element.
  • the guaranteed bandwidth of the first GBR service flow only includes the guaranteed bandwidth value occupied by the data transmitted by the GBR service flow through the first access technology .
  • the guaranteed bandwidth of the first GBR service flow in the embodiment of the present application may refer to the guaranteed bandwidth of each GBR service flow in one or more activated GBR service flows transmitted through the first access technology in the session.
  • the first TMBR in the embodiment of the present application is: Session-TMBR sent by the PCF network element, or the contracted session-TMBR sent by the UDM network element.
  • the guaranteed bandwidth of the first GBR service flow is: the guaranteed bandwidth included in the QoS policy sent by the PCF, or the guaranteed bandwidth obtained based on the local policy.
  • the session management network element 10 may obtain the guaranteed bandwidth of the first GBR service flow from the PCF network element, or the PCF network element may determine the first GBR based on a locally configured policy.
  • the session management network element 10 obtains the guaranteed bandwidth value of the GBR service flow from the PCF network element, and the session management network element 10 determines the GBR based on the above-mentioned guaranteed bandwidth value
  • the first GBR service flow guaranteed bandwidth of the service flow is the guaranteed bandwidth transmitted through the first access technology.
  • the session management network element 10 in the embodiment of the present application may obtain the guaranteed bandwidth of part of the GBR service flow in one or more GBR service flows transmitted through the first access technology in the session from the PCF network element.
  • the session management network Element 10 determines the guaranteed bandwidth of the remaining part of the GBR service flow in one or more GBR service flows based on the locally configured policy.
  • the session management network element 10 may obtain from the PCF network element that the guaranteed bandwidth of the GBR service flow 1 transmitted through the first access technology in the session is 10M, and the session management network element 10 determines that the session passes the first The guaranteed bandwidth of GBR service flow 2 transmitted by the access technology is 5M.
  • the session management network element 10 obtains the subscription data in progress from the UDM network element.
  • the subscription data of the terminal includes: the first TMBR (that is, the first Session-TMBR, which is abbreviated as the first TMBR in the following description) for the first access technology.
  • the session management network element 10 sends the above-mentioned parameters (for example, the first TMBR for the first access technology to the PCF network element, and the PCF network element authorizes the above-mentioned parameters based on the policy.
  • the PCF network element The parameters are further modified. After the PCF network element is modified, the session management network element 10 uses the modified parameter as the first TMBR, that is, obtains the first TMBR from the PCF network element.
  • the session involved in the embodiment of this application may be a PDU session or a public data network (PDN) connection.
  • PDN public data network
  • the PDU session in the embodiment of the present application refers to a data transmission channel that connects the terminal 30 established by the session management network element 10 and the user plane network element 20 to the DN.
  • the network elements involved in the data transmission channel include: a terminal, an access network device, and a user plane network element 20 selected by the session management network element 10 for the session.
  • the data transmission channel includes multiple links between two adjacent network elements. For example, it includes the link between the terminal and the access network device, the link between the access network device and the user plane network element 20, and the link between the UPF network element and the DN.
  • the embodiment of the present application may further include: the session management network element 10 determines to manage (for example, establish or update) the session of the terminal.
  • the terminal initiates a session management process to the session management network element 10, which is the same as in the prior art.
  • the session management process may include: a session establishment process or a session update (may also be referred to as a session modification) process.
  • the above-mentioned session management process can also be used to establish or update a MA PDU session, while supporting the transmission of the first access technology and the second access technology. That is, the terminal sends a PDU session establishment request or a PDU session modification request message to the session management network element 10.
  • the session in the embodiment of the present application is a single access session that supports the first access technology, or the session is a multiple access session that supports the first access technology and the second access technology.
  • Step 702 The session management network element 10 sends the first information to the user plane network element 20, so that the user plane network element 20 receives the first information from the session management network element 10.
  • This first information is used by the user plane network element 20 to determine any one or more of the following information: the first maximum aggregate bandwidth AMBR of the session, and the second maximum aggregate corresponding to the first access technology in the session Bandwidth AMBR, the first TMBR, and the second TMBR.
  • the second AMBR is used to indicate the upper limit of the aggregate maximum bandwidth of the non-GBR service flow transmitted through the first access technology in the session.
  • the session management network element 10 sends an N4 message to the user plane network element 20, so that the user plane network element 20 receives the N4 message from the session management network element.
  • the N4 message carries the first information.
  • the second AMBR in the embodiment of the present application is the upper limit of the aggregate maximum bandwidth of the non-GBR service flow transmitted through the first access technology in the session during the actual transmission, that is, the non-GBR service flow transmitted in the actual transmission.
  • the second TMBR is the upper limit of the bandwidth of all non-GBR service flows and all GBR service flows that are allowed to be transmitted by the first access technology in the session during actual transmission.
  • the second AMBR and the first AMBR in the embodiment of the present application may be equal, or the second AMBR may be smaller than the first AMBR.
  • the second TMBR and the first TMBR may be equal, or the second TMBR may be smaller than the first TMBR.
  • the first information used by the user plane network element 20 to determine at least one of the second AMBR and the second TMBR corresponding to the first access technology in the session may include the following two cases: 1), the first information includes At least one of the second AMBR and the second TMBR, so that the session management network element 10 calculates at least one of the second AMBR and the second TMBR, and sends the second AMBR and the second TMBR to the user plane network element 20 at least one. 2) The first information includes parameters for calculating the second AMBR, so that the user plane network element 20 autonomously calculates the second AMBR based on the parameters for calculating the second AMBR.
  • the parameter used to calculate the second AMBR may be the guaranteed bandwidth of each GBR service flow in the first TMBR and one or more GBR service flows transmitted through the first access technology in the session.
  • the parameter used to calculate the second AMBR may be the guaranteed bandwidth of each GBR service flow in the second TMBR and one or more GBR service flows transmitted through the first access technology in the session.
  • Step 703 The user plane network element 20 controls the service flow transmitted through the first access technology in the session according to at least one of the second AMBR, the first TMBR, and the second TMBR.
  • the service flow includes all non-GBR service flows transmitted through the first access technology, and/or all GBR service flows transmitted through the first access technology.
  • the user plane network element 20 may control all non-GBR service flows transmitted through the first access technology in the session according to the second AMBR.
  • the user plane network element 20 may control the GBR service flow and the non-GBR service flow transmitted through the first access technology in the session according to the second AMBR and the second TMBR.
  • the second AMBR controls the non-GBR service flow
  • the second TMBR controls the GBR service flow and the non-GBR service flow.
  • the user plane network element 20 may control the sum of the aggregate bandwidth of all GBR service flows and non-GBR service flows transmitted in the session by using the first access technology according to the second TMBR or the first TMBR to be less than or equal to the first TMBR.
  • TMBR or second TMBR may be controlled by using the first access technology according to the second TMBR or the first TMBR.
  • the embodiment of the present application provides a method for controlling service flow transmission, in which the session management network element obtains the first TMBR of the service flow transmitted through the first access technology in the session and the guaranteed bandwidth of the first GBR service flow, And send the first information to the user plane network element, so that it is convenient for the user plane network element to determine at least one of the second AMBR, the first TMBR, and the second TMBR corresponding to the first access technology. Subsequent user plane network elements can control the service flow transmitted through the first access technology in the session according to at least one of the second AMBR, the first TMBR, and the second TMBR, so that the QoS parameter control requirements required by the first access technology can be met. .
  • the second AMBR may be calculated by the user plane network element 20, and the second AMBR and the second TMBR may also be calculated by the session management network element 10.
  • the calculation of the second AMBR and/or the second TMBR is different. There are differences in the specific implementation process, which will be introduced separately as follows:
  • the session management network element 10 calculates any one or more of the second AMBR and the second TMBR.
  • the first information packet in the embodiment of the present application any one or more of the following information: the first maximum aggregate bandwidth AMBR, the second AMBR, and the second TMBR.
  • the first information in the embodiment of the present application includes: the second TMBR.
  • the first information in the embodiment of the present application includes: the second AMBR and the second TMBR.
  • the first information in the embodiment of the present application includes: the first AMBR.
  • the first information in the embodiment of the present application includes: the second AMBR, the first AMBR, and the second TMBR.
  • the first information may further include: a first access technology indication or a tunnel identifier corresponding to the first access technology.
  • the first access technology indication is used to indicate that the first access technology is used for transmission.
  • the tunnel identifier corresponding to the first access technology is used to determine the tunnel corresponding to the first access technology.
  • the first information includes the correspondence between the first access technology indication and the second AMBR, and/or the correspondence between the first access technology indication and the second TMBR.
  • the first information includes the corresponding relationship between the tunnel identifier corresponding to the first access technology and the second AMBR, and/or the corresponding relationship between the tunnel identifier corresponding to the first access technology and the second TMBR.
  • the correspondence between the first access technology indication and the second AMBR indicates that the maximum aggregate bandwidth of the non-GBR service flow transmitted by the first access technology indicated by the first access technology for the session is the second AMBR.
  • the correspondence between the tunnel identifier corresponding to the first access technology and the second AMBR indicates that the maximum aggregate bandwidth of the non-GBR service flow transmitted in the tunnel indicated by the relevant tunnel identifier is the second AMBR.
  • the method provided in the embodiment of the present application further includes:
  • Step 704 The session management network element 10 determines at least one of the second AMBR and the second TMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow.
  • Example I As a first possible implementation manner, the session management network element 10 determines the second AMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow through the following steps 7041 and 7042:
  • Step 7041 the session management network element 10, according to the guaranteed bandwidth of the first GBR service flow, determines the total guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session.
  • each GBR service flow in the one or more GBR service flows corresponds to a guarantee of a first GBR service flow.
  • Bandwidth the guaranteed bandwidth of the first GBR service flow corresponding to different GBR service flows may be the same or different, which is not limited in the embodiment of the present application.
  • the one or more GBR service flows are all activated GBR service flows transmitted through the first access technology in the session.
  • the sum of the guaranteed bandwidth of one or more GBR service flows is the accumulation of the guaranteed bandwidth of the first GBR service flow corresponding to the one or more GBR service flows.
  • the activated GBR service flow involved in the embodiment of the present application may refer to an ongoing GBR service flow.
  • the user plane network element establishes a user plane channel for this GBR service flow and reserves corresponding bandwidth resources.
  • Step 7042 The session management network element 10 determines the second AMBR according to the first TMBR and the total guaranteed bandwidth of one or more GBR service flows.
  • step 7042 may be implemented in the following manner: the session management network element 10 determines that the second AMBR is the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service flows. That is, the session management network element 10 uses the first TMBR to subtract the total guaranteed bandwidth of one or more GBR service streams to obtain the second AMBR.
  • the second AMBR is the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session.
  • the method provided in this embodiment of the present application may further include:
  • Step 705 The session management network element 10 obtains the first AMBR corresponding to the session, where the first AMBR is used to indicate the upper limit of the aggregate maximum bandwidth of all non-GBR service flows in the session.
  • the first AMBR may be obtained by the session management network element 10 from the subscription data of the terminal, or may be obtained by the session management network element 10 from the PCF network element, which is not limited in the embodiment of the present application.
  • the session management network element 10 determines the second AMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow, which can be implemented through the following step 7043:
  • Step 7043 The session management network element 10 determines the second AMBR according to the first TMBR, the total guaranteed bandwidth of one or more GBR service flows, and the first AMBR.
  • the session management network element 10 compares the sizes of the second AMBR and the first AMBR, and the session management network element 10 uses the smallest value of the second AMBR and the first AMBR as the final second AMBR. That is, if the difference between the first TMBR and the total guaranteed bandwidth of the one or more GBR service flows is greater than the first AMBR of the entire session, the first AMBR is used as the second AMBR. Otherwise, if the difference between the first TMBR and the sum of guaranteed bandwidths of one or more GBR service flows is less than or equal to the first AMBR of the entire session, the sum of guaranteed bandwidths of the first TMBR and one or more GBR service flows is used The difference between is used as the second AMBR.
  • the session management network element 10 determines that the second AMBR is the first TMBR and the one or more The difference between the total guaranteed bandwidth of each GBR service flow.
  • the difference between the first TMBR and the total guaranteed bandwidth of the one or more GBR service flows is greater than the first AMBR, and the session management network element 10 determines that the second AMBR is the first AMBR.
  • the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service flows transmitted through the first access technology in the session is greater than the first AMBR, and the second AMBR is the first AMBR.
  • Example II the difference between Example I and Example II is that in Example I, the session management network element 10 does not compare the first AMBR and the difference obtained by subtracting the guaranteed bandwidth of one or more GBR service streams from the first TMBR. , That is, directly use the difference obtained by subtracting the guaranteed bandwidth of one or more GBR service streams from the first TMBR as the second AMBR. In Example II, the session management network element 10 compares the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service flows with the first AMBR to determine the second AMBR.
  • the session management network element 10 initiates the GBR service flow switching process, and Part of the GBR service flow transmitted through the first access technology in the session is switched to the second access technology for transmission, so that the second AMBR is greater than or equal to the first AMBR. Then, the session management network element 10 can only send the first AMBR to the user plane network element. Same as comment 2 scene.
  • the session management network element 10 sends an instruction to the PCF network element.
  • the above indication is used to indicate that the second AMBR is smaller than the first AMBR, that is, the upper limit of the bandwidth of the non-GBR service flow transmitted through the first access technology in the session is smaller than the upper limit of the bandwidth of the non-GBR service flow of the entire session.
  • the PCF network element updates the offloading mode based on the above instructions. For example, the priority-based offload mode is sent to indicate that after the bandwidth of the first access technology is fully occupied, the remaining service streams are transmitted from the second access technology.
  • step 703 can be implemented in the following manner: the user plane network element uses the first AMBR to control the non-GBR service flow transmitted through the first access technology and the second access technology in the session.
  • the session management network element 10 determines the second TMBR according to the first TMBR and the guaranteed bandwidth of the first GBR service flow in the following manner:
  • Step 7044 The session management network element 10 determines the second TMBR according to the first TMBR and the sum of guaranteed bandwidths of one or more GBR service streams offloaded on the uplink classifier corresponding to the first access technology.
  • step 7044 in the embodiment of the present application may be specifically implemented in the following manner: the session management network element 10 subtracts one or more GBR service flows offloaded on the uplink classifier corresponding to the first access technology according to the first TMBR The sum of guaranteed bandwidths determines the second TMBR.
  • the second TMBR is the difference between the first TMBR and the sum of guaranteed bandwidths of the one or more GBR service flows offloaded on the uplink classifier corresponding to the first access technology.
  • the uplink classifier can offload part of the GBR service flow, and the part of the offloaded GBR service flow is directly from the uplink classifier To the external network, instead of passing through user plane network elements (such as anchor user plane network elements).
  • the method provided in the embodiment of the present application may further include before step 703:
  • Step 706 The session management network element 10 sends the first AMBR corresponding to the session to the user plane network element 20, so that the user plane network element 20 receives the first AMBR corresponding to the session from the session management network element 10.
  • the first AMBR and the first TMBR and the guaranteed bandwidth of the first GBR service flow may be carried in the same message and sent by the session management network element 10 to the user plane network element 20.
  • the message carrying the first AMBR is different from the message carrying the first TMBR and the guaranteed bandwidth of the first GBR service flow.
  • step 703 in the embodiment of the present application can be implemented through the following step 7031 and/or step 7032:
  • Step 7031 The user plane network element 20 controls all non-GBR service flows transmitted through the first access technology in the session according to the second AMBR.
  • step 7031 in the embodiment of the present application may be specifically implemented in the following manner: the user plane network element 20 controls the non-GBR service transmitted through the first access technology or the tunnel corresponding to the first access technology in the session The sum of the bandwidth of the stream is less than or equal to the second AMBR.
  • step 7031 can be implemented in the following manner:
  • the user plane network element 20 obtains the first AMBR
  • step 7031 can be implemented in the following manner:
  • the user plane network element 20 It can also be controlled that the sum of the total bandwidth of all non-GBR service flows transmitted through the first access technology and the sum of the aggregate bandwidth of all non-GBR service flows transmitted through the second access technology in the session is less than or equal to the first AMBR.
  • Step 7032 The user plane network element 20 controls the total bandwidth of all non-GBR service flows and all GBR service flows transmitted through the first access technology in the session to be less than or equal to the second TMBR.
  • the second TMBR is 500 Mbps
  • the total bandwidth of all non-GBR service flows and all GBR service flows transmitted through the first access technology is less than or equal to 500 Mbps.
  • the user plane network element 20 can directly use the second AMBR to control the non-GBR service flow. If the user plane network element 20 receives the second TMBR from the session management network element 10 but does not include the second AMBR, then 1) the user plane network element 20 needs to use the second TMBR to calculate the second AMBR, and then execute step 7031. For example, the user plane network element 20 uses the second TMBR to subtract the total guaranteed bandwidth of one or more GBR service streams to obtain the second AMBR. Or 2) The user plane network element 20 directly executes step 7031, that is, the second AMBR is not calculated, and the second TMBR is used to control all non-GBR service flows and all GBR service flows transmitted through the first access technology in the session.
  • Example 2 The user plane network element 20 calculates the second AMBR.
  • the first information in the embodiment of the present application includes: the first TMBR or the second TMBR.
  • the first information may also include the guaranteed bandwidth of each GBR service flow in one or more GBR service flows transmitted through the first access technology in the session.
  • the first information includes the first TMBR or the second TMBR.
  • the first information may also include the total guaranteed bandwidth of one or more GBR service streams transmitted through the first access technology in the session. If the session management network element sends the sum of the guaranteed bandwidth of one or more GBR service streams, the user plane network element 20 may be omitted in the following to determine the guaranteed bandwidth of one or more GBR service streams according to the guaranteed bandwidth of each GBR service stream. Sum process.
  • the method provided in the embodiment of the present application may further include before step 703:
  • Step 707 The user plane network element 20 determines the second AMBR according to the first TMBR or the second TMBR, and the guaranteed bandwidth of each GBR service flow in one or more GBR service flows.
  • step 707 in the embodiment of the present application can be specifically implemented in the following manner: the user plane network element 20 determines the total guaranteed bandwidth of one or more GBR service flows according to the guaranteed bandwidth of each GBR service flow. The user plane network element 20 determines that the second AMBR is the difference between the first TMBR and the total guaranteed bandwidth of one or more GBR service flows. Alternatively, the user plane network element 20 determines that the second AMBR is the difference between the second TMBR and the total guaranteed bandwidth of one or more GBR service flows.
  • step 707 in the embodiment of the present application can be specifically implemented in the following manner: if the user plane network element 20 obtains the first AMBR, then any one of the first TMBR or the second TMBR and one or more The difference between the sum of guaranteed bandwidths of the two GBR service flows is greater than the first AMBR, and the user plane network element 20 determines that the second AMBR is the first AMBR. The difference between the first TMBR or/the second TMBR and the total guaranteed bandwidth of one or more GBR service flows is smaller than the first AMBR, and the user plane network element 20 determines that the second AMBR is either the first TMBR or the second TMBR The difference with the sum of the guaranteed bandwidth of one or more GBR service flows.
  • step 707 in the embodiment of the present application may be specifically implemented in the following manner: Or, the user plane network element 20 determines that the second AMBR is any value smaller than the first difference.
  • the first difference is the difference between the first TMBR or/the second TMBR and the total guaranteed bandwidth of one or more GBR service streams.
  • step 703 in the embodiment of the present application can be implemented in the following manner: the sum of the aggregate bandwidth of all non-GBR service flows transmitted using the first access technology in the user plane network element 20 control session is less than or Equal to the second AMBR.
  • step 703 in the embodiment of the present application can be specifically implemented in the following manner :
  • the user plane network element 20 controls the sum of the aggregate bandwidth of all GBR service flows and non-GBR service flows transmitted by using the first access technology in the session to be less than or equal to the first TMBR or the second TMBR.
  • the user plane network element 20 selects an access technology for the service flow based on the second AMBR, and at least one of the first TMBR or the second TMBR. Specifically, the user plane network element 20 selects the first access technology to transmit the service flow based on the offload mode, but if the service flow exceeds the bandwidth upper limit of any one of the second AMBR, the first TMBR or the second TMBR, the user plane network Element 20 selects the second access technology to transmit the service flow. Avoid packet loss due to limited bandwidth when transmitting through the first access technology.
  • the user plane network element 20 detects the RTT of the link between 3GPP and non-3GPP, and if the link corresponding to the first access technology is If the RTT is less than the RTT of the link corresponding to the second access technology, the user plane network element 20 should select the first access technology to transmit the service flow based on the offload mode. However, if the bandwidth corresponding to the first access technology is not enough to support the service flow at this time, the user plane network element 20 still selects the second access technology to transmit the service flow.
  • RTT Round-Trip Time
  • the offload mode may include: load balancing indication, active link and alternative link indication, optimal link indication, minimum link delay indication, RTT indication, minimum link load indication, and maximum link bandwidth indication , Access at least one parameter in the strongest indication of the signal.
  • the user plane network element 20 selects an access technology for the non-GBR service flow based on the offload mode, if the sum of the aggregate bandwidth transmitted in the session of the non-GBR service flow is greater than the second AMBR, the user The surface network element 20 may reselect the access technology for the non-GBR service flow. If the sum of aggregate bandwidths transmitted in the session of the service flow is greater than the first TMBR or the second TMBR, the access technology can be selected for the non-GBR service flow or the GBR service flow.
  • the method provided in the embodiment of the present application further includes: the session management network element 10 sends instruction information to the user plane network element 20 to instruct the user plane network element 20 to be based on the second AMBR, the first TMBR, or the first TMBR. At least one of the two TMBRs selects an access technology for the service flow.
  • the method provided in the embodiment of the present application further includes:
  • Step 708 The user plane network element 20 sends the second AMBR to the access network gateway 40 and the uplink classifier 60 corresponding to the first access technology, so that the access network gateway 40 and the uplink classifier 60 receive data from the user plane network element 20.
  • the second AMBR The second AMBR.
  • step 708 may be implemented in the following manner: the user plane network element 20 sends the first message to the session management network element 10, so that the session management network element 10 forwards the first message to the access network corresponding to the first access technology Gateway 40 and upstream classifier 60.
  • the first message includes the second AMBR sent to the access network gateway 40 and the uplink classifier 60 corresponding to the first access technology.
  • Step 709 The access network gateway 40 or the uplink classifier 60 compares the second AMBR with the previously stored second AMBR or first AMBR value, and uses the minimum value as the maximum aggregate bandwidth parameter for final control of the non-GBR service flow.
  • the method provided in the embodiment of the present application further includes:
  • Step 710 The user plane network element 20 sends the Session R-AMBR to the access network device 50 and the uplink classifier 70 corresponding to the second access technology, so that the access network gateway 40 and the uplink classifier 60 receive data from the user plane network element. Session R-AMBR of 20.
  • Step 711 The access network device 50 or the uplink classifier 70 adopts Session R-AMBR to control the service flow.
  • Session R-AMBR is the maximum aggregate bandwidth parameter of all non-GBR service flows transmitted through the second access technology in the PDU session.
  • the communication system further includes an uplink classifier 60 corresponding to the first access technology and an uplink classifier 70 corresponding to the second access technology, in combination with FIG. 3a or FIG. 3b, as shown in FIG.
  • the method provided in the embodiment of the present application further includes:
  • Step 712 The session management network element 10 sends the information for calculating the second AMBR of the session to the uplink classifier 60 corresponding to the first access technology, so that the uplink classifier 60 receives the information for calculating the second AMBR.
  • the information used to calculate the second AMBR includes any one or more of the following information: the second AMBR, the first AMBR, and the first TMBR.
  • the session management network element 10 sends the N4 session identifier and the second AMBR to the upstream classifier 60 to indicate the maximum aggregation of all non-GBR service flows transmitted through the first access technology for the session corresponding to this N4 session
  • the bandwidth is the second AMBR.
  • the session identifier in the embodiment of this application corresponds to the N4 session identifier in a one-to-one correspondence.
  • Step 713 The uplink classifier 60 uses the second AMBR to control the non-GBR service flow transmitted in the session, that is, the sum of the bandwidth of the non-GBR service flow transmitted through the first access technology is smaller than the second AMBR.
  • Step 714 The session management network element 10 sends the first AMBR of the session to the uplink classifier 70 corresponding to the second access technology, or sends the guaranteed bandwidth of one or more GBR service flows.
  • Step 715 The uplink classifier 70 controls the service flow transmitted in the session according to the first AMBR or the guaranteed bandwidth of sending one or more GBR service flows.
  • the uplink classifier 70 controls the sum of AMBR of all non-GBR service flows transmitted in the session (including all non-GBR service flows transmitted through the first access technology and transmitted through the second access technology). Over the first AMBR. Or the uplink classifier 70 controls one or more GBR service flows to meet their respective guaranteed bandwidths.
  • steps 712 to 715 in the embodiment of the present application are applicable to scenarios where the session is a multi-access session, and also applicable to scenarios where there is an uplink classifier in a single-access session.
  • the method provided in the embodiment of the present application may further include:
  • Step 716 The session management network element 10 sends the first information to the terminal.
  • step 716 may be implemented in the following manner: after the session management network element 10 determines that the session establishment or update is completed, it sends a session establishment success message (PDU session establishment accept) or a session update command (PDU session modification command) to the terminal.
  • PDU session establishment accept or PDU session modification command includes any one or more of the following information: the second AMBR and the first TMBR. Used to represent this session, the aggregate maximum bandwidth value of the non-GBR service flow transmitted through the first access technology is the second AMBR, and the sum of the bandwidth values of all GBR and non-GBR service flows transmitted through the first access technology Less than or equal to the first TMBR.
  • the above message also includes a first access technology indication, which is used to indicate that the above second AMBR or the first TMBR is a parameter related to the first access technology.
  • the first access technology indication is an optional parameter. That is, the receiver can determine that it is a parameter associated with the first access technology after receiving the second AMBR or TMBR. At this time, the first access technology indication or the tunnel identifier corresponding to the first access technology can be omitted.
  • Step 717 The terminal controls the service flow transmitted in the session according to at least one of the second AMBR and the first TMBR.
  • step 717 can be implemented in the following manner: the terminal controls the maximum aggregate bandwidth value of the non-GBR service flow transmitted through the first access technology in the session not to exceed the second AMBR, and/or, the terminal controls the session to pass the second AMBR
  • the sum of the maximum aggregate bandwidth value of the non-GBR service flow transmitted by an access technology and the guaranteed bandwidth value of the GBR service flow transmitted through the first access technology does not exceed (that is, less than or equal to) the first TMBR.
  • the method provided in the embodiment of the present application may further include:
  • Step 718 The session management network element 10 sends information for calculating the second AMBR to the access network gateway 40 corresponding to the first access technology, so that the access network gateway 40 receives the information for calculating the second AMBR from the session management network element 10 2.
  • AMBR information
  • the information used to calculate the second AMBR includes any one or more of the following information: the second AMBR and the first TMBR.
  • the session management network element 10 sends an N2 message (N2 information) to the access network gateway 40 so that the access network gateway 40 receives the N2 message from the session management network element 10.
  • the N2 message includes: the identifier of the session and any one or more of the following information: the second AMBR and the first TMBR.
  • the access network gateway 40 can determine that the upper limit of the aggregate maximum bandwidth value of all non-GBR service flows in the session associated with the session identifier is the second AMBR, and the sum of the bandwidth values of all service flows is less than or equal to the first TMBR.
  • Step 719 The access network gateway 40 uses the sum of the first AMBR of all active sessions of the terminal as the terminal AMBR.
  • Step 720 The access network gateway 40 uses at least one of the terminal AMBR (UE-AMBR) or the session TMBR to perform QoS control of the service flow.
  • UE-AMBR terminal AMBR
  • TMBR session TMBR
  • step 720 can be implemented in the following manner: the access network gateway 40 controls the sum of the aggregate maximum bandwidth values of all non-GBR service flows transmitted in all active sessions of the terminal to be less than or equal to the terminal AMBR, and passes the first The sum of the bandwidth of all service streams transmitted by an access technology is less than or equal to the session TMBR.
  • the method provided in the embodiment of the present application further includes:
  • Step 721 The session management network element 10 sends the first AMBR corresponding to the session to the access network device 50 corresponding to the second access technology, so that the access network device 50 receives the first AMBR corresponding to the session from the session management network element 10. .
  • the session management network element 10 sends an N2 message to the access network device corresponding to the second access technology, so that the access network device receives the N2 message.
  • the N2 message carries the identifier of the session and the first AMBR.
  • Step 722 The access network device 50 uses the sum of the first AMBR of all active sessions of the terminal as the terminal AMBR, and performs QoS control.
  • step 722 may be implemented in the following manner: the sum of the aggregated maximum bandwidth values of all non-GBR service flows of the terminal controlled by the access network device is less than or equal to the terminal AMBR determined by the access network device.
  • all active sessions of the terminal include PDU session 1 and PDU session 2.
  • the first AMBR of PDU session 1 is 20 Mbps
  • the first AMBR of PDU session 2 is 5 Mbps
  • the terminal AMBR determined by the access network device is 25 Mbps.
  • the access network device needs to control the sum of all non-GBR service flows transmitted in all active sessions of the terminal to be less than or equal to 25 Mbps.
  • the method provided in the embodiment of the present application may further include:
  • Step 723 The session management network element 10 calculates the Session R-AMBR on the second access technology side according to the first AMBR and the second AMBR.
  • Session R-AMBR represents AMBR of session granularity. Indicates the upper limit of the aggregate maximum bandwidth of all non-GBR service flows transmitted through the second access technology.
  • Step 724 The session management network element 10 sends the Session R-AMBR to the access network device 50, so that the access network device 50 receives the Session R-AMBR from the session management network element.
  • the access network equipment controls all non-GBR service flows transmitted through the second access technology based on Session R-AMBR, that is, the sum of the bandwidth values of all non-GBR service flows transmitted through the second access technology is less than or equal to Session R- AMBR.
  • the method provided in the embodiment of the present application further includes: the session management network element 10 sends the Session R-AMBR and the second access technology indication to the user plane network element, or the Session R-AMBR and the first 2. Access technology tunnel information.
  • the session management network element 10 sends the first AMBR to the user plane network element, which is the same as the prior art, to indicate all non-GBR service flows of this session (including those transmitted in the first access technology and the second access technology). Service flow) aggregated maximum bandwidth value.
  • the session management network element 10 in Figure 7 or Figure 8 can be replaced by a PCF network element.
  • the session management network element can be performed through the session management network element.
  • the GBR service flow 1 is transmitted on the first access technology side.
  • GBR service flow 1 is transmitted on the first access technology side.
  • the method provided in the embodiment of the present application further includes:
  • Step 725 The session management network element sends instruction information to the user plane network element, so that the user plane network element receives the instruction information from the session management network element.
  • the indication information indicates that when the GBR service flow transmitted through the first access technology in the session is in an inactive state, the second AMBR of the non-GBR service flow transmitted through the first access technology in the session is a non-GBR service flow.
  • the sum of the allocated target second AMBR and the guaranteed bandwidth value of the GBR service flow in the inactive state, or the second AMBR is the first AMBR.
  • the GBR service flow transmitted through the first access technology in the session is in the inactive state can be understood as: the GBR service flow transmitted through the first access technology is not transmitted in the session.
  • Step 726 The user plane network element determines the sum of the target second AMBR allocated by the second AMBR for the non-GBR service flow and the guaranteed bandwidth value of the GBR service flow in the inactive state according to the indication information, or the second AMBR is the first AMBR.
  • the second AMBR is the target second AMBR and the inactive GBR service flow The sum of guaranteed bandwidth values.
  • the second AMBR is the first AMBR.
  • the second AMBR also indicates that when the GBR service flow in the same transmission channel as the second AMBR is in the inactive state, the bandwidth resource of the GBR service flow in the inactive state can be used by the non-GBR service flow. That is, the session management network element sends instruction information to the user plane network element, so that the user plane network element determines the GBR service flow in the inactive state when the GBR service flow transmitted through the first access technology in the session is in the inactive state.
  • the bandwidth resources can be used by non-GBR service flows.
  • the second AMBR is equal to the sum of the second AMBR allocated for the non-GBR service flow and the guaranteed bandwidth value of the inactive GBR service flow or the inactive GBR QoS flow.
  • the session management network element also sends (the correspondence between the indication information and the first access technology indication) or (the correspondence between the indication information and the tunnel identifier corresponding to the first access technology) or indication information to the user plane network element For any one or more of the second AMBR or resource dynamic adjustment instructions to the user plane network element to indicate the tunnel side corresponding to the tunnel or tunnel identifier corresponding to the first access technology, when the GBR service flow is in the inactive state At this time, the bandwidth resource of this GBR service flow can be occupied by the non-GBR service flow.
  • the target second AMBR allocated for the non-GBR service flow transmitted through the first access technology in session 1 is 10M, and the bandwidth resource allocated for GBR service flow in session 1 is 5M, when the GBR service flow is in session 1.
  • each network element such as a data plane network element, a session management network element, etc.
  • each network element includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of this application can divide the functional units according to the above-mentioned method example data plane network elements and session management network elements.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing. Unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the method of the embodiment of the present application is described above with reference to FIG. 1 to FIG. 11, and the device for controlling service flow transmission that executes the foregoing method provided by the embodiment of the present application is described below. Those skilled in the art can understand that the methods and devices can be combined and referenced with each other.
  • the device for controlling service stream transmission provided in the embodiments of the present application can execute the above-mentioned method for controlling service stream transmission by the user plane network element or the session management network element. step.
  • FIG. 12 shows an apparatus for controlling service flow transmission involved in the foregoing embodiment.
  • the apparatus for controlling service flow transmission may include: a processing unit 101 and a communication unit 102.
  • the device for controlling service flow transmission is a session management network element, or a chip applied to the session management network element.
  • the communication unit 102 the apparatus for supporting the transmission of the control service, executes step 701 in FIG. 7 or FIG. 8 or FIG. 9 executed by the session management network element 10 in the above-mentioned embodiment, and supports the The apparatus for controlling service flow transmission executes the sending action performed by the session management network element 10 in step 702 in FIG. 7 or FIG. 8 or FIG. 9 in the foregoing embodiment.
  • the processing unit 101 is further configured to support an apparatus for controlling service stream transmission to execute step 704 (for example, step 7041 and step 7042) in FIG. 8 performed by the session management network element 10 in the foregoing embodiment. , Step 7043, Step 7044).
  • the communication unit 102 is also configured to support the device for controlling service stream transmission to execute step 705 executed by the session management network element 10 in FIG. 8 in the above-mentioned embodiment.
  • the communication unit 102 is also used to support the device for controlling service stream transmission to execute the sending performed by the session management network element 10 in step 706, step 716, step 718, step 721, step 724, and step 725 in FIG. 8 in the above-mentioned embodiment. action.
  • the communication unit 102 is further configured to support a device for controlling service stream transmission to perform step 712, step 714, step 716, step 718, step 721, step 724, and step 725 in the above-mentioned embodiment by the session management network element. 10 Send actions performed.
  • the processing unit 101 is further configured to support an apparatus for controlling service stream transmission to execute step 723 in FIG. 8 or FIG. 9 in the foregoing embodiment.
  • the device for controlling service flow transmission is a data plane network element, or a chip applied to a data plane network element.
  • the communication unit 102 an apparatus for supporting the transmission of the control service flow, executes the receiving action in step 702 performed by the user plane network element in FIG. 7 of the foregoing embodiment.
  • the processing unit 101 is configured to support the control service stream transmission device to execute step 703 performed by the user plane network element in FIG. 7 of the foregoing embodiment.
  • the communication unit 102 executes the receiving action performed by the user plane network element in step 706 and step 725 in FIG. 8 in the foregoing embodiment.
  • the processing unit 101 is specifically configured to support the control service stream transmission device to execute step 7031, step 7032 and step 726 in FIG. 8 in the foregoing embodiment.
  • the communication unit 102 is configured to support the transmission of the control service stream to perform the sending actions in step 708 and step 710 in FIG. 9 of the above-mentioned embodiment, and in step 725 by the user The receiving action performed by the surface network element.
  • the processing unit 101 is configured to support the device for controlling service stream transmission to execute step 707 and step 726 in FIG. 9 in the foregoing embodiment.
  • FIG. 13 shows a schematic diagram of a possible logical structure of the apparatus for controlling service stream transmission involved in the foregoing embodiment.
  • the device for controlling service stream transmission includes: a processing module 112 and a communication module 113.
  • the processing module 112 is configured to control and manage the actions of the device that controls service streaming.
  • the processing module 112 is configured to perform information/data processing steps on the device that controls service streaming.
  • the communication module 113 is used to support the steps of information/data sending or receiving by the device that controls the service stream transmission.
  • the apparatus for controlling service flow transmission may further include a storage module 111 for storing program codes and data of the apparatus for controlling service flow transmission.
  • the device for controlling service flow transmission is a session management network element, or a chip applied to the session management network element.
  • the communication module 113 is configured to support the control service flow transmission device to execute step 701 in FIG. 7 or FIG. 8 or FIG. 9 executed by the session management network element 10 in the above-mentioned embodiment, and to support the The apparatus for controlling service flow transmission executes the sending action performed by the session management network element 10 in step 702 in FIG. 7 or FIG. 8 or FIG. 9 in the foregoing embodiment.
  • the processing module 112 is further configured to support an apparatus for controlling service stream transmission to perform step 704 in FIG. 8 performed by the session management network element 10 in the above-mentioned embodiment (for example, step 7041, step 7042). , Step 7043, Step 7044).
  • the communication module 113 is also used to support the device for controlling service stream transmission to execute step 705 performed by the session management network element 10 in FIG. 8 in the above-mentioned embodiment.
  • the communication module 113 is also used to support the device for controlling service stream transmission to execute the sending performed by the session management network element 10 in step 706, step 716, step 718, step 721, step 724, and step 725 in FIG. 8 in the above embodiment. action.
  • the communication module 113 is also used to support a device for controlling service stream transmission to perform step 712, step 714, step 716, step 718, step 721, step 724, and step 725 in the above-mentioned embodiment by the session management network element. 10 Send actions performed.
  • the processing module 112 is also used to support the device for controlling service stream transmission to execute step 723 in FIG. 8 or FIG. 9 in the foregoing embodiment.
  • the device for controlling service flow transmission is a data plane network element, or a chip applied to a data plane network element.
  • the communication module 113 an apparatus for supporting the transmission of the control service flow, executes the receiving action in step 702 performed by the user plane network element in FIG. 7 of the foregoing embodiment.
  • the processing module 112 is configured to support the control service flow transmission device to execute step 703 performed by the user plane network element in FIG. 7 of the foregoing embodiment.
  • the communication module 113 is configured to support the device for controlling service flow transmission to perform the receiving action performed by the user plane network element in step 706 in FIG. 8 in the above-mentioned embodiment, and in step 725 The receiving action performed by the user plane network element.
  • the processing module 112 is specifically configured to support the control service stream transmission device to execute steps 7031 and 7032 and step 726 in FIG. 8 in the foregoing embodiment.
  • the communication module 113 is configured to support the transmission of the control service stream to execute the sending actions in step 708 and step 710 in FIG. 9 of the above-mentioned embodiment, and in step 725 by the user The receiving action performed by the surface network element.
  • the processing module 112 is configured to support the device for controlling the service stream transmission to execute step 707 and step 726 in FIG. 9 in the foregoing embodiment.
  • the processing module 112 may be a processor or a controller, for example, a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 113 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 111 may be a memory.
  • the apparatus for controlling service stream transmission involved in the embodiment of the present application may be as shown in FIG. 6 communication device.
  • the device for controlling service flow transmission is a session management network element, or a chip applied to the session management network element.
  • the communication interface 63 is used to support the control service flow transmission device to execute step 701 in FIG. 7 or FIG. 8 or FIG. 9 executed by the session management network element 10 in the above-mentioned embodiment, and to support the The apparatus for controlling service flow transmission executes the sending action performed by the session management network element 10 in step 702 in FIG. 7 or FIG. 8 or FIG. 9 in the foregoing embodiment.
  • the processor 61 or the processor 65 is further configured to support an apparatus for controlling service stream transmission to execute step 704 (for example, step 704) in FIG. 8 performed by the session management network element 10 in the above-mentioned embodiment. 7041 and step 7042, step 7043, step 7044).
  • the communication interface 63 is also used to support the device for controlling service stream transmission to execute step 705 executed by the session management network element 10 in FIG. 8 in the foregoing embodiment.
  • the communication interface 63 is also used to support the device for controlling service stream transmission to execute step 706, step 716, step 718, step 721, step 724 and step 725 in the above-mentioned embodiment in FIG. action.
  • the communication interface 63 is also used to support a device for controlling service stream transmission to execute step 712, step 714, step 716, step 718, step 721, step 724, and step 725 in the above-mentioned embodiment by the session management network element. 10 Send actions performed.
  • the processor 61 or the processor 65 is further configured to support an apparatus for controlling service stream transmission to execute step 723 in FIG. 8 or FIG. 9 in the foregoing embodiment.
  • the device for controlling service flow transmission is a data plane network element, or a chip applied to a data plane network element.
  • the communication interface 63 is used to support the control service flow transmission device to execute the receiving action in step 702 performed by the user plane network element in FIG. 7 of the foregoing embodiment.
  • the processor 61 or the processor 65 is configured to support the control service stream transmission device to execute step 703 performed by the user plane network element in FIG. 7 of the foregoing embodiment.
  • the communication interface 63 is used to support the device for controlling service stream transmission to perform the receiving actions performed by the user plane network element in step 706 and step 725 in FIG. 8 in the foregoing embodiment.
  • the processor 61 or the processor 65 is specifically configured to support the control service stream transmission device to execute step 7031 and step 7032 in FIG. 8 in the foregoing embodiment.
  • the communication interface 63 is used to support the control service stream transmission device to execute the sending actions in step 708, step 710 and step 725 in FIG. 9 of the above-mentioned embodiment.
  • the received action performed by the meta.
  • the processor 61 or the processor 65 is configured to support the control service stream transmission device to execute step 707 and step 726 in FIG. 9 in the foregoing embodiment.
  • FIG. 14 is a schematic structural diagram of a chip 150 provided by an embodiment of the present application.
  • the chip 150 includes one or more (including two) processors 1510 and a communication interface 1530.
  • the chip 150 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provides operation instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, execution modules or data structures, or their subsets, or their extended sets.
  • the corresponding operation is executed by calling the operation instruction stored in the memory 1540 (the operation instruction may be stored in the operating system).
  • One possible implementation manner is: the structure of the chips used by the session management network element, the terminal or the user plane network element is similar, and different devices can use different chips to realize their respective functions.
  • the processor 1510 controls processing operations of any one of the session management network element, the terminal, or the user plane network element.
  • the processor 1510 may also be referred to as a central processing unit (CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1510. A part of the memory 1540 may also include NVRAM.
  • the memory 1540, the communication interface 1530, and the memory 1540 are coupled together by a bus system 1520, where the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1520 in FIG. 14.
  • the method disclosed in the foregoing embodiments of the present application may be applied to the processor 1510 or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in the processor 1510 or instructions in the form of software.
  • the above-mentioned processor 1510 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an ASIC, an off-the-shelf programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistors. Logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540, and completes the steps of the foregoing method in combination with its hardware.
  • the communication interface 1530 is used to perform the steps of receiving and sending the session management network element, the terminal, or the user plane network element in the embodiment shown in FIGS. 7-9.
  • the processor 1510 is configured to execute the processing steps of the session management network element, the terminal, or the user plane network element in the embodiment shown in FIGS. 7-9.
  • the above communication unit may be a communication interface of the device for receiving signals from other devices.
  • the communication unit is a communication interface for the chip to receive signals or send signals from other chips or devices.
  • embodiments of the present application may provide a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions When the instructions are executed, the functions of the session management network element shown in FIG. 7, FIG. 8 or FIG. 9 are realized.
  • the embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed, the functions of the user plane network elements shown in FIG. 7, FIG. 8 or FIG. 9 are realized.
  • the embodiment of the present application provides a computer program product including instructions.
  • the computer program product includes instructions. When the instructions are executed, the functions of the session management network element shown in FIG. 7, FIG. 8 or FIG. 9 are realized.
  • the embodiment of the present application provides a computer program product including instructions.
  • the computer program product includes instructions. When the instructions are executed, the functions of the user plane network elements shown in FIG. 7, FIG. 8 or FIG. 9 are realized.
  • the embodiment of the present application provides a chip, which is applied to a user plane network element.
  • the chip includes at least one processor and a communication interface.
  • the communication interface is coupled to the at least one processor.
  • the processor is used to execute instructions to achieve the implementation shown in Figure 7- The function of the user plane network element in Figure 9.
  • the embodiment of the present application provides a chip, which is applied to a session management network element.
  • the chip includes at least one processor and a communication interface.
  • the communication interface is coupled to the at least one processor.
  • An embodiment of the present application provides a communication system, which includes a session management network element and a user plane network element.
  • the user plane network element is used to perform the steps performed by the user plane network element in FIGS. 7-9
  • the session management network element is used to perform the steps performed by the session management network element in FIGS. 7-9.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be downloaded from a website, computer, The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).

Abstract

本申请实施例提供一种控制业务流传输的方法、装置及系统,涉及通信技术领域。用以在为会话定义TMBR的情况下,实现满足第一接入技术要求的QoS参数控制需求,该方案包括:会话管理网元获取会话中通过第一接入技术传输的业务流的第一聚合最大带宽上限值TMBR、和第一保证比特率GBR业务流的保证带宽;TMBR用于表示会话中通过第一接入技术传输的所有业务流的TMBR;会话管理网元向数据面网元发送第一信息,第一信息用于数据面网元确定会话的以下信息中的一个或多个:第一AMBR、第一接入技术对应的第二最大聚合带宽AMBR和第二TMBR。第二AMBR用于表示会话中通过第一接入技术传输的non-GBR业务流的AMBR。

Description

一种控制业务流传输的方法、装置及系统
本申请要求于2019年09月29日提交国家知识产权局、申请号为201910937270.8、申请名称为“一种控制业务流传输的方法、装置及系统”,以及于2019年12月31日提交国家知识产权局、申请号为201911425198.7、申请名称为“一种控制业务流传输的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种控制业务流传输的方法、装置及系统。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的领先优势,3GPP标准组制定了下一代移动通信网络架构(next generation system),称为第五代(5-generation,5G)网络架构。该5G网络架构不但支持终端通过3GPP标准组定义的无线技术(如长期演进(long term evolution,LTE),5G无线接入网(radio access network,RAN)等)接入5G核心网(core network,CN)而且支持非(non)-3GPP接入技术通过non-3GPP转换功能(interworking function,N3IWF)或下一代接入网关(next generation packet data gateway,ngPDG)接入核心网侧。
后续5G核心网除了支持无线接入以外还可以支持固定网络/有线网络的接入,如:5GC支持家庭网关(residential Gateway,RG)通过有线网络接入。在此场景下,当家庭网关除了支持固定/有线接入之外,还支持蜂窝接入时,这样的家庭网关为具有混合接入能力或多接入能力的用户终端设备。
在5G网络中,终端和数据网络(Date Network,DN)之间存在用于提供数据传输通道的分组数据单元(packet data unit,PDU)会话(session)。目前PDU会话中可以传输保证比特率(Guaranteed Bit Rate,GBR)业务流,也可以传输non-GBR业务流,每个会话对应一个第一最大聚合带宽(Aggregate Maximum Bit Rate,AMBR)和第一聚合最大带宽上限值(Total Maximum Bit Rate,TMBR)。然而,TMBR的引入会影响会话管理网元或用户面网元不明确如何控制业务流传输。
发明内容
本申请实施例提供一种控制业务流传输的方法、装置及系统,用以在为会话定义TMBR的情况下,实现满足第一接入技术要求的QoS参数控制需求。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种控制业务流传输的方法,包括:会话管理网元获取在会话中通过第一接入技术传输的业务流的第一最大总带宽TMBR、和第一保证比特率GBR业务流的保证带宽;TMBR用于表示会话中通过第一接入技术传输的所有 业务流的带宽上限值;会话管理网元向数据面网元发送第一信息,第一信息用于数据面网元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、第一TMBR、第二TMBR,第二AMBR用于表示会话中通过第一接入技术传输的non-GBR业务流的聚合最大带宽上限。
本申请实施例提供一种控制业务流传输的方法,该方法中会话管理网元获取在会话中通过第一接入技术传输的业务流的第一TMBR、和第一GBR业务流的保证带宽,并向数据面网元发送第一信息,这样便于数据面网元确定会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、第一TMBR、第二TMBR。后续数据面网元可以根据第二AMBR、第一TMBR和第二TMBR中的至少一个控制会话中通过第一接入技术传输的业务流,这样可以满足第一接入技术要求的QoS参数控制需求。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:所述第一最大聚合带宽AMBR、第二AMBR和第二TMBR。这样可以由会话管理网元计算第二AMBR和第二TMBR中的任一个或多个,而省去数据面网元计算的步骤。即数据面网元可以直接使用第二AMBR和第二TMBR中的任一个或多个控制会话中的业务流。
在一种可能的实现方式中,第一信息还包括:第一接入技术指示或第一接入技术对应的隧道标识中的任一个或多个。这样便于数据面网元确定第二AMBR和第二TMBR中的任一个或多个与第一接入技术相关或者与第一接入技术对应的隧道相关。
在一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二AMBR和第二TMBR中的至少一个。
在一种可能的实现方式中,会话管理网元根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二AMBR,包括:会话管理网元根据第一GBR业务流的保证带宽,确定会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和。会话管理网元根据第一TMBR、一个或多个GBR业务流的保证带宽总和,确定第二AMBR。由于第一TMBR用于描述会话中通过第一接入技术传输的所有业务流的带宽上限值,因此通过计算会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和,便可以根据第一TMBR和一个或多个GBR业务流的保证带宽总和计算得到第二AMBR。
在一种可能的实现方式中,会话管理网元根据第一TMBR、一个或多个GBR业务流的保证带宽总和,确定第二AMBR,包括:会话管理网元确定第二AMBR为第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。也即会话管理网元直接将第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值作为第二AMBR。
在一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元获取会话对应的第一AMBR,第一AMBR用于表示会话中所有non-GBR业务流的聚合最大带宽上限;相应的,会话管理网元根据第一TMBR、一个或多个GBR业务流的保证带宽总和,确定第二AMBR,包括:在第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR的情况下,会话管理网元确定第二AMBR为第一AMBR。或者,在第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差 值小于或等于第一AMBR的情况下,会话管理网元确定第二AMBR为第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。也即会话管理网元通过比较第一AMBR和(第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值)之间的关系,将二者中最小的确定为第二AMBR。
在一种可能的实现方式中,会话管理网元根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二TMBR,包括:会话管理网元根据第一TMBR和第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和,确定第二TMBR。这样可以准确计算第二TMBR。示例性的,第二TMBR为第一TMBR减去第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和得到的差值。
在一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元向第一接入技术对应的接入网网关发送会话的标识和以下信息中的任一个或多个:第二AMBR、第一TMBR。这样便于第一接入技术对应的接入网网关根据第二AMBR、第一TMBR控制会话中通过第一接入技术传输的业务流。
在一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元向第一接入技术对应的上行分类器发送会话的第二AMBR或第一TMBR。这样便于第一接入技术对应的上行分类器确定控制业务流的参数。
在一种可能的实现方式中,本申请实施例中的数据面网元为终端,或者本申请实施例中的数据面网元为用户面网元。
在一种可能的实现方式中,本申请实施例提供的会话为支持第一接入技术和第二接入技术的多接入会话。或者会话为支持第一接入技术的单接入会话。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:第一TMBR、第二TMBR、或会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽。
应理解,第一方面中的会话管理网元可以由策略控制网元替换,当会话管理网元由策略控制网元替换时,策略控制网元计算第二AMBR和第二TMBR中的至少一个,策略控制网元可以通过会话管理网元向数据面网元发送第一信息,以及向其他节点(例如,接入网网关或接入网设备)发送相关参数。
在一种可能的实现方式中,本申请实施例提供的方法还包括:会话管理网元向数据面网元发送指示信息,该指示信息指示当在会话中通过第一接入技术传输的GBR业务流处于非激活态时,上述GBR业务流的保证带宽资源可以被通过第一接入技术传输的non-GBR业务流使用。具体来讲,该会话中通过第一接入技术传输的non-GBR业务流的第二AMBR为non-GBR业务流分配的目标第二AMBR与非激活态的GBR业务流的保证带宽值之和,或者第二AMBR为第一AMBR。这样可以在会话中没有GBR业务流传输时,使得non-GBR业务流充分利用该会话的带宽资源,保证了non-GBR业务流的可靠传输。上述目标第二AMBR为会话管理网元为non-GBR业务流计算的第二AMBR,由会话管理网关发送给数据面网元。
在一种可能的实现方式中,当目标第二AMBR与非激活态的GBR业务流的保证带宽值之和小于第一AMBR时,该第二AMBR为目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和。或者,当目标第二AMBR与非激活态的GBR业务流 的保证带宽值之和大于或等于第一AMBR时,第二AMBR为第一AMBR。可以保证在充分利用该会话的带宽资源时,又不会超过会话的最大带宽上限。
在一种可能的实现方式中,指示信息为第二AMBR或资源动态调整指示或第一接入技术指示或第一接入技术对应的隧道标识中的任一个或多个。
第二方面,本申请实施例提供一种控制业务流传输的方法,包括:数据面网元接收来自会话管理网元的第一信息。该第一信息用于数据面网元确定以下信息中的任一个或多个:会话的第一最大聚合带宽AMBR、会话中第一接入技术对应的第二最大聚合带宽AMBR、所述第一TMBR、所述第二TMBR。第二AMBR用于表示会话中通过第一接入技术传输的non-保证比特率GBR业务流的聚合最大带宽上限,TMBR用于表示会话中通过第一接入技术传输的所有业务流的带宽上限值。数据面网元根据第二AMBR、第一TMBR和第二TMBR中的至少一个,控制在会话中通过第一接入技术传输的业务流。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:所述第一最大聚合带宽AMBR、第二AMBR和所述第二TMBR。
在一种可能的实现方式中,第一信息还包括:第一接入技术指示或第一接入技术对应的隧道标识中的任一个或多个。
在一种可能的实现方式中,第二AMBR为第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值。或者,在第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR的情况下,第二AMBR为第一AMBR。第二TMBR为第一TMBR和第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和之间的差值。或者,在第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值小于第一AMBR的情况下,第二AMBR为第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值。
在一种可能的实现方式中,数据面网元根据第二AMBR和第二TMBR中的至少一个,控制在会话中通过第一接入技术传输的业务流,包括:数据面网元根据第二AMBR控制在会话中通过第一接入技术传输的所有non-GBR业务流;和/或,数据面网元控制在会话中通过第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽总和小于或等于第二TMBR。
在一种可能的实现方式中,本申请实施例提供的方法还包括:数据面网元获取第一AMBR;数据面网元根据第二AMBR控制在会话中通过第一接入技术传输的所有non-GBR业务流,包括:数据面网元控制会话中通过第一接入技术或第一接入技术对应的隧道传输的non-GBR业务流的聚合带宽之和小于或等于第二AMBR;和/或,会话中通过第一接入技术传输的所有non-GBR业务流的带宽和通过第二接入技术传输的所有non-GBR业务流的聚合带宽之和小于或等于第一AMBR。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:第一TMBR、第二TMBR、或会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽,本申请实施例提供的方法还包括:数据面网元根据第一TMBR或 第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR。
在一种可能的实现方式中,数据面网元根据第一TMBR或第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR,包括:数据面网元根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和;数据面网元确定第二AMBR为第一差值,该第一差值为第一TMBR或第二TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。
在一种可能的实现方式中,数据面网元根据第一TMBR或第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR,包括:数据面网元根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和;在第一差值大于第一AMBR的情况下,数据面网元确定第二AMBR为第一AMBR。
在一种可能的实现方式中,数据面网元根据第一TMBR或第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR,包括:数据面网元根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和;数据面网元确定第二AMBR为小于第一差值的任意值。第一差值为所述第一TMBR或第二TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值。
在一种可能的实现方式中,数据面网元根据第一TMBR或第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR,包括:数据面网元根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和;在第一差值小于第一AMBR的情况下,数据面网元确定第二AMBR为第一差值。第一差值为第一TMBR或第二TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。
在一种可能的实现方式中,数据面网元根据第二AMBR,控制在会话中通过第一接入技术传输的业务流,包括:数据面网元控制会话中采用第一接入技术传输的所有non-GBR业务流的聚合带宽之和小于或等于第二AMBR。
在一种可能的实现方式中,本申请实施例提供的方法还包括:数据面网元向第一接入技术对应的接入网网关和上行分类器发送第二AMBR。
在一种可能的实现方式中,数据面网元根据第一TMBR或第二TMBR,控制在会话中通过第一接入技术传输的业务流,包括:数据面网元控制会话中采用第一接入技术传输的所有GBR业务流与non-GBR业务流的聚合带宽之和小于或等于第一TMBR或第二TMBR。
在一种可能的实现方式中,本申请实施例提供的方法还包括:数据面网元接收来自该会话管理网元的指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述会话中通过所述第一接入技术传输的non-GBR业务流的所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。数据面网元根据所述指示信息确定所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者第二AMBR为第一AMBR。
在一种可能的实现方式中,当目标第二AMBR与非激活态的所述GBR业务流的 保证带宽值之和小于所述第一AMBR时,所述第二AMBR为所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和;
或者,当所述目标第二AMBR与非激活态的GBR业务流的保证带宽值之和大于或等于所述第一AMBR时,所述第二AMBR为第一AMBR。
第三方面,本申请提供一种控制业务流传输的装置,该控制业务流传输的装置可以实现第一方面或第一方面的任意可能的实现方式中的方法,因此也能实现第一方面或第一方面任意可能的实现方式中的有益效果。该控制业务流传输的装置可以为会话管理网元,也可以为可以支持会话管理网元实现第一方面或第一方面的任意可能的实现方式中的方法的装置,例如应用于会话管理网元中的芯片。该控制业务流传输的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,本申请提供一种控制业务流传输的装置,包括:处理单元,用于处理信息。通信单元,用于获取在会话中通过第一接入技术传输的业务流的第一最大总带宽TMBR、和第一保证比特率GBR业务流的保证带宽;TMBR用于表示会话中通过第一接入技术传输的所有业务流的带宽上限值;通信单元,还用于向数据面网元发送第一信息,第一信息用于数据面网元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、第一TMBR、第二TMBR,第二AMBR用于表示会话中通过第一接入技术传输的non-GBR业务流的聚合最大带宽上限。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:所述第一最大聚合带宽AMBR、第二AMBR和所述第二TMBR。
在一种可能的实现方式中,处理单元,还用于根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二AMBR和第二TMBR中的至少一个。
在一种可能的实现方式中,处理单元,具体用于根据第一GBR业务流的保证带宽,确定会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和;处理单元,具体用于根据第一TMBR、一个或多个GBR业务流的保证带宽总和,确定第二AMBR。
在一种可能的实现方式中,通信单元,还用于获取会话对应的第一AMBR,第一AMBR用于表示会话中所有non-GBR业务流的聚合最大带宽上限;相应的,处理单元,具体用于确定第二AMBR为第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。或者,所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,处理单元,具体用于确定第二AMBR为第一AMBR。
在一种可能的实现方式中,处理单元,具体用于根据第一TMBR和第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和,确定第二TMBR。
在一种可能的实现方式中,通信单元,还用于向第一接入技术对应的接入网网关发送会话的标识和以下信息中的任一个或多个:第二AMBR、第一TMBR。
在一种可能的实现方式中,通信单元,还用于向第一接入技术对应的上行分类器发送会话的第二AMBR或第一TMBR。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:第一TMBR、第二TMBR、或会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR 业务流的保证带宽。
在一种可能的实现方式中,通信单元,还用于向所述数据面网元发送指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述会话中通过所述第一接入技术传输的non-GBR业务流的所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
在一种可能的实现方式中,当目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和小于所述第一AMBR时,所述第二AMBR为所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和;
或者,当所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和大于或等于所述第一AMBR时,所述第二AMBR为所述第一AMBR。
另一方面,本申请实施例提供一种控制业务流传输的装置,该控制业务流传输的装置可以是会话管理网元,也可以是会话管理网元内的芯片或者芯片系统。该控制业务流传输的装置可以包括处理单元和通信单元。当该控制业务流传输的装置是会话管理网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该控制业务流传输的装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该会话管理网元实现第一方面或第一方面的任意一种可能的实现方式中描述的一种控制业务流传输的方法。当该控制业务流传输的装置是会话管理网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该会话管理网元实现第一方面或第一方面的任意一种可能的实现方式中描述的一种控制业务流传输的方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该会话管理网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,本申请提供一种控制业务流传输的装置,该控制业务流传输的装置可以实现第二方面或第二方面的任意可能的实现方式中的方法,因此也能实现第二方面或第二方面任意可能的实现方式中的有益效果。该控制业务流传输的装置可以为数据面网元,也可以为可以支持数据面网元实现第二方面或第二方面的任意可能的实现方式中的方法的装置,例如应用于数据面网元中的芯片。该控制业务流传输的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,本申请实施例提供一种控制业务流传输的装置,包括:通信单元,用于接收来自会话管理网元的第一信息,第一信息用于装置的处理单元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二最大聚合带宽AMBR、第一TMBR、第二TMBR,第二AMBR用于表示会话中通过第一接入技术传输的non-保证比特率GBR业务流的聚合最大带宽上限,TMBR用于表示会话中通过第一接入技术传输的所有业务流的带宽上限值;处理单元,用于根据第二AMBR、第一TMBR和第二TMBR中的至少一个,控制在会话中通过第一接入技术传输的业务流。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:所述第一 最大聚合带宽AMBR、第二AMBR和所述第二TMBR。
在一种可能的实现方式中,第二AMBR为第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值;或者,第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,第二AMBR为第一AMBR;第二TMBR为第一TMBR和第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和之间的差值。
在一种可能的实现方式中,处理单元,用于根据第二AMBR和第二TMBR中的至少一个,控制在会话中通过第一接入技术传输的业务流,包括:根据第二AMBR控制在会话中通过第一接入技术传输的所有non-GBR业务流;和/或,控制在会话中通过第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽总和小于或等于第二TMBR。
在一种可能的实现方式中,通信单元,还用于获取第一AMBR;处理单元,具体用于控制会话中通过第一接入技术或第一接入技术对应的隧道传输的non-GBR业务流的聚合带宽之和小于或等于第二AMBR;和/或,会话中通过第一接入技术传输的所有non-GBR业务流的带宽和通过第二接入技术传输的所有non-GBR业务流的聚合带宽之和小于或等于第一AMBR。
在一种可能的实现方式中,第一信息包括以下信息中的任一个或多个:第一TMBR、第二TMBR、或会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽,处理单元,还用于根据第一TMBR或第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR。
在一种可能的实现方式中,处理单元,用于根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和;处理单元,用于确定第二AMBR为第一差值,该第一差值为第一TMBR或第二TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。或者,所述第一差值大于第一AMBR,处理单元,用于确定第二AMBR为第一AMBR;或者,处理单元,用于确定第二AMBR为小于第一差值的任意值。或者,第一差值小于第一AMBR,处理单元,用于确定第二AMBR为第一差值。
在一种可能的实现方式中,处理单元,用于控制会话中采用第一接入技术传输的所有non-GBR业务流的聚合带宽之和小于或等于第二AMBR。
在一种可能的实现方式中,通信单元,还用于向第一接入技术对应的接入网网关和上行分类器发送第二AMBR。
在一种可能的实现方式中,处理单元,用于根据第一TMBR或第二TMBR,控制在会话中通过第一接入技术传输的业务流,包括:处理单元用于控制会话中采用第一接入技术传输的所有GBR业务流与non-GBR业务流的聚合带宽之和小于或等于第一TMBR或第二TMBR。
在一种可能的实现方式中,通信单元,还用于接收来自所述会话管理网元的指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述会话中通过所述第一接入技术传输的non-GBR业务流的所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。处理单元,还用于根据 所述指示信息确定所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
在一种可能的实现方式中,当目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和小于所述第一AMBR时,所述第二AMBR为所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和;或者,当所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和大于或等于所述第一AMBR时,所述第二AMBR为所述第一AMBR。
另一方面,本申请实施例提供一种控制业务流传输的装置,该控制业务流传输的装置可以是数据面网元,也可以是数据面网元内的芯片或者芯片系统。该控制业务流传输的装置可以包括处理单元和通信单元。当该控制业务流传输的装置是数据面网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该控制业务流传输的装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该数据面网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种控制业务流传输的方法。当该控制业务流传输的装置是数据面网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该数据面网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种控制业务流传输的方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该数据面网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面至第一方面的任意一种可能的实现方式中描述的控制业务流传输的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第二方面至第二方面的任意一种可能的实现方式中描述的控制业务流传输的方法。
第七方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中描述的一种控制业务流传输的方法。
第八方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中描述的一种控制业务流传输的方法。
第九方面,本申请实施例提供一种通信系统,该通信系统包括:第三方面及各种可能的实现方式中描述的会话管理网元,以及第四方面及第四方面的各种可能的实现方式中描述的数据面网元。
在一种可能的实现中,该通信系统还可以包括:第一接入技术对应的接入网网关、上行分类器,或者第二接入技术对应的接入网设备以及第二接入技术对应的上行分类器。
第十方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,实现如第一方面或第一方面的各种可能的实现方式描述的控制业务流传输的方法。
第十一方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,实现如第二方面或第二方面的各种可能的实现方式描述的控制业务流传输的方法。
第十二方面,本申请实施例提供一种通信装置,该通信装置包括处理器,处理器和存储器耦合,存储器存储有指令,指令被处理器运行时,实现如第一方面或第一方面的各种可能的实现方式描述的控制业务流传输的方法。处理器和存储器耦合也可以理解为存储器和处理器连接。
第十三方面,本申请实施例提供一种通信装置,该通信装置包括处理器,处理器和存储器耦合,存储器存储有指令,指令被处理器运行时,实现如第二方面或第二方面的各种可能的实现方式描述的控制业务流传输的方法。
应理解,第十二方面或第十三方面描述的通信装置中的存储器可以为通信装置内部的存储器,也可以为外部存储器,本申请实施例对此不作限定。
第十四方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第一方面至第一方面的任一种可能的实现方式中任一项所描述的控制业务流传输的方法。
第十五方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第二方面至第二方面的任一种可能的实现方式中任一项所描述的控制业务流传输的方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请中第二方面至第十五方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
附图说明
图1为本申请实施例提供的一种业务流分流时各个节点处的控制参数的架构图;
图2为本申请实施例提供的一种多接入会话的示意图;
图3a为本申请实施例提供的一种通信系统的结构示意图;
图3b为本申请实施例提供的另一种通信系统的结构示意图;
图4a为本申请实施例提供的一种5G网络的架构示意图;
图4b为本申请实施例提供的另一种5G网络的架构示意图;
图5为本申请实施例提供的一种多接入技术的架构图;
图6为本申请实施例提供的一种通信设备的结构示意图;
图7为本申请实施例提供的一种控制业务流传输的方法的流程示意图一;
图8为本申请实施例提供的一种控制业务流传输的方法的流程示意图二;
图9为本申请实施例提供的一种控制业务流传输的方法的流程示意图三;
图10为本申请实施例提供的一种由会话管理网元计算业务流控制参数的示意图;
图11为本申请实施例提供的一种由用户面网元计算业务流控制参数的示意图;
图12为本申请实施例提供的一种控制业务流传输的装置的结构示意图;
图13为本申请实施例提供的另一种控制业务流传输的装置的结构示意图;
图14为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
在介绍本申请实施例之前,首先对本申请实施例涉及到的相关名词进行解释:
1)、会话,如图2所示,即会话管理网元建立的连通终端和用户面网元到达数据网络的数据传输通道。
2)、多接入会话,即该会话可以支持多种接入技术。如图2所示,会话A可以通过第一接入技术接入核心网侧,也可以通过第二接入技术接入核心网侧。以会话为分组数据单元(packet data unit,PDU)会话为例,多接入会话即(multi-access PDU session,MA-PDU)。
3)、单接入会话,即该会话支持一种接入技术。例如,本申请实施例的单接入会话指该会话支持第一接入技术。也即该会话可以通过第一接入技术接入核心网侧。
4)、终端-最大聚合带宽(aggregate maximum bit rate,AMBR),为终端粒度参数,也可以称为终端AMBR(UE-AMBR),用以表示终端所有non-GBR(non-guaranteed bit rate)业务流的聚合最大带宽上限。
5)、会话-最大聚合带宽(session-aggregate maximum bit rate,Session-AMBR),为会话粒度参数,用以表示单个会话中所有non-GBR业务流的聚合最大带宽上限。
6)、业务流保证带宽(guaranteed bit rate,GBR),为业务流粒度参数,用以表示具体业务流网络侧可以为其提供的保证带宽值,即最小传输带宽值,分为上行和下行保证带宽值。适用于GBR业务流。与其相关的,当一条或多条GBR业务流汇聚成一条服务质量(Quality of Service,QoS)流(flow)时,此QoS flow的保证带宽值为上述GBR业务流保证带宽值之和,定义为GFBR(Guaranteed Flow Bit Rate)。所以GFBR为QoS flow粒度参数。
7)、业务流最大带宽(maximum bit rate,MBR),为业务流粒度参数,用以表示具体业务流网络侧可以为其提供的最大带宽值,分为上行和下行最大带宽值。适用于GBR业务流。与其相关的,当一条或多条GBR业务流汇聚成一条QoS flow时,此QoS flow的最大带宽值为上述GBR业务流最大带宽值之和,定义为MFBR(Maximum Flow Bit Rate)。所以MFBR为QoS flow粒度参数。
8)、会话最大总带宽(session total maximum bit rate,Session-TMBR),为会话粒度参数,用以表示某会话中通过第一接入技术传输的所有业务流(例如,GBR业务流和non-GBR业务流)的聚合最大带宽上限值。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一接入技 术和第二接入技术仅仅是为了区分不同的接入技术,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。5G通信系统、新空口(new radio,NR)是正在研究当中的下一代通信系统,及non3GPP接入系统,如WLAN接入(WLAN access network),有线接入(Wireline access network)等。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图3a所示,图3a示出了本申请实施例提供的一种控制业务流传输的方法所应用的通信系统,该通信系统包括:会话管理网元10以及与会话管理网元10通信的用户面网元20。
在一种可能的实现方式中,本申请实施例中的通信系统还可以包括:一个或者多个终端30,该终端30通过接入网接入核心网。其中,会话管理网元10以及用户面网元20均属于核心网中的网元。接入网包括支持第一接入技术的接入网网关40。
本申请实施例中的用户面网元20和终端30中的任一个均可以作为数据面网元。
在一种可能的实现方式中,该通信系统还可以包括:上行分类器(uplink classifier,UL CL)60,该上行分类器60具有对在一个会话中传输的业务流进行分流的功能,当然,该上行分类器也可以称为分支点网元(branching point)。上行分类器60与会话管理网元10和用户面网元20通信。上行分类器60可以从会话管理网元10处获取分 流规则以及第二AMBR和第一TMBR,然后按照分流规则对业务流分流,上行分类器60还用于根据终端AMBR或终端TMBR控制通过第一接入技术传输的业务流。
其中,在图3a中,本申请实施例中一个或者多个终端30中存在至少一个终端与用户面网元20之间具有会话,且该会话可以为支持第一接入技术的单接入会话。
本申请实施例中一个终端可以具有一个或多个会话,该一个或多个会话中每个会话对应一个第一AMBR(Session-AMBR),每个终端有一个终端AMBR(UE-AMBR),non-GBR业务流必须满足所在会话的第一AMBR,接入网网关可以对一个终端的所有会话进行整理。
如图3b所示,图3b示出了本申请实施例提供的一种控制业务流传输的方法所应用的通信系统,图3b与图3a的区别在于,在图3b中终端30通过不同的接入技术接入无线网络,例如,终端30可以通过支持第一接入技术的接入网网关40和支持第二接入技术的接入网设备50与核心网中的网元通信。
在一种可选的实现方式中,图3b所示的通信系统还可以包括:第二接入技术对应的上行分类器70,上行分类器70还用于根据第一AMBR控制通过第二接入技术传输的业务流。
应理解,在图3b中第二接入技术对应的上行分类器70和第一接入技术对应的上行分类器60可以是同一个上行分类器,此时,该上行分类器即可以对通过第一接入技术传输的业务流进行分流,也可以对第二接入技术对应的业务流进行分流。
在图3b中,本申请实施例中一个或者多个终端30中存在至少一个终端与用户面网元20之间具有会话,该会话可以为支持第一接入技术和第二接入技术的多接入会话。
本申请实施例中的第二接入技术可以为符合3GPP标准规范的接入技术。例如,第三代合作伙伴计划(3rd generation partnership project,3GPP)接入技术。例如,长期演进(long term evolution,LTE),2G,3G,4G或5G系统中采用的接入技术。采用3GPP接入技术的接入网称为无线接入网络(radio access network,RAN)。例如,终端30可以使用3GPP接入技术通过2G,3G,4G或5G系统中的接入网设备接入无线网络中。
第一接入技术可以为不在3GPP标准规范中定义的无线接入技术。例如称为非第三代合作伙伴计划(non 3rd generation partnership project,non-3GPP)接入技术。非3GPP接入技术可以是非可信non-3GPP接入技术,也可以是可信non-3GPP接入技术。非3GPP接入技术可以包括:无线保真(wireless fidelity,WIFI)、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)、无线局域网(wireless local area networks,WLAN),固网接入技术或者有线接入技术(wireline access)等。终端30可以通过以WIFI为代表的空口技术接入网络。其中,第一接入技术对应的接入网网关可以为non-3GPP接入网网关(Non-3GPP,N3G)。例如,non-3GPP接入网网关可以包括以下任一个:非3GPP互通功能(Non-3GPP interworking function,N3IWF)/非可信WLAN接入网关,可信非3GPP网关功能(Trusted Non-3GPP Gateway Function,TNGF)/可信non-3GPP接入网网关,固定接入网关功能/有线接入网关功能(wireline access gateway function,W-AGF)等。
在本申请实施例中,终端可以分布于无线网络中,每个终端可以是静态的或移动的。
其中,会话管理网元10用于负责用户发起业务时网络侧建立相应的会话,为终端30提供具体服务,尤其是基于会话管理网元10与用户面网元20之间的接口向用户面网元20下发数据包转发策略、QoS策略等。
其中,用户面网元20为用户面网关,主要负责分组数据包的转发、服务质量(Quality of Service,QoS)控制、计费信息统计等。例如,用户面数据通过用户面网元20传输到数据网络。数据网络用于为终端30提供服务,如提供移动运营商业务,Internet服务或第三方服务等。
例如,以图3a或图3b所示的通信系统应用于4G核心网为例,该会话管理网元10可以为移动管理实体(mobility management entity,MME)。用户面网元20可以为分组数据网用户面((PGW-User Plane,PGW-U)和服务网关用户面(SGW-User Plane,SGW-U)。
例如,若图3a或图3b所示的通信系统应用于5G网络,则如图4a或图4b所示,会话管理网元10所对应的网元或者实体可以为会话管理功能(session management function,SMF)网元、用户面网元20即对于5G中的用户面功能(user plane function,UPF)网元。
此外,如图4a或图4b所示,该5G网络还可以包括:策略控制功能(policy control function,PCF)网元、接入和移动性管理功能(access and mobility management function,AMF)网元、应用功能(application function,AF)网元、接入网设备(例如,接入网络(access network,AN)),也可以称为无线接入网设备(radio access network,RAN)、鉴权服务器功能(authentication server function,AUSF)网元、统一数据管理(unified data management,UDM)网元以及数据网络(data network,DN)等,本申请实施例对此不作具体限定。
其中,终端通过N1接口(简称N1)与AMF网元通信。AMF网元通过N11接口(简称N11)与SMF网元通信。SMF网元通过N4接口(简称N4)与一个或者多个UPF网元通信。一个或多个UPF网元中任意两个UPF网元通过N9接口(简称N9)通信。UPF网元通过N6接口(简称N6)与DN通信。终端通过接入网设备(例如,RAN设备)接入网络。接入网设备与AMF网元之间通过N2接口(简称N2)通信。SMF网元通过N7接口(简称N7)与PCF网元通信,PCF网元通过N5接口与AF网元通信。接入网设备通过N3接口(简称N3)与UPF网元通信。任意两个或两个以上的AMF网元之间通过N14接口(简称N14)通信。SMF网元通过N10接口(简称N10)与UDM网元通信。AMF网元通过N12接口(简称N12)与AUSF网元通信。AUSF网元通过N13接口(简称N13)与UDM网元通信。AMF网元通过N8接口(简称N8)与UDM网元通信。
需要说明的是,图4a或图4b中的各个网元之间的接口名字只是一个示例,具体实现中接口名字可能为其他名字,本申请实施例对此不作具体限定。
需要说明的是,图4a或图4b的接入网设备、AF网元、AMF网元、SMF网元、AUSF网元、UDM网元、UPF网元和PCF网元等仅是一个名字,名字对设备本身不 构成限定。在5G网络以及未来其它的网络中,接入网设备、AF网元、AMF网元、SMF网元、AUSF网元、UDM网元、UPF网元和PCF网元所对应的网元也可以是其他的名字,本申请实施例对此不作具体限定。例如,该UDM网元还有可能被替换为用户归属服务器(home subscriber server,HSS)或者用户签约数据库(user subscription database,USD)或者数据库实体,等等,在此进行统一说明,后续不再赘述。
示例性的,本申请实施例中所涉及到的接入网设备指的是接入核心网的设备,例如可以是基站,宽带网络业务网关(Broadband Network Gateway,BNG),汇聚交换机,非第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入网设备,非3GPP接入网网关功能等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
示例性的,本申请实施例中所涉及到的AMF网元还可以负责终端接入时的注册流程及终端移动过程中的位置管理,合法监听等功能,本申请实施例对此不作具体限定。
示例性的,本申请实施例中所涉及到的SMF网元用于进行会话管理,包括:会话建立,会话修改,会话释放,终端的网络之间互连的协议(Internet Protocol,IP)地址分配和管理,UPF网元的选择和控制,合法监听等与会话相关的控制功能。
示例性的,本申请实施例中所涉及到的UPF网元除了具备图4a或图4b所示的用户面功能网元的功能,还可实现服务网关(Serving Gateway,SGW)和分组数据网络网关(Packet Data Network Gateway,PGW)的用户面功能。此外,UPF网元还可以是软件定义网络(Software Defined Network,SDN)交换机(Switch),本申请实施例对此不作具体限定。
AUSF网元为鉴权服务器功能,主要负责对终端进行鉴权,确定终端合法性。例如,基于终端的用户签约数据对终端进行鉴权认证。
UDM网元为统一的用户数据管理,主要用来存储终端的签约数据。此外,UDM网元还包括鉴权认证,处理终端的标识信息,签约管理等功能,本申请实施例对此不作具体限定。
PCF网元,主要用来下发业务相关的策略给AMF网元或SMF网元。
AF网元,发送应用相关需求给PCF网元,使得PCF网元生成对应的策略。
DN,为终端提供服务,如提供移动运营商业务,Internet服务或第三方服务等。
终端(terminal)是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端也可以称为用户设备(User Equipment,UE)、接入终端(Access Terminal)、用户单元(User Unit)、用户站(User Station)、移动站(Mobile Station)、移动台(Mobile)、远方站(Remote Station)、远程终端(Remote Terminal)、移动设备(Mobile Equipment)、用户终端(User Terminal)、无线通信设备(Wireless Telecom Equipment)、用户代理(User Agent)、用户装备(User Equipment)或用户装置。终端可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(Station,STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或 连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统(例如,第五代(Fifth-Generation,5G)通信网络)中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端等。其中,5G还可以被称为新空口(New Radio,NR)。
作为示例,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图5示出了本申请一实施例中终端使用多个接入技术接入网络的架构示意图,例如,终端使用3GPP接入技术和non-3GPP接入技术的架构。如图5所示,终端可以通过3GPP接入技术和non-3GPP接入技术连接到接入和移动性管理功能网元。
具体的,如图5所示,终端在使用non-3GPP接入技术接入接入和移动性管理功能网元时,可以通过非3GPP互通功能(non-3GPP interworking function,N3IWF)实体接入接入和移动性管理功能网元。当3GPP与non-3GPP属于相同PLMN时,终端选择相同接入和移动性管理功能网元。当3GPP与non-3GPP属于不同PLMN时,可以选择不同的接入和移动性管理功能网元。
会话管理功能网元由接入和移动性管理功能网元选择,不同的会话可以选择不同的会话管理功能网元,但相同的会话要选择相同的会话管理功能网元。会话管理功能网元可以为会话选择用户面功能网元,一个会话可以有多个用户面功能网元,所以会话管理功能网元可能会选择多个用户面功能网元为某会话创建隧道连接。
其中,AUSF网元和鉴权存储功能(authetnication repository function,ARPF)/UDM网元构成归属公共陆地移动网(home public land mobile network,HPLMN),终端通过不同的接入技术接入网络时,可以具有不同的受访地公用陆地移动网(visited public land mobile network,VPLMN),也可以具有相同的受访地公用陆地移动网。具体的,图5中所示的各个网元的功能可以参见上述实施例,本申请在此不再赘述。
图6示出了本申请实施例提供一种通信设备的硬件结构示意图。本申请实施例中的终端30、会话管理网元10、用户面网元20的硬件结构可以参考如图6所示的结构。该通信设备包括处理器61,通信线路64以及至少一个通信接口63。
处理器61可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC)、或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路64可包括一通路,在上述组件之间传送信息。
通信接口63,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。
可选的,该通信设备还可以包括存储器62。
存储器62可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路64与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器62用于存储执行本申请方案的计算机执行指令,并由处理器61来控制执行。处理器61用于执行存储器62中存储的计算机执行指令,从而实现本申请下述实施例提供的一种控制业务流传输的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器61可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图6中的处理器61和处理器65。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
需要指出的是,本申请各实施例之间可以相互借鉴或参考,例如,相同或相似的步骤,方法实施例和装置实施例之间,均可以相互参考,不予限制。
本申请实施例中的GBR业务流可以在一种接入技术中传输,例如,在第一接入技术或第二接入技术中传输,或者,GBR业务流也可以同时在多种技术传输,例如,在第一接入技术和第二接入技术中传输。non-GBR业务流可以在一种接入技术传输,或者,同时在多种技术传输例如,在第一接入技术和第二接入技术中传输。下面以GBR业务流在一种接入技术传,non-GBR业务流在多种技术传输为例。
如图1所示,每个PDU会话对应一个第一AMBR=10Mbps,每个终端有一个终端AMBR=50Mbps,non-GBR业务流必须满足所在会话的第一AMBR,接入网设备会对一个终端的所有会话进行整理,以该终端的会话中传输GBR业务流1=5Mbps,以及GBR业务流2=20Mbps为例,其中,GBR业务流1在第二接入技术中传输,GBR业务流2在第一接入技术中传输。图1示出了各节点对于QoS参数的处理情况。终端和用户面网元主要基于第一AMBR控制non-GBR业务流的聚合带宽,基于GBR业务流1=5Mbps控制GBR业务流1的保证带宽,基于GBR业务流2=20Mbps控制GBR业务流2的保证带宽。接入网设备基于激活的各会话的第一AMBR计算当前的终端AMBR值,从而控制终端的non-GBR业务流的聚合带宽,基于GBR业务流1=5Mbps控制GBR业务流1的保证带宽。
当会话为多接入会话时,同一会话业务流可以同时在多种接入技术传输。针对GBR业务流,由于每个处理节点都基于保证带宽值为此GBR业务流预留了带宽资源, 因此,GBR业务流的带宽可以得到端到端的保证。但针对non-GBR业务流,可以同时在多种技术传输,且QoS控制是会话粒度及终端粒度的带宽聚合值。因此,接入侧(NG-RAN,N3G网关)的聚合带宽值之和与两端(终端,用户面网元)的聚合带宽值不同。例如上图1中,接入网设备侧和接入网网关上的第一AMBR分别为10Mbps,那么两者之和就是20Mbps,而终端,用户面网元上述此会话的第一AMBR聚合值只为10Mpbs。
其次,当第一接入技术为有线接入技术(wireline access)时,除了上述QoS参数需要执行之外,还有另一个专门针对有线接入的QoS参数,Session-TMBR(Session Total Maximum Bit Rate),用以表示通过有线接入技术传输的某会话所有业务流(GBR业务流,non-GBR业务流)的聚合最大带宽上限值。由于MA PDU会话中GBR业务流可以在第一接入技术和第二接入技术侧移动,包括GBR业务流整体切换到另一接入技术,或GBR业务流的部分数据切换到另一接入技术,而第一TMBR又与GBR业务流当前是否在第一接入技术侧已经占用了部分带宽有关,所以给第一接入技术侧的QoS控制带来困难。
基于此,本申请实施例提供一种控制业务流传输的方法,该方法通过会话管理网元获取在会话中通过第一接入技术传输的业务流的第一TMBR、和第一GBR业务流的保证带宽,并向用户面网元发送第一信息,这样便于用户面网元确定第一接入技术对应的第二最大聚合带宽AMBR和第二TMBR中的至少一个,并根据第二AMBR和第二TMBR中的至少一个控制会话中通过第一接入技术传输的业务流,这样可以满足第一接入技术要求的QoS参数控制需求。
在本申请实施例中,一种控制业务流传输的方法的执行主体的具体结构,本申请实施例并未特别限定,只要可以通过运行记录有本申请实施例的一种控制业务流传输的方法的代码的程序,以根据本申请实施例的一种控制业务流传输的方法进行通信即可,例如,本申请实施例提供的一种控制业务流传输的方法的执行主体可以是会话管理网元中能够调用程序并执行程序的功能模块,或者为应用于会话管理网元中的通信装置,例如,芯片。本申请实施例提供的一种控制业务流传输的方法的执行主体可以是用户面网元中能够调用程序并执行程序的功能模块,或者为应用于用户面网元中的通信装置,例如,芯片。本申请对此不进行限定。下述实施例以一种控制业务流传输的方法的执行主体为用户面网元、会话管理网元为例进行描述。
结合上述图3a和图3b,如图7所示,本申请实施例提供一种控制业务流传输的方法,该方法以数据面网元为用户面网元20为例,该方法包括:
步骤701、会话管理网元10获取在会话中通过第一接入技术传输的业务流的第一TMBR、和第一GBR业务流的保证带宽。TMBR用于表示会话中通过第一接入技术传输的所有业务流的聚合带宽上限值。
本申请实施例中第一GBR业务流的保证带宽可以指会话中通过第一接入技术传输的所有GBR业务流(至少包括激活的一个或多个GBR业务流)中每个GBR业务流的保证带宽,上述每个GBR业务流的保证带宽值可以基于PCF网元发送的QoS策略获取,或者基于会话管理网元的本地策略获取。当上述GBR业务流同时在第二接入技术和第一接入技术传输时,第一GBR业务流的保证带宽只包含此GBR业务流通过第 一接入技术传输的数据所占用的保证带宽值。或者,本申请实施例中第一GBR业务流的保证带宽可以指会话中通过第一接入技术传输的激活的一个或多个GBR业务流中每个GBR业务流的保证带宽。
本申请实施例中的第一TMBR为:为PCF网元发送的Session-TMBR,或者UDM网元发送的签约的session-TMBR。第一GBR业务流的保证带宽为:为PCF发送的QoS策略中的包含的保证带宽,或者基于本地策略获取的保证带宽。会话管理网元10可以从PCF网元处获取第一GBR业务流的保证带宽,或者PCF网元基于本地配置的策略确定第一GBR。当上述GBR业务流在第一与第二接入技术同时传输时,会话管理网元10从PCF网元获取此GBR业务流的保证带宽值,会话管理网元10基于上述保证带宽值确定此GBR业务流的第一GBR业务流保证带宽为通过第一接入技术传输的保证带宽。当然,本申请实施例中会话管理网元10可以从PCF网元处获取会话中通过第一接入技术传输的一个或多个GBR业务流中部分GBR业务流的保证带宽,此外,会话管理网元10基于本地配置的策略确定一个或多个GBR业务流中其余部分GBR业务流的保证带宽。
例如,会话管理网元10可以从PCF网元处获取会话中通过第一接入技术传输的GBR业务流1的保证带宽为10M,会话管理网元10基于本地配置的策略确定会话中通过第一接入技术传输的GBR业务流2的保证带宽为5M。
具体的,会话管理网元10从UDM网元中获取中的签约数据。终端的签约数据中包括:针对第一接入技术的第一TMBR(即第一Session-TMBR,以下描述简写为第一TMBR)。可选的,会话管理网元10将上述参数(例如,针对第一接入技术的第一TMBR发送给PCF网元,PCF网元基于策略对上述参数进行授权,如PCF网元根据策略对上述参数做进一步修改。PCF网元修改后,会话管理网元10将修改后的参数作为第一TMBR,即从PCF网元获取第一TMBR。
举例说明,本申请实施例中涉及到的会话可以为:PDU会话,或者公用数据网(public data network,PDN)连接。以会话为PDU会话为例,本申请实施例中的PDU会话指:会话管理网元10建立的连通终端30和用户面网元20到达DN的数据传输通道。该数据传输通道中涉及到的网元包括:终端、接入网设备、以及由会话管理网元10为该会话选择的用户面网元20。该数据传输通道中包括多个相邻两个网元之间的链路。例如,包括终端和接入网设备之间的链路、接入网设备和用户面网元20之间的链路、以及UPF网元和DN之间的链路。
可以理解的是,本申请实施例在步骤701之前,还可以包括:会话管理网元10确定管理(例如,建立或更新)终端的会话。例如,终端向会话管理网元10发起会话管理流程,同现有技术。例如,会话管理流程可以包括:会话建立流程或者会话更新(也可以称为会话修改)流程。上述会话管理流程也可以用来建立或更新MA PDU会话,同时支持第一接入技术与第二接入技术传输。即终端向会话管理网元10发送PDU session establishment request,或者PDU session modification request消息。
本申请实施例中的会话为支持第一接入技术的单接入会话,或者,会话为支持第一接入技术和第二接入技术的多接入会话。
步骤702、会话管理网元10向用户面网元20发送第一信息,以使得用户面网元 20接收来自会话管理网元10的第一信息。该第一信息用于用户面网元20确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二最大聚合带宽AMBR、所述第一TMBR、所述第二TMBR。其中,第二AMBR用于表示会话中通过第一接入技术传输的non-GBR业务流的聚合最大带宽上限。
例如,会话管理网元10向用户面网元20发送N4消息,以使得用户面网元20接收来自会话管理网元的N4消息。该N4消息中携带第一信息。
本申请实施例中的第二AMBR为:实际传输时网络侧允许该会话中通过第一接入技术传输的non-GBR业务流的聚合最大带宽上限,也即实际传输时该会话中传输的non-GBR业务流的可用聚合最大带宽。第二TMBR为:实际传输时网络侧允许该会话中通过第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽上限值。
本申请实施例中的第二AMBR和第一AMBR可以相等,或者第二AMBR小于第一AMBR。第二TMBR和第一TMBR可以相等,或者第二TMBR小于第一TMBR。
本申请实施例中第一信息用于用户面网元20确定会话中第一接入技术对应的第二AMBR和第二TMBR中的至少一个可以包括如下两种情况:1)、第一信息包括第二AMBR和第二TMBR中的至少一个,这样即由会话管理网元10计算第二AMBR和第二TMBR中的至少一个,并向用户面网元20发送第二AMBR和第二TMBR中的至少一个。2)、第一信息包括用于计算第二AMBR的参数,这样用户面网元20基于用于计算第二AMBR的参数自主计算第二AMBR。例如,用于计算第二AMBR的参数可以为第一TMBR和会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽。或者用于计算第二AMBR的参数可以为第二TMBR和会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽。
步骤703、用户面网元20根据第二AMBR、第一TMBR和第二TMBR中的至少一个,控制在会话中通过第一接入技术传输的业务流。例如,业务流包括通过第一接入技术传输的所有non-GBR业务流,和/或,通过第一接入技术传输的所有GBR业务流。
应理解,用户面网元20可以根据第二AMBR,控制在会话中通过第一接入技术传输的所有non-GBR业务流。用户面网元20可以根据第二AMBR和第二TMBR,控制在会话中通过第一接入技术传输的GBR业务流、non-GBR业务流。具体的,第二AMBR控制non-GBR业务流,第二TMBR控制GBR业务流和non-GBR业务流。用户面网元20可以根据第二TMBR或第一TMBR控制在会话中采用所述第一接入技术传输的所有GBR业务流与non-GBR业务流的聚合带宽之和小于或等于所述第一TMBR或第二TMBR。
本申请实施例提供一种控制业务流传输的方法,该方法中会话管理网元获取在会话中通过第一接入技术传输的业务流的第一TMBR、和第一GBR业务流的保证带宽,并向用户面网元发送第一信息,这样便于用户面网元确定第一接入技术对应的第二AMBR、第一TMBR和第二TMBR中的至少一个。后续用户面网元可以根据第二AMBR、第一TMBR和第二TMBR中的至少一个控制会话中通过第一接入技术传输的业务流,这样可以满足第一接入技术要求的QoS参数控制需求。
本申请实施例中第二AMBR可以由用户面网元20计算,第二AMBR和第二TMBR也可以由会话管理网元10计算,计算第二AMBR和/或第二TMBR的执行主体不一样,具体实现过程存在差异,下述将分别介绍:
示例1)、由会话管理网元10计算第二AMBR和第二TMBR任意一个或多个。
在一种可能的实现方式中,本申请实施例中的第一信息包:以下信息中的任一个或多个:所述第一最大聚合带宽AMBR、第二AMBR和所述第二TMBR。或者,本申请实施例中的第一信息包括:第二TMBR。或者本申请实施例中的第一信息包括:第二AMBR和第二TMBR。本申请实施例中的第一信息包括:第一AMBR。或者本申请实施例中的第一信息包括:第二AMBR、第一AMBR以及第二TMBR。
在一种可选的实现方式中,该第一信息还可以包括:第一接入技术指示或第一接入技术对应的隧道标识。其中,第一接入技术指示用于指示采用第一接入技术传输。第一接入技术对应的隧道标识用于确定第一接入技术对应的隧道。
应理解,第一信息包括第一接入技术指示和第二AMBR之间的对应关系,和/或,第一接入技术指示和第二TMBR之间的对应关系。或者,第一信息包括第一接入技术对应的隧道标识和第二AMBR之间的对应关系,和/或,第一接入技术对应的隧道标识和第二TMBR之间的对应关系。
其中,第一接入技术指示和第二AMBR之间的对应关系表示该会话通过第一接入技术指示的第一接入技术传输的non-GBR业务流的最大聚合带宽为第二AMBR。或者,第一接入技术对应的隧道标识和第二AMBR之间的对应关系表示相关隧道标识指示的隧道中传输的non-GBR业务流的最大聚合带宽为第二AMBR。
如图8所示,在一种可能的实施例中,本申请实施例提供的方法在步骤702之前还包括:
步骤704、会话管理网元10根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二AMBR和第二TMBR中的至少一个。
示例I:作为第一种可能的实现方式,会话管理网元10根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二AMBR可以通过以下步骤7041和步骤7042实现:
步骤7041、会话管理网元10根据第一GBR业务流的保证带宽,确定会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和。
应理解,本申请实施例中会话中可以存在通过第一接入技术传输的一个或多个GBR业务流,一个或多个GBR业务流中每个GBR业务流对应一个第一GBR业务流的保证带宽,不同GBR业务流对应的第一GBR业务流的保证带宽可以相同,也可以不相同,本申请实施例对此不作限定。该一个或多个GBR业务流即为该会话中通过第一接入技术传输的所有激活的GBR业务流。一个或多个GBR业务流的保证带宽总和即为一个或多个GBR业务流对应的第一GBR业务流的保证带宽的累加。
本申请实施例涉及到的激活的GBR业务流可以指:正在进行的GBR业务流,用户面网元为此GBR业务流建立了用户面通道,并预留了相应的带宽资源。
步骤7042、会话管理网元10根据第一TMBR、一个或多个GBR业务流的保证带宽总和,确定第二AMBR。
示例性的,步骤7042可以通过以下方式实现:会话管理网元10确定第二AMBR为第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。也即会话管理网元10使用第一TMBR减去一个或多个GBR业务流的保证带宽总和,得到第二AMBR。换句话说:即第二AMBR为第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值。
举例说明,第一TMBR为100Mbps,激活的一个或多个GBR业务流包括GBR业务流1的保证带宽为30Mbps,GBR业务流2的保证带宽为20Mbps,则会话管理网元10确定所述第二AMBR为100Mbps-30Mbps-20Mbps=50Mbps。
示例II:
在第二种可能的实施例中,如图8所示,本申请实施例提供的方法在步骤704之前,还可以包括:
步骤705、会话管理网元10获取会话对应的第一AMBR,该第一AMBR用于表示会话中所有non-GBR业务流的聚合最大带宽上限。该第一AMBR可以由会话管理网元10从终端的签约数据中获取,也可以由会话管理网元10从PCF网元处获取,本申请实施例对此不作限定。
相应的,会话管理网元10根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二AMBR,可以通过以下步骤7043实现:
步骤7043、会话管理网元10根据第一TMBR、一个或多个GBR业务流的保证带宽总和,以及第一AMBR,确定第二AMBR。
示例性的,会话管理网元10比较第二AMBR与第一AMBR的大小,会话管理网元10将第二AMBR与第一AMBR中的最小值作为最终的第二AMBR。即如果第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值大于整个会话的第一AMBR,则用第一AMBR作为第二AMBR。否则,如果第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值小于或等于整个会话的第一AMBR,则用第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值作为第二AMBR。
具体的,第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值小于第一AMBR时,会话管理网元10确定第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值。或者,所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,会话管理网元10确定第二AMBR为第一AMBR。换句话说,即第一TMBR与会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,第二AMBR为第一AMBR。
需要说明的是,示例I和示例II的区别在于,在示例I中会话管理网元10未比较第一AMBR,与第一TMBR减去一个或多个GBR业务流的保证带宽总和得到的差值,也即直接将第一TMBR减去一个或多个GBR业务流的保证带宽总和得到的差值作为第二AMBR。在示例II中,会话管理网元10将第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值和第一AMBR作比较,以确定第二AMBR。
如果会话为多接入会话,当第一TMBR减去一个或多个GBR业务流的保证带宽总和得到的差值小于第一AMBR的情况下,会话管理网元10发起GBR业务流切换流 程,将会话中通过第一接入技术传输的部分GBR业务流切换到第二接入技术中传输,以使得第二AMBR大于或等于第一AMBR。然后,会话管理网元10便可以只发送第一AMBR给用户面网元。同批注2场景。
此外,如果通过上述GBR业务流的调整仍然不能使得第二AMBR大于第一AMBR,则会话管理网元10发送指示给PCF网元。上述指示用来表示第二AMBR小于第一AMBR,即该会话中通过第一接入技术传输的non-GBR业务流的带宽上限值小于整个会话的non-GBR业务流的带宽上限。则PCF网元基于上述指示更新分流模式。如发送priority-based分流模式,用以表示优先将第一接入技术的带宽占满后,其余业务流从第二接入技术传输。
如果会话为多接入会话,当第一TMBR减去一个或多个GBR业务流的保证带宽总和得到的差值大于第一AMBR的情况下,会话管理网元10向用户面网元发送第一AMBR。不用发送第二AMBR。相应的,步骤703可以通过以下方式实现:用户面网元使用第一AMBR控制该会话中通过第一接入技术和第二接入技术传输的non-GBR业务流。
本申请实施例中,会话管理网元10根据第一TMBR、以及第一GBR业务流的保证带宽,确定第二TMBR可以通过以下方式实现:
步骤7044、会话管理网元10根据第一TMBR和第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和,确定第二TMBR。
示例性的,本申请实施例中的步骤7044可以通过以下方式具体实现:会话管理网元10根据第一TMBR减去第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和,确定第二TMBR。换句话说,第二TMBR为第一TMBR和所述第一接入技术对应的上行分类器上分流的所述一个或多个GBR业务流的保证带宽总和之间的差值。
本申请实施例中业务流经过上行分类器到达用户面网元(如锚点用户面网元)之前,上行分类器可以分流部分GBR业务流,该部分被分流的GBR业务流从上行分类器直接到外网,而不再经过用户面网元(如锚点用户面网元)。
相应的,如图8所示,本申请实施例提供的方法在步骤703之前还可以包括:
步骤706、会话管理网元10向用户面网元20发送会话对应的第一AMBR,以使得用户面网元20接收来自会话管理网元10的会话对应的第一AMBR。
其中,第一AMBR可以和第一TMBR、以及第一GBR业务流的保证带宽携带在同一个消息中由会话管理网元10向用户面网元20发送。或者,携带第一AMBR的消息和携带第一TMBR、以及第一GBR业务流的保证带宽的消息不同。
相应的,本申请实施例中的步骤703可以通过以下步骤7031和/或步骤7032实现:
步骤7031、用户面网元20根据第二AMBR控制在会话中通过第一接入技术传输的所有non-GBR业务流。
示例性的,本申请实施例中的步骤7031具体可以通过以下方式实现:用户面网元20控制会话中通过所述第一接入技术或第一接入技术对应的隧道传输的non-GBR业务流的带宽之和小于或等于第二AMBR。
可选的,如果本申请实施例提供的方法还包括:用户面网元20获取第一AMBR, 则步骤7031可以通过以下方式实现:此外,如果会话为多接入会话,则用户面网元20还可以控制会话中通过第一接入技术传输的所有non-GBR业务流的带宽总和与第二接入技术传输的所有non-GBR业务流的聚合带宽总和之和小于或等于第一AMBR。
步骤7032、用户面网元20控制在会话中通过第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽之和小于或等于第二TMBR。
举例说明,第二TMBR为500Mbps,通过第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽总和小于或等于500Mbps。
需要说明的是,如果用户面网元20接收到来自会话管理网元10的第二AMBR,用户面网元20可以直接使用第二AMBR控制non-GBR业务流。如果用户面网元20接收到来自会话管理网元10的第二TMBR,而不包括第二AMBR,则1)用户面网元20需要用第二TMBR计算出第二AMBR,然后执行步骤7031。例如,用户面网元20使用第二TMBR减去一个或多个GBR业务流的保证带宽总和得到第二AMBR。或者2)用户面网元20直接执行步骤7031,即不计算第二AMBR,而采用第二TMBR控制在会话中通过第一接入技术传输的所有non-GBR业务流和所有GBR业务流。
示例2)、由用户面网元20计算第二AMBR。
相应的,本申请实施例中的第一信息包括:第一TMBR或第二TMBR。此外,第一信息还可以包括会话中通过第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽。或者,第一信息包括第一TMBR、或第二TMBR。此外,第一信息还可以包括会话中通过第一接入技术传输的一个或多个GBR业务流的保证带宽总和。如果会话管理网元发送的是一个或多个GBR业务流的保证带宽总和,则后续可以省略用户面网元20根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和的过程。
如图9所示,如果第一信息包括第一TMBR或第二TMBR,作为本申请的再一种可能的实施例,本申请实施例提供的方法在步骤703之前还可以包括:
步骤707、用户面网元20根据第一TMBR或第二TMBR、一个或多个GBR业务流中每个GBR业务流的保证带宽,确定第二AMBR。
作为一种可能的实现,本申请实施例中的步骤707可以通过以下方式具体实现:用户面网元20根据每个GBR业务流的保证带宽,确定一个或多个GBR业务流的保证带宽总和。用户面网元20确定第二AMBR为第一TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。或者,用户面网元20确定第二AMBR为第二TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。
作为另一种可能的实现,本申请实施例中的步骤707可以通过以下方式具体实现:如果用户面网元20获取到第一AMBR,则第一TMBR或第二TMBR中任一个与一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,用户面网元20确定第二AMBR为第一AMBR。第一TMBR或/第二TMBR与一个或多个GBR业务流的保证带宽总和之间的差值小于第一AMBR,用户面网元20确定第二AMBR为第一TMBR或第二TMBR中任一个与一个或多个GBR业务流的保证带宽总和之间的差值。
作为再一种可能的实现,本申请实施例中的步骤707可以通过以下方式具体实现:或者,用户面网元20确定第二AMBR为小于第一差值的任意值。第一差值为第一 TMBR或/第二TMBR与一个或多个GBR业务流的保证带宽总和之间的差值。
如图9所示,本申请实施例中的步骤703具体可以通过以下方式实现:用户面网元20控制会话中采用第一接入技术传输的所有non-GBR业务流的聚合带宽之和小于或等于第二AMBR。
如果用户面网元20接收到的第一信息包括第一TMBR或第二TMBR,在用户面网元20不计算第二AMBR的情况下,本申请实施例中的步骤703具体可以通过以下方式实现:用户面网元20控制所述会话中采用所述第一接入技术传输的所有GBR业务流与non-GBR业务流的聚合带宽之和小于或等于所述第一TMBR或第二TMBR。
如果该会话为多接入会话,用户面网元20基于第二AMBR,第一TMBR或第二TMBR中的至少一个为业务流选择接入技术。具体的,用户面网元20基于分流模式选择第一接入技术传输业务流,但如果业务流超过第二AMBR,第一TMBR或第二TMBR中任一个的带宽上限值,则用户面网元20选择第二接入技术传输业务流。避免通过第一接入技术传输时,由于带宽受限导致丢包。举例说明,比如分流模式指示选择最小往返时间(Round-Trip Time,RTT)的链路传输,用户面网元20检测3GPP与non-3GPP的链路RTT,如果第一接入技术对应的链路的RTT小于第二接入技术对应的链路的RTT,则用户面网元20基于分流模式应该选择第一接入技术传输业务流。但如果此时第一接入技术对应的带宽不足以支撑此业务流,则用户面网元20仍然选择第二接入技术传输业务流。
示例性的,分流模式可以包括:负载均衡指示、激活链路与备选链路指示、最优链路指示、链路最小时延指示、RTT指示、链路最低负载指示、链路最大带宽指示、接入信号最强指示中的至少一个参数。
需要说明的是,如果在用户面网元20基于分流模式为non-GBR业务流选择一个接入技术之后,如果non-GBR业务流在会话中传输的聚合带宽之和大于第二AMBR,则用户面网元20可以为non-GBR业务流重新选择接入技术。如果业务流在会话中传输的聚合带宽之和大于第一TMBR或第二TMBR可以对non-GBR业务流或GBR业务流选择接入技术。
作为一种可能的实现,本申请实施例提供的方法还包括:会话管理网元10向用户面网元20发送指示信息,用以指示用户面网元20基于第二AMBR,第一TMBR或第二TMBR中的至少一个为业务流选择接入技术。
作为再一种可能的实施例,如图9所示,本申请实施例提供的方法还包括:
步骤708、用户面网元20向第一接入技术对应的接入网网关40和上行分类器60发送第二AMBR,以使得接入网网关40和上行分类器60接收来自用户面网元20的第二AMBR。
可选的,步骤708可以通过以下方式实现:用户面网元20向会话管理网元10发送第一消息,以由会话管理网元10转发第一消息至第一接入技术对应的接入网网关40和上行分类器60。该第一消息中包括向第一接入技术对应的接入网网关40和上行分类器60发送的第二AMBR。
步骤709、接入网网关40或上行分类器60将第二AMBR与之前存储的第二AMBR或第一AMBR值比较,采用其中最小值作为最终控制non-GBR业务流的最大聚合带 宽参数。
作为再一种可能的实施例,如图9所示,本申请实施例提供的方法还包括:
步骤710、用户面网元20向第二接入技术对应的接入网设备50和上行分类器70发送Session R-AMBR,以使得接入网网关40和上行分类器60接收来自用户面网元20的Session R-AMBR。
步骤711、接入网设备50或上行分类器70采用Session R-AMBR控制业务流。上述Session R-AMBR为所述PDU会话中通过第二接入技术传输的所有non-GBR业务流最大聚合带宽参数。
再一种可能的实施例中,如果该通信系统中还包括第一接入技术对应的上行分类器60,以及第二接入技术对应的上行分类器70,结合图3a或图3b,如图8或图9所示,本申请实施例提供的方法还包括:
步骤712、会话管理网元10向第一接入技术对应的上行分类器60发送会话的用于计算第二AMBR的信息,以使得上行分类器60接收用于计算第二AMBR的信息。
例如,用于计算第二AMBR的信息包括以下信息中的任一个或多个:第二AMBR、第一AMBR、第一TMBR。
示例性的,会话管理网元10向上行分类器60发送N4会话标识、第二AMBR,用以表示此N4会话对应的会话的通过第一接入技术传输的所有non-GBR业务流的最大聚合带宽为第二AMBR。本申请实施例中的会话标识和N4会话标识一一对应。
示例性的,会话管理网元10向上行分类器60发送第一TMBR,上行分类器60基于第一TMBR与当前激活的至少一个GBR业务流的保证带宽总和计算第二AMBR。即第二AMBR=第一TMBR-当前激活的至少一个GBR业务流的保证带宽总和。
示例性的,会话管理网元10向上行分类器60发送第一AMBR与第一TMBR,上行分类器60基于第一TMBR与当前激活的至少一个GBR业务流的保证带宽总和计算第二AMBR。即第二AMBR=第一TMBR-当前激活的至少一个GBR业务流的保证带宽总和。上行分类器60比较第一AMBR与上述差值的大小关系。如果第一AMBR小于或等于上述差值,则第二AMBR=第一AMBR。
步骤713、上行分类器60使用第二AMBR控制在该会话中传输的non-GBR业务流,即通过第一接入技术传输的non-GBR业务流带宽之和小于第二AMBR。
步骤714、会话管理网元10向第二接入技术对应的上行分类器70发送会话的第一AMBR,或者发送一个或多个GBR业务流的保证带宽。
步骤715、上行分类器70根据第一AMBR,或者发送一个或多个GBR业务流的保证带宽控制该会话中传输的业务流。
具体的,上行分类器70控制该会话中传输的所有non-GBR业务流(包括通过第一接入技术传输的与通过第二接入技术传输的所有non-GBR业务流)的AMBR之和不超过第一AMBR。或者上行分类器70控制一个或多个GBR业务流满足各自的保证带宽。
需要说明的是,本申请实施例中的步骤712-步骤715适用于会话为多接入会话的场景,也适用于单接入会话中存在上行分类器的场景。
作为在一种可选的实施例,如图8或图9所示,本申请实施例提供的方法还可以 包括:
步骤716、会话管理网元10向终端发送第一信息。
具体的,步骤716可以通过以下方式实现:会话管理网元10确定会话建立或更新完成后,向终端发送会话建立成功消息(PDU session establishment accept)或会话更新指令(PDU session modification command)。其中,PDU session establishment accept或PDU session modification command包含以下信息中的任一个或多个:第二AMBR和第一TMBR。用以表示此会话,通过第一接入技术传输的non-GBR业务流的聚合最大带宽值为第二AMBR,通过第一接入技术传输的所有GBR与non-GBR业务流的带宽值之和小于等于第一TMBR。可选的,上述消息中还包含第一接入技术指示,用以表示上述第二AMBR或第一TMBR是第一接入技术相关的参数。
应理解,当第二AMBR或TMBR参数本身即包含接入技术指示时,第一接入技术指示为可选参数。即接收方接收到了第二AMBR或TMBR便可以确定其为与第一接入技术关联的参数,此时,第一接入技术指示或第一接入技术对应的隧道标识便可以省略。
步骤717、终端根据第二AMBR和第一TMBR中的至少一个控制该会话中传输的业务流。
例如,步骤717可以通过以下方式实现:终端该会话中控制通过第一接入技术传输的non-GBR业务流的最大聚合带宽值不超过第二AMBR,和/或,终端控制该会话中通过第一接入技术传输的non-GBR业务流的最大聚合带宽值与通过第一接入技术传输的GBR业务流的保证带宽值之和不超过(即小于或等于)第一TMBR。
作为在一种可选的实施例,如图8或图9所示,本申请实施例提供的方法还可以包括:
步骤718、会话管理网元10向第一接入技术对应的接入网网关40发送用于计算第二AMBR的信息,以使得接入网网关40接收来自会话管理网元10的用于计算第二AMBR的信息。
例如,用于计算第二AMBR的信息包括以下信息中的任一个或多个:第二AMBR、第一TMBR。
示例性的,会话管理网元10向接入网网关40发送N2消息(N2information),以使得接入网网关40接收来自会话管理网元10的N2消息。其中,N2消息中包括:会话的标识以及以下信息中的任一个或多个:第二AMBR、第一TMBR。这样接入网网关40便可以确定会话的标识关联的会话中所有non-GBR业务流的聚合最大带宽值的上限为第二AMBR,所有业务流的带宽值之和小于或等于第一TMBR。
示例性的,如果用于计算第二AMBR的信息包括第一TMBR,则接入网网关40基于第一TMBR与当前激活的一个或多个GBR业务流的保证带宽总和计算第二AMBR。即Session第二AMBR=第一TMBR–当前激活的一个或多个GBR业务流的保证带宽总和。
步骤719、接入网网关40将该终端所有激活会话的第一AMBR之和作为终端AMBR。
步骤720、接入网网关40使用终端AMBR(UE-AMBR)或会话TMBR中的至少 一个进行业务流的QoS控制。
示例性的,步骤720可以通过以下方式实现:接入网网关40控制在该终端的所有激活的会话中传输的所有non-GBR业务流的聚合最大带宽值之和小于或等于终端AMBR,通过第一接入技术传输的所有业务流带宽之和小于或等于会话TMBR。再一种可能的实施例中,结合图3b,如图8或图9所示,本申请实施例提供的方法还包括:
步骤721、会话管理网元10向第二接入技术对应的接入网设备50发送会话对应的第一AMBR,以使得接入网设备50接收来自会话管理网元10的会话对应的第一AMBR。
示例性的,会话管理网元10向第二接入技术对应的接入网设备发送N2消息,以使得接入网设备接收N2消息。N2消息中携带会话的标识和第一AMBR。
步骤722、接入网设备50将该终端所有激活的会话的第一AMBR之和作为终端AMBR,进行QoS控制。
示例性的,步骤722可以通过以下方式实现:接入网设备控制该终端的所有non-GBR业务流的聚合最大带宽值之和小于或等于接入网设备确定的终端AMBR。例如,终端所有激活的会话包括PDU会话1和PDU会话2,PDU会话1的第一AMBR为20Mbps,PDU会话2的第一AMBR为5Mbps,则接入网设备确定的终端AMBR为25Mbps。这样接入网设备需要控制在终端所有激活的会话中传输的所有non-GBR业务流之和小于或等于25Mbps。
作为在一种可选的实施例,如图8或图9所示,本申请实施例提供的方法还可以包括:
步骤723、会话管理网元10根据第一AMBR以及第二AMBR计算第二接入技术侧的Session R-AMBR。
其中,Session R-AMBR表示会话粒度的AMBR。表示通过第二接入技术传输的所有non-GBR业务流的聚合最大带宽上限。
示例性的,步骤723可以通过以下方式实现:Session R-AMBR=第一AMBR-第二AMBR。
步骤724、会话管理网元10向接入网设备50发送Session R-AMBR,以使得接入网设备50接收来自会话管理网元的Session R-AMBR。接入网设备基于Session R-AMBR控制通过第二接入技术传输的所有non-GBR业务流,即通过第二接入技术传输的所有non-GBR业务流带宽值之和小于或等于Session R-AMBR。
在一种可选的实现方式中,本申请实施例提供的方法还包括:会话管理网元10向用户面网元发送Session R-AMBR与第二接入技术指示,或者Session R-AMBR与第二接入技术隧道信息。此外,会话管理网元10向用户面网元发送第一AMBR,同现有技术,用以表示此会话的所有non-GBR业务流(包括在第一接入技术和第二接入技术传输的业务流)的聚合最大带宽值。
需要说明的是,本申请实施例图7-图9中所有由用户面网元执行的动作也可以由终端执行,也即用户面网元可以由终端替换。
需要说明的是,图7或图8中所有由会话管理网元10执行的动作可以由PCF网元替换,当由PCF网元替换会话管理网元时,PCF网元可以通过会话管理网元执行相 关的发送动作。举例说明,以会话为多接入会话为例,在由会话管理网元计算的场景中,如图10所示,会话管理网元10从UDM网元处获取第一AMBR=20Mbps,终端AMBR=50Mbps,第一TMBR=20Mbps,会话管理网元10从PCF网元处获取GBR业务流1的保证带宽=5Mbps。该GBR业务流1在第一接入技术侧传输。因此,会话管理网元10基于第一TMBR与GBR业务流1的保证带宽=5Mbps计算第一接入技术侧的第二AMBR=15Mbps。会话管理网元10向接入网设备50发送终端AMBR=50Mbps,以及第一AMBR=20Mbps,会话管理网元10向接入网网关40发送终端AMBR=50Mbps,GBR业务流1的保证带宽=5Mbps,以及第二AMBR=15Mbps或/和第一TMBR=20Mbps。会话管理网元10向终端发送第一AMBR=20Mbps、第二AMBR=15Mbps或/和第一TMBR=20Mbps,GBR业务流1的保证带宽=5Mbps。会话管理网元10向用户面网元发送第一AMBR=20、第二AMBR=15Mbps或/和第一TMBR=20Mbps,GBR业务流1的保证带宽=5Mbps。会话管理网元10向接入网网关对应的上行分类器60发送GBR业务流1的保证带宽=5Mbps。这样终端和用户面网元可以基于第二AMBR=15Mbps控制在第一接入技术侧传输的non-GBR业务流,从而可以使得该会话中传输的GBR业务流1和non-GBR业务流不超过第一TMBR=20Mbps。
举例说明,例如,以会话中传输GBR业务流2和GBR业务流1,其中,GBR业务流1保证带宽=5Mbps在接入网网关对应的上行分类器60处分流,则会话管理网元10可以确定第二TMBR=20Mbps-GBR业务流1保证带宽=15Mbps。GBR业务流2保证带宽=8Mbps通过用户面网元20路由。
举例说明,以会话为多接入会话为例,在由用户面网元计算的场景中,如图11所示,会话管理网元10从UDM网元处获取第一AMBR=20Mbps,终端AMBR=50Mbps,第一TMBR=20Mbps,会话管理网元10从PCF网元处获取GBR业务流1的保证带宽=5Mbps,会话管理网元10向用户面网元10发送第一AMBR=20bps、GBR业务流1的保证带宽=5Mbps、第一TMBR=20Mbps。GBR业务流1在第一接入技术侧传输,因此,用户面网元20基于第一TMBR=20Mbps与GBR业务流1的保证带宽=5Mbps计算第一接入技术侧的第二AMBR=15Mbps,计算第二接入技术对应的第二AMBR=5Mbps。会话管理网元10向接入网设备50发送终端AMBR=50Mbps,以及Session-R-AMBR=5Mbps。用户面网元20向接入网网关40发送第二AMBR=15Mbps。会话管理网元10向接入网网关40终端AMBR=50Mbps,GBR业务流1的保证带宽=5Mbps。会话管理网元10向终端发送第一AMBR=10bps、第一接入技术对应的第二AMBR=15Mbps与第二接入技术对应的第二AMBR=5Mbps,GBR业务流1的保证带宽=5Mbps。会话管理网元10向接入网网关40对应的上行分类器60发送第一GBR业务流1的保证带宽=5Mbps。
在一种可能的实施例中,如图8或图9所示,本申请实施例提供的方法还包括:
步骤725、会话管理网元向用户面网元发送指示信息,以使得用户面网元接收来自会话管理网元的指示信息。该指示信息指示当在会话中通过第一接入技术传输的GBR业务流处于非激活态时,会话中通过第一接入技术传输的non-GBR业务流的第二AMBR为non-GBR业务流分配的目标第二AMBR与非激活态的GBR业务流的保证带宽值之和,或者第二AMBR为第一AMBR。
其中,会话中通过第一接入技术传输的GBR业务流处于非激活态可以理解为:通过第一接入技术传输的GBR业务流没有在该会话中传输。
步骤726、用户面网元根据指示信息确定第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
在一种可能的实现方式中,当目标第二AMBR与非激活态的GBR业务流的保证带宽值之和小于第一AMBR时,第二AMBR为目标第二AMBR与非激活态的GBR业务流的保证带宽值之和。
在一种可能的实现方式中,当目标第二AMBR与非激活态的GBR业务流的保证带宽值之和大于或等于所述第一AMBR时,第二AMBR为第一AMBR。
第二AMBR也表示与第二AMBR处于同一传输通道的GBR业务流处于非激活态时,上述非激活态的GBR业务流的带宽资源可以被non-GBR业务流使用。即会话管理网元通过向用户面网元发送指示信息,以使得用户面网元确定当会话中通过第一接入技术传输的GBR业务流处于非激活态时,处于非激活态的GBR业务流的带宽资源可以被non-GBR业务流使用。即non-GBR业务流可以达到的最大带宽值第二AMBR等于为non-GBR业务流分配的第二AMBR与非激活态的GBR业务流或非激活的GBR QoS flow的保障带宽值之和。
可选的,会话管理网元还向用户面网元发送(指示信息与第一接入技术指示的对应关系)或(指示信息与第一接入技术对应的隧道标识的对应关系)或者指示信息为第二AMBR或资源动态调整指示中的任一个或多个给用户面网元,用以指示针对第一接入技术对应的隧道或隧道标识对应的隧道侧,当GBR业务流处于非激活态时,此GBR业务流带宽资源可以被non-GBR业务流占用。
举例说明,为会话1中通过第一接入技术传输的non-GBR业务流分配的目标第二AMBR为10M,会话1中为GBR业务流分配的带宽资源为5M,当GBR业务流在会话1中未传输时,则用户面网元可以确定会话1中non-GBR业务流的第二AMBR为10M+5M=15M。如果第二AMBR为15M大于或等于会话1的第一AMBR=13M,则non-GBR业务流的第二AMBR=会话1的第一AMBR=13M。如果第二AMBR为15M小于会话1的第一AMBR=20M,则non-GBR业务流的第二AMBR=15M。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如数据面网元、会话管理网元等为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例数据面网元、会话管理网元进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软 件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上面结合图1至图11,对本申请实施例的方法进行了说明,下面对本申请实施例提供的执行上述方法的控制业务流传输的装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的控制业务流传输的装置可以执行上述控制业务流传输的方法中由用户面网元或会话管理网元执行的步骤。
在采用集成的单元的情况下,图12示出了上述实施例中所涉及的一种控制业务流传输的装置,该控制业务流传输的装置可以包括:处理单元101,以及通信单元102。
一种示例,该控制业务流传输的装置为会话管理网元,或者为应用于会话管理网元中的芯片。在这种情况下,通信单元102,用于支持该控制业务流传输的装置执行上述实施例中由会话管理网元10执行的图7或图8或图9中的步骤701,以及于支持该控制业务流传输的装置执行上述实施例中图7或图8或图9中的步骤702中由会话管理网元10执行的发送动作。
在一种可能的实施例中,处理单元101,还用于支持控制业务流传输的装置执行上述实施例中由会话管理网元10执行的图8中的步骤704(例如,步骤7041和步骤7042、步骤7043、步骤7044)。通信单元102,还用于支持控制业务流传输的装置执行上述实施例中图8中由会话管理网元10执行的步骤705。通信单元102,还用于支持控制业务流传输的装置执行上述实施例中图8中的步骤706、步骤716、步骤718、步骤721、步骤724、步骤725中由会话管理网元10执行的发送动作。或者,通信单元102,还用于支持控制业务流传输的装置执行上述实施例中图9的步骤712、步骤714、步骤716、步骤718、步骤721、步骤724、步骤725中由会话管理网元10执行的发送动作。处理单元101,还用于支持控制业务流传输的装置执行上述实施例中图8或图9中的步骤723。
另一种示例,该控制业务流传输的装置为数据面网元,或者为应用于数据面网元中的芯片。在这种情况下,通信单元102,用于支持该控制业务流传输的装置执行上述实施例图7中由用户面网元执行的步骤702中的接收的动作。处理单元101,用于支持该控制业务流传输的装置执行上述实施例图7中由用户面网元执行的步骤703。
在一种可能的实施例中,通信单元102,用于支持该控制业务流传输的装置执行上述实施例中图8中的步骤706、步骤725中由用户面网元执行的接收的动作。处理单元101,具体用于支持该控制业务流传输的装置执行上述实施例中图8中的步骤7031和步骤7032以及步骤726。
或者,在一种可能的实施例中,通信单元102,用于支持该控制业务流传输的装置执行上述实施例图9中的步骤708、步骤710中的发送的动作,以及步骤725中由用户面网元执行的接收的动作。处理单元101,用于支持该控制业务流传输的装置执行上述实施例中图9中的步骤707以及步骤726。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的控制业务流传输的装置的一种可能的逻辑结构示意图。该控制业务流传输的装置包括:处理模块112和通信模块113。处理模块112用于对控制业务流传输的装置的动作进行控制管理,例如,处理模块112用于执行在控制业务流传输的装置进行信息/数据处理的步骤。通 信模块113用于支持控制业务流传输的装置进行信息/数据发送或者接收的步骤。
在一种可能的实施例中,控制业务流传输的装置还可以包括存储模块111,用于存储控制业务流传输的装置可的程序代码和数据。
一种示例,该控制业务流传输的装置为会话管理网元,或者为应用于会话管理网元中的芯片。在这种情况下,通信模块113,用于支持该控制业务流传输的装置执行上述实施例中由会话管理网元10执行的图7或图8或图9中的步骤701,以及于支持该控制业务流传输的装置执行上述实施例中图7或图8或图9中的步骤702中由会话管理网元10执行的发送动作。
在一种可能的实施例中,处理模块112,还用于支持控制业务流传输的装置执行上述实施例中由会话管理网元10执行的图8中的步骤704(例如,步骤7041、步骤7042、步骤7043、步骤7044)。通信模块113,还用于支持控制业务流传输的装置执行上述实施例中图8中由会话管理网元10执行的步骤705。通信模块113,还用于支持控制业务流传输的装置执行上述实施例中图8中的步骤706、步骤716、步骤718、步骤721、步骤724、步骤725中由会话管理网元10执行的发送动作。或者,通信模块113,还用于支持控制业务流传输的装置执行上述实施例中图9的步骤712、步骤714、步骤716、步骤718、步骤721、步骤724、步骤725中由会话管理网元10执行的发送动作。处理模块112,还用于支持控制业务流传输的装置执行上述实施例中图8或图9中的步骤723。
另一种示例,该控制业务流传输的装置为数据面网元,或者为应用于数据面网元中的芯片。在这种情况下,通信模块113,用于支持该控制业务流传输的装置执行上述实施例图7中由用户面网元执行的步骤702中的接收的动作。处理模块112,用于支持该控制业务流传输的装置执行上述实施例图7中由用户面网元执行的步骤703。
在一种可能的实施例中,通信模块113,用于支持该控制业务流传输的装置执行上述实施例中图8中的步骤706中由用户面网元执行的接收的动作,以及步骤725中由用户面网元执行的接收的动作。处理模块112,具体用于支持该控制业务流传输的装置执行上述实施例中图8中的步骤7031和步骤7032以及步骤726。
或者,在一种可能的实施例中,通信模块113,用于支持该控制业务流传输的装置执行上述实施例图9中的步骤708、步骤710中的发送的动作,以及步骤725中由用户面网元执行的接收的动作。处理模块112,用于支持该控制业务流传输的装置执行上述实施例中图9中的步骤707以及步骤726。
其中,处理模块112可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块113可以是收发器、收发电路或通信接口等。存储模块111可以是存储器。
当处理模块112为处理器61或处理器65,通信模块113为通信接口63时,存储模块111为存储器62时,本申请实施例所涉及的控制业务流传输的装置可以为图6所示的通信设备。
一种示例,该控制业务流传输的装置为会话管理网元,或者为应用于会话管理网元中的芯片。在这种情况下,通信接口63,用于支持该控制业务流传输的装置执行上述实施例中由会话管理网元10执行的图7或图8或图9中的步骤701,以及于支持该控制业务流传输的装置执行上述实施例中图7或图8或图9中的步骤702中由会话管理网元10执行的发送动作。
在一种可能的实施例中,处理器61或处理器65,还用于支持控制业务流传输的装置执行上述实施例中由会话管理网元10执行的图8中的步骤704(例如,步骤7041和步骤7042、步骤7043、步骤7044)。通信接口63,还用于支持控制业务流传输的装置执行上述实施例中图8中由会话管理网元10执行的步骤705。通信接口63,还用于支持控制业务流传输的装置执行上述实施例中图8中的步骤706、步骤716、步骤718、步骤721、步骤724以及步骤725中由会话管理网元10执行的发送动作。或者,通信接口63,还用于支持控制业务流传输的装置执行上述实施例中图9的步骤712、步骤714、步骤716、步骤718、步骤721、步骤724以及步骤725中由会话管理网元10执行的发送动作。处理器61或处理器65,还用于支持控制业务流传输的装置执行上述实施例中图8或图9中的步骤723。
另一种示例,该控制业务流传输的装置为数据面网元,或者为应用于数据面网元中的芯片。在这种情况下,通信接口63,用于支持该控制业务流传输的装置执行上述实施例图7中由用户面网元执行的步骤702中的接收的动作。处理器61或处理器65,用于支持该控制业务流传输的装置执行上述实施例图7中由用户面网元执行的步骤703。
在一种可能的实施例中,通信接口63,用于支持该控制业务流传输的装置执行上述实施例中图8中的步骤706以及步骤725中由用户面网元执行的接收的动作。处理器61或处理器65,具体用于支持该控制业务流传输的装置执行上述实施例中图8中的步骤7031和步骤7032。
或者,在一种可能的实施例中,通信接口63,用于支持该控制业务流传输的装置执行上述实施例图9中的步骤708、步骤710中的发送的动作以及步骤725由用户面网元执行的接收的动作。处理器61或处理器65,用于支持该控制业务流传输的装置执行上述实施例中图9中的步骤707以及步骤726。
图14是本申请实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和通信接口1530。
可选的,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
在本申请实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式中为:会话管理网元、终端或用户面网元所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制会话管理网元、终端或用户面网元中任一个的处理操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。
存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括NVRAM。例如应用中存储器1540、通信接口1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图14中将各种总线都标为总线系统1520。
上述本申请实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、ASIC、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,通信接口1530用于执行图7-图9所示的实施例中的会话管理网元、终端或用户面网元的接收和发送的步骤。处理器1510用于执行图7-图9所示的实施例中的会话管理网元、终端或用户面网元的处理的步骤。
以上通信单元可以是该装置的一种通信接口,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元是该芯片用于从其它芯片或装置接收信号或发送信号的通信接口。
此外,本申请实施例可以提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,实现如图7、图8或图9中会话管理网元的功能。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,实现如图7、图8或图9中用户面网元的功能。
本申请实施例提供一种包括指令的计算机程序产品,计算机程序产品中包括指令,当指令被运行时,实现如图7、图8或图9中会话管理网元的功能。
本申请实施例提供一种包括指令的计算机程序产品,计算机程序产品中包括指令,当指令被运行时,实现如图7、图8或图9中用户面网元的功能。
本申请实施例提供一种芯片,该芯片应用于用户面网元中,芯片包括至少一个处理器和通信接口,通信接口和至少一个处理器耦合,处理器用于运行指令,以实现如图7-图9中用户面网元的功能。
本申请实施例提供一种芯片,该芯片应用于会话管理网元中,芯片包括至少一个处理器和通信接口,通信接口和至少一个处理器耦合,处理器用于运行指令,以实现如图7-图9中会话管理网元的功能。
本申请实施例提供一种通信系统,该通信系统包括会话管理网元、以及用户面网元。其中,用户面网元用于执行图7~图9中由用户面网元执行的步骤,会话管理网元用于执行图7~图9中由会话管理网元执行的步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (36)

  1. 一种控制业务流传输的方法,其特征在于,包括:
    会话管理网元获取在会话中通过第一接入技术传输的业务流的第一最大总带宽TMBR、和第一保证比特率GBR业务流的保证带宽;TMBR用于表示所述会话中通过所述第一接入技术传输的所有业务流的带宽上限值;
    所述会话管理网元向数据面网元发送第一信息,所述第一信息用于所述数据面网元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、所述第一TMBR、第二TMBR,所述第二AMBR用于表示所述会话中通过所述第一接入技术传输的non-GBR业务流的聚合最大带宽上限。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括以下信息中的任一个或多个:所述第一AMBR、所述第二AMBR和所述第二TMBR。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元根据所述第一TMBR、以及所述第一GBR业务流的保证带宽,确定所述第二AMBR和所述第二TMBR中的至少一个。
  4. 根据权利要求3所述的方法,其特征在于,所述会话管理网元根据所述第一TMBR、以及所述第一GBR业务流的保证带宽,确定所述第二AMBR,包括:
    所述会话管理网元根据所述第一GBR业务流的保证带宽,确定所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和;
    所述会话管理网元根据所述第一TMBR、所述一个或多个GBR业务流的保证带宽总和,确定所述第二AMBR。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元获取所述会话对应的第一AMBR,所述第一AMBR用于表示所述会话中所有non-GBR业务流的聚合最大带宽上限;
    所述会话管理网元根据所述第一TMBR、所述一个或多个GBR业务流的保证带宽总和,确定所述第二AMBR,包括:
    所述会话管理网元确定所述第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值;
    或者,若所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值大于所述第一AMBR,所述会话管理网元确定所述第二AMBR为所述第一AMBR;
    或者,若所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值小于所述第一AMBR,所述会话管理网元确定所述第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述会话管理网元根据所述第一TMBR、以及所述第一GBR业务流的保证带宽,确定所述第二TMBR,包括:
    所述会话管理网元根据所述第一TMBR和所述第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和,确定所述第二TMBR。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述第一接入技术对应的接入网网关发送所述会话的标识和 以下信息中的任一个或多个:所述第二AMBR、所述第一TMBR。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述第一接入技术对应的上行分类器发送所述会话的所述第二AMBR或所述第一TMBR。
  9. 根据权利要求1所述的方法,其特征在于,所述第一信息包括以下信息中的任一个或多个:所述第一TMBR、所述第二TMBR、或所述会话中通过所述第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述数据面网元发送指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述第二AMBR包括为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
  11. 根据权利要求10所述的方法,其特征在于,当所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和小于所述第一AMBR时,所述第二AMBR为所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和;
    或者,当所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和大于或等于所述第一AMBR时,所述第二AMBR为所述第一AMBR。
  12. 一种控制业务流传输的方法,其特征在于,包括:
    数据面网元接收来自会话管理网元的第一信息,所述第一信息用于所述数据面网元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、第一TMBR、第二TMBR,所述第二AMBR用于表示所述会话中通过所述第一接入技术传输的non-保证比特率GBR业务流的聚合最大带宽上限,TMBR用于表示所述会话中通过所述第一接入技术传输的所有业务流的带宽上限值;
    所述数据面网元根据所述第二AMBR、所述第一TMBR和所述第二TMBR中的至少一个,控制在所述会话中通过所述第一接入技术传输的业务流。
  13. 根据权利要求12所述的方法,其特征在于,所述第二AMBR为第一TMBR与所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值;
    或者,若所述第一TMBR与所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,所述第二AMBR为所述第一AMBR;或者,
    若所述第一TMBR与所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值小于所述第一AMBR,所述第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值;
    所述第二TMBR为所述第一TMBR和所述第一接入技术对应的上行分类器上分流的所述一个或多个GBR业务流的保证带宽总和之间的差值。
  14. 根据权利要求12或13所述的方法,其特征在于,所述数据面网元根据所述第二AMBR和第二TMBR中的至少一个,控制在所述会话中通过所述第一接入技术 传输的业务流,包括:
    所述数据面网元根据所述第二AMBR控制在所述会话中通过所述第一接入技术传输的所有non-GBR业务流;和/或,
    所述数据面网元控制在所述会话中通过所述第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽总和小于或等于所述第二TMBR。
  15. 根据权利要求12所述的方法,其特征在于,所述第一信息包括以下信息中的任一个或多个:所述第一TMBR、所述第二TMBR、或所述会话中通过所述第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽,所述方法还包括:
    所述数据面网元根据所述第一TMBR或所述第二TMBR、所述一个或多个GBR业务流中每个GBR业务流的保证带宽,确定所述第二AMBR。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    所述数据面网元接收来自所述会话管理网元的指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述会话中通过所述第一接入技术传输的non-GBR业务流的所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR;
    所述数据面网元根据所述指示信息确定所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
  17. 一种控制业务流传输的装置,其特征在于,包括:处理单元,用于处理信息;
    通信单元,用于获取在会话中通过第一接入技术传输的业务流的第一最大总带宽TMBR、和第一保证比特率GBR业务流的保证带宽;TMBR用于表示所述会话中通过所述第一接入技术传输的所有业务流的带宽上限值;
    所述通信单元,还用于向数据面网元发送第一信息,所述第一信息用于所述数据面网元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、所述第一TMBR、第二TMBR,所述第二AMBR用于表示所述会话中通过所述第一接入技术传输的non-GBR业务流的聚合最大带宽上限。
  18. 根据权利要求17所述的装置,其特征在于,所述第一信息包括以下信息中的任一个或多个:所述第一AMBR、第二AMBR和所述第二TMBR。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理单元,还用于根据所述第一TMBR、以及所述第一GBR业务流的保证带宽,确定所述第二AMBR和所述第二TMBR中的至少一个。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元,具体用于根据所述第一GBR业务流的保证带宽,确定所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和;
    所述处理单元,具体用于根据所述第一TMBR、所述一个或多个GBR业务流的保证带宽总和,确定所述第二AMBR。
  21. 根据权利要求20所述的装置,其特征在于,所述通信单元,还用于获取所述 会话对应的第一AMBR,所述第一AMBR用于表示所述会话中所有non-GBR业务流的聚合最大带宽上限;
    相应的,所述处理单元,具体用于确定所述第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值;
    或者,若所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值大于所述第一AMBR,所述处理单元,具体用于确定所述第二AMBR为所述第一AMBR;
    或者,若所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值小于所述第一AMBR,所述处理单元,具体用于确定所述第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述处理单元,具体用于根据所述第一TMBR和所述第一接入技术对应的上行分类器上分流的一个或多个GBR业务流的保证带宽总和,确定所述第二TMBR。
  23. 根据权利要求17-22任一项所述的装置,其特征在于,所述通信单元,还用于向所述第一接入技术对应的接入网网关发送所述会话的标识和以下信息中的任一个或多个:所述第二AMBR、所述第一TMBR。
  24. 根据权利要求17-23任一项所述的装置,其特征在于,所述通信单元,还用于向所述第一接入技术对应的上行分类器发送所述会话的所述第二AMBR或所述第一TMBR。
  25. 根据权利要求17所述的装置,其特征在于,所述第一信息包括以下信息中的任一个或多个:所述第一TMBR、所述第二TMBR、或所述会话中通过所述第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽。
  26. 根据权利要求17-25任一项所述的装置,其特征在于,所述通信单元,还用于向所述数据面网元发送指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述会话中通过所述第一接入技术传输的non-GBR业务流的所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
  27. 根据权利要求26所述的装置,其特征在于,当目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和小于所述第一AMBR时,所述第二AMBR为所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和;
    或者,当所述目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和大于或等于所述第一AMBR时,所述第二AMBR为所述第一AMBR。
  28. 一种控制业务流传输的装置,其特征在于,包括:
    通信单元,用于接收来自会话管理网元的第一信息,所述第一信息用于所述数据面网元确定以下信息中的任一个或多个:所述会话的第一最大聚合带宽AMBR、所述会话中所述第一接入技术对应的第二AMBR、第一TMBR、第二TMBR,所述第二AMBR用于表示所述会话中通过所述第一接入技术传输的non-保证比特率GBR业务流的聚合最大带宽上限,TMBR用于表示所述会话中通过所述第一接入技术传输的所 有业务流的带宽上限值;
    所述处理单元,用于根据所述第二AMBR、所述第一TMBR和所述第二TMBR中的至少一个,控制在所述会话中通过所述第一接入技术传输的业务流。
  29. 根据权利要求28所述的装置,其特征在于,所述第二AMBR为第一TMBR与所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值;
    或者,所述第一TMBR与所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值大于第一AMBR,所述第二AMBR为所述第一AMBR;或者;所述第一TMBR与所述会话中通过所述第一接入技术传输的一个或多个GBR业务流的保证带宽总和之间的差值小于所述第一AMBR,所述第二AMBR为所述第一TMBR与所述一个或多个GBR业务流的保证带宽总和之间的差值;
    所述第二TMBR为所述第一TMBR和所述第一接入技术对应的上行分类器上分流的所述一个或多个GBR业务流的保证带宽总和之间的差值。
  30. 根据权利要求28或29所述的装置,其特征在于,所述处理单元,用于根据所述第二AMBR控制在所述会话中通过所述第一接入技术传输的所有non-GBR业务流;和/或,
    所述处理单元,用于控制在所述会话中通过所述第一接入技术传输的所有non-GBR业务流和所有GBR业务流的带宽总和小于或等于所述第二TMBR。
  31. 根据权利要求28所述的装置,其特征在于,所述第一信息包括以下信息中的任一个或多个:所述第一TMBR、所述第二TMBR、或所述会话中通过所述第一接入技术传输的一个或多个GBR业务流中每个GBR业务流的保证带宽,所述处理单元,还用于根据所述第一TMBR或所述第二TMBR、所述一个或多个GBR业务流中每个GBR业务流的保证带宽,确定所述第二AMBR。
  32. 根据权利要求28-31任一项所述的装置,其特征在于,所述通信单元,还用于接收来自所述会话管理网元的指示信息,所述指示信息指示当在所述会话中通过所述第一接入技术传输的GBR业务流处于非激活态时,所述会话中通过所述第一接入技术传输的non-GBR业务流的所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR;
    所述处理单元,还用于根据所述指示信息确定所述第二AMBR为所述non-GBR业务流分配的目标第二AMBR与非激活态的所述GBR业务流的保证带宽值之和,或者所述第二AMBR为所述第一AMBR。
  33. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-11中任一项所述的方法、或权利要求12-16中任一项所述的方法。
  34. 一种通信系统,其特征在于,包括权利要求17-27任一项所述的装置,以及权利要求28-32任一项所述的装置。
  35. 一种芯片,其特征在于,所述芯片包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器耦合,所述至少一个处理器用于运行计算机程序或指令, 以实现如权利要求1-11中任一项所述的方法、或权利要求12-16中任一项所述的方法,所述通信接口用于与所述芯片之外的其它模块进行通信。
  36. 一种通信装置,其特征在于,包括:与存储器连接的处理器,其中,所述存储器用于存储计算机程序或指令,处理器用于执行所述计算机程序或指令以实现权利要求1-11中任一项所述的方法、或权利要求12-16中任一项所述的方法。
PCT/CN2020/118897 2019-09-29 2020-09-29 一种控制业务流传输的方法、装置及系统 WO2021058029A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20869327.5A EP4027691A4 (en) 2019-09-29 2020-09-29 SERVICE TRANSFER CONTROL METHOD, DEVICE AND SYSTEM
US17/706,274 US20220217569A1 (en) 2019-09-29 2022-03-28 Method and apparatus for controlling service flow transmission, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910937270.8 2019-09-29
CN201910937270 2019-09-29
CN201911425198.7A CN112584431B (zh) 2019-09-29 2019-12-31 一种控制业务流传输的方法、装置及系统
CN201911425198.7 2019-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/706,274 Continuation US20220217569A1 (en) 2019-09-29 2022-03-28 Method and apparatus for controlling service flow transmission, and system

Publications (1)

Publication Number Publication Date
WO2021058029A1 true WO2021058029A1 (zh) 2021-04-01

Family

ID=75117275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118897 WO2021058029A1 (zh) 2019-09-29 2020-09-29 一种控制业务流传输的方法、装置及系统

Country Status (4)

Country Link
US (1) US20220217569A1 (zh)
EP (1) EP4027691A4 (zh)
CN (1) CN112584431B (zh)
WO (1) WO2021058029A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115334014B (zh) * 2021-04-27 2023-05-16 阿里巴巴新加坡控股有限公司 虚拟交换机和数据传输系统
CN113613291B (zh) * 2021-08-12 2024-02-02 中国联合网络通信集团有限公司 一种下行gbr业务流传送方法、终端及流量控制单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756938A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 通信方法、网元、终端装置和系统
CN110049517A (zh) * 2018-01-16 2019-07-23 华为技术有限公司 QoS流的控制方法和装置
US20190253916A1 (en) * 2018-02-09 2019-08-15 Verizon Patent And Licensing Inc. Systems and methods for tracking and calculating aggregate maximum bit rate across multiple sessions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616931B (zh) * 2017-02-04 2023-06-09 中兴通讯股份有限公司 一种用户设备最大带宽的控制方法及装置
CN109392042B (zh) * 2017-08-14 2021-10-26 华为技术有限公司 一种会话管理方法、异系统互操作的方法及网络装置
CN110167088A (zh) * 2019-05-29 2019-08-23 中国联合网络通信集团有限公司 一种会话的管理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756938A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 通信方法、网元、终端装置和系统
CN110049517A (zh) * 2018-01-16 2019-07-23 华为技术有限公司 QoS流的控制方法和装置
US20190253916A1 (en) * 2018-02-09 2019-08-15 Verizon Patent And Licensing Inc. Systems and methods for tracking and calculating aggregate maximum bit rate across multiple sessions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PDU session related policy information", 3GPP DRAFT; S2-1907056_5WWC_PDU SESSION RELATED POLICY CONTROL INFO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Sapporo, Japain; 20190624 - 20190628, 18 June 2019 (2019-06-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051752030 *
HUAWEI, HISILICON: "Clarification of Session-TMBR", 3GPP DRAFT; S2-1909765 CLARIFICATION OF SESSION-TMBR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Split, Croatia; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051795853 *
See also references of EP4027691A4

Also Published As

Publication number Publication date
EP4027691A4 (en) 2022-11-02
EP4027691A1 (en) 2022-07-13
US20220217569A1 (en) 2022-07-07
CN112584431A (zh) 2021-03-30
CN112584431B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11588741B2 (en) Service flow processing method, communication method, and apparatus
WO2019223498A1 (zh) 一种数据处理方法、发送方法及装置
US11832352B2 (en) Service flow transmission method and apparatus and communications method and apparatus
WO2017170123A1 (en) LOAD CONTROL FROM CONTROL PLANE CIoT EPS OPTIMISATION
US20160050587A1 (en) Proactive network congestion mitigation
WO2021208561A1 (zh) 通信方法和装置
US20220217569A1 (en) Method and apparatus for controlling service flow transmission, and system
US9769782B2 (en) Configuration management outside a coverage area
US20170251401A1 (en) Traffic steering between cellular networks and wireless local area networks (wlans) using user equipment (ue) throughput estimates
US20220417785A1 (en) QoS MAPPING
WO2015070442A1 (zh) 业务分流方法、控制网元、网关路由器及用户面实体
WO2020073899A1 (zh) 数据传输方法及装置
WO2021109095A1 (zh) 一种网络间的互操作方法、装置及系统
WO2020034869A1 (zh) 一种业务流的传输方法、通信方法及装置
CN114071494A (zh) 通信方法和装置
US11963032B2 (en) Traffic routing method, apparatus, and system
WO2022205995A1 (zh) 一种业务流处理方法、装置及系统
US9532392B2 (en) Communicating via multiple communication layers provided by multiple wireless network devices
WO2024037256A1 (zh) 一种业务流路由方法及装置
US11985652B2 (en) P-BSR enhancements for IAB networks to improve E2E latency
WO2022147795A1 (zh) 无线通信方法、网元以及设备
Ye et al. Enabling local breakout from eNB in LTE networks
US20230180212A1 (en) P-bsr enhancements for iab networks to improve e2e latency
WO2021128225A1 (zh) 一种业务流的处理方法、装置及系统
US9271196B1 (en) Maintaining communication session information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869327

Country of ref document: EP

Effective date: 20220406