WO2021208561A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2021208561A1
WO2021208561A1 PCT/CN2021/073720 CN2021073720W WO2021208561A1 WO 2021208561 A1 WO2021208561 A1 WO 2021208561A1 CN 2021073720 W CN2021073720 W CN 2021073720W WO 2021208561 A1 WO2021208561 A1 WO 2021208561A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
network element
indication information
transmission
offload
Prior art date
Application number
PCT/CN2021/073720
Other languages
English (en)
French (fr)
Inventor
于游洋
时书锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21788277.8A priority Critical patent/EP4124104A4/en
Priority to CA3175487A priority patent/CA3175487A1/en
Priority to AU2021256599A priority patent/AU2021256599B2/en
Priority to JP2022562364A priority patent/JP2023521210A/ja
Publication of WO2021208561A1 publication Critical patent/WO2021208561A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • This application relates to communication technology, and in particular to a communication method and device.
  • next-generation wireless communication system for example, in the new radio (NR) system, user equipment (UE) communicates with the data network (data network) through user plane function (UPF) network elements.
  • the DN network element establishes a protocol data unit (protocol data unit, PDU) session, and the PDU session provides a data transmission service between the terminal device and the DN network element.
  • protocol data unit protocol data unit
  • a multi-access PDU session (also called a multi-PDU session) can be supported between the UE and the UPF network element.
  • the UE and the UPF network element can be based on the connection Access technology 1 and access technology 2 establish a multi-access PDU session A, and then the service flow of the UE can be transmitted to the UPF network element through access technology 1 and/or access technology 2.
  • the multi-access PDU session is relative to the single-access PDU session.
  • the single-access PDU session refers to the PDU session that accesses the UPF network element through one access technology
  • the multiple-access PDU session refers to the multiple access Technology (at least two) to access the PDU session of the UPF network element.
  • the embodiments of the present application provide a communication method and device, and a terminal device or a user plane network element can determine the transmission link of a service flow based on the actual situation of the service flow, thereby improving transmission efficiency.
  • an embodiment of the present application provides a communication method, including: a first device receives first indication information from a session management network element and a service flow identifier of a protocol data unit PDU session.
  • the first indication information is used to instruct the first device to determine the transmission link of the service flow of the PDU session.
  • the first device selects a transmission link for the service flow of the PDU session according to the service flow identifier and the first indication information.
  • the first device may be a terminal device or a user plane network element, and the terminal device or user plane network element can independently determine the transmission link of the service flow, so that the service flow can be selected to meet the terminal device or user plane network element.
  • the transmission link of the current link condition of the network element so as to realize the efficient transmission of the service flow.
  • the first device selecting the transmission link for the service flow of the PDU session according to the service flow identifier and the first indication information includes: the first device identifies the service flow of the PDU session according to the service flow identifier. The first device selects one or more transmission links for the service flow corresponding to the service flow identifier based on the first indication information.
  • the first device selects one or more transmission links for the service flow corresponding to the service flow identifier based on the first indication information, including: the first device selects one or more transmission links according to user preferences, application preferences, or local policies At least one of selects one or more transmission links for the service flow corresponding to the service flow identifier.
  • the first device selects one or more transmission links for the service flow corresponding to the service flow identifier according to at least two of the link state, the transmission condition threshold, the service type, and the application type.
  • the first device selects one or more transmission links according to user preferences and/or application preferences and/or local policies, as well as link status and/or transmission condition threshold values for the service flow corresponding to the service flow identifier.
  • the first indication information is: information for indicating the first offload mode
  • the first offload mode includes: the first device independently selects the offload mode of the transmission link for the service flow, or the first The device selects the offloading mode of the transmission link that meets the QoS requirements of the service flow transmission service quality for the service flow, or the first device selects the offloading mode of the transmission link that meets the service flow transmission bandwidth requirements for the service flow, or the first device is The service flow selects a redundant transmission mode in which two links transmit the service flow at the same time, or the first device determines a load balance distribution mode in which the split ratio of the two links is determined for the service flow.
  • the first indication information is offload indication information
  • the method further includes: the first device receives a second offload mode from the session management network element, and the second offload mode is one of the following: Hourly delay shunt mode, load balance shunt mode, priority shunt mode, or active/standby shunt mode.
  • the offload indication information is used to instruct the first device to select one or more other transmission links for the service flow of the PDU session when the link selected based on the second offload mode does not meet the transmission requirement of the service flow of the PDU session.
  • the offload indication information is used to instruct the first device to select one or more transmission links for the PDU session service flow based on the second offload mode and the offload indication information.
  • the offload indication information is a specific offload ratio of at least one link.
  • the specific distribution ratio is used to indicate that the first device determines the distribution ratio of at least one transmission link.
  • the service flow identification includes one or more of the following: PDU session identification or N4 session identification, service flow description information, application identification, QoS flow identification, service type identification, application type identification or terminal External identification.
  • the first device is a terminal device, and the method further includes: the first device sends a message for requesting establishment or update of a PDU session to the session management network element.
  • the first device is a user plane network element.
  • an embodiment of the present application provides a communication method, including: a session management network element receives a message from a terminal device for requesting to establish or update a PDU session.
  • the session management network element obtains the first indication information and the service flow identifier of the PDU session.
  • the first indication information is used to instruct the terminal device or the user plane network element to determine the transmission link of the service flow of the PDU session.
  • the session management network element sends the service flow identifier and the first indication information to the terminal device. And/or, the session management network element sends the service flow identifier and the first indication information to the user plane network element.
  • the session management network element acquiring the service flow identifier and the first indication information includes:
  • the session management network element obtains the service flow identifier and the second indication information from the policy control network element.
  • the second indication information is used to instruct the terminal device or the user plane network element to determine the transmission link of the service flow of the PDU session.
  • the session management network element determines the first indication information based on the second indication information.
  • the session management network element determines the first indication information based on one or more of the service flow characteristic information, the third indication information or the local policy, and the service flow characteristic information is obtained from the user plane network element, The third indication information is obtained from the policy control network element, and the third indication information is used to instruct the session management network element to determine the second offload mode and/or the first indication information.
  • the service flow characteristic information includes one or more of the following: service flow identification, service type or application type, or application identification, and service flow transmission protocol.
  • the session management network element sends the service flow identifier and fourth indication information to the user plane network element, and the fourth indication information is used to instruct the user plane network element to report the service flow to the service flow indicated by the service flow identifier.
  • Characteristic information is used to instruct the user plane network element to report the service flow to the service flow indicated by the service flow identifier.
  • an embodiment of the present application provides a communication method, including: a policy control network element obtains second indication information or third indication information, and a service flow identifier in a PDU session.
  • the second indication information is used to instruct the terminal device or the user plane network element to determine the transmission link of the service flow of the PDU session.
  • the third indication information is used to instruct the session management network element to determine the transmission link of the service flow of the PDU session.
  • the policy control network element sends the service flow identifier and the second indication information or the third indication information to the session management network element.
  • the policy control network element obtaining the second indication information or the third indication information includes: the policy control network element obtains the service related information of the service flow corresponding to the service flow identifier from the application network element or the network network element .
  • the policy control network element determines the second indication information or the third indication information based on the service-related information.
  • the policy control network element determines the second indication information or the third indication information based on the local policy or subscription data.
  • the service-related information includes one or more of the following: access technology-related information, disorder-sensitive indication information, packet loss-sensitive indication information, delay-sensitive indication information, jitter-sensitive indication information, Allow multiple access indication information or prohibit multiple access indication information.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a user plane network element, or a chip or a chip system in the user plane network element.
  • the communication device may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a communication interface or an interface circuit.
  • the communication device may further include a storage unit, and the storage unit may be a memory.
  • the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit to enable the user plane network element to implement the communication method described in the first aspect or any one of the possible implementations of the first aspect .
  • the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface can be an input/output interface, a pin, or a circuit.
  • the processing unit executes the instructions stored in the storage unit, so that the user plane network element implements the first aspect or a communication method described in any one of the possible implementation manners of the first aspect.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the user plane network element .
  • the communication device may be a terminal device, or a chip or a chip system in the terminal device.
  • the communication device may include a processing unit and a communication unit.
  • the processing unit may be a processor
  • the communication unit may be a communication interface or an interface circuit or a transceiver.
  • the communication device may further include a storage unit, and the storage unit may be a memory.
  • the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the terminal device implements the first aspect or a communication method described in any one of the possible implementation manners of the first aspect.
  • the processing unit may be a processor, and the communication unit may be a communication interface, such as an input/output interface, a pin, or a circuit.
  • the processing unit executes the instructions stored in the storage unit, so that the terminal device implements the first aspect or a communication method described in any one of the possible implementation manners of the first aspect.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the terminal device.
  • the communication unit is configured to receive the first indication information from the session management network element and the service flow identifier of the protocol data unit PDU session.
  • the first indication information is used to instruct the first device to determine the transmission link of the service flow of the PDU session.
  • the processing unit is configured to select a transmission link for the service flow of the PDU session according to the service flow identifier and the first indication information.
  • the processing unit is specifically configured to identify the service flow of the PDU session according to the service flow identifier. Based on the first indication information, one or more transmission links are selected for the service flow corresponding to the service flow identifier.
  • the processing unit is specifically configured to select one or more transmission links for the service flow corresponding to the service flow identifier according to at least one of user preferences, application preferences, or local policies.
  • one or more transmission links are selected for the service flow corresponding to the service flow identifier according to at least two of the link status, the transmission condition threshold, the service type, and the application type.
  • one or more transmission links are selected according to user preferences and/or application preferences and/or local policies, as well as link status and/or transmission condition threshold values for the service flow corresponding to the service flow identifier.
  • the communication device is a terminal device, a communication unit, and is also used to send a message for requesting the establishment or update of a PDU session to the session management network element.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a session management network element, or a chip or a chip system in the session management network element.
  • the communication device may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a communication interface or an interface circuit.
  • the communication device may further include a storage unit, and the storage unit may be a memory. The storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the session management network element implements the communication method described in the second aspect or any one of the possible implementations of the second aspect .
  • the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface can be an input/output interface, a pin, or a circuit.
  • the processing unit executes the instructions stored in the storage unit, so that the session management network element implements the second aspect or a communication method described in any one of the possible implementation manners of the second aspect.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the session management network element .
  • the communication unit is configured to receive a message from a terminal device for requesting to establish or update a PDU session.
  • the processing unit is configured to obtain the first indication information and the service flow identifier of the PDU session.
  • the first indication information is used to instruct the terminal device or the user plane network element to determine the transmission link of the service flow of the PDU session.
  • the communication unit is also used to send the service flow identifier and the first indication information to the terminal device. And/or, send the service flow identifier and the first indication information to the user plane network element.
  • the processing unit is configured to obtain the service flow identifier and the second indication information from the policy control network element.
  • the second indication information is used to instruct the terminal device or the user plane network element to determine the transmission link of the service flow of the PDU session. And determining the first indication information based on the second indication information.
  • the processing unit is configured to determine the first indication information based on one or more of the service flow characteristic information, the third indication information or the local policy, and the service flow characteristic information is obtained from the user plane network element
  • the third indication information is obtained from the policy control network element, and the third indication information is used to instruct the session management network element to determine the second offload mode and/or the first indication information.
  • the service flow characteristic information includes one or more of the following: service flow identification, service type or application type, or application identification, and service flow transmission protocol.
  • the communication unit is further configured to send the service flow identifier and fourth indication information to the user plane network element, and the fourth indication information is used to instruct the user plane network element to report the service flow indicated by the service flow identifier Service flow characteristic information.
  • an embodiment of the present application provides a communication device, including: the communication device may be a policy control network element, or a chip or a chip system in a policy control network element.
  • the communication device may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a communication interface or an interface circuit.
  • the communication device may further include a storage unit, and the storage unit may be a memory.
  • the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit to enable the policy control network element to implement the communication method described in the third aspect or any one of the possible implementations of the third aspect .
  • the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface can be an input/output interface, a pin, or a circuit.
  • the processing unit executes the instructions stored in the storage unit, so that the policy control network element implements a communication method described in the third aspect or any one of the possible implementation manners of the third aspect.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the policy control network element .
  • the processing unit is configured to obtain the second indication information or the third indication information, and the service flow identifier in the PDU session.
  • the second indication information is used to instruct the terminal device or the user plane network element to determine the transmission link of the service flow of the PDU session.
  • the third indication information is used to instruct the session management network element to determine the transmission link of the service flow of the PDU session.
  • the communication unit is configured to send the service flow identifier and the second indication information or the third indication information to the session management network element.
  • the processing unit is specifically configured to obtain service-related information of the service flow corresponding to the service flow identifier from the application network element or the network network element. And determining the second indication information or the third indication information based on the service-related information.
  • the processing unit is specifically configured to determine the second indication information or the third indication information based on the local policy or subscription data.
  • the service-related information includes one or more of the following: access technology-related information, disorder-sensitive indication information, packet loss-sensitive indication information, delay-sensitive indication information, jitter-sensitive indication information, Allow multiple access indication information or prohibit multiple access indication information.
  • the embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is run on a computer, the computer executes the operations as described in the first aspect to the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, and a computer program or instruction is stored in the computer-readable storage medium.
  • the embodiments of the present application provide a computer-readable storage medium, and the computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction runs on a computer, the computer executes operations such as the third aspect to the first aspect.
  • embodiments of the present application provide a computer program product including instructions, which when the instructions run on a computer, cause the computer to execute the communication method described in the first aspect or various possible implementations of the first aspect .
  • the present application provides a computer program product including instructions that, when the instructions run on a computer, cause the computer to execute the second aspect or a communication method described in various possible implementations of the second aspect.
  • the embodiments of the present application provide a computer program product including instructions.
  • the instructions run on a computer, the computer executes the third aspect or the communication described in the various possible implementations of the third aspect. method.
  • an embodiment of the present application provides a communication system, which includes any one or more of the following: the fourth aspect and the communication device described in various possible implementation manners, and the fifth aspect and the fifth aspect The various possible implementations of the aspect are described in the session management network element.
  • the communication system may further include: the policy control network element described in the sixth aspect and various possible implementation manners of the sixth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a storage medium.
  • the storage medium stores instructions. When the instructions are executed by the processor, the Possible implementations describe the communication method.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a storage medium.
  • the storage medium stores instructions. Possible implementations describe the communication method.
  • an embodiment of the present application provides a communication device that includes a processor and a storage medium.
  • the storage medium stores instructions.
  • the instructions When executed by the processor, they can implement various aspects such as the third aspect or the third aspect. Possible implementations describe the communication method.
  • the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions. , To perform the communication method described in any one of the first aspect to any one of the possible implementation manners of the first aspect.
  • the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions. , In order to perform the communication method described in any one of the second aspect to any one of the possible implementation manners of the second aspect.
  • the present application provides a chip or chip system that includes at least one processor and a communication interface.
  • the communication interface and at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the chip or chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • Figure 1 is a schematic diagram of an existing multi-PDU session access
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is another schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a specific communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of another specific communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 8 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function.
  • the first network and the second network are only used to distinguish different networks, and the order of their order is not limited.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of single item (a) or plural items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the embodiments of this application provide communication methods.
  • the methods of the embodiments of this application can be applied to the fifth generation mobile communication (5generation, 5G) system, and can also be applied to the long term evolution (LTE).
  • 5G system is also called New wireless communication system, new radio (NR) or next-generation mobile communication system.
  • NR new radio
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • the architecture not only supports the wireless technologies defined by the 3rd generation partnership project (3GPP) standard group (such as LTE, 5G radio access network (RAN), etc.) to access the core network (core network, CN), and supports non-3GPP access technology to access the core network through non-3GPP interworking function (non-3GPP interworking function, N3IWF) or next generation packet data gateway (ngPDG).
  • 3GPP 3rd generation partnership project
  • RAN radio access network
  • CN core network
  • non-3GPP interworking function non-3GPP interworking function
  • ngPDG next generation packet data gateway
  • the network architecture includes terminal equipment, access network (AN), core network and data network (data vetwork, DN).
  • the access network device is mainly used to implement wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, and mobility management;
  • the core network equipment can include management equipment and gateway equipment, and the management equipment is mainly used for terminals Device registration, security authentication, mobility management and location management of the device.
  • the gateway device is mainly used to establish a channel with the terminal device, and forward the data packet between the terminal device and the external data network on the channel;
  • the data network can include the network Equipment (such as servers, routers and other equipment), data networks are mainly used to provide a variety of data business services for terminal equipment.
  • the access network, core network, and data network in 5G are taken as examples for description.
  • the access network in 5G can be a radio access network (radio access network, (R)AN), and the (R)AN device in the 5G system can be composed of multiple 5G-(R)AN nodes.
  • the 5G-(R)AN ) AN nodes can include: 3GPP access networks, non-3GPP access networks such as WiFi network access points (access points, AP), next-generation base stations (collectively referred to as next-generation radio access network nodes (NG-RAN) node), where the next-generation base station includes a new air interface base station (NR nodeB, gNB), a new-generation evolved base station (NG-eNB), a central unit (CU) and a distributed unit (DU) separated form GNB, etc.), a transmission receiving point (TRP), a transmission point (TP) or other nodes.
  • NR nodeB, gNB new air interface base station
  • NG-eNB new-generation evolved base station
  • CU central unit
  • DU distributed unit
  • the 5G core network (5G core/new generation core, 5GC/NGC) includes access and mobility management function (AMF) network elements, session management function (SMF) network elements, and user plane Function (user plane function, UPF) network element, authentication server function (authentication server function, AUSF) network element, policy control function (PCF) network element, application function (AF) network element, unified Multiple functional units such as a data management function (UDM) network element, a network slice selection function (NSSF) network element, and a network element function (NEF) network element.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane Function
  • authentication server function authentication server function
  • PCF policy control function
  • AF application function
  • UDM data management function
  • NSSF network slice selection function
  • NEF network element function
  • the AMF network element is mainly responsible for services such as mobility management and access management.
  • SMF network elements are mainly responsible for session management, dynamic host configuration protocol functions, selection and control of user plane functions, etc.
  • the UPF network element is mainly responsible for externally connected to the data network (DN) and user plane data packet routing and forwarding, message filtering, and performing quality of service (QoS) control related functions.
  • DN mainly provides services for user equipment, such as providing mobile operator services, Internet services or third-party services.
  • the AUSF network element is mainly responsible for the authentication function of the terminal equipment and so on.
  • the PCF network element is mainly responsible for providing a unified policy framework for network behavior management, providing policy rules for control plane functions, and obtaining registration information related to policy decisions.
  • UDM network element is a unified user data management, mainly used to store user equipment subscription data.
  • the functional units in the 5G system can communicate through the next generation network (NG) interface.
  • the terminal device can transmit control plane messages with the AMF network element through the NG interface 1 (abbreviated as N1), and the RAN device can Establish a user plane communication connection with UPF through NG interface 3 (N3 for short) and establish a channel.
  • N1 next generation network
  • N3 next generation network
  • AN/RAN equipment can establish control plane signaling connections with AMF network elements through NG interface 2 (N2 for short), and UPF can use NG interface 4 (for short) N4) Information exchange with SMF network elements, UPF can exchange user plane data with data network DN through NG interface 6 (abbreviated as N6), AMF network elements can exchange information with SMF network elements through NG interface 11 (abbreviated as N11), SMF The network element can exchange information with the PCF network element through the NG interface 7 (abbreviated as N7), and the AMF network element can exchange information with the AUSF through the NG interface 12 (abbreviated as N12).
  • FIG. 3 is a schematic diagram of a specific network architecture when the core network supports untrusted non3GPP (untrusted non3GPP access) access.
  • the untrusted non3GPP access may be an untrusted wireless local area network (wireless local area networks, WLAN) access.
  • terminal equipment can also exchange information with AMF through untrusted non3GPP access, Non3GPP conversion function/non3GPP access gateway (Non3GPP interworking function, N3IWF), and N3IWF network elements can exchange information with UPF through N3.
  • the core network can also support trusted non3GPP access and/or fixed network access.
  • the trusted non3GPP network includes the trusted WALN network
  • the fixed network includes fixed home network access or fixed wired access.
  • the network side architecture is similar to the untrusted non3GPP network architecture. Replace N3IWF and untrusted access network with trusted Non-3GPP access network or fixed wired access network, or replace N3IWF with trusted Non-3GPP access gateway Or wired access gateway (wireline access gateway, W-AGF), the untrusted access network is replaced with a trusted access network or a wired access network.
  • the access network equipment between the terminal equipment and the trusted Non-3GPP access gateway may include a WLAN AP, a fixed access network (fixed access network, FAN), a switch, a router, and so on.
  • the core network side can use the point-to-point interface protocol as shown in Figure 2, or use the service-oriented interface architecture consistent with the 3GPP access core network architecture.
  • the embodiments of the present application do not specifically limit this.
  • the 3GPP access technology and the non3GPP access technology may include multiple access standards or frequency bands, and may be used at the same time.
  • 3GPP access includes 4G LTE and 5G NG-RAN two access technologies to simultaneously access 5GC.
  • Non3GPP wifi access also includes simultaneous access of two frequency bands, for example, 5GHz and 2.4GHz wifi frequency bands are simultaneously connected to 5GC.
  • the UE can simultaneously access the 5GC architecture through at least two of the above four access methods (including four simultaneous use).
  • the method processing in the embodiments of this application can be applied to the above-mentioned 5G 3GPP access architecture, or non3GPP access architecture, or 3GPP and non3GPP simultaneous access architecture, and can also be applied to 5G cellular (NG-RAN) and 4G cellular (LTE)
  • NG-RAN 5G cellular
  • LTE 4G cellular
  • the embodiment of the present application does not specifically limit the network architecture.
  • the UE and the UPF network element select the transmission link for the service flow of the PDU session based on the offload mode sent by the network side.
  • the offload strategy of the UE or the UPF network element may come from the PCF network element and the SMF network element.
  • the UE or UPF network element receives the offload strategy indication from the network side for service flow 1 to use 3GPP link transmission, but the current 3GPP transmission link in the UE or UPF network element has poor performance, resulting in service flow transmission failure .
  • the UE or UPF network element receives the minimum delay mode from the offload strategy of the network side for service flow 1, and the UE or UPF network element selects 3GPP to transmit service flow 1 (for example, the delay of 3GPP is lower than that of non3GPP),
  • the bandwidth on the 3GPP side can only guarantee 10 Mbps, but the guaranteed bandwidth required for service flow 1 is 20 Mbps, so 3GPP transmission cannot meet the requirements of service flow 1.
  • the embodiment of the present application provides a communication method, which can independently determine the transmission link of the service flow by the terminal device or the UPF network element, so that the service flow can be selected in line with the current link situation of the terminal device or the UPF network element.
  • Transmission link which can realize efficient transmission of service flow.
  • the PDU session described in the embodiment of the present application may be a protocol data unit (PDU) session or a packet data unit (PDU) session.
  • PDU protocol data unit
  • PDU packet data unit
  • the session management network element described in the embodiment of this application may be an SMF network element or other network elements that implement session management functions
  • a user plane network element may be a UPF network element or other network elements that implement user plane functions
  • a policy control network element may be It is a PCF network element or other network element that implements a policy control function
  • an application network element may be an AF network element or other network element that implements application functions
  • a network network element may be a NEF network element or other network elements that implement network functions, and so on.
  • the session management network element is the SMF network element
  • the user plane network element is the UPF network element
  • the policy control network element is the PCF network element
  • the application network element is the AF network element
  • the network network element is NEF.
  • the network element is taken as an example for description, and this example does not limit the embodiment of the present application.
  • the data transmission involved in the embodiments of the present application may include a process of data sending, data receiving, or data interaction.
  • data transmission between a terminal device and a UPF network element may include the terminal device sending data to the UPF network element, or the UPF network element sending data to the terminal device, or the terminal device sending data to the UPF network element and receiving data from the UPF network element Data, or UPF network element sends data to terminal equipment, and receives data from UPF network element.
  • the service flow involved in the embodiments of this application may use user datagram protocol (UDP), multi-path quick UDP internet connection, MP-QUIC, transmission control protocol (transmission control protocol, TCP), multi-path transmission control protocol (MPTCP), stream control transmission protocol (stream control transmission protocol, SCTP) or other protocols for service flow.
  • UDP user datagram protocol
  • MP-QUIC transmission control protocol
  • transmission control protocol transmission control protocol
  • MPTCP multi-path transmission control protocol
  • stream control transmission protocol stream control transmission protocol
  • SCTP stream control transmission protocol
  • the service flow of the PDU session may be: the PDU session established by the terminal device and the 5G core network (5G core, 5GC) or the service flow in this session; or the PDN connection established by the terminal device and the EPC network or the PDN connection
  • the terminal device performs a non-seamless WLAN offload IP connection or the service flow in this connection through a non-3GPP access network (such as WLAN access).
  • a non-3GPP access network such as WLAN access
  • the service flow identifiers involved in the embodiments of this application include one or more of the following: PDU session identifier, N4 session identifier, service flow description information, application identifier, QoS flow identifier, service type identifier , Application type identification or terminal external identification.
  • the PDU session identifier is the session identifier information of the PDU session.
  • the N4 session identifier is the session identifier information of the N4 interface session (for example, PFCP session: Packet Forwarding Control Protocol session).
  • the service flow description information can be at least one of the service flow internet protocol (IP) quintuple description information.
  • IP internet protocol
  • the quintuple description information can be: source IP address, destination IP address, source port number, destination port number And the protocol type; or the service flow description information can be at least one of the Ethernet (ethernet) header information, for example, the source media access control (media access control, MAC) address and destination MAC address, virtual local area network, VLAN) identification; etc.
  • the number of service flow description information may be one or more, which is not specifically limited in the embodiment of the present application.
  • the application identifier can be used to identify the business flow of a specific application. Then the subsequent terminal device or UPF network element can select the transmission link for the service flow containing the application identifier.
  • the number of application identifiers may be one or more, which is not specifically limited in the embodiment of the present application.
  • the QoS flow ID (Quality of Service flow ID, QFI) can be the ID of the QoS flow that is aggregated by multiple service flows whose QoS meets a certain relationship.
  • the service type identifier may be a specific type of one or more types of service flow.
  • the type of service flow may include a video service, or a voice service, or a game service, or a web browsing service.
  • the application type identifier may be an identifier of one or more types of applications.
  • the external identifier of the terminal can also be called the external identifier (EID) of the terminal, and it can include the following two parts: domain identifier (DID), which can be used to identify the access address of the service provided by the operator. Different domain name identifiers can be used to support different service access; the local identifier (LID) can be used to derive or obtain the international mobile subscriber identification number (IMSI) of the terminal device.
  • the external identifier of the terminal is GPSI (Generic Public Subscription Identifier), for example, the GPSI is an external identifier or the phone number (MSISDN) of the terminal.
  • the service flow identifiers involved in the embodiments of this application include one or more of the following: service flow description information, application identifiers, QoS flow identifiers, service type identifiers, application type identifiers, or terminal external identifiers .
  • service flow description information application identifiers
  • QoS flow identifiers service type identifiers
  • application type identifiers application type identifiers
  • terminal external identifiers the PDU session identifier or the N4 session identifier can be used as a parameter in the service flow description information, and the rest refer to the description in the above service flow identifier, which will not be repeated here.
  • the first offloading mode described in the embodiment of this application can be: the offloading execution point (such as a terminal device or UPF network element, etc.) determines the offloading mode of the transmission link of the service flow of the PDU session, or it can be understood that the offloading execution point is autonomous Select the offloading mode of the transmission link of the service flow of the PDU session.
  • the offloading execution point such as a terminal device or UPF network element, etc.
  • the first shunt mode may be an application-based shunt mode (may also be called a custom shunt mode, or an autonomous shunt mode, or a free shunt mode, etc.).
  • the application-based shunt mode the shunt execution The point can independently select the appropriate shunt mode or transmission link for the service flow.
  • the first offloading mode may be a offloading mode based on QoS.
  • the offload execution point can select a transmission link for the business flow that can meet the QoS requirements of the business flow based on the QoS guarantee that the link can provide.
  • the first offloading mode may be a bandwidth-based offloading mode.
  • the offload execution point can select a transmission link for the service flow that can meet the bandwidth requirements of the service flow based on the bandwidth guarantee that the link can provide.
  • the first offload mode may be a redundant transmission offload mode for multiple link transmission.
  • the offload execution point can select one or more (for example, two or more) transmission links for the service flow, so as to simultaneously transmit the service flow through multiple transmission links.
  • one link transmission meets the QoS requirements of the service flow
  • one link is used for transmission.
  • multiple links are used for transmission.
  • the service flow is first transmitted on one link, and when the service flow is switched to another link, two links are used for transmission, and after the switching is completed, one link is used for transmission.
  • the aforementioned QoS requirements include at least one of bandwidth, delay, packet loss rate, or jitter.
  • the QoS requirement of the service flow is the packet loss rate requirement
  • the service flow is transmitted on one link
  • the packet loss rate of the above-mentioned link is greater than the packet loss rate threshold that the service flow can tolerate, it is transmitted by two links.
  • the service flow is first transmitted on link 1, and the subsequent service flow will be switched to link 2 for transmission.
  • link 1 and link 2 simultaneously transmit service flow data packets. After the handover is completed, only link 2 transmits service stream data packets.
  • the first offloading mode may be a load balancing mode with no offloading ratio.
  • the split execution point can determine the split ratio of the two links. For example, one link transmits 20% of the service flow, and the other link transmits 80%.
  • the second offloading mode involved in the embodiment of the present application may include: a minimum delay offloading mode, a load balancing offloading mode, a priority offloading mode, or an active-backup offloading mode.
  • the PDU session establishment or update request message sent by the terminal device involved in the embodiments of the present application to the SMF network element may be a PDU session establishment or update request message sent for establishing a single-access PDU session, or it may be for establishing multiple access
  • a PDU session establishment or update request message sent by a PDU (multi-access PDU, MA PDU) session, etc., is not specifically limited in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the application, including the following steps:
  • the terminal device sends a message requesting the establishment or update of a PDU session to the SMF network element.
  • the terminal device may encapsulate the above-mentioned message requesting the establishment or update of a PDU session in a non-access stratum (NAS) transmission message and send it to the AMF network element, and the AMF network element forwards the request The message of establishing or updating the PDU session is sent to the SMF network element.
  • NAS non-access stratum
  • the terminal device can send a NAS transmission message to the AMF network element through the RAN or through the non3GPP access gateway, which contains a message requesting the establishment or update of the PDU session, and the AMF network element further forwards the request to the SMF network element PDU session establishment or update message.
  • the terminal device may also send a message requesting the establishment or update of the PDU session to the SMF network element in any manner according to actual application scenarios, which is not specifically limited in the embodiment of the present application.
  • the SMF network element obtains the first indication information and the service flow identifier of the PDU session.
  • the first indication information is used to instruct the terminal device or the UPF network element to determine the transmission link of the service flow of the PDU session.
  • the first indication information may be used to instruct the offload execution point to autonomously determine the transmission link of the service flow of the PDU session of the offload execution point.
  • the first indication information is used to instruct the terminal device to determine the transmission link of the service flow of the PDU session.
  • the offload execution point is a terminal device
  • the first indication information is used to instruct the terminal device to determine the transmission link of the service flow of the PDU session.
  • the first indication information is used to instruct the UPF network element to determine the transmission link of the service flow of the PDU session.
  • the first indication information may be a character, a character string, or a number, etc., which is not specifically limited in the embodiment of the present application.
  • the first indication information may be used to indicate the information of the first diversion mode, and the specific content of the first diversion mode is as explained in the above nouns, and will not be repeated here.
  • a first offload mode is defined, and when the network side sends the first indication information indicating the first offload mode to the offload execution point, it can be used to instruct the offload execution point to use autonomously determined PDUs.
  • the first indication information may be offload indication information.
  • the offload indication information may be used to indicate that the offload execution point is based on a normal offload mode (for example, the above-mentioned second offload mode, second offload mode, and second offload mode).
  • the mode can be determined by the SMF network element in the usual way and sent to the offload execution point.
  • the selected link does not meet the transmission requirements of the service flow of the PDU session, one or more other service flows are selected for the service flow of the PDU session.
  • Transmission link it can be understood that when the network side sends the first sub-indication information to the offload execution point, it can be used to instruct the offload execution point to first select the transmission link in the usual offload mode.
  • the transmission link is not To meet the transmission requirements of the service flow of the PDU session, one or more other transmission links are selected for the service flow of the PDU session, so that the service flow of the PDU session may be transmitted through another selected transmission link.
  • the second offload mode is the minimum delay mode
  • the offload execution point determines, based on the second offload mode, the link with the smallest delay (for example, RTT) among the multiple links as the service flow transmission path.
  • the offload execution point selects another link to transmit the service flow, such as delay second
  • the small link transmits data for the service flow.
  • the offload indication information may be used to instruct the offload execution point to select one or more transmission links for the PDU session service flow based on the second offload mode and the offload instruction information.
  • the offload indication information may be the offload ratio of at least one link.
  • the above-mentioned distribution ratio is a specific value, and the specific distribution ratio value is used to indicate the transmission distribution ratio when the distribution execution point determines at least one link to transmit the service flow.
  • the transmission offload ratio may be the ratio of the data volume of the service flow transmitted on each transmission link to the data volume of the entire service flow, for example, any value from 0% to 100%.
  • the specific shunt ratio value can be NULL, or 0%, or 100%, or other predetermined values.
  • the specific offload ratios of the 3GPP link and the non3GPP link are both set to NULL, or both are set to 100%. It can be understood that, in this implementation manner, there is a certain association relationship between the second shunt mode and the shunt indication information, and different second shunt modes correspond to different shunt indication information.
  • the SMF network element may determine the first indication information and the service flow identifier according to the local policy of the SMF network element, for example, the local policy of the SMF network element indicates that the service flow identifier A of the PDU session is identified
  • the service flow adopts the manner in which the offload execution point determines the transmission link of the service flow of the PDU session, and the SMF network element can determine the first indication information and the service flow identifier A.
  • the SMF network element may also obtain the first indication information and the service flow identifier from the PCF network element, or the SMF network element may also determine the first indication information and the service based on the information obtained from the UPF network element or the PCF network element
  • the flow identification in the two implementation manners, involves the interaction between the SMF network element and the PCF network element or the UPF network element, which will be described in detail in the subsequent embodiments, and will not be repeated here.
  • the SMF network element sends the service flow identifier and the first indication information to the UPF network element.
  • the UPF network element selects a transmission link for the service flow of the PDU session according to the service flow identifier and the first indication information.
  • the SMF network element may send the service flow identifier and the first indication information to the UPF network element in any manner, which is not specifically limited in the embodiment of the present application.
  • the UPF network element may receive the service flow identifier and the first indication information from the SMF network element. For the service flow in the PDU session in the downlink, the UPF network element can select the transmission link for the downlink data packet of the service flow. For example, the UPF network element can identify the service type or application type of the service flow, and select the transmission link for the downlink data packet of the service flow according to the service type or application type.
  • the number of transmission links may be one or more, which is not specifically limited in the embodiment of the present application.
  • the UPF network element can recognize the service type or application type of the service flow based on deep packet inspection (DPI) and so on.
  • DPI deep packet inspection
  • the UPF network element may select one or more transmission links for the service flow corresponding to the service flow identifier according to at least one of user preference (user preference), application preference (application preference), or local policy.
  • the user's preference may be the preferred transmission path of the service flow set by the user.
  • users prefer non3GPP transmission for video service streams, and UPF network elements use user preferences to select one or more transmission links for service streams corresponding to service stream identifiers, which is conducive to achieving service stream transmission results to meet user needs and improve user experience .
  • the application preference may be the transmission link selected by the application to transmit the application service flow.
  • the application sets its preferred link to non3GPP, and the UPF network element uses application preferences to select one or more transmission links for the service flow corresponding to the service flow identifier, which is conducive to meeting the application's QoS requirements or billing requirements.
  • the local strategy can be the split mode or transmission path of the service flow configured locally by the UPF network element.
  • the UPF network element uses the local strategy to select one or more transmission links for the service flow corresponding to the service flow identifier to meet the operator's transmission control of the service flow. .
  • the UPF network element can identify the service type or application type of the service flow, and select the transmission link according to the local policy of the UPF network element. For example, if the local policy of the UPF network element configures the video service to be transmitted over the non3GPP link, the UPF network element Recognizing that the service type or application type of the service flow is a video service, the data packet of the service flow is sent to the transmission link corresponding to the non3GPP access technology.
  • the above-mentioned local strategy can be configured by the operator to the UPF network element.
  • the UPF network element may select one or more transmission links for the service flow corresponding to the service flow identifier according to at least two of link status, transmission condition threshold, service type, and application type.
  • the UPF network element uses at least two of the link status and transmission condition threshold, service type, and application type to select one or more transmission links for the service flow corresponding to the service flow identifier. The best transmission link.
  • the UPF network element uses the link status and the transmission condition threshold to select one or more transmission links for the service flow corresponding to the service flow identifier.
  • the foregoing transmission condition threshold may be a transmission condition threshold that can be tolerated by service stream transmission, or the transmission condition threshold may be a link state threshold for whether the link is available.
  • the UPF network element learns that the packet loss rate of link 1 is 5%, and the packet loss rate of link 2 is 10%.
  • the maximum packet loss rate that can be tolerated by the service flow corresponding to the service flow identifier is 7%. Therefore, according to the transmission condition threshold (ie, 7%), the UPF network element determines that link 2 is unavailable and link 1 is available, and the UPF network element uses link 1 to transmit the service flow.
  • the transmission condition threshold is the availability threshold of the link.
  • the availability threshold of link 1 is the delay less than 1 ms and the packet loss rate is less than 10%. Therefore, when the state of the link, such as delay or packet loss rate, does not meet the above-mentioned availability threshold requirements, the link is unavailable.
  • This solution can enable the UPF network element to select the best link to transmit the service flow based on the current link state, improve the transmission quality, and ensure the QoS of the service flow.
  • transmission condition thresholds and service types When UPF network elements use link status, transmission condition thresholds and service types to select one or more transmission links for the service flow corresponding to the service flow identifier, it can be selected according to the QoS requirements determined by the service type and based on the link status and transmission condition thresholds. Optimal transmission link.
  • the UPF network element can select one or more transmission links according to user preferences and/or application preferences and/or local policies, as well as link status and/or transmission condition thresholds for the service flow corresponding to the service flow identifier. .
  • the UPF network element selects one or more transmission links using user preferences or application preferences, link status and transmission condition thresholds for the service flow corresponding to the service flow identifier. In order to meet user preferences and meet service flow QoS requirements, provide better transmission services based on link status, and enhance user business experience.
  • the UPF network element obtains the state parameters of at least one link, such as link At least one of the guaranteed bandwidth value, delay value (such as minimum delay, maximum delay or average delay), link packet loss rate, and link jitter value.
  • the UPF network element compares the state parameters of this link with the QoS requirement of the service flow, and when only one of the multiple links can meet the QoS requirement of the service flow, the link is selected to transmit the above-mentioned service flow.
  • QoS requirements include but are not limited to guaranteed bandwidth value, delay value, packet loss rate, jitter, etc.
  • the QoS parameters of service flow 1 require a guaranteed bandwidth of 10 Mbps.
  • the guaranteed bandwidth that the UPF network element can provide for the 3GPP access link is 20 Mbps, and the guaranteed bandwidth value of the non3GPP link is 5 Mbps.
  • the UPF network element selects the 3GPP access link to transmit service flow 1.
  • the QoS parameter of service flow 2 requires a guaranteed bandwidth of 10 Mbps.
  • the maximum bandwidth that the UPF network element can provide for the 3GPP access link is 20 Mbps, and the maximum bandwidth of the non3GPP link is 5 Mbps. Therefore, UPF selects 3GPP link to transmit service flow 2.
  • the maximum transmission delay required in the QoS parameters of service flow 3 is 1ms
  • the transmission delay for the UPF network element to obtain the 3GPP link is 50us
  • the transmission delay for the non3GPP link is 80us. Therefore, both 3GPP and non3GPP can be used.
  • the UPF network element arbitrarily selects 3GPP or non3GPP transmission service flow 3, or the UPF network element prefers 3GPP transmission service flow 3 based on local policies, or the UPF network element selects 3GPP and non3GPP links to transmit service flow 3 at the same time.
  • the UPF network element can select the transmission path of the service flow based on the usual offload mode, and then the UPF network element determines whether the transmission path can meet the requirements of the service flow. QoS requirements, if not, select another link to transmit this service flow.
  • the UPF network element when it receives the first indication information, it can also report the identified service flow characteristics or service flow types or application types or application identifiers to the SMF network element, and the SMF network element The element determines the target offloading mode for the UPF network element based on the service flow characteristics or the service type or application type or application identifier, and then the UPF network element can use the target offloading mode to transmit the service flow.
  • the target diversion mode may be any one of the second diversion modes.
  • the SMF network element can determine the target distribution mode for the UPF network element to adapt to the service flow, which can not only obtain a suitable distribution mode, but also reduce the computing load of the UPF network element.
  • the SMF network element sends the service flow identifier and the first indication information to the terminal device.
  • the terminal device selects a transmission link for the service flow of the PDU session according to the service flow identifier and the first indication information.
  • the SMF network element may send the service flow identifier and the first indication information to the terminal device in any manner, which is not specifically limited in the embodiment of the present application.
  • the terminal device may receive the service flow identifier and the first indication information from the SMF network element. For the service flow in the PDU session in the uplink, the terminal device can select the transmission link for the downlink data packet of the service flow. For example, the terminal device can identify the service type or application type of the service flow, and select the transmission link for the downlink data packet of the service flow according to the service type or application type.
  • the number of transmission links may be one or more, which is not specifically limited in the embodiment of the present application.
  • the terminal device may select one or more transmission links for the service flow corresponding to the service flow identifier according to at least one of user preference (user preference), application preference (application preference), or local policy.
  • the user's preference may be the preferred transmission path of the service flow set by the user.
  • a user prefers non3GPP transmission for a video service stream
  • the terminal device uses user preferences to select one or more transmission links for the service stream corresponding to the service stream identifier, which is conducive to achieving service stream transmission results to meet user needs and improve user experience.
  • the application preference may be the transmission link selected by the application to transmit the application service flow.
  • the application sets its preferred link to non3GPP, and the terminal device uses the application preferences to select one or more transmission links for the service flow corresponding to the service flow identifier, which is beneficial to meet the QoS requirements of the application, or billing requirements.
  • the local strategy can be that the terminal device locally configures the shunt mode or transmission path of the service flow.
  • the terminal device uses the local strategy to select one or more transmission links for the service flow corresponding to the service flow identifier to satisfy the operator's transmission control of the service flow.
  • the local policy of the terminal device may include the policy configured on the terminal device on the network side, or the policy configured on the terminal device by the user, and so on.
  • the local policy of the terminal device indicates that 3GPP access and/or non3GPP access technology is preferred, or a certain application or a certain type of application (such as video applications, voice applications, game applications, etc.) is preferred to 3GPP and/or non3GPP access technologies.
  • Incoming technology transmission when the terminal device recognizes the application or the service flow of this type of application, it can select the preferred method in the local strategy to select the transmission link for the service flow.
  • the terminal device may select one or more transmission links for the service flow corresponding to the service flow identifier according to at least two of the link status, the transmission condition threshold, the service type, and the application type.
  • the terminal device uses at least two of the link status and the transmission condition threshold, the service type, and the application type to select one or more transmission links for the service flow corresponding to the service flow identifier. It is beneficial to select the best service flow based on the current link state. Transmission link.
  • the terminal device uses the link status and the transmission condition threshold to select one or more transmission links for the service flow corresponding to the service flow identifier.
  • the foregoing transmission condition threshold may be a transmission condition threshold that can be tolerated by service stream transmission, or the transmission condition threshold may be a link state threshold for whether the link is available.
  • the terminal device learns that the packet loss rate of link 1 is 5%, and the packet loss rate of link 2 is 10%.
  • the maximum packet loss rate that can be tolerated by the service flow corresponding to the service flow identifier is 7%. Therefore, according to the transmission condition threshold (that is, 7%), the terminal device determines that link 2 is unavailable and link 1 is available, and the terminal device uses link 1 to transmit service streams.
  • the transmission condition threshold is the availability threshold of the link.
  • the availability threshold of link 1 is the delay less than 1 ms and the packet loss rate is less than 10%. Therefore, when the state of the link, such as delay or packet loss rate, does not meet the above-mentioned availability threshold requirements, the link is unavailable.
  • This solution can enable the UPF network element to select the best link to transmit the service flow based on the current link state, improve the transmission quality, and ensure the QoS of the service flow.
  • a terminal device uses link status, transmission condition thresholds, and service types to select one or more transmission links for the service flow corresponding to the service flow identifier, it can select the best transmission link based on the QoS requirements determined by the service type and the link status and transmission condition thresholds. Excellent transmission link.
  • the terminal device may select one or more transmission links according to user preferences and/or application preferences and/or local policies, as well as link status and/or transmission condition threshold values for the service flow corresponding to the service flow identifier.
  • the terminal device selects one or more transmission links using user preferences or application preferences, link status and transmission condition thresholds for the service flow corresponding to the service flow identifier.
  • user preferences or application preferences, link status and transmission condition thresholds for the service flow corresponding to the service flow identifier.
  • the terminal device obtains the state parameters of at least one link, such as the guarantee of the link At least one of bandwidth value, delay value (such as minimum delay, maximum delay or average delay), link packet loss rate, and link jitter value.
  • the terminal device compares the state parameter of this link with the QoS requirement of the service flow, and when only one of the multiple links can meet the QoS requirement of the service flow, it selects this link to transmit the above-mentioned service flow.
  • QoS requirements include but are not limited to guaranteed bandwidth value, delay value, packet loss rate, jitter, etc.
  • the QoS parameters of service flow 1 require a guaranteed bandwidth of 10 Mbps.
  • the guaranteed bandwidth that the terminal device can provide for the 3GPP access link is 20 Mbps, and the guaranteed bandwidth value of the non3GPP link is 5 Mbps. therefore.
  • the terminal equipment selects the 3GPP access link to transmit service flow 1.
  • the QoS parameter of service flow 2 requires a guaranteed bandwidth of 10 Mbps.
  • the maximum bandwidth that the terminal device can provide for the 3GPP access link is 20 Mbps, and the maximum bandwidth of the non3GPP link is 5 Mbps. Therefore, the terminal equipment selects the 3GPP link to transmit service flow 2.
  • the maximum transmission delay required in the QoS parameters of service flow 3 is 1ms
  • the transmission delay for the terminal device to obtain the 3GPP link is 50us
  • the transmission delay for the non3GPP link is 80us. Therefore, both 3GPP and non3GPP can be used as The alternative link meets the QoS requirements of service flow 3.
  • the terminal device arbitrarily selects 3GPP or non3GPP to transmit service flow 3, or the terminal device prefers 3GPP transmission service flow 3 based on local policies, or the terminal device selects 3GPP and non3GPP links to transmit service flow 3 at the same time.
  • the terminal device may select the transmission path of the service flow based on the usual offload mode, and then the terminal device determines whether the transmission path can meet the QoS requirements of the service flow If not, select another link to transmit this service flow.
  • S405 and S406 may be executed before S403 and S404, and S405 and S406 may also be executed synchronously with S403 and S404, etc.
  • the embodiment of the present application does not limit the execution order of each step.
  • the terminal device or the UPF network element can independently determine the transmission link of the service flow, so that the transmission link that meets the current link condition of the terminal device or the UPF network element can be selected for the service flow. It can realize the efficient transmission of business flow.
  • the SMF network element of S402 obtains the first indication information and the service flow identifier of the PDU session may be implemented by the SMF network element receiving the first indication information from the PCF network element. 2. Indication information and service flow identifier of the PDU session.
  • S402 may include: S4021, the SMF network element sends a policy request to the PCF network element. S4022.
  • the SMF network element receives the second indication information and the service flow identifier of the PDU session from the PCF network element, where the second indication information is used to instruct the terminal device or the UPF network element to determine the transmission link of the service flow of the PDU session.
  • the second indication information is sent by the PCF network element to the SMF network element to instruct the terminal device or the UPF network element to determine the transmission link of the service flow of the PDU session.
  • the SMF network element receives the second indication
  • the first instruction information used to instruct the terminal device or the UPF network element to determine the transmission link of the service flow of the PDU session can be determined, and the first instruction information is further sent to the terminal device or the UPF network element.
  • the functions of the first indication information and the second indication information are both instructing the terminal equipment or the UPF network element to determine the transmission link of the service flow of the PDU session
  • the first indication information is the SMF network element to the terminal equipment or Information sent by the UPF network element.
  • the second indication information is sent by the PCF network element to the SMF network element.
  • the specific forms of the first indication information and the second indication information may be the same or different, which is not specifically limited in the embodiment of this application. .
  • the PCF network element may obtain service-related information from the AF network element or the NEF network element, and then obtain the second indication information and the service flow identifier of the PDU session.
  • the method may further include: S4001, the PCF network element obtains service-related information from the AF network element or the NEF network element. S4002.
  • the PCF network element obtains the second indication information and the service flow identifier of the PDU session.
  • the steps of S4001 and S4002 can be executed at any stage before S4022.
  • the service related information may be related information of the service flow corresponding to the service flow identifier of the PDU session.
  • service-related information includes one or more of the following: access technology-related information, disorder-sensitive indication information, packet loss-sensitive indication information, delay-sensitive indication information, jitter-sensitive indication information, multiple access permission indication information, or Prohibit multiple access indication information.
  • the access technology related information may include: at least one of a preferred access technology, an allowed access technology, and a prohibited access technology.
  • Out-of-order sensitive indication information, packet loss-sensitive indication information, delay-sensitive indication information, and jitter-sensitive indication information are used to indicate that when out-of-sequence, packet loss, delay, or jitter occurs, it will have a great impact on service quality. Therefore, for services containing the above-mentioned instructions, the occurrence of disorder, packet loss, delay, or jitter should be avoided as much as possible during transmission.
  • the PCF network element may determine the specific form of the second indication information based on the foregoing service flow related information.
  • the PCF network element may determine that the second indication information is information indicating the first offload mode.
  • the PCF network element may determine that the second indication information is the offload indication information.
  • the PCF network element may also determine the second offload mode, and send both the second offload mode and the second indication information to the SMF network element.
  • the lowest round-trip time (lowest RTT) is selected, that is, the link with the smallest RTT is selected to transmit the service data packet.
  • the redundant transmission offload mode or adopt the MPTCP offload mode.
  • the redundant offload mode can transmit this service data packet for multiple links at the same time.
  • MPTCP shunt mode can use MPTCP protocol to transmit this service data packet.
  • MPTCP offload mode For out-of-order sensitive services, choose MPTCP offload mode or QUIC transmission mode.
  • the QUIC transmission mode can be to use the QUIC protocol to transmit this service stream data packet.
  • select a low-jitter link to transmit this service flow data packet such as 3GPP access technology or fixed network access technology to transmit this service flow data packet.
  • the SMF network element may determine the manner in which the terminal device or the UPF network element determines the transmission link of the service flow of the PDU session based on the instruction of the PCF network element, thereby reducing the calculation load of the SMF network element.
  • the SMF network element of S402 obtains the first indication information and the service flow identifier of the PDU session may be implemented by the SMF network element receiving the first indication information from the PCF network element. 3. Indication information and service flow identifier of the PDU session.
  • S402 may include: S4021, the SMF network element sends a policy request to the PCF network element. S4023.
  • the SMF network element receives the third indication information from the PCF network element and the service flow identifier of the PDU session, where the third indication information is used to instruct the SMF network element to determine the second offload mode and/or the first indication information.
  • the third indication information is sent by the PCF network element to the SMF network element to instruct the SMF network element to determine the second offload mode and/or the first indication information.
  • the SMF network element receives the third indication information
  • the first indication information used to instruct the terminal device or the UPF network element to determine the transmission link of the service flow of the PDU session may be determined.
  • the first indication information may be information indicating the first offload mode, and the first indication information is further sent to the terminal device or the UPF network element.
  • the first indication information may be offload indication information, and the SMF network element may also determine the second offload mode, and further send the first indication information and the second offload mode to the terminal device or the UPF network element.
  • the PCF network element may obtain service-related information from the AF network element or the NEF network element, and then obtain the third indication information and the service flow identifier of the PDU session.
  • the method may further include: S4001, the PCF network element obtains service-related information from the AF network element or the NEF network element. S4003.
  • the PCF network element obtains the third indication information and the service flow identifier of the PDU session.
  • the steps of S4001 and S4003 can be executed at any stage before S4023.
  • the service related information may be related information of the service flow corresponding to the service flow identifier of the PDU session.
  • service-related information includes one or more of the following: access technology-related information, disorder-sensitive indication information, packet loss-sensitive indication information, delay-sensitive indication information, jitter-sensitive indication information, multiple access permission indication information, or Prohibit multiple access indication information.
  • the access technology related information may include: at least one of a preferred access technology, an allowed access technology, and a prohibited access technology.
  • Out-of-order sensitive indication information, packet loss-sensitive indication information, delay-sensitive indication information, and jitter-sensitive indication information are used to indicate that when out-of-sequence, packet loss, delay, or jitter occurs, it will have a great impact on service quality. Therefore, for services containing the above-mentioned instructions, the occurrence of disorder, packet loss, delay, or jitter should be avoided as much as possible during transmission.
  • the SMF network element after the SMF network element receives the third indication information, it can obtain information according to the local policy or service-related information or service flow characteristic information (see Figure 7 for details.
  • the SMF network element sends the fourth indication information to the UPF network element to obtain
  • To determine the first indication information, such as service flow characteristic information refer to the description of the embodiment corresponding to FIG. 4, which will not be repeated here.
  • the SMF network element may determine the first indication information according to its own requirements, so that the first indication information that is more in line with the requirements of the SMF network element may be obtained.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of this application, including the following steps:
  • the terminal device sends a message requesting the establishment or update of the PDU session to the SMF network element.
  • the SMF network element obtains the first indication information and the service flow identifier of the PDU session.
  • the SMF network element sends the service flow identifier and the first indication information to the terminal device.
  • the terminal device selects a transmission link for the service flow of the PDU session according to the service flow identifier and the first indication information.
  • the steps of S701-S704 can refer to the description of S401, S402, S405, and S406 in the embodiment corresponding to FIG. 4, which will not be repeated here.
  • the SMF network element sends the service flow identifier and fourth indication information to the UPF network element.
  • the fourth indication information is used to instruct the UPF network element to report service flow characteristic information related to the service flow identifier.
  • the UPF network element recognizes the service flow characteristic information according to the service flow identifier.
  • the UPF network element sends the service flow characteristic information to the SMF network element.
  • the SMF network element determines the target offload mode of the UPF network element.
  • S709 The SMF network element sends the target offload mode to the UPF network element.
  • the UPF network element uses the target offload mode to select a transmission link for the service flow.
  • the SMF network element sends to the UPF network element fourth indication information for instructing the UPF network element to report service flow characteristic information related to the service flow identifier, and the UPF network element is identifying the service flow characteristic information corresponding to the service flow identifier. Then, the service flow characteristic information is sent to the SMF network element, and then the SMF network element can determine the target distribution mode for the UPF network element based on the service flow characteristic information, and then the UPF network element can adopt the target distribution mode to select the transmission link for the service flow, and proceed Transmission of business flow.
  • the target offload mode may be the second offload mode, such as any one of the lowest RTT, load balancing mode, active/standby mode, priority mode, or redundant transmission mode.
  • the service flow characteristic information may include service type or application type or application identification, etc., which is not specifically limited in the embodiment of the present application.
  • This embodiment does not limit the method of how the UPF network element obtains the service flow characteristic information.
  • the UPF network element can obtain the service flow characteristic information through DPI detection.
  • the UPF network element performs DPI detection on the service flow based on the fourth indication information, so as to obtain the service flow characteristic information.
  • the SMF network element can determine the target offload mode adapted to the current service flow of the UPF network element for the UPF network element, which can not only obtain a suitable offload mode, but also reduce the computing load of the UPF network element.
  • the method of the embodiment of the present application has been described above with reference to FIGS. 4-7, and the communication device provided by the embodiment of the present application for performing the above method is described below.
  • the communication device provided in the embodiment of the present application can execute the steps performed by the terminal device in the above-mentioned communication method.
  • Another communication device can perform the steps performed by the UPF network element in the communication method in the foregoing embodiment.
  • Another communication device can perform the steps performed by the SMF network element in the communication method in the foregoing embodiment.
  • Another communication device can execute the steps performed by the PCF network element in the communication method in the foregoing embodiment.
  • FIG. 8 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be an SMF network element, a UPF network element, a PCF network element, or a terminal device in an embodiment of the present application. It can be a chip used in SMF network elements, UPF network elements, PCF network elements, or terminal equipment.
  • the communication device includes: a processing unit 101 and a communication unit 102. Wherein, the communication unit 102 is used to support the communication device to perform the steps of sending or receiving information.
  • the processing unit 101 is used to support the communication device to perform information processing steps.
  • the communication unit 102 is configured to support the communication device to execute S401 and S405 in the foregoing embodiment.
  • the processing unit 101 is configured to support the communication device to execute S406 in the foregoing embodiment.
  • the communication unit 102 is configured to support the communication device to perform step S403 in the foregoing embodiment.
  • the processing unit 101 is configured to support the communication device to execute S404 in the foregoing embodiment.
  • the communication unit 102 is used to support the communication device to perform S401, S403, S404, and S405 in the foregoing embodiment.
  • the processing unit 101 is configured to support the communication device to execute S402 in the foregoing embodiment.
  • the communication unit 102 is further configured to support the communication device to execute S4021 and S4022 in the foregoing embodiment.
  • the communication unit 102 is used to support the communication device to execute S4001, S4021, and S4022 in the foregoing embodiment.
  • the processing unit 101 is configured to support the communication device to execute S4002 in the foregoing embodiment.
  • the communication device may further include: a storage unit 103.
  • the processing unit 101, the communication unit 102, and the storage unit 103 are connected by a communication bus.
  • the storage unit 103 may include one or more memories, and the memories may be devices for storing programs or data in one or more devices or circuits.
  • the storage unit 103 can exist independently, and is connected to the processing unit 101 of the communication device through a communication bus.
  • the storage unit 103 may also be integrated with the processing unit.
  • the communication device can be used in communication equipment, circuits, hardware components, or chips.
  • the communication device may be an SMF network element, a UPF network element, a PCF network element, or a chip or chip system of a terminal device in the embodiment of the present application as an example
  • the communication unit 102 may be an input or output interface, pin, or circuit.
  • the storage unit 103 may store SMF network elements, UPF network elements, PCF network elements, or computer-executed instructions of the method on the terminal device side, so that the processing unit 101 executes the SMF network elements, UPF network elements, and PCF network elements in the foregoing embodiments.
  • the storage unit 103 may be a register, a cache, a RAM, etc., and the storage unit 103 may be integrated with the processing unit 101.
  • the storage unit 103 may be a ROM or another type of static storage device that can store static information and instructions, and the storage unit 103 may be independent of the processing unit 101.
  • the embodiment of the present application provides a communication device that includes one or more modules for implementing the method in S401-S406, and the one or more modules may be the same as the steps of the method in S401-S406. correspond.
  • the SMF network element for each step in the method executed by the SMF network element in the embodiment of the present application, there is a unit or module in the SMF network element that performs each step in the method.
  • the UPF network element For each step in the method executed by the UPF network element, there is a unit or module that executes each step in the method in the UPF network element.
  • the PCF network element there is a unit or module that executes each step in the method in the PCF network element.
  • a module that executes each step of the method in the terminal device For each step of the method executed by the terminal device, there is a unit or module that executes each step of the method in the terminal device.
  • a module that performs control or processing of the actions of the communication device may be referred to as a processing module.
  • a module that executes the steps of processing messages or data on the side of the communication device may be referred to as a communication module.
  • FIG. 9 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • the communication device includes a processor 41, a communication line 44, and at least one communication interface (the communication interface 43 is exemplarily described in FIG. 9).
  • the processor 41 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 44 may include a path to transmit information between the aforementioned components.
  • the communication interface 43 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the communication device may further include a memory 42.
  • the memory 42 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 44. The memory can also be integrated with the processor.
  • the memory 42 is used to store computer-executable instructions for executing the solution of the present application, and the processor 41 controls the execution.
  • the processor 41 is configured to execute computer-executable instructions stored in the memory 42 so as to implement the policy control method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 41 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9.
  • the communication device may include multiple processors, such as the processor 41 and the processor 45 in FIG. 9.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication interface is used to support the communication device to execute S401, S403, and S405 in the foregoing embodiment.
  • the processor 41 or the processor 45 is configured to support the communication device to execute S402 in the foregoing embodiment.
  • taking the communication device may be a UPF network element or a chip or chip system applied to the UPF network element as an example
  • the communication interface is used to support the communication device to perform S403 in the foregoing embodiment.
  • the processor 41 or the processor 45 is configured to support the communication device to execute step S404 in the foregoing embodiment.
  • taking the communication device may be a PCF network element or a chip or chip system applied to the PCF network element as an example
  • the communication interface is used to support the communication device to execute S4001, S4021, and S4022 in the foregoing embodiment.
  • the processor 41 or the processor 45 is configured to support the communication device to execute step S4002 in the foregoing embodiment.
  • FIG. 10 it is a schematic structural diagram of a terminal device (hereinafter referred to as a terminal) provided by an embodiment of this application.
  • the terminal includes at least one processor 1211, at least one transceiver 1212.
  • the terminal may further include at least one memory 1213, an output device 1214, an input device 1215, and one or more antennas 1216.
  • the processor 1211, the memory 1213, and the transceiver 1212 are connected.
  • the antenna 1216 is connected to the transceiver 1212, and the output device 1214 and the input device 1215 are connected to the processor 1211.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory Random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 1213 may exist independently and is connected to the processor 1211. In another example, the memory 1213 may also be integrated with the processor 1211, for example, integrated in one chip.
  • the memory 1213 can store program codes for executing the technical solutions of the embodiments of the present application, and is controlled by the processor 1211 to execute.
  • Various types of computer program codes executed can also be regarded as driver programs of the processor 1211.
  • the processor 1211 is configured to execute computer program codes stored in the memory 1213, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 1212 may be used to support the reception or transmission of radio frequency signals between the terminal and the terminal or between the terminal and the access device, and the transceiver 1212 may be connected to the antenna 1216.
  • the transceiver 1212 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 1216 can receive radio frequency signals
  • the receiver Rx of the transceiver 1212 is used to receive radio frequency signals from the antennas, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals Or the digital intermediate frequency signal is provided to the processor 1211, so that the processor 1211 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1212 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1211, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 1216 transmit radio frequency signals.
  • the receiver Rx can selectively perform one-stage or multi-stage down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or digital intermediate frequency signal.
  • the sequence of down-mixing processing and analog-to-digital conversion processing It is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on modulated digital baseband signals or digital intermediate frequency signals to obtain radio frequency signals.
  • the sequence of up-mixing processing and digital-to-analog conversion processing is The order is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the processor 1211 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 1211 can be used to implement various functions for the terminal, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data in software programs; or to assist in completion Computing processing tasks, such as graphics and image processing or audio processing, etc.; or the processor 1211 is used to implement one or more of the above functions
  • the output device 1214 communicates with the processor 1211, and can display information in a variety of ways.
  • the output device 1214 may be a liquid crystal display (Liquid Crystal Display, LCD), a light emitting diode (Light Emitting Diode, LED) display device, a cathode ray tube (Cathode Ray Tube, CRT) display device, or a projector (projector) Wait.
  • the input device 1215 communicates with the processor 1211, and can accept user input in a variety of ways.
  • the input device 1215 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • At least one processor 1211 is configured to execute S406.
  • At least one transceiver 1212 is used to perform S401 and S405.
  • FIG. 11 is a schematic structural diagram of a chip 150 provided by an embodiment of the present invention.
  • the chip 150 includes one or more (including two) processors 1510 and a communication interface 1530.
  • the chip 150 shown in FIG. 11 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provides operation instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, executable modules or data structures, or their subsets, or their extended sets:
  • the corresponding operation is executed by calling the operation instruction stored in the memory 1540 (the operation instruction may be stored in the operating system).
  • One possible implementation manner is that the structures of chips used in SMF network elements, UPF network elements, PCF network elements, or terminal equipment are similar, and different devices can use different chips to realize their respective functions.
  • the processor 1510 controls the operations of the SMF network element, the UPF network element, the PCF network element, or the terminal device.
  • the processor 1510 may also be referred to as a central processing unit (CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540, the communication interface 1530, and the memory 1540 are coupled together by a bus system 1520, where the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1520 in FIG. 11.
  • the above communication unit may be an interface circuit or communication interface of the device for receiving signals from other devices.
  • the communication unit is an interface circuit or communication interface used by the chip to receive signals or send signals from other chips or devices.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1510 or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 1510 or instructions in the form of software.
  • the aforementioned processor 1510 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field-programmable gate array, FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540, and completes the steps of the foregoing method in combination with its hardware.
  • the communication interface 1530 is used to perform the receiving and sending steps of the SMF network element, the UPF network element, the PCF network element, or the terminal device in the embodiment shown in FIGS. 4-7.
  • the processor 1510 is configured to execute the processing steps of the SMF network element, the UPF network element, the PCF network element, or the terminal device in the embodiment shown in FIGS. 4-7.
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or it may be downloaded and installed in the memory in the form of software.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
  • a cable such as Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk, SSD).
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functions can be stored on a computer-readable medium or transmitted on a computer-readable medium as one or more instructions or codes.
  • Computer-readable media may include computer storage media and communication media, and may also include any media that can transfer a computer program from one place to another.
  • the storage medium may be any target medium that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that is targeted to carry or is structured with instructions or data.
  • the required program code is stored in the form and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) or wireless technology (such as infrared, radio and microwave) to transmit software from a website, server or other remote source, then coaxial cable, fiber optic cable , Twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the medium.
  • DSL digital subscriber line
  • wireless technology such as infrared, radio and microwave
  • Magnetic disks and optical disks as used herein include compact disks (CDs), laser disks, optical disks, digital versatile disks (DVDs), floppy disks and blu-ray disks, where disks usually reproduce data magnetically, and optical disks use lasers to optically reproduce data. Combinations of the above should also be included in the scope of computer-readable media.
  • the embodiment of the present application also provides a computer program product.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If it is implemented in software, it can be fully or partially implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on the computer, the procedures or functions described in the above method embodiments are generated in whole or in part.
  • the above-mentioned computer may be a general-purpose computer, a special-purpose computer, a computer network, a base station, a terminal, or other programmable devices.
  • each network element in the embodiment of this application may also adopt other definitions or names in specific applications.
  • the SMF network element may be referred to as the first core network element
  • the UPF network element may be referred to as The second core network network element
  • the PCF network element may be called the third core network network element
  • the AMF network element may be called the fourth core network network element, and so on.
  • the aforementioned network elements may also be collectively referred to as core network elements.
  • the foregoing network elements may also define other names according to actual functions, which are not specifically limited in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • Computer And Data Communications (AREA)

Abstract

本申请实施例提供一种通信方法和装置,涉及通信领域。本申请实施例可以由终端设备或用户面网元自主的决定业务流的传输链路,从而可以为业务流选择符合终端设备或用户面网元当前链路情况的传输链路,从而能实现业务流的高效传输。包括: 第一设备接收来自会话管理网元的第一指示信息和PDU会话的业务流标识; 第一指示信息用于指示第一设备决定PDU会话的业务流的传输链路; 第一设备根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路,第一设备可以为终端设备或用户面网元。

Description

通信方法和装置
本申请要求于2020年04月13日提交中国专利局、申请号为202010284850.4、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种通信方法和装置。
背景技术
在下一代无线通信系统中,例如:在新无线(new radio,NR)系统中,用户设备(user equipment,UE)通过用户面功能(user plane function,UPF)网元与数据网络(data network,DN)网元建立协议数据单元(protocol data unit,PDU)会话,PDU会话提供终端设备与DN网元之间的数据传输服务。
现有技术中,在UE和UPF网元之间,可以支持多接入PDU会话的建立(也可以称为多PDU会话),示例的,如图1所示,UE与UPF网元可以基于接入技术1和接入技术2建立一个多接入PDU会话A,则UE的业务流可以通过接入技术1,和/或,接入技术2传输到UPF网元。多接入PDU会话是相对于单接入PDU会话而言,单接入PDU会话是指通过一种接入技术接入UPF网元的PDU会话,多接入PDU会话是指通过多种接入技术(至少两种)接入UPF网元的PDU会话。
但是,现有技术中经常出现为业务流选择的链路不能满足业务流传输需求的情况。
发明内容
本申请实施例提供一种通信方法和装置,可以由终端设备或用户面网元基于业务流的实际情况决定业务流的传输链路,从而可以提高传输效率。
第一方面,本申请实施例提供一种通信方法,包括:第一设备接收来自会话管理网元的第一指示信息和协议数据单元PDU会话的业务流标识。第一指示信息用于指示第一设备决定PDU会话的业务流的传输链路。第一设备根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路。
本申请实施例中,第一设备可以是终端设备或用户面网元,可以由终端设备或用户面网元自主的决定业务流的传输链路,从而可以为业务流选择符合终端设备或用户面网元当前链路情况的传输链路,从而能实现业务流的高效传输。
在一种可能的实现方式中,第一设备根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路,包括:第一设备根据业务流标识识别PDU会话的业务流。第一设备基于第一指示信息为业务流标识对应的业务流选择一条或多条传输链路。
在一种可能的实现方式中,第一设备基于第一指示信息为业务流标识对应的业务流选择一条或多条传输链路,包括:第一设备根据用户喜好、应用喜好、或本地策略 中的至少一个为业务流标识对应的业务流选择一条或多条传输链路。或者,第一设备根据链路状态、传输条件阈值、业务类型、应用类型中的至少两个为业务流标识对应的业务流选择一条或多条传输链路。或者,第一设备根据用户喜好和/或应用喜好和/或本地策略,以及链路状态和/或传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。
在一种可能的实现方式中,第一指示信息为:用于指示第一分流模式的信息,第一分流模式包括:第一设备为业务流自主选择传输链路的分流模式,或,第一设备为业务流选择满足业务流传输服务质量QoS需求的传输链路的分流模式,或,第一设备为业务流选择满足业务流传输带宽需求的传输链路的分流模式,或,第一设备为业务流选择两条链路同时传输业务流的冗余传输模式,或,第一设备为业务流确定两条链路的分流比率的负载均衡分流模式。
在一种可能的实现方式中,第一指示信息为分流指示信息,方法还包括:第一设备接收来自会话管理网元的第二分流模式,第二分流模式为下述的其中一种:最小时延分流模式、负载均衡分流模式、优先级分流模式或主备分流模式。分流指示信息用于指示第一设备在基于第二分流模式选择的链路不满足PDU会话的业务流的传输需求的情况下,为PDU会话的业务流选择其他的一条或多条传输链路。或者,分流指示信息用于指示第一设备基于第二分流模式与分流指示信息为PDU会话业务流选择一条或多条传输链路。
在一种可能的实现方式中,在第一设备接收到第二分流模式为负载均衡分流模式时,分流指示信息为至少一条链路的特定分流比例。特定分流比例用于指示由第一设备决定至少一条传输链路的分流比例。
在一种可能的实现方式中,业务流标识包括下述的一个或多个:PDU会话标识或N4会话标识、业务流描述信息、应用标识、QoS流标识、业务类型标识、应用类型标识或终端外部标识。
在一种可能的实现方式中,第一设备为终端设备,方法还包括:第一设备向会话管理网元发送用于请求建立或者更新PDU会话的消息。
在一种可能的实现方式中,第一设备为用户面网元。
第二方面,本申请实施例提供一种通信方法,包括:会话管理网元接收来自终端设备的用于请求建立或者更新PDU会话的消息。会话管理网元获取第一指示信息和PDU会话的业务流标识。第一指示信息用于指示终端设备或用户面网元决定PDU会话的业务流的传输链路。会话管理网元向终端设备发送业务流标识和第一指示信息。和/或,会话管理网元向用户面网元发送业务流标识和第一指示信息。
在一种可能的实现方式中,会话管理网元获取业务流标识和第一指示信息,包括:
会话管理网元从策略控制网元获取业务流标识和第二指示信息。第二指示信息用于指示终端设备或用户面网元决定PDU会话的业务流的传输链路。会话管理网元基于第二指示信息确定第一指示信息。
在一种可能的实现方式中,会话管理网元基于业务流特征信息、第三指示信息或本地策略中的一个或多个确定第一指示信息,业务流特征信息是从用户面网元获得,第三指示信息是从策略控制网元获得,第三指示信息用于指示会话管理网元确定第二 分流模式和/或第一指示信息。
在一种可能的实现方式中,业务流特征信息包括下述的一个或多个:业务流标识、业务类型或应用类型、或应用标识,业务流传输协议。
第二方面涉及到的第一指示信息的具体内容可以参考第一方面的具体内容,此处不再赘述。
在一种可能的实现方式中,会话管理网元向用户面网元发送业务流标识与第四指示信息,第四指示信息用于指示用户面网元对业务流标识表示的业务流上报业务流特征信息。
第三方面,本申请实施例提供一种通信方法,包括:策略控制网元获取第二指示信息或第三指示信息,以及PDU会话中的业务流标识。第二指示信息用于指示终端设备或用户面网元决定PDU会话的业务流的传输链路。第三指示信息用于指示会话管理网元决定PDU会话的业务流的传输链路。策略控制网元向会话管理网元发送业务流标识和第二指示信息或第三指示信息。
在一种可能的实现方式中,策略控制网元获取第二指示信息或第三指示信息,包括:策略控制网元从应用网元或网络网元获取业务流标识对应的业务流的业务相关信息。策略控制网元基于业务相关信息确定第二指示信息或第三指示信息。
在一种可能的实现方式中,策略控制网元基于本地策略或签约数据确定第二指示信息或第三指示信息。
在一种可能的实现方式中,业务相关信息包括下述的一个或多个:接入技术相关信息、乱序敏感指示信息、丢包敏感指示信息、时延敏感指示信息、抖动敏感指示信息、允许多接入指示信息或禁止多接入指示信息。
第四方面,本申请实施例提供一种通信装置。该通信装置可以是用户面网元,也可以是用户面网元内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是用户面网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该用户面网元实现第一方面或第一方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是用户面网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该用户面网元实现第一方面或第一方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该用户面网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
该通信装置可以是终端设备,也可以是终端设备内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是终端设备时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路或者收发器。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备实现第一方面或第一方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是终端设备内的芯片时,该处理单元 可以是处理器,该通信单元可以是通信接口,例如输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该终端设备实现第一方面或第一方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
示例性的,通信单元,用于接收来自会话管理网元的第一指示信息和协议数据单元PDU会话的业务流标识。第一指示信息用于指示第一设备决定PDU会话的业务流的传输链路。处理单元,用于根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路。
在一种可能的实现方式中,处理单元,具体用于根据业务流标识识别PDU会话的业务流。所基于第一指示信息为业务流标识对应的业务流选择一条或多条传输链路。
在一种可能的实现方式中,处理单元,具体用于:根据用户喜好、应用喜好、或本地策略中的至少一个为业务流标识对应的业务流选择一条或多条传输链路。或者,根据链路状态、传输条件阈值、业务类型、应用类型中的至少两个为业务流标识对应的业务流选择一条或多条传输链路。或者,根据用户喜好和/或应用喜好和/或本地策略,以及链路状态和/或传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。
第四方面涉及到的第一指示信息和业务流标识的具体内容可以参考第一方面的具体内容,此处不再赘述。
在一种可能的实现方式中,通信装置为终端设备,通信单元,还用于向会话管理网元发送用于请求建立或者更新PDU会话的消息。
第五方面,本申请实施例提供一种通信装置。该通信装置可以是会话管理网元,也可以是会话管理网元内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是会话管理网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该会话管理网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是会话管理网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该会话管理网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该会话管理网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
示例性的,通信单元,用于接收来自终端设备的用于请求建立或者更新PDU会话的消息。处理单元,用于获取第一指示信息和PDU会话的业务流标识。第一指示信息用于指示终端设备或用户面网元决定PDU会话的业务流的传输链路。通信单元,还用于向终端设备发送业务流标识和第一指示信息。和/或,向用户面网元发送业务流标识和第一指示信息。
在一种可能的实现方式中,处理单元,用于从策略控制网元获取业务流标识和第 二指示信息。第二指示信息用于指示终端设备或用户面网元决定PDU会话的业务流的传输链路。以及基于第二指示信息确定第一指示信息。
在一种可能的实现方式中,处理单元,用于基于业务流特征信息、第三指示信息或本地策略中的一个或多个确定第一指示信息,业务流特征信息是从用户面网元获得,第三指示信息是从策略控制网元获得,第三指示信息用于指示会话管理网元确定第二分流模式和/或第一指示信息。
在一种可能的实现方式中,业务流特征信息包括下述的一个或多个:业务流标识、业务类型或应用类型、或应用标识,业务流传输协议。
第五方面涉及到的第一指示信息的具体内容可以参考第一方面的具体内容,此处不再赘述。
在一种可能的实现方式中,通信单元,还用于向用户面网元发送业务流标识与第四指示信息,第四指示信息用于指示用户面网元对业务流标识表示的业务流上报业务流特征信息。
第六方面,本申请实施例提供一种通信装置,包括:该通信装置可以是策略控制网元,也可以是策略控制网元内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是策略控制网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该策略控制网元实现第三方面或第三方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是策略控制网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该策略控制网元实现第三方面或第三方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该策略控制网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
示例性的,处理单元,用于获取第二指示信息或第三指示信息,以及PDU会话中的业务流标识。第二指示信息用于指示终端设备或用户面网元决定PDU会话的业务流的传输链路。第三指示信息用于指示会话管理网元决定PDU会话的业务流的传输链路。通信单元,用于向会话管理网元发送业务流标识和第二指示信息或第三指示信息。
在一种可能的实现方式中,处理单元,具体用于从应用网元或网络网元获取业务流标识对应的业务流的业务相关信息。以及基于业务相关信息确定第二指示信息或第三指示信息。
在一种可能的实现方式中,处理单元,具体用于基于本地策略或签约数据确定第二指示信息或第三指示信息。
在一种可能的实现方式中,业务相关信息包括下述的一个或多个:接入技术相关信息、乱序敏感指示信息、丢包敏感指示信息、时延敏感指示信息、抖动敏感指示信息、允许多接入指示信息或禁止多接入指示信息。
第七方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行 如第一方面至第一方面的任意一种可能的实现方式中描述的通信方法。
第八方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第二方面至第二方面的任意一种可能的实现方式中描述的通信方法。
第九方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第三方面至第三方面的任意一种可能的实现方式中描述的通信方法。
第十方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中描述的一种通信方法。
第十一方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中描述的一种通信方法。
第十二方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式中描述的一种通信方法。
第十三方面,本申请实施例提供一种通信系统,该通信系统包括如下中任一个或多个:第四方面及各种可能的实现方式中描述的通信装置,以及第五方面及第五方面的各种可能的实现方式中描述的会话管理网元。
在一种可能的实现中,该通信系统还可以包括:第六方面及第六方面的各种可能的实现方式中描述的策略控制网元。
第十四方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,实现如第一方面或第一方面的各种可能的实现方式描述的通信方法。
第十五方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,实现如第二方面或第二方面的各种可能的实现方式描述的通信方法。
第十六方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,实现如第三方面或第三方面的各种可能的实现方式描述的通信方法。
第十七方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第一方面至第一方面的任一种可能的实现方式中任一项所描述的通信方法。
第十八方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第二方面至第二方面的任一种可能的实现方式中任一项所描述的通信方法。
第十九方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少 一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第三方面至第三方面的任一种可能的实现方式中任一项所描述的通信方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
应当理解的是,本申请实施例的第二方面至第十九方面与本申请实施例的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为现有的多PDU会话接入的一种示意图;
图2为本申请实施例提供的网络架构的一种示意图;
图3为本申请实施例提供的网络架构的另一种示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的一种具体的通信方法的流程示意图;
图6为本申请实施例提供的另一种具体的通信方法的流程示意图;
图7为本申请实施例提供的另一种通信方法的流程示意图;
图8为本申请实施例提供的一种通信装置的结构示意图一;
图9为本申请实施例提供的一种通信设备的结构示意图;
图10为本申请实施例提供的一种终端设备的结构示意图;
图11为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对和作用基本相同的相同项或相似项进行区分。例如,第一网络和第二网络仅仅是为了区分不同的网络,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表 达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供通信方法,本申请实施例的方法可以应用在第五代移动通信(5generation,5G)系统中,也可以应用在长期演进(long term evolution,LTE)中,5G系统也称为新无线通信系统、新接入技术(new radio,NR)或者下一代移动通信系统。
示例性的,图2为本申请实施例提供的网络架构的一种示意图。该架构不但支持第三代合作伙伴计划(3rd generation partnership project,3GPP)标准组定义的无线技术(如LTE,5G无线接入网(radio access network,RAN)等)接入核心网络(core network,CN),而且支持non-3GPP接入技术通过non-3GPP转换功能(non-3GPP interworking function,N3IWF)或下一代接入网关(next generation packet data gateway,ngPDG)接入核心网络。
其中,该网络架构包括终端设备、接入网(access network,AN)、核心网和数据网络(data vetwork,DN)。其中,接入网装置主要用于实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能;核心网设备可以包含管理设备和网关设备,管理设备主要用于终端设备的设备注册、安全认证、移动性管理和位置管理等,网关设备主要用于与终端设备间建立通道,在该通道上转发终端设备和外部数据网络之间的数据包;数据网络可以包含网络设备(如:服务器、路由器等设备),数据网络主要用于为终端设备提供多种数据业务服务。示例性的,以5G中的接入网、核心网和数据网络为例进行说明。
5G中的接入网可以是无线接入网(radio access network,(R)AN),5G系统中的(R)AN设备可以由多个5G-(R)AN节点组成,该5G-(R)AN节点可以包括:3GPP的接入网络、非3GPP的接入网络如WiFi网络的接入点(access point,AP)、下一代基站(可统称为新一代无线接入网节点(NG-RAN node),其中,下一代基站包括新空口基站(NR nodeB,gNB)、新一代演进型基站(NG-eNB)、中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离形态的gNB等)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或其它节点。
5G核心网(5G core/new generation core,5GC/NGC)包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、鉴权服务器功能(authentication server function,AUSF)网元、策略控制功能(policy control function,PCF)网元、应用功能(application function,AF)网元、统一数据管理功能(unified data management,UDM)网元、网络切片选择功能(network slice selection function,NSSF)网元、网络功能(network element function,NEF)网元等多个功能单元。
AMF网元主要负责移动性管理、接入管理等服务。SMF网元主要负责会话管理、动态主机配置协议功能、用户面功能的选择和控制等。UPF网元主要负责对外连接到数据网络(data network,DN)以及用户面的数据包路由转发、报文过滤、执行服务质量(quality of service,QoS)控制相关功能等。DN主要为用户设备提供服务,如提 供移动运营商业务,Internet服务或第三方服务等。AUSF网元主要负责对终端设备的认证功能等。PCF网元主要负责为网络行为管理提供统一的策略框架、提供控制面功能的策略规则、获取与策略决策相关的注册信息等。需要说明的是,这些功能单元可以独立工作,也可以组合在一起实现某些控制功能,如对终端设备的接入鉴权、安全加密、位置注册等接入控制和移动性管理功能,以及用户面传输路径的建立、释放和更改等会话管理功能。UDM网元为统一的用户数据管理,主要用来存储用户设备签约数据。
5G系统中各功能单元之间可以通过下一代网络(next generation,NG)接口进行通信,如:终端设备可以通过NG接口1(简称N1)与AMF网元进行控制面消息的传输,RAN设备可以通过NG接口3(简称N3)与UPF建立用户面通信连接建立通道,AN/RAN设备可以通过NG接口2(简称N2)与AMF网元建立控制面信令连接,UPF可以通过NG接口4(简称N4)与SMF网元进行信息交互,UPF可以通过NG接口6(简称N6)与数据网络DN交互用户面数据,AMF网元可以通过NG接口11(简称N11)与SMF网元进行信息交互,SMF网元可以通过NG接口7(简称N7)与PCF网元进行信息交互,AMF网元可以通过NG接口12(简称N12)与AUSF进行信息交互。
示例性的,如图3所示,图3为当核心网支持非可信non3GPP(untrusted non3GPP access)接入时,一种具体的网络架构的示意图。其中,本地公用陆地移动网络(home public land mobile network,HPLMN)中的网络架构类似于图2中的实现,在此不再赘述。非可信non3GPP接入可以是非可信无线局域网(wireless local area networks,WLAN)接入。在该架构中,终端设备还可以通过非可信non3GPP接入、Non3GPP转换功能/non3GPP接入网关(Non3GPP interworking function,N3IWF)与AMF进行信息交互,N3IWF网元可以通过N3与UPF进行信息交互。
此外,核心网还可以支持可信的non3GPP接入和/或固定网络接入。其中,可信的non3GPP网络包括可信的WALN网络,固定网络包括固定家庭网络接入或固定有线接入等。网络侧架构与非可信non3GPP网络架构类似,将N3IWF与非可信接入网替换成可信Non-3GPP接入网或固定有线接入网,或N3IWF替换成可信Non-3GPP接入网关或有线接入网关(wireline access gateway,W-AGF),非可信接入网替换成可信接入网或有线接入网。其中,终端设备与可信Non-3GPP接入网关之间的接入网设备可以包括WLAN AP,固定网络接入网设备(fixed access network,FAN),交换机,路由器等。
无论是可信Non-3GPP接入还是非可信Non-3GPP接入,核心网侧都可以采用如图2所示的点对点接口协议,或者与3GPP接入核心网架构一致采用服务化接口架构。本申请实施例对此不作具体限定。
一种可能的实现方式中,3GPP接入技术与non3GPP接入技术可以包含多种接入制式或频段,且可能同时使用。例如,3GPP接入包括4G的LTE与5G的NG-RAN两种接入技术同时接入5GC。non3GPP的wifi接入也包括两种频段同时接入,例如5GHz与2.4GHz的wifi频段同时接入5GC。一种可能的实现方式中,UE可以同时通过上述四种接入方式中的至少两种(包含四种同时用)接入5GC的架构。
本申请实施例的方法处理可以应用于上述5G 3GPP接入架构、或non3GPP接入架构、或3GPP与non3GPP同时接入的架构,还可以应用于5G蜂窝(NG-RAN)与4G蜂窝(LTE)同时接入的架构等,本申请实施例对网络架构不作具体限定。
通常的,UE和UPF网元是基于网络侧发送的分流模式为PDU会话的业务流选择传输链路,例如,UE或UPF网元的分流策略可能来自PCF网元与SMF网元。示例性的,UE或UPF网元对于业务流1收到网络侧的分流策略指示为采用3GPP链路传输,但是当前UE或UPF网元中的3GPP传输链路性能较差,导致业务流传输失败。或着示例性的,UE或UPF网元对于业务流1收到网络侧的分流策略指示为最小时延模式,UE或UPF网元选择3GPP传输业务流1(如3GPP时延比non3GPP低),但3GPP侧的带宽只能保障10Mbps,但业务流1需要的保障带宽是20Mbps,因此3GPP传输不能满足业务流1的需求。
基于此,本申请实施例提供了一种通信方法,可以由终端设备或UPF网元自主的决定业务流的传输链路,从而可以为业务流选择符合终端设备或UPF网元当前链路情况的传输链路,从而能实现业务流的高效传输。
下面对本申请实施例的一些词汇进行说明。
本申请实施例所描述的PDU会话可以是协议数据单元(protocol data unit,PDU)会话,也可以是分组数据单元(packet data unit,PDU)会话。
本申请实施例所描述的会话管理网元可以是SMF网元或者实现会话管理功能的其他网元,用户面网元可以是UPF网元或者实现用户面功能的其他网元,策略控制网元可以是PCF网元或者实现策略控制功能的其他网元,应用网元可以是AF网元或者实现应用功能的其他网元,网络网元可以是NEF网元或者实现网络功能的其他网元,等。
为了便于描述,本申请实施例后续以会话管理网元为SMF网元,用户面网元为UPF网元,策略控制网元为PCF网元,应用网元为AF网元,网络网元为NEF网元为例进行说明,该示例并不限定本申请实施例。
本申请实施例所涉及的数据传输可以包括数据发送、数据接收、或数据交互的过程。例如,终端设备与UPF网元进行数据传输,可以包括终端设备向UPF网元发送数据,或UPF网元向终端设备发送数据,或终端设备向UPF网元发送数据,并接收来自UPF网元的数据,或UPF网元向终端设备发送数据,并接收来自UPF网元的数据。本申请实施例所涉及的业务流可以是使用用户数据报协议(user datagram protocol,UDP)、路互联网传输协议(multi-path quick UDP internet connection,MP-QUIC)、传输控制协议(transmission control protocol,TCP)、多路传输控制协议(multi-path transmission control protocol,MPTCP)、流控制传输协议(stream control transmission protocol,SCTP)或其他协议的业务流。例如,PDU会话的业务流可以为:终端设备与5G核心网(5G core,5GC)建立的PDU会话或此会话中的业务流;或者,终端设备与EPC网络建立的PDN连接或此PDN连接中的业务流;或者,终端设备通过non-3GPP接入网(如WLAN接入)进行非无缝分流(non-seamless WLAN offload)的IP连接或此连接中的业务流。
一种可能的实现方式中,本申请实施例所涉及的业务流标识包括下述的一个或多 个:PDU会话标识、N4会话标识、业务流描述信息、应用标识、QoS流标识、业务类型标识、应用类型标识或终端外部标识。
PDU会话标识为PDU会话的会话标识信息。N4会话标识为N4接口会话(例如PFCP session:Packet Forwarding Control Protocol session)的会话标识信息。
业务流描述信息可以为业务流网络互联协议(internet protocol,IP)五元组描述信息中的至少一个,五元组描述信息可以为:源IP地址、目的IP地址、源端口号、目的端口号和协议类型;或者业务流描述信息可以为以太网(ethernet)包头信息中的至少一个,例如,源媒体访问控制(media access control,MAC)地址和目的MAC地址、虚拟局域网(virtual local area network,VLAN)标识;等。业务流描述信息的数量可以为一个或多个,本申请实施例对此不作具体限定。
应用标识可以用来标识具体的应用程序的业务流。则后续终端设备或UPF网元可以为包含该应用标识的业务流选择传输链路。应用标识的数量可以为一个或多个,本申请实施例对此不作具体限定。
QoS流标识(Quality of Service flow ID,QFI)可以为QoS满足一定关系的多条业务流汇聚而成的QoS flow的标识。
业务类型标识可以为具体一类或多类业务流的类型的标识,例如业务流的类型可以包括视频类业务,或语音类业务,或游戏类业务,或网页浏览类业务等。
应用类型标识可以为一种或多种应用的类型的标识。
终端外部标识也可以称为终端的外部标识(external identifier,EID),可以包含以下两个部分:域名标识(domain identifier,DID),可以用于标识由运营商所提供服务的访问地址,运营商可使用不同的域名标识以支持不同的服务接入;本地标识(local identifier,LID),可以用于导出或获取终端设备的国际移动用户识别码(international mobile subscriber identification number,IMSI)。或者,终端外部标识为GPSI(Generic Public Subscription Identifier),例如,GPSI为外部标识或者为终端的电话号码(MSISDN)。
一种可能的实现方式中,本申请实施例所涉及的业务流标识包括下述的一个或多个:业务流描述信息、应用标识、QoS流标识、业务类型标识、应用类型标识或终端外部标识。该方式中PDU会话标识或N4会话标识可以作为业务流描述信息中的参数,其余参照上述业务流标识中的说明,在此不再赘述。
本申请实施例所描述的第一分流模式可以为:分流执行点(例如终端设备或UPF网元等)决定PDU会话的业务流的传输链路的分流方式,或者可以理解为,分流执行点自主的选择PDU会话的业务流的传输链路的分流方式。
一种可能的实现方式中,第一分流模式可以为基于应用的分流模式(也可能称为自定义分流模式,或自主分流模式,或自由分流模式等),基于应用的分流模式中,分流执行点可以自主为业务流选择适合的分流模式或传输链路。
一种可能的实现方式中,第一分流模式可以为基于QoS的分流模式。基于QoS的分流模式中,分流执行点可以基于链路能够提供的QoS保障等,为业务流选择能满足业务流QoS需求的传输链路。
一种可能的实现方式中,第一分流模式可以为基于带宽的分流模式。基于带宽的 分流模式中,分流执行点可以基于链路能够提供的带宽保障等,为业务流选择能满足业务流带宽需求的传输链路。
一种可能的实现方式中,第一分流模式可以为多条链路传输的冗余传输分流模式。多条链路传输的冗余传输分流模式中,分流执行点可以为业务流选择选择一条或多条(例如两条或以上)传输链路,以通过多条传输链路同时传输该业务流。示例性的,当一条链路传输满足业务流QoS需求时,采用一条链路传输。当一条链路传输无法满足业务流QoS需求时,采用多条链路传输。或者,业务流首先在一条链路传输,当业务流切换到另一条链路的切换过程中采用两条链路传输,切换完成后由一条链路传输。或者,总是同时使用多条链路传输业务流数据包。或者,优先选择一条链路传输业务流数据包。否则,同时使用两条链路传输业务流数据包。上述QoS需求包括带宽、时延、丢包率、或抖动中的至少一个。例如,当业务流QoS需求为丢包率需求时,业务流在一条链路传输,当上述链路的丢包率大于业务流能容忍的丢包率阈值时,由两条链路传输。或者,业务流首先在链路1传输,后续业务流将切换到链路2传输。在业务流从链路1切换到链路2的切换过程中,由链路1与链路2同时传输业务流数据包。在切换完成后,只由链路2传输业务流数据包。
一种可能的实现方式中,第一分流模式可以为无分流比率的负载均衡模式。基于无分流比例的负载均衡模式中,分流执行点可以决定两条链路的分流比率。例如,一条链路传输业务流的20%,另一条链路传输比例为80%。
本申请实施例所涉及的第二分流模式可以包括:最小时延分流模式、负载均衡分流模式、优先级分流模式或主备分流模式。
本申请实施例所涉及的终端设备向SMF网元发送的PDU会话建立或更新请求消息,可以是为建立单接入PDU会话发送的PDU会话建立或更新请求消息,也可以是为建立多接入PDU(multi-access PDU,MA PDU)会话发送的PDU会话建立或更新请求消息,等,本申请实施例对此不作具体限定。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图4为本申请实施例提供的一种通信方法的流程示意图,包括以下步骤:
S401:终端设备向SMF网元发送请求建立或更新PDU会话的消息。
在一种可能的实现方式中,终端设备可以将上述请求建立或更新PDU会话的消息封装在非接入层(non access stratum,NAS)传输消息中发送给AMF网元,由AMF网元转发请求建立或更新PDU会话的消息给SMF网元。
在一种可能的实现方式中,终端设备可以通过RAN或者通过non3GPP接入网关向AMF网元发送NAS传输消息,其中包含请求PDU会话建立或更新的消息,AMF网元进一步向SMF网元转发请求PDU会话建立或更新的消息。
可以理解,终端设备也可以根据实际应用场景,采用任意方式向SMF网元发送请求建立或更新PDU会话的消息,本申请实施例对此不作具体限定。
S402:SMF网元获取第一指示信息和PDU会话的业务流标识。
本申请实施例中,第一指示信息用于指示终端设备或UPF网元决定PDU会话的业务流的传输链路。一种可能的理解中,第一指示信息可以用于指示分流执行点自主的决定该分流执行点的PDU会话的业务流的传输链路。例如,在分流执行点为终端设备的情况下,第一指示信息用于指示终端设备决定PDU会话的业务流的传输链路。例如,在分流执行点为UPF网元的情况下,第一指示信息用于指示UPF网元决定PDU会话的业务流的传输链路。
本申请实施例中,第一指示信息可以是是字符、字符串或数字等,本申请实施例对此不做具体限定。
示例性的,第一指示信息可以用于指示第一分流模式的信息,第一分流模式的具体内容如上面名词解释,在此不再赘述。在该实现方式中,可以理解为,定义了一种第一分流模式,网络侧向分流执行点发送指示该第一分流模式的第一指示信息时,可以用于指示分流执行点采用自主决定PDU会话的业务流的传输链路的分流模式。
示例性的,第一指示信息可以是分流指示信息,一种可能的实现方式中,分流指示信息可以用于指示分流执行点在基于通常的分流模式(例如上述的第二分流模式,第二分流模式可以为SMF网元按照通常的方式确定并发送给分流执行点的)选择的链路不满足PDU会话的业务流的传输需求的情况下,为PDU会话的业务流选择其他的一条或多条传输链路。在该实现方式中,可以理解为,网络侧向分流执行点发送指示该第一分指示信息时,可以用于指示分流执行点先采用通常的分流模式选择传输链路,如果该传输链路不满足PDU会话的业务流的传输需求,为PDU会话的业务流选择其他的一条或多条传输链路,从而可以使得PDU会话的业务流可能通过另外选择的传输链路传输。例如,第二分流模式为最小时延模式,分流执行点基于第二分流模式确定多条链路中时延(例如RTT)最小的链路为业务流传输路径。但当上述链路不能满足业务流QoS需求时,如上述链路的丢包率高于业务流允许的丢包率,则分流执行点选择另一条链路传输业务流,如选择时延第二小的链路为业务流传输数据。
一种可能的实现方式中,分流指示信息可以用于指示分流执行点基于第二分流模式与分流指示信息为PDU会话业务流选择一条或多条传输链路。例如,在第二分流模式为负载均衡分流模式的情况下,分流指示信息可以为至少一条链路分流比例。上述分流比例为一特定值,用此特定的分流比例值指示由分流执行点决定至少一条链路传输业务流时的传输分流比例。传输分流比例可以为业务流在每条传输链路上传输的数据量占整个业务流数据量的比例,例如,为0%~100%的任意值。而特定的分流比例值可以为NULL,或0%、或100%、或其他预定值。例如,3GPP链路与non3GPP链路的特定分流比例都设置为NULL,或都设置为100%。可以理解为,该实现方式中,第二分流模式与分流指示信息之间有一定的关联关系,在不同的第二分流模式中,对应有不同的分流指示信息。
一种可能的实现方式中,SMF网元可以根据SMF网元的本地策略确定第一指示信息和业务流标识,例如,SMF网元的本地策略中指示,PDU会话的业务流标识A所标识的业务流采用分流执行点决定PDU会话的业务流的传输链路的方式,则SMF网元可以确定第一指示信息和业务流标识A。
可能的实现方式中,SMF网元也可以从PCF网元获取第一指示信息和业务流标识, 或者SMF网元也可以基于从UPF网元或PCF网元获取的信息确定第一指示信息和业务流标识,该两种实现方式中,涉及SMF网元与PCF网元或UPF网元的交互,在后续实施例将详细说明,在此不作赘述。
S403:SMF网元向UPF网元发送业务流标识和第一指示信息。
S404:UPF网元根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路。
本申请实施例中,SMF网元可以采用任何方式向UPF网元发送业务流标识和第一指示信息,本申请实施例对此不作具体限定。
UPF网元可以接收到来自SMF网元的业务流标识和第一指示信息。对于下行链路中的PDU会话中业务流,UPF网元可以为业务流下行数据包选择传输链路。例如,UPF网元可以识别业务流的业务类型或应用类型,根据业务类型或应用类型为业务流下行数据包选择传输链路。传输链路的数量可以是一条或多条,本申请实施例对此不作具体限定。
可能的实现方式中,UPF网元识别业务流的业务类型或应用类型可以基于深度报文检测(deep packet inspection,DPI)等实现。
可能的实现方式中,UPF网元可以根据用户喜好(user preference)、应用喜好(application preference)、或本地策略中的至少一个为业务流标识对应的业务流选择一条或多条传输链路。
示例性的,用户喜好可以是用户设置的业务流优选选择的传输路径。例如,用户为视频业务流优先选择non3GPP传输,UPF网元采用用户喜好为业务流标识对应的业务流选择一条或多条传输链路,有利于实现业务流的传输结果满足用户需求,提升用户体验。
应用喜好可以是应用选择的传输此应用业务流使用的传输链路。例如,应用将其优选链路设置为non3GPP,UPF网元采用应用喜好为业务流标识对应的业务流选择一条或多条传输链路,有利于满足应用的QoS需求,或计费需求等。
本地策略可以是UPF网元本地配置业务流的分流模式或传输路径,UPF网元采用本地策略为业务流标识对应的业务流选择一条或多条传输链路,满足运营商对业务流的传输控制。例如,UPF网元可以识别业务流的业务类型或应用类型,以及根据UPF网元的本地策略选择传输链路,例如UPF网元的本地策略配置视频类业务优选non3GPP链路传输,则UPF网元识别出业务流的业务类型或应用类型为视频业务,则将业务流的数据包发送给non3GPP接入技术对应的传输链路。上述本地策略可以由运营商配置到UPF网元。
可能的实现方式中,UPF网元可以根据链路状态、传输条件阈值、业务类型、应用类型中的至少两个为业务流标识对应的业务流选择一条或多条传输链路。
UPF网元采用链路状态和传输条件阈值、业务类型、应用类型中的至少两个为业务流标识对应的业务流选择一条或多条传输链路有益于基于当前链路状态为业务流选择最佳的传输链路。
例如,UPF网元采用链路状态和传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。上述传输条件阈值可以为业务流传输可以容忍的传输条件阈值, 或者传输条件阈值为此链路是否可用的链路状态阈值。例如,UPF网元获知链路1的丢包率为5%,链路2的丢包率为10%。而业务流标识对应的业务流可以容忍的最大丢包率为7%。因此根据传输条件阈值(即7%),UPF网元确定链路2不可用,链路1可用,UPF网元使用链路1传输业务流。又或者,传输条件阈值为链路的可用性阈值,如链路1的可用性阈值为时延小于1ms,丢包率小于10%。因此,当链路的状态,例如时延或丢包率,不满足上述可用性阈值要求时,此链路不可用。此方案可以使得UP F网元基于当前链路状态选择最佳链路传输业务流,提高传输质量,保证业务流QoS。
UPF网元采用链路状态、传输条件阈值和业务类型为业务流标识对应的业务流选择一条或多条传输链路时,可以根据业务类型确定的QoS需求及基于链路状态与传输条件阈值选择最优的传输链路。
可能的实现方式中,UPF网元可以根据用户喜好和/或应用喜好和/或本地策略,以及链路状态和/或传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。
UPF网元采用用户喜好或应用喜好与链路状态及传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。以此满足用户喜好及满足业务流QoS需求,基于链路状态提供更好的传输服务,提升用户业务体验。
示例性的,在第一指示信息为指示UPF网元为业务流选择满足业务流传输QoS需求的传输链路的分流模式的情况下,UPF网元获得至少一条链路的状态参数,如链路的保障带宽值、时延值(如最低时延、最大时延或平均时延)、链路丢包率、链路抖动值中的至少一个。UPF网元将此链路的状态参数与业务流的QoS需求进行比较,当多条链路中只有一条链路能满足此业务流QoS需求时,则选择此链路传输上述业务流。当多条链路中有多条链路能满足此业务流QoS需求时,则选择其中一条或多条传输上述业务流。例如,可以选择能满足QoS需求的任意一条或多条链路传输业务流数据包。或者按照优先级或用户喜好或应用喜好从能满足QoS需求的链路中优选一条或多条传输业务流数据包。可能的实现方式中,QoS需求包括但不限于保障带宽值、时延值、丢包率、抖动等。例如,业务流1的QoS参数中要求保障带宽为10Mbps。UPF网元获得3GPP接入链路能提供的保障带宽为20Mbps,non3GPP链路的保障带宽值为5Mbps。因此。UPF网元选择3GPP接入链路传输业务流1。又例如,业务流2的QoS参数中要求保障带宽为10Mbps。UPF网元获得3GPP接入链路能提供的最大带宽为20Mbps,non3GPP链路的最大带宽值为5Mbps。因此,UPF选择3GPP链路传输业务流2。又例如,业务流3的QoS参数中要求传输的最大时延是1ms,UPF网元获取3GPP链路的传输时延为50us,non3GPP链路的传输时延为80us,因此,3GPP与non3GPP均可作为备选链路,满足业务流3的QoS需求。UPF网元任意选择3GPP或non3GPP传输业务流3,或者UPF网元基于本地策略优选3GPP传输业务流3,或者UPF网元选择3GPP与non3GPP链路同时传输业务流3。
示例性的,在第一指示信息为关于QoS的分流指示信息的情况下,UPF网元可以基于通常的分流模式选择业务流的传输路径,然后UPF网元判断此传输路径是否能满足业务流的QoS需求,如果不能,则选择另一条链路传输此业务流。
一种可能的实现方式中,UPF网元在接收到第一指示信息的情况下,也可以将识别的业务流特征或业务流类型或应用类型或应用标识等上报给SMF网元,由SMF网元基于业务流特征或业务类型或应用类型或应用标识等为UPF网元确定目标分流模式,之后UPF网元可以采用目标分流模式进行业务流的传输。例如,目标分流模式可以是第二分流模式的任意一种。该方式中可以由SMF网元为UPF网元确定业务流适应的目标分流模式,不仅可以得到合适的分流模式,还可以降低UPF网元的计算负荷。
S405:SMF网元向终端设备发送业务流标识和第一指示信息。
S406:终端设备根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路。
本申请实施例中,SMF网元可以采用任何方式向终端设备发送业务流标识和第一指示信息,本申请实施例对此不作具体限定。
终端设备可以接收到来自SMF网元的业务流标识和第一指示信息。对于上行链路中的PDU会话中业务流,终端设备可以为业务流下行数据包选择传输链路。例如,终端设备可以识别业务流的业务类型或应用类型,根据业务类型或应用类型为业务流下行数据包选择传输链路。传输链路的数量可以时一条或多条,本申请实施例对此不作具体限定。
可能的实现方式中,终端设备可以根据用户喜好(user preference)、应用喜好(application preference)、或本地策略中的至少一个为业务流标识对应的业务流选择一条或多条传输链路。
示例性的,用户喜好可以是用户设置的业务流优选选择的传输路径。例如,用户为视频业务流优先选择non3GPP传输,终端设备采用用户喜好为业务流标识对应的业务流选择一条或多条传输链路,有利于实现业务流的传输结果满足用户需求,提升用户体验。
应用喜好可以是应用选择的传输此应用业务流使用的传输链路。例如,应用将其优选链路设置为non3GPP,终端设备采用应用喜好为业务流标识对应的业务流选择一条或多条传输链路,有利于满足应用的QoS需求,或计费需求等。
本地策略可以是终端设备本地配置业务流的分流模式或传输路径,终端设备采用本地策略为业务流标识对应的业务流选择一条或多条传输链路,满足运营商对业务流的传输控制。例如,终端设备的本地策略可以包括网络侧配置在终端设备上的策略,或用户配置在终端设备的策略,等。比如,终端设备的本地策略指示优选3GPP接入和/或non3GPP接入技术,或者某个应用或某类应用(如视频类应用,语音类应用,游戏类应用等)优选3GPP和/或non3GPP接入技术传输,则在终端设备识别到该应用或该类应用的业务流时,可以选择本地策略中优选的方式为业务流选择传输链路。
可能的实现方式中,终端设备可以根据链路状态、传输条件阈值、业务类型、应用类型中的至少两个为业务流标识对应的业务流选择一条或多条传输链路。
终端设备采用链路状态和传输条件阈值、业务类型、应用类型中的至少两个为业务流标识对应的业务流选择一条或多条传输链路有益于基于当前链路状态为业务流选择最佳的传输链路。
例如,终端设备采用链路状态和传输条件阈值为业务流标识对应的业务流选择一 条或多条传输链路。上述传输条件阈值可以为业务流传输可以容忍的传输条件阈值,或者传输条件阈值为此链路是否可用的链路状态阈值。例如,终端设备获知链路1的丢包率为5%,链路2的丢包率为10%。而业务流标识对应的业务流可以容忍的最大丢包率为7%。因此根据传输条件阈值(即7%),终端设备确定链路2不可用,链路1可用,终端设备使用链路1传输业务流。又或者,传输条件阈值为链路的可用性阈值,如链路1的可用性阈值为时延小于1ms,丢包率小于10%。因此,当链路的状态,例如时延或丢包率,不满足上述可用性阈值要求时,此链路不可用。此方案可以使得UP F网元基于当前链路状态选择最佳链路传输业务流,提高传输质量,保证业务流QoS。
终端设备采用链路状态、传输条件阈值和业务类型为业务流标识对应的业务流选择一条或多条传输链路时,可以根据业务类型确定的QoS需求及基于链路状态与传输条件阈值选择最优的传输链路。
可能的实现方式中,终端设备可以根据用户喜好和/或应用喜好和/或本地策略,以及链路状态和/或传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。
终端设备采用用户喜好或应用喜好与链路状态及传输条件阈值为业务流标识对应的业务流选择一条或多条传输链路。以此满足用户喜好及满足业务流QoS需求,基于链路状态提供更好的传输服务,提升用户业务体验。示例性的,在第一指示信息为指示终端设备为业务流选择满足业务流传输QoS需求的传输链路的分流模式的情况下,终端设备获得至少一条链路的状态参数,如链路的保障带宽值、时延值(如最低时延、最大时延或平均时延)、链路丢包率、链路抖动值中的至少一个。终端设备将此链路的状态参数与业务流的QoS需求进行比较,当多条链路中只有一条链路能满足此业务流QoS需求时,则选择此链路传输上述业务流。当多条链路中有多条链路能满足此业务流QoS需求时,则选择其中一条或多条传输上述业务流。例如,可以选择能满足QoS需求的任意一条或多条链路传输业务流数据包。或者按照优先级或用户喜好或应用喜好从能满足QoS需求的链路中优选一条或多条传输业务流数据包。可能的实现方式中,QoS需求包括但不限于保障带宽值、时延值、丢包率、抖动等。例如,业务流1的QoS参数中要求保障带宽为10Mbps。终端设备获得3GPP接入链路能提供的保障带宽为20Mbps,non3GPP链路的保障带宽值为5Mbps。因此。终端设备选择3GPP接入链路传输业务流1。又例如,业务流2的QoS参数中要求保障带宽为10Mbps。终端设备获得3GPP接入链路能提供的最大带宽为20Mbps,non3GPP链路的最大带宽值为5Mbps。因此,终端设备选择3GPP链路传输业务流2。又例如,业务流3的QoS参数中要求传输的最大时延是1ms,终端设备获取3GPP链路的传输时延为50us,non3GPP链路的传输时延为80us,因此,3GPP与non3GPP均可作为备选链路,满足业务流3的QoS需求。终端设备任意选择3GPP或non3GPP传输业务流3,或者终端设备基于本地策略优选3GPP传输业务流3,或者终端设备选择3GPP与non3GPP链路同时传输业务流3。
示例性的,在第一指示信息为关于QoS的分流指示信息的情况下,终端设备可以基于通常的分流模式选择业务流的传输路径,然后终端设备判断此传输路径是否能满足业务流的QoS需求,如果不能,则选择另一条链路传输此业务流。
本申请实施例中,S405和S406可以在S403和S404之前执行,S405和S406也可以与S403和S404同步执行,等,本申请实施例对各步骤的执行顺序不做限定。
综上,本申请实施例中,可以由终端设备或UPF网元自主的决定业务流的传输链路,从而可以为业务流选择符合终端设备或UPF网元当前链路情况的传输链路,从而能实现业务流的高效传输。
在图4对应的实施例的基础上,一种可能的实现方式中,S402的SMF网元获取第一指示信息和PDU会话的业务流标识的实现可以是,SMF网元从PCF网元接收第二指示信息和PDU会话的业务流标识。
示例性的,如图5所示,S402可以包括:S4021、SMF网元向PCF网元发送策略请求。S4022、SMF网元接收来自PCF网元的第二指示信息和PDU会话的业务流标识,其中,第二指示信息用于指示终端设备或UPF网元决定PDU会话的业务流的传输链路。
本申请实施例中,第二指示信息是PCF网元向SMF网元发送的,用于指示终端设备或UPF网元决定PDU会话的业务流的传输链路,SMF网元在接收到第二指示信息后,可以确定用于指示终端设备或UPF网元决定PDU会话的业务流的传输链路的第一指示信息,并进一步向终端设备或UPF网元发送第一指示信息。可能的理解方式中,第一指示信息与第二指示信息的作用均为指示终端设备或UPF网元决定PDU会话的业务流的传输链路,而第一指示信息是SMF网元向终端设备或UPF网元发送的信息,第二指示信息是PCF网元向SMF网元发送的,第一指示信息和第二指示信息的具体形式可能相同也可以不同,本申请实施例对此不做具体限定。
一种可能的实现方式中,PCF网元可以从AF网元或NEF网元获取业务相关信息,进而获取第二指示信息和PDU会话的业务流标识。
示例性的,如图5所示,该方法还可以包括:S4001、PCF网元从AF网元或NEF网元获取业务相关信息。S4002、PCF网元获取第二指示信息和PDU会话的业务流标识。本申请实施例中,S4001与S4002的步骤可以在S4022之前的任意阶段执行。
业务相关信息可以是与PDU会话的业务流标识对应的业务流的相关信息。比如,业务相关信息包括下述的一个或多个:接入技术相关信息、乱序敏感指示信息、丢包敏感指示信息、时延敏感指示信息、抖动敏感指示信息、允许多接入指示信息或禁止多接入指示信息。
接入技术相关信息可以包括:优选的接入技术,允许的接入技术,禁止的接入技术中的至少一个。乱序敏感指示信息、丢包敏感指示信息、时延敏感指示信息、抖动敏感指示信息用于指示当发生乱序、或丢包、或延迟、或抖动时,将对业务质量产生很大影响。因此,对含有上述指示的业务,在传输时应尽量避免乱序、丢包、延迟、或抖动的发生。
PCF网元可以基于上述的业务流相关信息确定第二指示信息的具体形式。
例如,对于业务流允许在3GPP和/或non3GPP传输时,PCF网元可以确定第二指示信息为指示第一分流模式的信息。
例如,PCF网元可以确定第二指示信息为分流指示信息,可选的,PCF网元还确 定第二分流模式,将第二分流模式和第二指示信息均发送给SMF网元。比如,PCF网元确定第二分流模式的实现中,对于时延敏感业务,选择最小时延分流模式(lowest round-trip time,lowest RTT),即选择RTT最小的链路传输业务数据包。对于丢包敏感的业务选择冗余传输分流模式或采用MPTCP分流模式,冗余分流模式可以为多条链路同时传输此业务数据包。MPTCP分流模式可以为使用MPTCP协议传输此业务数据包。对于乱序敏感的业务选择MPTCP分流模式或QUIC传输模式。QUIC传输模式可以为使用QUIC协议传输此业务流数据包。对于抖动敏感的业务选择低抖动链路传输此业务流数据包,如选择3GPP接入技术或固网接入技术传输此业务流数据包。
本申请实施例中,SMF网元可以基于PCF网元的指示确定终端设备或UPF网元决定PDU会话的业务流的传输链路的方式,从而可以降低SMF网元的计算负荷。
在图4对应的实施例的基础上,一种可能的实现方式中,S402的SMF网元获取第一指示信息和PDU会话的业务流标识的实现可以是,SMF网元从PCF网元接收第三指示信息和PDU会话的业务流标识。
示例性的,如图6所示,S402可以包括:S4021、SMF网元向PCF网元发送策略请求。S4023、SMF网元接收来自PCF网元的第三指示信息和PDU会话的业务流标识,其中,第三指示信息用于指示SMF网元确定第二分流模式和/或第一指示信息。
本申请实施例中,第三指示信息是PCF网元向SMF网元发送的,用于指示SMF网元确定第二分流模式和/或第一指示信息,SMF网元在接收到第三指示信息后,可以确定用于指示终端设备或UPF网元决定PDU会话的业务流的传输链路的第一指示信息。一种可能的实现方式中,第一指示信息可以为指示第一分流模式的信息,并进一步向终端设备或UPF网元发送第一指示信息。一种可能的实现方式中,第一指示信息可以为分流指示信息,SMF网元也可以确定第二分流模式,并进一步向终端设备或UPF网元发送第一指示信息和第二分流模式。
一种可能的实现方式中,PCF网元可以从AF网元或NEF网元获取业务相关信息,进而获取第三指示信息和PDU会话的业务流标识。
示例性的,如图6所示,该方法还可以包括:S4001、PCF网元从AF网元或NEF网元获取业务相关信息。S4003、PCF网元获取第三指示信息和PDU会话的业务流标识。本申请实施例中,S4001与S4003的步骤可以在S4023之前的任意阶段执行。
业务相关信息可以是与PDU会话的业务流标识对应的业务流的相关信息。比如,业务相关信息包括下述的一个或多个:接入技术相关信息、乱序敏感指示信息、丢包敏感指示信息、时延敏感指示信息、抖动敏感指示信息、允许多接入指示信息或禁止多接入指示信息。
接入技术相关信息可以包括:优选的接入技术,允许的接入技术,禁止的接入技术中的至少一个。乱序敏感指示信息、丢包敏感指示信息、时延敏感指示信息、抖动敏感指示信息用于指示当发生乱序、或丢包、或延迟、或抖动时,将对业务质量产生很大影响。因此,对含有上述指示的业务,在传输时应尽量避免乱序、丢包、延迟、或抖动的发生。
本申请实施例中,SMF网元在接收到第三指示信息后,可以依据本地策略或业务 相关信息或业务流特征信息(详见图7,SMF网元发送第四指示信息给UPF网元获业务流特征信息)等确定第一指示信息,参照图4对应的实施例的说明,在此不再赘述。
本申请实施例中,SMF网元可以根据自身需求确定第一指示信息,从而可以得到更符合SMF网元需求的第一指示信息。
图7为本申请实施例提供的一种通信方法的流程示意图,包括以下步骤:
S701:终端设备向SMF网元发送请求建立或更新PDU会话的消息。
S702:SMF网元获取第一指示信息和PDU会话的业务流标识。
S703:SMF网元向终端设备发送业务流标识和第一指示信息。
S704:终端设备根据业务流标识和第一指示信息为PDU会话的业务流选择传输链路。
本申请实施例中,S701-S704的步骤可以参照图4对应的实施例的S401、S402、S405和S406的描述,在此不再赘述。
S705:SMF网元向UPF网元发送业务流标识和第四指示信息。第四指示信息用于指示UPF网元上报业务流标识相关的业务流特征信息。
S706:UPF网元根据业务流标识识别业务流特征信息。
S707:UPF网元向SMF网元发送业务流特征信息。
S708:SMF网元确定UPF网元的目标分流模式。
S709:SMF网元向UPF网元发送目标分流模式。
S710:UPF网元采用目标分流模式为业务流选择传输链路。
本申请实施例中,SMF网元向UPF网元发送用于指示UPF网元上报业务流标识相关的业务流特征信息的第四指示信息,UPF网元在识别业务流标识对应的业务流特征信息后,将业务流特征信息发送给SMF网元,进而SMF网元可以基于业务流特征信息为UPF网元确定目标分流模式,之后UPF网元可以采用目标分流模式为业务流选择传输链路,进行业务流的传输。例如,目标分流模式可以为第二分流模式,如lowest RTT、负载均衡模式、主备模式、优先级模式或冗余传输模式的任意一种。业务流特征信息可以包括业务类型或应用类型或应用标识等,本申请实施例对此不做具体限定。本实施例不对UPF网元如何获取业务流特性信息的方法做限制,例如UPF网元可以通过DPI检测获取业务流特征信息。具体来讲,UPF网元基于第四指示信息对业务流进行DPI检测,从而获取业务流特性信息。
该方式中可以由SMF网元为UPF网元确定与UPF网元的当前业务流适应的目标分流模式,不仅可以得到合适的分流模式,还可以降低UPF网元的计算负荷。
上面结合图4-图7,对本申请实施例的方法进行了说明,下面对本申请实施例提供的执行上述方法的通信装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的一种通信装置可以执行上述通信方法中终端设备执行的步骤。另一种通信装置可以执行上述实施例中的通信方法中UPF网元所执行的步骤。另一种通信装置可以执行上述实施例中的通信方法中SMF网元所执行的步骤。再一种通信装置,可以执行上述实施例中的通信方法中PCF网元所执行的步骤。
下面以采用对应各个功能划分各个功能模块为例进行说明:
如图8所示,图8示出了本申请实施例提供的通信装置的结构示意图,该通信装置可以是本申请实施例中的SMF网元、UPF网元、PCF网元或终端设备,也可以为应用于SMF网元、UPF网元、PCF网元或终端设备中的芯片。该通信装置包括:处理单元101和通信单元102。其中,通信单元102用于支持通信装置执行信息发送或接收的步骤。处理单元101用于支持通信装置执行信息处理的步骤。
一种示例,以该通信装置为终端设备或应用于终端设备中的芯片或芯片系统为例,通信单元102,用于支持通信装置执行上述实施例中的S401和S405。处理单元101用于支持通信装置执行上述实施例中的S406。
另一种示例,以该通信装置为UPF网元或应用于UPF网元中的芯片或芯片系统为例,该通信单元102用于支持通信装置执行上述实施例中的步骤S403。处理单元101用于支持通信装置执行上述实施例中的S404。
再一种示例,以该通信装置为SMF网元或应用于SMF网元中的芯片或芯片系统为例,该通信单元102用于支持通信装置执行上述实施例中的S401、S403、S404及S405。处理单元101用于支持通信装置执行上述实施例中的S402。
在一种可能的实施例中,通信单元102还用于支持通信装置执行上述实施例中的S4021及S4022。
再一种示例,以该通信装置为PCF网元或应用于PCF网元中的芯片或芯片系统为例,该通信单元102用于支持通信装置执行上述实施例中的S4001、S4021及S4022。处理单元101用于支持通信装置执行上述实施例中的S4002。
在一种可能的实施例中,通信装置还可以包括:存储单元103。处理单元101、通信单元102、存储单元103通过通信总线相连。
存储单元103可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。
存储单元103可以独立存在,通过通信总线与通信装置具有的处理单元101相连。存储单元103也可以和处理单元集成在一起。
通信装置可以用于通信设备、电路、硬件组件或者芯片中。
以通信装置可以是本申请实施例中的SMF网元、UPF网元、PCF网元或终端设备的芯片或芯片系统为例,则通信单元102可以是输入或者输出接口、管脚或者电路等。示例性的,存储单元103可以存储SMF网元、UPF网元、PCF网元或终端设备侧的方法的计算机执行指令,以使处理单元101执行上述实施例中SMF网元、UPF网元、PCF网元或终端设备侧的方法。存储单元103可以是寄存器、缓存或者RAM等,存储单元103可以和处理单元101集成在一起。存储单元103可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元103可以与处理单元101相独立。
本申请实施例提供了一种通信装置,该通信装置包括一个或者多个模块,用于实现上述S401-S406中的方法,该一个或者多个模块可以与上述S401-S406中的方法的步骤相对应。具体的,本申请实施例中由SMF网元执行的方法中的每个步骤,SMF网元中存在执行该方法中每个步骤的单元或者模块。由UPF网元执行的方法中的每个步骤,UPF网元中存在执行该方法中每个步骤的单元或者模块。由PCF网元执行的方法中的每个步骤,PCF网元中存在执行该方法中每个步骤的单元或者模块。由终端设 备执行的方法中的每个步骤,终端设备中存在执行该方法中每个步骤的单元或者模块。例如,对于执行对该通信装置的动作进行控制或处理的模块可以称为处理模块。对于执行对在通信装置侧进行消息或数据处理的步骤的模块可以称为通信模块。
图9所示为本申请实施例提供的通信设备的硬件结构示意图。本申请实施例中的SMF网元、UPF网元、PCF网元的硬件结构均可以参考如图9所示的通信设备的硬件结构示意图。该通信设备包括处理器41,通信线路44以及至少一个通信接口(图9中示例性的以通信接口43为例进行说明)。
处理器41可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路44可包括一通路,在上述组件之间传送信息。
通信接口43,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
可能的,该通信设备还可以包括存储器42。
存储器42可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路44与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器42用于存储执行本申请方案的计算机执行指令,并由处理器41来控制执行。处理器41用于执行存储器42中存储的计算机执行指令,从而实现本申请下述实施例提供的策略控制方法。
可能的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器41可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图9中的处理器41和处理器45。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
例如,以该通信装置为SMF网元或应用于SMF网元中的芯片为例,该通信接口用于支持该通信装置执行上述实施例中的S401、S403及S405。处理器41或处理器45用于支持通信装置执行上述实施例中的S402。
在另一种示例中,以通信装置可以为UPF网元或应用于UPF网元中的芯片或芯 片系统为例,该通信接口用于支持通信装置执行上述实施例中的S403。处理器41或处理器45用于支持通信装置执行上述实施例中的步骤S404。
在另一种示例中,以通信装置可以为PCF网元或应用于PCF网元中的芯片或芯片系统为例,该通信接口用于支持通信装置执行上述实施例中的S4001、S4021及S4022。处理器41或处理器45用于支持通信装置执行上述实施例中的步骤S4002。
如图10所示,为本申请实施例提供的一种终端设备(下述简称终端)的结构示意图。
终端包括至少一个处理器1211、至少一个收发器1212。在一种可能的示例中,终端还可以包括和至少一个存储器1213、输出设备1214、输入设备1215和一个或多个天线1216。处理器1211、存储器1213和收发器1212相连。天线1216与收发器1212相连,输出设备1214、输入设备1215与处理器1211相连。
本申请实施例中的存储器,例如存储器1213,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器1213可以是独立存在,与处理器1211相连。在另一种示例中,存储器1213也可以和处理器1211集成在一起,例如集成在一个芯片之内。其中,存储器1213能够存储执行本申请实施例的技术方案的程序代码,并由处理器1211来控制执行,被执行的各类计算机程序代码也可被视为是处理器1211的驱动程序。例如,处理器1211用于执行存储器1213中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器1212可以用于支持终端与终端或者终端与接入设备之间射频信号的接收或者发送,收发器1212可以与天线1216相连。收发器1212包括发射机Tx和接收机Rx。具体地,一个或多个天线1216可以接收射频信号,该收发器1212的接收机Rx用于从天线接收射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给处理器1211,以便处理器1211对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1212中的发射机Tx还用于从处理器1211接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1216发送射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
处理器1211可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器1211可以用于为终端实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器1211用于实现上述功能中的一种或者多种
输出设备1214和处理器1211通信,可以以多种方式来显示信息。例如,输出设备1214可以是液晶显示器(Liquid Crystal Display,LCD)、发光二级管(Light Emitting Diode,LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备1215和处理器1211通信,可以以多种方式接受用户的输入。例如,输入设备1215可以是鼠标、键盘、触摸屏设备或传感设备等。
具体的,至少一个处理器1211用于执行S406。至少一个收发器1212用于执行S401和S405。
图11是本发明实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和通信接口1530。
在一种可能的实施例中,如图11所示的芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式中为:SMF网元、UPF网元、PCF网元或终端设备所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制SMF网元、UPF网元、PCF网元或终端设备的操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、通信接口1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图11中将各种总线都标为总线系统1520。
以上通信单元可以是一种该装置的接口电路或通信接口,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元是该芯片用于从其它芯片或装置接收信号或发送信号的接口电路或通信接口。
上述本发明实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing, DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,通信接口1530用于执行图4-图7所示的实施例中的SMF网元、UPF网元、PCF网元或终端设备的接收和发送的步骤。处理器1510用于执行图4-图7所示的实施例中的SMF网元、UPF网元、PCF网元或终端设备的处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可能的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或目标于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数 据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、基站、终端或者其它可编程装置。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。
需要说明的是,本申请实施例中各网元在具体的应用中也可能采用其他的定义或名称,示例性的,SMF网元可以称为第一核心网网元,UPF网元可以称为第二核心网网元,PCF网元可以称为第三核心网网元,AMF网元可以称为第四核心网网元,等。或者,上述各网元也可以统一称为核心网网元。或者上述各网元也可以根据实际的功能定义其他的名称,本申请实施例对此不作具体限定。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    第一设备接收来自会话管理网元的第一指示信息和协议数据单元PDU会话的业务流标识;所述第一指示信息用于指示所述第一设备决定所述PDU会话的业务流的传输链路;
    所述第一设备根据所述业务流标识和所述第一指示信息为所述PDU会话的业务流选择传输链路。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备根据所述业务流标识和所述第一指示信息为所述PDU会话的业务流选择传输链路,包括:
    所述第一设备根据所述业务流标识识别所述PDU会话的业务流;
    所述第一设备基于所述第一指示信息为所述业务流标识对应的业务流选择一条或多条传输链路。
  3. 根据权利要求2所述的方法,其特征在于,所述第一设备基于所述第一指示信息为所述业务流标识对应的业务流选择一条或多条传输链路,包括:
    所述第一设备根据用户喜好、应用喜好、或本地策略中的至少一个为所述业务流标识对应的业务流选择一条或多条传输链路;
    或者,
    所述第一设备根据链路状态、传输条件阈值、业务类型、应用类型中的至少两个为所述业务流标识对应的业务流选择一条或多条传输链路;
    或者,
    所述第一设备根据用户喜好和/或应用喜好和/或本地策略,以及链路状态和/或传输条件阈值为所述业务流标识对应的业务流选择一条或多条传输链路。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一指示信息为:用于指示第一分流模式的信息,所述第一分流模式包括:所述第一设备为所述业务流自主选择传输链路的分流模式,或,所述第一设备为所述业务流选择满足所述业务流传输服务质量QoS需求的传输链路的分流模式,或,所述第一设备为所述业务流选择满足所述业务流传输带宽需求的传输链路的分流模式,或,所述第一设备为所述业务流选择两条链路同时传输业务流的冗余传输模式,或,所述第一设备为所述业务流确定两条链路的分流比率的负载均衡分流模式。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一指示信息为分流指示信息,所述方法还包括:
    所述第一设备接收来自所述会话管理网元的第二分流模式,所述第二分流模式为下述的其中一种:最小时延分流模式、负载均衡分流模式、优先级分流模式或主备分流模式;所述分流指示信息用于指示所述第一设备在基于所述第二分流模式选择的链路不满足所述PDU会话的业务流的传输需求的情况下,为所述PDU会话的业务流选择其他的一条或多条传输链路;
    或者,所述分流指示信息用于指示所述第一设备基于所述第二分流模式与分流指示信息为所述PDU会话业务流选择一条或多条传输链路。
  6. 根据权利要求5所述的方法,其特征在于,
    在所述第一设备接收到所述第二分流模式为负载均衡分流模式时,所述分流指示信息为至少一条链路的特定分流比例;所述特定分流比例用于指示由第一设备决定至少一条传输链路的分流比例。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述业务流标识包括下述的一个或多个:
    PDU会话标识或N4会话标识、业务流描述信息、应用标识、QoS流标识、业务类型标识、应用类型标识或终端外部标识。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一设备为终端设备,所述方法还包括:
    所述第一设备向所述会话管理网元发送用于请求建立或者更新PDU会话的消息。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一设备为用户面网元。
  10. 一种通信装置,其特征在于,包括通信单元和处理单元;
    其中,所述通信单元,用于接收来自会话管理网元的第一指示信息和协议数据单元PDU会话的业务流标识;所述第一指示信息用于指示所述第一设备决定所述PDU会话的业务流的传输链路;
    所述处理单元,用于根据所述业务流标识和所述第一指示信息为所述PDU会话的业务流选择传输链路。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元,具体用于根据所述业务流标识识别所述PDU会话的业务流;所基于所述第一指示信息为所述业务流标识对应的业务流选择一条或多条传输链路。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元,具体用于:
    根据用户喜好、应用喜好、或本地策略中的至少一个为所述业务流标识对应的业务流选择一条或多条传输链路;
    或者,
    根据链路状态、传输条件阈值、业务类型、应用类型中的至少两个为所述业务流标识对应的业务流选择一条或多条传输链路;
    或者,
    根据用户喜好和/或应用喜好和/或本地策略,以及链路状态和/或传输条件阈值为所述业务流标识对应的业务流选择一条或多条传输链路。
  13. 根据权利要求10-12任一项所述的装置,其特征在于,所述第一指示信息为:用于指示第一分流模式的信息,所述第一分流模式包括:所述第一设备为所述业务流自主选择传输链路的分流模式,或,所述第一设备为所述业务流选择满足所述业务流传输服务质量QoS需求的传输链路的分流模式,或,所述第一设备为所述业务流选择满足所述业务流传输带宽需求的传输链路的分流模式,或,所述第一设备为所述业务流选择两条链路同时传输业务流的冗余传输模式,或,所述第一设备为所述业务流确定两条链路的分流比率的负载均衡分流模式。
  14. 根据权利要求10-12任一项所述的装置,其特征在于,所述第一指示信息为 分流指示信息,所述通信单元,还用于接收来自所述会话管理网元的第二分流模式,所述第二分流模式为下述的其中一种:最小时延分流模式、负载均衡分流模式、优先级分流模式或主备分流模式;所述分流指示信息用于指示所述第一设备在基于所述第二分流模式选择的链路不满足所述PDU会话的业务流的传输需求的情况下,为所述PDU会话的业务流选择其他的一条或多条传输链路;或者,所述分流指示信息用于指示所述第一设备基于所述第二分流模式与分流指示信息为所述PDU会话业务流选择一条或多条传输链路。
  15. 根据权利要求14所述的装置,其特征在于,在所述第一设备接收到所述第二分流模式为负载均衡分流模式时,所述分流指示信息为至少一条链路的特定分流比例;所述特定分流比例用于指示由第一设备决定至少一条传输链路的分流比例。
  16. 根据权利要求10-15任一项所述的装置,其特征在于,所述业务流标识包括下述的一个或多个:
    PDU会话标识或N4会话标识、业务流描述信息、应用标识、QoS流标识、业务类型标识、应用类型标识或终端外部标识。
  17. 根据权利要求10-16任一项所述的装置,其特征在于,所述通信装置为终端设备,所述通信单元,还用于向所述会话管理网元发送用于请求建立或者更新PDU会话的消息。
  18. 根据权利要求10-16任一项所述的装置,其特征在于,所述通信装置为用户面网元。
  19. 一种通信装置,其特征在于,包括:处理器和通信接口;
    其中,所述通信接口用于执行如权利要求1-9中任一项所述的通信方法中进行消息收发的操作;所述处理器运行指令以执行如权利要求1-9中任一项所述的通信方法中进行处理或控制的操作。
  20. 一种芯片,其特征在于,所述芯片包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器耦合,所述至少一个处理器用于运行计算机程序或指令,以实现如权利要求1-9中任一项所述的通信方法;所述通信接口用于与所述芯片之外的其它模块进行通信。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被运行时,实现如权利要求1-9中任一项所述的通信方法。
  22. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序在被处理器执行时实现权利要求1-9中任一项所述的通信方法。
  23. 一种通信系统,其特征在于,包括:
    第一设备,用于执行如权利要求1-9中任一项所述的通信方法;
    会话管理网元,用于向所述第一设备发送第一指示信息和协议数据单元PDU会话的业务流标识,所述第一指示信息用于指示所述第一设备决定所述PDU会话的业务流的传输链路。
PCT/CN2021/073720 2020-04-13 2021-01-26 通信方法和装置 WO2021208561A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21788277.8A EP4124104A4 (en) 2020-04-13 2021-01-26 COMMUNICATION METHOD AND APPARATUS
CA3175487A CA3175487A1 (en) 2020-04-13 2021-01-26 Communication method and apparatus
AU2021256599A AU2021256599B2 (en) 2020-04-13 2021-01-26 Communication method and apparatus
JP2022562364A JP2023521210A (ja) 2020-04-13 2021-01-26 通信方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010284850.4A CN113543219B (zh) 2020-04-13 2020-04-13 通信方法和装置
CN202010284850.4 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021208561A1 true WO2021208561A1 (zh) 2021-10-21

Family

ID=78083521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073720 WO2021208561A1 (zh) 2020-04-13 2021-01-26 通信方法和装置

Country Status (6)

Country Link
EP (1) EP4124104A4 (zh)
JP (1) JP2023521210A (zh)
CN (1) CN113543219B (zh)
AU (1) AU2021256599B2 (zh)
CA (1) CA3175487A1 (zh)
WO (1) WO2021208561A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11758460B1 (en) * 2021-02-02 2023-09-12 T-Mobile Usa, Inc. Managing local application connectivity in a multi-network environment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116095667A (zh) * 2021-11-05 2023-05-09 华为技术有限公司 一种通信的方法和装置
CN114143387B (zh) * 2021-11-16 2023-11-14 广州三七极创网络科技有限公司 基于quic的应用层通讯方法、装置、存储介质
CN114268936B (zh) * 2022-03-01 2022-07-12 荣耀终端有限公司 数据传输方法及装置
CN115175117A (zh) * 2022-07-01 2022-10-11 中国电信股份有限公司 多接入下的数据冗余传输方法及其相关设备
CN115396978B (zh) * 2022-08-23 2024-05-10 中国联合网络通信集团有限公司 一种通信方法、装置、服务器及存储介质
CN117135199B (zh) * 2023-01-19 2024-08-13 荣耀终端有限公司 一种会话管理方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120307658A1 (en) * 2011-05-31 2012-12-06 Ntt Docomo, Inc Method, apparatus and system for bandwidth aggregation of mobile internet access node
CN103188725A (zh) * 2011-12-29 2013-07-03 中兴通讯股份有限公司 一种协同业务的适配、分流传输及流切换方法和系统
CN103491578A (zh) * 2013-08-30 2014-01-01 华为技术有限公司 网络分流方法及装置
US20160198364A1 (en) * 2013-08-09 2016-07-07 Nokia Solutions And Networks Oy Offloading Traffic of a User Equipment Communication Session from a Cellular Communication Network to a Wireless Local Area Network (WLAN)
CN110830429A (zh) * 2018-08-14 2020-02-21 华为技术有限公司 一种业务流的传输方法、通信方法及装置
CN110831070A (zh) * 2018-08-13 2020-02-21 华为技术有限公司 一种处理业务流的方法、通信方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162754B (zh) * 2015-04-07 2020-03-24 中国移动通信集团公司 一种业务流的识别方法、装置及系统
WO2019033269A1 (zh) * 2017-08-15 2019-02-21 华为技术有限公司 一种会话建立的方法及设备
US11368972B2 (en) * 2018-02-14 2022-06-21 Qualcomm Incorporated Receiver-side buffering for time-aware scheduling across cellular link
US10979355B2 (en) * 2018-04-02 2021-04-13 Apple Inc. Multipath transmission control protocol proxy use in a cellular network
WO2019196788A1 (zh) * 2018-04-10 2019-10-17 华为技术有限公司 通信方法和通信装置
CN110519786B (zh) * 2018-05-21 2021-01-15 华为技术有限公司 业务服务质量监测方法、设备及系统
WO2020034869A1 (zh) * 2018-08-14 2020-02-20 华为技术有限公司 一种业务流的传输方法、通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120307658A1 (en) * 2011-05-31 2012-12-06 Ntt Docomo, Inc Method, apparatus and system for bandwidth aggregation of mobile internet access node
CN103188725A (zh) * 2011-12-29 2013-07-03 中兴通讯股份有限公司 一种协同业务的适配、分流传输及流切换方法和系统
US20160198364A1 (en) * 2013-08-09 2016-07-07 Nokia Solutions And Networks Oy Offloading Traffic of a User Equipment Communication Session from a Cellular Communication Network to a Wireless Local Area Network (WLAN)
CN103491578A (zh) * 2013-08-30 2014-01-01 华为技术有限公司 网络分流方法及装置
CN110831070A (zh) * 2018-08-13 2020-02-21 华为技术有限公司 一种处理业务流的方法、通信方法及装置
CN110830429A (zh) * 2018-08-14 2020-02-21 华为技术有限公司 一种业务流的传输方法、通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4124104A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11758460B1 (en) * 2021-02-02 2023-09-12 T-Mobile Usa, Inc. Managing local application connectivity in a multi-network environment

Also Published As

Publication number Publication date
JP2023521210A (ja) 2023-05-23
CA3175487A1 (en) 2021-10-21
CN113543219B (zh) 2023-08-22
AU2021256599B2 (en) 2024-02-15
EP4124104A1 (en) 2023-01-25
EP4124104A4 (en) 2023-08-23
AU2021256599A1 (en) 2022-11-17
CN113543219A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2021208561A1 (zh) 通信方法和装置
US11811670B2 (en) Packet delay parameter obtaining method, system, and apparatus
US20220418013A1 (en) Communication method and apparatus
WO2021232841A1 (zh) 通信方法和装置
WO2021174884A1 (zh) 通信方法和装置
WO2021227561A1 (zh) 通信方法和装置
JP7389243B2 (ja) QoSマッピング
CN114071494A (zh) 通信方法和装置
WO2016074211A1 (zh) 一种数据转发的方法和控制器
WO2022033543A1 (zh) 一种中继通信方法及通信装置
US20220248479A1 (en) Data Transmission Method and Apparatus
WO2021254116A1 (zh) 通信方法和装置
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
WO2021058029A1 (zh) 一种控制业务流传输的方法、装置及系统
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
US20220360969A1 (en) Communication method and apparatus
US20220256395A1 (en) Communication method, apparatus, and system
US20230388847A1 (en) Transmission path determining method and apparatus
US11943741B2 (en) Apparatuses, systems, methods, and non-transitory computer readable media for reducing signaling messages between a RAN node and a core network
WO2024012376A1 (zh) 一种通信方法、通信装置及通信系统
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562364

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3175487

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021256599

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021788277

Country of ref document: EP

Effective date: 20221018

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021256599

Country of ref document: AU

Date of ref document: 20210126

Kind code of ref document: A