WO2021057953A1 - Method for assembling electric apparatus, electric apparatus, and motor vehicle comprising the electric apparatus - Google Patents

Method for assembling electric apparatus, electric apparatus, and motor vehicle comprising the electric apparatus Download PDF

Info

Publication number
WO2021057953A1
WO2021057953A1 PCT/CN2020/118041 CN2020118041W WO2021057953A1 WO 2021057953 A1 WO2021057953 A1 WO 2021057953A1 CN 2020118041 W CN2020118041 W CN 2020118041W WO 2021057953 A1 WO2021057953 A1 WO 2021057953A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric apparatus
shielding wall
circuit board
emc shielding
housing
Prior art date
Application number
PCT/CN2020/118041
Other languages
French (fr)
Inventor
Shuisheng YU
Xing GUAN
Original Assignee
Valeo Siemens Eautomotive (Shenzhen) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens Eautomotive (Shenzhen) Co., Ltd. filed Critical Valeo Siemens Eautomotive (Shenzhen) Co., Ltd.
Publication of WO2021057953A1 publication Critical patent/WO2021057953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0239Electronic boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/57Fixed connections for rigid printed circuits or like structures characterised by the terminals surface mounting terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/64Connections between or with conductive parts having primarily a non-electric function, e.g. frame, casing, rail
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/007Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for elastomeric connecting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0039Galvanic coupling of ground layer on printed circuit board [PCB] to conductive casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles

Definitions

  • the present invention relates to the field of electric technology, in particular to a method for assembling an electric apparatus, an electric apparatus, and a motor vehicle comprising the electric apparatus.
  • inductive devices or Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) are disposed; therefore, when in use, such an electric apparatus generates relatively high electromagnetic radiation and has relatively poor electromagnetic compatibility.
  • MOSFETs Metal-Oxide-Semiconductor Field Effect Transistors
  • EMC shielding walls are disposed on a circuit board of an electric apparatus, the EMC shielding wall being provided with a spring arm and coming into contact with the housing by the spring arm to achieve a shielding effect.
  • the present invention provides a method for assembling an electric apparatus, an electric apparatus, and a motor vehicle comprising the electric apparatus.
  • Use of an electric apparatus provided by the present invention may, effectively prevent electromagnetic interference; in addition, the electric apparatus is easier to assemble and carries relatively low manufacture costs, on the basis of shielding against electromagnetic radiation.
  • an electric apparatus comprising a circuit board and a housing, wherein the housing comprises an EMC shielding wall; at least one spring grounding contactor is disposed in a position of the circuit board which corresponds to the EMC shielding wall; and wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
  • An electric apparatus according to the present invention may further comprise one or more of the following characteristics, separately or in combination.
  • the at least one spring grounding contactor is provided with: one end which is disposed on the circuit board; and the other end which has a flat surface and is pressed against a flat top surface of an EMC shielding wall to provide stable electrical contact.
  • the EMC shielding wall separates two adjacent spaces in the housing, the circuit board is positioned to cover two adjacent spaces and the EMC shielding wall, and the spring grounding contactor is pressed against a width portion of the EMC shielding wall.
  • the spring grounding contactor has a structure in shape of "Z” , " ⁇ ” , “ ⁇ ” , or bridge.
  • the EMC shielding wall and the housing are formed integrally.
  • the EMC shielding wall is formed in the housing by a casting or splicing process.
  • the housing and the EMC shielding wall are made of an aluminium material.
  • one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology.
  • the electric apparatus is a charging apparatus for a motor vehicle.
  • the electric apparatus is configured in a motor vehicle.
  • a motor vehicle comprising the above-described electric apparatus.
  • a method for assembling an electric apparatus comprising: providing a housing, the housing comprising an EMC shielding wall; providing a circuit board, at least one spring grounding contactor being disposed in a position of the circuit board that corresponds to the EMC shielding wall; and assembling the circuit board to the housing, wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
  • a method for assembling an electric apparatus according to the present invention may further comprise one or more of the following characteristics, separately or in combination.
  • the at least one spring grounding contactor is provided with: one end which is disposed on the circuit board; and the other end which has a flat surface and is pressed against a flat top surface of the EMC shielding wall to provide stable electrical contact.
  • the spring grounding contactor has a structure in shape of "Z” , " ⁇ ” , “ ⁇ ” , or bridge.
  • the EMC shielding wall and the housing are formed integrally.
  • electromagnetic interference caused by an electric apparatus to the outside may be reduced effectively and the electromagnetic compatibility of the electric apparatus enhanced; especially, the electric apparatus is easy to assemble and relatively low-cost.
  • Figure 1A is a perspective view of a circuit board of a known electric apparatus 100
  • Figure 1B is an inner sectional view of the electric apparatus 100 as shown in Figure 1A;
  • Figure 2A is a perspective view of a housing 220 in an electric apparatus 200 according to an embodiment of the present disclosure
  • Figure 2B is a perspective view of a circuit board 210 in the electric apparatus 200 according to an embodiment of the present disclosure
  • Figure 3A is a perspective view of the assembled electric apparatus 200 according to an embodiment of the present disclosure.
  • Figure 3B is an inner sectional view of the assembled electric apparatus 200 according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram for a manner of connecting an EMC shielding wall to a spring grounding contactor according to an embodiment of the present disclosure
  • Figure 5A is a structural diagram for a spring grounding contactor according to an embodiment of the present disclosure
  • Figure 5B is a structural diagram for a spring grounding contactor according to an embodiment of the present disclosure.
  • Figure 5C is a structural diagram for a spring grounding contactor according to an embodiment of the present disclosure.
  • Figure 6 is an illustrative flowchart for a method 600 for assembling an electric apparatus according to an embodiment of the present disclosure.
  • a term used herein is intended to explain an embodiment, but not to limit and/or define the present disclosure. It should be understood that a direction or position relationship indicated by terms like “inner” , “outer” , etc. is based on a direction or position relationship shown in a drawing, or is a direction or position relationship in which the disclosed product is usually placed when used, or is a direction or position relationship usually understood by those of ordinary skill in the art; it is intended only for convenience of description of the present disclosure and brevity of description, instead of indicating or implying that the device or component in question must have a specific direction or be structured or operated in a specific direction, and therefore should not be construed as limiting the present disclosure.
  • first may be called a second component and, similarly, a second component may be called a first component.
  • FIGs 1A and 1B show a known electric apparatus 100.
  • Said electric apparatus 100 is formed by a circuit board 110 and a housing 120 which are joined to each other.
  • Figure 1A is a perspective view of the circuit board 110 of the electric apparatus 100 after the housing 120 is removed.
  • Said electric apparatus may be a charging apparatus for charging an electric device or motor vehicle, or it may also be an inverter, a direct current-direct current (DC-DC) converter or another type of electric apparatus. It is not limited to a specific type of the electric apparatus.
  • DC-DC direct current-direct current
  • Said signal connector is used to connect to other electric devices and receive control or feedback signals from other electric devices, and is capable of outputting a corresponding control or feedback signals to other electric devices.
  • a signal received or outputted by the signal connector may be a voltage signal, or may also be a current signal. It is not limited to a specific type of an electric apparatus to which the signal connector is connected or signal content inputted or outputted by the signal connector.
  • Said filter component is mainly used to prevent noise generated by a device in the electric apparatus from being radiated to the outside through a connector opening or being transmitted to the outside along a wire to which the connector is butt-jointed. In addition, it may also perform wave filtering on an alternating current (AC) from an external power grid to filter out AC noise therein.
  • Said filter component may comprise one or more inductors and one or more capacitors.
  • an input filter component 300 may be disposed at an input connector port on the circuit board, and an output filter component may be disposed at an output connector port on the circuit board.
  • the shown input filter component 300 is a two-stage filter component, comprising a first common-mode inductor 115A, a second common-mode inductor 115B, a first input capacitor 116A, and a second input capacitor 116B.
  • the output filter component is a single-stage filter component, comprising a third common-mode inductor 117 and an output capacitor module 118. It should be understood that, depending on different actual needs, the filter component may be constituted in different forms and disposed in different positions.
  • the electric apparatus 100 may be a charging apparatus and, in this case, its functional components, for example, may comprise a resonant inductor 112, a transformer 113, an inductor 114, and a plurality of transistor regions 119 (each transistor region 119, for example, may comprise a plurality of transistors and diodes) , used to process an AC current inputted at the input terminal and convert it into a desired voltage, for example, converting it into a 400 V DC voltage, or converting it into a 450 V DC voltage. It is not limited to a specific composition of a functional component of the electric apparatus or a specific function fulfilled by the functional component.
  • Said electric apparatus further comprises at least one EMC shielding wall which is an independent plate-like structure and is intended to shield the electromagnetic radiation generated to the outside by an internal functional module of the electric apparatus, for example, preventing noise generated by an internal means from being radiated to the outside through a connector opening or being transmitted to the outside along a wire to which the connector is butt-jointed, thereby reducing electromagnetic interference caused by the electric apparatus to an external device and enhancing the electromagnetic compatibility (EMC) performance of the electric apparatus.
  • EMC shielding wall is made of an electro-conductive material and, for example, may be made of a metallic material; for example, it may be formed into a thin sheet metal.
  • the EMC shielding wall 130 for example, is perpendicular to a circuit board and disposed on the circuit board; in addition, it, for example, may be connected to a grounding module on the circuit board by a corresponding circuit disposed on the circuit board, thereby fulfilling the function of shielding against electromagnetic radiation.
  • the EMC shielding wall 130 is provided with a spring arm 131. Said spring arm 131 is used to come into contact with the housing 120 of the electric apparatus 100, thereby shielding against electromagnetic radiation.
  • Figure 1B is an inner sectional view of the electric apparatus 100 as shown in Figure 1A.
  • the circuit board 110 is assembled with the housing 120, wherein the spring arm 131 of the EMC shielding wall 130 comes into contact with the housing 120 of the electric apparatus 100 to form an electro-conductive passage, thereby reducing interference caused by electromagnetic radiation generated by the electric apparatus to external devices or to signals inputted or outputted by the electric apparatus.
  • the EMC shielding wall mentioned herein is disposed surrounding only the signal connector and certain components in the input filter component 300; as shown in Figure 1A, it may be used only to shield certain modules (the first input capacitor 116A) of the input filter component 300 and the signal connector from interference caused by electromagnetic interference generated the electric apparatus itself, covering a relatively narrow shielding range; in addition, when the EMC shielding wall comes into contact with the housing by its spring arm, the area of contact between the EMC shielding wall and the housing is small, the contact resistance is high, and the electromagnetic shielding effect
  • an embodiment of the present disclosure proposes an electric apparatus 200.
  • Figure 2A is a perspective view of a housing 220 in an electric apparatus 200 according to an embodiment of the present disclosure
  • Figure 2B is a perspective view of a circuit board 210 in the electric apparatus 200 according to an embodiment of the present disclosure
  • Figure 3A is a perspective view of the assembled electric apparatus 200 according to an embodiment of the present disclosure
  • Figure 3B is an inner sectional view of the assembled electric apparatus 200 according to an embodiment of the present disclosure.
  • the electric apparatus 200 comprises a circuit board 210 and a housing 220.
  • Said housing 220 comprises an EMC shielding wall 221, and at least one spring grounding contactor 211 is disposed in a position of the circuit board 210 which corresponds to the EMC shielding wall 221.
  • the EMC shielding wall 221 is electrically connected to the circuit board 210 by the at least one spring grounding contactor 211.
  • the electric apparatus may be a charging apparatus for charging an electric device or motor vehicle, or may also be another type of electric apparatus.
  • An embodiment of the present disclosure is not limited to a specific type of the electric apparatus.
  • a signal connector may be further disposed on the circuit board; it is used to connect to other electric devices and receive control or feedback signals from other electric devices, and is capable of outputting corresponding control or feedback signals to other electric devices.
  • a signal received or outputted by the signal connector for example, may be a voltage signal, or may also be a current signal.
  • An embodiment of the present disclosure is not limited to a specific type of an electric apparatus to which the signal connector is connected or signal content inputted or outputted by the signal connector.
  • a functional component may further be disposed on the circuit board, and the functional component is used to fulfil a corresponding function of the electric apparatus.
  • Said functional component may be as shown in Figure 1A; it, for example, may comprise a resonant inductor, a transformer, an inductor, and a plurality of transistor regions, and be used to process an AC current inputted at the input terminal and convert it into a desired voltage, for example, converting it into a 400 V DC voltage, or converting it into a 450 V DC voltage.
  • An embodiment of the present disclosure is not limited to a specific composition of a functional component of the electric apparatus or a specific function fulfilled by it.
  • a filter component may further be disposed on the circuit board, and the filter component is mainly used to prevent noise generated by a device in the electric apparatus from being radiated to the outside through a connector opening or being transmitted to the outside along a wire to which the connector is butt-jointed. In addition, it may also perform wave filtering on an alternating current (AC) from an external power grid to filter out AC noise therein.
  • the filter component may comprise one or more inductors and one or more capacitors.
  • Figure 2B shows an input filter component 212 and an output filter component 213 which are disposed on the circuit board.
  • the circuit board 210 may further comprise one or more other functional modules or components, for example, comprising a signal connector, a transformer, etc.
  • An embodiment of the present disclosure is not limited to a specific component comprised by the circuit board or a position in which it is disposed.
  • Said EMC shielding wall is intended to shield against electromagnetic radiation generated to the outside by an internal functional module of the electric apparatus, thereby reducing electromagnetic interference caused by the electric apparatus to an external device and enhancing the electromagnetic compatibility (EMC) performance of the electric apparatus.
  • Said EMC shielding wall is made of an electro-conductive material and, for example, may be made of a metallic material; for example, it may be formed into a thin sheet metal.
  • Said spring grounding contactor characterizes an elastic member which is used to implement electric grounding of a device, and it is electrically connected to a grounding module on the circuit board.
  • the housing, the EMC shielding wall, and the spring grounding contactor may all be made of an electro-conductive material.
  • Said EMC shielding wall may be integrally formed with the housing; alternatively, the EMC shielding wall and the housing may also be manufactured separately before being assembled and spliced together.
  • An embodiment of the present disclosure is not limited to a process of manufacturing or a manner of splicing together the housing and the EMC shielding wall.
  • Said spring grounding contactor may be a single contactor, or may also be a plurality of contactors; an embodiment of the present disclosure is not limited to the number of the spring grounding contactors.
  • Said EMC shielding wall and the spring grounding contactor may be made of the same electro-conductive material, for example, being both made of copper foil; alternatively, both may also be made of different electro-conductive materials, for example, the EMC shielding wall being made of iron, the spring grounding contactor being made of copper foil.
  • An embodiment of the present disclosure is not limited to a relationship between the EMC shielding wall and the spring grounding contactor in terms of composition.
  • the EMC shielding walls are a plurality of shielding walls and, for example, may form a plurality of shielding cavities in the housing of the electric apparatus which are used to shield a component associated therewith from the influence of electromagnetic radiation generated by the electric apparatus.
  • the plurality of EMC shielding walls form two shielding cavities 222 and 223; for example, they may be respectively used to protect the signal connector and output filter component in the electric apparatus against the influence of electromagnetic interference generated by the electric apparatus.
  • an embodiment of the present disclosure is not limited thereto and may also comprise a single EMC shielding wall; for example, a single EMC shielding wall may be disposed to protect the input filter component in the electric apparatus against the influence of electromagnetic radiation generated by the electric apparatus. It should be understood that an embodiment of the present disclosure is not limited to the number of the EMC shielding walls or a connection relationship thereof.
  • an electric apparatus in an embodiment of the present disclosure establishes, by using a spring grounding contactor, an electrical connection between an EMC shielding wall and a circuit board in the electric apparatus; in addition, compared with the use of a spring arm disposed on an EMC shielding wall to establish an electrical connection, the use of a spring grounding contactor allows the establishment of a more reliable electrical connection, thereby enhancing the effect of shielding against electromagnetic radiation, reducing electromagnetic interference caused by the electric apparatus to another device, and improving the electromagnetic compatibility of the electric apparatus.
  • the at least one spring grounding contactor is provided with one end which is disposed on the circuit board; and the other end which has a flat surface and is pressed against a flat top surface of an EMC shielding wall to provide stable electrical contact.
  • One end of the spring grounding contactor which is disposed on the circuit board may be connected to a grounding module on the circuit board by a corresponding circuit, and thus the end of the spring grounding contactor may be connected to a grounding module on the circuit board; alternatively, it may also be connected to a grounding module on the circuit board in another manner.
  • the present disclosure is not limited to a manner of connecting the spring grounding contactor to a grounding module of the electric apparatus.
  • one end of the spring grounding contactor is disposed on the circuit board and the other end is disposed being provided with a flat surface, so that the flat surface may come into contact with the flat top surface of the EMC shielding wall, thereby establishing stable electrical contact and further improving the effect of the EMC shielding wall in shielding against electromagnetic interference.
  • Figure 4 is a schematic diagram for a manner of connecting an EMC shielding wall to a spring grounding contactor according to an embodiment of the present disclosure
  • the EMC shielding wall 221 separates two adjacent spaces in the housing 220, the circuit board is positioned to cover two adjacent spaces and the EMC shielding wall 221, and the spring grounding contactor 211A is pressed against a width portion W of the EMC shielding wall 221, wherein the width portion W is intended to characterize a width of the EMC shielding wall.
  • the EMC shielding wall is disposed to separate two adjacent spaces in the housing and the spring grounding contactor is disposed to come into contact with a width portion W of the EMC shielding wall, so that the area of contact between the EMC shielding wall and the spring grounding contactor is maximized, thereby reducing its contact impedance and further improving the effect of shielding against electromagnetic interference.
  • Figures 5A to 5C are structural diagrams for a spring grounding contactor according to an embodiment of the present disclosure.
  • the spring grounding contactor has a structure in the shape of "Z” , " ⁇ " , “ ⁇ ” , or bridge.
  • Figure 4 is a schematic diagram for a spring grounding contactor 211A having a Z-shaped structure according to an embodiment of the present disclosure.
  • Figure 5A is a schematic diagram for a spring grounding contactor 211B having a ⁇ -shaped structure according to an embodiment of the present disclosure
  • Figure 5B is a schematic diagram for a spring grounding contactor 211C having a ⁇ -shaped structure according to an embodiment of the present disclosure
  • Figure 5C is a schematic diagram for a spring grounding contactor 211D having a bridge structure according to an embodiment of the present disclosure.
  • the spring grounding contactor when having a Z-shaped or ⁇ -shaped structure, is provided with two flat surfaces which may shift elastically relative to each other. Then, in this case, any one of the two flat surfaces may be disposed on the circuit board, and the other flat surface may be pressed against the flat top surface of the EMC shielding wall to provide stable electrical contact.
  • the ⁇ -shaped bottom end may be disposed on the circuit board, and its flat surface may be pressed against the flat top surface of the EMC shielding wall to provide stable electrical contact.
  • the spring grounding contactor 211D when having a bridge structure, is provided with a flat plane and two bridge arms.
  • the two bridge arms may be disposed on a circuit board, for example, by being soldered to a circuit board by wave soldering, and a flat surface of the spring grounding contactor 211D is brought into contact with the EMC shielding wall, thereby establishing a reliable electrical connection.
  • the spring grounding contactor in an embodiment of the present disclosure may have another structure, as long as it allows one end to be disposed on a circuit board and the other end to be provided with a flat surface which is elastically extensible relative to the circuit board.
  • a spring grounding contactor is disposed having different shapes and structures, so that when an EMC shielding wall is disposed in different positions in an electric apparatus or facing different actual needs, secure electrical contact is always guaranteed between the EMC shielding wall and the spring grounding contactor, which is conducive to achieving a good effect of shielding against electromagnetic interference.
  • the EMC shielding wall and the housing are formed integrally.
  • Said EMC shielding wall may be formed integrally with the housing by casting, or may also be formed integrally with the housing in another manner.
  • An embodiment of the present disclosure is not limited to a specific manner in which the EMC shielding wall and the housing are formed integrally.
  • the EMC shielding wall and the housing are formed integrally so that, during the manufacture of an electric apparatus, separate steps of assembly and fixation by soldering no longer need to be performed on the EMC shielding wall and the housing, which simplifies the manufacture procedure and streamlines the manufacture process while reducing manufacture costs.
  • the EMC shielding wall is formed in the housing by a casting or splicing process.
  • the EMC shielding wall may be cast, by a pre-set mould, jointly with the housing for integral formation.
  • the EMC shielding wall and the housing may also be manufactured independently of each other and then assembled together; for example, a plurality of grooves may be formed in the housing in advance, and the EMC shielding wall may be inserted into the pre-formed grooves in the housing to assemble the EMC shielding wall and the housing.
  • EMC shielding wall and the housing may also be manufactured in another manner.
  • An embodiment of the present disclosure is not limited to a specific manner in which the EMC shielding wall and the housing are manufactured.
  • the housing and the EMC shielding wall are made of an aluminium material.
  • the EMC shielding wall may also be manufactured by selecting another electro-conductive material, as long as it allows the fulfilment of the function of reducing electromagnetic interference in the present application.
  • An embodiment of the present disclosure is not limited to a specific material of which the EMC shielding wall is made.
  • one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology (SMT) .
  • SMT surface-mount technology
  • Said surface-mount technology characterizes assembly technology that, eliminating the need for drilling mounting holes through a printed circuit board, allows a surface-mount device (namely, a spring grounding contactor as described in the present application) to be directly pasted or soldered in a specified position of the circuit board.
  • Said surface-mount technology may comprise core process flows, including printing (or spot gluing) , mounting, solidification, reflow soldering, cleaning, and detection.
  • one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology.
  • the surface-mount technology provides high reliability and shock resistance, it allows the assembly density of the electric apparatus to be increased effectively, while the volume, quality of the electric apparatus and the solder defect rate may be decreased.
  • the surface-mount technology has a relatively good high frequency characteristic, which is conducive to further reducing electromagnetic and radio-frequency interference.
  • use of the surface-mount technology may also increase the production efficiency while reducing production costs.
  • the electric apparatus is a charging apparatus for a motor vehicle.
  • Said charging apparatus is an apparatus used to charge a battery of a motor vehicle.
  • the charging apparatus for example, may be disposed independently of a motor vehicle and, when in use, connected, by a power line, to a battery of the vehicle that is to be charged. Alternatively, it may also be disposed in a motor vehicle.
  • An embodiment of the present disclosure is not limited to a specific manner in which the charging apparatus is configured relative to the motor vehicle.
  • Said charging apparatus may be a large or medium-sized roadside charging pile, or may also be a low-power charger; for example, it may be a low-power charger which supplies 3.5 kW power, or may also be a low-power charger which supplies 7 kW power.
  • An embodiment of the present disclosure is not limited to a specific structure, size, or power of the charging apparatus.
  • the above-described electric apparatus is disposed as a charging apparatus for charging a motor vehicle, so that when the charging apparatus charges a battery of a motor vehicle, interference caused by electromagnetic radiation generated in the charging apparatus to an adjacent device or a signal inputted or outputted by it may be reduced, and the EMC performance of the charging apparatus of the motor vehicle is improved.
  • the electric apparatus is configured in a motor vehicle.
  • Said electric apparatus may be disposed in a fixed structural position of a motor vehicle; for example, it may be disposed near a battery of the motor vehicle and be connected to the battery, or may also be disposed to be movable in the motor vehicle; when a motor vehicle needs no charging, the electric apparatus, for example, may be disconnected from a battery of the motor vehicle and turned off, and it may be connected to and charge the battery only when a user instructs that charging should be performed or the battery life of the motor vehicle itself reaches or is below a pre-set threshold.
  • the electric apparatus may also be disposed in the motor vehicle in another manner, and that an embodiment of the present disclosure is not limited to a specific position of the motor vehicle in which the electric apparatus is disposed or a manner in which it is connected to the motor vehicle.
  • the electric apparatus is configured in the motor vehicle so that the process of charging a battery of the motor vehicle is completed effectively, which is conducive to further improving the user experience of using a motor vehicle.
  • a motor vehicle comprising the above-described electric apparatus, capable of fulfilling the above-described functions, and having the corresponding advantages.
  • Said motor vehicle may be a plug-in hybrid electric vehicle, a battery electric vehicle, or another type of motor vehicle.
  • An embodiment of the present disclosure is not limited to a specific type of the motor vehicle.
  • the above-described electric apparatus is included in a motor vehicle so that when the electric apparatus fulfils its corresponding functions, electromagnetic radiation generated by it may be reduced significantly, and interference caused by the electric apparatus to an adjacent device or a signal inputted or outputted by it may be decreased; thus, the performance of the motor vehicle is improved.
  • Figure 6 shows an illustrative flowchart for a method 600 for assembling an electric apparatus according to an embodiment of the present disclosure.
  • Said electric apparatus may be a charging apparatus for charging an electric device or motor vehicle, or may also be another type of electric apparatus.
  • An embodiment of the present disclosure is not limited to a specific type of the electric apparatus.
  • step S601 a housing is provided, and the housing comprises an EMC shielding wall.
  • Said EMC shielding wall may be an independent plate-like structure and is intended to shield against electromagnetic radiation generated to the outside by an internal functional module of the electric apparatus, thereby reducing electromagnetic interference caused by it to an external device and enhancing the electromagnetic compatibility (EMC) performance of the electric apparatus.
  • Said EMC shielding wall is made of an electro-conductive material and, for example, may be made of a metallic material; for example, it may be formed into a thin sheet metal.
  • step S602 a circuit board is provided, at least one spring grounding contactor is disposed in a position of the circuit board that corresponds to the EMC shielding wall.
  • Said circuit board may comprise one or more other functional modules or components, for example, comprising a signal connector, a transformer, etc.
  • An embodiment of the present disclosure is not limited to a specific component comprised by the circuit board or a position in which it is disposed.
  • Said spring grounding contactor characterizes an elastic structural member that is used to implement electric grounding of a device, and it is electrically connected to a grounding module on the circuit board.
  • the housing, the EMC shielding wall, and the spring grounding contactor may all be made of an electro-conductive material.
  • Said spring grounding contactor may be a single contactor, or may also be a plurality of contactors; an embodiment of the present disclosure is not limited to the number of the spring grounding contactors.
  • Said EMC shielding wall and the spring grounding contactor may be made of the same electro-conductive material, for example, being both made of copper foil; alternatively, both may also be made of different electro-conductive materials, for example, the EMC shielding wall being made of iron, the spring grounding contactor being made of copper foil.
  • An embodiment of the present disclosure is not limited to a relationship between the EMC shielding wall and the spring grounding contactor in terms of composition.
  • step S603 the circuit board is assembled to the housing, wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
  • an electrical connection is established between an EMC shielding wall and a circuit board in the electric apparatus by using a spring grounding contactor; in addition, compared with the use of a spring arm disposed on an EMC shielding wall to establish an electrical connection, the use of a spring grounding contactor allows the establishment of a more reliable electrical connection, thereby enhancing the effect of shielding against electromagnetic interference and improving the electromagnetic compatibility of the electric apparatus.
  • the at least one spring grounding contactor is provided with one end that is disposed on the circuit board; and the other end that has a flat surface and is pressed against a flat top surface of an EMC shielding wall to provide stable electrical contact.
  • One end of the spring grounding contactor that is disposed on the circuit board may be connected to a grounding module on the circuit board by a corresponding circuit, and thus the end of the spring grounding contactor may be connected to a grounding module on the circuit board; alternatively, it may also be connected to a grounding module on the circuit board in another manner.
  • the present disclosure is not limited to a manner of connecting the spring grounding contactor to a grounding module of the electric apparatus.
  • one end of the spring grounding contactor is disposed on the circuit board and the other end is disposed being provided with a flat surface, so that the flat surface may come into contact with the flat top surface of the EMC shielding wall, thereby establishing stable electrical contact and further improving the effect of the EMC shielding wall in shielding against electromagnetic interference.
  • the spring grounding contactor has a structure in the shape of "Z” , " ⁇ ” , “ ⁇ ” , or bridge.
  • the spring grounding contactor in an embodiment of the present disclosure may have another structure, as long as it allows one end to be disposed on a circuit board and the other end to be provided with a flat surface that is elastically extensible relative to the circuit board.
  • a spring grounding contactor is disposed having different shapes and structures, so that when an EMC shielding wall is disposed in different positions in an electric apparatus or facing different actual needs, secure electrical contact is always guaranteed between an EMC shielding wall and the spring grounding contactor, which is conducive to achieving a good effect of shielding against electromagnetic interference.
  • the EMC shielding wall and the housing are formed integrally.
  • Said EMC shielding wall may be formed integrally with the housing by casting, or may also be formed integrally with the housing in another manner.
  • An embodiment of the present disclosure is not limited to a specific manner in which the EMC shielding wall and the housing are formed integrally.
  • the EMC shielding wall and the housing are formed integrally so that, during the manufacture of an electric apparatus, separate steps of assembly and fixation by soldering no longer need to be performed on the EMC shielding wall and the housing, which simplifies the manufacture procedure and streamlines the manufacture process while reducing manufacture costs.
  • the electric apparatus obtained by the method for assembling an electric apparatus may comprise the above-described characteristics and have the above-described functions.
  • first/second embodiment refers to a feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be stressed and noted that “an embodiment” , “one embodiment” , or “a substitute embodiment” mentioned two or more times in different parts of the Description does not necessarily refer to the same embodiment.
  • certain features, structures, or characteristics in one or more embodiments of the present application may be combined appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

A method for assembling an electric apparatus (200), an electric apparatus (200), and a motor vehicle comprising the electric apparatus are disclosed, the electric apparatus comprising a circuit board (210) and a housing (220), wherein the housing comprises an Electromagnetic Compatibility (EMC) shielding wall (221); at least one spring grounding contactor (211) is disposed in a position of the circuit board which corresponds to the EMC shielding wall, and wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor. Connection between an EMC shielding wall and the circuit board is achieved by a spring grounding contactor, thereby establishing stable electrical contact and enhancing the electromagnetic shielding effect of the EMC shielding wall.

Description

METHOD FOR ASSEMBLING ELECTRIC APPARATUS, ELECTRIC APPARATUS, AND MOTOR VEHICLE COMPRISING THE ELECTRIC APPARATUS
CROSS-REFERENCE TO RELATED APPLICATIONS
This disclosure claims priority to Chinese Patent Application No. 201910926208.9, filed on September 27, 2019, the entirety of which is incorporated herein by reference as a part of this disclosure.
TECHNICAL FIELD
The present invention relates to the field of electric technology, in particular to a method for assembling an electric apparatus, an electric apparatus, and a motor vehicle comprising the electric apparatus.
BACKGROUND
With the wide application of electric technology in civil and commercial fields, stricter requirements have been imposed on electric apparatuses, especially electric apparatuses applicable to motor vehicles.
In an existing electric apparatus, generally one or more inductive devices or Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) are disposed; therefore, when in use, such an electric apparatus generates relatively high electromagnetic radiation and has relatively poor electromagnetic compatibility. In order to reduce interference with an external device or an input or output signal thereof which is caused by the electromagnetic radiation, generally one or more EMC shielding walls are disposed on a circuit board of an electric apparatus, the EMC shielding wall being provided with a spring arm and coming into contact with the housing by the spring arm to achieve a shielding effect.
However, when an EMC shielding wall is used to achieve a shielding effect by coming into contact with the housing by its spring arm, on the one hand, in the process of assembling the electric apparatus, it is necessary to first pre-assemble the EMC shielding wall on a circuit board and fix the EMC shielding wall and the  circuit board by soldering; then, it is necessary to further assemble the EMC shielding wall with the housing by using tools, which involves complicated assembly steps, high costs, and application of a number of manufacture processes; on the other hand, when an EMC shielding wall comes into contact with the housing by its spring arm, the area of contact between the EMC shielding wall and the housing is small, the contact resistance is high, and the electromagnetic shielding effect is poor.
Therefore, there is a need for an electric apparatus which produces a better electromagnetic shielding effect, is easier to assemble, and may carry relatively low manufacture costs needs on the premise of realizing electromagnetic radiation shielding.
SUMMARY
In order to solve the above-described problem, the present invention provides a method for assembling an electric apparatus, an electric apparatus, and a motor vehicle comprising the electric apparatus. Use of an electric apparatus provided by the present invention may, effectively prevent electromagnetic interference; in addition, the electric apparatus is easier to assemble and carries relatively low manufacture costs, on the basis of shielding against electromagnetic radiation.
According to an aspect of the present invention, an electric apparatus is provided, the electric apparatus comprising a circuit board and a housing, wherein the housing comprises an EMC shielding wall; at least one spring grounding contactor is disposed in a position of the circuit board which corresponds to the EMC shielding wall; and wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
An electric apparatus according to the present invention may further comprise one or more of the following characteristics, separately or in combination.
In some embodiments, the at least one spring grounding contactor is provided with: one end which is disposed on the circuit board; and the other end which has a flat surface and is pressed against a flat top surface of an EMC shielding wall to provide stable electrical contact.
In some embodiments, the EMC shielding wall separates two adjacent  spaces in the housing, the circuit board is positioned to cover two adjacent spaces and the EMC shielding wall, and the spring grounding contactor is pressed against a width portion of the EMC shielding wall.
In some embodiments, the spring grounding contactor has a structure in shape of "Z" , "∑" , "δ" , or bridge.
In some embodiments, the EMC shielding wall and the housing are formed integrally.
In some embodiments, the EMC shielding wall is formed in the housing by a casting or splicing process.
In some embodiments, the housing and the EMC shielding wall are made of an aluminium material.
In some embodiments, one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology.
In some embodiments, the electric apparatus is a charging apparatus for a motor vehicle.
In some embodiments, the electric apparatus is configured in a motor vehicle.
According to another aspect of the present invention, a motor vehicle is provided, comprising the above-described electric apparatus.
According to another aspect of the present invention, a method for assembling an electric apparatus is provided, the method comprising: providing a housing, the housing comprising an EMC shielding wall; providing a circuit board, at least one spring grounding contactor being disposed in a position of the circuit board that corresponds to the EMC shielding wall; and assembling the circuit board to the housing, wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
A method for assembling an electric apparatus according to the present invention may further comprise one or more of the following characteristics, separately or in combination.
In some embodiments, the at least one spring grounding contactor is provided with: one end which is disposed on the circuit board; and the other end  which has a flat surface and is pressed against a flat top surface of the EMC shielding wall to provide stable electrical contact.
In some embodiments, the spring grounding contactor has a structure in shape of "Z" , "∑" , "δ" , or bridge.
In some embodiments, the EMC shielding wall and the housing are formed integrally.
By using a method for assembling an electric apparatus, an electric apparatus, and a motor vehicle comprising the electric apparatus provided by the present invention, electromagnetic interference caused by an electric apparatus to the outside may be reduced effectively and the electromagnetic compatibility of the electric apparatus enhanced; especially, the electric apparatus is easy to assemble and relatively low-cost.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly describe the technical solution of embodiments of the present invention, the drawings used to illustrate the embodiments will be briefly described below. Obviously, the drawings described below show only some embodiments of the present invention, and those of ordinary skill in the art, without creative labour, can further obtain other drawings based on these drawings. The following drawings, instead of being created by meticulously reducing and enlarging actual sizes in proportion, lay an emphasis on showing an objective of the present invention.
Figure 1A is a perspective view of a circuit board of a known electric apparatus 100;
Figure 1B is an inner sectional view of the electric apparatus 100 as shown in Figure 1A;
Figure 2A is a perspective view of a housing 220 in an electric apparatus 200 according to an embodiment of the present disclosure;
Figure 2B is a perspective view of a circuit board 210 in the electric apparatus 200 according to an embodiment of the present disclosure;
Figure 3A is a perspective view of the assembled electric apparatus 200  according to an embodiment of the present disclosure;
Figure 3B is an inner sectional view of the assembled electric apparatus 200 according to an embodiment of the present disclosure;
Figure 4 is a schematic diagram for a manner of connecting an EMC shielding wall to a spring grounding contactor according to an embodiment of the present disclosure;
Figure 5A is a structural diagram for a spring grounding contactor according to an embodiment of the present disclosure;
Figure 5B is a structural diagram for a spring grounding contactor according to an embodiment of the present disclosure;
Figure 5C is a structural diagram for a spring grounding contactor according to an embodiment of the present disclosure; and
Figure 6 is an illustrative flowchart for a method 600 for assembling an electric apparatus according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
Technical solutions provided in embodiments of the present invention will be clearly and completely described with reference to drawings below. Obviously, the described embodiments are only some, but not all, of the embodiments of the present invention. All other embodiments obtained by those of ordinary skill in the art based on the described embodiments of the present invention without making inventive efforts also fall into the protection scope of the present invention.
As indicated in the present application and claims, unless otherwise expressly specified in the context, a word like "a" , "one" , "one type" , and/or "the" , instead of referring in particular to the singular, may also include the plural. Generally, terms "comprise" and "include" only suggest inclusion of expressly identified steps and elements, but these steps and elements do not constitute an exclusive enumeration; a method or device may also include other steps or elements.
A term used herein is intended to explain an embodiment, but not to limit and/or define the present disclosure. It should be understood that a direction or position relationship indicated by terms like "inner" , "outer" , etc. is based on a  direction or position relationship shown in a drawing, or is a direction or position relationship in which the disclosed product is usually placed when used, or is a direction or position relationship usually understood by those of ordinary skill in the art; it is intended only for convenience of description of the present disclosure and brevity of description, instead of indicating or implying that the device or component in question must have a specific direction or be structured or operated in a specific direction, and therefore should not be construed as limiting the present disclosure.
In addition, unless otherwise defined in the context, a singular includes its plural. Throughout the Description, terms like "comprise" , "provided with" , etc. are used to specify the existence of the characteristic, number, step, operation, component, portion, or a combination thereof, without excluding the existence or addition of one or more other characteristics, numbers, steps, operations, devices, or a combination thereof.
In addition, even if terms including "first" , "second" , and other ordinal numbers may be used to describe each component, these components are not limited to these terms, and such a term is used only to differentiate an element from another element. For example, without departing from the scope of the present disclosure, a first component may be called a second component and, similarly, a second component may be called a first component.
Figures 1A and 1B show a known electric apparatus 100. Said electric apparatus 100 is formed by a circuit board 110 and a housing 120 which are joined to each other. Figure 1A is a perspective view of the circuit board 110 of the electric apparatus 100 after the housing 120 is removed.
Said electric apparatus, for example, may be a charging apparatus for charging an electric device or motor vehicle, or it may also be an inverter, a direct current-direct current (DC-DC) converter or another type of electric apparatus. It is not limited to a specific type of the electric apparatus.
It is clear from Figure 1A that a signal connector 111, a filter component, and a functional component 310 are disposed on the circuit board 110 of the electric apparatus 100.
Said signal connector is used to connect to other electric devices and  receive control or feedback signals from other electric devices, and is capable of outputting a corresponding control or feedback signals to other electric devices. A signal received or outputted by the signal connector, for example, may be a voltage signal, or may also be a current signal. It is not limited to a specific type of an electric apparatus to which the signal connector is connected or signal content inputted or outputted by the signal connector.
Said filter component is mainly used to prevent noise generated by a device in the electric apparatus from being radiated to the outside through a connector opening or being transmitted to the outside along a wire to which the connector is butt-jointed. In addition, it may also perform wave filtering on an alternating current (AC) from an external power grid to filter out AC noise therein. Said filter component, for example, may comprise one or more inductors and one or more capacitors.
Referring to Figure 1A, for example, an input filter component 300 may be disposed at an input connector port on the circuit board, and an output filter component may be disposed at an output connector port on the circuit board. In addition, the shown input filter component 300 is a two-stage filter component, comprising a first common-mode inductor 115A, a second common-mode inductor 115B, a first input capacitor 116A, and a second input capacitor 116B. The output filter component is a single-stage filter component, comprising a third common-mode inductor 117 and an output capacitor module 118. It should be understood that, depending on different actual needs, the filter component may be constituted in different forms and disposed in different positions.
Said functional component 310 is used to fulfil a corresponding function of the electric apparatus. Referring to Figure 1A, the electric apparatus 100, for example, may be a charging apparatus and, in this case, its functional components, for example, may comprise a resonant inductor 112, a transformer 113, an inductor 114, and a plurality of transistor regions 119 (each transistor region 119, for example, may comprise a plurality of transistors and diodes) , used to process an AC current inputted at the input terminal and convert it into a desired voltage, for example, converting it into a 400 V DC voltage, or converting it into a 450 V DC voltage. It is not limited to a specific composition of a functional component of the electric  apparatus or a specific function fulfilled by the functional component.
Said electric apparatus further comprises at least one EMC shielding wall which is an independent plate-like structure and is intended to shield the electromagnetic radiation generated to the outside by an internal functional module of the electric apparatus, for example, preventing noise generated by an internal means from being radiated to the outside through a connector opening or being transmitted to the outside along a wire to which the connector is butt-jointed, thereby reducing electromagnetic interference caused by the electric apparatus to an external device and enhancing the electromagnetic compatibility (EMC) performance of the electric apparatus. Said EMC shielding wall is made of an electro-conductive material and, for example, may be made of a metallic material; for example, it may be formed into a thin sheet metal.
See Figure 1A, in which the EMC shielding wall 130, for example, is perpendicular to a circuit board and disposed on the circuit board; in addition, it, for example, may be connected to a grounding module on the circuit board by a corresponding circuit disposed on the circuit board, thereby fulfilling the function of shielding against electromagnetic radiation. In addition, the EMC shielding wall 130 is provided with a spring arm 131. Said spring arm 131 is used to come into contact with the housing 120 of the electric apparatus 100, thereby shielding against electromagnetic radiation.
Figure 1B is an inner sectional view of the electric apparatus 100 as shown in Figure 1A. As shown in Figure 1B, the circuit board 110 is assembled with the housing 120, wherein the spring arm 131 of the EMC shielding wall 130 comes into contact with the housing 120 of the electric apparatus 100 to form an electro-conductive passage, thereby reducing interference caused by electromagnetic radiation generated by the electric apparatus to external devices or to signals inputted or outputted by the electric apparatus.
However, in the EMC shielding wall setting of the above-described electric apparatus, first, because the EMC shielding wall is an independent plate, it is necessary to, in the process of assembling the electric apparatus, first pre-assemble the EMC shielding wall on the circuit board and fix the EMC shielding wall and the  circuit board by soldering; then, it is necessary to further assemble the EMC shielding wall with the housing by using tools, which involves complicated assembly steps, high costs, and application of a number of manufacture processes; second, the EMC shielding wall mentioned herein is disposed surrounding only the signal connector and certain components in the input filter component 300; as shown in Figure 1A, it may be used only to shield certain modules (the first input capacitor 116A) of the input filter component 300 and the signal connector from interference caused by electromagnetic interference generated the electric apparatus itself, covering a relatively narrow shielding range; in addition, when the EMC shielding wall comes into contact with the housing by its spring arm, the area of contact between the EMC shielding wall and the housing is small, the contact resistance is high, and the electromagnetic shielding effect is poor.
Based on the preceding description, in order to enhance the effect produced by the electric apparatus in forming a shield against electromagnetic radiation, simplify the processes of manufacturing and assembling the electric apparatus, and reduce its manufacture costs, an embodiment of the present disclosure proposes an electric apparatus 200.
Figure 2A is a perspective view of a housing 220 in an electric apparatus 200 according to an embodiment of the present disclosure, and Figure 2B is a perspective view of a circuit board 210 in the electric apparatus 200 according to an embodiment of the present disclosure. Figure 3A is a perspective view of the assembled electric apparatus 200 according to an embodiment of the present disclosure, and Figure 3B is an inner sectional view of the assembled electric apparatus 200 according to an embodiment of the present disclosure.
Referring to Figures 2A and 2B, as well as Figures 3A and 3B, it is clear that the electric apparatus 200 comprises a circuit board 210 and a housing 220. Said housing 220 comprises an EMC shielding wall 221, and at least one spring grounding contactor 211 is disposed in a position of the circuit board 210 which corresponds to the EMC shielding wall 221. In addition, the EMC shielding wall 221 is electrically connected to the circuit board 210 by the at least one spring grounding contactor 211.
As described above, the electric apparatus, for example, may be a charging apparatus for charging an electric device or motor vehicle, or may also be another type of electric apparatus. An embodiment of the present disclosure is not limited to a specific type of the electric apparatus.
In certain embodiments, a signal connector may be further disposed on the circuit board; it is used to connect to other electric devices and receive control or feedback signals from other electric devices, and is capable of outputting corresponding control or feedback signals to other electric devices. A signal received or outputted by the signal connector, for example, may be a voltage signal, or may also be a current signal. An embodiment of the present disclosure is not limited to a specific type of an electric apparatus to which the signal connector is connected or signal content inputted or outputted by the signal connector.
In some embodiments, a functional component may further be disposed on the circuit board, and the functional component is used to fulfil a corresponding function of the electric apparatus. Said functional component, for example, may be as shown in Figure 1A; it, for example, may comprise a resonant inductor, a transformer, an inductor, and a plurality of transistor regions, and be used to process an AC current inputted at the input terminal and convert it into a desired voltage, for example, converting it into a 400 V DC voltage, or converting it into a 450 V DC voltage. An embodiment of the present disclosure is not limited to a specific composition of a functional component of the electric apparatus or a specific function fulfilled by it.
In some embodiments, a filter component may further be disposed on the circuit board, and the filter component is mainly used to prevent noise generated by a device in the electric apparatus from being radiated to the outside through a connector opening or being transmitted to the outside along a wire to which the connector is butt-jointed. In addition, it may also perform wave filtering on an alternating current (AC) from an external power grid to filter out AC noise therein. The filter component, for example, may comprise one or more inductors and one or more capacitors.
Figure 2B shows an input filter component 212 and an output filter  component 213 which are disposed on the circuit board. However, it should be understood that, based on specific functions of an electric apparatus, the circuit board 210, for example, may further comprise one or more other functional modules or components, for example, comprising a signal connector, a transformer, etc. An embodiment of the present disclosure is not limited to a specific component comprised by the circuit board or a position in which it is disposed.
Said EMC shielding wall is intended to shield against electromagnetic radiation generated to the outside by an internal functional module of the electric apparatus, thereby reducing electromagnetic interference caused by the electric apparatus to an external device and enhancing the electromagnetic compatibility (EMC) performance of the electric apparatus. Said EMC shielding wall is made of an electro-conductive material and, for example, may be made of a metallic material; for example, it may be formed into a thin sheet metal.
Said spring grounding contactor characterizes an elastic member which is used to implement electric grounding of a device, and it is electrically connected to a grounding module on the circuit board. In addition, in some embodiments, the housing, the EMC shielding wall, and the spring grounding contactor, for example, may all be made of an electro-conductive material.
Said EMC shielding wall, for example, may be integrally formed with the housing; alternatively, the EMC shielding wall and the housing may also be manufactured separately before being assembled and spliced together. An embodiment of the present disclosure is not limited to a process of manufacturing or a manner of splicing together the housing and the EMC shielding wall.
Said spring grounding contactor, for example, may be a single contactor, or may also be a plurality of contactors; an embodiment of the present disclosure is not limited to the number of the spring grounding contactors.
Said EMC shielding wall and the spring grounding contactor, for example, may be made of the same electro-conductive material, for example, being both made of copper foil; alternatively, both may also be made of different electro-conductive materials, for example, the EMC shielding wall being made of iron, the spring grounding contactor being made of copper foil. An embodiment of the  present disclosure is not limited to a relationship between the EMC shielding wall and the spring grounding contactor in terms of composition.
In some embodiments, the EMC shielding walls are a plurality of shielding walls and, for example, may form a plurality of shielding cavities in the housing of the electric apparatus which are used to shield a component associated therewith from the influence of electromagnetic radiation generated by the electric apparatus. For example, as shown in Figure 2A, the plurality of EMC shielding walls form two shielding  cavities  222 and 223; for example, they may be respectively used to protect the signal connector and output filter component in the electric apparatus against the influence of electromagnetic interference generated by the electric apparatus.
However, an embodiment of the present disclosure is not limited thereto and may also comprise a single EMC shielding wall; for example, a single EMC shielding wall may be disposed to protect the input filter component in the electric apparatus against the influence of electromagnetic radiation generated by the electric apparatus. It should be understood that an embodiment of the present disclosure is not limited to the number of the EMC shielding walls or a connection relationship thereof.
Based on the preceding description, an electric apparatus in an embodiment of the present disclosure establishes, by using a spring grounding contactor, an electrical connection between an EMC shielding wall and a circuit board in the electric apparatus; in addition, compared with the use of a spring arm disposed on an EMC shielding wall to establish an electrical connection, the use of a spring grounding contactor allows the establishment of a more reliable electrical connection, thereby enhancing the effect of shielding against electromagnetic radiation, reducing electromagnetic interference caused by the electric apparatus to another device, and improving the electromagnetic compatibility of the electric apparatus.
In some embodiments, the at least one spring grounding contactor is provided with one end which is disposed on the circuit board; and the other end which has a flat surface and is pressed against a flat top surface of an EMC shielding wall to provide stable electrical contact.
One end of the spring grounding contactor which is disposed on the circuit board, for example, may be connected to a grounding module on the circuit board by a corresponding circuit, and thus the end of the spring grounding contactor may be connected to a grounding module on the circuit board; alternatively, it may also be connected to a grounding module on the circuit board in another manner. The present disclosure is not limited to a manner of connecting the spring grounding contactor to a grounding module of the electric apparatus.
Based on the preceding description, one end of the spring grounding contactor is disposed on the circuit board and the other end is disposed being provided with a flat surface, so that the flat surface may come into contact with the flat top surface of the EMC shielding wall, thereby establishing stable electrical contact and further improving the effect of the EMC shielding wall in shielding against electromagnetic interference.
Figure 4 is a schematic diagram for a manner of connecting an EMC shielding wall to a spring grounding contactor according to an embodiment of the present disclosure;
Referring to Figure 4, in some embodiments, the EMC shielding wall 221 separates two adjacent spaces in the housing 220, the circuit board is positioned to cover two adjacent spaces and the EMC shielding wall 221, and the spring grounding contactor 211A is pressed against a width portion W of the EMC shielding wall 221, wherein the width portion W is intended to characterize a width of the EMC shielding wall.
Based on the preceding description, the EMC shielding wall is disposed to separate two adjacent spaces in the housing and the spring grounding contactor is disposed to come into contact with a width portion W of the EMC shielding wall, so that the area of contact between the EMC shielding wall and the spring grounding contactor is maximized, thereby reducing its contact impedance and further improving the effect of shielding against electromagnetic interference.
Figures 5A to 5C are structural diagrams for a spring grounding contactor according to an embodiment of the present disclosure.
Referring to Figures 4 and 5A to 5C, in some embodiments, the spring  grounding contactor has a structure in the shape of "Z" , "∑" , "δ" , or bridge.
Figure 4 is a schematic diagram for a spring grounding contactor 211A having a Z-shaped structure according to an embodiment of the present disclosure. Figure 5A is a schematic diagram for a spring grounding contactor 211B having a∑-shaped structure according to an embodiment of the present disclosure, Figure 5B is a schematic diagram for a spring grounding contactor 211C having a δ-shaped structure according to an embodiment of the present disclosure, and Figure 5C is a schematic diagram for a spring grounding contactor 211D having a bridge structure according to an embodiment of the present disclosure.
Referring to Figures 4 and 5A, when having a Z-shaped or∑-shaped structure, the spring grounding contactor is provided with two flat surfaces which may shift elastically relative to each other. Then, in this case, any one of the two flat surfaces may be disposed on the circuit board, and the other flat surface may be pressed against the flat top surface of the EMC shielding wall to provide stable electrical contact.
Referring to Figure 5B, when the spring grounding contactor 211C has a δ-shaped structure, in order to maximise the area of contact between the spring grounding contactor and the EMC shielding wall, the δ-shaped bottom end may be disposed on the circuit board, and its flat surface may be pressed against the flat top surface of the EMC shielding wall to provide stable electrical contact.
Referring to Figure 5C, when having a bridge structure, the spring grounding contactor 211D, for example, is provided with a flat plane and two bridge arms. In this case, for example, the two bridge arms may be disposed on a circuit board, for example, by being soldered to a circuit board by wave soldering, and a flat surface of the spring grounding contactor 211D is brought into contact with the EMC shielding wall, thereby establishing a reliable electrical connection.
However, it should be understood that the spring grounding contactor in an embodiment of the present disclosure, instead of being limited to any of the above-described structures, may have another structure, as long as it allows one end to be disposed on a circuit board and the other end to be provided with a flat surface which is elastically extensible relative to the circuit board.
Based on the preceding description, a spring grounding contactor is disposed having different shapes and structures, so that when an EMC shielding wall is disposed in different positions in an electric apparatus or facing different actual needs, secure electrical contact is always guaranteed between the EMC shielding wall and the spring grounding contactor, which is conducive to achieving a good effect of shielding against electromagnetic interference.
In some embodiments, the EMC shielding wall and the housing are formed integrally.
Said EMC shielding wall, for example, may be formed integrally with the housing by casting, or may also be formed integrally with the housing in another manner. An embodiment of the present disclosure is not limited to a specific manner in which the EMC shielding wall and the housing are formed integrally.
Based on the preceding description, the EMC shielding wall and the housing are formed integrally so that, during the manufacture of an electric apparatus, separate steps of assembly and fixation by soldering no longer need to be performed on the EMC shielding wall and the housing, which simplifies the manufacture procedure and streamlines the manufacture process while reducing manufacture costs.
In some embodiments, the EMC shielding wall is formed in the housing by a casting or splicing process.
Specifically, the EMC shielding wall, for example, may be cast, by a pre-set mould, jointly with the housing for integral formation. Alternatively, the EMC shielding wall and the housing may also be manufactured independently of each other and then assembled together; for example, a plurality of grooves may be formed in the housing in advance, and the EMC shielding wall may be inserted into the pre-formed grooves in the housing to assemble the EMC shielding wall and the housing.
However, it should be understood that the EMC shielding wall and the housing may also be manufactured in another manner. An embodiment of the present disclosure is not limited to a specific manner in which the EMC shielding wall and the housing are manufactured.
Based on the preceding description, different manners of manufacturing the EMC shielding wall and the housing are selected depending on  actual needs, so that process flows are streamlined while manufacture costs are reduced.
In some embodiments, the housing and the EMC shielding wall are made of an aluminium material.
However, it should be understood that the EMC shielding wall may also be manufactured by selecting another electro-conductive material, as long as it allows the fulfilment of the function of reducing electromagnetic interference in the present application. An embodiment of the present disclosure is not limited to a specific material of which the EMC shielding wall is made.
In some embodiments, one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology (SMT) .
Said surface-mount technology characterizes assembly technology that, eliminating the need for drilling mounting holes through a printed circuit board, allows a surface-mount device (namely, a spring grounding contactor as described in the present application) to be directly pasted or soldered in a specified position of the circuit board. Said surface-mount technology, for example, may comprise core process flows, including printing (or spot gluing) , mounting, solidification, reflow soldering, cleaning, and detection.
Based on the preceding description, one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology. On the one hand, because the surface-mount technology provides high reliability and shock resistance, it allows the assembly density of the electric apparatus to be increased effectively, while the volume, quality of the electric apparatus and the solder defect rate may be decreased. On the other hand, the surface-mount technology has a relatively good high frequency characteristic, which is conducive to further reducing electromagnetic and radio-frequency interference. In addition, use of the surface-mount technology may also increase the production efficiency while reducing production costs.
In some embodiments, the electric apparatus is a charging apparatus for a motor vehicle.
Said charging apparatus is an apparatus used to charge a battery of a  motor vehicle. The charging apparatus, for example, may be disposed independently of a motor vehicle and, when in use, connected, by a power line, to a battery of the vehicle that is to be charged. Alternatively, it may also be disposed in a motor vehicle. An embodiment of the present disclosure is not limited to a specific manner in which the charging apparatus is configured relative to the motor vehicle.
Said charging apparatus, for example, may be a large or medium-sized roadside charging pile, or may also be a low-power charger; for example, it may be a low-power charger which supplies 3.5 kW power, or may also be a low-power charger which supplies 7 kW power. An embodiment of the present disclosure is not limited to a specific structure, size, or power of the charging apparatus.
Based on the preceding description, the above-described electric apparatus is disposed as a charging apparatus for charging a motor vehicle, so that when the charging apparatus charges a battery of a motor vehicle, interference caused by electromagnetic radiation generated in the charging apparatus to an adjacent device or a signal inputted or outputted by it may be reduced, and the EMC performance of the charging apparatus of the motor vehicle is improved.
In some embodiments, the electric apparatus is configured in a motor vehicle.
Said electric apparatus, for example, may be disposed in a fixed structural position of a motor vehicle; for example, it may be disposed near a battery of the motor vehicle and be connected to the battery, or may also be disposed to be movable in the motor vehicle; when a motor vehicle needs no charging, the electric apparatus, for example, may be disconnected from a battery of the motor vehicle and turned off, and it may be connected to and charge the battery only when a user instructs that charging should be performed or the battery life of the motor vehicle itself reaches or is below a pre-set threshold.
However, it should be understood that the electric apparatus, for example, may also be disposed in the motor vehicle in another manner, and that an embodiment of the present disclosure is not limited to a specific position of the motor vehicle in which the electric apparatus is disposed or a manner in which it is connected to the motor vehicle.
Based on the preceding description, the electric apparatus is configured in the motor vehicle so that the process of charging a battery of the motor vehicle is completed effectively, which is conducive to further improving the user experience of using a motor vehicle.
According to another aspect of the present disclosure, a motor vehicle is proposed, comprising the above-described electric apparatus, capable of fulfilling the above-described functions, and having the corresponding advantages.
Said motor vehicle may be a plug-in hybrid electric vehicle, a battery electric vehicle, or another type of motor vehicle. An embodiment of the present disclosure is not limited to a specific type of the motor vehicle.
Based on the preceding description, the above-described electric apparatus is included in a motor vehicle so that when the electric apparatus fulfils its corresponding functions, electromagnetic radiation generated by it may be reduced significantly, and interference caused by the electric apparatus to an adjacent device or a signal inputted or outputted by it may be decreased; thus, the performance of the motor vehicle is improved.
According to another aspect of the present disclosure, a method for assembling an electric apparatus is proposed; Figure 6 shows an illustrative flowchart for a method 600 for assembling an electric apparatus according to an embodiment of the present disclosure.
Said electric apparatus, for example, may be a charging apparatus for charging an electric device or motor vehicle, or may also be another type of electric apparatus. An embodiment of the present disclosure is not limited to a specific type of the electric apparatus.
Referring to Figure 6, first, in step S601, a housing is provided, and the housing comprises an EMC shielding wall.
Said EMC shielding wall, for example, may be an independent plate-like structure and is intended to shield against electromagnetic radiation generated to the outside by an internal functional module of the electric apparatus, thereby reducing electromagnetic interference caused by it to an external device and enhancing the electromagnetic compatibility (EMC) performance of the electric  apparatus. Said EMC shielding wall is made of an electro-conductive material and, for example, may be made of a metallic material; for example, it may be formed into a thin sheet metal.
After the housing is obtained, in step S602, a circuit board is provided, at least one spring grounding contactor is disposed in a position of the circuit board that corresponds to the EMC shielding wall.
Said circuit board, for example, may comprise one or more other functional modules or components, for example, comprising a signal connector, a transformer, etc. An embodiment of the present disclosure is not limited to a specific component comprised by the circuit board or a position in which it is disposed.
Said spring grounding contactor characterizes an elastic structural member that is used to implement electric grounding of a device, and it is electrically connected to a grounding module on the circuit board. In addition, in some embodiments, the housing, the EMC shielding wall, and the spring grounding contactor, for example, may all be made of an electro-conductive material.
Said spring grounding contactor, for example, may be a single contactor, or may also be a plurality of contactors; an embodiment of the present disclosure is not limited to the number of the spring grounding contactors.
Said EMC shielding wall and the spring grounding contactor, for example, may be made of the same electro-conductive material, for example, being both made of copper foil; alternatively, both may also be made of different electro-conductive materials, for example, the EMC shielding wall being made of iron, the spring grounding contactor being made of copper foil. An embodiment of the present disclosure is not limited to a relationship between the EMC shielding wall and the spring grounding contactor in terms of composition.
After the housing and the circuit board are obtained, in step S603, the circuit board is assembled to the housing, wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
Based on the preceding description, by the above-described method, an electrical connection is established between an EMC shielding wall and a circuit  board in the electric apparatus by using a spring grounding contactor; in addition, compared with the use of a spring arm disposed on an EMC shielding wall to establish an electrical connection, the use of a spring grounding contactor allows the establishment of a more reliable electrical connection, thereby enhancing the effect of shielding against electromagnetic interference and improving the electromagnetic compatibility of the electric apparatus.
In some embodiments, the at least one spring grounding contactor is provided with one end that is disposed on the circuit board; and the other end that has a flat surface and is pressed against a flat top surface of an EMC shielding wall to provide stable electrical contact.
One end of the spring grounding contactor that is disposed on the circuit board, for example, may be connected to a grounding module on the circuit board by a corresponding circuit, and thus the end of the spring grounding contactor may be connected to a grounding module on the circuit board; alternatively, it may also be connected to a grounding module on the circuit board in another manner. The present disclosure is not limited to a manner of connecting the spring grounding contactor to a grounding module of the electric apparatus.
Based on the preceding description, one end of the spring grounding contactor is disposed on the circuit board and the other end is disposed being provided with a flat surface, so that the flat surface may come into contact with the flat top surface of the EMC shielding wall, thereby establishing stable electrical contact and further improving the effect of the EMC shielding wall in shielding against electromagnetic interference.
In some embodiments, the spring grounding contactor has a structure in the shape of "Z" , "∑" , "δ" , or bridge.
However, it should be understood that the spring grounding contactor in an embodiment of the present disclosure, instead of being limited to any of the above-described structures, may have another structure, as long as it allows one end to be disposed on a circuit board and the other end to be provided with a flat surface that is elastically extensible relative to the circuit board.
Based on the preceding description, a spring grounding contactor is  disposed having different shapes and structures, so that when an EMC shielding wall is disposed in different positions in an electric apparatus or facing different actual needs, secure electrical contact is always guaranteed between an EMC shielding wall and the spring grounding contactor, which is conducive to achieving a good effect of shielding against electromagnetic interference.
In some embodiments, the EMC shielding wall and the housing are formed integrally.
Said EMC shielding wall, for example, may be formed integrally with the housing by casting, or may also be formed integrally with the housing in another manner. An embodiment of the present disclosure is not limited to a specific manner in which the EMC shielding wall and the housing are formed integrally.
Based on the preceding description, the EMC shielding wall and the housing are formed integrally so that, during the manufacture of an electric apparatus, separate steps of assembly and fixation by soldering no longer need to be performed on the EMC shielding wall and the housing, which simplifies the manufacture procedure and streamlines the manufacture process while reducing manufacture costs.
In some embodiments, the electric apparatus obtained by the method for assembling an electric apparatus, for example, may comprise the above-described characteristics and have the above-described functions.
In the present application, specific terms are used to describe embodiments of the present application. For example, "first/second embodiment" , "an embodiment" , and/or "some embodiments" refer to a feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be stressed and noted that "an embodiment" , "one embodiment" , or "a substitute embodiment" mentioned two or more times in different parts of the Description does not necessarily refer to the same embodiment. In addition, certain features, structures, or characteristics in one or more embodiments of the present application may be combined appropriately.
Furthermore, those of ordinary skill in the art may understand that various aspects of the present application may be explained and described by certain patentable types or situations, including a combination of any novel and useful  procedures, machines, products, or substances, or any novel and useful improvements thereon.
Unless otherwise defined, all the terms (including technical and scientific terms) used herein have the same meanings as the terms commonly understood by those of ordinary skill in the art. It should also be understood that terms, for example, those as generally defined in a dictionary, should be interpreted as having meanings the same as their meanings in the context of related technology, instead of being interpreted in an idealized or extremely formalized sense, unless expressly so defined herein.
The description provided above is illustrative of the present invention, and should not be construed as a limit thereon. While certain demonstrative embodiments of the present invention have been described above, those of ordinary skill in the art will easily understand that many modifications may be made to a demonstrative embodiment without departing from the novel teaching or an advantage of the present invention. Therefore, all such modifications are intended to fall within a scope of the present invention as defined by the claims. It should be understood that the description given above is illustrative of the present invention, and the present invention should not be deemed to be limited by specific disclosed embodiments; in addition, modifications made to the disclosed embodiments and other embodiments are intended to fall within a scope defined by the attached claims. The present invention is defined by the claims and equivalents thereof.

Claims (15)

  1. An electric apparatus, comprising a circuit board and a housing, wherein
    the housing comprises an EMC shielding wall;
    at least one spring grounding contactor is disposed in a position of the circuit board which corresponds to the EMC shielding wall;
    and wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
  2. The electric apparatus as claimed in claim 1, wherein
    the at least one spring grounding contactor is provided with:
    one end which is disposed on the circuit board; and
    the other end which has a flat surface and is pressed against a flat top surface of an EMC shielding wall.
  3. The electric apparatus as claimed in claim 1, wherein the EMC shielding wall separates two adjacent spaces in the housing, the circuit board is positioned to cover two adjacent spaces and the EMC shielding wall, and
    the spring grounding contactor is pressed against a width portion of the EMC shielding wall.
  4. The electric apparatus as claimed in claim 1, wherein the spring grounding contactor has a structure in shape of "Z", "∑", "δ", or bridge.
  5. The electric apparatus as claimed in claim 1, wherein the EMC shielding wall and the housing are formed integrally.
  6. The electric apparatus as claimed in claim 1, wherein the EMC shielding wall is formed in the housing by a casting or splicing process.
  7. The electric apparatus as claimed in claim 5 or 6, wherein the housing and the EMC shielding wall are made of an aluminium material.
  8. The electric apparatus as claimed in claim 1, wherein one end of the spring grounding contactor is soldered to the circuit board by surface-mount technology.
  9. The electric apparatus as claimed in claim 1, wherein the electric apparatus is  a charging apparatus for a motor vehicle.
  10. The electric apparatus as claimed in claim 9, wherein the electric apparatus is configured in a motor vehicle.
  11. A motor vehicle, comprising the electric apparatus as claimed in any one of claims 1 to 10.
  12. A method for assembling an electric apparatus, the method comprising:
    providing a housing, the housing comprising an EMC shielding wall;
    providing a circuit board, at least one spring grounding contactor being disposed in a position of the circuit board which corresponds to the EMC shielding wall; and
    assembling the circuit board to the housing, wherein the EMC shielding wall is electrically connected to the circuit board by the at least one spring grounding contactor.
  13. The method as claimed in claim 12, wherein
    the at least one spring grounding contactor is provided with:
    one end which is disposed on the circuit board; and
    the other end which has a flat surface and is pressed against a flat top surface of t EMC shielding wall.
  14. The method as claimed in claim 12, wherein the spring grounding contactor has a structure in shape of "Z", "∑", "δ", or bridge.
  15. The method as claimed in claim 12, wherein the EMC shielding wall and the housing are formed integrally.
PCT/CN2020/118041 2019-09-27 2020-09-27 Method for assembling electric apparatus, electric apparatus, and motor vehicle comprising the electric apparatus WO2021057953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910926208.9A CN111106455B (en) 2019-09-27 2019-09-27 Method for assembling an electrical device, electrical device and motor vehicle comprising such an electrical device
CN201910926208.9 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021057953A1 true WO2021057953A1 (en) 2021-04-01

Family

ID=70421415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118041 WO2021057953A1 (en) 2019-09-27 2020-09-27 Method for assembling electric apparatus, electric apparatus, and motor vehicle comprising the electric apparatus

Country Status (2)

Country Link
CN (1) CN111106455B (en)
WO (1) WO2021057953A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275205A (en) * 2021-06-04 2021-08-20 东莞市东鸿自动化科技有限公司 Common mode inductor assembling machine and method
WO2023246084A1 (en) * 2022-06-21 2023-12-28 阳光电源股份有限公司 Grounding structure and electrical equipment
FR3143254A1 (en) * 2022-12-12 2024-06-14 Vitesco Technologies ELECTRONIC ASSEMBLY COMPRISING AT LEAST ONE LAMELLAR SPRING WELDED TO A FIRST METAL PLATE BY CONNECTION WITH A TAPE, AND IN CONTACT WITH A SECOND METAL PLATE, AND PROCESS ON THE BASIS OF SUCH ASSEMBLY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106455B (en) * 2019-09-27 2022-12-20 法雷奥西门子新能源汽车(深圳)有限公司 Method for assembling an electrical device, electrical device and motor vehicle comprising such an electrical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428508A (en) * 1994-04-29 1995-06-27 Motorola, Inc. Method for providing electromagnetic shielding of an electrical circuit
CN1153407A (en) * 1995-07-27 1997-07-02 莫列斯公司 Connecting terminal for electromagnetic shield
CN1219340A (en) * 1996-04-23 1999-06-09 艾利森公司 Electromagnetic shield for a radio telephone
CN101227814A (en) * 2007-01-18 2008-07-23 陈惟诚 Shrapnel on circuit board and electromagnetic shielding assembly
CN111106455A (en) * 2019-09-27 2020-05-05 法雷奥西门子新能源汽车(深圳)有限公司 Method for assembling an electrical device, electrical device and motor vehicle comprising such an electrical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2475256Y (en) * 2001-02-08 2002-01-30 林德政 Grounding reed
CN2914369Y (en) * 2006-03-14 2007-06-20 有德科技股份有限公司 Anti-distortion grounding elastic blade
KR101958775B1 (en) * 2016-12-23 2019-03-18 주식회사 모다이노칩 Complex protection device and electronic device having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428508A (en) * 1994-04-29 1995-06-27 Motorola, Inc. Method for providing electromagnetic shielding of an electrical circuit
CN1153407A (en) * 1995-07-27 1997-07-02 莫列斯公司 Connecting terminal for electromagnetic shield
CN1219340A (en) * 1996-04-23 1999-06-09 艾利森公司 Electromagnetic shield for a radio telephone
CN101227814A (en) * 2007-01-18 2008-07-23 陈惟诚 Shrapnel on circuit board and electromagnetic shielding assembly
CN111106455A (en) * 2019-09-27 2020-05-05 法雷奥西门子新能源汽车(深圳)有限公司 Method for assembling an electrical device, electrical device and motor vehicle comprising such an electrical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275205A (en) * 2021-06-04 2021-08-20 东莞市东鸿自动化科技有限公司 Common mode inductor assembling machine and method
WO2023246084A1 (en) * 2022-06-21 2023-12-28 阳光电源股份有限公司 Grounding structure and electrical equipment
FR3143254A1 (en) * 2022-12-12 2024-06-14 Vitesco Technologies ELECTRONIC ASSEMBLY COMPRISING AT LEAST ONE LAMELLAR SPRING WELDED TO A FIRST METAL PLATE BY CONNECTION WITH A TAPE, AND IN CONTACT WITH A SECOND METAL PLATE, AND PROCESS ON THE BASIS OF SUCH ASSEMBLY

Also Published As

Publication number Publication date
CN111106455A (en) 2020-05-05
CN111106455B (en) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2021057953A1 (en) Method for assembling electric apparatus, electric apparatus, and motor vehicle comprising the electric apparatus
CN109964548B (en) DC-DC converter
CN202502877U (en) Transformer
KR102036203B1 (en) Emc-filter for suppressing noise signals
US9425695B2 (en) DC-DC converter
US9693494B2 (en) Noise reduction device
JP5715991B2 (en) Power converter
CN113938107A (en) DC end multistage filtering structure, motor controller and vehicle
US11551848B2 (en) Planar transformer and switching power adapter
JP6678816B2 (en) Power converter
CN103858530B (en) Arrangements of electric connection, the component including such device and electron plate, and the method for being electrically connected electron plate
JP6991368B2 (en) In-vehicle power converter
WO2019150859A1 (en) Filter circuit device, and power conversion apparatus provided with same
JP2018019512A (en) Output noise reduction device
JP2016100348A (en) Output noise reduction device
CN115943469A (en) Electric element, circuit board and switching power supply
JP2001314080A (en) Step-down dc-dc converter and electronic circuit device
JP6906874B2 (en) Power converter
CN216390934U (en) DC end multistage filtering structure, motor controller and vehicle
CN219591779U (en) Electric connector and vehicle
CN218602237U (en) Inductor and circuit system
CN215990538U (en) Novel high-voltage input rectifying device
CN212810020U (en) Common mode inductance coupling assembling and battery assembly
CN114785304A (en) Patch filter
JP6076439B1 (en) In-vehicle electrical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870306

Country of ref document: EP

Kind code of ref document: A1