WO2021057529A1 - 摄像模组及终端设备 - Google Patents

摄像模组及终端设备 Download PDF

Info

Publication number
WO2021057529A1
WO2021057529A1 PCT/CN2020/115091 CN2020115091W WO2021057529A1 WO 2021057529 A1 WO2021057529 A1 WO 2021057529A1 CN 2020115091 W CN2020115091 W CN 2020115091W WO 2021057529 A1 WO2021057529 A1 WO 2021057529A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
coil
lens
soft film
zoom
Prior art date
Application number
PCT/CN2020/115091
Other languages
English (en)
French (fr)
Inventor
廖文哲
李明
冯军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022519203A priority Critical patent/JP2022550344A/ja
Priority to EP20867158.6A priority patent/EP4030744A4/en
Priority to KR1020227014100A priority patent/KR20220070277A/ko
Publication of WO2021057529A1 publication Critical patent/WO2021057529A1/zh
Priority to US17/705,861 priority patent/US20220214539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0289Transducers, loudspeakers, moving coil arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144111Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged ++-+
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0084Driving means for the movement of one or more optical element using other types of actuators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • This application relates to the field of electronic technology, in particular to a camera module and terminal equipment.
  • Electronic devices such as mobile phones have gradually become indispensable products in popular life. With the development of electronic technology, the functions of electronic devices continue to increase, including at least communication, Internet access, and shooting functions. Among them, the quality of shooting will directly affect the experience of using electronic equipment.
  • the realization of the shooting function of electronic equipment relies on the camera module to complete the image collection on the hardware, and the calculation of the algorithm on the software to finally achieve the shooting experience required by the user.
  • the position of the lens, and the front lens is difficult to increase the number of lenses unless the screen-to-body ratio is reduced; another problem is that splicing multiple fixed-focus lenses will cause the image quality to "offset", that is, between different zoom magnifications. There is a problem of image quality degradation.
  • This application provides a camera module, which can solve the problem of a large number of camera modules (or lenses) in a terminal device and high cost.
  • the technical solution is as follows:
  • a camera module in a first aspect, includes two first magnets, a lens group, a zoom coil and a sensor, and the two first magnets are respectively located on opposite sides of the lens group;
  • the lens group includes a first soft film lens;
  • the zoom coil is connected to the soft film of the first soft film lens; wherein, when the zoom coil is energized, it acts on the magnetic field formed by the two first magnets
  • the Lorentz force is generated below, and the shape of the first soft film lens is changed, thereby changing the focal length of the first soft film lens; the sensor is used for receiving the light beam incident through the lens group.
  • the zoom coil may be located at the edge of the outer surface of the first soft film lens and connected to the soft film.
  • the Lorentz force generated when the zoom coil is energized will push the zoom coil to move, thereby squeezing the first soft film lens to deform it.
  • the zoom coil can also be located on the edge of the inner surface of the first soft film lens, that is, located inside the first soft film lens, and connected to the soft film. At this time, the Lorentz force generated when the zoom coil is energized will also push the zoom coil Move, so as to pull the soft film of the first soft film lens, deform the first soft film lens, and realize the zoom function.
  • the camera module provided by the embodiments of the present application can realize continuous optical zoom function by arranging a zoom coil on the first soft film lens, and collect real images with better imaging effect; the overall structure is relatively compact and can be applied to In terminal devices with limited space such as mobile phones.
  • the camera module of the present application has optical zooming capabilities, that is, a single lens can achieve the zooming capabilities of two fixed-focus lenses. Dual lenses can achieve the effect of more fixed-focus lenses, which can reduce the number of camera modules in the terminal equipment and reduce costs while ensuring the optical zoom capability.
  • the camera module further includes a ring-shaped cylinder with an opening, wherein the sensor is fixed on the bottom surface of the ring-shaped cylinder opposite to the opening surface ;
  • the two first magnets are respectively fixed in the annular cylinder, on both sides of the bottom surface.
  • the camera module further includes a lens barrel connected to the annular barrel, and the lens barrel is connected to the The annular barrel is connected by an elastic device, and at least one lens in the lens group is connected with the lens barrel.
  • the elastic device may be a spring or an elastic piece, etc., so that the lens barrel can be moved.
  • the camera module further includes a second magnet located between the first soft film lens and the first magnet, so The second magnet has a one-to-one correspondence with the first magnet, and the direction of the magnetic field of the second magnet is the same as that of the corresponding first magnet.
  • the second magnet is fixed on the lens barrel.
  • the second magnet of this embodiment can converge the magnetic field of the first magnet to enhance the magnetic field. In the case of the same current, the Lorentz force generated by the zoom coil is increased, and the amount of deformation of the first soft film lens is increased, thereby Improve zoom capability.
  • the camera module further includes a first compensation coil, and the first compensation coil is located between the two first magnets, wherein, when the first compensation coil is energized, a Lorentz force is generated under the action of a magnetic field to change the position of the lens group, thereby changing the image distance of the camera module.
  • the first compensation coil is added to compensate for the change in the image distance caused by the change in the focal length of the camera module, and to ensure the imaging quality.
  • all or part of the lenses included in the lens group are located in the space formed by the first compensation coil.
  • the camera module further includes a lens barrel connected to the annular barrel, and the lens barrel is connected to the ring barrel.
  • the annular barrel is connected by an elastic device, the first compensation coil and the first adjustment coil are fixed on the lens barrel, and at least one lens in the lens group is connected with the lens barrel.
  • the elastic device may be a spring, an elastic piece, or the like. The Lorentz force generated after the first compensation coil is energized will push the lens barrel to drive the lens connected with the lens barrel to move together.
  • the zoom coil and the first compensation coil are connected in series.
  • the one-to-one correspondence between the zoom value and the compensation value can be known. Therefore, a current can be used to control the zoom and compensation functions.
  • the camera module further includes a first adjustment coil, wherein the first adjustment coil is located in the Between the two first magnets, the number of turns of the first adjustment coil is less than the number of turns of the first compensation coil, or the length of a single turn of the first adjustment coil is less than the length of a single turn of the first compensation coil.
  • the camera module further includes a second adjusting coil, and the lens group further includes a second soft film lens ,
  • the second adjusting coil is connected to the soft film of the second soft film lens; wherein, when the second adjusting coil is energized, it generates a Lorentz force under the action of a magnetic field to change the second soft film lens
  • the shape of the light beam is focused on the sensor.
  • the camera module further includes a fourth magnet located between the second soft film lens and the first magnet, the fourth magnet corresponds to the first magnet one-to-one, and the fourth magnet
  • the direction of the magnetic field is the same as that of the corresponding first magnet.
  • the fourth magnet can converge the magnetic field, enhance the Lorentz force, and increase the amount of deformation of the second soft film lens.
  • the number of turns and single-turn length of the zoom coil and the first compensation coil are designed, and a relatively ideal image can be obtained through a current control; if the image obtained is not clear due to special reasons, such as assembly errors or Factors such as the deterioration of the stability of the lens after working for a long time may cause the image to be not clear enough, and the adjustment coils provided in the above two embodiments are required to further adjust the camera module to further improve the image quality.
  • the camera module further includes a second compensation coil, and the lens
  • the group also includes a third soft film lens, and the second compensation coil is connected to the soft film of the third soft film lens; wherein, when the second compensation coil is energized, a Lorentz force is generated under the action of a magnetic field, The shape of the third soft film lens is changed, thereby changing the image distance of the camera module.
  • a second compensation coil is added to compensate for the change in the image distance caused by the change in the focal length of the camera module, and to ensure the imaging quality.
  • the camera module further includes a lens located between the third soft film lens and the first magnet
  • the third magnet corresponds to the first magnet one-to-one, and the direction of the magnetic field of the third magnet is the same as that of the corresponding first magnet.
  • the third magnet can converge the magnetic field, enhance the Lorentz force, and increase the amount of deformation of the third soft film lens.
  • the zoom coil and the second compensation coil are connected in series.
  • the one-to-one correspondence between the zoom value and the compensation value can be known. Therefore, a current can be used to control the zoom and compensation functions.
  • the camera module further includes a first adjustment coil, and the first adjustment coil is located in the Between the two first magnets, where the first adjusting coil generates Lorentz force under the action of a magnetic field when energized, and changes the position of the lens group, thereby changing the image distance of the camera module.
  • the camera module further includes a second adjusting coil
  • the lens group further includes a second soft A film lens
  • the second adjustment coil is connected to the soft film of the second soft film lens; wherein the number of turns of the second adjustment coil is less than the number of turns of the second compensation coil, or the second adjustment coil
  • the single-turn length of is smaller than the single-turn length of the second compensation coil.
  • the provided adjustment coil further adjusts the camera module and further improves the image quality.
  • the camera module further includes a reflecting mirror for reflecting the input light beam to the lens group.
  • the camera module provided by the embodiments of the present application can realize a periscope structure, fold the light path, reduce the volume of the camera module, and can be applied to terminal devices that require volume, such as mobile phones.
  • the light-blocking area of the coil connected to the soft film in the soft film lens is smaller than that of the soft film lens and the 1/4 of the surface area where the coils are connected.
  • the zoom coil, the second compensation coil, and the second adjustment coil; the above-mentioned size requirements can ensure that the beam of sufficient intensity reaches the sensor without too much loss.
  • the specific value of the light-blocking area can be changed according to the actual situation and is not limited in this application.
  • the soft film lens is composed of a soft film wrapped with liquid or gel; or the soft film lens is a closed film composed of a soft film and a lens.
  • the space is composed of liquid or gel wrapped in it.
  • the camera module further includes a controller, configured to generate control information according to the information sent by the sensor, and control the foregoing implementation The energization amount of the coil disclosed in the example.
  • the soft film lens includes a soft film deformation area and a lens fixing area
  • the camera module further includes a conductive rod, which is slidable and conductive.
  • the lens fixing area is used to fix the lens on the lens barrel
  • the conductive rod is located in the lens fixing area and is used to conduct electricity
  • the sliding conductive device is located on the conductive rod
  • the lead wires are respectively connected to the coil on the soft film lens and the sliding conductive device.
  • the sliding conductive device can move along the conductive rod and is connected to the coil through a lead.
  • the soft film lens may be any soft film lens mentioned in the above possible implementation manners, and the coil may be any coil on the soft film lens mentioned in the above possible implementation manner.
  • a zoom coil, a second compensation coil, and a second adjustment coil may be any soft film lens mentioned in the above possible implementation manner.
  • a zoom method using the camera module provided in the first aspect including: receiving a zoom instruction, and determining the amount of power to the zoom coil according to the received zoom instruction, where the amount of power is zoom The required voltage or current value; when the zoom coil is energized, the Lorentz force generated after the zoom coil is energized will push the zoom coil to move, deform the first soft film lens, and play the role of changing the focal length.
  • the camera module includes a compensation coil
  • the compensation coil is energized, and the Lorentz force generated after the compensation coil is energized is used to compensate for the change in the image distance caused by the focal length change, and the degree of image quality degradation caused by the change in focal length.
  • the method further includes: energizing the adjustment coil, and the adjustment coil is used to connect the camera module after the adjustment coil is energized.
  • the image distance can be adjusted so that the beam can be more accurately focused on the sensor and the loss of the beam can be reduced.
  • the method further includes: according to the received zoom instruction, invoking the corresponding The camera module. For example, if you need to take a photo with a telephoto, call a camera module with a larger focal length.
  • a terminal device in a third aspect, includes a camera module, a processor, and a display as described in any one of the embodiments of the first aspect, wherein the camera module is used to collect image information, and The processor is used to process the image information and control the display to display the collected image.
  • the terminal device further includes a memory for storing image information. The user can recall the photos or videos taken from the memory when needed.
  • the terminal device includes multiple camera modules, and at least one camera module is implemented as in any one of the first aspect.
  • the embodiments of the present application may use multiple camera modules as described in any one of the implementation manners of the first aspect, or may additionally add several fixed-focus lenses. Compared with the existing zoom technology of splicing fixed-focus lenses, the camera module The number of groups is smaller, and the camera module of the present application can realize continuous optical zoom, and the imaging quality is better.
  • a camera device for example, a camera or a video camera.
  • the camera device includes the camera module according to any one of the embodiments of the first aspect, and a packaging structure.
  • a readable storage medium stores instructions that, when run on a terminal device, cause the terminal device to execute any one of the second aspect or the second aspect. The method described in the embodiment.
  • the sixth aspect provides a computer program product containing instructions, which when run on a terminal device, causes the terminal device to execute the method according to the second aspect or any one of the implementation manners of the second aspect.
  • the camera module provided in the embodiments of the present application can be used as a separate camera, and can also be applied to devices that need to take photos or videos in different scenarios in fields such as smart phones, tablet computers, and robots.
  • the camera module provided by the embodiment of the application can realize the continuous optical zoom function, and the real images are collected, and the imaging effect is better; it is the same as the commonly used solution to realize the zoom ability by stitching multiple fixed focus lenses.
  • the camera module of the present application has the optical zoom capability, that is, a single lens can achieve the zoom capability of two fixed focus lenses, and a dual lens can achieve more effects of a fixed focus lens, under the condition that the optical zoom capability remains unchanged ,
  • the number of camera modules in the terminal device can be reduced; in addition, multiple camera modules disclosed in the present application can also solve the problem of image quality "out of gear" existing in the splicing of existing fixed-focus lenses.
  • Fig. 1 is a schematic diagram of imaging of a camera module
  • FIG. 2 is a schematic structural diagram of a camera module provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the first soft film lens in the camera module provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a camera module provided by another embodiment of the application.
  • FIG. 5 is a schematic diagram of the arrangement of magnets in a camera module provided by another embodiment of the application.
  • FIG. 6 is a schematic diagram of the arrangement of the first magnet and the corresponding drop magnet in the camera module provided by another embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a camera module provided by another embodiment of the application.
  • FIG. 8 is a schematic diagram of the connection mode of the zoom coil and the compensation coil in the camera module provided by another embodiment of the application;
  • FIG. 9 is a schematic diagram of the connection mode of the zoom coil and the compensation coil in the camera module provided by another embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a camera module provided by another embodiment of this application.
  • FIG. 17 is a flowchart of a method for zooming using a camera module provided by an embodiment of the present application.
  • FIG. 18 is a flowchart of a method for zooming using the camera module provided in an embodiment of the present application in the case of multiple camera modules;
  • FIG. 19 is a schematic diagram of a terminal device including a camera module provided by an embodiment of the present application.
  • the camera function of electronic devices such as mobile phones refers to the use of built-in or external digital cameras to capture still pictures or dynamic videos.
  • the shooting capabilities of electronic devices have become one of the most concerned indicators.
  • the realization of the shooting function of the electronic equipment is to complete the image collection through the optical module on the hardware, and the software relies on the calculation of the algorithm to finally achieve the shooting experience required by the user.
  • the most important technology also includes zoom and focus technology.
  • Focal length also known as focal length, is a measure of the concentration or divergence of light in an optical system. It refers to the distance from the center of the lens to the focal point of the light when parallel light is incident. The shorter the focal length, the larger the angle of view.
  • the focal length of the optical module is fixed.
  • Focusing also called focusing and focusing, refers to the process of changing the distance between the imaging surface and the lens according to the different positions of objects at different distances that are clearly imaged at the back of the lens, so that the image of the object is clear. Since all imaging systems have a depth of field, if the object being shot is outside the depth of field, the image will be blurred after the object is shot. In order to ensure that the shot object is clearly presented, it needs to be focused.
  • Depth of field refers to the clear depth of imaging by the imaging optical system. Depth of field is a physical phenomenon, but the depth of field varies between different optical systems. As shown in Figure 1, it is a schematic diagram of lens imaging, ⁇ L is the depth of field, and L is the shooting distance. Among them, the size of the depth of field is related to the parameter focal length f of the optical lens itself, the aperture number (F number) of the lens, and is also related to the diameter of the circle of confusion ⁇ that the sensor used can distinguish.
  • an embodiment of the present application provides a camera module.
  • the camera module includes two first magnets (201, 202), and a lens group 203 (the lens group 203 in FIG. 2 includes 4 Lenses), zoom coil 204 and sensor 205;
  • the two first magnets (201, 202) are respectively located on opposite sides of the lens group 203 to form a magnetic field;
  • the lens group 203 includes a first soft film lens 2031;
  • the zoom coil 204 is connected to the soft film of the first soft film lens 2031, wherein ,
  • the zoom coil 204 can be located on the edge of the outer surface of the first soft film lens 2031 and connected to the soft film.
  • the specific structure can be shown in Figure 3; it can also be located on the edge of the inner surface of the first soft film lens 2031, that is, on the edge of the first soft film lens 2031. Inside the membrane lens 2031, it is connected with the soft membrane.
  • the zoom coil 204 When the zoom coil 204 is energized, it will generate Lorentz force under the action of a magnetic field, which can push the zoom coil 204 to move, thereby squeezing or pulling the soft film of the first soft film lens 2031, so that the first soft film lens 2031 changes shape. That is, change the surface shape of the first soft film lens 2031, such as curvature or other parameters, so as to change the focal length of the lens group to realize the zoom function; the sensor 205 is used to receive the light beam incident through the lens group 203.
  • the first soft film lens can be composed of a soft film wrapped with liquid or gel.
  • the first soft film lens can also be composed of a soft film and a closed space formed by the lens with a liquid or gel wrapped in it.
  • the liquid can be oil, solvent, Ionic liquids, liquid metals, etc., are transparent or semi-transparent substances, which can be deformed under force under the wrapper of the soft film to realize the zoom function.
  • the coil on the soft film lens can be a structure formed by winding a metal wire multiple times, or it can be wound only once, or even a metal ring, as long as it is energized, it can be pushed by Lorentz force in a magnetic field. In the subsequent embodiments, similar coils may also have the above-mentioned structure, which will not be repeated in this application.
  • the camera module provided by the present application may further include an open ring tube 206, wherein the sensor 205 is fixed on the bottom surface of the ring tube 206 opposite to the opening surface; the two first magnets (201, 202) are respectively fixed to The inside of the ring barrel 206 is placed on the two sides of the bottom surface of the ring barrel 206; in addition, the camera module also includes a lens barrel 207 connected to the ring barrel 206.
  • the lens barrel 207 can be connected to the ring barrel by means of springs or springs. The bottom or side surfaces of the barrel 206 are connected, so that the lens barrel 207 can move.
  • the specific structure is shown in FIG. 4.
  • the first soft film lens 2031 includes a soft film deformation area 301 and a lens fixing area 302.
  • the lens fixing area 302 is used to fix the lens on the lens barrel 207;
  • the camera module also includes a lens fixing area.
  • the conductive rod 305 of area 302, and the sliding conductive device 304 connected to the conductive rod 305, wherein the conductive rod 305 is connected to the power supply circuit (if the power supply circuit is integrated with the processor inside the terminal device, it can also be understood as conductive
  • the rod 305 is connected to the processor) for conducting electricity; the sliding conductive device 304 can move along the conductive rod 305 and is connected to the zoom coil 204 through a lead 303.
  • the Lorentz force When the zoom coil 204 is energized, the Lorentz force will be generated under the action of the magnetic field. The Lorentz force pushes the zoom coil 204 to change its position.
  • the lead wire 303 with better rigidity is used, so that the sliding conductive device 304 can follow the zoom coil 204 moves while moving, the relative position of the lead 303 remains unchanged, and the stability is better; of course, the lead can also be directly connected to the power supply circuit inside the terminal, but the lead should be reserved for a certain length to ensure that the coil moves away from the power supply circuit At the farthest distance, the lead can still be connected; at this time, during the movement of the coil, the lead has been following the swing, and the stability is relatively poor.
  • the rigidity of the lead 303 in this application can drive the sliding conductive device 304; the sliding conductive device 304 can be a sliding ring or any other form, and can move along the conductive rod 305.
  • the structure of the soft film lens in the subsequent embodiments is similar to it, and will not be repeated in this application; the lenses in the lens group other than the soft film lens also have a lens fixing area, and the lens and the lens are connected to each other through the lens fixing area.
  • the corresponding lens barrel is fixed, but since the outer surface or inner surface of these lenses have no coils, there are no conductive rods, lead wires and other devices in the lens fixing area of these lenses.
  • the magnet is an object that can generate a magnetic field, for example, a magnet, a magnet, etc.; the number of first magnets may be more than two, for example, 4 first magnets are located oppositely around the lens group 203, or 6 The first magnet surrounds the lens group 203 relatively.
  • Figure 5 shows a schematic diagram of four first magnets (201, 202, 209, and 210) as an example. All the first magnets can be fixed in the annular cylinder 206. ; The subsequent embodiments of this application are described by taking two first magnets as an example.
  • the camera module further includes a second magnet 208 located between the first magnet and the first soft film lens.
  • the second magnet 208 can be fixed on the lens barrel 207 or integrated inside the lens barrel 207. As shown in Figure 4.
  • the second magnet and the first magnet have a one-to-one correspondence, and the structure can be as shown in FIG. 5 (for clarity of illustration, the lens barrel and other structures are not shown in the figure).
  • the shape of the first magnet and the second magnet may also be curved shapes, surrounding the soft film lens, and the specific shape is not limited.
  • the second magnet 208 has the same polarity direction as the corresponding first magnet 201. As shown in FIG. 6, assuming that the polarity of the side of the first magnet 201 facing the second magnet 208 is the south pole (S pole), then The polarity of the side of the second magnet 208 facing the first magnet is the north pole (N pole); conversely, if the polarity of the side of the first magnet 201 facing the second magnet 208 is N pole, the second magnet 208 faces the first magnet. The polarity of the side of the magnet 201 is the S pole. At this time, the second magnet 208 can converge the magnetic field of the first magnet 201 to enhance the magnetic field. Under the same current, the Lorenz generated by the zoom coil 204 can be increased.
  • the amount of deformation of the first soft film lens 2031 is increased.
  • the camera module is applied to a small terminal device such as a mobile phone, the current cannot be particularly high, resulting in the limited strength of the Lorentz force, and the first soft film lens 2031 cannot achieve a better zoom effect.
  • This embodiment uses the first soft film lens 2031 to achieve a better zooming effect.
  • the two magnets 208 realize magnetic field convergence, which can solve this problem.
  • a third magnet may also exist between the second soft film lens and the first magnet mentioned below in this application to converge the magnetic field of the first magnet and increase the amount of deformation of the second soft film lens;
  • a fourth magnet which is used to converge the magnetic field of the first magnet and increase the amount of deformation of the second soft film lens; the characteristics of the third magnet and the fourth magnet are the same as those of the second magnet.
  • the camera module provided in this application can also be applied to terminal devices, such as mobile phones, tablet computers, or automobiles, and used as a camera of a mobile phone or a driving recorder or other camera device in a vehicle-mounted device.
  • the camera module can be a conventional camera module or a camera module in the form of a folded optical path; the processor inside the terminal device will process the image information collected by the sensor 205 and analyze the zoom requirements communicated by the user. The zoom requirement drives the camera module to complete the optical zoom.
  • the light beam will be converged at the sensor 205 after being incident from the lens group 203.
  • the light blocking area of the zoom coil 204 is smaller than that of the first soft film lens 2031 connected to the zoom coil 204 1/4 or 1/3 of the surface area of, the specific value is not limited; in addition, the lens group 203 may also include multiple lenses, for example, 4 or 6 lenses. 4 is taken as an example in FIG. 2.
  • the sensor 205 may be an image sensor, for example, a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) image sensor, a charge-coupled device (CCD) image sensor, etc.
  • CMOS complementary metal oxide semiconductor
  • CCD charge-coupled device
  • the image returned by the sensor 205 will be a preview image taken by the terminal device. If the user enlarges the preview image, or clicks a zoom button such as 2x or 5x, the processor of the terminal device will get the zoom demand signal, according to the user's input
  • the zoom demand signal is used to control the power to the zoom coil 204.
  • the power of the zoom coil 204 can come from the power device in the device. For example, if the camera module is used in a mobile phone or a tablet computer, the power can come from a mobile phone or a tablet.
  • the electrified coil will generate Lorentz force under the action of the magnetic field to move the coil, thereby squeezing or pulling the first soft film lens 2031 to deform it, thereby changing the focal length and realizing the optical zoom function;
  • the amount of power can be continuously changed, and the first soft film lens 2031 can be continuously deformed, thereby realizing a continuous optical zoom function.
  • the camera module provided by the present application can realize continuous optical zoom function by arranging the zoom coil on the outer surface or the edge of the inner surface of the first soft film lens, and the real images are collected, and the imaging effect is better; the overall structure It is relatively compact and can be used in terminal devices with limited space such as mobile phones.
  • the camera module of the present application has optical zooming capabilities, that is, a single lens can achieve the zooming capabilities of two fixed-focus lenses. For example, a single camera module of this application can achieve continuous changes of 1-2x focal length.
  • the prior art requires a combination of a 1x fixed focus lens and a 2x fixed focus lens to achieve a 1-2x zoom effect, and this application is continuous
  • the optical zoom captures real images, and the imaging effect is better; further, the dual lens of the present application can achieve the effect of more fixed-focus lenses, can reduce the number of camera modules in the terminal equipment, and can also ensure The optical zoom capability does not decrease.
  • the camera module provided by the present application further includes a first compensation coil 701.
  • the first compensation coil 701 is located between the two first magnets (201, 202), wherein the lens group 203 Are located in the space formed by the first compensation coil 701; specifically, all the lenses included in the lens group 203 are located in the space formed by the first compensation coil 701, or part of the lenses included in the lens group 203 are located in the first compensation coil 701
  • the lens group 203 including 4 lenses as an example, one, two or three lenses may be located in the space formed by the first compensation coil, or all four lenses may be located in the first compensation coil. In the space.
  • the first compensation coil 701 When the first compensation coil 701 is energized, it will generate Lorentz force under the action of a magnetic field, which will move the lens group 203 and change the position of the lens group 203, thereby changing the image distance of the camera module and playing a compensation role ( It can also be said to play a focusing role); in addition, the Lorentz force generated by the first compensation coil 701 can also only push a part of the lens in the lens group 203 to move positions, which can also play a compensation role.
  • the workflow of the embodiment of the present application is as follows.
  • the sensor 205 sends back a preview image taken by the terminal device, and the user clicks a zoom button such as 2x and 5x, then the processor of the terminal device will obtain the zoom demand signal;
  • the zoom demand signal given by the user controls the energization of the zoom coil 204.
  • the energized coil will generate Lorentz force under the action of the magnetic field, which will deform the first soft film lens 2031, thereby changing the focal length and realizing the optical zoom function;
  • the processor will gradually increase the current to the first compensation coil 701 to drive the lens group 203 to move or drive part of the lens in the lens group 203 to move to achieve focus compensation.
  • the image signal transmitted by 205 is clear, the processor will stop increasing the current of the first compensation coil 701, and the compensation is completed.
  • the first compensation coil 701 is fixed on the lens barrel 207, and the lens group 203 is connected to the lens barrel 207.
  • the Lorentz force generated after the first compensation coil 701 is energized will cause the first compensation coil 701 to drive the lens barrel 207 to move.
  • the position of the lens in the lens group 203 is changed; moreover, the lens barrel 207 can also play a role of fixing the lens group 203.
  • not all of the lenses in the lens group 203 may be connected to the lens barrel 207. For example, if the lens group includes 6 lenses, 4 or 5 of them may be connected to the lens barrel 207, and the specific number is not limited.
  • the remaining lens can be connected to the annular barrel 206 by a fixing member or other fixing device; the Lorentz force generated after the first compensation coil 701 is energized will cause the first compensation coil 701 to drive the lens barrel 207 to move, thereby connecting with the lens barrel 207 The part of the lens moves, and the position of the remaining lens remains unchanged.
  • the parameters of each lens in the lens group for example, whether a certain lens is a concave lens or a convex lens, the radius of curvature of each lens, etc.
  • the distance between the lenses can be determined; after the determination, the focal length of the lens group
  • the corresponding relationship between the change value and the displacement value of the lens group 203 can be calculated, and there is a one-to-one correspondence between the focal length change value and the displacement value of the lens group 203; that is, the zoom coil at this time
  • the number of turns and single-turn length of the zoom coil 204 and the first compensation coil 701 can be designed in advance, so that the zoom coil The 204 and the first compensation coil 701 are connected in series, and after the current is loaded, the compensation function can be realized while zooming.
  • one end of the zoom coil 204 can be connected to one end of the first compensation coil 701, as shown in FIG. 8; the principle of proximity can also be used, which is equivalent to placing the first compensation coil 701 at a position closer to the zoom coil 204.
  • the two disconnected and disconnected ports are respectively connected to both ends of the zoom coil 204, as shown in FIG. 9; other connection methods are also possible, which are not limited in this application.
  • the camera module may further include a first adjusting coil 1001, which is also located between the two first magnets (201, 202), part of the lens included in the lens group 203 Located in the space formed by the winding of the first adjusting coil 1001, when the first adjusting coil 1001 is energized, it will also generate Lorentz force under the action of a magnetic field, change the position of the lens group 203, and change the image distance of the camera module. Play the role of further adjustment, so that the light beam can be more accurately focused on the sensor 205, and a clearer image can be obtained.
  • the first adjustment coil 1001 Since the first adjustment coil 1001 performs fine adjustment on the basis of the zoom coil 204 and the first compensation coil 701, there is no need to apply a large force to the lens group 203. Therefore, under normal circumstances, the first adjustment coil 1001 generates a low The Lenz force is smaller than the Lorentz force generated by the first compensation coil 701. Since the Lorentz force generated by the coil in the magnetic field is related to the number of turns and the length of the coil under the same current application, if the length of the single coil of the coil does not change, the Lorentz force generated by the coil in the magnetic field The force is proportional to the number of turns of the coil. If the number of turns of the coil is constant, the Lorentz force generated in the magnetic field is proportional to the length of the coil's single turn. Therefore, the number of turns of the first adjusting coil 1001 can be less than The number of turns of the first compensation coil 701 or the length of a single turn of the first adjusting coil 1001 may be smaller than the length of a single turn
  • the first compensation coil 701 and the first adjustment coil 1001 are disconnected, and the current can be loaded independently. After the adjustment of the zoom coil 204 and the first compensation coil 701 is completed, if the image still cannot meet the definition requirement, the first compensation coil is started. An adjustment coil 1001 makes further adjustments. Normally, since the first compensation coil 701 needs to push the lens group 203 to move a longer distance, the space formed by the winding of the first compensation coil 701 is larger than the space formed by the winding of the first adjustment coil 1001. Therefore, it is located in The number of lenses in the space formed by the winding of the first compensation coil 701 will be greater than the number of lenses in the space formed by the winding of the first adjustment coil 1001.
  • the lenses included in the lens group 203 may be partly located in the space formed by the first compensation coil 701, and the remaining part is located in the space formed by the first adjusting coil 1001; for example, the lens group includes four lenses, and three lenses are located in the first compensation coil 701. In the space formed by a compensation coil 701, a lens is located in the space formed by the first adjustment coil 1001.
  • the Lorentz force generated by the first compensation coil 701 can push the space formed by the first compensation coil 701
  • the three lenses change positions to complete the compensation function; the Lorentz force generated by the first adjusting coil 1001 can push a lens located in the space formed by the first adjusting coil 1001 to change its position to further adjust the camera module; of course it can also Two lenses are located in the space formed by the winding of the first compensation coil 701, and the other two lenses are located in the space formed by the winding of the first adjustment coil 1001. Other arrangements are also possible, which are not limited in this application.
  • the camera module includes a lens barrel 207 connected to the annular barrel 206 through a spring or an elastic sheet.
  • all lenses or some of the lenses in the lens group 203 are connected to the lens barrel 207, and the first adjusting coil 1001
  • the first compensation coil 701 and the first compensation coil 701 are both fixed on the lens barrel; the Lorentz force generated by the first compensation coil 701 will push the first compensation coil 701 to drive the lens barrel 207 to move to compensate; if the image definition is still not satisfied It is required that the first adjusting coil 1001 will be energized, and the Lorentz force generated at this time will push the first adjusting coil 1001 to drive the lens barrel 207 to move, thereby changing the position of the lens connected to the lens barrel 207, and play a role in further adjustment. .
  • the lens barrel can also be divided into a first lens barrel 2071 and a second lens barrel 2072, wherein a part of the lenses in the lens group can be connected with the first lens barrel 2071, and the remaining lenses can be connected with the second lens barrel 2072; for example, As shown in FIG. 11, the lens group 203 includes four lenses, of which three lenses are connected to the first lens barrel 2071, and the remaining lens is connected to the second lens barrel 2072; the first lens barrel 2071 and the second lens barrel 2072 are mutually connected. It is not connected, and is connected to the annular barrel 206 through a deformable device (spring or shrapnel, etc.).
  • a deformable device spring or shrapnel, etc.
  • the first compensation coil 701 is connected to the first lens barrel 2071, and the first adjustment coil 1001 is connected to the second lens barrel 2072. At this time, The Lorentz force generated by the energization of the first compensation coil 701 will push the first compensation coil 701 to drive the first lens barrel 2071 to move, thereby changing the position of the lens connected to the first lens barrel 2071 to compensate; if the image is sharp Still not meeting the requirements, the first adjusting coil 1001 is energized, and the Lorentz force generated at this time will push the first adjusting coil 1001 to drive the second lens barrel 2072 to move, thereby changing the position of the lens connected to the second lens barrel 2072. To further adjust the role.
  • the camera module further includes a second adjusting coil 1201, the lens group 203 also includes a second soft film lens 2032, the second adjusting coil 1201 and the soft film of the second soft film lens 2032
  • the specific structure is similar to that of the zoom coil 204. It can also be located on the edge of the outer surface of the second soft film lens 2032 and connected to the soft film; it can also be located on the edge of the inner surface of the second soft film lens 2032, that is, located on the second soft film lens. In 2032, it is connected to the soft membrane; please refer to Figure 3.
  • the second adjusting coil 1201 When the second adjusting coil 1201 is energized, it will also generate Lorentz force under the action of the magnetic field, pushing the second adjusting coil to move, thereby squeezing or pulling the soft film of the second soft film lens 2032, making the second soft film lens
  • the 2032 changes the shape and fine-tunes the focal length of the lens group. As the focal length changes, the image distance will also change, allowing the beam to be more accurately focused on the sensor for further adjustment.
  • the light blocking area of the second adjusting coil 1201 in order to prevent the second adjusting coil 1201 from blocking the incidence of the light beam, should also be smaller than 1/4 or 1/ of the surface area of the second soft film lens 2032 connected to the second adjusting coil 1201. 3.
  • the specific value is not limited.
  • the second adjusting coil 1201 performs fine adjustment on the basis of the zoom coil 204 and the first compensation coil 701, there is no need to apply a large force to the soft film on the second soft film lens 2032. Therefore, the second adjusting coil 1201
  • the generated Lorentz force is generally smaller than the Lorentz force generated by the zoom coil 204. Since the Lorentz force generated by the coil in the magnetic field is related to the number of turns and the length of the coil under the same current application, if the length of the single coil of the coil does not change, the Lorentz force generated by the coil in the magnetic field The force is proportional to the number of turns of the coil.
  • the Lorentz force generated in the magnetic field is proportional to the length of the coil's single turn, so the number of turns of the second adjusting coil 1201 can be less than that of the zoom
  • the number of turns of the coil 204 or the length of a single turn of the second adjusting coil 1201 may be smaller than the length of a single turn of the zoom coil 204.
  • the second adjustment coil 1201 and other coils are also disconnected, and the current can be independently loaded. After the adjustment of the zoom coil 204 and the first compensation coil 701 is completed, if the image still cannot meet the definition requirement, the second adjustment will be started. The coil 1201 is further adjusted.
  • the second soft film lens may be composed of a soft film wrapped with liquid or gel, or may be composed of a closed space formed by the soft film and the lens wrapped with liquid or gel.
  • the camera module further includes a second compensation coil 1301, as shown in FIG. 13, at this time, the lens group 203 also includes The third soft film lens 2033, the second compensation coil 1301 is connected to the soft film of the third soft film lens 2033, and the specific structure is similar to the zoom coil 204 and the second adjustment coil 1201, please refer to FIG. 3, which will not be repeated in this application;
  • the second compensation coil 1301 When the second compensation coil 1301 is energized, it will also generate Lorentz force under the action of a magnetic field, change the shape of the third soft film lens 2033, change the focal length of the lens group, and thus change the image distance of the lens group, which plays a role of compensation.
  • the lens group 203 does not need to be moved, and the design is simpler.
  • the third soft film lens may be composed of a soft film wrapped with liquid or gel; it may also be composed of a closed space formed by the soft film and lens wrapped with liquid or gel.
  • the light-blocking area of the second compensation coil 1301 should also be smaller than 1/4 or 1/ of the surface area of the third soft film lens 2033 connected to the second compensation coil 1301. 3. The specific value is not limited.
  • the parameters of each lens in the lens group for example, whether a certain lens is a concave lens or a convex lens, the radius of curvature of each lens, etc.
  • the corresponding relationship between the focal length change value and the image distance change value can be calculated, and the focal length change value and the image distance change value are one-to-one, that is to say, under the same magnetic field, the force generated by the zoom coil 204 and
  • the force generated by the second compensation coil 1301 also has a one-to-one correspondence. Therefore, the number of turns and the length of a single turn of the zoom coil 204 and the second compensation coil 1301 can be designed in advance, so that the zoom coil 204 and the second compensation coil can be combined.
  • the coil 1301 is connected in series, and after the current is loaded, the compensation function can be realized while zooming.
  • the embodiment of the present application may also include the first adjusting coil 1001 mentioned in the above-mentioned embodiment, as shown in FIG. 14; or include the second The adjusting coil 1201 is shown in FIG. 15; the specific principles and features have been described in detail in the previous embodiments, and will not be repeated in this application.
  • the camera module further includes a mirror 1601 for reflecting the input light beam to the lens group 203, and the optical path can be folded to realize a periscope camera module, Reduce the volume of the camera module.
  • the specific structure is shown in Figure 16. It should be understood that Figure 16 is a camera module with one of the structures shown in Figure 2, Figure 7-10 and Figure 12-15 as an example of adding a mirror. Schematic diagram; in addition, the coils mentioned in the above embodiments are all connected to the processor, including connecting to the processor through a power supply circuit, the processor controls the power of the coil, and adjusts the zoom and imaging effects of the camera module.
  • the lens group further includes a first fixed lens for focusing the received light beam; it may also include a second fixed lens for further focusing the light beam to converge the light beam onto the sensor 205; wherein the light beam may pass through the first
  • the first fixed lens, the soft film lens, and the second fixed lens can also be arranged in other ways, which are not limited in this application.
  • the lens group can also include more lenses, and the added lenses can further focus the light beam and improve the imaging quality.
  • the camera module disclosed in the embodiments of the present application can be used for camera alone or in conjunction with other cameras (such as a fixed focus lens). Of course, multiple camera modules disclosed in the present application can also be used together.
  • the specific process is as follows:
  • the relationship between the zoom factor and the voltage or current to the corresponding coil can be pre-stored in the processor, for example, corresponding
  • the relationship is stored in the form of a table or in the form of a function, and the processor can know the voltage or current value of the corresponding coil according to the required zoom factor; the corresponding coil includes the different coils mentioned in the above-mentioned different device embodiments.
  • the zoom coil is energized, and the Lorentz force generated after the zoom coil is energized will push the zoom coil to move, thereby squeezing or pulling the first soft film lens to deform and play the role of changing the focal length.
  • the specific workflow of the camera module also includes: 1703, energize the compensation coil, the Lorentz force generated after the compensation coil is energized, used to compensate for the change in the image distance caused by the focal length change, and the degree of image quality degradation caused by .
  • the camera module can be a structure as shown in Figures 7-12, the compensation coil is the first compensation coil, and the Lorentz force generated by the first compensation coil will control the lens group or part of the lens in the lens group to complete the movement, thereby Change the image distance of the camera module to achieve a compensation effect; the camera module can also have a structure as shown in Figure 13-15.
  • the compensation coil is the second compensation coil, and the Lorentz force generated by the second compensation coil will be The second compensation coil is pushed to move, thereby squeezing the third soft film lens to deform, which can change the image distance of the camera module and play a compensation role.
  • the specific work flow also includes: 1704, energize the adjustment coil, and after the adjustment coil is energized, it is used to adjust the image distance of the camera module, so that the beam can be more accurately Focus on the sensor to reduce beam loss.
  • the camera module may have the structure shown in Figures 10 and 14, the adjusting coil is the first adjusting coil, and the Lorentz force generated by the first adjusting coil will control the lens group or part of the lens in the lens group to complete the movement, thereby Play the role of further adjusting the image distance; the camera module can also be of the structure shown in Figures 12 and 15, at this time the adjustment coil is the second adjustment coil, and the Lorentz force generated by the second adjustment coil will promote the second adjustment The coil moves, thereby squeezing the second soft film lens to deform and further adjust the image distance.
  • the camera module provided in the embodiments of the present application can be used as a separate camera, and can also be applied to devices that need to take photos or videos in different scenarios in fields such as smart phones, tablet computers, and robots.
  • the camera module provided by the embodiment of the application can realize the continuous optical zoom function, and the real images are collected, and the imaging effect is better; it is the same as the commonly used solution to realize the zooming ability by stitching multiple fixed-focus lenses
  • the camera module of the present application has the optical zoom capability, that is, a single lens can achieve the zoom capability of two fixed focus lenses, and a dual lens can achieve more effects of a fixed focus lens, under the condition that the optical zoom capability remains unchanged ,
  • the number of camera modules in the terminal device can be reduced; in addition, multiple camera modules disclosed in the present application can also solve the problem of image quality "out of gear" existing in the splicing of existing fixed-focus lenses.
  • An embodiment of the present application provides a camera device, such as a camera or a video camera.
  • the camera device includes the camera module provided in the above embodiment and a packaging structure, wherein the camera module module further includes a coil in the camera module
  • the connected controller is used to control the energization of the coil; the coil includes the different coils mentioned in the above-mentioned different device embodiments.
  • the controller may be an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FIG. 19 shows a structural block diagram of a terminal device provided by an exemplary embodiment of the present application.
  • the terminal device may be a smart phone. , Tablet computers, smart robots, laptops and other devices that integrate camera or video functions, or vehicles with camera or video functions.
  • the terminal device may also be called user equipment, portable terminal, laptop Other names such as terminal, desktop terminal, vehicle terminal, etc.
  • the terminal device further includes: a processor 1901 and a memory 1902.
  • the processor 1901 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the processor 1901 may be implemented in at least one hardware form among digital signal processing (Digital Signal Processing, DSP), FPGA, and Programmable Logic Array (Programmable Logic Array, PLA).
  • the processor 1901 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a central processing unit (CPU);
  • the coprocessor is A low-power processor used to process data in the standby state.
  • the processor 1901 may be integrated with a graphics processing unit (GPU), and the GPU is used for rendering and drawing content that needs to be displayed on the display screen.
  • the processor 1901 may also include an artificial intelligence (AI) processor, and the AI processor is used to process computing operations related to machine learning.
  • AI artificial intelligence
  • the memory 1902 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 1902 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 1902 is used to store at least one instruction.
  • the terminal device may optionally further include: a peripheral device interface 1903 and at least one peripheral device.
  • the processor 1901, the memory 1902, and the peripheral device interface 1903 may be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 1903 through a bus, a signal line, or a circuit board.
  • the peripheral device includes: at least one of a camera component 1904, a radio frequency circuit 1905, a display screen 1906, an audio circuit 1907, a positioning component 1908, and a power supply 1909.
  • the peripheral device interface 1903 can be used to connect at least one peripheral device related to Input/Output (I/O) to the processor 1901 and the memory 1902.
  • the processor 1901, the memory 1902, and the peripheral device interface 1903 are integrated on the same chip or circuit board; in some other embodiments, any one of the processor 1901, the memory 1902, and the peripheral device interface 1903 or The two can be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the camera assembly 1904 may include the camera module provided in the foregoing embodiment, which is used to collect images or videos, and send the collected images or video information to the processor 1901 for image preview processing or storage.
  • the camera assembly 1904 includes a front camera and a rear camera.
  • the front camera is set on the front panel of the terminal, and the rear camera is set on the back of the terminal.
  • the front camera can use the camera module provided in this application to adapt to the zoom requirements of different scenarios; usually, the rear There may be more than one camera, each of which is the main camera, depth-of-field camera, wide-angle camera, and telephoto camera to realize the fusion of the main camera and the depth-of-field camera to realize the background blur function, and the fusion of the main camera and the wide-angle camera to realize panoramic shooting and virtual Virtual Reality (VR) shooting function or other fusion shooting functions; the rear camera may all use the camera module provided in this application, or part of it may be an existing fixed focus lens, and part of the camera module provided in this application.
  • the camera assembly 1904 may also include a flash.
  • the radio frequency circuit 1905 is used to receive and transmit radio frequency (RF) signals, also called electromagnetic signals.
  • RF radio frequency
  • the radio frequency circuit 1905 communicates with a communication network and other communication devices through electromagnetic signals.
  • the radio frequency circuit 1905 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the display screen 1906 is used to display a user interface (UI).
  • the UI can include graphics, text, icons, videos, and any combination thereof.
  • the display screen 1906 also has the ability to collect touch signals on or above the surface of the display screen 1906.
  • the touch signal may be input to the processor 1901 as a control signal for processing.
  • the display screen 1906 may also be used to provide virtual buttons and/or virtual keyboards, also called soft buttons and/or soft keyboards.
  • the audio circuit 1907 is used to collect the sound waves of the user and the environment, and convert the sound waves into electrical signals and input them to the processor 1901 for processing; or input them to the radio frequency circuit 1905 to implement voice communication.
  • the audio circuit 1907 may also include a headphone jack.
  • the positioning component 1908 is used to locate the current geographic location of the terminal device to implement navigation or location-based service (LBS).
  • LBS location-based service
  • the power supply 1909 is used to supply power to various components in the terminal device.
  • FIG. 19 does not constitute a limitation on the terminal device, and may include more or fewer components than shown in the figure, or combine certain components, or adopt different component arrangements.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium mentioned can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

本申请公开了一种摄像模组,结构紧凑,可单独作为摄像头使用,也可应用于手机、平板电脑等终端设备或者车载设备中。该摄像模组包括两个磁体,透镜组,变焦线圈和传感器,两个磁体分别位于透镜组相对的两侧,形成磁场;透镜组包括第一软膜透镜;变焦线圈与第一软膜透镜的软膜相连;其中,变焦线圈在通电时,在磁场作用下产生洛伦兹力,改变第一软膜透镜的形状,实现变焦功能;传感器用于接收通过透镜组射入的光束;该摄像模组可以实现连续光学变焦功能,采集的都是真实的图像,成像效果更好。

Description

摄像模组及终端设备
本申请要求于2019年9月27日提交中国国家知识产权局、申请号为201910927693.1、发明名称为“摄像模组及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种摄像模组及终端设备。
背景技术
诸如手机等电子设备逐渐成为大众生活不可或缺的产品。随着电子技术的发展,电子设备的功能不断增加,至少包括通讯、上网、拍摄等功能。其中,拍摄品质的好坏将直接影响电子设备的使用体验。电子设备的拍摄功能的实现,在硬件上依赖于摄像模组来完成图像的采集,软件上依赖算法的运算,最终达到用户所需的拍摄体验。
用户在使用电子设备拍摄时,有时候想要广角拍摄,有时候又想要长焦拍摄,用户对摄像模组的变焦需求越来越强烈。在现有的手机或平板电脑等产品中,单个镜头通常只有定焦拍摄的能力,变焦是通过多个定焦镜头拼接的方式完成的,在拍摄时,根据不同的变焦需求,调用不同焦距的镜头。然而,该方案会导致两个问题,一个是对于更高质量的更长焦的拍照特性需要多个镜头拼接接力,对外观设计的难度增加,传统手机整洁的后壳上往往需要预留各种镜头的位置,且前置镜头除非降低屏占比,很难增加镜头数量;另一个问题在于,拼接多个定焦镜头方式,会导致画质存在“断档”的问题,即在不同变焦倍率之间存在画质下降的问题。
发明内容
本申请提供了一种摄像模组,可以解决终端设备中摄像模组(或镜头)数量多、成本高的问题。所述技术方案如下:
第一方面,提供了一种摄像模组,所述摄像模组包括两个第一磁体,透镜组,变焦线圈和传感器,所述两个第一磁体分别位于所述透镜组相对的两侧;所述透镜组包括第一软膜透镜;所述变焦线圈与所述第一软膜透镜的软膜相连;其中,所述变焦线圈在通电时,在所述两个第一磁体形成的磁场作用下产生洛伦兹力,改变所述第一软膜透镜的形状,从而改变所述第一软膜透镜的焦距;所述传感器用于接收通过所述透镜组射入的光束。
进一步地,变焦线圈可以位于第一软膜透镜的外表面边缘,与软膜相连,变焦线圈通电时产生的洛伦兹力会推动变焦线圈移动,从而挤压第一软膜透镜使之发生形变,实现变焦功能;变焦线圈也可以位于第一软膜透镜的内表面边缘,即位于第一软膜透镜内部,与软膜相连,此时变焦线圈通电时产生的洛伦兹力也会推动变焦线圈移动,从而拉扯第一软膜透镜的软膜,使第一软膜透镜发生形变,实现变焦功能。
本申请实施例提供的摄像模组通过在第一软膜透镜上设置变焦线圈,可以实现连续光学变焦功能,而且采集的都是真实的图像,成像效果更好;整体结构比较紧凑,可以应用于手 机等空间有限的终端设备中。此外,与现在普遍采用的通过多个定焦镜头拼接的方式实现变焦能力的方案相比,本申请的摄像模组本身具备光学变焦能力,即单镜头可以实现两个定焦镜头的变焦能力,双镜头可实现更多定焦镜头的效果,可以在保证光学变焦能力的情况想,减少终端设备中摄像模组的个数,降低成本。
结合第一方面,在第一方面的第一种可能的实施方式中,所述摄像模组还包括一面开口的环形筒,其中,所述传感器固定于所述环形筒内与开口面相对的底面;所述两个第一磁体分别固定于所述环形筒内,所述底面两侧的面上。
结合第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述摄像模组还包括与所述环形筒连接的镜头筒,所述镜头筒与所述环形筒通过弹性装置相连,所述透镜组中至少一个透镜与所述镜头筒相连。具体地,弹性装置可以为弹簧或弹片等,使所述镜头筒可以移动。
结合上述可能的实施方式,在第一方面的第三种可能的实施方式中,所述摄像模组还包括位于所述第一软膜透镜和所述第一磁体之间的第二磁体,所述第二磁体与第一磁体一一对应,所述第二磁体与对应的所述第一磁体的磁场方向相同。可选地,所述第二磁体固定于所述镜头筒上。本实施例的第二磁体可以会聚第一磁体的磁场,起到增强磁场的作用,在同等电流的情况下,提高变焦线圈产生的洛伦兹力,增加第一软膜透镜的形变量,从而提高变焦能力。
结合上述可能的实施方式,在第一方面的第四种可能的实施方式中,所述摄像模组还包括第一补偿线圈,所述第一补偿线圈位于所述两个第一磁体之间,其中,所述第一补偿线圈在通电时,在磁场作用下产生洛伦兹力,改变所述透镜组的位置,从而改变所述摄像模组的像距。在本申请实施例中,增加了第一补偿线圈用于对补偿由于摄像模组焦距变化带来的像距变化,保证成像质量。可选地,透镜组包括的全部透镜或部分透镜位于该第一补偿线圈形成的空间中。
结合第一方面的第四种可能的实施方式,在第一方面的第五种可能的实施方式中,所述摄像模组还包括与所述环形筒连接的镜头筒,所述镜头筒与所述环形筒通过弹性装置相连,所述第一补偿线圈和所述第一调节线圈固定于所述镜头筒上,所述透镜组中至少一个透镜与所述镜头筒相连。具体地,弹性装置可以为弹簧或弹片等。第一补偿线圈通电后产生的洛伦兹力会推动镜头筒带动与镜头筒连接的透镜一起移动。
结合第一方面的第四种或第五种可能的实施方式,在第一方面的第六种可能的实施方式中,所述变焦线圈和所述第一补偿线圈串联。通过光学设计,可以知道变焦值和补偿值之间的一一对应关系,因此,可以通过一个电流来控制实现变焦和补偿功能。
结合第一方面的第六种可能的实施方式,在第一方面的第七种可能的实施方式中,所述摄像模组还包括第一调节线圈,其中,所述第一调节线圈位于所述两个第一磁体之间,所述第一调节线圈的匝数少于第一补偿线圈的匝数,或者所述第一调节线圈的单圈长度小于第一补偿线圈的单圈长度。
结合第一方面的第六种可能的实施方式,在第一方面的第八种可能的实施方式中,所述摄像模组还包括第二调节线圈,所述透镜组还包括第二软膜透镜,所述第二调节线圈与所述第二软膜透镜的软膜相连;其中,所述第二调节线圈在通电时,在磁场作用下产生洛伦兹力,改变所述第二软膜透镜的形状,使所述光束聚焦于所述传感器上。可选地,所述摄像模组还 包括位于所述第二软膜透镜和所述第一磁体之间的第四磁体,所述第四磁体与第一磁体一一对应,所述第四磁体与对应的所述第一磁体的磁场方向相同。该第四磁体可以会聚磁场,增强洛伦兹力,提高第二软膜透镜的形变量。
通常情况下,设计好变焦线圈和第一补偿线圈的匝数和单圈长度,通过一个电流控制,就可以得到较为理想的图像;如果由于特殊原因导致得到的图像不够清晰,例如,装配误差或镜片在长时间工作之后稳定性下降等因素会导致图像不够清晰,则需要上述两个实施例提供的调节线圈对摄像模组做进一步地调节,进一步提升成像质量。
结合第一方面或第一方面的第一种至第三种可能的实施方式,在第一方面的第九种可能的实施方式中,所述摄像模组还包括第二补偿线圈,所述透镜组还包括第三软膜透镜,所述第二补偿线圈与所述第三软膜透镜的软膜相连;其中,所述第二补偿线圈在通电时,在磁场作用下产生洛伦兹力,改变所述第三软膜透镜的形状,从而改变所述摄像模组的像距。在本申请实施例中,增加了第二补偿线圈,用于补偿由于摄像模组焦距变化带来的像距变化,保证成像质量。
结合第一方面的第九种可能的实施方式,在第一方面的第十种可能的实施方式中,所述摄像模组还包括位于所述第三软膜透镜和所述第一磁体之间的第三磁体,所述第三磁体与第一磁体一一对应,所述第三磁体与对应的所述第一磁体的磁场方向相同。该第三磁体可以会聚磁场,增强洛伦兹力,提高第三软膜透镜的形变量。
结合第一方面的第九种或第十种可能的实施方式,在第一方面的第十一种可能的实施方式中,所述变焦线圈和所述第二补偿线圈串联。通过光学设计,可以知道变焦值和补偿值之间的一一对应关系,因此,可以通过一个电流来控制实现变焦和补偿功能。
结合第一方面的第十一种可能的实施方式,在第一方面的第十二种可能的实施方式中,所述摄像模组还包括第一调节线圈,所述第一调节线圈位于所述两个第一磁体之间,其中,所述第一调节线圈在通电时,在磁场作用下产生洛伦兹力,改变所述透镜组的位置,从而改变所述摄像模组的像距。
结合第一方面的第十一种可能的实施方式,在第一方面的第十三种可能的实施方式中,所述摄像模组还包括第二调节线圈,所述透镜组还包括第二软膜透镜,所述第二调节线圈与所述第二软膜透镜的软膜相连;其中,所述第二调节线圈的匝数少于第二补偿线圈的匝数,或者所述第二调节线圈的单圈长度小于第二补偿线圈的单圈长度。
通常情况下,设计好变焦线圈和第二补偿线圈的匝数和单圈长度,通过一个电流控制,也可以得到较为理想的图像;如果确实存在图像不够清晰的问题,则需要上述两个实施例提供的调节线圈对摄像模组做进一步地调节,进一步提升成像质量。
结合上述任意一种可能的实施方式,在第一方面的第十四种可能的实施方式中,所述摄像模组还包括反射镜,用于将输入的光束反射给所述透镜组。本申请实施例提供的摄像模组,可以实现潜望式的结构,将光路折叠,减少摄像模组的体积,可以适用于手机等对体积有要求的终端设备中。
结合上述任意一种可能的实施方式,在第一方面的第十五种可能的实施方式中,与软膜透镜中的软膜相连的线圈的挡光面积小于所述软膜透镜中与所述线圈相连的表面面积的1/4。例如,变焦线圈,第二补偿线圈、第二调节线圈;上述尺寸要求,可以保证足够强度的光束到达传感器,不至于损耗太多。挡光面积的具体数值可以根据实际情况改变,本申请不做限 定。
结合上述任意一种可能的实施方式,在第一方面的第十六种可能的实施方式中,软膜透镜由软膜包裹液体或凝胶构成;或者软膜透镜由软膜和透镜构成的封闭空间中包裹有液体或凝胶构成。
结合上述任意一种可能的实施方式,在第一方面的第十七种可能的实施方式中,所述摄像模组还包括控制器,用于根据传感器发送的信息,生成控制信息,控制上述实施例中公开的线圈的通电量。
结合上述任意一种可能的实施方式,在第一方面的第十八种可能的实施方式中,软膜透镜包括软膜形变区和透镜固定区,所述摄像模组还包括导电杆,滑动导电装置和引线;所述透镜固定区,用于将透镜固定在所述镜头筒上;所述导电杆位于所述透镜固定区,用于导电;所述滑动导电装置位于所述导电杆上;所述引线分别连接位于软膜透镜上的线圈和所述滑动导电装置。本实施例中,滑动导电装置可以沿着导电杆移动位置,并通过引线与所述线圈相连。当给所述线圈通电时,在磁场的作用下会产生洛伦兹力,洛伦兹力推动所述线圈改变位置,采用刚性度较好的引线,使滑动导电装置可以随着所述线圈的移动而移动,引线的相对位置不变,稳定性更好。本实施例中,软膜透镜可以为上述可能的实现方式中提到的任何一种软膜透镜,所述线圈可以为上述可能的实现方式中提到的任意一种软膜透镜上的线圈,例如,变焦线圈、第二补偿线圈和第二调节线圈。
第二方面,提供一种利用第一方面提供的摄像模组的变焦方法,包括:接收变焦指令,根据接收到的变焦指令,确定对所述变焦线圈的通电量,其中,通电量即为变焦需要的电压或电流数值;给变焦线圈通电,所述变焦线圈通电后产生的洛伦兹力会推动所述变焦线圈移动,使第一软膜透镜发生形变,起到改变焦距的作用。可选地,在摄像模组包括补偿线圈的情况下,给补偿线圈通电,补偿线圈通电后产生的洛伦兹力,用于补偿焦距改变带来像距变化,引起的成像质量下降的程度。进一步地,在摄像模组还包括调节线圈的情况下,如果变焦线圈和补偿线圈串联,出现补偿不足的情况,所述方法还包括:给调节线圈通电,调节线圈通电后用于对摄像模组的像距进行调节,使光束可以更准确地聚焦到传感器,降低光束损失。
结合第二方面,在第二方面的第一种可能的实施方式中,在包含多个摄像模组的情况下,在接收变焦指令之后,所述方法还包括:根据接收的变焦指令,调用对应的摄像模组。例如,需要长焦拍照,就调用焦距更大的摄像模组。
第三方面,提供一种终端设备,所述终端设备包括如第一方面任一种实施方式所述的摄像模组以及处理器和显示器,其中,所述摄像模组用于采集图像信息,所述处理器用于处理所述图像信息,控制所述显示器显示采集到的图像。
结合第三方面,在第三方面的第一种可能的实施方式中,所述终端设备还包括存储器,用于存储图像信息。用户可以在需要的时候,从存储器中调用曾经拍摄的照片或视频。
结合上述可能的实施方式,在第三方面的第二种可能的实施方式中,所述终端设备包括的摄像模组为多个,其中,至少一个摄像模组为如第一方面任一种实施方式所述的摄像模组。本申请实施例可以采用多个如第一方面任一种实施方式所述的摄像模组,也可以额外增加几个定焦镜头,相比于现有的定焦镜头拼接的变焦技术,摄像模组的数量更少,而且本申请的摄像模组可以实现连续的光学变焦,成像质量更优。
第四方面,提供一种摄像设备,例如,照相机或摄像机,该摄像设备包括:如第一方面任一种实施方式所述的摄像模组,以及封装结构。
第五方面,提供了一种可读存储介质,所述可读存储介质存储有指令,当该指令在终端设备上运行时,使得所述终端设备执行如第二方面或第二方面的任意一种实施方式所述的方法。
第六方面提供了一种包含指令的计算机程序产品,当其在终端设备上运行时,使得终端设备执行如第二方面或第二方面的任意一种实施方式所述的方法。
本申请实施例提供的摄像模组可以作为单独的摄像头使用,也可以应用于智能手机、平板电脑、机器人等领域需要在不同场景下拍照或录像的设备中。采用本申请实施例提供的摄像模组,可以实现连续光学变焦功能,采集的都是真实的图像,成像效果更好;与现在普遍采用的通过多个定焦镜头拼接的方式实现变焦能力的方案相比,本申请的摄像模组本身具备光学变焦能力,即单镜头可以实现两个定焦镜头的变焦能力,双镜头可实现更多定焦镜头的效果,在光学变焦能力不变的情况下,可以减少终端设备中摄像模组的个数;此外,多个本申请公开的摄像模组还可以解决现有定焦镜头拼接存在的图像质量“断档”的问题。
附图说明
图1为摄像模组成像的示意图;
图2为本申请实施例提供的一种摄像模组的结构示意图;
图3为本申请实施例提供的摄像模组中第一软膜透镜的示意图;
图4为本申请另一实施例提供的一种摄像模组的结构示意图;
图5为本申请另一实施例提供的摄像模组中磁体的排布示意图;
图6为本申请另一实施例提供的摄像模组中第一磁体与对应的跌磁体的排布示意图;
图7为本申请另一实施例提供的一种摄像模组的结构示意图;
图8为本申请另一实施例提供的摄像模组中变焦线圈和补偿线圈的连线方式示意图;
图9为本申请另一实施例提供的摄像模组中变焦线圈和补偿线圈的连线方式示意图;
图10为本申请另一实施例提供的一种摄像模组的结构示意图;
图11为本申请另一实施例提供的一种摄像模组的结构示意图;
图12为本申请另一实施例提供的一种摄像模组的结构示意图;
图13为本申请另一实施例提供的一种摄像模组的结构示意图;
图14为本申请另一实施例提供的一种摄像模组的结构示意图;
图15为本申请另一实施例提供的一种摄像模组的结构示意图;
图16为本申请另一实施例提供的一种摄像模组的结构示意图;
图17为利用本申请实施例提供的摄像模组进行变焦的方法流程图;
图18为多摄像模组情况下,利用本申请实施例提供的摄像模组进行变焦的方法流程图;
图19为包括本申请实施例提供的摄像模组的终端设备示意图。
具体实施方式
在对本申请实施例进行详细地解释说明之前,先对本申请实施例的应用场景予以说明。
诸如手机等电子设备的相机功能是指通过内置或外接的数码相机拍摄静态图片或动态视 频,作为电子设备的一项新的附加功能,电子设备的拍摄能力已经成为人们最关注的指标之一。电子设备的拍摄功能的实现,在硬件上通过光学模组来完成图像的采集,软件上依赖算法的运算,最终达到用户所需的拍摄体验。光学模组中除成像功能以外,最重要的技术还包括变焦和对焦技术。
焦距,也称为焦长,是光学系统中衡量光的聚集或发散的度量方式,指平行光入射时从透镜中心到光聚集之焦点的距离。焦距越短,视场角越大。焦距一定的情况下,像面(即摄像模组中传感器的有效工作面)越大,视场角越大。一般而言,光学模组的焦距是固定的。
对焦,也叫对光、聚焦,指的是根据不同距离的物体在镜头后部清晰成像的位置的不同而改变成像面与透镜间距离,使被拍物成像清晰的过程。由于所有的成像系统都存在景深,如果被拍摄物体在景深之外,那么该物体拍摄后将出现图像模糊,为了保证拍摄的物体清晰呈现,需要进行对焦。
景深,指的是成像光学系统成像清晰的深度,景深是一种物理现象,只是不同光学系统的景深大小有区别。如图1所示,为镜头成像的示意图,ΔL为景深,L为拍摄距离。其中,景深的大小与光学镜头自身的参数焦距f、镜头的光圈数(F数)有关,也和所使用的传感器能分辨的弥散圆直径δ有关。
其中,它们之间的关系如下面公式所述:
Figure PCTCN2020115091-appb-000001
随着用户对手机越来越依赖,需求也越来越多样,例如,有时候需要广角拍摄靓丽的风景,有时候也需要拍摄远处的人像,由于拍摄场景的不同,既需要用到广角摄像头也需要用到长焦摄像头。所以,普通用户对摄像模组的变焦需求越来越强烈。
为此,本申请实施例提供了一种摄像模组,如图2所示,所述摄像模组包括两个第一磁体(201,202),透镜组203(图2中透镜组203包括4个透镜),变焦线圈204和传感器205;
两个第一磁体(201,202)分别位于透镜组203相对的两侧,形成磁场;透镜组203包括第一软膜透镜2031;变焦线圈204与第一软膜透镜2031的软膜相连,其中,变焦线圈204可以位于第一软膜透镜2031的外表面边缘,与软膜相连,具体结构可如图3所示;也可以位于第一软膜透镜2031的内表面边缘,即位于第一软膜透镜2031内,与软膜相连。变焦线圈204在通电时,在磁场作用下会产生洛伦兹力,可以推动变焦线圈204移动,从而挤压或拉扯第一软膜透镜2031的软膜,使第一软膜透镜2031改变形状,即改变第一软膜透镜2031的面型,比如曲率或者其他参数,从而改变透镜组的焦距,实现变焦功能;传感器205用于接收通过透镜组203射入的光束。
第一软膜透镜可以由软膜包裹液体或凝胶构成,第一软膜透镜也可以由软膜和透镜构成的封闭空间中包裹有液体或凝胶构成,其中,液体可以为油、溶剂、离子液体、液态金属等,为透明或半透明的物质,在软膜的包裹下,受力可以发生形变,实现变焦功能。位于软膜透镜上的线圈可以为金属线缠绕多圈形成的结构,也可以只缠绕一圈,甚至可以为一个金属圆环,只要通电情况下,可以在磁场中受到洛伦兹力推动即可,后续实施例中类似的线圈也可以具有上述结构,本申请不再赘述。
此外,本申请提供的摄像模组还可以包括一面开口的环形筒206,其中,传感器205固定于环形筒206内与开口面相对的底面上;两个第一磁体(201,202)分别固定于环形筒206 内,相对放置在环形筒206的底面两侧的面上;此外,该摄像模组还包括与环形筒206连接的镜头筒207,该镜头筒207可以通过弹片或弹簧等装置与环形筒206的底面或侧面相连,使镜头筒207可以移动,具体结构如图4所示。
进一步地,如图3所示,第一软膜透镜2031包括软膜形变区301和透镜固定区302,透镜固定区302用于将透镜固定在镜头筒207上;摄像模组还包括位于透镜固定区302的导电杆305,以及与导电杆305相连的滑动导电装置304,其中,该导电杆305与供电电路相连(如果在终端设备内部,供电电路与处理器集成在一起,也可以理解成导电杆305与处理器相连),用于导电;该滑动导电装置304可以沿着导电杆305移动位置,并通过引线303与变焦线圈204相连。当给变焦线圈204通电时,在磁场的作用下会产生洛伦兹力,洛伦兹力推动变焦线圈204改变位置,采用刚性度较好的引线303,使滑动导电装置304可以随着变焦线圈204的移动而移动,引线303的相对位置不变,稳定性更好;当然,也可以直接将引线连接到终端内部的供电电路上,但是引线要预留一段长度,确保线圈移动到离供电电路最远的距离时,引线仍可以连接;此时在线圈移动的过程中,引线一直在跟随摆动,稳定性相对较差。应理解,本申请中引线303的刚性度可以带动滑动导电装置304即可;滑动导电装置304可以为滑动圈或者其他任意形式,可以沿导电杆305移动即可。
需要说明的是,后续实施例中的软膜透镜结构均与之类似,本申请不再赘述;透镜组中除软膜透镜之外的透镜,也存在透镜固定区,通过透镜固定区将透镜与对应的镜头筒固定,但是由于这些透镜的外表面或内表面均没有线圈,故这些透镜的透镜固定区不存在导电杆、引线等装置。
在本申请实施例中,磁体为可以产生磁场的物体,例如,磁铁、磁石等;第一磁体的数目可以不止两个,例如4个第一磁体相对地位于透镜组203的四周、或者6个第一磁体相对地环绕在透镜组203周围等,图5给出了以4个第一磁体(201,202,209和210)为例的示意图,所有第一磁体都可以固定于环形筒206内;本申请后续实施例是以2个第一磁体为例进行说明。可选地,该摄像模组还包括位于第一磁体和第一软膜透镜之间的第二磁体208,该第二磁体208可以固定于镜头筒207上,也可以集成在镜头筒207内部,如图4所示。第二磁体与第一磁体是一一对应的关系,结构可以如图5所示(为图示清楚,镜头筒等结构在图中未示出)。应理解,第一磁体和第二磁体的形状也可以为弯曲的形状,环绕在软膜透镜的周围,具体形状不做限定。
此外,第二磁体208与对应的第一磁体201具有相同的极性方向,如图6所示,假设第一磁体201面向第二磁体208的一面的极性是南极(S极),则第二磁体208面向第一磁体那一面的极性则为北极(N极);反过来,如果第一磁体201面向第二磁体208的一面的极性是N极,则第二磁体208面向第一磁体201那一面的极性则为S极,此时,第二磁体208可以会聚第一磁体201的磁场,起到增强磁场的作用,在同等电流的情况下,提高变焦线圈204产生的洛伦兹力,增加第一软膜透镜2031的形变量。在摄像模组应用在手机等小型终端设备上时,由于电流不可能特别高,导致洛伦兹力的强度有限,使第一软膜透镜2031无法达到更好地变焦效果,本实施例利用第二磁体208实现磁场会聚,可以解决这一问题。
应理解,本申请下文中提到的第二软膜透镜与第一磁体之间,也可以存在第三磁体,用于会聚第一磁体的磁场,提高第二软膜透镜的形变量;第三软膜透镜与第一磁体之间,也可以存在第四磁体,用于会聚第一磁体的磁场,提高第二软膜透镜的形变量;第三磁体和第四 磁体的特征均与第二磁体相同,且如果还存在更多的软膜透镜,也可能存在与之对应的起到会聚磁场作用的磁体,本申请实施例不再赘述。
本申请提供的摄像模组还可以应用于终端设备中,例如手机、平板电脑或汽车等,用作手机的摄像头或者车载设备中的行车记录仪或其他摄像器件。摄像模组的形式可以是常规的摄像模组,也可以是折叠光路形式的摄像模组;终端设备内部的处理器会对传感器205采集的图像信息进行处理,并解析用户传达的变焦需求,根据变焦需求驱动本摄像模组完成光学变焦。
具体地,光束从透镜组203入射后将汇聚在传感器205处,其中,为了防止变焦线圈204阻挡光束的入射,变焦线圈204的挡光面积要小于第一软膜透镜2031中与变焦线圈204相连的表面面积的1/4或1/3,具体数值并不做限定;此外,透镜组203还可以包括多个透镜,例如4个、6个,图2中以4个为例,本申请不做限定;传感器205可以为图像传感器,例如,互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像传感器,感光耦合元件(charge-coupled device,CCD)图像传感器等。传感器205传回的图像会是一张终端设备拍摄的预览图,用户如果放大预览图像,或者点击2x、5x这样的变焦按钮,那么终端设备的处理器会得到变焦的需求信号,根据用户给出的变焦需求信号,控制对变焦线圈204的通电量,变焦线圈204的电量可以来自于设备中的电源器件,例如,摄像模组用在手机或平板电脑中,该电量就可以来自于手机或平板电脑的电池;通电后的线圈在磁场作用下会产生洛伦兹力,使线圈移动,从而挤压或拉扯第一软膜透镜2031使之发生形变,从而改变焦距,实现光学变焦功能;而且通电量可以连续变化,可以使第一软膜透镜2031发生连续形变,从而实现连续的光学变焦功能。
本申请提供的摄像模组,通过在第一软膜透镜的外表面或内表面的边缘设置变焦线圈,可以实现连续光学变焦功能,而且采集的都是真实的图像,成像效果更好;整体结构比较紧凑,可以应用于手机等空间有限的终端设备中。此外,与现在普遍采用的通过多个定焦镜头拼接的方式实现变焦能力的方案相比,本申请的摄像模组本身具备光学变焦能力,即单镜头可以实现两个定焦镜头的变焦能力,例如本申请的单个摄像模组可以实现1-2倍焦距的连续变化,现有技术需要1倍定焦镜头和2倍定焦镜头组合起来实现1-2倍的变焦效果,且本申请是连续的光学变焦,采集的都是真实的图像,成像效果更好;进一步地,本申请的双镜头可实现更多定焦镜头的效果,可以减少终端设备中摄像模组的个数,还能保证光学变焦能力不下降。
可选地,本申请提供的摄像模组还包括第一补偿线圈701,如图7所示,该第一补偿线圈701位于两个第一磁体(201,202)之间,其中,透镜组203位于该第一补偿线圈701形成的空间中;具体地,透镜组203包括的所有透镜均位于该第一补偿线圈701形成的空间中,或透镜组203包括的部分透镜位于该第一补偿线圈701形成的空间中,以透镜组203包括4个透镜为例,可以是1个、2个或3个透镜位于第一补偿线圈形成的空间中,也可以全部4个透镜都位于第一补偿线圈形成的空间中。该第一补偿线圈701在通电时,在磁场作用下产生洛伦兹力,会使透镜组203移动,改变透镜组203的位置,从而改变所述摄像模组的像距,起到补偿作用(也可说是起到对焦作用);此外,第一补偿线圈701产生的洛伦兹力也可以只推动透镜组203中的部分透镜移动位置,同样可以起到补偿作用。
本申请实施例的工作流程如下,例如,传感器205传回一张终端设备拍摄的预览图,用户点击2x、5x这样的变焦按钮,那么终端设备的处理器会得到变焦的需求信号;处理器根据用户给出的变焦需求信号,控制对变焦线圈204通电,通电后的线圈在磁场作用下会产生洛伦兹力,使第一软膜透镜2031发生形变,从而改变焦距,实现光学变焦功能;在完成变焦之后,如果该预览图像仍然不够清晰,那么处理器会对第一补偿线圈701逐渐增加电流,带动透镜组203移动位置或带动透镜组203中的部分透镜移动位置,实现对焦补偿,当传感器205传递过来的图像信号是清晰的,处理器会停止增加第一补偿线圈701的电流,补偿完成。
具体地,第一补偿线圈701固定于镜头筒207上,透镜组203与镜头筒207相连,第一补偿线圈701通电后产生的洛伦兹力会使第一补偿线圈701带动镜头筒207移动,从而改变透镜组203中透镜的位置;而且,镜头筒207也可以起到固定透镜组203的作用。进一步地,透镜组203中的透镜也可以不全部都与镜头筒207相连,例如,如果透镜组包括6个透镜,可以其中4个或5个透镜与镜头筒207相连,具体数量不做限制,剩余的透镜可以通过固定件或其他固定装置与环形筒206相连;第一补偿线圈701通电后产生的洛伦兹力会使第一补偿线圈701带动镜头筒207移动,从而使与镜头筒207相连的那部分透镜移动,剩余的透镜位置不变。
此外,通过光学设计,可以确定透镜组中每个透镜的参数(例如,某一个透镜是凹透镜还是凸透镜,每个透镜的曲率半径等)以及透镜之间的距离;确定好之后,透镜组的焦距变化值与透镜组203的位移值之间的对应关系就可以计算出来,并且焦距变化值和透镜组203的位移值两者之间是一一对应的关系;也就是说,此时的变焦线圈204产生的力与第一补偿线圈701产生的力也是存在一一对应关系的,因此,可以预先设计好变焦线圈204和第一补偿线圈701的匝数和单圈长度,这样就可以将变焦线圈204和第一补偿线圈701串联,加载电流之后,即可在变焦的同时,实现补偿的功能。在此种情况下,变焦线圈204一端可以与第一补偿线圈701的一端相连,如图8所示;也可以就近原则,相当于将第一补偿线圈701在与变焦线圈204位置较近的部分断开,断开的两个端口分别与变焦线圈204的两端连接,如图9所示;也可以有其他的连接方式,本申请不做限定。
通常情况下,设计好变焦线圈204和第一补偿线圈701的匝数和单圈长度,通过一个电流控制,就可以得到较为理想的图像;如果由于特殊原因(例如,装配误差或镜片在长时间工作之后稳定性下降等因素)导致得到的图像不够清晰,则需要对摄像模组做进一步地调节,针对这一情况,本申请另一实施例提供了如下两种可行方式:
(1)如图10所示,该摄像模组还可以包括第一调节线圈1001,该第一调节线圈1001也位于两个第一磁体(201,202)之间,透镜组203包括的部分透镜位于该第一调节线圈1001缠绕形成的空间中,该第一调节线圈1001在通电时,也会在磁场作用下产生洛伦兹力,改变透镜组203的位置,改变摄像模组的像距,起到进一步调节的作用,让光束更准确地聚焦在传感器205上,得到更清晰的图像。由于第一调节线圈1001是在变焦线圈204和第一补偿线圈701的基础上起微调作用,不需要对透镜组203施加很大的力,因此,通常情况下,第一调节线圈1001产生的洛伦兹力要小于第一补偿线圈701产生的洛伦兹力。由于在施加同样电流的情况下,线圈在磁场中产生的洛伦兹力大小与线圈的匝数和单圈长度有关,如果线圈的单圈长度不变,则线圈在磁场中产生的洛伦兹力大小与线圈的匝数成正比,如果线圈的匝数不变,在磁场中产生的洛伦兹力大小与线圈的单圈长度成正比,因此,第一调节线圈1001的 匝数可以少于第一补偿线圈701的匝数或者第一调节线圈1001的单圈长度可以小于第一补偿线圈701的单圈长度。
应理解,第一补偿线圈701和第一调节线圈1001是断开的,可以独立加载电流,在变焦线圈204和第一补偿线圈701调节完毕后,如果图像仍不能满足清晰度需求,才启动第一调节线圈1001做进一步调节。通常情况下,由于第一补偿线圈701需要推动透镜组203移动更长的距离,因此,第一补偿线圈701缠绕形成的空间要比第一调节线圈1001缠绕形成的空间要大一些,因此,位于第一补偿线圈701缠绕形成的空间中的透镜数量会比位于第一调节线圈1001缠绕形成的空间中的透镜数量也会多一些。
此外,透镜组203包括的透镜可以部分位于该第一补偿线圈701形成的空间中,剩余部分位于该第一调节线圈1001形成的空间中;例如,透镜组包括四个透镜,三个透镜位于第一补偿线圈701形成的空间中,一个透镜位于该第一调节线圈1001形成的空间中,此时,第一补偿线圈701产生的洛伦兹力可以推动位于第一补偿线圈701形成的空间中的三个透镜改变位置,完成补偿功能;第一调节线圈1001产生的洛伦兹力可以推动位于第一调节线圈1001形成的空间中的一个透镜改变位置,对摄像模组做进一步调节;当然也可以两个透镜位于第一补偿线圈701缠绕形成的空间中,另外两个透镜位于该第一调节线圈1001缠绕形成的空间中,还可以有其他排布方式,本申请不做限定。
可选地,该摄像模组包括与环形筒206通过弹簧或弹片连接的镜头筒207,如图4所示,透镜组203中所有透镜或者部分透镜与该镜头筒207相连,第一调节线圈1001和第一补偿线圈701均固定于镜头筒上;第一补偿线圈701通电产生的洛伦兹力会推动第一补偿线圈701带动镜头筒207移动,起到补偿作用;如果图像清晰度仍不满足要求,第一调节线圈1001将会通电,此时产生的洛伦兹力会推动第一调节线圈1001带动镜头筒207移动,从而改变与镜头筒207相连的透镜的位置,起到进一步调节的作用。
此外,镜头筒还可以分成第一镜头筒2071和第二镜头筒2072,其中,透镜组中的一部分透镜可以与第一镜头筒2071相连,剩余的透镜可以与第二镜头筒2072相连;例如,如图11所示,透镜组203包括四个透镜,其中三个透镜与第一镜头筒2071相连,剩余一个透镜与第二镜头筒2072相连;第一镜头筒2071和第二镜头筒2072彼此互不连接,且分别通过可形变装置(弹簧或弹片等)与环形筒206相连,第一补偿线圈701与第一镜头筒2071相连,第一调节线圈1001与第二镜头筒2072相连,此时,第一补偿线圈701通电产生的洛伦兹力会推动第一补偿线圈701带动第一镜头筒2071移动,从而改变与第一镜头筒2071相连的透镜的位置,起到补偿作用;如果图像清晰度仍不满足要求,第一调节线圈1001通电,此时产生的洛伦兹力会推动第一调节线圈1001带动第二镜头筒2072移动,从而改变与第二镜头筒2072相连的透镜的位置,起到进一步调节的作用。
(2)如图12所示,该摄像模组还包括第二调节线圈1201,透镜组203还包括第二软膜透镜2032,该第二调节线圈1201与该第二软膜透镜2032的软膜相连,具体结构与变焦线圈204类似,也是可以位于第二软膜透镜2032的外表面边缘,与软膜相连;也可以位于第二软膜透镜2032的内表面边缘,即位于第二软膜透镜2032内,与软膜相连;可参考图3。第二调节线圈1201在通电时,也会在磁场作用下会产生洛伦兹力,推动第二调节线圈移动,从而挤压或拉扯第二软膜透镜2032的软膜,使第二软膜透镜2032改变形状,微调透镜组的焦距,由于焦距改变,像距也会改变,让光束更准确地聚焦在传感器上,起到进一步调节的作用。 其中,为了防止第二调节线圈1201阻挡光束的入射,第二调节线圈1201的挡光面积也要小于第二软膜透镜2032中与第二调节线圈1201相连的表面面积的1/4或1/3,具体数值并不做限定。
由于第二调节线圈1201是在变焦线圈204和第一补偿线圈701的基础上起微调作用,不需要对第二软膜透镜2032上的软膜施加很大的力,因此,第二调节线圈1201产生的洛伦兹力一般小于变焦线圈204产生的洛伦兹力。由于在施加同样电流的情况下,线圈在磁场中产生的洛伦兹力大小与线圈的匝数和单圈长度有关,如果线圈的单圈长度不变,则线圈在磁场中产生的洛伦兹力大小与线圈的匝数成正比,如果线圈的匝数不变,在磁场中产生的洛伦兹力大小与线圈的单圈长度成正比,因此第二调节线圈1201的匝数可以少于变焦线圈204的匝数或者第二调节线圈1201的单圈长度可以小于变焦线圈204的单圈长度。
应理解,第二调节线圈1201和其他线圈也是断开的,可以独立加载电流,在变焦线圈204和第一补偿线圈701调节完毕后,如果图像仍不能满足清晰度需求,才会启动第二调节线圈1201做进一步调节。此外,第二软膜透镜可以由软膜包裹液体或凝胶构成,也可以由软膜和透镜构成的封闭空间中包裹有液体或凝胶构成。
进一步地,本申请另一实施例提供了一种摄像模组,在图2的基础上,该摄像模组还包括第二补偿线圈1301,如图13所示,此时,透镜组203还包括第三软膜透镜2033,该第二补偿线圈1301与该第三软膜透镜2033的软膜相连,具体结构与变焦线圈204、第二调节线圈1201类似,可参考图3,本申请不在赘述;第二补偿线圈1301在通电时,同样会在磁场作用下产生洛伦兹力,改变第三软膜透镜2033的形状,改变透镜组的焦距,从而改变透镜组的像距,起到补偿的作用;在本实施例中,透镜组203无需移动,设计上更加简单。同样的,第三软膜透镜可以由软膜包裹液体或凝胶构成;也可以由软膜和透镜构成的封闭空间中包裹有液体或凝胶构成。其中,为了防止第二补偿线圈1301阻挡光束的入射,第二补偿线圈1301的挡光面积也要小于第三软膜透镜2033中与第二补偿线圈1301相连的表面面积的1/4或1/3,具体数值并不做限定。
可选地,通过光学设计,确定透镜组中每个透镜的参数(例如,某一个透镜是凹透镜还是凸透镜,每个透镜的曲率半径等)以及透镜之间的距离;确定好之后,透镜组的焦距变化值与像距变化值之间的对应关系可以计算出来,而且焦距变化值与像距变化值是一一对应的,也就是说,在同样的磁场作用下,变焦线圈204产生的力与第二补偿线圈1301产生的力也是存在一一对应关系的,因此,可以预先设计好变焦线圈204和第二补偿线圈1301的匝数和单圈长度,这样就可以将变焦线圈204和第二补偿线圈1301串联,加载电流之后,即可在变焦的同时,实现补偿的功能。
通常情况下,设计好变焦线圈204和第二补偿线圈1301的匝数和单圈长度,通过一个电流控制,就可以得到较为理想的图像;如果由于特殊原因(例如,装配误差或镜片在长时间工作之后稳定性下降等因素)导致得到的图像不够清晰,针对这一情况,本申请实施例还可以包括如上述实施例提到的第一调节线圈1001,如图14所示;或者包括第二调节线圈1201,如图15所示;具体原理和特征在前面的实施例已经详细描述过,本申请不做赘述。
可选地,基于图2-15所示的实施例,该摄像模组还包括反射镜1601,用于将输入的光束反射给透镜组203,可以折叠光路,实现潜望式的摄像模组,减少摄像模组的体积,具体 结构如图16所示,应理解,图16为以图2、图7-10及图12-15表示的其中一种结构增加反射镜为例构成的摄像模组示意图;此外,上述实施例中提到的线圈均与处理器连接,包括通过供电电路与处理器相连,处理器控制线圈的通电量,调节摄像模组的变焦及成像效果。
基于上述实施例,透镜组还包括第一固定透镜,用于对接收到的光束进行聚焦;还可以包括第二固定透镜,进一步聚焦光束使光束会聚到传感器205上;其中,光束可以依次经过第一固定透镜、软膜透镜、第二固定透镜,也可以采用其他的排布方式,本申请不做限定。需要说明的是,透镜组还可以包括更多的透镜,增加的透镜可以对光束做进一步地聚焦,提升成像质量。
本申请实施例公开的摄像模组,可以单独用于摄像,也可以和其他摄像头(如定焦镜头)配合使用,当然多个本申请公开的摄像模组也可以一起使用,具体流程如下:
(1)单个本申请公开的摄像模组的具体工作流程如图17所示:
1701、根据接收到的不同指令,比如2倍变焦,得到变焦需要的电压或电流数值;其中,变焦倍数与给相应线圈的电压或电流之间的关系可以预先存储在处理器中,例如,对应关系以表的形式或者以函数的形式存储,处理器根据需要变焦的倍数,即可知道给相应线圈的电压或电流值;相应的线圈包括上述不同的装置实施例中提到的不同线圈。
1702、给变焦线圈通电,变焦线圈通电后产生的洛伦兹力会推动变焦线圈移动,从而挤压或拉扯第一软膜透镜发生形变,起到改变焦距的作用。
可选地,摄像模组的具体工作流程还包括:1703、给补偿线圈通电,补偿线圈通电后产生的洛伦兹力,用于补偿焦距改变带来像距变化,引起的成像质量下降的程度。其中,摄像模组可以为如图7-12所示的结构,补偿线圈为第一补偿线圈,第一补偿线圈产生的洛伦兹力会控制透镜组或透镜组中的部分透镜完成移动,从而改变摄像模组的像距,起到补偿作用;摄像模组也可以为如图13-15所示的结构,此时补偿线圈为第二补偿线圈,第二补偿线圈产生的洛伦兹力会推动第二补偿线圈移动,从而挤压第三软膜透镜发生形变,可以改变摄像模组的像距,起到补偿作用。
可选地,在变焦线圈和补偿线圈串联的情况下,具体工作流程还包括:1704、给调节线圈通电,调节线圈通电后用于对摄像模组的像距进行调节,使光束可以更准确地聚焦到传感器,降低光束损失。其中,摄像模组可以为如图10和14所示的结构,调节线圈为第一调节线圈,第一调节线圈产生的洛伦兹力会控制透镜组或透镜组中的部分透镜完成移动,从而起到进一步调节像距的作用;摄像模组也可以为如图12和15所示的结构,此时调节线圈为第二调节线圈,第二调节线圈产生的洛伦兹力会推动第二调节线圈移动,从而挤压第二软膜透镜发生形变,起到进一步调节像距的作用。
(2)多摄像模组的工作流程,在情况(1)的基础上,增加一个变焦的场景识别流程,需要根据需求来确定使用哪一颗摄像头,具体流程如图18所示:
1801、根据接收到的不同指令,调用对应的摄像模组。假设存在两个摄像模组,分别为1-4倍变焦和4-8倍变焦,当接收到的指令显示需要3倍变焦时,则调用1-4倍变焦的摄像模组;当接收到的指令显示需要6倍变焦时,则调用4-8倍变焦的摄像模组;更多的摄像模组也可以用类似方式确定调用哪一个。此外,在此种假设下,可以实现1-8倍的连续变焦,且不会存在图像质量“断档”的问题。
确定调用的摄像模组之后,剩余步骤和情况(1)相同,本申请不再赘述。应理解,上述工作流程仅针对本申请公开的摄像模组,如果多个摄像某组包括定焦模组,且正好被调用,则调用之后直接拍摄即可。
此外,如果存在下述情况,假设存在两个摄像模组,分别为1-2倍变焦和6-8倍变焦,当接收到的指令显示需要4倍变焦时,没有任何一个摄像模组可以单独实现4倍变焦,此时,先调用其中一个摄像模组,例如设置成2倍变焦模式的摄像模组,进行拍摄;再调用另一个摄像模组,例如设置成6倍变焦模式的摄像模组,进行拍摄,拍摄到的图像信息发送给处理器,经过算法调整,实现4倍变焦效果;此时,两个摄像头的焦距更接近所需的焦距,拍摄出的效果比采用1倍定焦镜头和8倍定焦镜头拍摄的效果更好。
本申请实施例提供的摄像模组可以作为单独的摄像头使用,也可以应用于智能手机、平板电脑、机器人等领域需要在不同场景下拍照或录像的设备中。采用本申请实施例提供的摄像模组,可以实现连续光学变焦功能,采集的都是真实的图像,成像效果更好;与现在普遍采用的通过多个定焦镜头拼接的方式实现变焦能力的方案相比,本申请的摄像模组本身具备光学变焦能力,即单镜头可以实现两个定焦镜头的变焦能力,双镜头可实现更多定焦镜头的效果,在光学变焦能力不变的情况下,可以减少终端设备中摄像模组的个数;此外,多个本申请公开的摄像模组还可以解决现有定焦镜头拼接存在的图像质量“断档”的问题。
本申请实施例提供一种摄像设备,例如,照相机或摄像机等,该摄像设备包括上述实施例提供的摄像模组,及封装结构,其中,摄像模组模组还包括与摄像模组中的线圈相连的控制器,用于控制线圈的通电量;该线圈包括上述不同的装置实施例中提到的不同线圈。该控制器可以为专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)等。
本申请实施例提供一种终端设备,包括本申请上述实施例提供的摄像模组,图19示出了本申请一个示例性实施例提供的终端设备的结构框图,该终端设备可以是:智能手机、平板电脑、智能机器人、笔记本电脑等集成了拍照或录像功能的设备,也可以是具有拍照或录像功能的汽车等交通工具,该终端设备还可能被称为用户设备、便携式终端、膝上型终端、台式终端、车载终端等其他名称。
通常,终端设备还包括:处理器1901和存储器1902。
处理器1901可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器1901可以采用数字信号处理(Digital Signal Processing,DSP)、FPGA、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器1901也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器(Central Processing Unit,CPU);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器1901可以集成有图像处理器(Graphics Processing Unit,GPU),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器1901还可以包括人工智能(Artificial Intelligence,AI)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器1902可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器1902还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个 磁盘存储设备、闪存存储设备。在一些实施例中,存储器1902中的非暂态的计算机可读存储介质用于存储至少一个指令。
在一些实施例中,终端设备还可选包括有:外围设备接口1903和至少一个外围设备。处理器1901、存储器1902和外围设备接口1903之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口1903相连。具体地,外围设备包括:摄像头组件1904、射频电路1905、显示屏1906、音频电路1907、定位组件1908和电源1909中的至少一种。
外围设备接口1903可被用于将输入/输出(Input/Output,I/O)相关的至少一个外围设备连接到处理器1901和存储器1902。在一些实施例中,处理器1901、存储器1902和外围设备接口1903被集成在同一芯片或电路板上;在一些其他实施例中,处理器1901、存储器1902和外围设备接口1903中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
摄像头组件1904可以包括前述实施例提供的摄像模组,用于采集图像或视频,将采集的图像或视频信息发送给处理器1901,进行图像预览处理或者保存。可选地,摄像头组件1904包括前置摄像头和后置摄像头。通常,前置摄像头设置在终端的前面板,后置摄像头设置在终端的背面,其中,前置摄像头可以采用本申请提供的摄像模组,用于适配不同场景的变焦需求;通常,后置摄像头可能不止一个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及虚拟现实(Virtual Reality,VR)拍摄功能或者其它融合拍摄功能;后置摄像头可以都采用本申请提供的摄像模组,也可以部分为现有的定焦镜头,部分为本申请提供的摄像模组。在一些实施例中,摄像头组件1904还可以包括闪光灯。
射频电路1905用于接收和发射射频(Radio Frequency,RF)信号,也称电磁信号。射频电路1905通过电磁信号与通信网络以及其他通信设备进行通信。射频电路1905将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。
显示屏1906用于显示用户界面(User Interface,UI)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏1906是触摸显示屏时,显示屏1906还具有采集在显示屏1906的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器1901进行处理。此时,显示屏1906还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。
音频电路1907用于采集用户及环境的声波,并将声波转换为电信号输入至处理器1901进行处理;或者输入至射频电路1905以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在终端的不同部位。在一些实施例中,音频电路1907还可以包括耳机插孔。
定位组件1908用于定位终端设备的当前地理位置,以实现导航或基于位置的服务(Location Based Service,LBS)。
电源1909用于为终端设备中的各个组件进行供电。
本领域技术人员可以理解,图19中示出的结构并不构成对终端设备的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
需要说明的是,为使本申请实施例的说明清晰,参考附图可能未显示不相关的部件,并且为了清晰,层和区域的厚度可能被夸大。虽然本申请实施例提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种摄像模组,其特征在于,所述摄像模组包括两个第一磁体,透镜组,变焦线圈和传感器,
    所述两个第一磁体分别位于所述透镜组相对的两侧;
    所述透镜组包括第一软膜透镜;
    所述变焦线圈与所述第一软膜透镜的软膜相连;其中,所述变焦线圈在通电时,在所述两个第一磁体形成的磁场作用下产生洛伦兹力,改变所述第一软膜透镜的形状,从而改变所述第一软膜透镜的焦距;
    所述传感器用于接收通过所述透镜组射入的光束。
  2. 根据权利要求1所述的摄像模组,其特征在于,所述摄像模组还包括一面开口的环形筒,其中,所述传感器固定于所述环形筒内与开口面相对的底面;所述两个第一磁体分别固定于所述环形筒内,所述底面两侧的面上。
  3. 根据权利要求2所述的摄像模组,其特征在于,所述摄像模组还包括与所述环形筒连接的镜头筒,所述镜头筒与所述环形筒通过弹性装置相连,所述透镜组中至少一个透镜与所述镜头筒相连。
  4. 根据权利要求3所述的摄像模组,其特征在于,所述第一软膜透镜包括软膜形变区和透镜固定区,所述摄像模组还包括导电杆,滑动导电装置和引线;
    所述透镜固定区,用于将透镜固定在所述镜头筒上;
    所述导电杆位于所述透镜固定区,用于导电;
    所述滑动导电装置位于所述导电杆上;
    所述引线分别连接所述变焦线圈和所述滑动导电装置。
  5. 根据权利要求3或4所述的摄像模组,其特征在于,所述摄像模组还包括位于所述第一软膜透镜和所述第一磁体之间的第二磁体,所述第二磁体与所述第一磁体一一对应,所述第二磁体与对应的所述第一磁体的磁场方向相同。
  6. 根据权利要求5所述的摄像模组,其特征在于,所述第二磁体固定于所述镜头筒上。
  7. 根据权利要求1-6任一项所述的摄像模组,其特征在于,所述摄像模组还包括第一补偿线圈,所述第一补偿线圈位于所述两个第一磁体之间,其中,所述第一补偿线圈在通电时,在磁场作用下产生洛伦兹力,改变所述透镜组的位置,从而改变所述摄像模组的像距。
  8. 根据权利要求7所述的摄像模组,其特征在于,所述变焦线圈和所述第一补偿线圈串联。
  9. 根据权利要求8所述的摄像模组,其特征在于,所述摄像模组还包括第一调节线圈,其中,所述第一调节线圈位于所述两个第一磁体之间,所述第一调节线圈的匝数少于第一补偿线圈的匝数,或者所述第一调节线圈的单圈长度小于第一补偿线圈的单圈长度。
  10. 根据权利要求8所述的摄像模组,其特征在于,所述摄像模组还包括第二调节线圈,所述透镜组还包括第二软膜透镜,
    所述第二调节线圈与所述第二软膜透镜的软膜相连;其中,所述第二调节线圈在通电时,在磁场作用下产生洛伦兹力,改变所述第二软膜透镜的形状,使所述光束聚焦于所述传感器上。
  11. 根据权利要求1-6任一项所述的摄像模组,其特征在于,所述摄像模组还包括第二补偿线圈,所述透镜组还包括第三软膜透镜,
    所述第二补偿线圈与所述第三软膜透镜的软膜相连;其中,所述第二补偿线圈在通电时,在磁场作用下产生洛伦兹力,改变所述第三软膜透镜的形状,从而改变所述摄像模组的像距。
  12. 根据权利要求11所述的摄像模组,其特征在于,所述摄像模组还包括位于所述第三软膜透镜和所述第一磁体之间的第三磁体,所述第三磁体与第一磁体一一对应,所述第三磁体与对应的所述第一磁体的磁场方向相同。
  13. 根据权利要求11所述的摄像模组,其特征在于,所述变焦线圈和所述第二补偿线圈串联。
  14. 根据权利要求13所述的摄像模组,其特征在于,所述摄像模组还包括第一调节线圈,所述第一调节线圈位于所述两个第一磁体之间,其中,所述第一调节线圈在通电时,在磁场作用下产生洛伦兹力,改变所述透镜组的位置,从而改变所述摄像模组的像距。
  15. 根据权利要求13所述的摄像模组,其特征在于,所述摄像模组还包括第二调节线圈,所述透镜组还包括第二软膜透镜,
    所述第二调节线圈与所述第二软膜透镜的软膜相连;其中,所述第二调节线圈的匝数少于第二补偿线圈的匝数,或者所述第二调节线圈的单圈长度小于第二补偿线圈的单圈长度。
  16. 根据权利要求1-15任一项所述的摄像模组,其特征在于,所述摄像模组还包括反射镜,用于将输入的光束反射给所述透镜组。
  17. 根据权利要求1-16任一项所述的摄像模组,其特征在于,与软膜透镜中的软膜相连的线圈的挡光面积小于所述软膜透镜中与所述线圈相连的表面面积的1/4。
  18. 根据权利要求1-17任一项所述的摄像模组,其特征在于,软膜透镜由软膜包裹液体或凝胶构成;或者软膜透镜由软膜和透镜构成的封闭空间中包裹有液体或凝胶构成。
  19. 根据权利要求1-18任一项所述的摄像模组,其特征在于,所述摄像模组还包括控制器,用于根据传感器发送的信息,生成控制信息,控制线圈的通电量。
  20. 一种终端设备,其特征在于,所述终端设备包括如权1-19中任一项所述的摄像模组以及处理器和显示器,其中,
    所述摄像模组用于采集图像信息,所述处理器用于处理所述图像信息,控制所述显示器显示采集的图像。
  21. 根据权利要求20所述的终端设备,其特征在于,所述终端设备包括的摄像模组为多个,其中,至少一个摄像模组为如权1-19中任一项所述的摄像模组。
  22. 一种摄像方法,其特征在于,所述方法应用于如权1-19中任一项所述的摄像模组,包括:
    接收变焦指令,根据所述变焦指令,确定对所述变焦线圈的通电量;
    给所述变焦线圈通电,其中,所述变焦线圈通电后产生的洛伦兹力会推动所述变焦线圈移动,从而使所述第一软膜透镜发生形变,起到改变焦距的作用。
  23. 根据权利要求22所述的方法,其特征在于,所述终端设备包括的摄像模组为多个,其中,至少一个摄像模组为如权1-19中任一项所述的摄像模组,在接收变焦指令之后,所述方法还包括:
    根据接收到的变焦指令,调用对应的摄像模组。
  24. 一种可读存储介质,其特征在于,所述可读存储介质存储指令,当所述指令在终端设备上运行时,使得所述终端设备执行如权利要求22或23所述的方法。
  25. 一种包含指令的计算机程序产品,其特征在于,当在终端设备上运行时,使得终端设备执行如权利要求22或23所述的方法。
PCT/CN2020/115091 2019-09-27 2020-09-14 摄像模组及终端设备 WO2021057529A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022519203A JP2022550344A (ja) 2019-09-27 2020-09-14 カメラモジュール及び端末装置
EP20867158.6A EP4030744A4 (en) 2019-09-27 2020-09-14 CAMERA MODULE AND TERMINAL DEVICE
KR1020227014100A KR20220070277A (ko) 2019-09-27 2020-09-14 카메라 모듈 및 단말 디바이스
US17/705,861 US20220214539A1 (en) 2019-09-27 2022-03-28 Camera Module and Terminal Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910927693.1 2019-09-27
CN201910927693.1A CN112584001B (zh) 2019-09-27 2019-09-27 摄像模组及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/705,861 Continuation US20220214539A1 (en) 2019-09-27 2022-03-28 Camera Module and Terminal Device

Publications (1)

Publication Number Publication Date
WO2021057529A1 true WO2021057529A1 (zh) 2021-04-01

Family

ID=75110200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115091 WO2021057529A1 (zh) 2019-09-27 2020-09-14 摄像模组及终端设备

Country Status (6)

Country Link
US (1) US20220214539A1 (zh)
EP (1) EP4030744A4 (zh)
JP (1) JP2022550344A (zh)
KR (1) KR20220070277A (zh)
CN (1) CN112584001B (zh)
WO (1) WO2021057529A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116134345A (zh) * 2021-08-04 2023-05-16 北京小米移动软件有限公司 变焦成像镜头、摄像装置及电子设备
CN114114484A (zh) * 2021-11-09 2022-03-01 珠海格力电器股份有限公司 镜头、变焦镜头和终端以及镜头变焦的控制方法
CN115097555A (zh) * 2022-06-30 2022-09-23 杭州逗酷软件科技有限公司 变焦透镜、摄像头及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729510A (en) * 1994-01-19 1998-03-17 Kabushiki Kaisha Toshiba Optical head used for recording on optical recording medium having various thicknesses, warpage and the like
CN101000385A (zh) * 2006-01-14 2007-07-18 鸿富锦精密工业(深圳)有限公司 一种可变焦透镜模组及采用该透镜模组的镜头模组
CN101632030A (zh) * 2006-12-15 2010-01-20 手持产品公司 包括可变形透镜元件的装置和方法
CN103472562A (zh) * 2013-09-25 2013-12-25 黄力华 一种新型摄影用镜头
CN104597535A (zh) * 2015-02-16 2015-05-06 杭州清渠科技有限公司 一种基于电磁效应的光学特性可调控透镜
CN108603951A (zh) * 2016-01-04 2018-09-28 奥普托图尼康苏默尔股份公司 包括弯曲的图像传感器的光学系统
CN109975973A (zh) * 2019-02-28 2019-07-05 华为技术有限公司 驱动液体镜头的音圈马达及具有音圈马达的镜头组件
WO2019164335A1 (ko) * 2018-02-23 2019-08-29 엘지이노텍(주) 렌즈 모듈 및 이를 포함하는 카메라 모듈

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165058A (ja) * 2003-12-03 2005-06-23 Sharp Corp オートフォーカス装置
TWI337666B (en) * 2004-12-17 2011-02-21 Hon Hai Prec Ind Co Ltd Dual regions focusing device
KR100657002B1 (ko) * 2005-04-08 2006-12-20 엘지전자 주식회사 전자력 구동 가변 초점 미러 및 그 제조방법과 구동 방법
US8366002B2 (en) * 2010-05-26 2013-02-05 Hand Held Products, Inc. Solid elastic lens element and method of making same
CN203299441U (zh) * 2013-04-02 2013-11-20 嘉兴中润光学科技有限公司 一种智能的自动变焦镜头及其取像模组
CN105158872A (zh) * 2015-08-25 2015-12-16 南昌欧菲光电技术有限公司 对焦结构、镜头组件及摄像头模组
EP3646068A1 (en) * 2017-06-30 2020-05-06 poLight ASA Lens assembly for optical image stabilization and focus adjustment
CN207408722U (zh) * 2017-11-01 2018-05-25 信丰世嘉科技有限公司 一种自动变焦摄像镜头模组
CN109839713B (zh) * 2017-11-29 2021-12-03 宁波舜宇光电信息有限公司 一种变焦组件、镜头组件及摄像模组
EP3721271A1 (en) * 2017-12-04 2020-10-14 Optotune Consumer AG Optical zoom device with focus tunable lens cores
CN108732728A (zh) * 2018-04-23 2018-11-02 华为技术有限公司 一种透镜系统及镜头
CN108810370A (zh) * 2018-05-30 2018-11-13 Oppo广东移动通信有限公司 图像采集装置的调节方法及终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729510A (en) * 1994-01-19 1998-03-17 Kabushiki Kaisha Toshiba Optical head used for recording on optical recording medium having various thicknesses, warpage and the like
CN101000385A (zh) * 2006-01-14 2007-07-18 鸿富锦精密工业(深圳)有限公司 一种可变焦透镜模组及采用该透镜模组的镜头模组
CN101632030A (zh) * 2006-12-15 2010-01-20 手持产品公司 包括可变形透镜元件的装置和方法
CN103472562A (zh) * 2013-09-25 2013-12-25 黄力华 一种新型摄影用镜头
CN104597535A (zh) * 2015-02-16 2015-05-06 杭州清渠科技有限公司 一种基于电磁效应的光学特性可调控透镜
CN108603951A (zh) * 2016-01-04 2018-09-28 奥普托图尼康苏默尔股份公司 包括弯曲的图像传感器的光学系统
WO2019164335A1 (ko) * 2018-02-23 2019-08-29 엘지이노텍(주) 렌즈 모듈 및 이를 포함하는 카메라 모듈
CN109975973A (zh) * 2019-02-28 2019-07-05 华为技术有限公司 驱动液体镜头的音圈马达及具有音圈马达的镜头组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4030744A4

Also Published As

Publication number Publication date
CN112584001A (zh) 2021-03-30
EP4030744A4 (en) 2022-11-09
EP4030744A1 (en) 2022-07-20
KR20220070277A (ko) 2022-05-30
US20220214539A1 (en) 2022-07-07
JP2022550344A (ja) 2022-12-01
CN112584001B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US11683574B2 (en) Macro imaging method and terminal
WO2021057529A1 (zh) 摄像模组及终端设备
US9854182B2 (en) Folded optic array camera using refractive prisms
KR102113379B1 (ko) 폴딩된 광학 어레이 카메라들을 위한 자동초점
CN106462036B (zh) 使用无视差假影的折叠式光学器件的多相机系统
US20160269602A1 (en) Auto-focus in low-profile folded optics multi-camera system
JP2017524976A (ja) 視差およびチルトアーティファクトが無い屈曲光学系を使用するマルチカメラシステム
KR20220035970A (ko) 광학 이미지 안정화 장치 및 제어 방법
CN208609085U (zh) 摄像头模组和电子设备
CN210297875U (zh) 用于移动终端的摄像装置及移动终端
CN117354625A (zh) 图像处理方法及装置、电子设备、可读存储介质
KR20240049069A (ko) 카메라를 제어하는 방법 및 전자 장치
CN117097975A (zh) 一种摄像头模组、处理方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867158

Country of ref document: EP

Effective date: 20220411

ENP Entry into the national phase

Ref document number: 20227014100

Country of ref document: KR

Kind code of ref document: A