WO2021057422A1 - 显微镜系统、智能医疗设备、自动对焦方法和存储介质 - Google Patents

显微镜系统、智能医疗设备、自动对焦方法和存储介质 Download PDF

Info

Publication number
WO2021057422A1
WO2021057422A1 PCT/CN2020/113109 CN2020113109W WO2021057422A1 WO 2021057422 A1 WO2021057422 A1 WO 2021057422A1 CN 2020113109 W CN2020113109 W CN 2020113109W WO 2021057422 A1 WO2021057422 A1 WO 2021057422A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
camera
lens
polarizer
image projection
Prior art date
Application number
PCT/CN2020/113109
Other languages
English (en)
French (fr)
Inventor
廖俊
姚建华
韩骁
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2021057422A1 publication Critical patent/WO2021057422A1/zh
Priority to US17/405,833 priority Critical patent/US20210373308A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/364Projection microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Definitions

  • This application relates to the technical field of medical equipment, in particular to microscope systems, smart medical equipment, auto-focusing methods, and storage media.
  • Artificial intelligence technology is a comprehensive discipline, covering a wide range of fields, including both hardware-level technology and software-level technology.
  • Basic artificial intelligence technologies generally include technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, big data processing technologies, operation/interaction systems, and mechatronics.
  • artificial intelligence technology has been researched and applied in many fields.
  • augmented reality technology and artificial intelligence have been proposed for use in traditional optical microscope systems.
  • a camera is used to collect images of the sample to be observed, and real-time images are analyzed in combination with machine learning algorithms.
  • the ability of the camera to collect high-quality images is the guarantee of the accuracy of the algorithm of the above-mentioned augmented reality microscope.
  • the defocused image of the sample will lose a lot of important optical information. Therefore, it is particularly important to ensure that the camera can collect an accurately focused image of the sample.
  • the embodiments of the present application provide a microscope system, an intelligent medical device, an auto-focusing method, and a storage medium, which can make the focus of the image collected by the camera more accurate.
  • An embodiment of the present application provides a microscope system, which includes:
  • An objective lens having a first end and a second end that are oppositely arranged, the first end facing the sample to be observed;
  • a beam splitter, the beam splitter is arranged at the second end;
  • An image projection component the image projection component is in communication with the beam splitter, the image projection component includes a first lens and an image projection device, and the light generated by the image projection device enters the beam splitter through the first lens Device
  • a camera assembly the camera assembly is in communication with the beam splitter, and the camera assembly includes a camera;
  • a focusing device is arranged on the camera assembly, and the focusing device is used to adjust the focus of the camera.
  • an intelligent medical device which includes:
  • An objective lens having a first end and a second end that are oppositely arranged, the first end facing the sample to be observed;
  • a beam splitter, the beam splitter is arranged at the second end;
  • An image projection component the image projection component is in communication with the beam splitter, the image projection component includes a first lens and an image projection device, and the light generated by the image projection device enters the beam splitter through the first lens Device
  • a camera assembly the camera assembly is in communication with the beam splitter, and the camera assembly includes a camera;
  • a focusing device is arranged on the camera assembly, and the focusing device is used to adjust the focus of the camera.
  • an embodiment of the present application also provides an automatic focusing method for a microscope system, which is applied to the above-mentioned microscope system, and the focusing method includes:
  • the focusing device is triggered to adjust the focus of the camera.
  • an embodiment of the present application also provides an intelligent medical device, the device includes a microscope system and a processor, the microscope system is the above-mentioned microscope system, and the processor performs the following steps:
  • the focusing device is triggered to adjust the focus of the camera.
  • an embodiment of the present application further provides a storage medium, the storage medium stores instructions, and when the instructions are executed by a processor, the steps in any of the methods provided in the embodiments of the present application are implemented.
  • the embodiments of the present application also provide computer program products, which are used to execute the steps in any of the methods provided in the embodiments of the present application when the computer program product is executed.
  • the microscope system of the embodiment of the present application includes an objective lens, a beam splitter, an image projection assembly, a camera assembly, and a focusing device.
  • the objective lens has a first end and a second end that are opposed to each other, and the first end faces the sample to be observed.
  • the beam splitter is provided at the second end, the image projection assembly is in communication with the beam splitter, the image projection assembly includes a first lens and an image projection device, and the light generated by the image projection device passes through the first lens.
  • a lens enters the beam splitter, the camera assembly is in communication with the beam splitter, the camera assembly includes a camera, the focusing device is configured on the camera assembly, and the focusing device is used to control the camera Perform focus adjustment.
  • the embodiment of the present application can make the focus of the image collected by the camera more accurate.
  • Figure 1 is a schematic diagram of the structure of a microscope provided by related technologies
  • FIG. 2 is a schematic diagram of the first structure of a microscope system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the second structure of the microscope system provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third structure of a microscope system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fourth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fifth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a sixth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a seventh structure of a microscope system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an eighth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a ninth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a tenth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the eleventh structure of a microscope system provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a twelfth structure of a microscope system provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the thirteenth structure of a microscope system provided by an embodiment of the present application.
  • 15 is a schematic diagram of the fourteenth structure of the microscope system provided by the embodiment of the present application.
  • FIG. 16 is a schematic flowchart of an autofocus method of a microscope system provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a scene of an autofocus method of a microscope system provided by an embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of a smart medical device provided by an embodiment of the present application.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • a microscope 100 is provided in the related art.
  • the microscope 100 has a microscope body 101, a microscope body stage focusing knob 102, a microscope body stage 103, a sample to be observed 104, and a body
  • a microscope body stage 103 is arranged above the microscope body 101
  • a sample to be observed 104 is placed on the microscope body stage 103
  • the microscope body stage focusing knobs are arranged on both sides of the microscope body 101 102.
  • the fuselage objective lens 105 is located above the microscope fuselage stage 103, and a trinocular lens tube 106 is further provided above the fuselage objective lens 105, and the trinocular lens tube 106 is respectively connected to the camera 107 and the eyepiece 108.
  • Adjusting the microscope body stage focus knob 102 can adjust the microscope body stage 103 to rise or fall in the vertical direction, thereby changing the distance between the microscope body stage 103 and the body objective lens 105 to achieve adjustment. Coke.
  • the fuselage objective lens 105 can also be moved to change the distance between the microscope fuselage stage 103 and the fuselage objective lens 105 to achieve focus adjustment.
  • the premise of the focus adjustment of the microscope 100 is to assume that the end of the eyepiece 108 and the end of the camera 107 of the trinocular tube 106 are in par in focus. However, due to various reasons, the image of the camera 107 and the image of the end of the eyepiece 108 are out of focus.
  • the objective lens 105 of different magnifications is not adjusted well, the eyes of different microscopes 100 users have different diopters, and when the users of microscope 100 are exchanged, the new user does not have the consciousness of adjusting the diopter knob of the eyepiece 108, and directly adjusts the microscope machine.
  • Body mount 103 to refocus the sample, and so on.
  • an embodiment of the present application provides a microscope system 200.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a focusing device 50.
  • the objective lens 10 has a relative arrangement
  • the first end 10a and the second end 10b of the first end 10a face the sample 80 to be observed
  • the beam splitter 20 is arranged at the second end 10b
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31, the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32
  • the beam splitter 20 is in communication
  • the camera assembly 40 includes a camera 41
  • the focusing device is disposed on the camera assembly 40
  • the focusing device 50 is used to adjust the focus of the camera.
  • the objective lens 10, the beam splitter 20, the image projection assembly 30, the camera assembly 40, and the focusing device 50 can be mounted on the microscope body to form a whole.
  • the beam splitter 20 can also be provided with The eyepiece 70 is used to observe the image of the sample 80 to be observed.
  • first end 10a and the second end 10b are arranged oppositely, and the positions of the first end 10a and the second end 10b can be replaced.
  • first end 10a is an objective lens unless otherwise specified.
  • the lower end of 10 and the second end 10b are the upper end of the objective lens 10.
  • the first end 10a of the objective lens 10 faces the object to be observed, that is, the first end 10a of the objective lens 10 is aligned with the sample to be observed, and the sample to be observed 80 can be imaged by the objective lens 10.
  • the beam splitter 20 is arranged at the second end 10b of the objective lens 10, that is, the beam splitter 20 is arranged at the upper end of the objective lens 10.
  • the beam splitter 20 can reflect a part of the light and transmit another part of the light.
  • the image projection device 31 can project the projection of augmented reality information, and the scene where the sample 80 to be observed and the augmented reality information are superimposed can be observed at the end of the eyepiece 70.
  • the camera assembly 40 can receive light reflected or transmitted from the beam splitter 20, and the camera 41 can scan an image of the sample 80 to be observed.
  • the camera 41 can provide a focal plane scanning function.
  • the focusing device 50 is configured on the camera assembly 40.
  • the focusing device 50 can make the camera 41 perform focusing adjustment, thereby ensuring that the camera 41 obtains an accurately focused image.
  • the microscope system 200 further includes a trinocular lens barrel 60, the trinocular lens barrel 60 is arranged at an end of the beam splitter 20 away from the objective lens 10, the trinocular lens barrel 60 includes a channel 62 and a tube lens 61, the The channels 62 include at least two and are located at an end away from the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, and the tube lens 61 is located at an end close to the beam splitter 20.
  • the trinocular tube 60 may include a plurality of channels 62, that is, it can be divided into a plurality of light paths along the trinocular tube 60.
  • One of the channels 62 is in communication with the eyepiece 70, and the sample 80 to be observed can be observed through the eyepiece 70.
  • the focusing device 50 includes but is not limited to a moving part 51 and a zoom lens 52.
  • the focusing device 50 may include a moving part 51, a zoom lens 52, and the like. It can be understood that the moving component 51 can drive the camera 41 to move so as to achieve zooming of the camera 41.
  • the moving part 51 may be a linear moving platform 511 or a telescopic sleeve 512 or the like.
  • the zoom lens 52 may be arranged in front of the camera 41, and the zoom lens 52 is used to achieve zooming of the image obtained by the camera 41.
  • the variable focus lens 52 may be a liquid variable focus lens 52, and of course, it may also be another variable focus lens 52. Therefore, the structure of the focusing device 50 may include multiple types. In the embodiments of this application, the details are not repeated.
  • the moving component 51 includes a linear moving platform 511, which is used to drive the camera assembly 40 close to or away from the beam splitter 20 to adjust the focus of the camera 41 .
  • the linear moving platform 511 can be installed on the microscope body, and the camera assembly 40 can be driven to move by the linear moving platform 511.
  • the linear moving platform 511 drives the camera assembly 40 to move to focus the camera 41.
  • the linear movement platform 511 has high movement accuracy.
  • the linear movement platform 511 may have a movement accuracy of 0.5 nanometers, a minimum step size of 2 nanometers, a movement range of 13 to 52 mm, and a maximum load-bearing capacity of about 2 kilograms. Since the linear moving platform 511 is used to drive the camera assembly 40 to move to focus the camera 41, the focus accuracy of the camera 41 can be improved.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has a first end 10a and a second end 10b disposed oppositely.
  • the first end 10a faces the sample 80 to be observed
  • the beam splitter 20 is arranged at the second end 10b
  • the image projection assembly 30 communicates with the beam splitter 20
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31, the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32
  • the camera assembly 40 communicates with the beam splitter 20, and the camera assembly 40
  • the trinocular tube 60 is disposed at an end of the beam splitter 20 away from the objective lens 10
  • the trinocular tube 60 includes a channel 62 and a tube lens 61
  • the channel 62 includes at least two and is located One end away from the beam splitter 20, one of the channels 62 communicates with the eyepiece 70
  • the tube lens 61 is located at the end close to the beam splitter 20, and one of the channels 62 of the trinocular tube 60 is connected to the eyepiece 70.
  • the camera assembly 40 is connected.
  • the camera assembly 40 also includes a
  • the optical path of the microscope system 200 of the embodiment of the present application is: the light from the objective lens 10 is transmitted to the beam splitter 20, the light from the image projection device 31 is transmitted to the beam splitter 20, and the beam splitter 20 combines the light from the objective lens 10 and The light from the image projection device 31 is transmitted to the trinocular tube 60 through the tube lens 61.
  • the trinocular tube 60 transmits the light to the first polarizer and the eyepiece 70 through the two channels 62, and the light that passes through the first polarizer 42 is transmitted to the camera.
  • the photosensitive chip 41 the image of the sample 80 to be observed can be observed through the eyepiece 70.
  • the linear moving platform 511 drives the camera 41 close to or away from the beam splitter 20.
  • the linear moving platform 511 can be adjusted to drive the camera 41 to move, thereby realizing the alignment of the camera 41.
  • the focus is to ensure that the image scanned by the camera 41 is an accurate image in focus.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has oppositely arranged A first end 10a and a second end 10b. The first end 10a faces the sample 80 to be observed.
  • the beam splitter 20 is arranged at the second end 10b.
  • the image projection assembly 30 includes a first lens 32 and an image.
  • a projection device 31 the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32, the camera assembly 40 is in communication with the beam splitter 20, and the camera assembly 40 includes a camera 41
  • the trinocular lens barrel 60 is arranged at one end of the beam splitter 20 away from the objective lens 10.
  • the trinocular lens barrel 60 includes a channel 62 and a tube lens 61.
  • the channel 62 includes at least two and is located far away from the One end of the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, and the tube lens 61 is located at one end close to the beam splitter 20.
  • the beam splitter 20 includes a first beam splitter 21 and a second beam splitter.
  • the beam splitter 22, the first sub beam splitter 21 is in communication with the second sub beam splitter 22, the first sub beam splitter 21 is in communication with the image projection assembly 30, and the second sub beam splitter 21 is in communication with the image projection assembly 30.
  • the beamer 22 is in communication with the camera assembly 40.
  • the camera assembly 40 further includes a second lens 43.
  • the second lens 43 is located between the second sub-beam splitter 22 and the camera 41.
  • the moving platform 511 drives the camera 41 or the second lens 43 close to or away from the second sub-beam splitter 22.
  • the optical path of the microscope system 200 of the embodiment of the present application is: the light from the objective lens 10 is transmitted to the second sub-beam splitter 22, and the second sub-beam splitter 22 reflects a part of the light to the second lens 43 and transmits it to the camera.
  • the second sub-beam splitter 22 transmits part of the light to the first sub-beam splitter 21, and the light of the image projection device 31 is transmitted to the first sub-beam splitter 21 through the first lens 32,
  • the first sub-beam splitter 21 transmits the light transmitted by the objective lens 10 and passes through the tube lens 61 and reflects the light transmitted by the image projection device 31 through the tube lens 61 to reach the trinocular tube 60, and the trinocular tube 60 transmits the light to
  • the eyepiece 70 can observe the image of the sample 80 to be observed through the eyepiece 70.
  • the linear moving platform 511 drives the camera 41 or the second lens 43 close to or away from the second sub-beam splitter 22.
  • the linear moving platform 511 can be adjusted to drive the camera. 41 or the second lens 43 moves to achieve focusing on the camera 41 and ensure that the image scanned by the camera 41 is a focused and accurate image.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, a trinocular lens barrel 60, and a focusing device 50.
  • the objective lens 10 It has a first end 10a and a second end 10b that are arranged oppositely, the first end 10a faces the sample 80 to be observed, the beam splitter 20 is arranged at the second end 10b, and the image projection assembly 30 is connected to the The beam splitter 20 is in communication.
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31.
  • the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32, and the camera
  • the assembly 40 communicates with the beam splitter 20, the camera assembly 40 includes a camera 41, the trinocular lens barrel 60 is disposed at an end of the beam splitter 20 away from the objective lens 10, and the trinocular lens barrel 60 includes a channel 62 and a tube lens 61.
  • the channels 62 include at least two and are located at an end away from the beam splitter 20, one of the channels 62 is in communication with the eyepiece 70, and the tube lens 61 is located at an end close to the beam splitter 20 ,
  • the camera assembly 40 and the image projection assembly 30 are arranged opposite to each other along the beam splitter 20, the image projection assembly 30 further includes a second polarizer 33, and the second polarizer 33 is located on the first lens 32 and the beam splitter 20, the camera assembly 40 further includes a third lens 44 and a third polarizer 45, and the third polarizer 45 is located between the beam splitter 20 and the third lens 44
  • the third lens 44 is located between the third polarizer 45 and the camera 41, and the linear moving platform 511 drives the camera 41 or the third lens 44 to be close to or away from the beam splitter 20 .
  • the optical path of the microscope system 200 of the embodiment of the present application is: the light from the objective lens 10 is transmitted to the beam splitter 20, and the light from the image projection device 31 is transmitted through the first lens 32 and the second polarizer 33 is transmitted to the beam splitter.
  • the beam splitter 20 reflects the light from the objective lens 10 through the third polarizer 45 and the third lens 44 and transmits it to the photosensitive chip of the camera 41.
  • the beam splitter 20 reflects the light from the image projection device 31 through the tube lens 61 and transmits it To the trinocular tube 60, the head of the trinocular 70 transmits light to the eyepiece 70 through the channel 62, and the image of the sample 80 to be observed can be observed through the eyepiece 70.
  • the camera 41 or the third lens 44 is driven close to or far away from the beam splitter 20 by the linear moving platform 511.
  • the moving platform 511 drives the camera 41 or the third lens 44 to move, so as to realize the focusing of the camera 41 and ensure that the image scanned by the camera 41 is a focused and accurate image.
  • the moving part 51 further includes a telescopic sleeve 512, the telescopic sleeve 512 is connected to the camera assembly 40, and the telescopic sleeve 512 drives the camera assembly 40 to expand and contract within the telescopic sleeve 512.
  • the focus adjustment of the camera 41 is performed.
  • the telescopic sleeve 512 may include a driving motor and a sleeve, and the driving motor may drive the sleeve to expand and contract.
  • the sleeve can be installed on the camera 41, and the sleeve can drive the expansion and contraction of the camera 41 to realize the zoom of the camera 41.
  • a lens or lens group can be installed in the telescopic sleeve 512, and the telescopic sleeve 512 can drive the lens or lens group to move.
  • the drive motor may be a DC motor or an AC motor.
  • the driving motor can be a stepping motor or an ultrasonic motor. In the embodiments of the present application, the specific type of the drive motor is not described in detail.
  • a lens assembly with a telescopic sleeve 512 is provided.
  • the lens assembly with a telescopic sleeve 512 includes a sleeve and a fixed-focus lens.
  • the fixed-focus lens is mounted on the sleeve and the sleeve can be driven.
  • the fixed focus lens moves. It should be noted that when the sleeve expands and contracts, the outside does not rotate but linearly advances and expands, so the camera 41 will not follow the rotation.
  • the camera 41 may have a processor or a single-chip microcomputer.
  • the telescopic sleeve 512 is equipped with a lens or a lens group may be limited according to the specific configuration of the camera 41.
  • the combination of the telescopic tube 512 and lens or tube assembly may not be required.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has a first end disposed opposite to each other. 10a and a second end 10b, the first end 10a faces the sample 80 to be observed, the beam splitter 20 is arranged at the second end 10b, and the image projection assembly 30 communicates with the beam splitter 20, so
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31. The light generated by the image projection device 31 enters the beam splitter 20 via the first lens 32.
  • the camera assembly 40 and the beam splitter The camera assembly 40 includes a camera 41, the trinocular tube 60 is arranged at an end of the beam splitter 20 away from the objective lens 10, and the trinocular tube 60 includes a channel 62 and a tube lens 61.
  • the channels 62 include at least two and are located at an end far away from the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, and the tube lens 61 is located at an end close to the beam splitter 20, and the trinocular tube 60
  • One of the channels 62 is connected to the camera assembly 40.
  • the camera assembly 40 further includes a first polarizer 42 located between the camera 41 and the trinocular lens barrel 60.
  • the telescopic sleeve 512 drives the camera 41 to expand and contract within the telescopic sleeve 512.
  • the telescopic sleeve 512 can be used to drive the camera 41 to expand and contract within the telescopic sleeve 512, so as to achieve the focus of the camera 41 and ensure that the camera 41 scans.
  • the resulting image is an accurate image in focus.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has oppositely arranged A first end 10a and a second end 10b. The first end 10a faces the sample 80 to be observed.
  • the beam splitter 20 is arranged at the second end 10b.
  • the image projection assembly 30 includes a first lens 32 and an image.
  • a projection device 31 the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32, the camera assembly 40 is in communication with the beam splitter 20, and the camera assembly 40 includes a camera 41
  • the trinocular lens barrel 60 is arranged at one end of the beam splitter 20 away from the objective lens 10.
  • the trinocular lens barrel 60 includes a channel 62 and a tube lens 61.
  • the channel 62 includes at least two and is located far away from the One end of the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, and the tube lens 61 is located at one end close to the beam splitter 20.
  • the beam splitter 20 includes a first beam splitter 21 and a second beam splitter.
  • the beam splitter 22, the first sub beam splitter 21 is in communication with the second sub beam splitter 22, the first sub beam splitter 21 is in communication with the image projection assembly 30, and the second sub beam splitter 21 is in communication with the image projection assembly 30.
  • the beamer 22 is in communication with the camera assembly 40.
  • the camera assembly 40 further includes a second lens 43.
  • the second lens 43 is located between the second sub-beam splitter 22 and the camera 41.
  • the sleeve 512 drives the camera 41 or the third lens 44 to expand and contract within the telescopic sleeve 512.
  • the camera 41 or the second lens 43 can be driven to expand and contract within the telescopic sleeve 512 through the telescopic sleeve 512, thereby achieving alignment.
  • the focusing of the camera 41 ensures that the image scanned by the camera 41 is an accurate image in focus.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has oppositely arranged A first end 10a and a second end 10b, the first end 10a faces the sample 80 to be observed, the beam splitter 20 is arranged at the second end 10b, the image projection assembly 30 and the beam splitter 20
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31. The light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32, and the camera assembly 40 is connected to the beam splitter 20.
  • the beam splitter 20 is in communication, the camera assembly 40 includes a camera 41, the trinocular tube 60 is disposed at an end of the beam splitter 20 away from the objective lens 10, and the trinocular tube 60 includes a channel 62 and a tube lens. 61.
  • the channel 62 includes at least two and is located at an end away from the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, the tube lens 61 is located at an end close to the beam splitter 20, and the camera
  • the component 40 and the image projection component 30 are disposed opposite to each other along the beam splitter 20.
  • the image projection component 30 further includes a second polarizer 33, and the second polarizer 33 is located between the first lens 32 and the Between the beam splitters 20, the camera assembly 40 further includes a third lens 44 and a third polarizer 45.
  • the third polarizer 45 is located between the beam splitter 20 and the third lens 44.
  • the three lens 44 is located between the third polarizer 45 and the camera 41, and the telescopic tube 512 drives the camera 41 or the third lens 44 to expand and contract within the telescopic tube 512.
  • the camera 41 or the third lens 44 can be driven to expand and contract within the telescopic sleeve 512 through the telescopic sleeve 512, thereby achieving alignment.
  • the focusing of the camera 41 ensures that the image scanned by the camera 41 is an accurate image in focus.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has a first end disposed oppositely. 10a and a second end 10b, the first end 10a faces the sample 80 to be observed, the beam splitter 20 is arranged at the second end 10b, and the image projection assembly 30 communicates with the beam splitter 20, so
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31. The light generated by the image projection device 31 enters the beam splitter 20 via the first lens 32.
  • the camera assembly 40 and the beam splitter The camera assembly 40 includes a camera 41, the trinocular tube 60 is arranged at an end of the beam splitter 20 away from the objective lens 10, and the trinocular tube 60 includes a channel 62 and a tube lens 61.
  • the channels 62 include at least two and are located at an end far away from the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, and the tube lens 61 is located at an end close to the beam splitter 20, and the trinocular tube 60
  • One of the channels 62 is connected to the camera assembly 40.
  • the camera assembly 40 further includes a first polarizer 42 located between the camera 41 and the trinocular lens barrel 60.
  • the zoom lens 52 is disposed between the first polarizer 42 and the tube lens 61.
  • the zoom lens 52 is arranged between the first polarizer 42 and the tube lens 61, and the zoom lens 52 is used to zoom to achieve the focus of the camera 41, ensuring that the image scanned by the camera 41 is Accurate image in focus.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has a first end disposed opposite to each other.
  • the first end 10a faces the sample 80 to be observed
  • the beam splitter 20 is arranged at the second end 10b
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31
  • the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32
  • the camera assembly 40 communicates with the beam splitter 20
  • the camera assembly 40 includes a camera 41
  • a trinocular tube 60 is provided at one end of the beam splitter 20 away from the objective lens 10.
  • the trinocular tube 60 includes a channel 62 and a tube lens 61.
  • the channel 62 includes at least two and is located far away from the beam splitter.
  • the beam splitter 20 includes a first sub-splitter 21 and a second sub-splitter 22.
  • the first sub-beam splitter 21 is in communication with the second sub-beam splitter 22
  • the first sub-beam splitter 21 is in communication with the image projection assembly 30
  • the second sub-beam splitter 22 is In communication with the camera assembly 40
  • the camera assembly 40 further includes a second lens 43
  • the second lens 43 is located between the second sub-beam splitter 22 and the camera 41
  • the zoom lens 52 Located between the first sub-beam splitter 21 and the second lens 43.
  • the zoom lens 52 is located between the first sub-beam splitter 21 and the second lens 43, and the zoom lens 52 is used to zoom to achieve the focus of the camera 41 and ensure that the camera 41 scans The image is an accurate image in focus.
  • the microscope system 200 specifically includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a trinocular lens barrel 60.
  • the objective lens 10 has a first end disposed opposite to each other. 10a and a second end 10b, the first end 10a faces the sample 80 to be observed, the beam splitter 20 is arranged at the second end 10b, and the image projection assembly 30 communicates with the beam splitter 20, so
  • the image projection assembly 30 includes a first lens 32 and an image projection device 31. The light generated by the image projection device 31 enters the beam splitter 20 via the first lens 32.
  • the camera assembly 40 and the beam splitter The camera assembly 40 includes a camera 41, the trinocular tube 60 is arranged at an end of the beam splitter 20 away from the objective lens 10, and the trinocular tube 60 includes a channel 62 and a tube lens 61.
  • the channels 62 include at least two and are located at an end far from the beam splitter 20, one of the channels 62 communicates with the eyepiece 70, the tube lens 61 is located at the end close to the beam splitter 20, and the camera assembly 40 is connected to the
  • the image projection assembly 30 is arranged oppositely along the beam splitter 20, and the image projection assembly 30 further includes a second polarizer 33.
  • the second polarizer 33 is located between the first lens 32 and the beam splitter.
  • the camera assembly 40 further includes a third lens 44 and a third polarizer 45, the third polarizer 45 is located between the beam splitter 20 and the third lens 44, the third lens 44 It is located between the third polarizer 45 and the camera 41, and the zoom lens 52 is located between the beam splitter 20 and the third polarizer 45.
  • the zoom lens 52 is located between the beam splitter 20 and the third polarizer 45, and the zoom lens 52 zooms to achieve the focus of the camera 41, ensuring that the image scanned by the camera 41 is Accurate image in focus.
  • the microscope system 200 in the embodiment of the present application includes an objective lens 10, a beam splitter 20, an image projection assembly 30, a camera assembly 40, and a focusing device 50.
  • the objective lens 10 has a first end 10a and a second end 10b that are arranged oppositely.
  • the first end 10a faces the sample 80 to be observed
  • the beam splitter 20 is arranged at the second end 10b
  • the image projection assembly 30 communicates with the beam splitter 20
  • the image projection assembly 30 includes a first A lens 32 and an image projection device 31, the light generated by the image projection device 31 enters the beam splitter 20 through the first lens 32
  • the camera assembly 40 communicates with the beam splitter 20
  • the camera assembly 40 includes a camera 41
  • the focusing device 50 is disposed on the camera assembly 40
  • the focusing device 50 is used to adjust the focus of the camera 41.
  • the cumbersome trinocular parfocal adjustment does not need to be repeated every time, but the focusing device 50 automatically focuses, which improves the convenience of operation.
  • the objective lens 10 of different magnifications is not in focus or the par focus adjustment is not completed, it will not affect the camera's acquisition of clear images, and the camera can still focus automatically when the end of the eyepiece 70 is not in focus.
  • the adjustment method of this application is more accurate.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • a plurality of means two or more than two, unless otherwise specifically defined.
  • an embodiment of the present application also provides an automatic focusing method for a microscope system, which is applied to the above-mentioned microscope system, and the focusing method specifically includes:
  • the sample to be observed can be scanned by the camera of the microscope system to obtain multiple images of different depths.
  • the camera can obtain multiple images of different depths by scanning the sample to be observed layer by layer.
  • the focus device is used to drive the camera to collect images at preset different depths, so as to obtain multiple images of different depths.
  • the index information may be the sharpness or contrast of the image.
  • the indicator information in the embodiment of the present application is not limited to this.
  • the index information value may be the value of the sharpness or contrast of the image obtained by calculation, and the defocus amount of the image is obtained by the value of the sharpness or contrast of the image.
  • index information value As the sharpness of the image as an example, possible implementation methods for obtaining the index information value include:
  • the size information of each image in multiple images with different depths is extracted, the size information of the image can be expressed as M*N, and the pixel value of the corresponding pixel can be understood as the pixel value at a certain coordinate point.
  • s(i,j) is the pixel value with coordinates (i,j).
  • the obtained index information value is as follows:
  • B is the index information value of the image, and images with different depths correspond to different index information values.
  • the camera scans five images with different depths, and the index information values calculated from the five images with different depths are B1, B2, B3, B4, and B5, respectively.
  • the preset threshold may be a threshold set artificially, and the threshold may be 0, 0.1, 0.5, and so on. Normally, the preset threshold of the defocus amount is 0, which can ensure the sharpness of the image.
  • the focusing device is caused to adjust the focus of the camera until the defocus amount reaches the preset threshold value, it is determined that the camera focuses accurately.
  • the microscope system in the embodiment of the present application is the above-mentioned microscope system.
  • the embodiment of the present application does not repeat the description of the microscope system too much.
  • the embodiment of the application acquires multiple images of different depths corresponding to the field of view of the target objective lens, the multiple images of different depths are images collected by a camera, and the index information value of each image in the multiple images of different depths is determined respectively Calculate the defocus amount of the image according to the index information value, and if the defocus amount is greater than a preset threshold, trigger the focusing device to adjust the focus of the camera.
  • the focusing device automatically focuses, which improves the convenience of operation.
  • the embodiment of the present application also provides an intelligent medical device.
  • the smart medical equipment in the embodiments of the present application relates to the field of smart medical devices in the field of artificial intelligence.
  • Artificial Intelligence is a theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge, and use knowledge to obtain the best results.
  • artificial intelligence is a comprehensive technology of computer science, which attempts to understand the essence of intelligence and produce a new intelligent machine that can react in a similar way to human intelligence.
  • Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
  • Artificial intelligence technology is a comprehensive discipline, covering a wide range of fields, including both hardware-level technology and software-level technology.
  • Basic artificial intelligence technologies generally include technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, big data processing technologies, operation/interaction systems, and mechatronics.
  • Artificial intelligence software technology mainly includes computer vision technology, speech processing technology, natural language processing technology, and machine learning/deep learning.
  • the smart medical device of the embodiment of the present application specifically includes an objective lens, a beam splitter, an image projection assembly, a camera assembly, and a focusing device.
  • the objective lens has a first end and a second end that are arranged oppositely, and the first end faces the sample to be observed.
  • the beam splitter is arranged at the second end, the image projection assembly is in communication with the beam splitter, the image projection assembly includes a first lens and an image projection device, and the light generated by the image projection device passes through
  • the first lens enters the beam splitter, the camera assembly is in communication with the beam splitter, the camera assembly includes a camera, the focusing device is configured on the camera assembly, and the focusing device is used for aligning The camera performs focus adjustment.
  • the embodiments of the present application also provide an intelligent medical device, which can be used for microscopic imaging of a sample to be observed.
  • FIG. 18 shows a schematic diagram of the structure of the smart medical device involved in the embodiment of the present application, specifically:
  • the electronic device may include one or more processing core processors 401, one or more computer-readable storage media memory 402, a power supply 403, and an input unit 404 and other components.
  • processing core processors 401 one or more computer-readable storage media memory 402, a power supply 403, and an input unit 404 and other components.
  • FIG. 18 does not constitute a limitation on the smart medical device, and may include more or less components than shown in the figure, or a combination of certain components, or different Component arrangement. among them:
  • the processor 401 is the control center of the smart medical device. It uses various interfaces and lines to connect the various parts of the entire smart medical device. It runs or executes the software programs and/or modules stored in the memory 402, and calls the memory 402.
  • the internal data performs various functions of the smart medical equipment and processes the data, so as to monitor the smart medical equipment as a whole.
  • the processor 401 may include one or more processing cores; preferably, the processor 401 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc. ,
  • the modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 401.
  • the memory 402 may be used to store software programs and modules.
  • the processor 401 executes various functional applications and data processing by running the software programs and modules stored in the memory 402.
  • the memory 402 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of smart medical equipment, etc.
  • the memory 402 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 402 may further include a memory controller to provide the processor 401 with access to the memory 402.
  • the smart medical device also includes a power supply 403 for supplying power to various components.
  • the power supply 403 may be logically connected to the processor 401 through a power management system, so that functions such as charging, discharging, and power management can be managed through the power management system.
  • the power supply 403 may also include any components such as one or more DC or AC power supplies, a recharging system, a power failure detection circuit, a power converter or inverter, and a power status indicator.
  • the smart medical device may further include an input unit 404, which can be used to receive inputted digital or character information and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • an input unit 404 which can be used to receive inputted digital or character information and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the intelligent medical device may also include a microscope system 200, which is the microscope system 200 described above. In the embodiment of the present application, the microscope system 200 is not described in detail.
  • the smart medical device may also include a display unit, etc., which will not be repeated here.
  • the processor 401 in the smart medical device will load the executable file corresponding to the process of one or more applications into the memory 402 according to the following instructions, and the processor 401 will run and store the executable file
  • the application program in the memory 402 thus realizes various functions, as follows:
  • Multiple images of different depths corresponding to the field of view of the target objective lens can be acquired, and the multiple images of different depths are the images collected by the camera, and the index information value of each image in the multiple images of different depths is determined, and according to The index information value calculates the defocus amount of the image, and if the defocus amount is greater than a preset threshold, triggers the focusing device to adjust the focus of the camera.
  • an embodiment of the present application provides a storage medium in which multiple instructions are stored, and the instructions can be loaded by a processor to execute the steps in any microscope system auto-focusing method provided in the embodiments of the present application. such as:
  • the multiple images of different depths are the images collected by the camera, respectively determine the index information value of each image in the multiple images of different depths, and
  • the index information value calculates the defocus amount of the image, and if the defocus amount is greater than a preset threshold, triggers the focusing device to adjust the focus of the camera.
  • the storage medium may include: read only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Automatic Focus Adjustment (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种显微镜系统(200)、智能医疗设备、自动对焦方法和存储介质,智能医疗设备涉及人工智能领域,其中,智能医疗设备包括物镜(10)、分束器(20)、图像投影组件(30)、照相机组件(40)以及对焦装置(50),物镜(10)具有相对设置的第一端(10a)和第二端(10b),第一端(10a)朝向待观察样品(80),分束器(20)设置在第二端(10b),图像投影组件(30)与分束器(20)连通,图像投影组件(30)包括第一透镜(32)和图像投影装置(31),图像投影装置(31)产生的光线经由第一透镜(32)进入分束器(20),照相机组件(40)与分束器(20)连通,照相机组件(40)包括照相机(41),对焦装置配置(50)在照相机组件(40)上,对焦装置(50)用于对照相机(40)进行对焦调节,使得相机(41)采集到的图像对焦更加准确。

Description

显微镜系统、智能医疗设备、自动对焦方法和存储介质
本申请要求于2019年9月25日提交中国专利局、申请号201910913623.0、申请名称为“显微镜系统、智能医疗设备、自动对焦方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗设备技术领域,尤其涉及显微镜系统、智能医疗设备、自动对焦方法和存储介质。
背景技术
人工智能技术是一门综合学科,涉及领域广泛,既有硬件层面的技术也有软件层面的技术。人工智能基础技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理技术、操作/交互系统、机电一体化等技术。
随着人工智能技术研究和进步,人工智能技术在多个领域展开研究和应用,例如,近年来增强现实技术和人工智能被提出用于传统的光学显微镜系统。在传统的光学显微镜上使用相机采集待观察样品的图像,并结合机器学习算法对实时图像进行分析。
其中,相机能采集到高质量的图像是上述增强现实显微镜的算法准确性的保障。样品离焦的图像会丢失很多重要的光学信息,所以,保证相机能够采集到样品准确对焦的图像尤为重要。
发明内容
本申请实施例提供一种显微镜系统、智能医疗设备、自动对焦方法和存储介质,可以使得相机采集到的图像对焦更加准确。
本申请实施例提供一种显微镜系统,所述系统包括:
物镜,所述物镜具有相对设置的第一端和第二端,所述第一端朝向待观察样品;
分束器,所述分束器设置在所述第二端;
图像投影组件,所述图像投影组件与所述分束器连通,所述图像投影组件包括第一透镜和图像投影装置,所述图像投影装置产生的光线经由所述第一透镜进入所述分束器;
照相机组件,所述照相机组件与所述分束器连通,所述照相机组件包括照相机;
对焦装置,所述对焦装置配置在所述照相机组件上,所述对焦装置用于对所述照相机进行对焦调节。
相应的,本申请实施例还提供一种智能医疗设备,所述包括:
物镜,所述物镜具有相对设置的第一端和第二端,所述第一端朝向待观察样品;
分束器,所述分束器设置在所述第二端;
图像投影组件,所述图像投影组件与所述分束器连通,所述图像投影组件包括第一透镜和图像投影装置,所述图像投影装置产生的光线经由所述第一透镜进入所述分束器;
照相机组件,所述照相机组件与所述分束器连通,所述照相机组件包括照相机;
对焦装置,所述对焦装置配置在所述照相机组件上,所述对焦装置用于对所述照相机进行对焦调节。
相应的,本申请实施例还提供一种显微镜系统自动对焦方法,应用于以上所述的显微镜系统,所述对焦方法包括:
获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像;
分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量;
若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
相应的,本申请实施例还提供一种智能医疗设备,所述设备包括显微镜系统和处理器,所述显微镜系统为以上所述的显微镜系统,所述处理器执行以下步骤:
获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像;
分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量;
若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
相应的,本申请实施例还提供一种存储介质,所述存储介质存储有指令,所述指令被处理器执行时实现本申请实施例任一提供的方法中的步骤。
相应的,本申请实施例还提供计算机程序产品,当所述计算机程序产品被执行时,用于执行本申请实施例任一提供的方法中的步骤。
本申请实施例显微镜系统包括物镜、分束器、图像投影组件、照相机组件以及对焦装置,所述物镜具有相对设置的第一端和第二端,所述第一端朝向待观察样品,所述分束器设置在所述第二端,所述图像投影组件与所述分束器连通,所述图像投影组件包括第一透镜和图像投影装置,所述图像投影装置产生的光线经由所述第一透镜进入所述分束器,所述照相机组件与所述分束器连通,所述照相机组件包括照相机,所述对焦装置配置在所述 照相机组件上,所述对焦装置用于对所述照相机进行对焦调节。本申请实施例可以使得相机采集到的图像对焦更加准确。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的显微镜的结构示意图;
图2是本申请实施例提供的显微镜系统的第一种结构示意图;
图3是本申请实施例提供的显微镜系统的第二种结构示意图;
图4是本申请实施例提供的显微镜系统的第三种结构示意图;
图5是本申请实施例提供的显微镜系统的第四种结构示意图;
图6是本申请实施例提供的显微镜系统的第五种结构示意图;
图7是本申请实施例提供的显微镜系统的第六种结构示意图;
图8是本申请实施例提供的显微镜系统的第七种结构示意图;
图9是本申请实施例提供的显微镜系统的第八种结构示意图;
图10是本申请实施例提供的显微镜系统的第九种结构示意图;
图11是本申请实施例提供的显微镜系统的第十种结构示意图;
图12是本申请实施例提供的显微镜系统的第十一种结构示意图;
图13是本申请实施例提供的显微镜系统的第十二种结构示意图;
图14是本申请实施例提供的显微镜系统的第十三种结构示意图;
图15是本申请实施例提供的显微镜系统的第十四种结构示意图;
图16是本申请实施例提供的显微镜系统的自动对焦方法的流程示意图;
图17是本申请实施例提供的显微镜系统的自动对焦方法的场景示意图;
图18是本申请实施例提供的智能医疗设备的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本 申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,相关技术中提供了一种显微镜100,该显微镜100具有显微镜机身101、显微镜机身载物台调焦旋钮102、显微镜机身载物台103、待观察样品104、机身物镜105、三目镜筒106、相机107以及目镜108。其中,显微镜机身101上方设置有显微镜机身载物台103,显微镜机身载物台103上放置有待观察样品104,所述显微镜机身101两侧设有显微镜机身载物台调焦旋钮102,所述机身物镜105位于显微镜机身载物台103的上方,在机身物镜105的上方还设有三目镜筒106,三目镜筒106分别与相机107和目镜108连接。调节所述显微镜机身载物台调焦旋钮102可以调整显微镜机身载物台103在垂直方向上升或者下降,从而改变显微镜机身载物台103与机身物镜105之间的间距以实现调焦。当然,也可以使得机身物镜105移动,从而改变显微镜机身载物台103与机身物镜105之间的间距从而实现调焦。
其中,上述显微镜100调焦的前提是假设目镜108端与三目镜筒106的相机107端是齐焦的。然而,由于种种原因使得相机107的图像与目镜108端的图像是不齐焦的。例如:不同倍数机身物镜105齐焦没有调节好,不同显微镜100使用者眼睛屈光度不同,且交换显微镜100使用者时,新的使用者没有调节目镜108屈光度旋钮的意识,而直接去调节显微镜机身载物台103来使样品重新聚焦,等等。这些原因都可以导致显微镜100的目镜108端与相机107端图像不齐焦,以至于人眼看到清晰图像时,相机107采集到的是离焦的图像,从而不能保证图像算法分析结果的正确性。
为了提高相机采集到的图像对焦准确性。本申请实施例提供了一种显微镜系统,以下对所述显微镜系统做详细介绍。
请参阅图2,本申请实施例提供一种显微镜系统200,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及对焦装置50,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述对焦装置配置在所述照相机组件40上,所述对焦装置50用于对所述照相机进行对焦调节。
需要说明的是,物镜10、分束器20、图像投影组件30、照相机组件40以及对焦装置50可以安装在显微镜机身上以形成一个整体,相应的,在分束器20上方还可以设置有目镜70,所述目镜70用于观察待观察样品80的图像。
需要说明的是,第一端10a和第二端10b相对设置,第一端10a和第二端10b的位置可以替换,本申请实施例在不做特殊说明的情况下,第一端10a为物镜10的下端,第二端10b为物镜10的上端。物镜10的第一端10a朝向待观察物品,也就是物镜10的第一端10a对准待观察的样品,可以通过物镜10对待观察样品80成像。
另外的,分束器20设置在物镜10的第二端10b,也就是分束器20设置在物镜10的上端,分束器20可以将一部分光线反射,将另一部分光线透射。
另外的,图像投影装置31可以投影出增强现实信息的投影,在目镜70端可以观察到待观察样品80和增强现实信息相叠加的场景。
另外的,照相机组件40可以接受来自分束器20反射或者透射过来的光线,照相机41可以扫描待观察样品80的图像,具体的,照相机41可以提供焦平面的扫描功能。
另外的,对焦装置50配置在照相机组件40上,当照相机41扫描到的图像对焦不准确时,对焦装置50可以使得照相机41进行对焦调节,从而确保照相机41获得对焦准确的图像。
其中,显微镜系统200还包括三目镜筒60,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端。
需要说明的是,三目镜筒60可以包括多个通道62,也就是沿三目镜筒60可以分为多个光路,其中一个通道62与目镜70连通,通过目镜70可以观察待观察样品80。
其中,所述对焦装置50包括但不限于移动部件51和可变焦镜头52。
需要说明的是,对焦装置50可以包括移动部件51、可变焦镜头52等。可以理解的是,移动部件51可以驱动照相机41移动从而实现照相机41的变焦。移动部件51可以是线性移动平台511或伸缩套管512等。可变焦镜头52可以设置在照相机41的前方,通过可变焦镜头52从而实现对照相机41获得图像的变焦。可变焦镜头52可以是液态可变焦镜头52,当然也可以是其他可变焦镜头52。因此,对焦装置50的结构形式可以包括多种。本申请实施例中不过多赘述。
请参阅图3,其中,所述移动部件51包括线性移动平台511,所述线性移动平台511用于驱动所述照相机组件40靠近或者远离所述分束器20以对所述照相机41进行对焦调节。
需要说明的是,线性移动平台511可以安装在显微镜机身上,通过线性移动平台511可以驱动照相机组件40移动。线性移动平台511驱动照相机组件40移动从而对照相机41进行对焦。线性移动平台511的移动精度较高。例如,线性移动平台511可以具有0.5纳米的移动精度,2纳米的最小步长,13至52毫米的移动范围,最大可承重约2千克。由于采用线性移动平台511驱动照相机组件40移动从而对照相机41进行对焦,这样可以提高照相机41的对焦精度。
其中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述三目镜筒60中的其中一个通道62与所述照相机组件40连通,所述照相机组件40还包括第一偏振片42,所述第一偏振片42位于所述照相机41与所述三目镜筒60之间,所述线性移动平台511驱动所述照相机41靠近或者远离所述分束器20。
需要说明的是,本申请实施例的显微镜系统200光路为:物镜10的光线传输到分束器20,图像投影装置31的光线传输到分束器20,分束器20将物镜10的光线和图像投影装置31的光线经过管镜61传输到三目镜筒60,三目镜筒60通过两个通道62将光线分别传输给第一偏正片和目镜70,经过第一偏振片42的光线传输到照相机41的感光芯片上,可以通过目镜70观察待观察样品80的图像。
可以理解的,通过线性移动平台511驱动照相机41靠近或者远离分束器20,当照相机41获得待观察样本的图像不对焦时,可以通过调节线性移动平台511带动照相机41运动,从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图4和图5,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述分束器20包括第一子分束器21和第二子分束器22,所述第一子分束器21与所述第二子分束器22连通,所述第一子分束器21与所述图像投影组件 30连通,所述第二子分束器22与所述照相机组件40连通,所述照相机组件40还包括第二透镜43,所述第二透镜43位于所述第二子分束器22与所述照相机41之间,所述线性移动平台511驱动所述照相机41或者所述第二透镜43靠近或者远离所述第二子分束器22。
需要说明的是,本申请实施例的显微镜系统200光路为:物镜10的光线传输到第二子分束器22,第二子分束器22将一部分光线反射到第二透镜43并传输到照相机41的感光芯片上,第二子分束器22将一部分光线传输到第一子分束器21上,图像投影装置31的光穿过第一透镜32传输到第一子分束器21上,第一子分束器21将物镜10传输的光透过并穿过管镜61并将图像投影装置31传输的光反射穿过管镜61达到三目镜筒60,三目镜筒60将光传输到目镜70,可以通过目镜70观察待观察样品80的图像。
可以理解的,通过线性移动平台511驱动照相机41或者第二透镜43靠近或者远离第二子分束器22,当照相机41获得待观察样本的图像不对焦时,可以通过调节线性移动平台511带动照相机41或者第二透镜43运动,从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图6和图7,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40、三目镜筒60以及对焦装置50,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述照相机组件40与所述图像投影组件30沿所述分束器20相对设置,所述图像投影组件30还包括第二偏振片33,所述第二偏振片33位于所述第一透镜32与所述分束器20之间,所述照相机组件40还包括第三透镜44和第三偏振片45,第三偏振片45位于所述分束器20与所述第三透镜44之间,所述第三透镜44位于所述第三偏振片45与所述照相机41之间,所述线性移动平台511驱动所述照相机41或者所述第三透镜44靠近或者远离所述分束器20。
需要说明的是,本申请实施例的显微镜系统200光路为:物镜10的光线传输到分束器20,图像投影装置31的光线穿过第一透镜32传输和第二偏振片33传输到分束器20,分束器20将物镜10光线反射经过第三偏振片45和第三透镜44传输到照相机41的感光芯片上,分束器20将图像投影装置31的光线反射经过管镜61后传输到三目镜筒60,三目镜70头通过通道62将光线传输给目镜70,可以通过目镜70观察待观察样品80的图像。
可以理解的,通过所述线性移动平台511驱动所述照相机41或者所述第三透镜44靠近或者远离所述分束器20,当照相机41获得待观察样本的图像不对焦时,可以通过调节 线性移动平台511带动照相机41或者第三透镜44运动,从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
其中,所述移动部件51还包括伸缩套管512,所述伸缩套管512与所述照相机组件40连接,所述伸缩套管512驱动所述照相机组件40在所述伸缩套管512内伸缩以对所述照相机41进行对焦调节。
需要说明的是,伸缩套管512可以包括驱动电机和套筒,驱动电机可以驱动套筒伸缩。套筒可以安装在照相机41上,套筒可以驱动照相机41的伸缩以实现照相机41的变焦。伸缩套管512内可以安装透镜或者透镜组,伸缩套管512可以驱动透镜或者透镜组运动。例如,驱动电机可以是直流电机或者交流电机。又如,驱动电机可以为步进电机或超声马达等。本申请实施例对驱动电机具体采用何种类型不做过多赘述。
在一些实施例中,提供一种具有伸缩套管512的镜头组件,该具有伸缩套管512的镜头组件包括套筒和定焦镜头,定焦镜头安装在所述套筒上,套筒可以驱动所述定焦镜头运动。需要注意的是,套筒伸缩时外部不会旋转而是线性前进伸缩,故不会造成照相机41跟随旋转。另外的,照相机41可以具有一个处理器或者单片机。
另外的,伸缩套管512是否安装透镜或者透镜组可以根据照相机41的具体配置限定。对于照相机41的管镜61工作距离比较长的,可以不需要伸缩套管512和透镜或者套管组件组合,对于照相机41的管镜61工作距离比较短的,需要将伸缩套管512和透镜或者套管组件组合使用。
请参阅图8,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述三目镜筒60中的其中一个通道62与所述照相机组件40连通,所述照相机组件40还包括第一偏振片42,所述第一偏振片42位于所述照相机41与所述三目镜筒60之间,所述伸缩套管512驱动所述照相机41在所述伸缩套管512内伸缩。
可以理解的,当照相机41获得待观察样本的图像不对焦时,可以通过伸缩套管512驱动所述照相机41在所述伸缩套管512内伸缩,从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图9和图10,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述分束器20包括第一子分束器21和第二子分束器22,所述第一子分束器21与所述第二子分束器22连通,所述第一子分束器21与所述图像投影组件30连通,所述第二子分束器22与所述照相机组件40连通,所述照相机组件40还包括第二透镜43,所述第二透镜43位于所述第二子分束器22与所述照相机41之间,所述伸缩套管512驱动所述照相机41或者第三透镜44在所述伸缩套管512内伸缩。
可以理解的,当照相机41获得待观察样本的图像不对焦时,可以通过所述伸缩套管512驱动所述照相机41或所述第二透镜43在所述伸缩套管512内伸缩,从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图11和图12,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述照相机组件40与所述图像投影组件30沿所述分束器20相对设置,所述图像投影组件30还包括第二偏振片33,所述第二偏振片33位于所述第一透镜32与所述分束器20之间,所述照相机组件40还包括第三透镜44和第三偏振片45,第三偏振片45位于所述分束器20与所述第三透镜44之间,所述第三透镜44位于所述第三偏振片45与所述照相机41之间,所述伸缩套管512驱动所述照相机41或者第三透镜44在所述伸缩套管512内伸缩。
可以理解的,当照相机41获得待观察样本的图像不对焦时,可以通过所述伸缩套管512驱动所述照相机41或所述第三透镜44在所述伸缩套管512内伸缩,从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图13,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b, 所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述三目镜筒60中的其中一个通道62与所述照相机组件40连通,所述照相机组件40还包括第一偏振片42,所述第一偏振片42位于所述照相机41与所述三目镜筒60之间,所述可变焦镜头52设置在所述第一偏振片42与所述管镜61之间。
可以理解的,所述可变焦镜头52设置在所述第一偏振片42与所述管镜61之间,通过可变焦镜头52变焦从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图14,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述分束器20包括第一子分束器21和第二子分束器22,所述第一子分束器21与所述第二子分束器22连通,所述第一子分束器21与所述图像投影组件30连通,所述第二子分束器22与所述照相机组件40连通,所述照相机组件40还包括第二透镜43,所述第二透镜43位于所述第二子分束器22与所述照相机41之间,所述可变焦镜头52位于所述第一子分束器21与所述第二透镜43之间。
可以理解的,所述可变焦镜头52位于所述第一子分束器21与所述第二透镜43之间,通过可变焦镜头52变焦从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
请参阅图15,本申请实施例中,该显微镜系统200具体包括物镜10、分束器20、图像投影组件30、照相机组件40以及三目镜筒60,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述三目镜筒60设置在所述分束器20远离所述物镜10的一端,所述三目镜筒60包括通道62和管镜61,所述通道62至少包括两个且位于远离所述分束器20的一端,其中一个通道62与 目镜70连通,所述管镜61位于靠近所述分束器20的一端,所述照相机组件40与所述图像投影组件30沿所述分束器20相对设置,所述图像投影组件30还包括第二偏振片33,所述第二偏振片33位于所述第一透镜32与所述分束器20之间,所述照相机组件40还包括第三透镜44和第三偏振片45,第三偏振片45位于所述分束器20与所述第三透镜44之间,所述第三透镜44位于所述第三偏振片45与所述照相机41之间,所述可变焦镜头52位于所述分束器20与所述第三偏振片45之间。
可以理解的,所述可变焦镜头52位于所述分束器20与所述第三偏振片45之间,通过可变焦镜头52变焦从而实现对照相机41的对焦,确保照相机41扫描到的图像为对焦的准确图像。
本申请实施例中的显微镜系统200包括物镜10、分束器20、图像投影组件30、照相机组件40以及对焦装置50,所述物镜10具有相对设置的第一端10a和第二端10b,所述第一端10a朝向待观察样品80,所述分束器20设置在所述第二端10b,所述图像投影组件30与所述分束器20连通,所述图像投影组件30包括第一透镜32和图像投影装置31,所述图像投影装置31产生的光线经由所述第一透镜32进入所述分束器20,所述照相机组件40与所述分束器20连通,所述照相机组件40包括照相机41,所述对焦装置50配置在所述照相机组件40上,所述对焦装置50用于对所述照相机41进行对焦调节。本申请实施例在不同屈光度的显微镜观测人员交换使用显微镜时,不用每次都重复一遍繁琐的三目齐焦调节,而是通过对焦装置50自动对焦,提升了操作的便利性。其次,即使不同倍数物镜10不齐焦或者未完成齐焦调节也不会影响相机采集清晰的图像,进而在目镜70端未处于对焦状态时,相机依然可以自动对焦。最后,本申请的调节方式调节更加准确。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图16,本申请实施例还提供一种显微镜系统自动对焦方法,应用于以上所述的显微镜系统,所述对焦方法具体包括:
301、获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像。
需要说明的是,可以通过显微镜系统的照相机扫描待观察样品以获得多张不同深度的图像。照相机通过逐层扫描待观察样品可以获得多张不同深度的图像。例如,通过对焦装置驱动照相机在预设好的不同深度分别采集图像,从而获得多张不同深度的图像。通常情况喜爱,可以获取三张、四张甚至多张不同深度的图像。为了节省资源,获取三张不同深度的图像就可以达到本申请实施例的要求。
302、分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量。
需要说明的是,指标信息可以为图像的锐度或者对比度。本申请实施例中的指标信息不限于此。指标信息值可以为计算得到的图像的锐度或者对比度的值,通过图像的锐度或者对比度的值得到图像的离焦量。
其中,以指标信息是图像的锐度为例,获取指标信息值的可能实现方法包括:
(1)针对所述多张不同深度的图像中的每张图像,分别提取所述图像的尺寸信息和对应像素点的像素值。
需要说明的是,提取多张不同深度的图像中每张图像的尺寸信息,图像的尺寸信息可以表示为M*N,对应像素点的像素值可以理解为在某个坐标点的像素值。比如,s(i,j)为坐标在(i,j)处的像素值。
(2)根据图像的尺寸信息和对应像素点的像素值计算得到指标信息值。
需要说明的是,将多张不同深度的图像的尺寸信息M*N和坐标在(i,j)处的像素值代入公式,得到的指标信息值如下:
Figure PCTCN2020113109-appb-000001
其中,B为图像的指标信息值,不同深度的图像对应不同的指标信息值。
(3)基于所述指标信息值得到所述离焦量。
需要说明的是,将不同的指标信息值拟合成一曲线,其中曲线的顶点就是离焦量为零时对应的位置。离焦量越接近零,则代表图像越清晰,也就是对焦装置驱动照相机需要调节到的位置。
如图17所示,比如,照相机扫描了五张不同深度的图像,五张不同深度的图像计算得到指标信息值分别为B1、B2、B3、B4、B5。根据B1、B2、B3、B4、B5拟合成一条曲线,其中,曲线的顶点确定为离焦量为零的位置点,即最佳成像位置,也就是照相机需要调节靠近的位置点。
303、若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
需要说明的是,预设阈值可以是人为设定的阈值,该阈值可以为0、0.1、0.5等。通常情况下,离焦量的预设阈值为0,该阈值可确保图像的清晰。当离焦量大于预设阈值时,使得对焦装置对照相机进行对焦调节,直到离焦量达到预设阈值时,则确定照相机对焦准确。
本申请实施例中的显微镜系统为以上所述的显微镜系统。本申请实施例对显微镜系统不做过多追赘述。
本申请实施例获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像,分别确定所述多张不同深度的图像中每张图像的指标信息值,根据所述指标信息值计算所述图像的离焦量,若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。本申请实施例在不同屈光度的显微镜观测人员交换使用显微镜时,不用每次都重复一遍繁琐的三目齐焦调节,而是通过对焦装置自动对焦,提升了操作的便利性。其次,即使不同倍数物镜不齐焦或者未完成齐焦调节也不会影响相机采集清晰的图像,进而在目镜端未处于对焦状态时,照相机依然可以自动对焦。最后,本申请的调节方式调节更加准确。
在本申请实施例中,应理解,诸如“包括”或“具有”等的术语旨在指示本说明书中所公开的特征、数字、步骤、行为、部件、部分或其组合的存在,并且不欲排除一个或多个其他特征、数字、步骤、行为、部件、部分或其组合存在或被添加的可能性。
本申请实施例还提供一种智能医疗设备。本申请实施例智能医疗设备涉及人工智能领域中的智能医疗器械领域。
人工智能(Artificial Intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个综合技术,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。
人工智能技术是一门综合学科,涉及领域广泛,既有硬件层面的技术也有软件层面的技术。人工智能基础技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理技术、操作/交互系统、机电一体化等技术。人工智能软件技术主要包括计算机视觉技术、语音处理技术、自然语言处理技术以及机器学习/深度学习等几大方向。
本申请实施例的智能医疗设备具体包括物镜、分束器、图像投影组件、照相机组件以及对焦装置,所述物镜具有相对设置的第一端和第二端,所述第一端朝向待观察样品,所述分束器设置在所述第二端,所述图像投影组件与所述分束器连通,所述图像投影组件包括第一透镜和图像投影装置,所述图像投影装置产生的光线经由所述第一透镜进入所述分束器,所述照相机组件与所述分束器连通,所述照相机组件包括照相机,所述对焦装置配置在所述照相机组件上,所述对焦装置用于对所述照相机进行对焦调节。
本申请实施例还提供一种智能医疗设备,该智能医疗设备可以用于待观察样品的显微成像。如图18所示,其示出了本申请实施例所涉及的智能医疗设备的结构示意图,具体来讲:
该电子设备可以包括一个或者一个以上处理核心的处理器401、一个或一个以上计算机可读存储介质的存储器402、电源403和输入单元404等部件。本领域技术人员可以理解,图18中示出的智能医疗设备结构并不构成对智能医疗设备的限定,可以包括比图示更多或更少的部件,或者某些部件的组合,或者不同的部件布置。其中:
处理器401是该智能医疗设备的控制中心,利用各种接口和线路连接整个智能医疗设备的各个部分,通过运行或执行存储在存储器402内的软件程序和/或模块,以及调用存储在存储器402内的数据,执行智能医疗设备的各种功能和处理数据,从而对智能医疗设备进行整体监控。可选的,处理器401可包括一个或多个处理核心;优选的,处理器401可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器401中。
存储器402可用于存储软件程序以及模块,处理器401通过运行存储在存储器402的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器402可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据智能医疗设备的使用所创建的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器402还可以包括存储器控制器,以提供处理器401对存储器402的访问。
智能医疗设备还包括给各个部件供电的电源403,优选的,电源403可以通过电源管理系统与处理器401逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源403还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
智能医疗设备还可包括输入单元404,该输入单元404可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。
智能医疗设备还可以包括显微镜系统200,显微镜系统200为以上所述的显微镜系统200。本申请实施例中对显微镜系统200不做过多赘述。
尽管未示出,智能医疗设备还可以包括显示单元等,在此不再赘述。具体在本实施例中,智能医疗设备中的处理器401会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器402中,并由处理器401来运行存储在存储器402中的应用程序,从而实现各种功能,如下:
可以获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像,分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所 述指标信息值计算所述图像的离焦量,若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本申请实施例提供一种存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本申请实施例所提供的任一种显微镜系统自动对焦方法中的步骤。比如:
获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像,分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量,若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
其中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
由于该存储介质中所存储的指令,可以执行本申请实施例所提供的任一种方法中的步骤,因此,可以实现本申请实施例所提供的任一种方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
以上对本申请实施例所提供的显微镜系统、智能医疗设备、自动对焦方法和存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显微镜系统,所述系统包括:
    物镜,所述物镜具有相对设置的第一端和第二端,所述第一端朝向待观察样品;
    分束器,所述分束器设置在所述第二端;
    图像投影组件,所述图像投影组件与所述分束器连通,所述图像投影组件包括第一透镜和图像投影装置,所述图像投影装置产生的光线经由所述第一透镜进入所述分束器;
    照相机组件,所述照相机组件与所述分束器连通,所述照相机组件包括照相机;
    对焦装置,所述对焦装置配置在所述照相机组件上,所述对焦装置用于对所述照相机进行对焦调节。
  2. 根据权利要求1所述的显微镜系统,所述系统还包括三目镜筒,所述三目镜筒设置在所述分束器远离所述物镜的一端,所述三目镜筒包括通道和管镜,所述通道至少包括两个且所述通道位于远离所述分束器的一端,其中一个通道与目镜连通,所述管镜位于靠近所述分束器的一端。
  3. 根据权利要求2所述的显微镜系统,所述对焦装置包括移动部件和可变焦镜头。
  4. 根据权利要求3所述的显微镜系统,所述移动部件包括线性移动平台,所述线性移动平台用于驱动所述照相机组件靠近或者远离所述分束器以对所述照相机进行对焦调节。
  5. 根据权利要求4所述的显微镜系统,所述三目镜筒中的一个通道与所述照相机组件连通,所述照相机组件还包括第一偏振片,所述第一偏振片位于所述照相机与所述三目镜筒之间,所述线性移动平台驱动所述照相机靠近或者远离所述分束器。
  6. 根据权利要求4所述的显微镜系统,所述分束器包括第一子分束器和第二子分束器,所述第一子分束器与所述第二子分束器连通,所述第一子分束器与所述图像投影组件连通,所述第二子分束器与所述照相机组件连通,所述照相机组件还包括第二透镜,所述第二透镜位于所述第二子分束器与所述照相机之间,所述线性移动平台驱动所述照相机或者所述第二透镜靠近或者远离所述第二子分束器。
  7. 根据权利要求4所述的显微镜系统,所述照相机组件与所述图像投影组件沿所述分束器相对设置,所述图像投影组件还包括第二偏振片,所述第二偏振片位于所述第一透镜与所述分束器之间,所述照相机组件还包括第三透镜和第三偏振片,所述第三偏振片位于所述分束器与所述第三透镜之间,所述第三透镜位于所述第三偏振片与所述照相机之间,所述线性移动平台驱动所述照相机或者所述第三透镜靠近或者远离所述分束器。
  8. 根据权利要求3所述的显微镜系统,所述移动部件还包括伸缩套管,所述伸缩套管与所述照相机组件连接,所述伸缩套管驱动所述照相机组件在所述伸缩套管内伸缩以对所述照相机进行对焦调节。
  9. 根据权利要求8所述的显微镜系统,所述三目镜筒中的一个通道与所述照相机组件连通,所述照相机组件还包括第一偏振片,所述第一偏振片位于所述照相机与所述三目镜筒之间,所述伸缩套管驱动所述照相机在所述伸缩套管内伸缩。
  10. 根据权利要求8所述的显微镜系统,所述分束器包括第一子分束器和第二子分束器,所述第一子分束器与所述第二子分束器连通,所述第一子分束器与所述图像投影组件连通,所述第二子分束器与所述照相机组件连通,所述照相机组件还包括第二透镜,所述第二透镜位于所述第二子分束器与所述照相机之间,所述伸缩套管驱动所述照相机或所述第二透镜在所述伸缩套管内伸缩。
  11. 根据权利要求8所述的显微镜系统,所述照相机组件与所述图像投影组件沿所述分束器相对设置,所述图像投影组件还包括第二偏振片,所述第二偏振片位于所述第一透镜与所述分束器之间,所述照相机组件还包括第三透镜和第三偏振片,所述第三偏振片位于所述分束器与所述第三透镜之间,所述第三透镜位于所述第三偏振片与所述照相机之间,所述伸缩套管驱动所述照相机或所述第三透镜在所述伸缩套管内伸缩。
  12. 根据权利要求3所述的显微镜系统,所述三目镜筒中的一个通道与所述照相机组件连通,所述照相机组件还包括第一偏振片,所述第一偏振片位于所述照相机与所述三目镜筒之间,所述可变焦镜头设置在所述第一偏振片与所述管镜之间。
  13. 根据权利要求3所述的显微镜系统,所述分束器包括第一子分束器和第二子分束器,所述第一子分束器与所述第二子分束器连通,所述第一子分束器与所述图像投影组件连通,所述第二子分束器与所述照相机组件连通,所述照相机组件还包括第二透镜,所述第二透镜位于所述第二子分束器与所述照相机之间,所述可变焦镜头位于所述第一子分束器与所述第二透镜之间。
  14. 根据权利要求3所述的显微镜系统,所述照相机组件与所述图像投影组件沿所述分束器相对设置,所述图像投影组件还包括第二偏振片,所述第二偏振片位于所述第一透镜与所述分束器之间,所述照相机组件还包括第三透镜和第三偏振片,所述第三偏振片位于所述分束器与所述第三透镜之间,所述第三透镜位于所述第三偏振片与所述照相机之间,所述可变焦镜头位于所述分束器与所述第三偏振片之间。
  15. 一种智能医疗设备,所述设备包括:
    物镜,所述物镜具有相对设置的第一端和第二端,所述第一端朝向待观察样品;
    分束器,所述分束器设置在所述第二端;
    图像投影组件,所述图像投影组件与所述分束器连通,所述图像投影组件包括第一透镜和图像投影装置,所述图像投影装置产生的光线经由所述第一透镜进入所述分束器;
    照相机组件,所述照相机组件与所述分束器连通,所述照相机组件包括照相机;
    对焦装置,所述对焦装置配置在所述照相机组件上,所述对焦装置用于对所述照相机进行对焦调节。
  16. 一种显微镜系统自动对焦方法,应用于权利要求1至14任一项的显微镜系统,所述对焦方法包括:
    获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像;
    分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量;
    若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
  17. 根据权利要求16所述的显微镜系统自动对焦方法,所述分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量,包括:
    针对所述多张不同深度的图像中的每张图像,分别提取所述图像的尺寸信息和对应像素点的像素值;
    根据所述图像的尺寸信息和对应像素点的像素值计算得到指标信息值;
    基于所述指标信息值得到所述离焦量。
  18. 一种智能医疗设备,所述设备包括显微镜系统和处理器,所述显微镜系统为权利要求1至14任一项所述的显微镜系统,所述处理器执行以下步骤:
    获取目标物镜视野对应的多张不同深度的图像,所述多张不同深度的图像为照相机采集到的图像;
    分别确定所述多张不同深度的图像中每张图像的指标信息值,并根据所述指标信息值计算所述图像的离焦量;
    若所述离焦量大于预设阈值,触发所述对焦装置对所述照相机进行对焦调节。
  19. 一种存储介质,所述存储介质存储有多条指令,所述指令适于处理器进行加载,以执行权利要求16或17所述的显微镜系统自动对焦方法中的步骤。
  20. 一种计算机程序产品,当所述计算机程序产品被执行时,用于执行权利要求16或17所述的方法。
PCT/CN2020/113109 2019-09-25 2020-09-03 显微镜系统、智能医疗设备、自动对焦方法和存储介质 WO2021057422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/405,833 US20210373308A1 (en) 2019-09-25 2021-08-18 Microscope system, smart medical device, automatic focusing method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910913623.0A CN110673325A (zh) 2019-09-25 2019-09-25 显微镜系统、智能医疗设备、自动对焦方法和存储介质
CN201910913623.0 2019-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/405,833 Continuation US20210373308A1 (en) 2019-09-25 2021-08-18 Microscope system, smart medical device, automatic focusing method and storage medium

Publications (1)

Publication Number Publication Date
WO2021057422A1 true WO2021057422A1 (zh) 2021-04-01

Family

ID=69078967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113109 WO2021057422A1 (zh) 2019-09-25 2020-09-03 显微镜系统、智能医疗设备、自动对焦方法和存储介质

Country Status (3)

Country Link
US (1) US20210373308A1 (zh)
CN (1) CN110673325A (zh)
WO (1) WO2021057422A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284946A1 (en) * 2021-07-13 2023-01-19 Haag-Streit Ag Ophthalmic or surgical microscope with display device and camera

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673325A (zh) * 2019-09-25 2020-01-10 腾讯科技(深圳)有限公司 显微镜系统、智能医疗设备、自动对焦方法和存储介质
CN111343368B (zh) * 2020-02-18 2021-08-20 清华大学 基于偏振的散射介质深度恢复方法及装置
CN111443476B (zh) * 2020-04-13 2023-04-14 腾讯科技(深圳)有限公司 显微镜自动对焦方法、显微镜系统、医疗设备和存储介质
CN111443477B (zh) * 2020-04-13 2022-12-20 腾讯科技(深圳)有限公司 显微镜自动对焦方法、显微镜系统、医疗设备和存储介质
CN111505821B (zh) * 2020-05-12 2021-11-19 宁波蓝明信息科技有限公司 一种异步触发式增强现实显微成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595049A (zh) * 2012-03-16 2012-07-18 盛司潼 一种自动聚焦控制系统及方法
CN104280886A (zh) * 2014-09-25 2015-01-14 清华大学 基于原位立体增强显示的显微系统及显微方法
US20170227754A1 (en) * 2016-02-05 2017-08-10 Yu Hsuan Huang Systems and applications for generating augmented reality images
CN107084923A (zh) * 2016-02-16 2017-08-22 株式会社思可林集团 细胞观察装置以及细胞观察方法
CN109031643A (zh) * 2018-10-31 2018-12-18 宁波舜宇仪器有限公司 一种增强现实显微镜
CN110007455A (zh) * 2018-08-21 2019-07-12 腾讯科技(深圳)有限公司 病理显微镜、显示模组、控制方法、装置及存储介质
CN110673325A (zh) * 2019-09-25 2020-01-10 腾讯科技(深圳)有限公司 显微镜系统、智能医疗设备、自动对焦方法和存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591173A (zh) * 2003-08-26 2005-03-09 上海中策工贸有限公司 一种手机数位相机
JP4708143B2 (ja) * 2005-09-30 2011-06-22 シスメックス株式会社 自動顕微鏡及びこれを備える分析装置
CN101916036B (zh) * 2010-07-20 2012-05-16 厦门三维视通电子科技有限公司 带灯光及水平旋转台的电脑可控实物三维自动成像装置
JP6274794B2 (ja) * 2013-09-12 2018-02-07 株式会社ミツトヨ 情報処理装置、情報処理方法、プログラム、及び画像測定装置
JP6333145B2 (ja) * 2014-09-30 2018-05-30 株式会社Screenホールディングス 画像処理方法および画像処理装置
JP6438276B2 (ja) * 2014-11-04 2018-12-12 オリンパス株式会社 顕微鏡システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595049A (zh) * 2012-03-16 2012-07-18 盛司潼 一种自动聚焦控制系统及方法
CN104280886A (zh) * 2014-09-25 2015-01-14 清华大学 基于原位立体增强显示的显微系统及显微方法
US20170227754A1 (en) * 2016-02-05 2017-08-10 Yu Hsuan Huang Systems and applications for generating augmented reality images
CN107084923A (zh) * 2016-02-16 2017-08-22 株式会社思可林集团 细胞观察装置以及细胞观察方法
CN110007455A (zh) * 2018-08-21 2019-07-12 腾讯科技(深圳)有限公司 病理显微镜、显示模组、控制方法、装置及存储介质
CN109031643A (zh) * 2018-10-31 2018-12-18 宁波舜宇仪器有限公司 一种增强现实显微镜
CN110673325A (zh) * 2019-09-25 2020-01-10 腾讯科技(深圳)有限公司 显微镜系统、智能医疗设备、自动对焦方法和存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284946A1 (en) * 2021-07-13 2023-01-19 Haag-Streit Ag Ophthalmic or surgical microscope with display device and camera

Also Published As

Publication number Publication date
US20210373308A1 (en) 2021-12-02
CN110673325A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021057422A1 (zh) 显微镜系统、智能医疗设备、自动对焦方法和存储介质
Kuniyoshi et al. A foveated wide angle lens for active vision
US11156823B2 (en) Digital microscope apparatus, method of searching for in-focus position thereof, and program
CN106303242A (zh) 多光谱显微成像的快速主动对焦系统及方法
US20220342195A1 (en) Microscope automatic focusing method, microscope system, medical device, and storage medium
CN101690165A (zh) 尤其用于拍照的基于无意识的眼睛信号的控制方法
CN108646353B (zh) 一种基于图像处理的光纤-波导自动对准耦合仪
CN103529543A (zh) 一种显微镜自动调焦方法
WO2020066042A1 (ja) 顕微鏡システム、投影ユニット、及び、画像投影方法
CN103487927A (zh) 一种显微镜自动调焦方法
US10613313B2 (en) Microscopy system, microscopy method, and computer-readable recording medium
CN104181685A (zh) 基于显微镜的数字切片自动聚焦装置及其方法
CN203027358U (zh) 一种自适应视线跟踪系统
CN113705298A (zh) 图像采集方法、装置、计算机设备及存储介质
CN105785561A (zh) 一种数字显微镜及其聚焦方法
CN106412400A (zh) 基于可见光及近红外的仿生视觉成像系统及其调焦方法
US10429632B2 (en) Microscopy system, microscopy method, and computer-readable recording medium
CN105530429B (zh) 一种自动聚焦装置及系统
JP2015156011A (ja) 画像取得装置およびその制御方法
WO2021184341A1 (en) Autofocus method and camera system thereof
Ghosh et al. Passive auto focusing of pathological microscope with intelligent field image collection mechanism
JP5059816B2 (ja) スライド画像データ作成装置
Roca et al. New autofocusing algorithm for cytological tissue in a microscopy environment
CN218585024U (zh) 一种采用液态镜头的数字切片快速对焦系统
JP6276220B2 (ja) 撮像装置および撮像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867869

Country of ref document: EP

Kind code of ref document: A1