WO2021057048A1 - 基站、基站之间的通信方法、装置及存储介质 - Google Patents

基站、基站之间的通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2021057048A1
WO2021057048A1 PCT/CN2020/091121 CN2020091121W WO2021057048A1 WO 2021057048 A1 WO2021057048 A1 WO 2021057048A1 CN 2020091121 W CN2020091121 W CN 2020091121W WO 2021057048 A1 WO2021057048 A1 WO 2021057048A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time domain
air interface
base station
interface signal
Prior art date
Application number
PCT/CN2020/091121
Other languages
English (en)
French (fr)
Inventor
白伟
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20868601.4A priority Critical patent/EP4037372A4/en
Priority to US17/639,587 priority patent/US20220303980A1/en
Publication of WO2021057048A1 publication Critical patent/WO2021057048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to the field of communication technology, and in particular to a base station, a communication method, device and storage medium between base stations.
  • the network coverage area is divided into cells (Cells), and each cell is usually served by a BS (Base Station, base station). This base station is called the serving base station of the cell.
  • BS Base Station, base station
  • Each BS will provide a data transmission service for UE (User Equipment) in its cell.
  • each base station maintains a relatively independent working mode, that is, each base station is only responsible for uplink and downlink scheduling for UEs in the cell, and provides uplink and downlink data transmission services.
  • a base station generally does not provide data transmission services to UEs in other cells, and a base station generally does not perform information exchange and data transmission operations with other base stations.
  • the purpose of this application is to provide a base station, a communication method, device and storage medium between base stations, so as to realize good communication between base stations and provide support for providing users with better services.
  • an embodiment of the present application provides a communication method between base stations, which is applied to a first base station, and the method includes:
  • the designated resource is a resource used for communication between base stations, and
  • the N time domain resources are divided based on time division multiplexing (TDM).
  • TDM time division multiplexing
  • the status of each time domain resource is one of occupied, idle, and resource collision.
  • the status of the N time-domain resources is exchanged through the air interface signal, so that the occurrence of resource collisions can be reduced as much as possible, or resource collisions can be quickly discovered and resolved after resource collisions, so as to ensure the delay and reliability of the communication system.
  • the exchange of the respective states of the N time domain resources of the designated resource with the second base station using the designated resource through an air interface signal includes:
  • the first base station can exchange information and transmit data with other base stations through air interface signals, and can monitor the occupation of N time-domain resources using the same communication resource by other base stations, thereby reducing resource collisions as much as possible. Or it can be quickly discovered and resolved after a resource collision occurs to ensure the delay and reliability of the communication system.
  • communicating the respective status of the N time domain resources of the designated resource with the second base station that uses the designated resource through an air interface signal further includes:
  • an idle resource is selected from the N time domain resources; the selected idle resource is used to send an air interface signal, and the sent air interface signal is used to indicate the The state of the N time domain resources detected by the first base station.
  • the first base station can exchange information and transmit data with other base stations through air interface signals, and can notify other base stations of the respective states of the N time domain resources detected by it, so that other base stations can know the N time domain resources Therefore, the occurrence of resource collisions can be reduced as much as possible, or resource collisions can be quickly discovered and resolved after resource collisions, so as to ensure the delay and reliability of the communication system.
  • the state of the N time domain resources is detected in the following manner:
  • the time domain resource For each time domain resource, if an air interface signal is not received on the time domain resource in at least one detection period, the time domain resource is in an idle state; if a first detection period is detected on the time domain resource in a detection period The air interface signal sent by the second base station, the time domain resource is in an occupied state; if at least two air interface signals sent by the second base station are detected on the time domain resource within a detection period, the time domain resource is in resource collision , Wherein the detection period is the time division multiplexing period of the designated resource.
  • the first base station can determine the occupation of N time domain resources by other base stations through the air interface signals detected in a detection period, thereby providing communication between base stations to inform the respective status of the N time domain resources.
  • Support so as to reduce the occurrence of resource collisions as much as possible, or to quickly find and resolve resource collisions to ensure the delay and reliability of the communication system.
  • the method further includes:
  • the received air interface signal indicates that the time domain resource occupied by the first base station has a resource collision, reselect idle resources from the N time domain resources to send the air interface signal using the reselected idle resources .
  • the sizes of the N time domain resources are the same or not completely the same. Therefore, each time domain resource of communication resources between base stations can be divided according to service requirements to ensure the delay and reliability of the communication system.
  • an embodiment of the present application provides a first base station, including a processor, a memory, and a transceiver,
  • the processor is used to read the program in the memory and execute:
  • the designated resource is a resource used for communication between base stations
  • the N time domain resources are obtained by dividing based on a time division multiplexing (TDM) method.
  • the status of each time domain resource is one of occupied, idle, and resource collision.
  • the transceiver is used for:
  • the processor is used for:
  • the respective states of the N time domain resources are determined.
  • the processor is further configured to:
  • the transceiver is used for:
  • the selected idle resource is used to send an air interface signal
  • the sent air interface signal is used to indicate the state of the N time domain resources detected by the first base station.
  • the processor is configured to detect the state of the N time domain resources in the following manner:
  • the time domain resource For each time domain resource, if an air interface signal is not received on the time domain resource in at least one detection period, the time domain resource is in an idle state; the detection period is the time division multiplexing period of the designated resource;
  • the time domain resource is in an occupied state
  • the time domain resource is in a resource collision state.
  • the processor is further used to:
  • the received air interface signal indicates that the time domain resource occupied by the first base station has a resource collision, reselect idle resources from the N time domain resources to use the newly selected idle resources to transmit the air interface signal.
  • the sizes of the N time domain resources are the same or not completely the same.
  • an embodiment of the present application provides a first base station, including:
  • the communication module is configured to exchange the respective states of the N time domain resources of the designated resource with the second base station that uses the designated resource through an air interface signal, where N ⁇ 1, and the designated resource is used for communication between base stations
  • the N time domain resources are obtained based on time division multiplexing (TDM).
  • the status of each time domain resource is one of occupied, idle, and resource collision.
  • the communication module includes:
  • a signal receiving module configured to receive an air interface signal on a time domain resource that is not occupied by the first base station among the designated resources, where the air interface signal is sent by at least one of the second base stations and is used to indicate The states of the N time domain resources detected by the second base station;
  • the status determining module is configured to determine the respective status of the N time domain resources based on the received air interface signal.
  • the communication module further includes:
  • the resource selection module is configured to select an idle resource from the N time domain resources according to the status of each time domain resource carried in the received air interface signal;
  • the signal sending module is configured to use the selected idle resource to send an air interface signal, and the sent air interface signal is used to indicate the state of the N time domain resources detected by the first base station.
  • the resource selection module is further configured to:
  • the idle resource is reselected from the N time domain resources to use the reselected Idle resources send air interface signals.
  • an embodiment of the present application provides a computer storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the method according to the first aspect.
  • the base station, the communication method, device, and storage medium between the base stations provided in the embodiments of the present application can realize information exchange and data transmission between the base stations through air interface communication, and can ensure time delay and reliability.
  • Fig. 1 is a schematic flowchart of a communication method according to an embodiment of the present application
  • Fig. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a computing device according to an embodiment of the present application.
  • the network coverage area is divided into cells (Cells), and each cell is usually served by a BS (Base Station, base station). This base station is called the serving base station of the cell.
  • BS Base Station, base station
  • Each BS will provide a data transmission service for UE (User Equipment) in its cell.
  • each base station maintains a relatively independent working mode, that is, each base station is only responsible for uplink and downlink scheduling for UEs in the cell, and provides uplink and downlink data transmission services.
  • a base station generally does not provide data transmission services to UEs in other cells, and a base station generally does not perform information exchange and data transmission operations with other base stations.
  • the user equipment (UE) at the cell edge in each cell tends to have poor performance. This is because, firstly, the cell-edge UE is far away from its serving base station, and the transmission performance of the cell is poor; secondly, the cell-edge UE is relatively close to the base station of the neighboring cell and suffers more severe interference from the neighboring cell.
  • a certain degree of cooperation can be carried out between base stations, especially between adjacent base stations, so as to improve the quality of transmission. That is to say, a base station can not only provide services for user equipment in this cell, but also provide services for UEs in neighboring cells. Or, to create better communication conditions (for example, reduce interference) for the service of user equipment in neighboring cells.
  • base station A can be instructed to send a signal with power C on resource B, so other base stations know the interference of base station A to themselves, and can perform operations such as scheduling UE and selecting MCS to optimize system performance .
  • the important scenario here is Downlink (DL) Semi-Persistent Scheduling (SPS) or Uplink (UL) Configured Grant. At this time, the resource occupation is unchanged for a long time. In this scenario, Interference coordination information needs to be exchanged between base stations.
  • SPS Semi-Persistent Scheduling
  • UL Uplink
  • the base stations can communicate directly, the few surviving base stations can still maintain partial coverage of the network, realize emergency communication, and reduce the loss caused by the disaster.
  • Communication through the X2/Xn interface does not require air interface resources, but there are still many shortcomings.
  • interactive information capacity First, only simple information can be exchanged.
  • the interaction speed is slow, often as high as about 20ms, which cannot meet the delay requirements of the business.
  • the coordination information on the X2 interface it may take 20ms for the interference coordination information to reach the target base station. Wait for the coordination information on the X2 interface to be transmitted. At this time, the wireless channel conditions often change significantly, and the service data may have timed out. Therefore, the coordination performance between base stations is poor.
  • OTA interface Air interface
  • This index can be the sensitivity of the received signal.
  • the specific value of this sensitivity is related to many factors, such as the modulation used by the signal.
  • MCS Modulation and Coding Scheme
  • Communication between base stations through the air interface can be separated by frequency, and out-of-band communication is used, that is, different frequencies are used between base stations and base station terminals; however, communication methods in the same frequency band can also be used, depending on the frequency resources obtained by the operator.
  • self-interference interference from spontaneous transmission and self-reception
  • the transmission and reception of gNB must be synchronized with the transmission and reception of gNB-UE, that is, gNB cannot transmit and receive at the same time. No additional RF considerations are required.
  • the embodiment of the present application proposes a communication scheme between base stations, which can realize information exchange and data transmission between base stations through air interface communication, which can not only reduce the occurrence of collisions, but also quickly discover after collisions. And solve it to ensure the delay and reliability of the communication system.
  • the interactive information includes the resource occupation indication signal, including the resource indication of the collision.
  • gNB A When gNB A detects that another gNB indicates that gNB A has collided, gNB A should withdraw from the occupation of the collision resource, and then re-select an idle resource according to its own ranking or randomness of resource priority.
  • the gNB can enter the communication interaction mode between gNBs, or exit the communication interaction mode, and give resources to other gNBs.
  • the gNB enters or exits the communication interaction mode can be notified to other gNBs through air interface signals.
  • Fig. 1 is a schematic diagram of the architecture of a communication system according to an embodiment of the present application.
  • the communication system of the present application may include, for example, a central unit (Centralized Unit, CU) or a core network, and a base station cluster (for example, including multiple base stations such as gNB0, gNB1, gNB2, gNB3, etc.).
  • a central unit Centralized Unit, CU
  • a core network for example, including multiple base stations such as gNB0, gNB1, gNB2, gNB3, etc.
  • Each base station of the base station cluster can join or exit the inter-base station (gNB) communication mode to realize its communication with the CU or the core network or other base stations.
  • gNB inter-base station
  • the designated resources for communication between base stations can be divided into N shares in a time division multiplexing (TDM) manner to obtain N time domain resources.
  • TDM time division multiplexing
  • the size of the N time domain resources may be the same or different, or It may not be exactly the same.
  • each time domain resource may have a guard interval GP to provide time synchronization difference and the time interval required for receiving and sending conversion.
  • Each base station can receive the key parameters of the air interface signal for communication between gNBs from the central unit CU or the core network, such as frequency domain resource location, time division multiplexing period P, resource division of TDM between gNBs, frequency synchronization reference gNB0, and each resource Basic configuration information such as the guard interval, and realize the time-frequency domain synchronization between base stations, determine N resource divisions, and so on.
  • the time synchronization of the gNB may adopt an absolute synchronization method, such as GPS synchronization; for example, the frequency synchronization may use the reference base station gNB0 to complete the air interface time-frequency synchronization between gNBs.
  • Each gNB can receive air interface signals for inter-gNB communication on N time domain resources, and determine the respective states of N time domain resources based on the received air interface signals, for example, which time domain resources among the N time domain resources are In an idle state, which time domain resources are in an occupied state, and which time domain resources have resource collisions, etc.
  • the gNB should at least receive the air interface signal sent by the reference base station gNB0, so as to realize the time-frequency domain synchronization between the base stations, and know N time-domain resource divisions, etc.
  • the gNB can select an idle resource from the time domain resources that are determined to be idle among the N time domain resources (for example, it may be selected in the order of priority or randomly, and this application does not limit this). For example, when an idle resource is selected
  • the domain resource R1 is used to transmit air interface signals.
  • the gNB can receive air interface signals on other N-1 time domain resources other than the time domain resources it occupies (that is, the time domain resource R1 selected for air interface signal transmission), so as to know N time domain resources Their respective status.
  • the air interface signal sent by the gNB may include the respective status of the N time domain resources detected by the gNB itself, such as idle, occupied, or resource collision; the above air interface signal may also carry interference coordination information, for example, gNB It is communicating with UE C (location information) on resource B, and the transmission power is D; the above-mentioned air interface signal may also include real service data.
  • the gNB does not need to send an air interface signal (for example, to exit the base station device communication mode), it can also be an exit indication signal sent by the gNB.
  • the gNB itself can detect the state of the N time-domain resources in the following way (for the convenience of description, the time-division multiplexing period of the designated resource is named the detection period): for each time-domain resource, if If an air interface signal is not received on the time domain resource in at least one detection period, the time domain resource is in an idle state; if an air interface signal sent by a second base station is detected on the time domain resource in a detection period, then the The time domain resource is in an occupied state; if at least two air interface signals sent by the second base station are detected on the time domain resource within a detection period, the time domain resource is in a resource collision state.
  • a resource collision occurs. If any other gNB detects that a resource collision has occurred on a certain time domain resource, it will indicate the occurrence of the collision in a predetermined manner. For example, when multiple gNBs collide, other gNBs that have not collided can send an air interface signal on the time domain resource occupied by themselves, and the air interface signal carries an indicator signal to indicate that a resource collision occurs on a certain time domain resource. When the gNB that receives the indication signal determines that the time domain resource occupied by itself collides, it exits the time domain resource and searches for free resources again.
  • the base stations gNB1, gNB2, and gNB3 have all entered the inter-gNB communication mode, the base stations gNB2 and gNB3 use the time domain resource R2 for air interface signal transmission, and gNB1 simultaneously receives the base stations gNB2 and gNB3 on the time domain resource R2. With an air interface signal, gNB1 determines that base stations gNB2 and gNB3 have a resource collision on the time domain resource R2.
  • gNB1 instructs base stations gNB2 and gNB3 to have a resource collision, so that after receiving the air interface signal, the base stations gNB2 and gNB3 can know that a resource collision has occurred, that is, withdraw from the time domain resource. And continue to look for other idle resources to send air interface signals.
  • the gNB may also send an exit indication signal so that other base stations can know the respective states of the N time domain resources in time.
  • the communication scheme between base stations of the present application has been described in detail with reference to the communication system of FIG. 1.
  • the resources for communication between base stations are divided into N shares by TDM.
  • the gNB can select an idle resource to send air interface signals to other gNBs, and receive air interface signals sent by other gNBs on other N-1 time domain resources.
  • the air interface signal used for interaction may include the respective states of the N time domain resources detected by the gNB, for example, including occupied, idle, collision, etc., to achieve information exchange and data transmission between base stations, thus, through
  • the air interface signals exchange the status of N time-domain resources to minimize the occurrence of resource collisions, or they can be quickly discovered and resolved after resource collisions, so as to ensure the delay and reliability of the communication system.
  • Fig. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method can be applied to the base station gNB as described above.
  • the base stations are divided into the first base station, the second base station, and the reference base station. It should be understood that, in the embodiments of the present application, the first base station, the second base station, or The reference base stations can all be base stations with the same configuration or function.
  • step S200 the respective states of the N time domain resources of the designated resource are exchanged with the second base station using the designated resource through an air interface signal.
  • the aforementioned designated resource may be a resource used for communication between base stations, such as a frequency domain resource.
  • the specified resource may be divided into N parts in a time division multiplexing (TDM) manner to obtain N time domain resources, where N ⁇ 1, and N is a positive integer.
  • TDM time division multiplexing
  • the status of each time domain resource can be one of occupied, idle, and resource collision.
  • interacting with the second base station using the designated resource through the air interface signal the respective status of the N time domain resources of the designated resource may include: An air interface signal is received on a time domain resource occupied by a base station, where the air interface signal is sent by at least one of the second base stations and is used to indicate the status of the N time domain resources detected by the second base station; The received air interface signal determines the respective states of the N time domain resources.
  • interacting with the second base station using the designated resource through the air interface signal the respective status of the N time domain resources of the designated resource may also include: according to the respective time domains carried in the received air interface signal Resource status, select an idle resource from the N time domain resources; use the selected idle resource to send an air interface signal, and the sent air interface signal is used to indicate the N time domains detected by the first base station The status of the resource.
  • the first base station may detect the status of the N time domain resources in the following manner: For each time domain resource, if an air interface signal is not received on the time domain resource in at least one detection period, Then the time domain resource is in an idle state; if an air interface signal sent by a second base station is detected on the time domain resource in a detection period, the time domain resource is in an occupied state; if the time domain resource is in an occupied state in a detection period If air interface signals sent by at least two second base stations are detected on the domain resource, the time domain resource is in a resource collision state.
  • the detection period is a time division multiplexing period of the designated resource.
  • the method further includes: if the received air interface signal indicates that the time domain resource used by the first base station has a resource collision , The idle resource is reselected from the N time domain resources, so as to use the reselected idle resource to send an air interface signal.
  • the air interface signal may also include target data.
  • the target data may be interference coordination information or service data, for example, to realize information exchange and data transmission between base stations.
  • Fig. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the first base station is taken as the description object to describe the communication method implemented by the base station in this application.
  • the first/second base station or the following reference base stations can be used as signal transmitters to send air interface signals outward, and can also be used as target receivers to receive air interface signals sent by other base stations, covering M base stations In the entire range of, one base station sends an air interface signal, and the other M-1 base stations can be the target receivers of the air interface signal.
  • the order of whether the first/second base station first receives the air interface signal or transmits the air interface signal first is not fixed.
  • the first base station may receive key parameters of the air interface signal for inter-gNB communication from the CU or the core network, such as frequency domain resource location, time division multiplexing period P, inter-gNB TDM resources Basic configuration information such as division, frequency synchronization reference gNB0, and guard interval on each resource.
  • step S302 time-frequency domain synchronization between base stations is realized, N time-domain resource divisions are determined, and so on.
  • the time synchronization of the gNB 1 can adopt an absolute synchronization method, such as GPS synchronization; the frequency synchronization can use the reference base station gNB0 to complete the air interface time-frequency synchronization between gNBs.
  • the first base station may receive the air interface signals of the inter-gNB communication on the N time domain resources, and determine the respective states of the N time domain resources. That is, the first base station can detect the status of the N time domain resources in the following manner: for each time domain resource, if an air interface signal is not received on the time domain resource in at least one detection period, the time domain The resource is in an idle state; if an air interface signal sent by a second base station is detected on the time domain resource in a detection period, the time domain resource is in an occupied state; if the time domain resource is detected in a detection period To the air interface signals sent by at least two second base stations, the time domain resource is in a resource collision state.
  • the detection period is a time division multiplexing period of the designated resource.
  • the first base station (gNB1) may receive the air interface signal of the inter-gNB communication on the N time domain resources, and demodulate the respective states of the N time domain resources. That is, the first base station can obtain the respective states of the N time-domain resources provided by each second base station by demodulating the air interface signals for inter-gNB communication sent by each second base station, and obtain the respective state of the N time-domain resources provided by each second base station through a certain algorithm, such as minority obeying majority The respective states of the final N time domain resources.
  • the first base station (gNB1) can select a time domain resource (in priority order or randomly) among the idle time domain resources, for example, the time domain resource R1, and send an air interface signal.
  • the transmitted air interface signal may include the respective states of the N time domain resources detected by the gNB1 in S303, and may also include other information for interaction, such as interference coordination information or service data.
  • the first base station may perform air interface signal demodulation on other N-1 time domain resources.
  • the air interface signal received by gNB1 indicates that the time domain resource occupied by gNB1 has a resource collision, then the idle resource is reselected from the N time domain resources to use the reselected idle resource to send the air interface signal.
  • the air interface signal sent by the first base station (gNB1) may include an indication signal sent by gNB1 to withdraw from communication between base stations. After receiving the exit indication signal, other base stations can know that gNB1 has exited the communication between the base stations.
  • the first base station can join or exit the communication between the base stations, and when communicating, realize the mutual notification of the respective states of the N time domain resources of the same communication resource by different base stations through the air interface signal. , So as to avoid resource collision as much as possible.
  • resource collisions when resource collisions occur, they can be quickly discovered and resolved quickly, thereby ensuring the delay and reliability of the entire communication system.
  • an embodiment of the present application also provides a base station, which can implement the communication method described above in the present application.
  • the base station may be either the first base station or the second base station or a reference base station described above.
  • the first base station is used as a description object for description.
  • Fig. 4 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the first base station of the present application may include a processor 401, a memory 402, a transceiver 403, and a bus interface 404.
  • the processor 401 is responsible for managing the bus architecture and general processing, and the memory 402 can store data used by the processor 401 when performing operations.
  • the transceiver 403 is used to receive and send data under the control of the processor 401.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 401 and various circuits of the memory represented by the memory 402 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 401 is responsible for managing the bus architecture and general processing, and the memory 402 can store data used by the processor 401 when performing operations.
  • the process disclosed in the embodiment of the present invention may be applied to the processor 401 or implemented by the processor 401.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 401 or instructions in the form of software.
  • the processor 401 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present invention The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 402, and the processor 401 reads the information in the memory 402, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 401 is configured to read computer instructions in the memory 402 and execute the following process:
  • the designated resource Through an air interface signal, interact with the second base station using the designated resource with the respective states of the N time domain resources of the designated resource, where N ⁇ 1, the designated resource is a resource used for communication between base stations, and
  • the N time domain resources are divided based on time division multiplexing (TDM).
  • the status of each time domain resource is one of occupied, idle, and resource collision.
  • the transceiver 403 may be configured to: receive air interface signals on time domain resources in the designated resources that are not occupied by the first base station, where the air interface signals are at least one of the second base stations Sent and used to indicate the status of the N time domain resources detected by the second base station; the processor 401 may be configured to: determine the N time domain resources based on the received air interface signal Their respective status.
  • the processor 401 is further configured to: select an idle resource from the N time domain resources according to the status of each time domain resource carried in the received air interface signal; the transceiver is configured to: The selected idle resource is used to send an air interface signal, and the sent air interface signal is used to indicate the state of the N time domain resources detected by the first base station.
  • the processor 401 is configured to detect the status of the N time domain resources in the following manner: for each time domain resource, if an air interface signal is not received on the time domain resource in at least one detection period , The time domain resource is in an idle state; the detection period is the time division multiplexing period of the designated resource; if an air interface signal sent by the second base station is detected on the time domain resource within a detection period, then the time The domain resource is in an occupied state; if the air interface signals sent by at least two second base stations are detected on the time domain resource within a detection period, the time domain resource is in a resource collision state.
  • the processor 401 is further configured to: if the received air interface signal indicates that the time domain resource used by the first base station has a resource collision, Then, from the N time domain resources, the idle resource is reselected to use the reselected idle resource to send the air interface signal.
  • the sizes of the N time domain resources are the same or not completely the same.
  • the base station may be the base station in the method in the embodiment of the present application, and the principle of the base station to solve the problem is the same as the method, the implementation of the base station can refer to the implementation of the method, and the repetition will not be repeated.
  • an embodiment of the present application also provides a communication device between base stations, which can implement the communication method described above in the present application.
  • the communication device may be either the first base station or the second base station described above. For illustration in the following embodiments, it is applied to the first base station for description.
  • Fig. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 500 of the present application may include, for example, a communication module 510: the communication module may be used to interact with a second base station that uses a designated resource through an air interface signal with each of the N time domain resources of the designated resource.
  • the designated resource is a resource used for communication between base stations, and the N time domain resources are obtained by dividing based on a time division multiplexing (TDM) method.
  • TDM time division multiplexing
  • the status of each time domain resource is one of occupied, idle, and resource collision.
  • the communication module may include 510:
  • the signal receiving module 511 is configured to receive an air interface signal on a time domain resource that is not occupied by the first base station among the designated resources, where the air interface signal is sent by at least one of the second base stations and is used for Indicating the status of the N time domain resources detected by the second base station;
  • the status determining module 512 is configured to determine the respective status of the N time domain resources based on the received air interface signal.
  • the communication module 510 may further include:
  • the resource selection module 513 is configured to select an idle resource from the N time domain resources according to the status of each time domain resource carried in the received air interface signal;
  • the signal sending module 514 is configured to use the selected idle resource to send an air interface signal, and the sent air interface signal is used to indicate the state of the N time domain resources detected by the first base station.
  • the status determining module 512 may detect the status of the N time-domain resources in the following manner: for each time-domain resource, if an air interface signal is not received on the time-domain resource in at least one detection period, then The time domain resource is in an idle state; if an air interface signal sent by a second base station is detected on the time domain resource in a detection period, the time domain resource is in an occupied state; if the time domain resource is in a detection period in the time domain If air interface signals sent by at least two second base stations are detected on the resource, the time domain resource is in a resource collision state.
  • the detection period is a time division multiplexing period of the designated resource.
  • the resource selection module 513 may be further configured to:
  • the air interface signal received by the signal receiving module indicates that the time domain resource used by the first base station has a resource collision, reselect idle resources from the N time domain resources to use the reselected Idle resources send air interface signals.
  • the sizes of the N time domain resources are the same or not completely the same.
  • An embodiment of the present application also provides a computer-readable non-volatile storage medium, including a computer program.
  • the computer program runs on a computer, the computer program is used to cause the computer to execute the determination in the foregoing embodiment of the present application. Steps for the target to access the cell.
  • this application can also be implemented by hardware and/or software (including firmware, resident software, microcode, etc.).
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used or used by the instruction execution system. Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, apparatus, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种基站、基站之间的通信方法、装置及存储介质。该方法包括:通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。由此,通过空口通信实现基站之间的信息交互和数据传输,并保证时延和可靠性。

Description

基站、基站之间的通信方法、装置及存储介质
相关申请的交叉引用
本申请要求在2019年09月29日提交中国专利局、申请号为201910936226.5、申请名称为“基站、基站之间的通信方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种基站、基站之间的通信方法、装置及存储介质。
背景技术
在一般的NR通信系统中,网络覆盖的范围被分割成一个个的小区(Cell),每个小区通常由一个BS(Base Station,基站)来提供服务。这个基站称为该小区的服务基站。每个BS会为其小区内的UE(User Equipment,用户设备)提供数据传输服务。
在传统的无线通信网络中,各个基站之间保持着较为独立的工作方式,也就是说,每个基站仅负责对于本小区内的UE进行上下行调度,提供上下行的数据传输服务。一个基站一般不会对其它小区的UE提供数据传输服务,一个基站一般也不会与其它基站进行信息交互和数据传输操作。
然而,随着通信业务越来越复杂,出现需要基站之间进行通信以实现信息交互和数据传输的场景。例如,小区之间的干扰协调信息的交互场景、灾难发生时使网络仍然可用的场景等。
因此,如何实现基站之间的良好通信,以向用户设备提供更好的服务,成为亟需解决的问题。
发明内容
本申请的目的是提供一种基站、基站之间的通信方法、装置及存储介质,以实现基站之间的良好通信,为向用户提供更好的服务提供支持。
第一方面,本申请一个实施例提供了一种基站之间的通信方法,应用于第一基站,所述方法包括:
通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。可选的,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
由此,通过空口信号交互N个时域资源的状态,使得能够尽可能地减少资源碰撞的发生,或者在发生资源碰撞后能够快速发现并解决,以保证通信系统的时延和可靠性。
可选的,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,包括:
在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
由此,第一基站能够通过空口信号与其它基站进行信息交互和数据传输,并能够监听其它基站对使用同一通信资源的N个时域资源的占用情况,从而尽可能地减少资源碰撞的发生,或者在发生资源碰撞后能够快速发现并解决,以保证通信系统的时延和可靠性。
可选的,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,还包括:
根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
由此,第一基站能够通过空口信号与其它基站进行信息交互和数据传输,并能够将其检测到的N个时域资源的各自的状态告知其它基站,使得其它基站能够知悉N个时域资源的占用情况,从而尽可能地减少资源碰撞的发生,或者在发生资源碰撞后能够快速发现并解决,以保证通信系统的时延和可靠性。
可选的,通过以下方式检测所述N个时域资源的状态:
针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态,其中,所述检测周期为所述指定资源的时分复用周期。
由此,第一基站能够通过一个检测周期内所检测到的空口信号,来判断其它基站对N个时域资源的占用情况,从而为基站间通信以告知N个时域资源的各自的状态提供支持,从而尽可能地减少资源碰撞的发生,或者在发生资源碰撞后能够快速发现并解决,以保证通信系统的时延和可靠性。
可选的,在使用所选择的空闲资源发送空口信号之后,所述方法还包括:
若接收到的空口信号中指示所述第一基站所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
由此,通过基站间通信以及相互告知N个时域资源的各自的状态,使得能够快速发现资源碰撞并快速解决,以保证通信系统的时延和可靠性。
可选的,所述N个时域资源的大小相同或不完全相同。由此,可以根据业务需求划分基站间通信资源的各个时域资源,以保证通信系统的时延和可靠性。
第二方面,本申请实施例提供了一种第一基站,包括处理器、存储器和收发机,
其中,所述处理器,用于读取存储器中的程序并执行:
通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,
其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
可选的,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
可选的,所述收发机用于:
在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;
所述处理器用于:
基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
可选的,所述处理器还用于:
根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;
所述收发机用于:
使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
可选的,所述处理器用于通过以下方式检测所述N个时域资源的状态:
针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;所述检测周期为所述指定资源的时分复用周期;
若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;
若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。
可选的,在使用所选择的空闲资源发送空口信号之后,所述处理器还用 于:
若所接收到的空口信号中指示所述第一基站所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
可选的,所述N个时域资源的大小相同或不完全相同。
第三方面,本申请实施例提供了一种第一基站,包括:
通信模块,用于通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
可选的,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
可选的,所述通信模块包括:
信号接收模块,用于在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;
状态确定模块,用于基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
可选的,所述通信模块还包括:
资源选择模块,用于根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;
信号发送模块,用于使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
可选的,在使用所选择的空闲资源发送空口信号之后,所述资源选择模块还用于:
若所述信号接收模块接收到的空口信号中指示所述第一基站所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
第四方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行根据第一方面所述的方法。
本申请实施例提供的基站、基站之间的通信方法、装置和存储介质,能够通过空口通信实现基站之间的信息交互和数据传输,并可以保证时延和可靠性。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其它优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据本申请一个实施例的通信方法的流程示意图;
图2为根据本申请一个实施例的通信方法的流程示意图;
图3为根据本申请一个实施例的基站的结构示意图;
图4为根据本申请一个实施例的通信装置的结构示意图;
图5为根据本申请一个实施例的计算装置的示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
(4)本申请实施例中,“第一”、“第二”仅是为了对描述对象加以区分,而非对其功能的任何限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在一般的NR通信系统中,网络覆盖的范围被分割成一个个的小区(Cell),每个小区通常由一个BS(Base Station,基站)来提供服务。这个基站称为该小区的服务基站。每个BS会为其小区内的UE(User Equipment,用户设备)提供数据传输服务。
在传统的无线通信网络中,各个基站之间保持着较为独立的工作方式,也就是说,每个基站仅负责对于本小区内的UE进行上下行调度,提供上下行的数据传输服务。一个基站一般不会对其它小区的UE提供数据传输服务,一个基站一般也不会与其它基站进行信息交互和数据传输操作。
然而,随着通信业务越来越复杂,出现需要基站之间进行通信以实现信息交互和数据传输的场景。例如,小区之间的干扰协调信息的交互场景、灾难发生时使网络仍然可用的场景等。
作为示例,具体来说,可通过以下两种场景进行说明:
场景1、小区之间的干扰协调信息的交互场景:
在独立传输的网络中,每个小区中处于小区边缘的用户设备(UE)往往性能较差。这是由于,首先,小区边缘UE距离其服务基站的距离较远,本小区的传输性能较差;其次,小区边缘UE由于距离邻居小区的基站较近,受到 相邻小区的干扰较为严重。为了提高无线网络的性能,尤其是提升小区边缘的用户设备的传输质量,以提高体验,基站之间,尤其是相邻的基站之间,可以进行一定程度的协作,从而提高传输的质量。也就是说一个基站不仅仅可以为本小区的用户设备提供服务,同时也为相邻小区的UE提供服务。或者,为了邻居小区用户设备的服务创造更好的通信条件(例如:降低干扰)。
干扰协调信息中,例如可以指示基站A在资源B上发送了功率是C的信号,那么其它基站就知晓基站A对自己的干扰情况,就可以执行调度UE、选择MCS等操作,以优化系统性能。这里的重要场景是下行(DL)半永久性调度(Semi-Persistent Scheduling,简称SPS)或上行(UL)配置许可(configured grant),这时资源占用是较长时间不变的,在此场景下,基站之间是需要交互干扰协调信息的。
场景2、对于灾难发生时使网络仍然可用的场景:
灾难发生时,如果基站之间可以直接通信,那么通过幸存的少数几个基站,仍然可以维持部分范围内的网络覆盖,实现紧急通信,减少灾难造成的损失。
因此,至少在上述两种场景中,是需要基站之间进行通信的。
现在基站之间的通信,存在以下(a)和(b)两种方案:
(a)基于基站之间的X2/Xn接口进行:
通过X2/Xn接口进行通信无需占用空口资源,但仍存在诸多不足。例如,交互的信息容量首先,只能交互简单的信息。又例如,交互速度慢,往往高达20ms左右,不能满足业务的时延要求。当两个基站进行干扰协调时,由于干扰协调信息可能要经过20ms才能达到目标基站,等X2接口上的协调信息传输完,而这时无线信道条件往往发生了明显的变化,可能业务数据已经超时了,因此基站间的协调性能较差。
(b)通过空口(OTA接口)进行:
通过空口(OTA接口)进行通信需要占用空口资源,通常需要采用类似于WiFi的竞争接入机制,这会存在碰撞问题,其采用碰撞发生后重试的方式, 会带来严重的时延问题。
并且,基站之间通过空口通信存在射频问题,即:信号到达目标基站需要满足一定的性能要求,这个指标可以是接收信号的灵敏度,这个灵敏度的具体值和多种因素有关,比如信号采用的调制与编码策略(Modulation and Coding Scheme,MCS)。假设基站之间、基站终端之间的灵敏度相同,基站之间的传输由于是LOS传输,没有阴影等衰落,同样距离条件下,前者的接收信号功率要比后者大30dB左右。基站之间通过空口通信可以频率分开,采用带外通信方式,即基站之间、基站终端之间采用不同的频率;但也可以采用同一频带内通信方式,取决于运营商拿到的频率资源。当同一频带内通信时,因为不允许有自干扰(自发自收的干扰)发生,所以进行gNB之间通信时,gNB的收发一定和gNB-UE的收发同步,即gNB不能同时收发,这时不需要额外的射频考虑。
有鉴于此,本申请实施例提出了一种基站之间进行的通信方案,能够通过空口通信实现基站之间的信息交互和数据传输,不仅能够减少碰撞的发生,还能够在发生碰撞后快速发现并解决,保证通信系统的时延和可靠性。
为了能够清楚地理解本申请实施例提供的技术方案,下面对本申请实施例出现的名词做解释,需要说明的是本申请实施例中的名词解释仅是为了便于理解本方案,并不用于限定本方案,涉及的名词包括:
碰撞:当两个或多个gNB判断某一个资源为空闲并且在该资源上同时发送空口信号,即发生了碰撞;其它任何gNB如果检测到某个资源上发生了碰撞,即按照预定的方式指示碰撞的发生。
当多个gNB发生碰撞,其它没有发生碰撞的gNB就可以在自己占用的资源上发送交互信息,交互信息包括了资源占用指示信号,包括了发生碰撞的资源指示。
当gNB A检测到其他gNB指示gNB A发生了碰撞,gNB A应退出该碰撞资源的占用,然后会根据自己对资源优先级的排序或随机,重新选择一个空闲资源。
gNB可以进入gNB之间的通信交互模式,也可以退出通信交互模式,把资源让给其它gNB使用,gNB进入还是退出通信交互模式均可以通过空口信号告知其它gNB。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1为根据本申请一个实施例的通信系统的架构示意图。
如图1所示,本申请的通信系统例如可以包括中心单元(Centralized Unit,CU)或核心网、以及基站集群(例如包括gNB0、gNB1、gNB2、gNB3等多个基站)。
基站集群的各个基站可以加入或退出基站(gNB)间通信模式,以实现其与CU或核心网或其它基站的通信。中心单元(Centralized Unit,CU)或核心网与基站集群之间、基站集群的各个基站之间,均可以通过空口信号实现其相互之间的信息交互和数据传输。
本申请实施例中,可以以时分复用(TDM)的方式将基站间通信的指定资源划分为N份得到N个时域资源,该N个时域资源的大小可以相同,也可以不同,也可以不完全相同。其中,每个时域资源都可以具有一个保护间隔GP,以提供时间同步差异和收发转换所需的时间间隔。
每个基站可以从中心单元CU或核心网接收gNB间通信的空口信号的关键参数,例如频域资源位置、时分复用周期P、gNB间TDM的资源划分、频率同步参考gNB0、每个资源上的保护间隔等基本配置信息,并实现基站间的时频域同步、确定N个资源划分等。其中,gNB的时间同步例如可以采用绝对同步方式,例如GPS同步;频率同步例如可以使用参考基站gNB0,完成gNB之间的空口时频同步。
每个gNB可以在N个时域资源上接收gNB间通信的空口信号,并基于所接收到的空口信号判断N个时域资源的各自的状态,例如N个时域资源中哪些时域资源是处于空闲状态,哪些时域资源是处于被占用状态,哪些时域资源上发生了资源碰撞等。其中,gNB至少应接收到参考基站gNB0发送的 空口信号,以实现基站间的时频域同步,并知悉N个时域资源划分等。
gNB可以从N个时域资源中被确定为空闲的时域资源中,选择一个空闲资源(例如可以按照优先级顺序选择或随机选择,本申请对此不做限制),例如选择了空闲的时域资源R1,以进行空口信号的发送。gNB可以在其自身占用的时域资源(即所选择并进行空口信号发送的时域资源R1)之外的其它N-1个时域资源上进行空口信号的接收,以知晓N个时域资源的各自的状态。
gNB所发送的空口信号中,可以包括gNB自身检测到的N个时域资源的各自的状态,例如空闲、被占用或资源碰撞等;上述空口信号中,还可以携带干扰协调信息,例如,gNB在资源B上正在与UE C(位置信息)进行通信,发送功率是D;上述空口信号中,还可以包括真实的业务数据。当gNB不需要发送空口信号(例如退出基站件通信模式)时,也可以是gNB发送的退出指示信号。
在实施时,gNB自身例如可以通过以下方式检测所述N个时域资源的状态(为描述的便利,将指定资源的时分复用周期命名为检测周期):针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。
当两个或多个gNB判断某一个时域资源为空闲并且在该时域资源上同时发送空口信号,即发生了资源碰撞。其它任何gNB,若检测到某个时域资源上发生了资源碰撞,就按照预定的方式指示碰撞的发生。例如,当多个gNB发生碰撞,其它没有发生碰撞的gNB就可以在其自身占用的时域资源上发送空口信号,该空口信号中携带一个指示信号,指示某个时域资源上发生资源碰撞。接收到该指示信号的gNB在确定是自身占用的时域资源发生碰撞时,即退出该时域资源并重新寻找空闲资源。
举例来说,若基站gNB1、gNB2、gNB3均已进入gNB间通信模式,基 站gNB2、gNB3均使用时域资源R2进行空口信号的发送,gNB1在时域资源R2上同时接收到基站gNB2、gNB3的空口信号,则gNB1判定基站gNB2、gNB3在时域资源R2上发生了资源碰撞。gNB1在基于时域资源R1发送的空口信号中,指示基站gNB2、gNB3发生了资源碰撞,使得基站gNB2、gNB3在接收到该空口信号后,可以知悉发生了资源碰撞,即退出该时域资源,并继续寻找其它空闲资源,以进行空口信号的发送。
若gNB要退出其所占用的某个时域资源或者退出gNB间通信模式,gNB也可以发送退出指示信号,以使得其它基站能够及时知悉N个时域资源的各自的状态。
至此,已经结合附图1的通信系统详细说明了本申请的基站之间的通信方案。上述技术方案,以TDM方式将基站间通信的资源划分为N份,gNB可以选择一个空闲资源向其它gNB发送空口信号,并在其它N-1个时域资源上接收其它gNB发送的空口信号,用于交互的空口信号中可以包括gNB检测到的N个时域资源的各自的状态,例如,包括被占用、空闲、发生碰撞等,实现基站之间的信息交互和数据传输,由此,通过空口信号交互N个时域资源的状态,尽可能地减少资源碰撞的发生,或者发生资源碰撞后能够快速发现并解决,以保证通信系统的时延和可靠性。
图2为根据本申请一个实施例的通信方法的流程示意图。其中,该通信方法可以应用于如前所述的基站gNB。并且,在下述实施例中,为了便于对描述对象加以区分,将基站分为第一基站、第二基站以及参考基站,应当理解的是,本申请实施例中,第一基站、第二基站或参考基站均可以是具有相同配置或功能的基站。
如图2所示,在步骤S200,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态。
其中,上述指定资源可以是用于基站之间通信的资源,例如频域资源。在一个实施例中,可以以时分复用(TDM)方式将上述指定资源划分为N份,以得到N个时域资源,其中,N≥1,且N为正整数。各时域资源的状态可以 为被占用、空闲、资源碰撞中的一种。
由此,通过划分的时域资源以及空口信号,实现基站之间的信息交互和数据传输,使得不同基站能够知悉其它基站对同一指定资源的占用情况,从而尽可能地避免碰撞的发生,保证通信系统的时延和可靠性。
在一个实施例中,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,可以包括:在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
在一个实施例中,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,还可以包括:根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
在一个实施例中,第一基站可以通过以下方式检测所述N个时域资源的状态:针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。其中,所述检测周期为所述指定资源的时分复用周期。
在一个实施例中,第一基站在使用所选择的空闲资源发送空口信号之后,所述方法还包括:若接收到的空口信号中指示所述第一基站所使用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
在其它实施例中,空口信号中还可以包括目标数据,该目标数据例如可以为干扰协调信息,也可以为业务数据,以实现基站之间的信息交互和数据 传输。
图3为根据本申请一个实施例的通信方法的流程示意图。其中,以第一基站作为描述对象,来对本申请的由基站实现的通信方法展开描述。在其中,第一/第二基站或是下述的参考基站均既可以作为信号发送机以向外发送空口信号,又可以作为目标接收机以接收其它基站发送的空口信号,在M个基站覆盖的全部范围内,1个基站发送空口信号,其他M-1个基站都可以是该空口信号的目标接收机。并且,第一/第二基站先接收空口信号还是先发送空口信号的顺序并非固定。
如图3所示,在步骤S301,第一基站(gNB1)可以从CU或核心网接收gNB间通信的空口信号的关键参数,例如频域资源位置、时分复用周期P、gNB间TDM的资源划分、频率同步参考gNB0、每个资源上的保护间隔等基本配置信息。
在步骤S302,实现基站间的时频域同步,确定N个时域资源划分等。其中,gNB 1的时间同步可以采用绝对同步方式,例如GPS同步;频率同步可以使用参考基站gNB0,完成gNB之间的空口时频同步。
在步骤S303,第一基站(gNB1)可以在N个时域资源上接收gNB间通信的空口信号,并判断该N个时域资源的各自的状态。即:第一基站可以通过以下方式检测所述N个时域资源的状态:针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。其中,所述检测周期为所述指定资源的时分复用周期。
在步骤S304,第一基站(gNB1)可以在N个时域资源上接收gNB间通信的空口信号,并解调出该N个时域资源的各自的状态。即:第一基站可以通过解调各个第二基站发送的gNB间通信的空口信号,获得各个第二基站提供的N个时域资源的各自的状态,通过某种算法,比如少数服从多数,得到 最终的N个时域资源的各自的状态。在N个时域资源中,第一基站(gNB1)可以在为空闲的时域资源中(按优先级顺序或随机)选择一个时域资源,例如时域资源R1,进行空口信号的发送。其中,所发送的空口信号中可以包括S303所述gNB1检测到的N个时域资源的各自的状态,还可以包括进行交互的其它信息,例如干扰协调信息或业务数据等。
在步骤S305,第一基站(gNB1)可以在其它N-1个时域资源上进行空口信号的解调。其中,若gNB1接收到的空口信号中指示gNB1所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
另外,若第一基站(gNB1)不需要发送空口信号时,第一基站(gNB1)发送的空口信号中可以包括gNB1发送的退出基站之间的通信的指示信号。其它基站在接收到该退出指示信号后,即可知悉gNB1当前已退出基站之间的通信。
由此,通过上述方法步骤,第一基站即可加入或退出基站之间的通信,并进行通信时,通过空口信号实现不同基站对同一通信资源的N个时域资源的各自的状态的相互告知,从而尽可能地避免资源碰撞的发生。并且,通过上述通信,使得在发生资源碰撞时,能够快速发现并快速解决,从而保障整个通信系统的时延和可靠性。
应当理解的是,上述方法步骤仅是以第一基站作为描述对象来对本申请的基站之间的通信方法的示例性说明,其中各个步骤的执行顺序并非固定。并且,对于其它基站(例如第二基站gNB2、gNB3等)也可以通过上述方法步骤实现与其它基站的通信以及信息交互,在此不再赘述。
基于相同的发明构思,本申请实施例还提供了一种基站,该基站可以实现本申请如上所述的通信方法。其中,该基站既可以是上述是第一基站也可以是第二基站或参考基站,在下述实施例中为了说明,以第一基站作为描述对象来进行说明。
图4为根据本申请一个实施例的基站的结构示意图。
如图4所示,本申请的第一基站可以包括处理器401、存储器402、收发机403以及总线接口404。
处理器401负责管理总线架构和通常的处理,存储器402可以存储处理器401在执行操作时所使用的数据。收发机403用于在处理器401的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器401代表的一个或多个处理器和存储器402代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器401负责管理总线架构和通常的处理,存储器402可以存储处理器401在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器401中,或者由处理器401实现。在实现过程中,信号处理流程的各步骤可以通过处理器401中的硬件的集成逻辑电路或者软件形式的指令完成。处理器401可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器402,处理器401读取存储器402中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器401,用于读取存储器402中的计算机指令并执行下列过程:
通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,其中,N≥1,所述指定资源是用于基站之间通信的资 源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
可选的,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
可选的,所述收发机403可以用于:在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;所述处理器401可以用于:基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
可选的,所述处理器401还用于:根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;所述收发机用于:使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
可选的,所述处理器401用于通过以下方式检测所述N个时域资源的状态:针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;所述检测周期为所述指定资源的时分复用周期;若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。
可选的,在使用所选择的空闲资源发送空口信号之后,所述处理器401还用于:若所接收到的空口信号中指示所述第一基站所使用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
可选的,所述N个时域资源的大小相同或不完全相同。
由于该基站可以是本申请实施例中的方法中的基站,并且该基站解决问题的原理与该方法相同,因此该基站的实施可以参见方法的实施,重复之处不再赘。
基于相同的构思,本申请实施例还提供了一种基站之间的通信装置,该 通信装置可以实现本申请如上所述的通信方法。其中,该通信装置既可以是上述是第一基站也可以是第二基站,在下述实施例中为了说明,以应用于第一基站来进行说明。
图5为根据本申请一个实施例的通信装置的结构示意图。
如图5所示,本申请的通信装置500例如可以包括通信模块510:通信模块可以用于通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
可选的,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
可选的,所述通信模块可以包括510:
信号接收模块511,用于在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;
状态确定模块512,用于基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
可选的,所述通信模块510还可以包括:
资源选择模块513,用于根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;
信号发送模块514,用于使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
可选的,状态确定模块512可以通过以下方式检测所述N个时域资源的状态:针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。其中,所述检测周期为所述指定资源的时分复用周期。
可选的,在使用所选择的空闲资源发送空口信号之后,所述资源选择模块513还可以用于:
若所述信号接收模块接收到的空口信号中指示所述第一基站所使用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
可选的,所述N个时域资源的大小相同或不完全相同。
至此,已经结合附图4-5介绍了本申请的实现基站之间通信的基站或通信装置,其实现原理与上述的方法相同,具体实现可以参见上文结合附图1-3的相关描述,在此不再赘述。
本申请实施例还提供一种计算机可读非易失性存储介质,包括计算机程序,当所述计算机程序在计算机上运行时,所述计算机程序用于使所述计算机执行上述本申请实施例确定目标接入小区的步骤。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本 申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种基站之间的通信方法,其特征在于,应用于第一基站,所述方法包括:
    通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,
    其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
  2. 根据权利要求1所述的方法,其特征在于,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
  3. 根据权利要求1或2所述的方法,其特征在于,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,包括:
    在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;
    基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
  4. 根据权利要求3所述的方法,其特征在于,通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,还包括:
    根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;
    使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
  5. 根据权利要求3所述的方法,其特征在于,通过以下方式检测所述N个时域资源的状态:
    针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;所述检测周期为所述指定资源的时 分复用周期;
    若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;
    若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。
  6. 根据权利要求4所述的方法,其特征在于,在使用所选择的空闲资源发送空口信号之后,所述方法还包括:
    若接收到的空口信号中指示所述第一基站所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
  7. 根据权利要求4所述的方法,其特征在于,所述N个时域资源的大小相同或不完全相同。
  8. 一种第一基站,其特征在于,包括处理器、存储器和收发机,
    其中,所述处理器,用于读取存储器中的程序并执行:
    通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,
    其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
  9. 根据权利要求8所述的第一基站,其特征在于,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
  10. 根据权利要求8或9所述的第一基站,其特征在于,所述收发机用于:
    在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;
    所述处理器用于:
    基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
  11. 根据权利要求10所述的第一基站,其特征在于,所述处理器还用于:
    根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;
    所述收发机用于:
    使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
  12. 根据权利要求10所述的第一基站,其特征在于,所述处理器用于通过以下方式检测所述N个时域资源的状态:
    针对每个时域资源,若在至少一个检测周期内未在该时域资源上接收到空口信号,则该时域资源处于空闲状态;所述检测周期为所述指定资源的时分复用周期;
    若在一个检测周期内在该时域资源上检测到一个第二基站发送的空口信号,则该时域资源处于被占用的状态;
    若在一个检测周期内在该时域资源上检测到至少两个第二基站发送的空口信号,则该时域资源处于资源碰撞的状态。
  13. 根据权利要求10所述的第一基站,其特征在于,在使用所选择的空闲资源发送空口信号之后,所述处理器还用于:
    若所接收到的空口信号中指示所述第一基站所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
  14. 根据权利要求10所述的第一基站,其特征在于,所述N个时域资源的大小相同或不完全相同。
  15. 一种基站之间的通信装置,其特征在于,应用于第一基站,所述通信装置包括:
    通信模块,用于通过空口信号,与使用指定资源的第二基站交互所述指定资源的N个时域资源的各自的状态,其中,N≥1,所述指定资源是用于基站之间通信的资源,所述N个时域资源是基于时分复用(TDM)方式划分得到的。
  16. 根据权利要求15所述的装置,其特征在于,各时域资源的状态为被占用、空闲、资源碰撞中的一种。
  17. 根据权利要求15或16所述的装置,其特征在于,所述通信模块包括:
    信号接收模块,用于在所述指定资源中的且未被所述第一基站占用的时域资源上接收空口信号,所述空口信号为至少一个所述第二基站发出的,且用于指示所述第二基站检测到的所述N个时域资源的状态;
    状态确定模块,用于基于所接收到的空口信号,确定所述N个时域资源的各自的状态。
  18. 根据权利要求17所述的装置,其特征在于,所述通信模块还包括:
    资源选择模块,用于根据接收到的空口信号中携带的各个时域资源的状态,从所述N个时域资源中选择一个空闲资源;
    信号发送模块,用于使用所选择的空闲资源发送空口信号,所发送的空口信号用于指示所述第一基站检测到的所述N个时域资源的状态。
  19. 根据权利要求18所述的装置,其特征在于,在使用所选择的空闲资源发送空口信号之后,所述资源选择模块还用于:
    若所述信号接收模块接收到的空口信号中指示所述第一基站所占用的时域资源发生了资源碰撞,则从所述N个时域资源中,重新选择空闲资源,以使用重新选择的空闲资源发送空口信号。
  20. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行根据权利要求1-7中任何一项所述的方法。
PCT/CN2020/091121 2019-09-29 2020-05-19 基站、基站之间的通信方法、装置及存储介质 WO2021057048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20868601.4A EP4037372A4 (en) 2019-09-29 2020-05-19 BASE STATIONS, METHOD AND DEVICE FOR COMMUNICATION BETWEEN BASE STATIONS, AND RECORDING MEDIUM
US17/639,587 US20220303980A1 (en) 2019-09-29 2020-05-19 Base stations, method and device for communication between base stations, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936226.5A CN112584429B (zh) 2019-09-29 2019-09-29 基站、基站之间的通信方法、装置及存储介质
CN201910936226.5 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021057048A1 true WO2021057048A1 (zh) 2021-04-01

Family

ID=75111137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091121 WO2021057048A1 (zh) 2019-09-29 2020-05-19 基站、基站之间的通信方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20220303980A1 (zh)
EP (1) EP4037372A4 (zh)
CN (1) CN112584429B (zh)
WO (1) WO2021057048A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159865A1 (en) * 2015-03-31 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Accurate over the air synchronization
CN109219063A (zh) * 2017-06-29 2019-01-15 中国移动通信有限公司研究院 一种基站间的通信方法、装置及基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458258A (en) * 2008-02-04 2009-09-16 Nec Corp Method of controlling base station loading in a mobile communication system
CN103051412B (zh) * 2011-10-14 2016-03-09 华为技术有限公司 小区控制方法及系统
WO2013153128A2 (en) * 2012-04-12 2013-10-17 Telefonica, S.A. A method and a system for communication in lte networks
WO2013169198A1 (en) * 2012-05-09 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Radio base station
US9380466B2 (en) * 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US9854457B2 (en) * 2013-04-03 2017-12-26 Qualcomm Incorporated Management of communications with multiple access points based on inter-access point communications
US9402268B2 (en) * 2013-08-02 2016-07-26 Samsung Electronics Co., Ltd. Transmission and scheduling schemes for wireless fronthaul
WO2015098250A1 (ja) * 2013-12-26 2015-07-02 シャープ株式会社 端末装置、基地局装置および通信方法
CN104812050B (zh) * 2014-01-24 2019-11-15 中兴通讯股份有限公司 一种实现空口同步的方法、小区和系统
CN108737010B (zh) * 2017-04-19 2024-04-30 中兴通讯股份有限公司 一种信息交互的方法及装置
CN111586877A (zh) * 2018-02-13 2020-08-25 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159865A1 (en) * 2015-03-31 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Accurate over the air synchronization
CN109219063A (zh) * 2017-06-29 2019-01-15 中国移动通信有限公司研究院 一种基站间的通信方法、装置及基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Interference Management for Dynamic TDD and Flexible Duplex", 3GPP TSG RAN WG1 MEETING #88 R1-1702113, 7 February 2017 (2017-02-07), XP051221027 *
MEDIATEK INC: "Interference Management in NR", 3GPP DRAFT; R1-1702719 INTERFERENCE MANAGEMENT IN NR CLEAN FINAL, vol. RAN WG1, 7 February 2017 (2017-02-07), Athens, Greece, pages 1 - 22, XP051221559 *
See also references of EP4037372A4 *

Also Published As

Publication number Publication date
EP4037372A1 (en) 2022-08-03
EP4037372A4 (en) 2022-10-26
CN112584429B (zh) 2022-05-27
US20220303980A1 (en) 2022-09-22
CN112584429A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US10405250B2 (en) RRM measurement method, measurement system, terminal and base station
EP3413653B1 (en) Method and device for transmitting uplink control information
RU2503153C2 (ru) Устройство и способ предотвращения помех в смешанной среде, включающей устройства, работающие в режиме связи "устройство-устройство", и устройства сотовой связи
CN107026723B (zh) 一种传输上行控制信息的方法和设备
CN111817835B (zh) 一种波束切换指示方法、设备和系统
US20210068154A1 (en) Channel sensing method, related device, and system
CN107071842B (zh) 自动切换方法、系统、基站及用户设备
EP3099095B1 (en) Method and device for determining and acquiring radio resource
US11638226B2 (en) Method and device for processing synchronization signal block information and communication device
KR101862492B1 (ko) 정보 송신 방법, 기지국 및 사용자 장비
JP2015528665A (ja) デバイス間の通信を制御およびスケジューリングする方法および装置
EP3429287A1 (en) Method and device for transmitting uplink feedback information
KR101813822B1 (ko) D2d 발견 신호의 송신 방법과 송신 장치
CN104185296A (zh) 信道接入方法及接入点
JP6437094B2 (ja) 発見信号伝送方法、セル発見方法及び装置
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
KR20150024131A (ko) 무선 통신 시스템에서 매크로 셀과 스몰 셀 간 스위칭을 위한 자원 할당 장치 및 방법
CN115250513A (zh) 一种移动性管理方法及通信装置
WO2017005129A1 (zh) 一种无线网络中的接入方法及设备
CN104303554A (zh) 一种通讯方法、基站和用户设备
WO2021057048A1 (zh) 基站、基站之间的通信方法、装置及存储介质
WO2016192508A1 (zh) 一种信息交互方法及装置
EP4106445A1 (en) Method and device for transmitting control information
WO2016169400A1 (zh) 一种信道接入方法和装置
WO2018171568A1 (zh) 一种信息传输方法、处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020868601

Country of ref document: EP