WO2021056825A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021056825A1
WO2021056825A1 PCT/CN2019/123415 CN2019123415W WO2021056825A1 WO 2021056825 A1 WO2021056825 A1 WO 2021056825A1 CN 2019123415 W CN2019123415 W CN 2019123415W WO 2021056825 A1 WO2021056825 A1 WO 2021056825A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical circulator
port
circulator
receiving unit
Prior art date
Application number
PCT/CN2019/123415
Other languages
English (en)
French (fr)
Inventor
朱虎
孙莉萍
付永安
罗勇
胡强高
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US17/629,878 priority Critical patent/US11990939B2/en
Publication of WO2021056825A1 publication Critical patent/WO2021056825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • This application relates to optical communication technology, in particular to an optical module.
  • Existing data center optical modules generally adopt dual-fiber bidirectional packaging, that is, the transmitting end and the receiving end are independent on the optical path, and each requires an optical fiber to interconnect with the outside world.
  • An optical module requires two optical fibers to connect to the outside world, which is a great waste of optical fiber resources.
  • Data center optical modules generally have at least 4 transmissions and 4 receptions.
  • Some 400G optical modules, such as 2x200G Coarse Wavelength Division Multiplexing (CWDM) 4 optical modules even include 8 transmissions and 8 receptions. Transmitting and receiving work in the same waveband, and the optical module packaging density is very high, which brings great challenges to the single-fiber multi-directional design.
  • CWDM Wavelength Division Multiplexing
  • An embodiment of the application provides an optical module, the optical module includes: a housing, a main board, a first optical circulator, and a first optical fiber adapter; wherein,
  • the housing is surrounded by a receiving cavity, and the first end of the housing is provided with a first connecting cavity;
  • the first optical fiber adapter is arranged at the first connection cavity
  • the main board is provided with a first transmitting unit and a first receiving unit;
  • the output end of the first transmitting unit is connected to the first port of the first optical circulator, the input end of the first receiving unit is connected to the third port of the first optical circulator, and the first The second port of the optical circulator is connected to the first optical fiber adapter;
  • the optical signal output by the output terminal of the first transmitting unit is transmitted along the first port of the first optical circulator to the second port of the first optical circulator; the first optical fiber adapter receives the input from the outside The optical signal of is transmitted along the second port of the first optical circulator to the third port of the first optical circulator.
  • the first end of the housing is further provided with a second connection cavity.
  • the first port and the third port of the first optical circulator are located on the first side of the first optical circulator, and the second port of the first optical circulator is located on the first side. The second side of the light circulator.
  • the first optical circulator is disposed on the main board.
  • the optical module further includes: a second optical circulator and a second optical fiber adapter; wherein,
  • the second optical fiber adapter is arranged at the second connection cavity
  • the main board is also provided with a second transmitting unit and a second receiving unit;
  • the output end of the second transmitting unit is connected to the first port of the second optical circulator, the input end of the second receiving unit is connected to the third port of the second optical circulator, and the second The second port of the optical circulator is connected to the second optical fiber adapter;
  • the optical signal output by the output end of the second transmitting unit is transmitted along the first port of the second optical circulator to the second port of the second optical circulator; the second optical fiber adapter receives the external input The optical signal is transmitted along the second port of the second optical circulator to the third port of the second optical circulator.
  • the first port and the third port of the second optical circulator are located on the first side of the second optical circulator, and the second port of the second optical circulator is located on the second side of the second optical circulator.
  • the second side of the light circulator is located on the first side of the second optical circulator.
  • the second optical circulator is disposed on the main board.
  • the first optical circulator, the second optical circulator, the first emitting unit, and the second emitting unit are located on one side of the main board;
  • the first receiving unit and the second receiving unit are located on the other side of the main board;
  • the first emitting unit is located between the first optical circulator and the second optical circulator, and is close to the second optical circulator side;
  • the first receiving unit is located close to the second optical circulator side;
  • the second emitting unit is located between the first optical circulator and the second optical circulator, near the side of the first optical circulator;
  • the second receiving unit is located near the side of the first optical circulator.
  • An embodiment of the present application provides an optical communication device, and the optical communication device includes any optical module described above.
  • An embodiment of the present application provides an optical transmission system, and the optical transmission system includes the above-mentioned optical communication device.
  • the output end of the first transmitting unit on the main board is connected to the first port of the first optical circulator, and the input end of the first receiving unit on the main board is connected to the third port of the first optical circulator ,
  • the second port of the first optical circulator is connected to the first optical fiber adapter, and the optical signal output by the output end of the first transmitting unit is transmitted to the first optical circulator along the first port of the first optical circulator
  • the second port of the first optical circulator; the first optical fiber adapter receives the optical signal input from the outside and transmits it along the second port of the first optical circulator to the third port of the first optical circulator, realizing a single
  • the optical module for fiber bidirectional transmission realizes the optical transmission route of single-fiber bidirectional transmission and reception through the first optical circulator. The cost is low, the optical path structure is simple, and the equipment reliability is improved.
  • FIG. 1 is a schematic structural diagram of an optical module according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an optical module according to another embodiment of this application.
  • FIG. 3 is a schematic structural diagram of an optical module according to another embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a transmitting unit in some embodiments of the application.
  • Figure 5 is a schematic structural diagram of a receiving unit in some embodiments of the application.
  • first ⁇ second ⁇ third involved in the embodiments of the present application only distinguishes similar objects, and does not represent a specific order for the objects. Understandably, “first ⁇ second ⁇ “Third” can be interchanged in specific order or precedence when permitted. It should be understood that the objects distinguished by “first ⁇ second ⁇ third” can be interchanged under appropriate circumstances, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein.
  • connection should be understood in a broad sense.
  • it may be an electrical connection, or a connection between two components, or a direct connection.
  • optical module described in the embodiment of the present application will be described in detail below with reference to FIGS. 1 to 5.
  • Fig. 1 is a schematic structural diagram of an optical module according to an embodiment of the application. As shown in Fig. 1, an embodiment of the present application provides an optical module.
  • the optical module includes: a housing 101, a main board 102, and a first optical circulator 103 and the first fiber optic adapter 104; where,
  • the housing 101 is surrounded by a receiving cavity, and the first end of the housing 101 is provided with a first connecting cavity 1011;
  • the first fiber optic adapter 104 is disposed at the first connection cavity 1011;
  • the main board 102 is provided with a first transmitting unit 1021 and a first receiving unit 1022;
  • the output end of the first transmitting unit 1021 is connected to the first port of the first optical circulator 103, the input end of the first receiving unit 1022 is connected to the third port of the first optical circulator 103, and the first port of the first optical circulator 103 The two ports are connected with the first optical fiber adapter 104;
  • the optical signal output from the output end of the first transmitting unit 1021 is transmitted along the first port of the first optical circulator 103 to the second port of the first optical circulator 103; the first optical fiber adapter 104 receives the optical signal input from the outside along The second port of the first optical circulator 103 is transmitted to the third port of the first optical circulator 103.
  • the first end of the housing 101 is further provided with a second connection cavity 1012.
  • the first port, the second port, and the third port of the first optical circulator 103 are located on the first side of the first optical circulator 103.
  • the optical circulator adopts a reflective optical path structure inside, which can reduce the size of the optical circulator.
  • the three port fibers of the optical circulator are on the same side, and the coiling method of the fiber is also on the same side as the first port and the third port, and the second port is on the other side. This is an increase in the fiber layout of the optical module. Flexibility.
  • the first optical circulator 103 is disposed at the second connecting cavity 1012, and the second side of the first optical circulator 103 is at least partially located in the second connecting cavity 1012.
  • the first transmitting unit 1021 and the first receiving unit 1022 are located on the same side of the main board 102.
  • the three ports of the first optical circulator 103 are distributed on the same side. Since the optical module has two connection cavities, and the first optical fiber adapter 104 only occupies one optical port, the other space where the optical fiber adapter is originally placed in the conventional optical module can be used to place the main body of the first optical circulator 103.
  • the optical module layout shown in this embodiment can conveniently realize the single optical port input/output of the existing dual optical port 4x25G CWDM4 optical module and 4x100G FR4 optical module, which greatly saves the optical fiber resources of the data center.
  • the first port and the third port of the first optical circulator 103 are located on the first side of the first optical circulator 103, and the second port of the first optical circulator 103 is located on the first side of the first optical circulator 103.
  • the second side of the first optical circulator 103 is located on the first side of the first optical circulator 103.
  • the three ports of the optical circulator can be distributed on the same side or on different sides, and the selection can be made according to the layout of the module fiber.
  • the first optical circulator 103 is disposed on the main board 102.
  • FIG. 2 is a schematic structural diagram of an optical module according to another embodiment of the application
  • FIG. 3 is a schematic structural diagram of an optical module according to another embodiment of the application.
  • the optical module The module also includes: a second optical circulator 105 and a second optical fiber adapter 106;
  • the second fiber optic adapter 106 is disposed at the second connection cavity 1012;
  • the main board 102 is also provided with a second transmitting unit 1023 and a second receiving unit 1024;
  • the output end of the second transmitting unit 1023 is connected to the first port of the second optical circulator 105, the input end of the second receiving unit 1024 is connected to the third port of the second optical circulator 105, and the first port of the second optical circulator 105
  • the two ports are connected with the second optical fiber adapter 106;
  • the optical signal output from the output end of the second transmitting unit 1023 is transmitted along the first port of the second optical circulator 105 to the second port of the second optical circulator 105, and the second optical fiber adapter 106 receives the externally input optical signal along the first port.
  • the second port of the second optical circulator 105 is transmitted to the third port of the second optical circulator 105.
  • the first port and the third port of the second optical circulator 105 are located on the first side of the second optical circulator 105, and the second port of the second optical circulator 105 is located on the first side of the second optical circulator 105. The second side.
  • the second optical circulator 105 is disposed on the main board 102.
  • the first optical circulator 103, the second optical circulator 105, the first transmitting unit 1021, the first receiving unit 1022, the second transmitting unit 1023, and the second receiving unit 1024 are located at One side of the main board 102;
  • the first side of the first optical circulator 103 is close to the second optical fiber adapter 106;
  • the first side of the second optical circulator 105 is close to the first optical fiber adapter 104;
  • the first transmitting unit 1021 and the first receiving unit 1022 are located between the first optical circulator 103 and the second optical circulator 105, near the second optical circulator 105 side;
  • the second transmitting unit 1023 and the second receiving unit 1024 are located between the first optical circulator 103 and the second optical circulator 105, near the first optical circulator 103 side.
  • the first optical circulator 103, the second optical circulator 105, the first emission unit 1021, and the second emission unit 1023 are located on one side of the main board 102;
  • the first receiving unit 1022 and the second receiving unit 1024 are located on the other side of the main board 102;
  • the first emitting unit 1021 is located between the first optical circulator 103 and the second optical circulator 105, near the second optical circulator 105 side;
  • the first receiving unit 1022 is located near the side of the second optical circulator 105;
  • the second emitting unit 1023 is located between the first optical circulator 103 and the second optical circulator 105, near the side of the first optical circulator 103;
  • the second receiving unit 1024 is located near the side of the first optical circulator 103.
  • this adds flexibility to the fiber layout of the optical module, and provides a variety of options for the internal structure design of the optical module.
  • the first emitting unit 1021 includes a laser chip 301, a planar optical waveguide multiplexing chip 302, a lens 303, and an isolator 304.
  • the structure of the second transmitting unit 2021 is the same as that of the first transmitting unit 1021, which will not be repeated here.
  • FIG. 5 is a schematic diagram of the structure of the receiving unit in some embodiments of the application.
  • the first receiving unit 1022 includes a detector chip 305 and a planar optical waveguide demultiplexing chip 306.
  • the structure of the second receiving unit 2022 is the same as that of the first receiving unit 1022, which will not be repeated here.
  • the emitting unit includes 4 laser chips 301 with different wavelengths, the working wavelengths are 1271 nm, 1291 nm, 1311 nm, and 1331 nm, collectively referred to as a coarse wavelength division multiplexer (CWDM) 4 wavelengths.
  • CWDM coarse wavelength division multiplexer
  • the first transmitting unit 1021 includes four channels of CWDM4 wavelength laser chips and their planar optical waveguide multiplexing chips, and the first receiving unit includes four channels of detector chips and their planar optical waveguide demultiplexing chips.
  • the embodiment of this application has 200Gb/s transceiving capability; if the transmitting/receiving working rate of each wavelength is 100Gb/s, then the embodiment of this application has 400Gb/s transceiving ability.
  • the transmitting unit of each optical module includes four CWDM4 laser chips working at 50Gb/s and their planar optical waveguide multiplexing chips.
  • the receiving unit contains four detector chips working at 50Gb/s and their planar optical waveguide demultiplexing chips.
  • the optical module shown in this embodiment has two 4x50Gb/s transceiving capabilities, which solves the existing 2x200G OSPF optical module single-fiber bidirectional problem.
  • An embodiment of the present application also provides an optical communication device, and the optical communication device includes the optical module described in any of the foregoing embodiments.
  • the structure of the optical communication device is not limited.
  • the optical communication equipment may be an optical switch, an optical transceiver, an optical fiber transceiver, a server, a remote radio unit, a baseband processing unit, an optical fiber repeater, an optical fiber dry release station, and the like.
  • An embodiment of the present application also provides an optical transmission system, and the optical transmission system includes any of the foregoing optical communication devices.
  • the structure of the optical transmission system is not limited here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

一种光模块,光通信设备和光传输系统。光模块包括:壳体(101)、主板(102)、第一光环行器(103)和第一光纤适配器(104);主板(102)上设置有第一发射单元(1021)和第一接收单元(1022);第一发射单元(1021)的输出端与第一光环行器(103)的第一端口连接,第一接收单元(1022)的输入端与第一光环行器(103)的第三端口连接,第一光环行器(103)的第二端口与第一光纤适配器(104)连接;第一发射单元(1021)的输出端输出的光信号沿第一光环行器(103)的第一端口传输至第一光环行器(103)的第二端口;第一光纤适配器(104)接收到从外部输入的光信号沿第一光环行器(103)的第二端口传输至第一光环行器(103)的第三端口。

Description

一种光模块
相关申请的交叉引用
本申请基于申请号为201910915421.X的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本申请涉及光通信技术,尤其涉及一种光模块。
背景技术
现有数据中心光模块普遍采用双纤双向封装,即发射端和接收端在光路上是独立的,各需一路光纤与外界互联。一个光模块需要两根光纤与外界连接,这对光纤资源产生了极大的浪费,特别是超大型数据中心内部,光纤布线和维护压力极大。数据中心光模块普遍具有至少4路发射和4路接收,某些400G光模块,例如2x200G疏波分复用(Coarse Wavelength Division Multiplexing,CWDM)4光模块,甚至包含8路发射和8路接收,发射和接收工作在同一个波段,且光模块封装密度非常高,这给单纤多向设计带来了极大挑战。
因此,如何实现低成本、高可靠性的多通道单纤多向光模块,是当前需要解决的问题。
发明内容
本申请实施例提供一种光模块,所述光模块包括:壳体、主板、第一光环行器和第一光纤适配器;其中,
所述壳体围设有容纳腔,所述壳体的第一端设置有第一连接腔;
所述第一光纤适配器设置于所述第一连接腔处;
所述主板至少部分设置于所述容纳腔内;
所述主板上设置有第一发射单元和第一接收单元;
所述第一发射单元的输出端与所述第一光环行器的第一端口连接,所述第一接收单元的输入端与所述第一光环行器的第三端口连接,所述第一光环行器的第二端口与所述第一光纤适配器连接;
所述第一发射单元的输出端输出的光信号沿所述第一光环行器的第一端口传输至所述第一光环行器的第二端口;所述第一光纤适配器接收到从外部输入的光信号沿所述第一光环行器的第二端口传输至所述第一光环行器的第三端口。
在一些实施例中,所述壳体的第一端还设置有第二连接腔。
在一些实施例中,所述第一光环行器的第一端口和第三端口位于所述第一光环行器的第一侧,所述第一光环行器的第二端口位于所述第一光环行器的第二侧。
在一些实施例中,所述第一光环行器设置于所述主板上。
在一些实施例中,所述光模块还包括:第二光环行器和第二光纤适配器;其中,
所述第二光纤适配器设置于所述第二连接腔处;
所述主板上还设置有第二发射单元和第二接收单元;
所述第二发射单元的输出端与所述第二光环行器的第一端口连接,所述第二接收单元的输入端与所述第二光环行器的第三端口连接,所述第二光环行器的第二端口与所述第二光纤适配器连接;
所述第二发射单元的输出端输出的光信号沿所述第二光环行器的第一端口传输至所述第二光环行器的第二端口;所述第二光纤适配器接收到外部输入的光信号沿所述第二光环行器的第二端口传输至所述第二光环行器的第三端口。
在一些实施例中,所述第二光环行器的第一端口和第三端口位于所述第二光环行器的第一侧,所述第二光环行器的第二端口位于所述第二光环行器的第二侧。
在一些实施例中,所述第二光环行器设置于所述主板上。
在一些实施例中,所述第一光环行器、所述第二光环行器、所述第一发射单元和所述第二发射单元位于所述主板的一侧;
所述第一接收单元和所述第二接收单元位于所述主板的另一侧;
所述第一发射单元位于所述第一光环行器和所述第二光环行器之间,近所述第二光环行器侧;
所述第一接收单元位于近所述第二光环行器侧;
所述第二发射单元位于所述第一光环行器和所述第二光环行器之间,近所述第一光环行器侧;
所述第二接收单元位于近所述第一光环行器侧。
本申请实施例提供一种光通信设备,所述光通信设备包括上述任一光模块。
本申请实施例提供一种光传输系统,所述光传输系统包括上述光通信设备。
本申请实施例中,通过主板上的第一发射单元的输出端与第一光环行器的第一端口连接,主板上的第一接收单元的输入端与第一光环行器的第三端口连接,第一光环行器的第二端口与第一光纤适配器连接,所述第一发射单元的输出端输出的光信号沿所述第一光环行器的第一端口传输至所述第一光环行器的第二端口;所述第一光纤适配器接收到从外部输入的光信号沿所述第一光环行器的第二端口传输至所述第一光环行器的第三端口,实现一种单纤双向传输的光模块,通过第一光环行器实现了单纤双向收发的光传输路线,成本较低,光路结构简单,提高了设备可靠性。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本申请实施例一种光模块的结构示意图;
图2为本申请又一实施例一种光模块的结构示意图;
图3为本申请又一实施例一种光模块的结构示意图;
图4为本申请一些实施例中发射单元的结构示意图;
图5为本申请一些实施例中接收单元的结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
需要说明的是,本申请实施例所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三”区分的对象在适当情况下可以互换,以使这里描述的本申请的实施例可以除了在这里图示或描述的那些以外的顺序实施。
在本申请实施例记载中,需要说明的是,除非另有说明和限定,术语“连接”应做广义理解,例如,可以是电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以下结合图1至图5对本申请实施例记载的光模块进行详细说明。
图1为本申请实施例一种光模块的结构示意图,如图1所示,本申请实施例提供了一种光模块,所述光模块包括:壳体101,主板102,第一光环行器103和第一光纤适配器104;其中,
壳体101围设有容纳腔,壳体101的第一端设置有第一连接腔1011;
第一光纤适配器104设置于所述第一连接腔1011处;
主板102上设置有第一发射单元1021和第一接收单元1022;
第一发射单元1021的输出端与第一光环行器103的第一端口连接,第一接收单元1022的输入端与第一光环行器103的第三端口连接,第一光环行器103的第二端口与第一光纤适配器104连接;
第一发射单元1021的输出端输出的光信号沿第一光环行器103的第一端口传输至第一光环行器103的第二端口;第一光纤适配器104接收到从外部输入的光信号沿第一光环行器103的第二端口传输至第一光环行器103的第三端口。
在一些实施例中,壳体101的第一端还设置有第二连接腔1012。
在一些实施例中,第一光环行器103的第一端口、第二端口及第三端口位于第一光环行器103的第一侧。在这种布置方式中,光环行器内部采用反射式光路结构,可以缩小光环行器的尺寸。光环行器的三个端口光纤在同一边侧,其光纤的盘绕方式也与第一端口、第三端口处于同侧,第二端口处于另一侧有所不同,这为光模块盘纤布局增加了灵活性。
在一些实施例中,第一光环行器103设置于所述第二连接腔1012处,所述第一光环行器103的第二侧至少部分位于所述第二连接腔1012内。
第一发射单元1021和第一接收单元1022位于主板102的同一面。第一光环行器103的三个端口分布在同一侧。由于光模块有两个连接腔,而第一光纤适配器104只占用了一个光口,另一个原本在常规光模块中放置光纤适配器的空间可以用来放置第一光环行器103的主体。本实施例展示的光模块布局可以方便地将现有双光口4x25G CWDM4光模块和4x100G FR4光模块实现单光口输入/输出,极大地节省数据中心的光纤资源。
在一些实施例中,所述第一光环行器103的第一端口和第三端口位于所述第一光环行器103的第一侧,所述第一光环行器103的第二端口位于所述第一光环行器103的第二侧。
在一些实施例中,光环行器的三个端口可以分布在同一侧,也可以分布在不同侧,可以根据模块盘纤布局进行选择。
在一些实施例中,第一光环行器103设置于主板102上。
图2为本申请又一实施例一种光模块的结构示意图,图3为本申请又一实施例一种光模块的结构示意图,如图2和图3所示,在一些实施例中,光模块还包括:第二光环行器105和第二光纤适配器106;
第二光纤适配器106设置于第二连接腔1012处;
主板102上还设置有第二发射单元1023和第二接收单元1024;
第二发射单元1023的输出端与第二光环行器105的第一端口连接,第二接收单元1024的输入端与第二光环行器105的第三端口连接,第二光环行器105 的第二端口与第二光纤适配器106连接;
第二发射单元1023的输出端输出的光信号沿第二光环行器105的第一端口传输至第二光环行器105的第二端口,第二光纤适配器106接收到外部输入的光信号沿第二光环行器105的第二端口传输至第二光环行器105的第三端口。
在一些实施例中,第二光环行器105的第一端口和第三端口位于第二光环行器105的第一侧,第二光环行器105的第二端口位于第二光环行器105的第二侧。
在一些实施例中,第二光环行器105设置于主板102上。
在一些实施例中,如图2所示,第一光环行器103、第二光环行器105、第一发射单元1021、第一接收单元1022、第二发射单元1023和第二接收单元1024位于主板102的一侧;
第一光环行器103的第一侧近第二光纤适配器106;
第二光环行器105的第一侧近第一光纤适配器104;
第一发射单元1021和第一接收单元1022位于第一光环行器103和第二光环行器105之间,近第二光环行器105侧;
第二发射单元1023和第二接收单元1024位于第一光环行器103和第二光环行器105之间,近第一光环行器103侧。
采用本申请实施例的布局,可以降低由于光传输器件位置太近导致器件之间的连接光纤容易折断的风险。
在一些实施例中,如图3所示,第一光环行器103、第二光环行器105、第一发射单元1021和第二发射单元1023位于主板102的一侧;
第一接收单元1022和第二接收单元1024位于主板102的另一侧;
第一发射单元1021位于第一光环行器103和第二光环行器105之间,近第二光环行器105侧;
第一接收单元1022位于近第二光环行器105侧;
第二发射单元1023位于第一光环行器103和第二光环行器105之间,近第一光环行器103侧;
第二接收单元1024位于近第一光环行器103侧。
在实际应用中,这为光模块盘纤布局增加了灵活性,并且为光模块的内部结构设计提供了多样性选择。
图4为本申请一些实施例中发射单元的结构示意图,如图2所示,在一些实施例中,第一发射单元1021包括激光器芯片301、平面光波导复用芯片302、透镜303及隔离器304。第二发射单元2021与第一发射单元1021的结构相同,此处不再赘述。
图5为本申请一些实施例中接收单元的结构示意图,如图3所示,在一些实施例中,第一接收单元1022包括探测器芯片305及平面光波导解复用芯片306。第二接收单元2022与第一接收单元1022的结构相同,此处不再赘述。
在一些实施例中,发射单元包含4路不同波长的激光器芯片301,工作波长分别为1271nm、1291nm、1311nm和1331nm,统称为粗波分复用器(Coarse Wavelength Division Multiplexer,CWDM)4波长。
第一发射单元1021包含四路CWDM4波长激光器芯片及其平面光波导复用芯片,第一接收单元包含四路探测器芯片及其平面光波导解复用芯片。
如果发射/接收每个波长工作速率是50Gb/s,则本申请实施方案具有200Gb/s收发能力;如果发射/接收每个波长工作速率是100Gb/s,则本申请实施方案具有400Gb/s收发能力。
在本申请一些实施例提供的光模块中,如图2和图3所示,每个光模块的发射单元包含四路CWDM4波长工作在50Gb/s的激光器芯片及其平面光波导复用芯片,接收单元包含四路工作在50Gb/s探测器芯片及其平面光波导解复用芯片。本实施例展示的光模块具有2个4x50Gb/s收发能力,解决了现有的2x200G OSPF光模块单纤双向的难题。
本申请实施例还提供一种光通信设备,所述光通信设备包括上述任一实施例所述的光模块。
这里,光通信设备的结构不作限定。例如,光通信设备可以为光交换机、光端机、光纤收发器、服务器、射频拉远单元、基带处理单元、光纤直放站、 光纤干放站等。
本申请实施例还提供一种光传输系统,所述光传输系统包括上述任一光通信设备。这里光传输系统的结构不作限定。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光模块,包括:壳体、主板、第一光环行器和第一光纤适配器;其中,
    所述壳体围设有容纳腔,所述壳体的第一端设置有第一连接腔;
    所述第一光纤适配器设置于所述第一连接腔处;
    所述主板至少部分设置于所述容纳腔内;
    所述主板上设置有第一发射单元和第一接收单元;
    所述第一发射单元的输出端与所述第一光环行器的第一端口连接,所述第一接收单元的输入端与所述第一光环行器的第三端口连接,所述第一光环行器的第二端口与所述第一光纤适配器连接;
    所述第一发射单元的输出端输出的光信号沿所述第一光环行器的第一端口传输至所述第一光环行器的第二端口;所述第一光纤适配器接收到从外部输入的光信号沿所述第一光环行器的第二端口传输至所述第一光环行器的第三端口。
  2. 根据权利要求1所述的光模块,其中,
    所述壳体的第一端还设置有第二连接腔。
  3. 根据权利要求2所述的光模块,其中,
    所述第一光环行器的第一端口和第三端口位于所述第一光环行器的第一侧,所述第一光环行器的第二端口位于所述第一光环行器的第二侧。
  4. 根据权利要求3所述的光模块,其中,
    所述第一光环行器设置于所述主板上。
  5. 根据权利要求4所述的光模块,其中,所述光模块还包括:第二光环行器和第二光纤适配器;其中,
    所述第二光纤适配器设置于所述第二连接腔处;
    所述主板上还设置有第二发射单元和第二接收单元;
    所述第二发射单元的输出端与所述第二光环行器的第一端口连接,所述第二接收单元的输入端与所述第二光环行器的第三端口连接,所述第二光环行器 的第二端口与所述第二光纤适配器连接;
    所述第二发射单元的输出端输出的光信号沿所述第二光环行器的第一端口传输至所述第二光环行器的第二端口;所述第二光纤适配器接收到外部输入的光信号沿所述第二光环行器的第二端口传输至所述第二光环行器的第三端口。
  6. 根据权利要求5所述的光模块,其中,
    所述第二光环行器的第一端口和第三端口位于所述第二光环行器的第一侧,所述第二光环行器的第二端口位于所述第二光环行器的第二侧。
  7. 根据权利要求6所述的光模块,其中,
    所述第二光环行器设置于所述主板上。
  8. 根据权利要求7所述的光模块,其中,
    所述第一光环行器、所述第二光环行器、所述第一发射单元和所述第二发射单元位于所述主板的一侧;
    所述第一接收单元和所述第二接收单元位于所述主板的另一侧;
    所述第一发射单元位于所述第一光环行器和所述第二光环行器之间,近所述第二光环行器侧;
    所述第一接收单元位于近所述第二光环行器侧;
    所述第二发射单元位于所述第一光环行器和所述第二光环行器之间,近所述第一光环行器侧;
    所述第二接收单元位于近所述第一光环行器侧。
  9. 一种光通信设备,所述光通信设备包括权利要求1至9任一项所述的光模块。
  10. 一种光传输系统,所述光传输系统包括权利要求9所述的光通信设备。
PCT/CN2019/123415 2019-09-26 2019-12-05 一种光模块 WO2021056825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/629,878 US11990939B2 (en) 2019-09-26 2019-12-05 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910915421.XA CN110768743B (zh) 2019-09-26 2019-09-26 一种光模块
CN201910915421.X 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021056825A1 true WO2021056825A1 (zh) 2021-04-01

Family

ID=69329966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123415 WO2021056825A1 (zh) 2019-09-26 2019-12-05 一种光模块

Country Status (3)

Country Link
US (1) US11990939B2 (zh)
CN (1) CN110768743B (zh)
WO (1) WO2021056825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11831399B2 (en) * 2016-08-31 2023-11-28 Accelink Technologies Co., Ltd. Optical multiplexing and demultiplexing module having automatic discovery function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768743B (zh) 2019-09-26 2021-03-16 武汉光迅科技股份有限公司 一种光模块
CN117834029A (zh) * 2022-09-28 2024-04-05 锐捷网络股份有限公司 一种光源模块、光源模块的配套插座及光信号传输方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080292A (ja) * 2003-08-28 2005-03-24 Agilent Technol Inc 光バックプレーン上での通信の光相互接続システム及び方法
CN201252549Y (zh) * 2008-09-09 2009-06-03 青岛海信宽带多媒体技术股份有限公司 非对称万兆epon光网络单元用光模块
CN201252550Y (zh) * 2008-09-09 2009-06-03 青岛海信宽带多媒体技术股份有限公司 非对称万兆epon光线路终端用光模块
CN201266937Y (zh) * 2008-10-16 2009-07-01 青岛海信宽带多媒体技术股份有限公司 万兆光收发一体模块
CN103338088A (zh) * 2013-06-17 2013-10-02 太仓市同维电子有限公司 一种光纤通信复用装置
CN104467974A (zh) * 2013-09-18 2015-03-25 福州高意通讯有限公司 用于高速收发系统的单纤双向bosa结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624938B1 (en) * 2001-06-14 2003-09-23 Dicon Fiberoptics, Inc. Optical circulator
US20080031576A1 (en) * 2006-08-04 2008-02-07 Hudgins Clay E Embedded parametric monitoring of optoelectronic modules
US7380993B2 (en) * 2006-09-15 2008-06-03 Emcore Corporation Optical transceiver for 100 gigabit/second transmission
US7941053B2 (en) * 2006-10-19 2011-05-10 Emcore Corporation Optical transceiver for 40 gigabit/second transmission
CN102412893B (zh) * 2011-11-07 2015-04-01 中兴通讯股份有限公司 无源光网络中光纤故障的测试方法及光模块装置
TWI536755B (zh) * 2011-12-13 2016-06-01 鴻海精密工業股份有限公司 光收發裝置
GB2506190B (en) * 2012-09-25 2018-06-27 Bae Systems Plc Apparatus and methods for use with optical rotating joint
US9954265B2 (en) * 2014-11-26 2018-04-24 Zte Corporation Two-transmitter two-receiver antenna coupling unit for microwave digital radios
CN206248889U (zh) * 2016-12-20 2017-06-13 中航海信光电技术有限公司 一种光纤组件
CN108333691A (zh) * 2017-01-20 2018-07-27 山东华云光电技术有限公司 一种波长可调单纤双向光发射接收组件
CN207051530U (zh) * 2017-05-27 2018-02-27 武汉华工正源光子技术有限公司 一种光环行器以及otdr光模块
CN107688215B (zh) * 2017-09-29 2023-04-11 华中科技大学 一种波分复用单纤双向数据收发模块
CN109061811A (zh) * 2018-08-10 2018-12-21 武汉联特科技有限公司 双发双收光模块
CN110768743B (zh) 2019-09-26 2021-03-16 武汉光迅科技股份有限公司 一种光模块
CN114035285B (zh) * 2021-11-29 2023-08-08 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080292A (ja) * 2003-08-28 2005-03-24 Agilent Technol Inc 光バックプレーン上での通信の光相互接続システム及び方法
CN201252549Y (zh) * 2008-09-09 2009-06-03 青岛海信宽带多媒体技术股份有限公司 非对称万兆epon光网络单元用光模块
CN201252550Y (zh) * 2008-09-09 2009-06-03 青岛海信宽带多媒体技术股份有限公司 非对称万兆epon光线路终端用光模块
CN201266937Y (zh) * 2008-10-16 2009-07-01 青岛海信宽带多媒体技术股份有限公司 万兆光收发一体模块
CN103338088A (zh) * 2013-06-17 2013-10-02 太仓市同维电子有限公司 一种光纤通信复用装置
CN104467974A (zh) * 2013-09-18 2015-03-25 福州高意通讯有限公司 用于高速收发系统的单纤双向bosa结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11831399B2 (en) * 2016-08-31 2023-11-28 Accelink Technologies Co., Ltd. Optical multiplexing and demultiplexing module having automatic discovery function

Also Published As

Publication number Publication date
US20220294531A1 (en) 2022-09-15
CN110768743A (zh) 2020-02-07
CN110768743B (zh) 2021-03-16
US11990939B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2021056825A1 (zh) 一种光模块
US8121139B2 (en) Communication module and communication apparatus
WO2018157767A1 (zh) 一种多波长共存光模块
CN107045166A (zh) 光模块
WO2020088503A1 (zh) 光源备份方法、装置以及系统
US9225423B1 (en) Optical engines and optical cable assemblies capable of low-speed and high-speed optical communication
CN106646784A (zh) 一种基于阵列波导光栅的波分复用光发射器件
CN108535820A (zh) 一种多波长共存光模块
TWM481421U (zh) 光發射器封裝結構
WO2022037511A1 (zh) 光源模块和光通信设备
CN106054329A (zh) 一种光收发器
KR20240004186A (ko) 초소형 광송신 모듈
WO2023103590A1 (zh) 一种光模块、插芯及光纤连接器
CN206710651U (zh) 一种多波长共存光模块
CN113885141A (zh) 一种光模块
US20200186274A1 (en) Optical duplexer and optical transceiving system
CN104049318A (zh) 四端口olt光收发一体模块
CN106785862A (zh) 光收发一体模块及双向光放大器
TWI512350B (zh) 光收發裝置
EP3514591B1 (en) Light transceiving assembly
JP2017073669A (ja) アクティブ光ケーブル
CN206370606U (zh) 光收发一体模块及双向光放大器
CN114488433B (zh) 一种单光纤高速全双工数据传输装置
CN214540151U (zh) 一种光模块
CN114545568B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946954

Country of ref document: EP

Kind code of ref document: A1