WO2021056698A1 - 一种集装箱式储能电池模组智能测温系统和方法 - Google Patents

一种集装箱式储能电池模组智能测温系统和方法 Download PDF

Info

Publication number
WO2021056698A1
WO2021056698A1 PCT/CN2019/115904 CN2019115904W WO2021056698A1 WO 2021056698 A1 WO2021056698 A1 WO 2021056698A1 CN 2019115904 W CN2019115904 W CN 2019115904W WO 2021056698 A1 WO2021056698 A1 WO 2021056698A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature measurement
energy storage
harmonic
monitoring
sensor
Prior art date
Application number
PCT/CN2019/115904
Other languages
English (en)
French (fr)
Inventor
尚德华
贾葳
刘典
Original Assignee
傲普(上海)新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 傲普(上海)新能源有限公司 filed Critical 傲普(上海)新能源有限公司
Priority to EP19934361.7A priority Critical patent/EP4037058A4/en
Priority to US17/257,366 priority patent/US20210364365A1/en
Publication of WO2021056698A1 publication Critical patent/WO2021056698A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/146Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller

Definitions

  • the invention relates to an intelligent temperature measurement system, in particular to a container type energy storage battery module intelligent temperature measurement system and method, and belongs to the technical field of power equipment monitoring.
  • the battery energy storage system has the advantages of peak shaving and valley filling, emergency backup, and improvement of power quality.
  • Lithium-ion batteries have gradually become the most widely used battery in battery energy storage systems due to their high energy density, high output power, long charge and discharge life, wide operating temperature range, and small self-discharge.
  • the characteristics of fast construction and mobility have become the new requirements of the demand side for energy storage systems, and containerized lithium-ion battery energy storage systems have emerged.
  • Containerized energy storage is an electrical equipment that installs multiple battery clusters, central control cabinets, combiner cabinets, energy storage bidirectional converters, and refrigeration systems for cooling the battery clusters in metal or non-metal insulated containers. Its core part It is a lithium iron phosphate battery cell module. Its main characteristics are good thermal stability, high mass specific energy, no memory effect, Jingjie environmental protection, long cycle life and low self-discharge rate.
  • lithium-ion batteries Although lithium-ion batteries have excellent performance, they are subject to abuse conditions such as overheating, overcharging, and short-circuiting. Thermal runaway due to heat accumulation inside the battery may cause fire and explosion accidents. Due to energy density and space constraints, energy storage containers are generally arranged relatively tightly, and no staff is required to monitor the working status of the containers in real time. Therefore, if the battery in the battery cabinet is not extinguished and cooled in time after the fire is caused by thermal runaway of the battery in the battery cabinet, the fire will easily spread between battery modules, battery cabinets and even energy storage containers, resulting in large-scale fire and explosion accidents. It poses a great threat to the safety of personnel and property. Therefore, timely monitoring of the temperature of the energy storage container and prevention of fire before it occurs are of great significance to ensure the safe operation of the energy storage system.
  • the current energy storage container temperature monitoring system adopts the deployment of a local server, and uses a wireless temperature sensor to collect temperature and connects to the server in a limited way.
  • the staff needs to deploy a large number of communication lines when performing on-site operations, which is complicated to operate.
  • the equipment monitoring of the entire system will fail. Therefore, special personnel are required to maintain the 24-hour stable and reliable operation of the data server, and the cost is high.
  • the staff of the temperature monitoring system deployed in this way can only view data in relatively fixed locations.
  • the purpose of the present invention is to provide a more intelligent, systematic and efficient temperature monitoring strategy in order to solve the above-mentioned problems. That is, the temperature measurement system is outside the battery cell module, and in the communication and temperature measurement of the battery itself. When the system fails or fails to collect data in time, a container-type energy storage battery module intelligent temperature measurement system and method that provides backup protection for temperature monitoring of the container energy storage battery.
  • a container-type energy storage battery module intelligent temperature measurement system the system includes a temperature measurement device, system hardware and system software, the temperature measurement device is located in the center of the energy storage container
  • the temperature measuring device consists of a sensor, a harmonic synchronous motor, a synchronous wheel, a synchronous belt, a baffle, a motor seat, a main bearing seat, a double bearing, a main rotating shaft, a fixed plate, a rotating wire box, a fixed screw, and a control Power supply and base composition;
  • the two sides of the sensor are provided with connecting rods to be clamped between the baffles, and the baffles are vertically connected to the sensor mounting plate by bolts, the harmonic synchronous motors are provided with two, and one of the The harmonic synchronous motor is fixedly arranged with the motor base located on the lower surface of the sensor mounting plate, and the other harmonic synchronous motor is fixedly arranged with the motor base connected to the side of the main bearing support through bolts, and the sensor and The harmonic synchronous motors are connected in transmission through a synchronous wheel and a synchronous belt.
  • the main rotating shaft and the harmonic synchronous motor are connected in transmission through a synchronous wheel and a synchronous belt.
  • the main bearing support is arranged under the sensor.
  • the double bearing is sleeved on the shaft of the main rotating shaft, and the upper end of the main rotating shaft is inserted into the through hole opened at the center of the main bearing seat through the double bearing, and the bottom end of the main rotating shaft is passed through a fastening bolt Fixedly connected to the upper surface of the fixed plate, a rotating wire box is arranged in a through hole opened at the center of the fixed plate, the fixed plate is connected to the base by a fixed screw, and the control power supply is placed on the base;
  • the system hardware is composed of S50LT point temperature sensor probe, 3D pan/tilt, controller, and monitoring background.
  • the system software is composed of scanning control system and background monitoring software.
  • the system hardware adopts S50LT point temperature sensor probe and 3D pan-tilt to form a temperature measurement scanning platform, through mechanical scanning temperature measurement action, the scanning control system of the system software adopts "temperature measurement scanning "Terminal + on-site monitoring platform” constitutes a control network structure.
  • the temperature measuring device performs high-precision mechanical positioning through a harmonic synchronous motor.
  • the temperature measuring device realizes the communication control of multiple monitoring background temperature measuring terminals of the system hardware through a RS485 bus, and the monitoring platform realizes task distribution, data recording, and data query functions.
  • the remote monitoring of the temperature measurement terminal can be realized through the local area network.
  • the scanning control system of the system software adopts a layered structure, which is divided into three layers: upper, middle and lower, the upper layer is the communication transmission module; the middle is the control layer; the lower is the sensor layer.
  • the scanning control system host of the system software uses "harmonic stepping motor + zero photoelectric switch” to realize drive control, and the harmonic stepping motor 2 is based on the idea of "mechatronics” , A low-speed direct-drive stepping motor that organically integrates harmonic drive and stepping motor.
  • the monitoring background of the system hardware is the background monitoring center of the automatic temperature measurement and scanning system of the high-voltage capacitor bank, and the operating hardware platform of the monitoring platform system adopts the ARM11 embedded system.
  • the monitoring background function module is divided into three aspects: one is man-machine exchange, providing a visual interface to respond to personnel operations; the other is task control, coordinating various temperature measurement terminals, obtaining terminal status, and distributing Task; the third is to process data, record measurement data, and forward the data to the EMS platform;
  • Wince6.0 (R3) operating system is adopted, and the software development adopts the VS2008 C# integrated development environment.
  • the function page is set to run automatically, manually run, parameter setting module, and each terminal is installed when it runs automatically.
  • Manual operation is mainly used for debugging, which can directly control the movement of the terminal and obtain real-time temperature; the parameter setting provides an interface to modify and save the operating parameters of each terminal on site.
  • the scanning control system of the system software adopts MINI6410 control board and Samsung S3C6410 processor, provides 4-wire resistive touch screen module, 100M standard network interface, infrared receiving port and other common interfaces; in addition, it also leads to 3 channels of ADC , 1 DAC) backup battery, AD adjustable resistance, 8 buttons (can be drawn), 4LED and other rich interfaces.
  • An operating method of a containerized energy storage battery module intelligent temperature measurement system includes the following steps:
  • Step 1 Place the temperature measuring device in the center of the energy storage container, and set the battery cluster 1 inside the container as the starting point X, Y, the scan area 1 with width W and height H, and set the position of battery cluster N as Area 2 ⁇ N;
  • Step 2 The harmonic stepping motor is driven by the scanning control system of the system software.
  • One of the harmonic stepping motors drives the rotation of the main bearing support of the temperature measuring device to realize the horizontal rotation of the sensor, and the other harmonic stepping motor drives The sensor rotates vertically to realize multi-point temperature measurement of the device under test;
  • Step 3 The data measured by the S50LT point temperature sensor probe set on the sensor is sent to the EMS platform through the monitoring background of the system hardware;
  • Step 4 the monitoring background of the system hardware controls multiple container temperature measurement scanning devices, and realizes the storage of temperature measurement data and on-site query.
  • the beneficial effect of the present invention is that the intelligent temperature measurement system and method of the container-type energy storage battery module are designed reasonably. Through the statistics of the heat storage fault defect of the container of the energy storage system and the observation of the on-site temperature measurement results, it is found that the common heating parts inside the container are concentrated in the mother The lap joints, fuses, cell modules, and bushing joints account for more than 90%. Combining the heating law of the tested equipment obtained by statistics, through the optimization of the scanning strategy, the temperature measurement scanning time is shortened, and the temperature measurement scanning time is shortened through the design By setting the scanning area to monitor the key parts of the equipment, the heating condition of the equipment can be effectively grasped, and the scanning temperature measurement time can be greatly saved.
  • Figure 1 is a schematic diagram of the structure of the temperature measuring device of the present invention.
  • FIG. 2 is a schematic flow diagram of the control program of the invention
  • Figure 3 is a schematic diagram of the time-sharing control flow of the system of the present invention.
  • an intelligent temperature measurement system for a containerized energy storage battery module.
  • the system includes a temperature measurement device, system hardware, and system software.
  • the temperature measurement device is located in the center of the energy storage container.
  • the temperature device consists of the sensor 1, the harmonic synchronous motor 2, the synchronous wheel 3, the synchronous belt 4, the baffle 5, the motor seat 6, the main bearing seat 7, the double bearing 8, the main rotating shaft 9, the fixed plate 10, and the rotating wire
  • the box 11, the fixed screw 12, the control power supply 13 and the base 14 are constituted;
  • the two sides of the sensor 1 are provided with connecting rods to be clamped between the baffles 5, and the baffles 5 are vertically connected to the sensor mounting plate by bolts, the harmonic synchronous motors 2 are provided with two, and One of the harmonic synchronous motors 2 is fixedly arranged with the motor base 6 located on the lower surface of the sensor mounting plate, and the other harmonic synchronous motor 2 is connected to the motor base 6 on the side of the main bearing support 7 through bolts.
  • the sensor 1 and the harmonic synchronous motor 2 are connected by a synchronous wheel 3 and a synchronous belt 4, and the main rotating shaft 9 and the harmonic synchronous motor 2 are connected by a synchronous wheel 3 and a synchronous belt.
  • the main bearing seat 7 is arranged under the sensor 1, the double bearing 8 is sleeved on the shaft of the main rotating shaft 9, and the upper end of the main rotating shaft 9 is inserted in the main shaft through the double bearing 8
  • the bottom end of the main rotating shaft 9 is fixedly connected to the upper surface of the fixing plate 10 by fastening bolts in the through hole opened in the center of the bearing seat 7, and the through hole opened in the center of the fixing plate 10 is provided with a rotating In the cable box 11, the fixing plate 10 is connected to the base 14 by a fixing screw 12, and the control power supply 13 is placed on the base 14;
  • the system hardware is composed of S50LT point temperature sensor probe, 3D pan/tilt, controller, and monitoring background.
  • the system software is composed of scanning control system and background monitoring software.
  • the system hardware adopts S50LT point temperature sensor probe and 3D pan-tilt to form a temperature measurement scanning platform, and realizes multi-point temperature measurement of the device under test through mechanical scanning temperature measurement action
  • the scanning control system of the system software adopts a control network structure of "temperature measurement scanning terminal + field monitoring platform", which realizes one monitoring platform to control multiple temperature measurement scanning terminals, and realizes on-site control networking in a simple and inexpensive manner.
  • the temperature measurement device uses the harmonic synchronous motor 2 to perform high-precision mechanical positioning.
  • the temperature measurement area is divided by the numerical control positioning function of the system.
  • the program compiles targeted tracking monitoring and temperature early warning monitoring strategies to realize regionalized tracking and monitoring and improve the efficiency of temperature measurement.
  • the temperature measuring device realizes the communication control of multiple monitoring background temperature measuring terminals of the system hardware through a RS485 bus, and the monitoring platform realizes task distribution, data recording, and data query functions.
  • remote monitoring of the temperature measurement terminal can also be realized through the local area network.
  • the scanning control system of the system software adopts a layered structure, which is divided into three layers: upper, middle and lower, the upper layer is the communication transmission module; the middle is the control layer, which realizes the X-axis level and Y-axis of the device The vertical rotation function and the control board of the device; the lower layer is the sensor layer, which is used to fix the temperature sensor and realize the rotation of the X and Y axis, so that the hardware system only needs to drive the sensor 1, which requires a small torque and adopts
  • the harmonic synchronous motor 2 realizes the transmission of X and Y axis through the synchronous belt 4.
  • the scanning control system host of the system software uses the "harmonic stepping motor + zero-position photoelectric switch” to achieve drive control, and the harmonic stepping motor 2 is based on the "mechanical and electrical integration".
  • the idea of "integration” is a low-speed direct drive stepping motor that organically integrates harmonic drive and stepping motor. It uses a microcomputer as a control component and is programmed to output a drive code indicating the energized state of each phase winding of the motor at different times. Then drive the harmonic motor 2 through the power amplifier circuit.
  • the harmonic stepping motor 2 itself has a high positioning accuracy, up to 1:25000, plus the zero detection of the zero photoelectric switch, can effectively supplement the mechanical calibration of the device and reduce the positioning error of the overall device.
  • the monitoring background of the system hardware is the background monitoring center of the automatic temperature measurement and scanning system of the high-voltage capacitor bank, and the operating hardware platform of the monitoring platform adopts the ARM11 embedded system for temperature measurement of multiple containers. Scanning device control, temperature measurement data storage and on-site query.
  • the monitoring background function module is divided into three aspects: one is man-machine exchange, which provides a visual interface, and responds to personnel operations; the other is task control, coordinating various temperature measurement terminals, and obtaining terminals Status, distribute tasks; the third is to process data, record measurement data, and forward the data to the EMS platform;
  • Wince6.0 (R3) operating system is adopted, and the software development adopts the VS2008 C# integrated development environment.
  • the function page is set to run automatically, manually run, parameter setting module, and each terminal is installed when it runs automatically.
  • Manual operation is mainly used for debugging, which can directly control the movement of the terminal and obtain real-time temperature; the parameter setting provides an interface to modify and save the operating parameters of each terminal on site.
  • the scanning control system of the system software adopts a MINI6410 control board and a Samsung S3C6410 processor, and provides common interfaces such as a 4-wire resistive touch screen module, a 100M standard network interface, and an infrared receiving port; 3 ADC, 1 DAC) backup battery, AD adjustable resistance, 8 buttons (can be drawn), 4LED and other rich interfaces, in order to improve the working reliability of the temperature measurement scanning device, it can be connected to the EMS platform of the energy storage system through the RS485 interface Connected to schedule the operation of each temperature measurement and scanning device.
  • the time-sharing query method is adopted to control the scanning device in turn, complete the temperature measurement task, and store the collected temperature and position information in the EMS database.
  • An operating method of a containerized energy storage battery module intelligent temperature measurement system includes the following steps:
  • Step 1 Place the temperature measuring device in the center of the energy storage container, and set the battery cluster 1 inside the container as the starting point X, Y, the scan area 1 with width W and height H, and set the position of battery cluster N as Area 2 ⁇ N;
  • Step 2 The harmonic stepping motor 2 is driven by the scanning control system of the system software.
  • One of the harmonic stepping motor 2 drives the rotation of the main bearing support 7 of the temperature measuring device to realize the horizontal rotation of the sensor 1, and the other harmonic
  • the stepper motor 2 drives the sensor 1 to perform vertical rotation to realize multi-point temperature measurement of the device under test;
  • Step 3 The data measured by the S50LT point temperature sensor probe set on the sensor 1 is sent to the EMS platform through the monitoring background of the system hardware;
  • Step 4 the monitoring background of the system hardware controls multiple container temperature measurement scanning devices, and realizes the storage of temperature measurement data and on-site query.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Secondary Cells (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种集装箱式储能电池模组智能测温系统和方法,包括测温装置、系统硬件和系统软件,测温装置位于储能集装箱的中心位置,测温装置由传感器(1)、谐波同步电机(2)、同步轮(3)、同步带(4)、挡板(5)、电机座(6)、主轴承承座(7)、双轴承(8)、主旋转轴(9)、固定板(10)、旋转过线盒(11)、固定螺杆(12)、控制电源(13)和底座(14)构成,系统硬件由S50LT点测温传感器探头、3D云台、控制器、监控后台四部分组成,系统软件由扫描控制系统和后台监控软件组成。所述测温系统和方法结合统计获得的被测试设备的发热规律,通过扫描策略的优化,缩短其测温扫描时间。通过设定扫描区域对设备的关键部位进行监测,便能有效掌握设备的发热情况,并大幅节省扫描测温时间。

Description

一种集装箱式储能电池模组智能测温系统和方法 技术领域
本发明涉及一种智能测温系统,具体为一种集装箱式储能电池模组智能测温系统和方法,属于电力设备监测技术领域。
背景技术
电池储能系统具有削峰填谷、应急备用、改善电能质量等优点。锂离子电池由于其能量密度大、输出功率高、充放电寿命长、工作温度范围宽、自放电小等诸多优点,逐渐成为电池储能系统中应用最为广泛的电池。同时,随着电池储能应用需求的不断增加,建设快,可移动等特点成为需求方对储能系统的新要求,集装箱式锂离子电池储能系统应运而生。
集装箱式储能是将多组电池簇、中控柜、汇流柜、储能双向变流器、用于给电池簇散热的制冷系统装在金属或非金属绝缘集装箱内的电气设备,其核心部分为磷酸铁锂电芯模块,其主要特点为热稳定性好,质量比能量高,无记忆效应,景洁环保,循环寿命长和自放电率较低。
锂离子电池虽然拥有优良的性能,但其处于过热、过充、短路等滥用条件下,电池内部会因热量积聚而发生热失控,进而引起火灾爆炸事故。由于能量密度和空间的限制,储能集装箱一般排布相对紧密,且无工作人员对集装箱内的工作状态进行实时监控。因此,如果电池柜内电池发生热失控引发火灾后没有及时进行灭火降温,则火灾极易在电池模块间、电池柜间甚至是储能集装箱之间传播蔓延,从而造成大规模的火灾爆炸事故,对人员和财产安全造成了极大的威胁。因此,及时监测储能集装箱的温度,预防火灾于未发生之时对保障储能系统的安全运行具有重大意义。
现阶段的储能集装箱温度监测系统采用部署本地服务器,使用无线温度传感器采集温度通过有限的方式连接至服务器,工作人员在进行现场操作时需要部署大量的通信线路,操作复杂,另外由于部署本地服务器,若服务器产生故障会导致整个系统的设备监测失效,因此需要专人维护保证数据服务 器的24小时稳定可靠运行,成本较高。另外通过该方式部署的温度监测系统工作人员只能在相对固定的地点进行数据查看。
发明内容
本发明的目的就在于为了解决上述问题而提供一种更为智能化、系统化、高效化的温度监控策略,即本测温系统在于电芯模块之外,在电芯自身的通信、测温系统发生故障或者未能及时采集数据的时候,为集装箱储能电池提供温度监控的后备保护的一种集装箱式储能电池模组智能测温系统和方法。
本发明通过以下技术方案来实现上述目的:一种集装箱式储能电池模组智能测温系统,其系统包括测温装置、系统硬件和系统软件,所述测温装置位于储能集装箱的中心位置,所述测温装置由传感器、谐波同步电机、同步轮、同步带、挡板、电机座、主轴承承座、双轴承、主旋转轴、固定板、旋转过线盒、固定螺杆、控制电源和底座构成;
所述传感器的两侧设有连杆卡放在挡板之间,且所述挡板通过螺栓竖直连接在传感器安置板上,所述谐波同步电机设置有两个,且其中一个所述谐波同步电机与位于传感器安置板下表面的电机座固定安置在一起,另一个所述谐波同步电机与通过螺栓连接在主轴承承座侧边的电机座固定安置在一起,所述传感器与谐波同步电机之间通过同步轮和同步带进行传动连接,所述主旋转轴与谐波同步电机之间通过同步轮和同步带进行传动连接,所述主轴承承座设置在传感器下方,所述双轴承套设在主旋转轴的轴身上,且所述主旋转轴的上端通过双轴承安插在主轴承承座中心处开设的通孔内,所述主旋转轴的底端通过紧固螺栓固定连接在固定板的上表面,所述固定板中心处开设的通孔内安置有旋转过线盒,所述固定板通过固定螺杆与底座连接在一起,所述控制电源安放在底座上;
所述系统硬件由S50LT点测温传感器探头、3D云台、控制器、监控后台四部分组成,所述系统软件由扫描控制系统和后台监控软件组成。
作为本发明进一步的方案:所述系统硬件采用S50LT点测温传感器探头与3D云台构成测温扫描平台,通过机械式的扫描测温动作,所述系统软件的扫描控制系统采用“测温扫描终端+现场监控平台”构成控制网络结构。
作为本发明进一步的方案:所述测温装置通过谐波同步电机进行高精度机械定位。
作为本发明进一步的方案:所述测温装置通过一条RS485总线实现对系统硬件的多台监控后台测温终端的通讯控制,监控平台实现任务分发,数据记录、以及提供数据查询的功能,另外也能通过局域网实现对测温终端的远程监控。
作为本发明进一步的方案:所述系统软件的扫描控制系统采用分层结构,分为上中下三层,上层为通信传输模块;中间是控制层;下层为传感器层。
作为本发明进一步的方案:所述系统软件的扫描控制系统主机采用“谐波步进电机+零位光电开关”的方式实现驱动控制,且谐波步进电机2是基于“机电一体化”思想,将谐波传动和步进电机有机地融合的一种低速直接驱动步进电机。
作为本发明进一步的方案:所述系统硬件的监控后台是高压电容器组自动测温扫描系统后台监控中枢,且监控平台系统运行硬件平台采用ARM11嵌入式系统。
作为本发明进一步的方案:所述监控后台功能模块分为三个方面:一是人机交换,提供可视化界面,响应人员操作;二是进行任务控制,统筹各测温终端,获取终端状态,分发任务;三是进行数据处理,记录测量数据,并将数据转发到EMS平台;
结合现场监控平台的ARM11硬件结构,采用Wince6.0(R3)操作系统,软件开发采用VS 2008 C#集成开发环境,功能页面设置自动运行,手动运行,参数设置模块,自动运行时各终端均安装设定脚本程序,自动执行测温任 务,手动运行主要用作调试,能直接控制终端的运动,并获取实时温度;参数设置提供界面对各终端的运行参数进行现场修改、保存。
作为本发明进一步的方案:所述系统软件的扫描控制系统采用MINI6410控制板和三星S3C6410处理器,提供4线电阻触摸屏模块、100M标准网络接口、红外接收口等常用接口;另外还引出3路ADC、1路DAC)备份电池、AD可调电阻、8按键(可引出)、4LED等丰富接口。
一种集装箱式储能电池模组智能测温系统的操作方法,其操作方法包括以下步骤:
步骤1、将测温装置安置于储能集装箱的中心位置,并将集装箱内部电池簇1设为起点X,Y,宽度为W,高度为H的扫描区域1,将电池簇N的位置设为区域2~N;
步骤2、由系统软件的扫描控制系统驱动谐波步进电机,其中一个谐波步进电机带动测温装置的主轴承承座转动,以实现传感器的水平转动,另一个谐波步进电机带动传感器进行垂直转动,实现对被测设备的多点测温;
步骤3、设置在传感器上的S50LT点测温传感器探头所测得的数据经由系统硬件的监控后台发到EMS平台;
步骤4、最后由系统硬件的监控后台对多台集装箱测温扫描装置进行控制,并实现测温数据的存储以及现场的查询。
本发明的有益效果是:该集装箱式储能电池模组智能测温系统和方法设计合理,通过对储能系统集装箱发热故障缺陷统计和观察现场测温结果发现,集装箱内部常见发热部位集中在母排搭接处、保险丝、电芯模块、和套管接头等部位,占到90%以上,结合统计获得的被测试设备的发热规律,通过扫描策略的优化,缩短其测温扫描时间,通过设定扫描区域对设备的关键部位进行监测,便能有效掌握设备的发热情况,并大幅节省扫描测温时间。
附图说明
图1为本发明测温装置结构示意图;
图2为本发明控制程序流程示意图;
图3为本发明系统分时控制流程示意图。
图中:1、传感器,2、谐波同步电机,3、同步轮,4、同步带,5、挡板,6、电机座,7、主轴承承座,8、双轴承,9、主旋转轴,10、固定板,11、旋转过线盒,12、固定螺杆,13、控制电源和14、底座。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1~3,一种集装箱式储能电池模组智能测温系统,其系统包括测温装置、系统硬件和系统软件,所述测温装置位于储能集装箱的中心位置,所述测温装置由传感器1、谐波同步电机2、同步轮3、同步带4、挡板5、电机座6、主轴承承座7、双轴承8、主旋转轴9、固定板10、旋转过线盒11、固定螺杆12、控制电源13和底座14构成;
所述传感器1的两侧设有连杆卡放在挡板5之间,且所述挡板5通过螺栓竖直连接在传感器安置板上,所述谐波同步电机2设置有两个,且其中一个所述谐波同步电机2与位于传感器安置板下表面的电机座6固定安置在一起,另一个所述谐波同步电机2与通过螺栓连接在主轴承承座7侧边的电机座6固定安置在一起,所述传感器1与谐波同步电机2之间通过同步轮3和同步带4进行传动连接,所述主旋转轴9与谐波同步电机2之间通过同步轮3和同步带4进行传动连接,所述主轴承承座7设置在传感器1下方,所述双轴承8套设在主旋转轴9的轴身上,且所述主旋转轴9的上端通过双轴承8安插在主轴承承座7中心处开设的通孔内,所述主旋转轴9的底端通过紧固螺栓固定连接在固定板10的上表面,所述固定板10中心处开设的通孔内安置有旋转过线盒11,所述固定板10通过固定螺杆12与底座14连接在一 起,所述控制电源13安放在底座14上;
所述系统硬件由S50LT点测温传感器探头、3D云台、控制器、监控后台四部分组成,所述系统软件由扫描控制系统和后台监控软件组成。
进一步的,在本发明实施例中,所述系统硬件采用S50LT点测温传感器探头与3D云台构成测温扫描平台,通过机械式的扫描测温动作,实现对被测设备的多点测温,所述系统软件的扫描控制系统采用“测温扫描终端+现场监控平台”构成控制网络结构,实现一台监控平台控制多台测温扫描终端,以简单、廉价的方式实现现场控制组网。
进一步的,在本发明实施例中,所述测温装置通过谐波同步电机2进行高精度机械定位,为实现区域扫描测温和高精度定位,利用系统的数控定位功能划分测温区域,通过程序编制有针对性的跟踪监测、温度预警的监测策略,实现区域化跟踪监测,提高测温效率。
进一步的,在本发明实施例中,所述测温装置通过一条RS485总线实现对系统硬件的多台监控后台测温终端的通讯控制,监控平台实现任务分发,数据记录、以及提供数据查询的功能,另外也能通过局域网实现对测温终端的远程监控。
进一步的,在本发明实施例中,所述系统软件的扫描控制系统采用分层结构,分为上中下三层,上层为通信传输模块;中间是控制层,实现装置X轴水平和Y轴垂直的转动功能,以及装置的控制板;下层为传感器层,用于固定点测温传感器,并实现其X、Y轴方向转动,使硬件系统只需驱动传感器1,需要力矩较小,且采用谐波同步电机2,通过同步带4实现X、Y轴的传动。
进一步的,在本发明实施例中,所述系统软件的扫描控制系统主机采用“谐波步进电机+零位光电开关”的方式实现驱动控制,且谐波步进电机2是基于“机电一体化”思想,将谐波传动和步进电机有机地融合的一种低速直接驱动步进电机,采用微机作为控制部件,通过编程使其在不同时刻输出 表示电机各相绕组通电状态的驱动码,再经过功率放大电路驱动谐波电机2。谐波步进电机2本身具有很高的定位精度,可达1:25000,再加上零位光电开关的零位检测,能有效补充装置的机械校准,减少整体装置的定位误差。
进一步的,在本发明实施例中,所述系统硬件的监控后台是高压电容器组自动测温扫描系统后台监控中枢,且监控平台系统运行硬件平台采用ARM11嵌入式系统,用于多台集装箱测温扫描装置的控制,测温数据的存储以及现场的查询。
进一步的,在本发明实施例中,所述监控后台功能模块分为三个方面:一是人机交换,提供可视化界面,响应人员操作;二是进行任务控制,统筹各测温终端,获取终端状态,分发任务;三是进行数据处理,记录测量数据,并将数据转发到EMS平台;
结合现场监控平台的ARM11硬件结构,采用Wince6.0(R3)操作系统,软件开发采用VS 2008 C#集成开发环境,功能页面设置自动运行,手动运行,参数设置模块,自动运行时各终端均安装设定脚本程序,自动执行测温任务,手动运行主要用作调试,能直接控制终端的运动,并获取实时温度;参数设置提供界面对各终端的运行参数进行现场修改、保存。
进一步的,在本发明实施例中,所述系统软件的扫描控制系统采用MINI6410控制板和三星S3C6410处理器,提供4线电阻触摸屏模块、100M标准网络接口、红外接收口等常用接口;另外还引出3路ADC、1路DAC)备份电池、AD可调电阻、8按键(可引出)、4LED等丰富接口,为提高测温扫描装置的工作可靠性,可以通过RS485接口与储能系统的EMS平台相连接,调度各个测温扫描装置运转。采用分时查询方法,轮流操控扫描装置,完成测温任务,将采集到的温度以及位置信息储存到EMS的数据库之中。
一种集装箱式储能电池模组智能测温系统的操作方法,其操作方法包括以下步骤:
步骤1、将测温装置安置于储能集装箱的中心位置,并将集装箱内部电池簇1设为起点X,Y,宽度为W,高度为H的扫描区域1,将电池簇N的位置设为区域2~N;
步骤2、由系统软件的扫描控制系统驱动谐波步进电机2,其中一个谐波步进电机2带动测温装置的主轴承承座7转动,以实现传感器1的水平转动,另一个谐波步进电机2带动传感器1进行垂直转动,实现对被测设备的多点测温;
步骤3、设置在传感器1上的S50LT点测温传感器探头所测得的数据经由系统硬件的监控后台发到EMS平台;
步骤4、最后由系统硬件的监控后台对多台集装箱测温扫描装置进行控制,并实现测温数据的存储以及现场的查询。
工作原理:在使用该集装箱式储能电池模组智能测温系统和方法时,通过对储能系统集装箱发热故障缺陷统计和观察现场测温结果发现,集装箱内部常见发热部位集中在母排搭接处、保险丝、电芯模块、和套管接头等部位,占到90%以上,结合统计获得的被测试设备的发热规律,通过扫描策略的优化,缩短其测温扫描时间。通过设定扫描区域对设备的关键部位进行监测,便能有效掌握设备的发热情况,并大幅节省扫描测温时间。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起 见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种集装箱式储能电池模组智能测温系统和方法,其系统包括测温装置、系统硬件和系统软件,其特征在于:所述测温装置位于储能集装箱的中心位置,所述测温装置由传感器(1)、谐波同步电机(2)、同步轮(3)、同步带(4)、挡板(5)、电机座(6)、主轴承承座(7)、双轴承(8)、主旋转轴(9)、固定板(10)、旋转过线盒(11)、固定螺杆(12)、控制电源(13)和底座(14)构成;
    所述传感器(1)的两侧设有连杆卡放在挡板(5)之间,且所述挡板(5)通过螺栓竖直连接在传感器安置板上,所述谐波同步电机(2)设置有两个,且其中一个所述谐波同步电机(2)与位于传感器安置板下表面的电机座(6)固定安置在一起,另一个所述谐波同步电机(2)与通过螺栓连接在主轴承承座(7)侧边的电机座(6)固定安置在一起,所述传感器(1)与谐波同步电机(2)之间通过同步轮(3)和同步带(4)进行传动连接,所述主旋转轴(9)与谐波同步电机(2)之间通过同步轮(3)和同步带(4)进行传动连接,所述主轴承承座(7)设置在传感器(1)下方,所述双轴承(8)套设在主旋转轴(9)的轴身上,且所述主旋转轴(9)的上端通过双轴承(8)安插在主轴承承座(7)中心处开设的通孔内,所述主旋转轴(9)的底端通过紧固螺栓固定连接在固定板(10)的上表面,所述固定板(10)中心处开设的通孔内安置有旋转过线盒(11),所述固定板(10)通过固定螺杆(12)与底座(14)连接在一起,所述控制电源(13)安放在底座(14)上;
    所述系统硬件由S50LT点测温传感器探头、3D云台、控制器、监控后台四部分组成,所述系统软件由扫描控制系统和后台监控软件组成。
  2. 根据权利要求1所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述系统硬件采用S50LT点测温传感器探头与3D云台构成测温扫描平台,通过机械式的扫描测温动作,所述系统软件的扫描控制系统采用“测温扫描终端+现场监控平台”构成控制网络结构。
  3. 根据权利要求1所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述测温装置通过谐波同步电机(2)进行高精度机械定位。
  4. 根据权利要求1所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述测温装置通过一条RS485总线实现对系统硬件的多台监控后台测温终端的通讯控制,监控平台实现任务分发,数据记录、以及提供数据查询的功能,另外也能通过局域网实现对测温终端的远程监控。
  5. 根据权利要求1所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述系统软件的扫描控制系统采用分层结构,分为上中下三层,上层为通信传输模块;中间是控制层;下层为传感器层。
  6. 根据权利要求1或5所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述系统软件的扫描控制系统主机采用“谐波步进电机+零位光电开关”的方式实现驱动控制,且谐波步进电机(2)是基于“机电一体化”思想,将谐波传动和步进电机有机地融合的一种低速直接驱动步进电机。
  7. 根据权利要求1所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述系统硬件的监控后台是高压电容器组自动测温扫描系统后台监控中枢,且监控平台系统运行硬件平台采用ARM11嵌入式系统。
  8. 根据权利要求7所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述监控后台功能模块分为三个方面:一是人机交换,提供可视化界面,响应人员操作;二是进行任务控制,统筹各测温终端,获取终端状态,分发任务;三是进行数据处理,记录测量数据,并将数据转发到EMS平台;
    结合现场监控平台的ARM11硬件结构,采用Wince6.0(R3)操作系统,软件开发采用VS 2008 C#集成开发环境,功能页面设置自动运行,手动运行,参数设置模块,自动运行时各终端均安装设定脚本程序,自动执行测温任 务,手动运行主要用作调试,能直接控制终端的运动,并获取实时温度;参数设置提供界面对各终端的运行参数进行现场修改、保存。
  9. 根据权利要求1所述的一种集装箱式储能电池模组智能测温系统和方法,其特征在于:所述系统软件的扫描控制系统采用MINI6410控制板和三星S3C6410处理器,提供4线电阻触摸屏模块、100M标准网络接口、红外接收口等常用接口;另外还引出3路ADC、1路DAC)备份电池、AD可调电阻、8按键(可引出)、4LED等丰富接口。
  10. 一种集装箱式储能电池模组智能测温系统操作方法,其特征在于,其操作方法包括以下步骤:
    步骤1、将测温装置安置于储能集装箱的中心位置,并将集装箱内部电池簇1设为起点(X,Y),宽度为W,高度为H的扫描区域1,将电池簇N的位置设为区域2~N;
    步骤2、由系统软件的扫描控制系统驱动谐波步进电机(2),其中一个谐波步进电机(2)带动测温装置的主轴承承座(7)转动,以实现传感器(1)的水平转动,另一个谐波步进电机(2)带动传感器(1)进行垂直转动,实现对被测设备的多点测温;
    步骤3、设置在传感器(1)上的S50LT点测温传感器探头所测得的数据经由系统硬件的监控后台发到EMS平台;
    步骤4、最后由系统硬件的监控后台对多台集装箱测温扫描装置进行控制,并实现测温数据的存储以及现场的查询。
PCT/CN2019/115904 2019-09-23 2019-11-06 一种集装箱式储能电池模组智能测温系统和方法 WO2021056698A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19934361.7A EP4037058A4 (en) 2019-09-23 2019-11-06 INTELLIGENT TEMPERATURE MEASUREMENT SYSTEM AND METHOD FOR CONTAINER-TYPE ENERGY STORAGE BATTERY MODULE
US17/257,366 US20210364365A1 (en) 2019-09-23 2019-11-06 Intelligent temperature measurement system for containerized energy storage battery modules and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910897116.2 2019-09-23
CN201910897116.2A CN110611128B (zh) 2019-09-23 2019-09-23 一种集装箱式储能电池模组智能测温系统和方法

Publications (1)

Publication Number Publication Date
WO2021056698A1 true WO2021056698A1 (zh) 2021-04-01

Family

ID=68891887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115904 WO2021056698A1 (zh) 2019-09-23 2019-11-06 一种集装箱式储能电池模组智能测温系统和方法

Country Status (4)

Country Link
US (1) US20210364365A1 (zh)
EP (1) EP4037058A4 (zh)
CN (1) CN110611128B (zh)
WO (1) WO2021056698A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202255687U (zh) * 2011-10-28 2012-05-30 惠州市亿能电子有限公司 一种动力电池箱立体式温度场检测系统
CN102706457A (zh) * 2012-05-24 2012-10-03 上海电力学院 基于超声测距温度补偿的红外测温装置
CN204348858U (zh) * 2015-01-16 2015-05-20 北京华特时代电动汽车技术有限公司 电池箱内部温度检测装置
US20150331059A1 (en) * 2013-01-30 2015-11-19 Yuruki Okada Battery monitoring device, power storage system, and control system
CN210346922U (zh) * 2019-09-23 2020-04-17 上海豫源电力科技有限公司 一种集装箱式储能电池模组智能测温装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064180A (en) * 1996-10-29 2000-05-16 General Motors Corporation Method and apparatus for determining battery state-of-charge using neural network architecture
CN103670921B (zh) * 2013-11-11 2016-06-08 北京能高自动化技术股份有限公司 风力发电机组智能状态监控系统
CN205685135U (zh) * 2016-06-24 2016-11-16 三门县职业中等专业学校 一种全自动数控皮带打磨机
CN206738048U (zh) * 2016-11-10 2017-12-12 徐丕义 利用浪潮驱动的动力设备
CN206451796U (zh) * 2016-11-11 2017-08-29 深圳市科陆电子科技股份有限公司 一种用于维持储能电池温度恒定的储热系统
CN206283290U (zh) * 2016-12-23 2017-06-27 南通东源新能源科技发展有限公司 一种储能电站
DE202017006725U1 (de) * 2017-03-17 2018-03-20 Klaus-Peter Schmidt Vorrichtung zur Temperaturüberwachung von Akkumulatoren auf Lithiumbasis in Akkupacks
CN207947651U (zh) * 2018-01-04 2018-10-09 安徽帕维尔智能技术有限公司 一种智能电网监测终端
CN108543555A (zh) * 2018-05-23 2018-09-18 国人机器人(天津)有限公司 一种谐波减速器检测用控温实验台
CN109066889A (zh) * 2018-09-07 2018-12-21 深圳市科陆电子科技股份有限公司 一种集装箱式储能系统
CN209267921U (zh) * 2018-09-14 2019-08-16 中航锂电技术研究院有限公司 一种集装箱储能电站使用的风道系统
CN208955749U (zh) * 2018-10-31 2019-06-07 东莞市新瑞能源技术有限公司 一种电池集装箱智能储能系统
CN209418721U (zh) * 2018-11-19 2019-09-20 浙江南都电源动力股份有限公司 集装箱式储能系统的电池热管理系统
CN109585735A (zh) * 2018-11-26 2019-04-05 上海融政能源科技有限公司 一种储能集装箱
CN109725588B (zh) * 2018-11-28 2021-04-02 中国科学院近代物理研究所 一种温度监测系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202255687U (zh) * 2011-10-28 2012-05-30 惠州市亿能电子有限公司 一种动力电池箱立体式温度场检测系统
CN102706457A (zh) * 2012-05-24 2012-10-03 上海电力学院 基于超声测距温度补偿的红外测温装置
US20150331059A1 (en) * 2013-01-30 2015-11-19 Yuruki Okada Battery monitoring device, power storage system, and control system
CN204348858U (zh) * 2015-01-16 2015-05-20 北京华特时代电动汽车技术有限公司 电池箱内部温度检测装置
CN210346922U (zh) * 2019-09-23 2020-04-17 上海豫源电力科技有限公司 一种集装箱式储能电池模组智能测温装置

Also Published As

Publication number Publication date
CN110611128A (zh) 2019-12-24
CN110611128B (zh) 2020-11-03
US20210364365A1 (en) 2021-11-25
EP4037058A4 (en) 2023-10-18
EP4037058A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
EP2728175A1 (en) Operation monitoring system, operation monitoring method, and program
CN114167291B (zh) 通信站点电力物联网蓄电池安全运维管理系统
CN201616712U (zh) 高压环网柜实时状态监测装置
CN203745083U (zh) 基于zigbee网络的高压隔离开关触头温度监控系统
CN103760838A (zh) 基于环境参数的服务器集群自动保护系统
CN105305428A (zh) 用双冗余方式提高风预测系统可靠性的方法及系统
CN215448457U (zh) 一种风机变桨轴承检测装置
CN103869381A (zh) 输电线路风力监测系统
CN105449716B (zh) 用于对比式太阳能供电设备的电池管理系统
CN210346922U (zh) 一种集装箱式储能电池模组智能测温装置
WO2021056698A1 (zh) 一种集装箱式储能电池模组智能测温系统和方法
CN206628834U (zh) 一种电网电压无功控制系统
CN209979068U (zh) 一种基于调度网络的点阵红外电缆室测温装置
CN104502741A (zh) 静止无功发生器远程在线监测系统
CN111638046A (zh) 一种gis设备在线监测系统及方法
CN201796281U (zh) 路灯智能监测终端与路灯广域监控系统
CN206757414U (zh) 一种基于巡检机器人变电站表计全覆盖的巡检系统
CN215338604U (zh) 一种吸附式红外窗口测温装置
CN202649744U (zh) 一种控制单元
CN212031997U (zh) 一种水电站自动化控制系统
CN114264982A (zh) 一种变压器巡检系统
CN203012166U (zh) 输电线路风力监测系统
CN218976411U (zh) 配网一站式监测系统
CN219351358U (zh) 一种储能pcs远程定位监控系统
CN207635199U (zh) 一种路灯天线监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019934361

Country of ref document: EP

Effective date: 20220425