WO2021056650A1 - 一种采用等离子热源进行双金属电弧增材制造的方法 - Google Patents

一种采用等离子热源进行双金属电弧增材制造的方法 Download PDF

Info

Publication number
WO2021056650A1
WO2021056650A1 PCT/CN2019/112834 CN2019112834W WO2021056650A1 WO 2021056650 A1 WO2021056650 A1 WO 2021056650A1 CN 2019112834 W CN2019112834 W CN 2019112834W WO 2021056650 A1 WO2021056650 A1 WO 2021056650A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding wire
wire
additive
cladding
welding
Prior art date
Application number
PCT/CN2019/112834
Other languages
English (en)
French (fr)
Inventor
程远
吴晓
袁玉荣
Original Assignee
南京英尼格玛工业自动化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京英尼格玛工业自动化技术有限公司 filed Critical 南京英尼格玛工业自动化技术有限公司
Publication of WO2021056650A1 publication Critical patent/WO2021056650A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to a method for bimetallic arc additive manufacturing using a plasma heat source, and belongs to the technical field of 3D printing.
  • additive Manufacturing commonly known as 3D printing, combines computer-aided design, material processing and molding technology, based on digital model files, and integrates special metal materials, non-metal materials and medical biological materials through software and numerical control systems. , According to the methods of extrusion, sintering, melting, light curing, spraying, etc., layer by layer, the manufacturing technology of manufacturing physical objects.
  • Additive manufacturing technology is often used in mold manufacturing, industrial design and other fields to make models, and then gradually used in the direct manufacturing of some products, and there are already parts printed using this technology.
  • the technology has applications in jewelry, footwear, industrial design, architecture, engineering and construction (AEC), automotive, aerospace, dental and medical industries, education, geographic information systems, civil engineering, guns, and other fields.
  • AEC engineering and construction
  • Arc Additive Manufacturing Technology (Wire Arc Additive Manufacture, WAAM) is a method that uses the principle of layer-by-layer cladding and uses arcs generated by welding machines such as MIG, TIG and PA as the heat source. , Through the addition of wire materials, under the control of the software program, the advanced digital manufacturing technology of metal parts is gradually formed from the line-surface-body according to the three-dimensional digital model.
  • the technical problem to be solved by the present invention is to provide a method for bimetallic arc additive manufacturing using a plasma heat source.
  • the method uses two different metal welding wires for simultaneous cladding, and the two metal alloys are added together to form a bimetallic Structured product. Compared with the strength or hardness of a single metal, the bimetal structured product has better performance.
  • a method for bimetallic arc additive manufacturing using a plasma heat source uses a plasma welding machine as the heat source.
  • the welding wire A and the welding wire B in the bimetal welding wire are used as cladding filler materials at the same time, and the welding wire A and the welding wire B pass through the welding wire respectively.
  • the corresponding wire feeding system sends the welding wire A and the welding wire B together into the molten pool generated by the plasma arc according to the required wire feeding speed to be melted to form a mixed welding wire;
  • the additive manufacturing software is used to model the workpiece to be printed, according to The material properties of the workpiece, determine the height of each layer of additive, use the arc additive manufacturing slicing software to slice the part according to the determined layer height in the Z direction.
  • the cladding method of each layer of slice is: the outer wall adopts The mixed welding wire is used for back-shaped linear cladding, and the inner layer is filled with the mixed welding wire for linear filling and cladding.
  • the mixed melting ratio of the welding wire A and the welding wire B is consistent with the wire feeding speed ratio of the welding wire A and the welding wire B.
  • each segment of additive weld bead is filled with a straight line
  • each segment of additive weld is filled along the X axis
  • each segment of additive weld is filled along the Y axis
  • each segment of additive weld is folded
  • the line shape is filled with a straight line.
  • the welding current of the plasma arc is 290A
  • the plasma gas flow rate is 1.8L/min
  • the deposition speed is 5mm/S
  • the shielding gas flow rate is 20L/min.
  • welding wire A is nickel-based Inconel718 welding wire
  • welding wire B is copper-based ER Cu welding wire
  • the wire feeding speed of welding wire A is 1.8m/min
  • the wire feeding speed of welding wire B is 0.9m/min.
  • the linear filling angle of the inner layer of the adjacent layer is 0-90°.
  • the present invention uses a plasma heat source for bimetallic arc additive manufacturing method.
  • the method uses a plasma welding machine as a heat source, and the welding wire A and the welding wire B in the bimetal welding wire are used as deposited filler materials, and the welding wire A and the welding wire B are respectively connected to them
  • the wire feeding system is used to feed the wires; the product to be printed is sliced using additive manufacturing software. After layered slices, the cladding method for odd-numbered slices is: each section of additive weld bead is deposited and cladding along the X axis.
  • each section of the additive weld bead is deposited along the Y-axis direction, and the welding wire A and the welding wire B are alternately cladding in each section of the additive weld.
  • the present invention uses a plasma heat source for bimetallic arc additive manufacturing method.
  • the method uses a plasma welding machine as a heat source, and the welding wire A and the welding wire B in the bimetal welding wire are used as deposited filler materials, and the welding wire A and the welding wire B are respectively connected to them
  • the wire feeding system is used to feed the wires; the product to be printed is sliced using additive manufacturing software. After layered slices, the cladding method for odd-numbered slices is: each section of additive weld bead is deposited and cladding along the X axis.
  • the welding wire A and the welding wire B are alternately cladding in each segment of the additive weld, and the alternate method of the A and B welding wires in the adjacent additive weld bead is staggered; the welding method for even-numbered layer slices is: each segment of the additive weld is deposited along the Y axis direction , The welding wire A and the welding wire B are alternately cladding in each segment of the additive welding pass, and the alternate way of the welding wire A and the welding wire B in the adjacent additive welding pass is staggered.
  • the method of the present invention can use a TIG arc heat source or a laser cladding heat source to replace the plasma arc heat source.
  • the selection of the metal wire material is determined by the original product or the expected organizational performance requirements, such as strength and hardness, that is, what kind of material the original product is made of or the expected organizational performance requirements, which are selected in the 3D printing process
  • One of the metal wire materials (main metal wire materials) is basically the same as the original product or meets the expected performance requirements, and then a metal wire with good compatibility with the above-mentioned metal wire is added to it Material, so as to further improve the strength or hardness of the product or other properties.
  • the invention adopts a plasma heat source for bimetallic arc additive manufacturing, and controls the mixing ratio of the two metal wires by controlling the different wire feeding speeds of the two metal wires, thereby obtaining products with required performance.
  • Fig. 1 is the printing path of the first layer after the additive manufacturing software in the printing method of the present invention models the workpiece to be printed and slices it according to the properties of the material itself;
  • Figure 2 shows the printing path of the second layer after the first layer is printed in Figure 1;
  • Figure 3 is a schematic diagram of the filling method of the bimetallic fuse in the method of the present invention.
  • Figure 4 shows the additive manufacturing software modeling the workpiece to be printed, and layering and slicing it according to the properties of the material itself;
  • FIG. 5 is a schematic diagram of a printing method of odd-numbered layers in Embodiment 2;
  • FIG. 6 is a schematic diagram of a printing method of an even-numbered layer in Embodiment 2;
  • FIG. 7 is a schematic diagram of the printing method of the odd-numbered layer in the third embodiment.
  • the method of the present invention uses additive manufacturing software to model the workpiece to be printed. According to the material properties of the workpiece, the height of each additive layer is determined, and the arc additive manufacturing slicing software is used in the Z direction The digital model of the part is sliced in layers according to the determined layer height to obtain the two-dimensional contour map of the part model, and the offset algorithm or the parallel line scanning algorithm is used to generate the additive path corresponding to each point on each plane (each layer).
  • the method of the present invention uses a Plasma plasma welding machine as the heat source, and is driven by additive manufacturing software, so that the two corresponding metal wires in the two wire feeding systems are fed into the plasma arc at a certain wire feeding speed for simultaneous cladding. The wire feeding amount (wire feeding speed) of the two welding wires is separately controlled to obtain the proportion of the two welding wire metals in the welding bead.
  • the two wires of bimetallic materials used in the method of the present invention are nickel-based Inconel718 welding wire (wire A) and copper-based ER Cu welding wire (welding wire B); the welding current of the plasma arc is 290A, and the plasma gas flow rate is 1.8L/min.
  • the deposition speed is 5mm/S
  • the shielding gas flow rate is 20L/min
  • the wire feeding speed of welding wire A is 1.8m/min
  • the wire feeding speed of welding wire B is 0.9m/min
  • the welding wire A and welding wire B are respectively set at 1.8m/min.
  • the wire feeding speed of 0.9m/min and 0.9m/min is fed into the molten pool generated by the plasma arc for melting, forming a mixed welding wire of welding wire A and welding wire B; using additive manufacturing software to model the workpiece to be printed, according to the workpiece Material properties, determine the height of each additive layer, use the arc additive manufacturing slicing software to slice the parts according to the determined layer height in the Z direction.
  • the cladding method of each layer is: the mixed welding wire used on the outer wall Carry out the back-shaped linear cladding, the inner layer uses the mixed welding wire for the broken line linear filling cladding; the waiting time is set between the layers, the waiting time between each layer is 30 ⁇ 60S; the printing volume is 150mm*60mm* For a 60mm workpiece, the printing time is 120min. After printing, it can be cooled to room temperature naturally. As shown in Figure 3, each section of cladding weld bead is 66.7% welding wire A + 33.3% welding wire B (mixed welding wire).
  • each layer is a product with a bimetallic structure obtained by adding two alloys of Inconel718 and copper alloy.
  • thermophysical properties and mechanical properties of the product are effectively improved.
  • the strength of the product (part) in subsequent applications can be increased by 80%, and the cooling rate can be increased by 250%.
  • the present invention uses a plasma heat source for bimetallic arc additive manufacturing.
  • the method uses a plasma welding machine as the heat source, and the welding wire A and the welding wire B in the bimetal welding wire are used as the deposited filler material, according to
  • the slicing path generated by the additive manufacturing software is linearly alternately braided and cladding; specifically: using the additive manufacturing software to slice the product to be printed in layers.
  • the cladding method for odd-numbered slices is: each segment of additive welding The pass is cladding along the X-axis direction.
  • each segment of the additive welding pass the welding wire A and the welding wire B are alternately cladding, and the alternating method of the A welding wire and the B welding wire in the adjacent additive welding pass is staggered; the welding method for the even-numbered layer slice is: each segment of additive welding The pass is cladding along the Y-axis direction, and the welding wire A and the welding wire B are alternately cladding in each segment of the additive welding pass, and the alternating patterns of the welding wire A and the welding wire B in the adjacent additive welding pass are staggered.
  • the bimetallic interlaced structure makes the product have high tensile strength, the elongation is greatly increased, and the plastic deformation ability is also greatly improved, so that its structure performance has higher strength, hardness, crack arrest ability, and has high bearing and impact resistance.
  • the present invention uses a plasma heat source for bimetallic arc additive manufacturing method.
  • the method uses a plasma welding machine as a heat source, and the welding wire A and the welding wire B in the bimetal welding wire are used as deposited filler materials, and the slice path generated by the additive manufacturing software Perform linear alternating braiding and cladding; specifically: use additive manufacturing software to slice the product to be printed.

Abstract

一种采用等离子热源进行双金属电弧增材制造的方法,采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B同时作为熔覆的填充材料,焊丝A和焊丝B分别通过与其对应的送丝系统按照所需的送丝速度将焊丝A和焊丝B一起送入等离子弧产生的熔池中进行熔化,形成混熔焊丝;利用增材制造软件对待打印的工件进行建模,根据该工件的材料性能,确定每层增材层高,用电弧增材制造切片软件在Z方向上对零件数模按照确定层高进行分层切片,每层切片的熔覆方式为:外壁采用的混熔焊丝进行回字型直线熔覆,内层采用混熔焊丝进行直线填充熔覆。

Description

一种采用等离子热源进行双金属电弧增材制造的方法 技术领域
本发明涉及一种采用等离子热源进行双金属电弧增材制造的方法,属于3D打印技术领域。
背景技术
增材制造(Additive Manufacturing,AM)俗称3D打印,融合了计算机辅助设计、材料加工与成型技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。
增材制造技术常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。
电弧增材制造技术(Wire Arc Additive Manufacture,WAAM)是一种利用逐层熔覆原理,采用熔化极惰性气体保护焊接(MIG)、钨极惰性气体保护焊接(TIG)以及等离子体焊接电源(PA)等焊机产生的电弧为热源,通过丝材的添加,在软件程序的控制下,根据三维数字模型由线-面-体逐渐成形出金属零件的先进数字化制造技术。
技术问题
本发明所要解决的技术问题是提供一种采用等离子热源进行双金属电弧增材制造的方法,该方法采用两种不同的金属焊丝同时进行熔覆,将两种金属合金相加合形成具有双金属结构的产品,该产品相比于单一种金属的强度或硬度,双金属结构产品具有更优的性能。
技术解决方案
为解决上述技术问题,本发明所采用的技术方案为:
一种采用等离子热源进行双金属电弧增材制造的方法,该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B同时作为熔覆的填充材料,焊丝A和焊丝B分别通过与其对应的送丝系统按照所需的送丝速度将焊丝A和焊丝B一起送入等离子弧产生的熔池中进行熔化,形成混熔焊丝;利用增材制造软件对待打印的工件进行建模,根据该工件的材料性能,确定每层增材层高,用电弧增材制造切片软件在Z方向上对零件数模按照确定层高进行分层切片,每层切片的熔覆方式为:外壁采用的混熔焊丝进行回字型直线熔覆,内层采用混熔焊丝进行直线填充熔覆。
其中,混熔焊丝中,焊丝A和焊丝B的混熔比例与焊丝A和焊丝B的送丝速度比例一致。
其中,内层的填充方式有:每段增材焊道呈回字型直线填充、每段增材焊道沿X轴方向进行直线填充、每段增材焊道沿Y轴方向进行直线填充或每段增材焊道呈折线形进行直线填充。
其中,等离子弧的焊接电流为290A,等离子气流量为1.8L/min,沉积速度为5mm/S,保护气流量为20L/min。
其中,焊丝A为镍基 Inconel718焊丝,焊丝B为铜基ER Cu焊丝,焊丝A的送丝速度为1.8m/min,焊丝B的送丝速度为0.9m/min。
其中,当内层的直线填充方式采用每段增材焊道呈折线形进行直线填充时,相邻层的内层的直线填充夹角为0~90°。
本发明采用等离子热源进行双金属电弧增材制造的方法,该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B作为熔敷的填充材料,焊丝A和焊丝B分别通过与其连接的送丝系统进行送丝;利用增材制造软件对待打印的产品进行分层切片,分层切片后,对于奇数层切片的熔覆方式为:每段增材焊道沿X轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆;对于偶数层切片的熔覆方式为:每段增材焊道沿Y轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆。每段增材焊道的单位长度为L,L=X%焊丝A+(1-X%)%焊丝B。
本发明采用等离子热源进行双金属电弧增材制造的方法,该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B作为熔敷的填充材料,焊丝A和焊丝B分别通过与其连接的送丝系统进行送丝;利用增材制造软件对待打印的产品进行分层切片,分层切片后,对于奇数层切片的熔覆方式为:每段增材焊道沿X轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆,相邻增材焊道中A焊丝和B焊丝的交替方式错开;对于偶数层切片的焊接方式为:每段增材焊道沿Y轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆,相邻增材焊道中焊丝A和焊丝B的交替方式错开。每段增材焊道的单位长度为L,L=X%焊丝A+(1-X%)%焊丝B。
本发明方法可以采用TIG弧热源或激光熔敷热源替换等离子弧热源。
本发明方法中,金属丝材的选择根据原产品决定或者预期的组织性能要求,如强度、硬度,即原产品采用什么样的材质制成或者预期的组织性能要求,3D打印过程中选用的其中之一金属丝材(主要的金属丝材)的材质与原产品的材质成分基本相同或和符合预期的性能要求相同,然后再往里面添加一种与上述金属丝材相容性好的金属丝材,从而进一步提高产品的强度或硬度或其他方面的性能。
有益效果
本发明采用等离子热源进行双金属电弧增材制造,通过控制两种金属丝材不同的送丝速度来控制两种金属丝材的混熔比例,从而得到所需性能的产品。
附图说明
图1为本发明打印方法中增材制造软件对待打印的工件进行建模,并根据材质本身性能对其进行分层切片后首层的打印路径;
图2为图1首层打印后第二层的打印路径;
图3为本发明方法双金属熔丝的填充方式示意图;
图4为增材制造软件对待打印的工件进行建模,并根据材质本身性能对其进行分层切片;
图5为实施例2中奇数层的打印方式示意图;
图6为实施例2中偶数层的打印方式示意图;
图7为实施例3中奇数层的打印方式示意图。
本发明的实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1
如图1~2所示,本发明方法采用增材制造软件对待打印的工件进行建模,根据该工件的材料性能,确定每层增材层高,用电弧增材制造切片软件在Z方向上对零件数模按照确定层高进行分层切片,得到零件模型的二维轮廓图,使用偏置算法或平行线扫描算法生成每个平面(每层)上对应每个点的增材路径。本发明方法采用Plasma等离子焊机作为热源,通过增材制造软件控制驱动,让两个送丝系统里面对应的两种金属丝材按照一定的送丝速度送入等离子弧中同时熔覆,通过对两根焊丝送丝量(送丝速度)的分别控制,以获得两种焊丝金属在焊道中的占比。
本发明方法使用的双金属材料的两种丝材为镍基 Inconel718焊丝(焊丝A)和铜基ER Cu焊丝(焊丝B);等离子弧的焊接电流为290A,等离子气流量为1.8L/min,沉积速度为5mm/S,保护气体流量为 20L/min,焊丝A的送丝速度为1.8m/min,焊丝B的送丝速度为0.9m/min;将焊丝A和焊丝B分别以1.8m/min和0.9m/min的送丝速度送入等离子弧产生的熔池中进行熔化,形成焊丝A和焊丝B的混熔焊丝;利用增材制造软件对待打印的工件进行建模,根据该工件的材料性能,确定每层增材层高,用电弧增材制造切片软件在Z方向上对零件数模按照确定层高进行分层切片,每层切片的熔覆方式为:外壁采用的混熔焊丝进行回字型直线熔覆,内层采用混熔焊丝进行折线形直线填充熔覆;层与层之间设置等待时间,每层的层间等待时间为30~60S;打印体积为150mm*60mm*60mm的工件,打印时间为120min,打印完毕后自然冷却至室温即可。如图3所示,每段熔覆焊道中为66.7%焊丝A+33.3%焊丝B(混熔焊丝)。实施例中每层采用Inconel718和铜合金两种合金相加合得到的具有双金属结构的产品,与单一Inconel718合金制备的产品相比,产品的热物理性能和力学性能均得到有效改善,在3D打印过程中添加铜后,产品(零件)在后续应用中的强度可提高80%,冷却速度可提高250%。
实施例2
如图4~6所示,本发明采用等离子热源进行双金属电弧增材制造的方法,该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B作为熔敷的填充材料,根据增材制造软件生成的切片路径进行直线交替编织熔覆;具体为:利用增材制造软件对待打印的产品进行分层切片,分层切片后,对于奇数层切片的熔覆方式为:每段增材焊道沿X轴方向进行熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆,相邻增材焊道中A焊丝和B焊丝的交替方式错开;对于偶数层切片的焊接方式为:每段增材焊道沿Y轴方向进行熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆,相邻增材焊道中焊丝A和焊丝B的交替方式错开。双金属交织结构使产品具有高的抗拉强度,延伸率大幅增长,塑性变形能力也大幅提高,从而其组织性能具有更高的强度、硬度、止裂能力以及具备承载高抗冲击等性能。
实施例3
本发明采用等离子热源进行双金属电弧增材制造的方法,该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B作为熔敷的填充材料,根据增材制造软件生成的切片路径进行直线交替编织熔覆;具体为:利用增材制造软件对待打印的产品进行分层切片,分层切片后,对于奇数层切片的熔覆方式为:每段增材焊道沿X轴方向进行熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆;对于偶数层切片的熔覆方式为:每段增材焊道沿Y轴方向进行熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆。

Claims (10)

  1. 一种采用等离子热源进行双金属电弧增材制造的方法,其特征在于:该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B同时作为熔覆的填充材料,焊丝A和焊丝B分别通过与其连接的送丝系统按照对应的送丝速度将焊丝A和焊丝B一起送入等离子弧产生的熔池中进行熔化,形成混熔焊丝;利用增材制造软件对待打印的工件进行建模,根据该工件的材料性能,确定每层增材层高,用电弧增材制造切片软件在Z方向上对零件数模按照确定层高进行分层切片,每层切片均采用混熔焊丝进行熔覆。
  2. 一种采用等离子热源进行双金属电弧增材制造的方法,其特征在于:该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B作为熔敷的填充材料,焊丝A和焊丝B分别通过与其连接的送丝系统进行交替送丝;利用增材制造软件对待打印的产品进行分层切片,分层切片后,对于奇数层切片的熔覆方式为:每段增材焊道沿X轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆;对于偶数层切片的熔覆方式为:每段增材焊道沿Y轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆。
  3. 一种采用等离子热源进行双金属电弧增材制造的方法,其特征在于:该方法采用等离子焊机作为热源,双金属焊丝中的焊丝A和焊丝B作为熔敷的填充材料,焊丝A和焊丝B分别通过与其连接的送丝系统进行交替送丝;利用增材制造软件对待打印的产品进行分层切片,分层切片后,对于奇数层切片的熔覆方式为:每段增材焊道沿X轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆,相邻增材焊道中A焊丝和B焊丝的交替方式错开;对于偶数层切片的焊接方式为:每段增材焊道沿Y轴方向进行堆积熔覆,每段增材焊道中焊丝A和焊丝B交替熔覆,相邻增材焊道中焊丝A和焊丝B的交替方式错开。
  4. 根据权利要求1或2或3所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:等离子弧的焊接电流为290A,等离子气流量为1.8L/min,沉积速度为5mm/S,保护气流量为20L/min。
  5. 根据权利要求1或2或3所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:采用TIG弧热源或激光熔敷热源替换等离子弧热源。
  6. 根据权利要求2或3所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:每段增材焊道的单位长度为L,L=X%焊丝A+(1-X%)%焊丝B。
  7. 根据权利要求1所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:每层切片的熔覆方式为:外壁采用的混熔焊丝进行回字型直线熔覆,内层采用混熔焊丝进行直线填充熔覆。
  8. 根据权利要求7所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:混熔焊丝中,焊丝A和焊丝B的混熔比例与焊丝A和焊丝B的送丝速度比例一致。
  9. 根据权利要求7所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:内层的填充方式有:每段增材焊道呈回字型直线填充、每段增材焊道沿X轴方向进行直线填充、每段增材焊道沿Y轴方向进行直线填充或每段增材焊道呈折线形进行直线填充;当内层的直线填充方式采用每段增材焊道呈折线形进行直线填充时,相邻层的内层的直线填充夹角为0~90°。
  10. 根据权利要求7所述的采用等离子热源进行双金属电弧增材制造的方法,其特征在于:每段增材焊道的单位长度为L,L=66.7%焊丝A+33.3%焊丝B。
PCT/CN2019/112834 2019-09-26 2019-10-23 一种采用等离子热源进行双金属电弧增材制造的方法 WO2021056650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910909730.6A CN110722249B (zh) 2019-09-26 2019-09-26 一种采用等离子热源进行双金属电弧增材制造的方法
CN201910909730.6 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021056650A1 true WO2021056650A1 (zh) 2021-04-01

Family

ID=69219332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112834 WO2021056650A1 (zh) 2019-09-26 2019-10-23 一种采用等离子热源进行双金属电弧增材制造的方法

Country Status (2)

Country Link
CN (1) CN110722249B (zh)
WO (1) WO2021056650A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644729A (zh) * 2020-06-10 2020-09-11 西安增材制造国家研究院有限公司 一种电弧熔丝增材制造成型方法
CN112518062A (zh) * 2020-11-04 2021-03-19 哈尔滨工业大学(威海) 一种用于异种接头元素调控的激光交替填丝焊接方法
CN114799441B (zh) * 2022-04-15 2023-09-15 温州大学 一种含钴的Inconel625-Co合金及其制备方法
CN116727914A (zh) * 2023-08-11 2023-09-12 苏芯物联技术(南京)有限公司 一种短焊缝场景下焊接保护气实时智能控制方法
CN117300318B (zh) * 2023-11-29 2024-03-15 陕西鼎益科技有限公司 一种熔池中间过渡多环形覆熔增材打印方法及系统
CN117300296B (zh) * 2023-11-30 2024-03-01 苏州融速智造科技有限公司 无氩气保护下优化电弧增材焊道的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027997A1 (en) * 2013-07-26 2015-01-29 Ernst Miklos Welding torch, welding apparatus and method of welding using hollow electrode and filler material
CN108067715A (zh) * 2016-11-11 2018-05-25 南京理工大学 一种机器人等离子弧双冷填丝自动增材制造方法及装置
CN109277675A (zh) * 2018-10-31 2019-01-29 南京理工大学 基于等离子熔丝增材的高强度ta18钛合金构件制备方法
CN109986169A (zh) * 2019-04-24 2019-07-09 南京英尼格玛工业自动化技术有限公司 一种基于mig/mag热源的双金属电弧增材制造方法
CN110039155A (zh) * 2019-04-24 2019-07-23 南京英尼格玛工业自动化技术有限公司 一种采用mig/mag作为热源的双金属电弧增材制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203529B (zh) * 2013-03-28 2015-12-09 北京工业大学 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
CN107116290B (zh) * 2017-06-08 2019-04-30 南华大学 双丝等离子弧堆焊制造颗粒增强金属基复合材料的方法
CN107790866A (zh) * 2017-11-09 2018-03-13 攀钢集团攀枝花钢铁研究院有限公司 双金属电子束熔丝增材制造方法
CN109926705B (zh) * 2017-12-15 2021-11-30 南京理工大学 一种用于机器人的等离子弧双电源双热丝增材制造方法及装置
CN108788389B (zh) * 2018-06-21 2020-09-25 哈尔滨工业大学 一种梯度材料双丝双钨极氩弧增材制造的装置与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027997A1 (en) * 2013-07-26 2015-01-29 Ernst Miklos Welding torch, welding apparatus and method of welding using hollow electrode and filler material
CN108067715A (zh) * 2016-11-11 2018-05-25 南京理工大学 一种机器人等离子弧双冷填丝自动增材制造方法及装置
CN109277675A (zh) * 2018-10-31 2019-01-29 南京理工大学 基于等离子熔丝增材的高强度ta18钛合金构件制备方法
CN109986169A (zh) * 2019-04-24 2019-07-09 南京英尼格玛工业自动化技术有限公司 一种基于mig/mag热源的双金属电弧增材制造方法
CN110039155A (zh) * 2019-04-24 2019-07-23 南京英尼格玛工业自动化技术有限公司 一种采用mig/mag作为热源的双金属电弧增材制造方法

Also Published As

Publication number Publication date
CN110722249A (zh) 2020-01-24
CN110722249B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021056650A1 (zh) 一种采用等离子热源进行双金属电弧增材制造的方法
WO2020215633A1 (zh) 一种基于mig/mag热源的双金属电弧增材制造方法
Fang et al. Study on metal deposit in the fused-coating based additive manufacturing
Duda et al. 3D metal printing technology
US9302338B2 (en) Method for manufacturing metal parts and molds and micro-roller used therefor
US7704565B2 (en) Method of making a layered component with vector discrimination in a variable deposition rate process
CN110039155B (zh) 一种采用mig/mag作为热源的双金属电弧增材制造方法
CN105478766B (zh) 一种制备千层钢板的方法
CN105710377A (zh) 使用用于复合部件的复合增材制造特征的复合增材制造方法
KR20160118342A (ko) 금속 및 플럭스의 프리폼들을 이용한 초합금 솔리드 자유형상 프리폼 제작 및 보수
CN105643053A (zh) 熔化极气体保护电弧熔敷三维打印方法
CN105965018A (zh) 一种电子束熔丝近净增材制造方法
CN110026650B (zh) 一种基于多cmt系统的异种材料复合结构增材制造方法
Oliari et al. Additive manufacturing of H11 with wire-based laser metal deposition
Cui et al. WAAM process for metal block structure parts based on mixed heat input
JP2018162500A (ja) 積層造形物の製造方法及び製造システム
CN104289797A (zh) 一种mig快速成形的系统
CN110603115A (zh) 层叠造型部件的接合方法及结构体、以及层叠造型部件
Shen et al. A path generation method for wire and arc additive remanufacturing of complex hot forging dies
Jhavar et al. Development of micro-plasma wire deposition process for layered manufacturing
JP2019076916A (ja) 積層造形物の製造方法及び積層造形物
JP2019098381A (ja) 積層造形物の製造方法及び製造装置
JP2019063858A (ja) 積層造形物の製造方法及び積層造形物
Karunakaran et al. Hybrid layered manufacturing: direct rapid metal tool-making process
JP7181154B2 (ja) 積層造形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947416

Country of ref document: EP

Kind code of ref document: A1