WO2021056645A1 - 弹性成像方法、系统及计算机可读存储介质 - Google Patents

弹性成像方法、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2021056645A1
WO2021056645A1 PCT/CN2019/112507 CN2019112507W WO2021056645A1 WO 2021056645 A1 WO2021056645 A1 WO 2021056645A1 CN 2019112507 W CN2019112507 W CN 2019112507W WO 2021056645 A1 WO2021056645 A1 WO 2021056645A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation path
main propagation
processor
tested tissue
motion parameter
Prior art date
Application number
PCT/CN2019/112507
Other languages
English (en)
French (fr)
Inventor
李双双
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201980098269.9A priority Critical patent/CN114072066A/zh
Publication of WO2021056645A1 publication Critical patent/WO2021056645A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties

Definitions

  • This application relates to the field of medical technology, and in particular to an elastography method, system, and computer-readable storage medium.
  • Instantaneous elastography uses the vibration of the probe to generate a shear wave that is transmitted to the tested tissue, and transmits ultrasound to detect the internal displacement of the tissue, thereby calculating and displaying the elastic parameters of the tested tissue.
  • a motion parameter image of tissue displacement or strain is generally provided.
  • the embodiments of the present application provide an elasticity imaging method, system, and computer-readable storage medium, which can improve the comprehensibility of elasticity test results.
  • an elastography method is provided, which is applied to an elastography system.
  • the elastography system includes a probe, a transmitting circuit connected to the probe, a receiving circuit connected to the probe, and a receiving circuit connected to the receiving device.
  • a beam combiner of a circuit, a processor connected to the beam combiner, and a display screen for displaying image information transmitted by the processor, the elastic imaging method includes:
  • the processor is controlled to display the main propagation path map and the elasticity information of the tested tissue in the display screen.
  • an elastography method which includes:
  • an elastography method which includes:
  • an elastography method including:
  • an elastography system including:
  • the probe is used to transmit the first ultrasonic wave to the tested tissue to track the shear wave propagating in the tested tissue, and the probe is also used to receive the first ultrasonic echo returned by the tested tissue to obtain the first ultrasonic echo -Ultrasonic echo data;
  • the display screen is connected to the processor, and the processor is used to display the main propagation path map and the elasticity information of the tested tissue in the display screen.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program for electronic data exchange, wherein the computer program causes a computer to execute the method described in any of the foregoing embodiments. Some or all of the steps described.
  • the elastic imaging method, system, and computer-readable storage medium of the embodiments of the present application obtain the main propagation path of the shear wave according to the motion parameter or the motion parameter image, and display the main propagation path.
  • the motion parameter image caused by the probe can be reduced. Vibration will cause various after-waves, reflected waves and other interference information to cause medical staff to be unable to more accurately explain the insufficiency of the meaning displayed by the motion parameter image, and it is also helpful to improve the intelligibility of the elasticity test results.
  • FIG. 1 is a schematic diagram of the hardware structure of an elasticity imaging system in an embodiment of the present application.
  • Fig. 2 is a flow chart of the steps of an elastography method in an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a motion parameter image in an embodiment of the present application.
  • Fig. 4 is a block diagram of the hardware structure of the probe in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of multiple band-shaped regions in a motion parameter image in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of binarization of the main propagation path graph in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of non-binarization of the main propagation path graph in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the main propagation path in an embodiment of the present application.
  • Fig. 9 is a flow chart of the steps of an elastography method in an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of an elastography system in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a motion parameter image in an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a motion parameter image in another embodiment of the present application.
  • Fig. 13 is a schematic diagram of a motion parameter image in still another embodiment of the present application.
  • the elastography system 10 may include a probe 100, a transmitting circuit 102 connected to the probe 100, a receiving circuit 104 connected to the probe 100, a beam combiner 106, a processor 110, and a display 112.
  • the receiving circuit 104, the beam combiner 106, The processor 110 and the display 112 can be electrically connected in sequence.
  • the elastography system 10 can obtain the motion parameter or motion parameter image of the tested tissue, and obtain the main propagation path of the shear wave in the tested tissue according to the motion parameter or motion parameter image, and can display it on the display screen. The main propagation path is displayed in 112.
  • the main propagation path can be a single path that can accurately represent the propagation position of shear waves at different depths, various residual waves, reflected waves and other interference information can be excluded when acquiring the main propagation path. In this way, medical staff intuitively pass the inclusion of the main propagation path.
  • the motion parameter image of the propagation path or the main propagation path diagram for diagnosis is beneficial to improve the intelligibility of the elasticity test results.
  • the beam combiner 106 and the processor 110 may be implemented by a dedicated circuit or a commercially available chip.
  • FIG. 2 shows a flow chart of the steps of the elastography method in an embodiment of the present application.
  • the elastography method includes the following steps:
  • Step 200 Obtain a motion parameter image of the tissue under test.
  • the transmitting circuit 102 transmits the first transmitting sequence to the probe 100 to control the probe 100 to transmit the first ultrasonic wave to the tested tissue, where the first ultrasonic wave is used to track the shear wave propagating in the tested tissue.
  • the probe 100 can receive the first ultrasonic echo with the information of the test object reflected from the tested tissue.
  • the probe 100 can convert this ultrasonic echo into an electrical signal.
  • the receiving circuit 104 receives the electric signal converted and generated by the probe 100 to obtain the first ultrasonic echo data, and sends the first ultrasonic echo data to the beam combiner 106.
  • the beam combiner 106 performs beam combining processing such as focus delay, weighting, and channel summation on the ultrasonic echo data, and then sends the ultrasonic echo data after beam processing to the processor 110, which is based on the first ultrasonic echo
  • the data acquires the motion parameter or motion parameter image of the tissue under test, and is used to display it on the display screen 112.
  • FIG. 3 shows a schematic diagram of a motion parameter image in an embodiment of the application.
  • the motion parameter image includes horizontal time attributes and vertical depth attributes.
  • the processor 110 obtains the motion parameters of the tested tissue at different times and at different depths caused by the propagation of the shear wave in the tested tissue based on the first ultrasonic echo data, where the motion parameters may include displacement and velocity. Or strain.
  • the processor 110 compares and analyzes the first ultrasonic echo data obtained at different times (such as a cross-correlation algorithm), and can calculate the displacement of the tested tissue at different times, and the first echo from different depths of the tested tissue
  • the data is separately calculated for displacement, and finally a displacement matrix corresponding to different depths and different times can be obtained.
  • each data represents the displacement information of the measured tissue at a certain depth at a certain time.
  • the strain matrix can be obtained accordingly.
  • each data represents the strain information of a certain depth of the tissue under test at a certain moment.
  • the processor 110 may determine the motion parameter image 150 of the tissue under test based on the motion parameters of the shear wave at different times and at different depths.
  • the probe 100 includes an array-type acoustic head 130, a vibrator 132, and a sensor 134 located between the array-type acoustic head 130 and the vibrator 132.
  • the transmitting circuit 102 may transmit an excitation sequence to the probe 100 to control the vibrator 132 of the probe 100 to vibrate and generate shear waves in the tissue under test.
  • the array acoustic head 130 of the probe 100 tracks the shear wave propagating in the tested tissue according to the first emission timing.
  • the array acoustic head 130 includes a preset number of array elements, and the arrangement of the array elements of the array acoustic head 130 is a linear arrangement or a fan arrangement.
  • the sensor 132 is used to sense the force with which the probe 100 presses the tested tissue. In an embodiment, the probe 100 may not include the sensor 134.
  • the medical staff may need to detect a target location range of the tested tissue. Therefore, the medical staff needs to select the region of interest corresponding to the target location range in the basic image, where the basic image includes the B image , One or more of C images.
  • the transmitting circuit 102 transmits a second transmission sequence to the probe 100 to control the probe 100 to transmit the second ultrasonic wave to the tissue under test. After the probe 100 transmits the second ultrasonic wave to the tested tissue, after a certain delay, the probe 100 can receive the second ultrasonic echo with the information of the test object reflected from the tested tissue. The probe 100 can convert this ultrasonic echo into an electrical signal.
  • the receiving circuit 104 receives the electric signal converted and generated by the probe 100 to obtain the second ultrasonic echo data, and sends the second ultrasonic echo data to the beam combiner 106.
  • the beam combiner 106 performs beam combining processing such as focus delay, weighting, and channel summation on the ultrasound echo data, and then sends the ultrasound echo data after beam processing to the processor 110, and the processor 110 performs imaging according to the user's requirements.
  • Different modes of the signal are processed differently to obtain tissue image data of different modes, and then processed by logarithmic compression, dynamic range adjustment, digital scan transformation, etc., to form ultrasound tissue images of different modes, which are used for display on the display 112.
  • different modes of ultrasound tissue images may include M images, B images, C images, etc., or other types of two-dimensional ultrasound tissue images or three-dimensional ultrasound tissue images.
  • the first ultrasonic wave and the second ultrasonic wave emitted by the probe 100 can be the same, that is, the processor 110 can simultaneously obtain the parameter information corresponding to the shear wave and generate the instantaneous wave after processing the ultrasonic echo received by the probe 100.
  • Ultrasound and first ultrasonic waves, or interspersed emission of first ultrasound and second ultrasound (for example, after emitting the first ultrasound, the second ultrasound is emitted, and then the first ultrasound is emitted, so that the interspersed and repeated cycles are performed), so, the processor 110 can obtain the parameter information corresponding to the shear wave by processing the first ultrasonic echo corresponding to the first ultrasonic wave received by the probe 100, generate the instantaneous elastic image, and receive the second ultrasonic wave corresponding to the second ultrasonic wave by the probe 100 After ultrasonic echo processing, different modes of ultrasonic tissue images can be generated.
  • the medical staff can determine the region of interest in the basic image; the processor 110 can obtain the target position range corresponding to the region of interest in the first ultrasound echo data, and base it on The first ultrasonic echo data within the target position range determines the elastic information of the tested tissue, such as the shear wave propagation velocity, shear modulus, and Young's modulus within the target position range of the tested tissue.
  • Step 202 Determine the main propagation path of the shear wave propagating in the tested tissue in the motion parameter image, and obtain a main propagation path map.
  • the processor 110 determines the target area corresponding to the motion parameters in the preset range at each depth in the motion parameter image 150, and may determine the target time range of the target area in the time attribute, where the target time range Including several target moments.
  • the processor 110 determines a band-shaped area based on consecutive target areas in the motion parameter image 150. Due to the influence of various residual waves, reflected waves and other interference information caused by the vibration of the probe, the processor 110 may obtain one or more band regions when acquiring the band regions based on the continuous target regions in the motion parameter image 150.
  • the motion parameter image 150 may include a first strip-shaped area S1, a second strip-shaped area S2, and a third strip-shaped area S3.
  • the motion parameter image 150 includes several pixels. Because the pixel value of each pixel in the motion parameter image 150 corresponds to the size of the motion parameter at the depth corresponding to the pixel.
  • the processor 110 may perform grayscale processing on the motion parameter image 150.
  • the processor 110 may determine the maximum extreme value range or the minimum extreme value range as the preset range, where the maximum extreme value range may be a to 255, and the target area may be the motion parameter image 150 (as shown in FIG. 3 ); the minimum extreme value range can be 0 to b, and the target area can be the black belt area in the motion parameter image 150 (as shown in FIG. 3).
  • the target area may also be the area between the bright band area and the black band area in the motion parameter image 150 (as shown in FIG. 3).
  • the processor 110 can use this pixel and a preset number of other pixels separated from the pixel as the target area corresponding to the set depth; or, when the pixel value of a pixel is in the maximum extreme value range and is in line with the The pixel values of other pixels with a preset number of pixel intervals are all within the minimum extreme value range.
  • the processor 110 may use the pixel and the preset number of other pixels with the pixel point as the set depth.
  • the corresponding target area below.
  • the processor 110 determines the depth
  • the target area corresponding to V1 includes the target area AB and the target area EF, where the target area AB is a set of pixels in the motion parameter image 150 whose motion parameters are within the minimum extreme value range at a depth of V1 (such as line segments).
  • the target time range corresponding to the target area AB is from t1 to the target time t2;
  • the target area EF is a set of pixels in the motion parameter image 150 whose motion parameters are within the minimum extreme value range at a depth of V1 (such as line segment EF ), the target time range corresponding to the target area EF is t5 to t6 target time; and when the depth of the motion parameter image 150 is V1, the target area AB and other areas outside the target area EF do not meet the minimum extreme value range.
  • the processor 110 may also determine the target area corresponding to the depth V2, including the target area CD, where the target area CD is the set of pixels in the motion parameter image 150 whose motion parameters are within the minimum extreme value range at the depth V2 (Such as the line segment CD), the target time range corresponding to the target area CD is t3 to t4 target time, and the other areas outside the target area CD in the motion parameter image 150 do not meet the minimum extreme value range when the depth is V2.
  • the processor 110 determines one or more band-shaped regions based on consecutive target regions in the motion parameter image 150. Since the shear wave is continuous in the tested tissue, the target area at different depths is continuous. In this way, the processor 110 has a strip-shaped area composed of consecutive target areas in the motion parameter image 150. For example, the processor 110 determines the first strip-shaped area S1, the second strip-shaped area S2, and the second strip-shaped area S2 in the motion parameter image 150. The third band S3.
  • the processor 110 determines that there are multiple band-shaped regions in the motion parameter image 150, it means that there is interference information in the motion parameter image 150. Therefore, the processor 110 can determine the target band-shaped region that meets the preset condition among the plurality of band-shaped regions. Is the main propagation path of the shear wave.
  • the processor 110 can obtain the reference time corresponding to the end of the vibration of the probe 100, and determine the target time in the one or more band-shaped regions
  • the band-shaped area composed of the target area later than the reference time is the main propagation path. For example, if the reference time corresponding to the end of the vibration of the probe 100 is t0, since the target time corresponding to the third strip-shaped area S3 is earlier than the reference time t0, the processor 110 determines the first strip-shaped area S1 and the first The target time in the two belt-shaped areas S2 is later than the reference time t0 in the target area.
  • the main propagation path of the motion parameter image 150 is a band-shaped area.
  • the processor 110 may determine that the first belt-shaped area S1 and the second belt-shaped area S2 have the largest length or the largest area as the main propagation path of the shear wave, wherein each belt-shaped area includes the first A hypotenuse and a second hypotenuse, the length of the band-shaped area can be expressed as the length of the first hypotenuse or the second hypotenuse, or the longer of the first and second hypotenuses; the area of the band-shaped area It can be expressed as the first hypotenuse, the second hypotenuse, the difference between the projections of the first end of the first hypotenuse and the first end of the second hypotenuse on the time axis, and the second end of the first hypotenuse and the second oblique The area of the quadrilateral enclosed by the difference between the projections of the second end of the edge on the time axis, and the second end of the first hypotenuse and the second oblique The area of the quadr
  • the processor 110 may determine that the first belt-shaped area is the main propagation of the shear wave. path.
  • the processor 110 may directly determine that the strip-shaped region with the largest length or the largest area among the one or more strip-shaped regions is the main propagation path of the shear wave. For example, in the first belt-shaped area S1, the second belt-shaped area S2, and the third belt-shaped area S3, the first belt-shaped area S1 has the largest length and the largest area. Therefore, the processor 110 may determine the first belt-shaped area. The area is the main propagation path of the shear wave.
  • the processor 110 may also no longer need to determine the band. Attribute information of the length or area of the shape area.
  • the region of interest when determining the region of interest of the tested tissue, the region of interest may be located at a preset depth.
  • the processor 110 may determine that the target band-shaped region located at the preset depth is the main propagation path .
  • the preset depth is the depth V1
  • the processor 110 may determine that the target area below the line segment AB in the first belt-shaped area S1 satisfies the condition, the second belt-shaped area S2 satisfies the condition, and the line segment in the third belt-shaped area S3
  • the target area below EF satisfies the condition, and the processor 110 may also obtain three band-shaped areas.
  • the main propagation path of the motion parameter image 150 is a band-shaped area.
  • the processor 110 may determine that the target area below the line segment AB in the first strip-shaped area S1, the second strip-shaped area S2, and the target area below the line segment EF in the third strip-shaped area S3 have the largest length or the largest area.
  • the strip area is the main propagation path of the shear wave.
  • the processor 110 may determine that the target area below the line segment AB in the first strip area S1 is the main propagation path of the shear wave.
  • the processor 110 when it is determined that there are multiple band regions in the target band region located at the preset depth, the processor 110 also determines the target band region based on the reference time corresponding to the end of the vibration of the probe 100. For example, since the target time corresponding to the second strip-shaped area S2 is earlier than the reference time t0, the processor 110 may determine the target area below the line segment AB in the first strip-shaped area S1 and the target area in the third strip-shaped area S3. The target area below the line segment EF satisfies the condition, and then the processor 110 may determine that the target area below the line segment AB in the first strip-shaped area S1 and the target area below the line segment EF in the third strip-shaped area S3 have the largest length or the largest area.
  • the belt-shaped area of is the main propagation path of the shear wave, that is, the processor 110 may determine that the target area below the line segment AB in the first belt-shaped area S1 is the main propagation path of the shear wave.
  • the main propagation path diagram is a diagram that characterizes the actual main propagation path of the shear wave in the tested tissue. It is based on the propagation of the shear wave in the tested tissue at different times. And the motion parameters or motion parameter maps at different depths.
  • the band-shaped area on the right side that extends to the upper right is the reflected wave of the shear wave.
  • the band-shaped area on the right side of the dashed line in Figure 12 is the aftermath of the shear wave.
  • the right side of the dashed line in Figure 13 The band-shaped and oblong area of is the reflected wave and after wave of the shear wave. It can be seen that the obtained motion parameter or motion parameter map contains interference information such as various aftermaths and reflected waves of the shear wave, which will affect the doctor's view and the detection of elastic parameters.
  • the main propagation path diagram representing the actual main propagation path of the shear wave in the tested tissue is obtained based on the motion parameter or the motion parameter map, and the main propagation path diagram can be Excluding interference information such as residual waves and reflected waves in the motion parameter or motion parameter graph, so as to more accurately reflect the actual main propagation path of the shear wave in the tested tissue, which is convenient for doctors to view.
  • Step 204 Display the motion parameter image including the main propagation path.
  • the processor 110 When the processor 110 obtains the main propagation path of the shear wave in the motion parameter image 150, the processor 110 displays the main propagation path diagram 160 (shown in FIG. 6) through the display 112, where the main propagation path diagram also includes The motion parameter image of the main propagation path. Since the main propagation path diagram includes the display area corresponding to the main propagation path and other areas outside the main propagation path, the main propagation path diagram has eliminated the influence of interference information, which improves the comprehensibility of the elastic test results and also It can make the medical staff intuitively diagnose according to the main propagation path diagram.
  • the processor 110 may also determine the elasticity information of the tissue under test based on the aforementioned first ultrasound echo data or the aforementioned motion parameter image or the aforementioned main propagation path map.
  • the elastic information of the tested tissue can be parameters such as the propagation velocity of the shear wave, the Young's modulus of the tested tissue, and the shear modulus of the tested tissue.
  • FIG. 6 shows a schematic diagram of binarization of the main propagation path graph in an embodiment of the present application.
  • the processor 110 may perform binarization processing on the motion parameter image 150, so that the main propagation path in the motion parameter image 150 is displayed in the first color, which is one of the main propagation paths.
  • the outer area is displayed in the second color, which is better for medical staff to identify.
  • the processor 110 may set the target band-shaped area corresponding to the main propagation path in the motion parameter image 150 to the first color (such as white), and set the area outside the target band-shaped area corresponding to the main propagation path as The second color (such as black).
  • the main propagation path map obtained can distinguish the display area of the main propagation path and the main propagation path. Other areas. For example, when the preset range is the minimum extreme value range, the processor 110 sets the pixels in the motion parameter image 150 whose pixel values are greater than the preset threshold as the first color, that is, sets the colors of other areas outside the main propagation path to Black; the processor 110 also sets the pixel points in the motion parameter image whose pixel value is not greater than the preset threshold value as the second color, that is, sets the color of the display area of the main propagation path to white. In this way, after the processor 110 performs binarization processing on the motion parameter image 150, the main propagation path map 160 can be directly obtained.
  • FIG. 7 is a schematic diagram of non-binarization of the main propagation path graph in an embodiment of the application.
  • the motion parameters such as strain information or displacement information
  • the processor 110 can display the main propagation path graph 160 non-binarized.
  • the processor 110 may set the pixel value of the pixel at each depth in the target strip region corresponding to the main propagation path to a third color having a corresponding motion parameter, wherein the third color corresponding to different motion parameters is different ;
  • the area outside the target band-shaped area corresponding to the main propagation path can be set to the fourth color.
  • FIG. 8 shows a schematic diagram of the main propagation path in another embodiment of the present application.
  • the processor 110 may also display some specific depth points on the main propagation path for a simple display. For example, the processor 110 can display only the circle in FIG. 8 (not including the two oblique sides of the first belt-shaped area S1) in the display 112 for simple display.
  • the processor 110 may calculate the elastic parameters of the tested tissue, including but not limited to shear wave velocity, Young's modulus, and shear modulus. Wait. As shown in FIG. 5, the processor 110 can fit the straight line shown by the dashed line in the figure based on the main propagation path, where the slope of the straight line shown by the dashed line can be used to represent the shear wave velocity; the processor 110 can be willing to the shear wave Speed to calculate the Young’s modulus of the tested structure, etc. In an embodiment, the processor 110 also includes multiple measurement statistical results of the aforementioned parameters, etc., such as the median, quartile, and ratio of the quartile to the median of Young’s modulus obtained from 10 measurements. Wait.
  • the processor 110 may control the display screen 112 to display the basic image, the region of interest located in the basic image, the Young's modulus of the tested tissue, and/or the main propagation path diagram for medical personnel to diagnose.
  • the above-mentioned elastic imaging method obtains the main propagation path of the shear wave in the motion parameter image and displays the motion parameter image including the main propagation path. In this way, it can reduce various after waves and reflected waves caused by the vibration of the probe in the motion parameter image.
  • the influence of the interference information causes the medical staff to be unable to more accurately explain the insufficiency of the meaning displayed by the motion parameter image, and it is also helpful to improve the intelligibility of the elasticity test results.
  • an elastography method may include the following steps:
  • the first ultrasonic echo Receiving the ultrasonic echo of the first ultrasonic wave returned by the tested tissue (herein referred to as the first ultrasonic echo) to obtain the first ultrasonic echo data;
  • the motion parameters may include the displacement of the tested tissue , Speed or strain;
  • the elastic information of the tested tissue can also be determined according to the aforementioned first ultrasonic echo data or the motion parameter or the main propagation path diagram, and the elastic information of the tested tissue can also be displayed to the user.
  • the flexibility information may be displayed simultaneously with the main propagation path diagram, or may be displayed non-simultaneously with the main propagation path diagram.
  • the motion parameters that meet the preset conditions can be determined from these motion parameters (herein referred to as "target motion parameters"), and the main propagation path of the shear wave can be obtained according to the depth and time corresponding to the target motion parameters.
  • the preset conditions can be various suitable conditions, which can be set according to actual needs. For example, the preset conditions can be greater than a preset threshold, within a preset range, and so on.
  • the confidence level of the elasticity information of the tested tissue can also be determined according to the obtained main propagation path.
  • one or more confidence parameters corresponding to the main propagation path may be determined according to the main propagation path, and the confidence of the elasticity information of the tissue under test may be determined according to the one or more confidence parameters.
  • the confidence parameter may include the linearity parameter of the main propagation path, the error parameter when calculating the shear wave propagation velocity by the straight line fitting of the main propagation path, the length parameter of the main propagation path, One or more of the area parameters of the main propagation path and so on.
  • the basic image of the tested tissue can also be acquired, and the basic image of the tested tissue can be displayed simultaneously with the aforementioned main propagation path diagram and elasticity information of the tested tissue.
  • the basic image may be one or more of the B image, C image or other mode images of the tissue under test.
  • the basic image can be obtained in real time by the ultrasound imaging system, that is, the ultrasound probe is used to transmit ultrasound to the tested tissue and receive the ultrasound echo to obtain the ultrasound echo signal, and obtain the basic image of the tested tissue according to the ultrasound echo signal; or The basic image of the tissue under test read in advance from other equipment and stored.
  • the confidence level of the elasticity information of the tested tissue can also be displayed.
  • FIG. 9 shows a flowchart of the steps of the elastic imaging method in another embodiment of the present application.
  • the elastography method includes the following steps:
  • Step 300 Obtain a motion parameter image of the tissue under test.
  • Step 300 in this embodiment is similar to step 200 in the foregoing embodiment. For details, please refer to step 200 described above.
  • Step 302 Determine the main propagation path of the shear wave propagating in the tested tissue in the motion parameter image.
  • Step 302 in this embodiment is similar to step 202 in the foregoing embodiment.
  • Step 302 please refer to the foregoing step 202.
  • Step 304 Display the motion parameter image including the main propagation path.
  • Step 304 in this embodiment is similar to step 204 in the foregoing embodiment.
  • Step 204 please refer to step 204 described above.
  • Step 306 Control the processor to determine the confidence level of the elasticity information of the tested tissue.
  • the processor 110 may calculate the elastic information of the tested tissue according to the main propagation path, and further, the reliability of the main propagation path affects the elastic information of the tested tissue. Therefore, the processor 150 may determine the confidence level of the elasticity information of the tested tissue based on the one or more confidence parameters corresponding to the main propagation path, and based on the one or more confidence parameters, where the confidence parameter includes the main propagation path.
  • the processor 150 may determine the confidence level of the elasticity information of the tested tissue based on the one or more confidence parameters corresponding to the main propagation path, and based on the one or more confidence parameters, where the confidence parameter includes the main propagation path.
  • the Young's modulus value of the liver tissue is calculated mainly by judging the average propagation velocity of the shear wave in the liver tissue, thereby reflecting the degree of liver fibrosis.
  • the larger the Young's modulus the harder the liver tissue and the higher the degree of liver fibrosis.
  • liver fibrosis is mainly a diffuse disease, the shear wave propagation speed is uniform, the main propagation path is a straight path, and the slope of the straight path corresponds to the speed of the shear wave one by one.
  • the main propagation path is too short (for example, it only propagates to a depth of 50mm), it means that the shear wave energy is weak or the attenuation is large, resulting in insufficient penetration; if the main propagation path is curved or not too straight If the main propagation path is not calculated at all, it means that the calculated slope or the propagation velocity of the shear wave or the Young’s modulus of the organization may be inaccurate; if the main propagation path is not calculated at all, it means that the The data quality of this inspection is too poor to obtain effective results.
  • the confidence level may be the linearity parameter of the above-mentioned main propagation path (such as determining the linearity of the main propagation path path). The better the linearity of the main propagation path, the higher the reliability of the processor 110 in determining the elasticity information of the tested tissue; Alternatively, the confidence level may be the error corresponding to the processor 110 fitting a straight line to the main propagation path (such as fitting by the least squares method) and calculating the slope of the fitted straight line. When the error is smaller, the processor 110 determines The higher the reliability of the elasticity information of the tested tissue; or, the confidence level may be the length parameter that the processor 110 can determine the main propagation path.
  • the processor 110 determines the elasticity information of the tested tissue.
  • the higher the reliability of the; or, the confidence level may be the area parameter of the main propagation path that the processor 110 can determine. The larger the area, the higher the reliability of the processor 110 in determining the elasticity information of the tested tissue.
  • the confidence level may be a comprehensive scoring parameter obtained by the processor 110 based on the weighted balance of the multiple confidence parameters described above.
  • Step 308 Control to output prompt information corresponding to the confidence level of the elasticity information of the tested tissue.
  • the processor 110 may display the confidence level of the elasticity information of the tested tissue based on the above-mentioned one or more confidence parameters on the display screen 112, and the value corresponding to each confidence parameter has a corresponding confidence level, such as the confidence level. In this way, the medical staff can determine the reliability of calculating the elasticity information of the tested tissue according to the displayed confidence.
  • the processor 110 may display the basic image, the confidence level, and the main propagation path map of the tested tissue on the display screen 112.
  • the processor 110 may also display the region of interest determined by the medical staff on the basic image, and may display the Young's modulus of the tested tissue calculated according to the calculated shear wave velocity.
  • the above-mentioned elasticity imaging method determines the confidence level of the elasticity information of the tested tissue through the main propagation path graph, and the medical staff can conveniently determine the reliability and comprehensibility of the elasticity information of the tested tissue according to the displayed confidence.
  • FIG. 10 shows a schematic block diagram of an elastic imaging system 80 in another embodiment of the present application.
  • the elastic imaging system 80 can apply the above-mentioned embodiments.
  • the elastography system 80 provided by the present application will be described below.
  • the elastography system 80 may include a processor 800, a storage device 802, a probe 100, a control circuit 804, and a display screen 112, as well as being stored in the storage device 802 and A computer program (instruction) that can be run on the processor 800, and the elastic imaging system 80 may also include other hardware parts, such as communication devices, keys, and keyboards, which are not repeated here.
  • the processor 800 can exchange data with the probe 100, the control circuit 904, the storage device 802, and the display 112 through the signal line 808.
  • the processor 800 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor is the control center of the elastography system 80, and various interfaces and lines are used to connect the entire elastography system 80. Various parts.
  • the processor 800 can be used to implement all the functions of the aforementioned image processing module 110, and can also integrate the functions of components such as the beam combiner 106.
  • the processor 800 can generate a first emission sequence to control the probe 100 to generate the first ultrasound; the processor 800 can generate a second emission sequence to control the probe 100 to generate the second ultrasound; the processor 800 can generate an excitation sequence and control After the probe 100 vibrates, a shear wave is generated in the tested tissue.
  • the control circuit 804 may include the functions of the transmitting circuit 102, the receiving circuit 104, and/or the beam combiner 106 in the foregoing embodiment, and the functions of the specific components may refer to the foregoing embodiment.
  • the control circuit 804 can generate the first emission sequence to control the probe 100 to generate the first ultrasonic wave; the control circuit 804 can generate the second emission sequence to control the probe 100 to generate the second ultrasonic wave; the control circuit 804 can generate the excitation sequence and control After the probe 100 vibrates, a shear wave is generated in the tested tissue.
  • the storage device 802 may be used to store the computer program and/or module.
  • the processor 800 runs or executes the computer program and/or module stored in the storage device 802 and calls the computer program and/or module stored in the storage device 802.
  • the data to achieve the various functions of the above-mentioned elastography method.
  • the storage device 802 may store ultrasonic echo data, and the processor 800 can determine the main propagation path of the shear wave according to the ultrasonic echo data.
  • the storage device 802 may mainly include a storage program area and a storage data area, wherein , The storage program area can store the operating system, at least one application program required by the function, and so on.
  • the storage device 802 may include a high-speed random access storage device, and may also include a non-volatile storage device, such as a hard disk, a memory, a plug-in hard disk, a smart media card (SMC), and a secure digital (Secure Digital). , SD) card, flash memory card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the display 112 can display a user interface (UI), a graphical user interface (GUI), and the display 112 can include a liquid crystal display (LCD), a thin film transistor LCD (TFT-LCD), an organic light emitting diode (OLED) touch display, and a flexible At least one of a touch display, a three-dimensional (3D) touch display, and the like.
  • UI user interface
  • GUI graphical user interface
  • LCD liquid crystal display
  • TFT-LCD thin film transistor LCD
  • OLED organic light emitting diode
  • the processor 800 reads the executable program code stored in the storage device 802 to run a program corresponding to the executable program code, so as to execute the elastic imaging method in any of the foregoing embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种弹性成像方法、系统及计算机可读存储介质。该弹性成像方法包括:获取受测组织的运动参数图像(200);确定所述运动参数图像中于所述受测组织内传播的剪切波的主传播路径(202);显示所述主传播路径(204)。通过获取运动参数图像中剪切波的主传播路径后显示包含主传播路径的运动参数图像,可减少运动参数图像中因探头的振动会造成的各种余波、反射波等干扰信息的影响而造成医护人员无法较准确地解释运动参数图像所显示的意义的不足,亦有利于提高弹性测试结果的可理解性。

Description

弹性成像方法、系统及计算机可读存储介质 技术领域
本申请涉及医疗技术领域,尤其涉及一种弹性成像方法、系统及计算机可读存储介质。
背景技术
瞬时弹性成像利用探头振动产生剪切波传入受测组织,并发射超声波检测组织内部位移,从而计算并显示受测组织的弹性参数。在瞬时弹性技术中,除了给出弹性检测结果外,一般还会提供一个组织位移或应变的运动参数图像。然而,由于探头的振动会造成的各种余波、反射波等干扰信息,造成临床人员无法较准确地解释运动参数图像所显示的意义。
发明内容
本申请实施例提供了一种弹性成像方法、系统及计算机可读存储介质,可以提高弹性测试结果的可理解性。
一个实施例中,提供了一种弹性成像方法,应用于弹性成像系统,所述弹性成像系统包括探头、连接于所述探头的发射电路、连接于所述探头的接收电路、连接于所述接收电路的波束合成器、连接于所述波束合成器的处理器和显示所述处理器所传输的图像信息的显示屏,所述弹性成像方法包括:
控制所述探头在接收到所述发射电路的第一发射时序时向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波;
控制所述探头接收所述受测组织返回的第一超声回波,并将所述第一超声回波转换为电信号后传输至所述接收电路;
控制所述波束合成器对所述接收电路传输来的电信号进行波束合成,获得第一超声回波数据;
控制所述处理器基于所述第一超声回波数据获得所述受测组织的运动参数图像;
控制所述处理器确定所述运动参数图像中所述剪切波的主传播路径,获得主传播路径图,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
控制所述处理器根据所述第一超声回波数据或者所述运动参数图像或者所述主传播路径图确定所述受测组织的弹性信息;
控制所述处理器将所述主传播路径图和所述受测组织的弹性信息显示于所述显示屏内。
一个实施例中,提供了一种弹性成像方法,该方法包括:
向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波;
接收所述受测组织返回的第一超声回波,获得第一超声回波数据;
根据所述第一超声回波数据获得由所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数;
根据所述运动参数确定所述剪切波的主传播路径,获得主传播路径图,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
根据所述第一超声回波数据或者所述运动参数或者所述主传播路径确定所述受测组织的弹性信息;
显示所述主传播路径图和所述受测组织的弹性信息。
一个实施例中,提供了一种弹性成像方法,该方法包括:
向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波;
接收所述受测组织返回的第一超声回波,获得第一超声回波数据;
根据所述第一超声回波数据获得由所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数;
根据所述运动参数确定所述剪切波的主传播路径,获得主传播路径图,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
显示所述主传播路径图。
一个实施例中,提供了一种弹性成像方法,包括:
获取受测组织的运动参数图像;
根据所述运动参数图像确定在所述受测组织内传播的剪切波的主传播路径;
显示所述主传播路径。
一个实施例中,提供了一种弹性成像系统,包括:
探头,用于向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波,所述探头还用于接收所述受测组织返回的第一超声回波,获得第一超声回波数据;
处理器,连接于所述探头,所述处理器用于基于所述第一超声回波数据获得由所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数,根据所述运动参数确定所述剪切波的主传播路径,获得主传播路径图,并根据所述第一超声回波数据或者所述运动参数或者所述主传播路径图确定所述受测组织的弹性信息,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
显示屏,连接于所处理器,所述处理器用于将所述主传播路径图和所述受测组织的弹性信息显示于所述显示屏内。
一个实施例中,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行前述实施例中任一方法中所描述的部分或全部步骤。
本申请实施例的弹性成像方法、系统及计算机可读存储介质根据运动参数或运动参数图像获得剪切波的主传播路径,并显示该主传播路径,如此,可减少运动参数图像中因探头的振动会造成的各种余波、反射波等干扰信息的影响而造成医护人员无法较准确地解释运动参数图像所显示的意义的不足,亦有利于提高弹 性测试结果的可理解性。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中弹性成像系统的硬件结构示意图。
图2是本申请一实施例中弹性成像方法的步骤流程图。
图3是本申请一实施例中运动参数图像的示意图。
图4是本申请一实施例中探头的硬件结构框图。
图5是本申请一实施例中运动参数图像中多个带状区域的示意图。
图6是本申请一实施例中主传播路径图的二值化的示意图。
图7是本申请一实施例中主传播路径图的非二值化的示意图。
图8是本申请一实施例中主传播路径的示意图。
图9是本申请一实施例中弹性成像方法的步骤流程图。
图10是本申请一实施例中的弹性成像系统的框图示意图。
图11是本申请一实施例中运动参数图像的示意图。
图12是本申请又一实施例中运动参数图像的示意图。
图13是本申请再一实施例中运动参数图像的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,所示为本申请一实施例中弹性成像系统的硬件结构示意图。所述弹性成像系统10可包括探头100、连接探头100的发射电路102、连接探头100的接收电路104、波束合成器106、处理器110及显示器112,其中,接收电路104、波束合成器106、处理器110及显示屏112可依次电性连接。本实施例中,弹性成像系统10可以获取受测组织的运动参数或运动参数图像,并根据该运动参数或运动参数图像获得剪切波在受测组织中的主传播路径,并可以在显示屏112内显示该主传播路径。由于主传播路径可以是可以准确代表不同深度下剪切波的传播位置的单一路径,在获取该主传播路径时可以排除各种余波、反射波等干扰信息,如此,医护人员直观地通过包含主传播路径的运动参数图像或者通过该主传播路径图来进行诊断,有利于提高弹性测试结果的可理解性。在一实施例中,波束合成器106及处理器110可由专门的电路或者可商业获得的芯片来实现。
请一并参阅图2,所示为本申请一实施例中弹性成像方法的步骤流程图。该弹性成像方法包括如下步骤:
步骤200,获取受测组织的运动参数图像。
本实施例中,发射电路102向探头100传输第一发射时序,以控制探头100向受测组织发射第一超声波,其中,第一超声波用于跟踪于受测组织内传播的剪切波。在探头100向受测组织发射第一超声波后,在经一定延时,探头100可接收从受测组织反射回来的带有检测对象的信息的第一超声回波。探头100可将此超声回波转换为电信号。接收电路104接收探头100转换生成的电信号,获得第一超声回波数据,并将这些第一超声回波数据送入波束合成器106。波束合成器106对超声回波数据进行聚焦延时、加权和通道求和等波束合成处理,然后将波束处理后的超声回波数据送入处理器110,由处理器110根据第一超声回波数据获取受测组织的运动参数或运动参数图像,并用以在显示屏112上显示。
请一并参阅图3,所示为本申请一实施例中运动参数图像的示意图。该运动参数图像包括横向的时间属性及纵向的深度属性。本实施例中,在剪切波传入受测组织后,随着剪切波的传播,受测组织内部会发生振动,振动使受测组织的相应位置发生位移。通过持续一段时间向受测组织中发射第一超声波并接收其回波。
处理器110基于第一超声回波数据获得由剪切波在受测组织中的传播而引起的受测组织在不同时刻及不同深度下的运动参数,其中,这里的运动参数可以包括位移、速度或者应变。例如,处理器110将不同时刻所得第一超声回波数据进行比较分析(比如互相关算法),可以计算出不同时刻下受测组织的位移,对来自不同深度的受测组织的第一回波数据分别进行位移计算,最终可以得到一个不同深度-不同时刻一一对应的位移矩阵。在位移矩阵中,每个数据各自代表某个深度的受测组织在某个时刻下的位移信息。在对上述位移矩阵沿着深度方向求梯度时,即可相应的得到应变矩阵。在应变矩阵中,每个数据 各自代表某个深度的受测组织在某个时刻下的应变信息。在上述计算过程中,为了提高信噪比,还有可能加入一些时间方向或者深度方向的滤波操作。
处理器110可基于剪切波在不同时刻及不同深度下的运动参数确定受测组织的运动参数图像150。
请一并参阅图4,所示本申请一实施例中探头的硬件结构框图。探头100包括阵列型声头130、振动器132及位于阵列型声头130与振动器132之间的传感器134。在发射电路102向探头100传输第一发射时序之前,发射电路102可向探头100传输激励时序,以控制探头100的振动器132振动并在受测组织内产生剪切波。之后,探头100的阵列型声头130根据第一发射时序跟踪在受测组织内传播的剪切波。阵列式声头130包括预设数量的阵元,阵列式声头130的阵元的排列的方式为直线式排列或者扇形式排列等。传感器132用于感测探头100按压受测组织的力度。在一实施例中,探头100亦可不包括传感器134。
在一实施例中,医护人员可能需要针对受测组织其一目标位置范围进行检测,因此,医护人员需要在基础图像中选择该目标位置范围所对应的感兴趣区域,其中,基础图像包括B图像、C图像中的一种或多种。在获取受测组织的基础图像时,发射电路102向探头100传输第二发射时序,以控制探头100向受测组织发射第二超声波。在探头100向受测组织发射第二超声波后,在经一定延时,探头100可接收从受测组织反射回来的带有检测对象的信息的第二超声回波。探头100可将此超声回波转换为电信号。接收电路104接收探头100转换生成的电信号,获得第二超声回波数据,并将这些第二超声回波数据送入波束合成器106。波束合成器106对超声回波数据进行聚焦延时、加权和通道求和等波束合成处理,然后将波束处理后的超声回波数据送入处理器110,由处理器110根据用户所需的成像模式的不同对信号进行不同的处理,以获得不同模式的组织图像数据,然后经对数压缩、动态范围调整、数字扫描变换等处理形成不同模式的超声组织图像,并用以在显示器112上显示,其中,不同模式的超声组织图像可包括M图像、B图像、C图像等,或者其他类型的二维超声组织图像或三维超声组织图像。在一实施例中,探头100发射的第一超声波与第二超声波可相同,即处理器110通过对探头100接收到的超声回波处理后可同时得到剪切波所对应的参数信息、生成瞬时弹性图及生成不同模式的超声组织图像;在一实施例中,探头100发射的第一超声波与第二超声波可不相同,即探头100可先后发射第一超声波及第二超声波、或者先后发射第二超声波及第一超声波、或者穿插式的发射第一超声波及第二超声波(如发射第一超声波后发射第二超声波,之后再发射第一超声波,如此穿插式的反复循环进行),如此,处理器110可通过对探头100接收到对应第一超声波的第一超声回波处理后可得到剪切波所对应的参数信息、生成瞬时弹性图,并通过对探头100接收到对应第二超声波的第二超声回波处理后可生成不同模式的超声组织图像。
当显示屏112内显示基础图像时,医护人员可在基础图像中确定的感兴趣区域;处理器110可获取第一超声回波数据中与所述感兴趣区域相对应的目标位置范围,并基于目标位置范围内的第一超声回波数据确定受测组织的弹性信息,如受测组织的目标位置范围内的剪切波传播速度、剪切模量、杨氏模量等。
步骤202,确定所述运动参数图像中于所述受测组织内传播的剪切波的主传播路径,获得主传播路径图。
本实施例中,处理器110确定运动参数图像150中每一深度下位于预设范围的运动参数所对应的目标区域,并可确定目标区域在时间属性上的目标时刻范围,其中,目标时刻范围包括若干目标时刻。处理器110基于运动参数图像150中相连续的目标区域确定带状区域。由于探头的振动会造成的各种余波、反射波等干扰信息的影响,处理器110在基于运动参数图像150中相连续的目标区域获取带状区域时可能得到一个或多个带状区域。
请一并参阅图5,所示为本申请一实施例中运动参数图像中多个带状区域的示意图。其中,运动参数图像150可包括第一带状区域S1、第二带状区域S2及第三带状区域S3。本实施例中,运动参数图像150包括若干像素点。由于运动参数图像150中每一像素点的像素值与该像素点所对应的深度下的运动参数的大小相对应。例如,在运动参数图像150为非灰度图像(如运动参数图像150为伪彩色图像)时,处理器110可对运动参数图像150进行灰度化处理。当运动参数所对应的数值较大时,在灰度化后的运动参数图像中,对应的深度下的像素点接近于白色(如像素点的像素值接近于255);当运动参数所对应的数值较小时,在灰度化后的运动参数图像中,对应的深度下的像素点接近于黑色(如像素点的像素值接近于0)。在确定目标区域时,处理器110可确定最大极值范围或最小极值范围为该预设范围,其中,最大极值范围可为a至255,目标区域可为运动参数图像150(如图3)中的亮带区域;最小极值范围可为0至b,目标区域可为运动参数图像150(如图3)中的黑带区域。
在其他实施例中,目标区域亦可为运动参数图像150(如图3)中亮带区域与黑带区域之间的区域。例如,对于一设定深度下,当一像素点的像素值位于最小极值范围,且与该像素点间隔预设数量的其他像素点的像素值均位于最大极值范围,此时,处理器110可将该像素点及与该像素点间隔预设数量的其他像素点可作为该设定深度下所对应的目标区域;或者,当一像素点的像素值位于最大极值范围,且与该像素点间隔预设数量的其他像素点的像素值均位于最小极值范围,此时,处理器110可将该像素点及与该像素点间隔预设数量的其他像素点可作为该设定深度下所对应的目标区域。
本实施例中,在确定运动参数图像150中的第一带状区域S1、第二带状区域S2及第三带状区域S3时,若预设范围为最小极值范围,处理器110确定深度为V1时所对应的目标区域,包括目标区域AB及目标区域EF,其中,目标区域AB为运动参数图像150中在深度为V1下运动参数位于该最小极值范围内的像素点集合(如线段AB),目标区域AB所对应的目标时刻范围为t1 至t2目标时刻;目标区域EF为运动参数图像150中在深度为V1下运动参数位于该最小极值范围内的像素点集合(如线段EF),目标区域EF所对应的目标时刻范围为t5至t6目标时刻;而运动参数图像150中在深度为V1时目标区域AB及目标区域EF之外的其他区域不满足最小极值范围。处理器110还可确定深度为V2时所对应的目标区域,包括目标区域CD,其中,目标区域CD为运动参数图像150中在深度为V2下运动参数位于该最小极值范围内的像素点集合(如线段CD),目标区域CD所对应的目标时刻范围为t3至t4目标时刻,而运动参数图像150中在深度为V2时目标区域CD之外的其他区域不满足最小极值范围。
处理器110基于运动参数图像150中相连续的目标区域确定一个或多个带状区域。由于剪切波在受测组织中是连续的,因此,不同深度下的目标区域是相连续的。如此,处理器110在运动参数图像150中相连续的目标区域所组成的带状区域,如处理器110确定出了运动参数图像150中的第一带状区域S1、第二带状区域S2及第三带状区域S3。
由于剪切波在受测组织内传播时,其对应的传播路径是单一的。若处理器110确定运动参数图像150中存在多个带状区域时,表示运动参数图像150中存在干扰信息,因此,处理器110可确定多个带状区域中满足预设条件的目标带状区域为剪切波的主传播路径。
在一实施例中,由于剪切波是在探头100振动结束后产生,因此,处理器110可获取探头100振动结束时所对应的参考时刻,并确定该一个或多个带状区域中目标时刻晚于参考时刻的目标区域所组成的带状区域为主传播路径。例如,若探头100振动结束时所对应的参考时刻为t0时,由于第三带状区域S3所对应的目标时刻均早于参考时刻t0,因此,处理器110确定第一带状区域S1及第二带状区域S2中目标时刻晚于参考时刻t0的目标区域。由于运动参数图像150中还包括第一带状区域S1及第二带状区域S2,而运动参数图像150的主传播路径为一个带状区域。此时,处理器110可确定第一带状区域S1及第二带状区域S2中具有最大长度或者最大面积的带状区域为剪切波的主传播路径,其中,每一带状区域包括第一斜边及第二斜边,带状区域的长度可表示为第一斜边或第二斜边的长度,或者是第一斜边与第二斜边中较长者;带状区域的面积可表示为第一斜边、第二斜边、第一斜边的第一端与第二斜边第一端在时间轴上的投影之差及第一斜边的第二端与第二斜边第二端在时间轴上的投影之差所围成的四边形的面积。由于第一带状区域S1中AC所在的斜边的长度大于第二带状区域S2中E所在的斜边的长度,因此,处理器110可确定第一带状区域为剪切波的主传播路径。
在一实施例中,处理器110可直接确定一个或多个带状区域中具有最大长度或者最大面积的带状区域为剪切波的主传播路径。例如,在第一带状区域S1、第二带状区域S2及第三带状区域S3中,第一带状区域S1具有最大的长度及最大面积,因此,处理器110可确定第一带状区域为剪切波的主传播路径。
在一实施例中,当处理器110确定该一个或多个带状区域中目标时刻晚于参考时刻的目标区域所组成的带状区域的数量为一个时,处理器110亦可无需再确定带状区域的长度或面积的属性信息。
在一实施例中,在确定受测组织的感兴趣区域时,感兴趣区域可能位于预设深度下,此时,处理器110可确定位于该预设深度下的目标带状区域为主传播路径。例如,当预设深度为深度V1时,处理器110可确定第一带状区域S1中线段AB以下的目标区域满足条件、第二带状区域S2均满足条件、第三带状区域S3中线段EF以下的目标区域满足条件,处理器110可亦可得到三个带状区域。由于运动参数图像150中还包括第一带状区域S1及第二带状区域S2,而运动参数图像150的主传播路径为一个带状区域。此时,处理器110可确定第一带状区域S1中线段AB以下的目标区域、第二带状区域S2、第三带状区域S3中线段EF以下的目标区域中具有最大长度或者最大面积的带状区域为剪切波的主传播路径,如处理器110可确定第一带状区域S1中线段AB以下的目标区域为剪切波的主传播路径。
在一实施例中,当确定位于该预设深度下的目标带状区域存在多个带状区域时,处理器110亦要结合探头100振动结束时所对应的参考时刻来确定目标带状区域。例如,由于第二带状区域S2所对应的目标时刻均早于参考时刻t0,因此,处理器110可确定第一带状区域S1中线段AB以下的目标区域、及第三带状区域S3中线段EF以下的目标区域满足条件,之后,处理器110可确定第一带状区域S1中线段AB以下的目标区域、及第三带状区域S3中线段EF以下目标区域中具有最大长度或者最大面积的带状区域为剪切波的主传播路径,即处理器110可确定第一带状区域S1中线段AB以下的目标区域为剪切波的主传播路径。
本文中,所说的主传播路径图是表征剪切波在受测组织中的实际主要传播路径的图,其基于由剪切波在受测组织中的传播引起的该受测组织在不同时刻及不同深度下的运动参数或者运动参数图而获得。
图11、图12和图13分别为本发明一些实施例中的由剪切波在受测组织中的传播引起的该受测组织在不同时刻及不同深度下的运动参数或者运动参数图。图11中,右侧所展示的向右上方延伸的带状区域即为剪切波的反射波,图12中虚线右侧的带状区域即为剪切波的余波,图13中虚线右侧的带状和长圆形区域即为剪切波的反射波和余波。可见,获得的运动参数或者运动参数图中,包含了剪切波的各种余波和反射波等干扰信息,会影响医生的查看和弹性参数的检测。
本文的实施例中,如前文以及后文所述,基于该运动参数或运动参数图获得表征剪切波在受测组织中的实际主要传播路径的主传播路径图,该主传播路径图中可以排除该运动参数或者运动参数图中的余波、反射波等干扰信息,从而能够更准确地反映剪切波在受测组织中的实际主要传播路径,便于医生查看。
步骤204,显示包含所述主传播路径的运动参数图像。
在处理器110获取到运动参数图像150中的剪切波的主传播路径时,处理器110通过显示屏112显示主传播路径图160(示于图6),其中,主传播路径图亦为包含主传播路径的运动参数图像。由于主传播路径图中包含主传播路径所对应的显示区域及主传播路径之外的其他区域,因此,主传播路径图中已排除了干扰信息的影响,提高弹性测试结果的可理解性,亦可使得医护人员可直观地根据主传播路径图进行诊断。
一个实施例中,处理器110还可以根据前述的第一超声回波数据或者前述的运动参数图像或者前述的主传播路径图确定受测组织的弹性信息。这里,受测组织的弹性信息可以是剪切波传播速度、受测组织的杨氏模量、受测组织的剪切模量等等参数。
请一并参阅图6,所示本申请一实施例中主传播路径图的二值化的示意图。在获取运动参数图像150中的主传播路径后,处理器110可对该运动参数图像150进行二值化处理,以使得运动参数图像150中的主传播路径显示为第一颜色、主传播路径之外的区域显示为第二颜色,更好便于医护人员的辨识。例如,处理器110可将运动参数图像150中主传播路径所对应的目标带状区域设置为第一颜色(如白色),并将主传播路径所对应的目标带状区域之外的区域设置为第二颜色(如黑色)。
在一实施例中,若干扰信息的影响较弱,当处理器110对运动参数图像150进行二值化处理后,得到的主传播路径图中可区分出主传播路径的显示区域及主传播路径之外的其他区域。例如,当预设范围为最小极值范围时,处理器110将运动参数图像150中像素值大于预设阈值的像素点设置为第一颜色,即将主传播路径之外的其他区域的颜色设置为黑色;处理器110还将运动参数图像中像素值不大于该预设阈值的像素点设置为第二颜色,即将主传播路径的显示区域的颜色设置为白色。如此,在处理器110对运动参数图像150进行二值化处理后可直接得到主传播路径图160。
请一并参阅图7,所示为本申请一实施例中主传播路径图的非二值化的示意图。在一实施例中,由于剪切波在受测组织内传播时,随着传播的深度及传播的时间增加,受测组织的运动参数(如应变信息或位移信息)或能量逐渐减弱,为更清楚地显示这一变化过程,处理器110可将主传播路径图160进行非二值化显示。处理器110可将主传播路径所对应的目标带状区域中每一深度处的像素点的像素值设置为具有对应运动参数的第三颜色,其中,不同的运动参数所对应的第三颜色不同;并可将主传播路径所对应的目标带状区域之外的区域设置为第四颜色。
请一并参阅图8,所示本申请又一实施例中主传播路径的示意图。当处理器110确定第一带状区域S1为主传播路径时,处理器110亦可将主传播路径上某些特定的深度的点来做简易的显示。如处理器110可在显示屏112内只显示图8中的圆圈(不包括第一带状区域S1的两个斜边),以进行简易的显示。
在一实施例中,在确定运动参数图像150中的主传播路径时,处理器110可计算出受测组织的弹性参数,包括但不限于剪切波速度、杨氏模量、剪切模量等。如图5所示,处理器110可基于主传播路径拟合出图中虚线所示的直线,其中,虚线所示的直线的斜率可用于表示剪切波速度;处理器110可甘于剪切波速度来计算出受测组织的杨氏模量等。在一实施例中,处理器110也包括上述参数的多次测量统计结果等,如10次测量所得杨氏模量的中位数、四分位数、四分位数与中位数的比值等。
在一实施例中,处理器110可控制显示屏112显示基础图像及位于基础图像内的感兴趣区域、受测组织的杨氏模量及/或主传播路径图,以便医护人员进行诊断。
上述弹性成像方法通过获取运动参数图像中剪切波的主传播路径后显示包含主传播路径的运动参数图像,如此,可减少运动参数图像中因探头的振动会造成的各种余波、反射波等干扰信息的影响而造成医护人员无法较准确地解释运动参数图像所显示的意义的不足,亦有利于提高弹性测试结果的可理解性。
一个实施例中,一种弹性成像方法可以包括下列步骤:
向受测组织发射第一超声波,以跟踪在受测组织内传播的剪切波;
接收受测组织返回的该第一超声波的超声回波(本文称之为第一超声回波),获得第一超声回波数据;
根据第一超声回波数据获得由该剪切波在该受测组织中的传播引起的该受测组织在不同时刻及不同深度下的运动参数,这里,该运动参数可以包括受测组织的位移、速度或者应变;
根据该运动参数确定该剪切波的主传播路径,并基于该主传播路径生成主传播路径图;
显示获得的主传播路径图。
本实施例中,还可以根据前述的第一超声回波数据或者该运动参数或者该主传播路径图确定该受测组织的弹性信息,并将该受测组织的弹性信息也显示给用户。该弹性信息可以是与主传播路径图同时显示,也可以是与主传播路径图非同时显示。
本实施例中,可以从这些运动参数中确定满足预设条件的运动参数(这里称之为“目标运动参数”),并根据该目标运动参数对应的深度和时刻获得剪切波的主传播路径。这里,所说的预设条件可以是各种适合的条件,可以根据实际需要设置,例如,预设条件可以是大于预设阈值、在预设范围内,等等。
本实施例中,还可以根据获得的主传播路径确定受测组织的弹性信息的置信度。例如,可以根据该主传播路径确定该主传播路径所对应的一个或多个置信度参数,并根据该一个或多个置信度参数确定受测组织的弹性信息的置信度。这里,所说的置信度参数可以包括所述主传播路径的线性度参数、所述主传播路径直线拟合计算所述剪切波传播速度时的误差参数、所述主传播路径的 长度参数、所述主传播路径的面积参数等等中的一个或多个。
本实施例中,还可以获取受测组织的基础图像,并将该受测组织的基础图像与前述的主传播路径图和受测组织的弹性信息同时显示。这里,所说的基础图像可以是受测组织的B图像、C图像或其他模式的图像中的一种或多种。该基础图像可以是由超声成像系统实时获得,即通过超声探头向受测组织发射超声波并接收超声回波,获得超声回波信号,并根据超声回波信号获得受测组织的基础图像;也可以从其他设备读取的预先采集获得并存储的受测组织的基础图像。
本实施例中,还可以显示该受测组织的弹性信息的置信度。
请参阅图9,所示为本申请又一实施例中弹性成像方法的步骤流程图。该弹性成像方法包括如下步骤:
步骤300,获取受测组织的运动参数图像。
本实施例中步骤300与上述实施例中步骤200类似,具体请参阅前述的步骤200。
步骤302,确定所述运动参数图像中于所述受测组织内传播的剪切波的主传播路径。
本实施例中步骤302与上述实施例中步骤202类似,具体请参阅前述的步骤202。
步骤304,显示包含所述主传播路径的运动参数图像。
本实施例中步骤304与上述实施例中步骤204类似,具体请参阅前述的步骤204。
步骤306,控制所述处理器确定所述受测组织的弹性信息的置信度。
在获取运动参数图像150中剪切波的主传播路径时,处理器110可根据主传播路径计算出受测组织的弹性信息,进而,主传播路径的可靠性影响到受测组织的弹性信息。因此,处理器150可基于主传播路径所对应的一个或多个置信度参数,并基于该一个或多个置信度参数确定受测组织的弹性信息的置信度,其中,置信度参数包括主传播路径的线性度参数、主传播路径直线拟合计算剪切波传播速度时的误差参数、主传播路径的长度参数、主传播路径的面积参数中的一个或多个。
例如,从主传播路径图上可以方便的判断出主传播路径路径的长短、能量的强弱、主传播路径是否线性。在临床肝纤维化检测时,主要通过判断剪切波在肝脏组织中平均传播速度的大小来计算出肝脏组织的杨氏模量值,从而反映肝纤维化的程度。一般来说,杨氏模量越大,说明肝组织越硬,肝纤维化程度越高。由于肝纤维化主要为弥漫性病变,所以剪切波传播时速度均匀,主传播路径表现为直线路径,且直线路径的斜率与剪切波的速度一一对应。在某些检查中,如果主传播路径太短(比如仅传播到50mm深度),则说明剪切波能量弱或衰减较大,导致穿透力不足;如果主传播路径表现为曲线或者不太直的直线,则说明剪切波传播不均匀,那么所计算出来的斜率或者剪切波的传播速度 或者组织的杨氏模量结果就可能不准确;如果主传播路径完全没有计算出来,那么说明本次检查的数据质量太差,难以获得有效的结果。
置信度可以是上述主传播路径的线性度参数(如确定主传播路径路径的线性程度),当主传播路径的线性度越好,表示处理器110确定受测组织的弹性信息的可靠性越高;或者,置信度可以是处理器110对主传播路径进行直线拟合(如通过最小二乘法拟合)并计算拟合后直线的斜率时所对应的误差,当误差越小,表示处理器110确定受测组织的弹性信息的可靠性越高;或者,置信度可以是处理器110可确定主传播路径的长度参数,当主传播路径的长度参数越长,表示处理器110确定受测组织的弹性信息的可靠性越高;或者,置信度可以是处理器110可确定主传播路径的面积参数,面积越大,表示处理器110确定受测组织的弹性信息的可靠性越高。
在一实施例中,置信度可以是处理器110可基于上述的多个置信度参数的加权平衡所得的一个综合性评分参数,综合性评分参数越高,表示处理器110确定受测组织的弹性信息的可靠性越高。
步骤308,控制输出与所述受测组织的弹性信息的置信度相对应的提示信息。
处理器110可将基于上述的一个或多个置信度参数确定受测组织的弹性信息的置信度显示于显示屏112内,每一置信度参数所对应的数值均具有对应的置信度,如置信度90%,如此,医护人员可根据显示的置信度来确定计算受测组织的弹性信息的可靠性。
在一实施例中,当处理器110获取得到了受测组织的基础图像后,处理器110可将受测组织的基础图像、置信度及主传播路径图显示于显示屏112内。
在一实施例中,处理器110还可显示医护人员在基础图像上确定的感兴趣区域,并可显示根据计算得到的剪切波速度计算出受测组织的杨氏模量。
上述弹性成像方法通过主传播路径图确定受测组织的弹性信息的置信度,医护人员可方便地根据显示的置信度来确定受测组织的弹性信息的可靠性及可理解性。
请参阅图10,所示本申请又一实施例中的弹性成像系统80的框图示意图。如图10所示,所述弹性成像系统80可应用上述的各实施例。下面对本申请所提供的弹性成像系统80进行描述,所述弹性成像系统80可以包括处理器800、存储装置802、探头100、控制电路804及显示屏112,以及存储在所述存储装置802中并可向所述处理器800上运行的计算机程序(指令),所述弹性成像系统80还可以包括其他的硬件部分,例如通信装置、按键、键盘等,在此不再赘述。所述处理器800可通过信号线808与探头100、控制电路904存储装置802及显示屏112进行数据交换。
所述处理器800可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述弹性成像系统80的控制中心,利用各种接口和线路连接整个弹性成像系统80的各个部分。本实施例中,所述处理器800可用于实现前述图像处理模块110的全部功能,亦可集成有波束合成器106等元件的功能,具体元件的功能可参考前述实施例。例如,处理器800可产生第一发射时序,以控制探头100产生第一超声波;处理器800可产生第二发射时序,以控制探头100产生第二超声波;处理器800可产生激励时序,并控制探头100振动后在受测组织内产生剪切波。
所述控制电路804可包括上述实施例中的发射电路102、接收电路104和/或波束合成器106等元件的功能,具体元件的功能可参考前述实施例。例如,控制电路804可产生第一发射时序,以控制探头100产生第一超声波;控制电路804可产生第二发射时序,以控制探头100产生第二超声波;控制电路804可产生激励时序,并控制探头100振动后在受测组织内产生剪切波。
所述存储装置802可用于存储所述计算机程序和/或模块,所述处理器800通过运行或执行存储在所述存储装置802内的计算机程序和/或模块,以及调用存储在存储装置802内的数据,实现上述弹性成像方法的各种功能。所述存储装置802可存储有超声回波数据,并可由处理器800进行根据超声回波数据确定剪切波的主传播路径,所述存储装置802可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等。此外,存储装置802可以包括高速随机存取存储装置,还可以包括非易失性存储装置,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储装置件、闪存器件、或其他易失性固态存储装置件。
所述显示屏112,可以显示用户界面(UI)、图形用户界面(GUI),显示器112可以包括液晶显示器(LCD)、薄膜晶体管LCD(TFT-LCD)、有机发光二极管(OLED)触摸显示器、柔性触摸显示器、三维(3D)触摸显示器等中的至少一种。
所述处理器800通过读取存储装置802中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行前面任一实施例中的弹性成像方法。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (39)

  1. 一种弹性成像方法,应用于弹性成像系统,其特征在于,所述弹性成像系统包括探头、连接于所述探头的发射电路、连接于所述探头的接收电路、连接于所述接收电路的波束合成器、连接于所述波束合成器的处理器和显示所述处理器所传输的图像信息的显示屏,所述弹性成像方法包括:
    控制所述探头在接收到所述发射电路的第一发射时序时向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波;
    控制所述探头接收所述受测组织返回的第一超声回波,并将所述第一超声回波转换为电信号后传输至所述接收电路;
    控制所述波束合成器对所述接收电路传输来的电信号进行波束合成,获得第一超声回波数据;
    控制所述处理器基于所述第一超声回波数据获得所述受测组织的运动参数图像;
    控制所述处理器确定所述运动参数图像中所述剪切波的主传播路径,获得主传播路径图,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
    控制所述处理器根据所述第一超声回波数据或者所述运动参数图像或者所述主传播路径图确定所述受测组织的弹性信息;
    控制所述处理器将所述主传播路径图和所述受测组织的弹性信息显示于所述显示屏内。
  2. 如权利要求1所述的弹性成像方法,其特征在于,所述控制所述处理器基于所述第一超声回波数据获取所述受测组织的运动参数图像,包括:
    控制所述处理器基于所述第一超声回波数据获得所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数,其中,所述运动参数包括位移、速度或者应变;
    控制所述处理器基于所述剪切波在不同时刻及不同深度下的运动参数确定所述受测组织的运动参数图像。
  3. 如权利要求1或者2所述的弹性成像方法,其特征在于,所述控制所述处理器确定所述运动参数图像中所述剪切波的主传播路径包括:
    控制所述处理器确定每一深度下位于预设范围的运动参数所对应的目标区域;
    控制所述处理器基于所述运动参数图像中相连续的目标区域确定一个或多个带状区域;
    控制所述处理器确定所述一个或多个带状区域中满足预设条件的目标带状区域为所述主传播路径。
  4. 如权利要求1至3中任意一项所述的弹性成像方法,其特征在于,所述弹性成像方法还包括:
    控制所述探头在接收到所述发射电路的激励时序时振动,以在所述受测组织内产生所述剪切波。
  5. 如权利要求3所述的弹性成像方法,其特征在于,每一目标区域对应目标时刻范围,每一目标时刻范围包括若干目标时刻,所述弹性成像方法还包括:
    控制所述处理器获取所述探头振动结束时所对应的参考时刻;
    其中,所述控制所述处理器确定所述一个或多个带状区域中满足预设条件的目标带状区域为所述主传播路径包括:
    控制所述处理器确定所述一个或多个带状区域中目标时刻晚于所述参考时刻的目标区域;
    控制所述处理器确定所述一个或多个带状区域中目标时刻晚于所述参考时刻的目标区域所组成的带状区域为所述主传播路径。
  6. 如权利要求3所述的弹性成像方法,其特征在于,所述控制所述处理器确定所述一个或多个带状区域中满足预设条件的目标带状区域为所述主传播路径包括:
    控制所述处理器确定位于预设深度下的目标带状区域为所述主传播路径。
  7. 如权利要求3所述的弹性成像方法,其特征在于,所述控制所述处理器确定所述一个或多个带状区域中满足预设条件的目标带状区域为所述主传播路径包括:
    控制所述处理器确定所述一个或多个带状区域中具有最大长度或者最大面积的目标带状区域为所述主传播路径。
  8. 如权利要求1所述的弹性成像方法,其特征在于,所述控制所述处理器确定所述运动参数图像中所述剪切波的主传播路径包括:
    控制所述处理器对所述运动参数图像进行二值化处理,其中,二值化处理后的所述运动参数图像为所述主传播路径图。
  9. 如权利要求8所述的弹性成像方法,其特征在于,所述运动参数图像包括若干像素点,每一像素点的像素值与像素点所对应的深度下的运动参数的大小相对应,其中所述控制所述处理器对所述运动参数图像进行二值化处理包括:
    控制所述处理器将所述运动参数图像中像素值大于预设阈值的像素点设置为第一颜色;
    控制所述处理器将所述运动参数图像中像素值不大于所述预设阈值的像素点设置为第二颜色。
  10. 如权利要求8所述的弹性成像方法,其特征在于,所述控制所述处理器对所述运动参数图像进行二值化处理包括:
    控制所述处理器将所述运动参数图像中所述主传播路径所对应的目标带状区域设置为第一颜色;
    控制所述处理器将所述主传播路径所对应的目标带状区域之外的区域设置为第二颜色。
  11. 如权利要求3所述的弹性成像方法,其特征在于,所述控制所述处理器 将所述主传播路径图显示于所述显示屏内,包括:
    控制所述处理器将所述主传播路径所对应的目标带状区域中每一深度处的像素点的像素值设置为具有与运动参数对应的第三颜色,其中,不同的运动参数所对应的第三颜色不同;
    控制所述处理器将所述主传播路径所对应的目标带状区域之外的区域设置为第四颜色。
  12. 如权利要求1至11中任意一项所述的弹性成像方法,其特征在于,所述弹性成像方法还包括:
    控制所述处理器确定所述受测组织的弹性信息的置信度。
  13. 如权利要求12所述的弹性成像方法,其特征在于,所述弹性成像方法还包括:
    控制所述处理器显示与所述受测组织的弹性信息的置信度相对应的提示信息。
  14. 如权利要求12或13所述的弹性成像方法,其特征在于,所述控制所述处理器确定所述受测组织的弹性信息的置信度,包括:
    控制所述处理器确定所述主传播路径所对应的一个或多个置信度参数;
    控制所述处理器基于所述一个或多个置信度参数确定所述受测组织的弹性信息的置信度。
  15. 如权利要求14所述的弹性成像方法,其特征在于,所述置信度参数包括所述主传播路径的线性度参数、所述主传播路径直线拟合计算所述剪切波传播速度时的误差参数、所述主传播路径的长度参数、所述主传播路径的面积参数中的一个或多个。
  16. 如权利要求13所述的弹性成像方法,其特征在于,所述控制所述处理器显示与所述受测组织的弹性信息的置信度相对应的提示信息,包括:
    控制所述处理器获取所述受测组织的基础图像;
    控制所述处理器将所述基础图像及与所述受测组织的弹性信息的置信度相对应的提示信息显示于所述显示屏内。
  17. 如权利要求16所述的弹性成像方法,其特征在于,所述控制所述处理器获取所述受测组织的基础图像,包括:
    控制所述探头在接收到所述发射电路的第二发射时序时向所述受测组织发射第二超声波;
    控制所述探头接收所述受测组织返回的第二超声回波,并将所述第二超声回波转换为电信号后传输至所述接收电路;
    控制所述波束合成器对所述接收电路传输来的电信号进行波束合成,获得第二超声回波数据;
    控制所述处理器基于所述第二超声回波数据生成所述基础图像。
  18. 如权利要求17所述的弹性成像方法,其特征在于,所述基础图像包括B图像、C图像中的一种或多种。
  19. 一种弹性成像方法,其特征在于,包括:
    向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波;
    接收所述受测组织返回的第一超声回波,获得第一超声回波数据;
    根据所述第一超声回波数据获得由所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数;
    根据所述运动参数确定所述剪切波的主传播路径,获得主传播路径图,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
    根据所述第一超声回波数据或者所述运动参数或者所述主传播路径确定所述受测组织的弹性信息;
    显示所述主传播路径图和所述受测组织的弹性信息。
  20. 如权利要求19所述的弹性成像方法,其特征在于,所述运动参数包括位移、速度或者应变。
  21. 如权利要求19或者20所述的弹性成像方法,其特征在于,所述根据所述运动参数确定所述剪切波的主传播路径包括:
    从所述运动参数中确定满足预设条件的目标运动参数;
    根据所述目标运动参数对应的深度和时刻获得所述主传播路径。
  22. 如权利要求21所述的弹性成像方法,其特征在于,所述预设条件为:大于预设阈值。
  23. 如权利要求21所述的弹性成像方法,其特征在于,所述预设条件为:在预设范围内。
  24. 如权利要求19至23中任意一项所述的弹性成像方法,其特征在于,还包括:
    根据所述主传播路径确定所述受测组织的弹性信息的置信度。
  25. 如权利要求24所述的弹性成像方法,其特征在于,根据所述主传播路径确定所述受测组织的弹性信息的置信度包括:
    根据所述主传播路径确定所述主传播路径所对应的一个或多个置信度参数;
    根据所述一个或多个置信度参数确定所述受测组织的弹性信息的置信度。
  26. 如权利要求25所述的弹性成像方法,其特征在于,所述置信度参数包括所述主传播路径的线性度参数、所述主传播路径直线拟合计算所述剪切波传播速度时的误差参数、所述主传播路径的长度参数、所述主传播路径的面积参数中的一个或多个。
  27. 如权利要求19至26中任意一项所述的弹性成像方法,其特征在于,还包括:
    获取所述受测组织的基础图像;
    同时显示所述受测组织的基础图像、所述主传播路径图和所述受测组织的弹性信息。
  28. 如权利要求27所述的弹性成像方法,其特征在于,所述基础图像包括B图像、C图像中的一种或多种。
  29. 一种弹性成像方法,其特征在于,包括:
    向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波;
    接收所述受测组织返回的第一超声回波,获得第一超声回波数据;
    根据所述第一超声回波数据获得由所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数;
    根据所述运动参数确定所述剪切波的主传播路径,获得主传播路径图,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
    显示所述主传播路径图。
  30. 一种弹性成像方法,其特征在于,所述弹性成像方法包括:
    获取受测组织的运动参数图像;
    根据所述运动参数图像确定在所述受测组织内传播的剪切波的主传播路径;
    显示所述主传播路径。
  31. 如权利要求30所述的弹性成像方法,其特征在于,所述根据所述运动参数图像确定在所述受测组织内传播的剪切波的主传播路径包括:
    获取所述运动参数图像中一个或多个带状区域;
    确定所述一个或多个带状区域中满足预设条件的目标带状区域为所述主传播路径。
  32. 如权利要求31所述的弹性成像方法,其特征在于,所述运动参数图像包括深度及时间的属性信息,所述确定所述一个或多个带状区域中满足预设条件的目标带状区域为所述主传播路径包括:
    选择所述一个或多个带状区域中时间的属性信息晚于预设时刻的目标带状区域为所述主传播路径;或者
    选择所述一个或多个带状区域中深度的属性信息位于预设深度下的目标带状区域为所述主传播路径;或者
    选择所述一个或多个带状区域中具有最大长度或者最大面积的目标带状区域为所述主传播路径。
  33. 如权利要求30至32中任意一项所述的弹性成像方法,其特征在于,所述主传播路径包括位于所述运动参数图像中的带状区域,所述显示所述主传播路径包括:
    将所述运动参数图像中所述主传播路径所对应的带状区域设置为第一颜色;
    将所述主传播路径所对应的带状区域之外的区域设置为第二颜色。
  34. 如权利要求30至32中任意一项所述的弹性成像方法,其特征在于,所述主传播路径包括位于所述运动参数图像中的带状区域,所述显示所述主传播路径包括:
    将所述主传播路径所对应的带状区域中每一深度处的像素点的像素值设置为具有与运动参数对应的第三颜色,其中,不同的运动参数所对应的第三颜色不同;
    将所述主传播路径所对应的目标带状区域之外的区域设置为第四颜色。
  35. 如权利要求30至34中任意一项所述的弹性成像方法,其特征在于,所述弹性成像方法还包括:
    确定所述受测组织的弹性信息的置信度。
  36. 如权利要求35所述的弹性成像方法,其特征在于,所述确定所述受测组织的弹性信息的置信度包括:
    确定所述主传播路径所对应的一个或多个置信度参数;
    基于所述一个或多个置信度参数确定所述受测组织的弹性信息的置信度。
  37. 如权利要求36所述的弹性成像方法,其特征在于,所述置信度参数包括所述主传播路径的线性度参数、所述主传播路径直线拟合计算所述剪切波传播速度时的误差参数、所述主传播路径的长度参数、所述主传播路径的面积参数中的一个或多个。
  38. 一种弹性成像系统,其特征在于,所述弹性成像系统包括:
    探头,用于向受测组织发射第一超声波,以跟踪在所述受测组织内传播的剪切波,所述探头还用于接收所述受测组织返回的第一超声回波,获得第一超声回波数据;
    处理器,连接于所述探头,所述处理器用于基于所述第一超声回波数据获得由所述剪切波在所述受测组织中的传播引起的所述受测组织在不同时刻及不同深度下的运动参数,根据所述运动参数确定所述剪切波的主传播路径,获得主传播路径图,并根据所述第一超声回波数据或者所述运动参数或者所述主传播路径图确定所述受测组织的弹性信息,其中所述主传播路径图表征所述剪切波在所述受测组织中的主传播路径;
    显示屏,连接于所处理器,所述处理器用于将所述主传播路径图和所述受测组织的弹性信息显示于所述显示屏内。
  39. 一种计算机可读存储介质,存储有计算机指令,其特征在于,所述计算机指令被处理器执行时实现如权利要求1至37中任意一项所述的弹性成像方法。
PCT/CN2019/112507 2019-09-27 2019-10-22 弹性成像方法、系统及计算机可读存储介质 WO2021056645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980098269.9A CN114072066A (zh) 2019-09-27 2019-10-22 弹性成像方法、系统及计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910924688.5A CN110710989B (zh) 2019-09-27 2019-09-27 弹性成像方法、系统及计算机可读存储介质
CN201910924688.5 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021056645A1 true WO2021056645A1 (zh) 2021-04-01

Family

ID=69212008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112507 WO2021056645A1 (zh) 2019-09-27 2019-10-22 弹性成像方法、系统及计算机可读存储介质

Country Status (2)

Country Link
CN (4) CN110710989B (zh)
WO (1) WO2021056645A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710989B (zh) * 2019-09-27 2021-12-24 深圳迈瑞生物医疗电子股份有限公司 弹性成像方法、系统及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
US20160030000A1 (en) * 2014-08-04 2016-02-04 Delphinus Medical Technologies, Inc. Ultrasound waveform tomography method and system
CN106618638A (zh) * 2016-11-04 2017-05-10 声泰特(成都)科技有限公司 一种定量剪切波弹性成像系统
CN108720869A (zh) * 2017-04-25 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性测量方法及装置
CN108733857A (zh) * 2017-04-21 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036650A (ko) * 2012-09-17 2014-03-26 삼성전자주식회사 1차원 초음파 프로브를 이용하여 조직의 탄성을 분석하는 방법, 장치 및 시스템.
CN103300891B (zh) * 2013-05-29 2015-05-06 北京索瑞特医学技术有限公司 对组织的定量弹性信息和结构信息组合显示的方法和系统
US10451587B2 (en) * 2014-07-16 2019-10-22 Duke University Methods, systems and computer program products for estimating shear wave speed using statistical inference
CN110507360B (zh) * 2014-08-28 2022-06-03 深圳迈瑞生物医疗电子股份有限公司 剪切波成像方法及系统
JP2018500115A (ja) * 2014-12-24 2018-01-11 スーパー・ソニック・イマジン 異方性媒体をイメージングするためのせん断波エラストグラフィ方法及び装置
CN104605891B (zh) * 2014-12-31 2017-05-31 中国科学院苏州生物医学工程技术研究所 检测剪切波在生物组织中传播速度的方法、检测生物组织弹性的方法及生物组织弹性成像方法
CN113812979A (zh) * 2015-10-08 2021-12-21 梅约医学教育与研究基金会 用于利用持续换能器振动进行超声弹性成像的系统和方法
EP3475992A4 (en) * 2016-06-22 2020-02-19 Duke University ULTRASONIC TRANSDUCERS FOR CONSTRUCTIVE SHEAR WAVE INTERFERENCE AND RELATED METHODS AND SYSTEMS
WO2018058113A2 (en) * 2016-09-26 2018-03-29 Duke University Systems and methods for analysis of liquids by covered fluidic channels integrated onto sensor platforms
KR20180054360A (ko) * 2016-11-15 2018-05-24 삼성메디슨 주식회사 초음파 진단 장치 및 초음파 진단 장치 제어 방법
CN107510474B (zh) * 2017-09-21 2020-07-10 深圳开立生物医疗科技股份有限公司 剪切波弹性成像方法及系统
CN110292399B (zh) * 2018-05-04 2022-03-08 深圳迈瑞生物医疗电子股份有限公司 一种剪切波弹性测量的方法及系统
CN109919918A (zh) * 2019-02-21 2019-06-21 清华大学 弹性成像的控制方法及装置、计算机设备及可读存储介质
CN109893172B (zh) * 2019-02-22 2020-06-19 清华大学 基于弹性成像的力学参数的确定方法及装置、计算机设备
CN110353731A (zh) * 2019-06-12 2019-10-22 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像方法及系统
CN110710989B (zh) * 2019-09-27 2021-12-24 深圳迈瑞生物医疗电子股份有限公司 弹性成像方法、系统及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
US20160030000A1 (en) * 2014-08-04 2016-02-04 Delphinus Medical Technologies, Inc. Ultrasound waveform tomography method and system
CN106618638A (zh) * 2016-11-04 2017-05-10 声泰特(成都)科技有限公司 一种定量剪切波弹性成像系统
CN108733857A (zh) * 2017-04-21 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法
CN108720869A (zh) * 2017-04-25 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性测量方法及装置

Also Published As

Publication number Publication date
CN110710989A (zh) 2020-01-21
CN110710989B (zh) 2021-12-24
CN114072066A (zh) 2022-02-18
CN113261991A (zh) 2021-08-17
CN114287968A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2014162966A1 (ja) 超音波診断装置、及び弾性評価方法
US11071525B2 (en) Ultrasonic diagnostic apparatus and method
JP2021506470A (ja) 超音波システムのためのエコー窓のアーチファクト分類及び視覚的インジケータ
JP6257942B2 (ja) 弾性計測装置、弾性計測装置のプログラム及び超音波診断装置
KR20130080640A (ko) 초음파 영상 제공 방법 및 초음파 영상 제공 장치
CN112386276A (zh) 剪切波弹性成像方法、超声成像系统及计算机可读存储介质
KR101776530B1 (ko) 초음파 화상 표시 장치 및 그 제어 프로그램
WO2021056645A1 (zh) 弹性成像方法、系统及计算机可读存储介质
KR101196211B1 (ko) 초음파 진단장치 및 그 방법
JP2012061075A (ja) 超音波診断装置及びその制御プログラム
CN112890866A (zh) 超声成像方法、系统及计算机可读存储介质
JP2014161478A (ja) 超音波診断装置及びその制御プログラム
US11250564B2 (en) Methods and systems for automatic measurement of strains and strain-ratio calculation for sonoelastography
KR101501519B1 (ko) 컬러 도플러 영상을 이용한 스캔 라인 가이드 방법 및 장치
WO2020019254A1 (zh) 一种剪切波成像方法及系统
CN113545806A (zh) 前列腺弹性成像方法和超声弹性成像系统
WO2020133332A1 (zh) 确定超声波发射角度的方法以及超声设备
JP2019208591A (ja) 超音波診断装置および自動保存制御プログラム
JP5859946B2 (ja) 計測装置及びその制御プログラム
JP7196135B2 (ja) 装置、その制御プログラム及びシステム
JP2018050926A (ja) 超音波診断装置
WO2021120071A1 (zh) 超声成像方法、超声成像系统及计算机可读存储介质
JP6556881B2 (ja) 超音波診断装置及びその制御プログラム
WO2021042242A1 (zh) 一种超声成像设备及其超声回波信号的处理方法
WO2020082229A1 (zh) 一种检查模式的确定方法及超声设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946909

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19946909

Country of ref document: EP

Kind code of ref document: A1