WO2021056559A1 - 分光棱镜组、摄像装置、摄像方法及终端 - Google Patents

分光棱镜组、摄像装置、摄像方法及终端 Download PDF

Info

Publication number
WO2021056559A1
WO2021056559A1 PCT/CN2019/109174 CN2019109174W WO2021056559A1 WO 2021056559 A1 WO2021056559 A1 WO 2021056559A1 CN 2019109174 W CN2019109174 W CN 2019109174W WO 2021056559 A1 WO2021056559 A1 WO 2021056559A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
wavelength
color
adjacent
Prior art date
Application number
PCT/CN2019/109174
Other languages
English (en)
French (fr)
Inventor
陈嘉伟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980099097.7A priority Critical patent/CN114207498A/zh
Priority to PCT/CN2019/109174 priority patent/WO2021056559A1/zh
Publication of WO2021056559A1 publication Critical patent/WO2021056559A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/12Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification

Definitions

  • the embodiments of the application relate to image acquisition technology, and in particular to a beam splitting prism group, a camera device, a camera method, and a terminal.
  • a color filter array (CFA, Color Filter Array) is set on the photosensitive element in the image sensor.
  • the CFA is mainly composed of red Green and blue (RGB, Red Green Blue) filters are composed of three colors.
  • a color filter is set on each pixel block of the photosensitive element.
  • each pixel filters out two colors of light, resulting in a decrease in the utilization rate of light energy, and the gray value of the filtered two colors of light on each pixel block is The approximation obtained by interpolation, both of which will lead to the degradation of the quality of the color image.
  • the present application provides a dichroic prism group, a camera device, a camera method, and a terminal, which can improve the quality of color images.
  • the embodiment of the present application provides a dichroic prism group, the dichroic prism group includes:
  • N prisms arranged in sequence; N is the total number of color types in the color reference;
  • N image sensors arranged on the first surface corresponding to each of the N prisms
  • N-1 color filters arranged on N-1 adjacent surfaces of the N prisms, where the N-1 colors are any N-1 colors in the color reference;
  • the i-th adjacent surface of the N-1 adjacent surfaces is the surface of the i-th prism adjacent to the (i+1)th prism, or the surface of the i+1-th prism adjacent to the i-th prism.
  • the adjacent faces of a prism, i is a positive integer less than N;
  • the N-1 color filters are used to filter the light beams entering the beam splitting prism group, and filter out N-1 types of reflected light and transmitted light;
  • the N image sensors are configured to receive the N-1 types of reflected light and the transmitted light, and generate a color image based on the N-1 types of reflected light and the transmitted light.
  • the length of the side perpendicular to the incident direction of the reflected light on the first surface corresponding to the i-th prism among the first N-1 prisms is greater than or equal to that of the image sensor provided on the first surface.
  • the maximum side length of the photosensitive surface; the side length of the side perpendicular to the incident direction of the transmitted light on the first surface corresponding to the Nth prism is greater than or equal to the maximum side length of the photosensitive surface of the image sensor set on the first surface .
  • N 3;
  • the two-color filters arranged on the two adjacent surfaces of the three prisms include at least two of the following: a blue dichroic filter for reflecting blue, and a red dichroic filter for reflecting red Color filters and green dichroic filters for reflecting green.
  • N 3;
  • the first color filter is Long pass filter of the first wavelength
  • the second color filter is a short-wavelength pass filter with a second wavelength; the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light, and the second wavelength is the maximum wavelength of green light or the minimum wavelength of red light;
  • the light beam enters the first prism, the light beam passes through the long-wavelength pass filter of the first wavelength to reflect blue light and transmit red and green light, and the blue light is reflected in the first prism
  • the red and green light enters the second prism, the red and green light passes through the short-wavelength pass filter of the second wavelength to reflect red light and transmit green light, so The red light is reflected in the second prism and enters the second image sensor, the green light enters the third prism, and the green light is transmitted to the third prism through the third prism.
  • An image sensor so that the first image sensor, the second image sensor, and the third image sensor each collect gray information corresponding to the blue light and gray information corresponding to the red light , And gray information corresponding to the green light.
  • N 3;
  • the first color filter is Long pass filter of the first wavelength
  • the second color filter is a long-wavelength pass filter with a second wavelength
  • the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light
  • the second wavelength is the maximum wavelength of green light or the minimum wavelength of red light.
  • N 3;
  • the first color filter is Short-wave pass filter of the second wavelength
  • the second color filter is a long-wavelength pass filter with a first wavelength, the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light, and the second wavelength is the maximum wavelength of green light or the minimum wavelength of red light.
  • N 3;
  • the first color filter is Short-wave pass filter of the second wavelength
  • the second color filter is a short-wave pass filter with a first wavelength, the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light, and the second wavelength is the maximum wavelength of green light or the minimum wavelength of red light.
  • the dichroic prism group further includes: an anti-reflection film covering the beam incident surface of the first prism among the N prisms.
  • An embodiment of the present application provides a camera device, the device includes:
  • the beam splitting prism group according to any one of claims 1 to 9 is arranged in the light emission direction of the optical component;
  • the optical component is used to converge and/or adjust the optical path of incident light to generate a light beam that enters the beam splitting prism group.
  • the optical component is at least one lens group
  • the at least one lens group is used to converge the incident light and emit the light beam.
  • the optical component is a folding prism
  • the folding prism includes: at least one lens group and at least one reflective prism;
  • the incident light passes through the convergence of the at least one lens group and the reflection of the at least one reflective prism to emit the light beam.
  • the device further includes: an image processor connected to the N image sensors;
  • the image processor is configured to superimpose gray information corresponding to each of the N colors of light to generate the color image; wherein the gray information corresponding to each of the N colors of light is the N images
  • the sensor collects the N-1 kinds of reflected light and the transmitted light, and the N image sensors have a one-to-one correspondence with the N colors.
  • An embodiment of the present application provides a camera method, which is applied to a terminal provided with any of the above-mentioned camera devices, and the method includes:
  • the optical component In response to the shooting instruction, the optical component is turned on, the incident light is controlled to pass through the optical component, and a light beam is emitted.
  • the light beam enters the beam splitting prism group, and the light beam passes through N-1 types on N-1 adjacent surfaces.
  • the color filter filters out N-1 kinds of reflected light and transmitted light, and the N-1 kinds of reflected light and the transmitted light are incident on respective corresponding image sensors of the N image sensors;
  • Control the N image sensors to collect the N-1 kinds of reflected light and the transmitted light, and obtain the grayscale information corresponding to each of the N colors of light.
  • the information is sent to the image processor;
  • An embodiment of the present application provides a terminal, and the terminal includes:
  • the body is provided with a controller and a memory;
  • a shell arranged around the body
  • the memory is used to store executable instructions
  • the controller is configured to implement the above-mentioned imaging method when executing the executable instructions stored in the memory.
  • FIG. 1 is a first schematic diagram of a camera device for shooting color images according to an embodiment of the application
  • FIG. 2 is a schematic diagram of a photosensitive element covered with a Bayer color filter provided by an embodiment of the application;
  • FIG. 3(a) is a schematic diagram of light filtering of a pixel block covering a red filter provided by an embodiment of the application;
  • Fig. 3(b) is a schematic diagram of light filtering of a pixel block covering a green filter provided by an embodiment of the application;
  • FIG. 3(c) is a schematic diagram of light filtering of a pixel block covering a blue filter provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of collecting a photosensitive element covered with a Bayer color filter according to an embodiment of the application
  • FIG. 5 is a first structural diagram of a beam splitting prism group provided by an embodiment of the application.
  • FIG. 6 is a second structural diagram of a beam splitting prism group provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the spectrum of red, green and blue light after splitting according to an embodiment of the application.
  • FIG. 8(a) is a schematic diagram of a spectrum of a blue dichroic filter provided by an embodiment of the application.
  • FIG. 8(b) is a schematic diagram of a spectrum of a red dichroic filter provided by an embodiment of the application.
  • FIG. 9 is a third structural diagram of a light splitting prism group provided by an embodiment of the application.
  • FIG. 10 is a fourth structural schematic diagram of a dichroic prism group provided by an embodiment of this application.
  • Fig. 11(a) is a schematic diagram of a spectrum of a 400nm long-wave pass filter provided by an embodiment of the application;
  • Fig. 11(b) is a schematic diagram of a spectrum of a 400nm short-wave pass filter provided by an embodiment of the application;
  • FIG. 12 shows the fifth structural schematic diagram of a dichroic prism group provided by an embodiment of the application.
  • FIG. 13 shows the sixth structural diagram of a dichroic prism group provided by an embodiment of this application.
  • FIG. 14 shows the seventh structural diagram of a dichroic prism group provided by an embodiment of this application.
  • FIG. 15 shows the eighth structural schematic diagram of a dichroic prism group provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a camera device provided by an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of an imaging device with a folding prism provided by an embodiment of the application.
  • FIG. 18 is a flowchart of a camera method applied to a terminal having a camera device according to an embodiment of the application
  • FIG. 19 is a schematic diagram of a terminal with a camera device provided by an embodiment of the application.
  • module means, “component” or “unit” used to indicate elements is only for the description of the present application, and has no specific meaning in itself. Therefore, “module”, “part” or “unit” can be used in a mixed manner.
  • the camera device 1 includes an image sensor 11 and an image processor 12 (ISP, Image Signal Processor).
  • the image sensor 11 includes a photosensitive element and a color filter array CFA.
  • the CFA is placed above the photosensitive element.
  • the CFA is composed of red, green, and blue RGB filters. The red filter only transmits red light, the green filter only transmits green light, and the blue filter only transmits blue light; CFA After filtering the composite light, the three colors of red, green and blue are irradiated on the photosensitive element. Each pixel of the photosensitive element is irradiated with red light, green light or blue light, and each pixel of the photosensitive element detects red light and green light.
  • the gray value of light or blue light, the gray information of the three color channels of red, green and blue detected by different pixels on the photosensitive element, constitutes the original (RAW) image data; the image sensor 11 transmits the RAW image data to the image processor 12.
  • the image processor 12 performs color restoration on the RAW image data to obtain a color image.
  • red, green and blue color reference uses the three colors of red, green and blue as the three primary colors, and all colors are generated by mixing the three colors of red, green and blue.
  • white light natural light or any other
  • the composite light, etc. are also composed of red light, green light and blue light.
  • the CFA is used to filter the light, so that Each pixel block on the photosensitive element only detects the gray value of light of one color; among them, red light, green light and blue light refer to all light with a wavelength within a certain range.
  • the CFA is a Bayer filter.
  • the Bayer filter is a mosaic color filter array formed by arranging RGB color filters on the grid of the photosensitive element.
  • the Bayer filter array has 50% It is green, 25% is red, and 25% is blue.
  • the bottom white square is the photosensitive element 21 divided by pixels as a square, and each white square represents a pixel block
  • the Bayer color filter 22 is divided into three color filters. Each pixel block is covered with a color filter. Each pixel block only records light of one of the three colors of RGB. For grayscale information, only the Bayer color filter is shown in FIG. 2, and the Bayer color filter that completely covers the photosensitive element is not shown.
  • FIG. 3(a) a schematic diagram of light filtering of a pixel block covering a red filter, the three colors of red light, green light, and blue light are irradiated onto the red filter 31. This After the light of the three colors passes through the red filter 31, only the red light passes through the red filter 31 and irradiates the pixel block 32 of the photosensitive element.
  • FIG. 3(b) a schematic diagram of the light filtering of a pixel block covering a green filter, the three colors of red light, green light and blue light are irradiated onto the green filter 33. This After the light of the three colors passes through the green filter 33, only the green light passes through the green filter 33 and irradiates the pixel block 34 of the photosensitive element.
  • FIG. 3(c) a schematic diagram of the light filtering of a pixel block covering a blue filter, the three colors of red light, green light and blue light are irradiated onto the blue filter 35 After the light of these three colors passes through the blue filter 35, only the blue light passes through the blue filter 35 and irradiates the pixel block 36 of the photosensitive element.
  • FIG. 4 a schematic diagram of the collection of a photosensitive element covered with a Bayer color filter, for the photosensitive element completely covered by the Bayer color filter as shown in FIG. 2, the pixel blocks on the photosensitive element collect light of different colors
  • the pixel block covered with the red filter on the photosensitive element collects the gray information 41 of red light
  • the pixel block covered with the green filter collects the gray information 42 of green light
  • the pixel block of the mirror collects the gray information 43 of the blue light.
  • different pixel blocks on the photosensitive element collect the gray information of different colors of light.
  • different colors correspond to different pixel blocks.
  • the gray-scale information of the light rays is composed of RAW image data, and the original image data is transmitted to the image processor.
  • the demosaic module in the image processor performs color restoration on the RAW image data to obtain an RGB image or a YUV image.
  • CFA is used to filter out the two colors of light in each pixel block, which reduces the utilization rate of light energy.
  • the demosaicing module performs color restoration, it is based on the light of one color of each of the 4 RGGB pixels.
  • the camera device can be used in a terminal, and the terminal can be implemented in various forms.
  • the terminal can include mobile terminals such as mobile phones, tablet computers, notebook computers, palmtop computers, and fixed terminals such as desktop computers. .
  • the structure of the camera device shown in FIG. 1 does not constitute a limitation on the camera device.
  • the camera device may include more or less components than those shown in the figure, or combine certain components, or different components. Component arrangement.
  • the embodiment of the present application provides a light-splitting prism group.
  • the structure of the light-splitting prism group 2 may include:
  • N image sensors 22 arranged on the first surface corresponding to each of the N prisms;
  • N-1 colors of filters 23 are arranged on N-1 adjacent surfaces of N prisms, and the N-1 colors are any N-1 colors in the color reference;
  • the i-th adjacent surface among the N-1 adjacent surfaces is the surface of the i-th prism adjacent to the i+1-th prism, or the surface of the i+1-th prism adjacent to the i-th prism Face, i is a positive integer less than N;
  • the N-1 color filter 23 is used to filter the light beam entering the beam splitting prism group, and filter out N-1 reflected light and transmitted light;
  • the N image sensors 22 are used to receive N-1 types of reflected light and transmitted light, and generate color images based on the N-1 types of reflected light and transmitted light.
  • the light beam enters the beam splitting prism group, and the light beam passes through the first j color filters to reflect the j-th reflected light.
  • the j-th reflected light is reflected in the j-th prism and enters the j-th prism on the j-th prism.
  • An image sensor, j is a positive integer less than N-1; the light beam passes through the first N-1 color filters, reflecting the N-1th reflected light and passing through the transmitted light of one color, the N-1th
  • the reflected light is reflected in the N-1th prism and enters the N-1th image sensor on the N-1th prism, and the transmitted light is transmitted through the Nth prism and enters the Nth prism.
  • the Nth image sensor on the prism; among them, the first N-1 prism and the Nth prism belong to N prisms.
  • the light beam irradiates the filter of the first color, reflects the first reflected light, and transmits the light beam that does not include the first reflected light; the light beam that does not include the first reflected light irradiates the second On the color filter, the second type of reflected light is reflected, and the beam that does not include the first type of reflected light and the second type of reflected light is transmitted; until the beam that does not include the first N-2 types of reflected light is irradiated to the Nth On the -1 color filter, the N-1 reflected light is reflected, and the transmitted light of one color is transmitted; among them, the first reflected light, the second reflected light,..., the N-1
  • the reflected light and transmitted light correspond to N colors one by one.
  • the light beam may be a light beam generated by converging a composite light.
  • the composite light refers to light composed of light in different wavelength ranges.
  • the composite light includes white light, natural light, and so on.
  • the N prisms are arranged in sequence according to the irradiation direction of the light beam, and the light beam is transmitted through at least two faces of each prism in the N prisms; wherein, at least two faces of each prism and its own The first surface is different.
  • the first surface corresponding to the first N-1 prisms is the surface through which the light beam does not pass, and the first surface corresponding to the Nth prism is the exit surface of the light beam.
  • the N prisms starting from the beginning end of the irradiation direction of the light beam, are arranged in the irradiation direction in order to obtain the first prism, the second prism, ..., the Nth prism arranged in sequence according to the irradiation direction.
  • Prisms, the first N-1 prisms are the first prism to the N-1th prism.
  • the above-mentioned irradiation direction of the light beam is the irradiation direction of the light beam indicated by the center line of the light beam entering the dichroic prism group.
  • the color standard refers to a color standard in the industry, that is, several specific colors are used, and various specific colors are obtained by changing these specific colors and superimposing these characteristic colors.
  • the photosensitive surface of the i-th image sensor among the N image sensors covers the first surface corresponding to the i-th prism; the i-th image sensor is a CCD or CMOS.
  • the light splitting prism group further includes: an anti-reflection film covering the beam incident surface of the first prism among the N prisms.
  • the light beam enters the beam splitting prism group from one surface of the first prism. This surface is called the beam entrance surface of the first prism. Because the anti-reflection coating increases the light on the surface by reducing the reflected light The transmittance of the first prism is coated with an anti-reflection coating on the beam incident surface of the first prism to allow the beam to fully enter the beam splitting prism group.
  • the length of the side perpendicular to the incident direction of the reflected light on the first surface corresponding to the i-th prism among the first N-1 prisms is greater than or equal to that of the image sensor provided on the first surface.
  • the maximum side length of the photosensitive surface; the side length of the side perpendicular to the incident direction of the transmitted light on the first surface corresponding to the Nth prism is greater than or equal to the maximum length of the photosensitive surface of the N image sensors set on the first surface Side length.
  • the i-th reflected light is reflected in the i-th prism, it illuminates the first surface corresponding to the i-th prism in the incident direction, and the i-th image sensor is set on the i-th prism Corresponding to the first surface, in order to ensure that the photosensitive surface of the i-th image sensor completely covers the first surface corresponding to the i-th prism, that is, the photosensitive surface of the i-th image sensor collects the i-th reflected light, you can set the The side length of the side perpendicular to the incident direction of the i-th reflected light on the first surface corresponding to the i prisms is greater than or equal to the maximum side length of the photosensitive surface of the i-th image sensor, which is not limited in the embodiment of the application ; Among them, the i-th reflected light is reflected in the i-th prism, and the direction in which the i-th reflected light enters the first surface corresponding to the incident direction
  • the air gap makes the reflected light in Total reflection occurs on the surface adjacent to the j+1th prism in the jth prism.
  • the value range of the preset width is 5um-10un, which is not limited in the embodiment of the present application.
  • the first surface 61-1 corresponding to the first prism 61 is covered with the first image sensor 64-1, and the second prism 62 corresponds to The first surface 62-1 is covered with a second image sensor 64-2, and the first surface 63-1 corresponding to the third prism 63 is covered with a third image sensor 64-3;
  • the surface adjacent to the second prism 62, or the surface adjacent to the first prism 61 in the second prism 62, is provided with a filter of the first color; in the second prism 62
  • the surface adjacent to the third prism 63 or the surface adjacent to the second prism 62 of the third prism 63 is provided with a second color filter; the first prism 61 and There is an air gap 65 of a predetermined width between the second prisms 62.
  • the dichroic prism group is a three-dimensional prism group.
  • the schematic structural diagram of a dichroic prism group shown in FIG. 6 shows a cross-sectional view of the dichroic prism group.
  • each side of each prism in the beam splitting prism group can be adjusted so that the photosensitive surface of the image sensor is completely covered on the first surface corresponding to each prism, and the light of the three colors is on each side.
  • the transmission paths in the prisms are equal, and the embodiment of the present application does not limit the side length of each prism in the beam splitting prism group.
  • the beam of white light is injected into the beam splitting prism group, that is, the beam splitting prism group is used to split the beam of white light into red light, green light, and blue light.
  • the beam splitting prism group can be called a white light beam splitting prism group.
  • the embodiment of this application does not limit it.
  • the two-color filters provided on the two adjacent surfaces of the three prisms include: A dichroic filter, a red dichroic filter for reflecting red, and a green dichroic filter for reflecting green.
  • blue dichroic filters may be set respectively , Red dichroic filter and green dichroic filter corresponding to the filter wavelength.
  • FIG. 7 is a schematic diagram of the spectrum of the three primary lights of red, green and blue after light separation, the abscissa in the schematic diagram of the spectrum is the wavelength, and the unit is nm;
  • the sensitivity of different wavelengths of light it can be seen that the spectral sensitivity of blue light with a wavelength of about 100nm to 500nm changes 71, and the spectral sensitivity of green light with a wavelength of about 480nm to 580nm changes 72.
  • the wavelength is about from The change curve 73 of the spectral sensitivity of red light from 580 nm to 780 nm.
  • the schematic diagram of the spectrum of the blue dichroic filter the abscissa in the schematic diagram of the spectrum is the wavelength, and the unit is nm; the ordinate in the schematic diagram of the spectrum is the transmission rate; blue light
  • the wavelength range of is approximately 400-484nm. It can be seen that the blue dichroic filter has a transmission rate of 0 for light with a wavelength of less than 484nm, and a transmission rate of greater than 90% for light with a wavelength of not less than 484nm.
  • the schematic diagram of the spectrum of the red dichroic filter the abscissa in the schematic diagram of the spectrum is the wavelength, and the unit is nm; the ordinate in the schematic diagram of the spectrum is the transmission rate; red light
  • the wavelength range of the red dichroic filter is about 580-700nm, the transmission rate of the red dichroic filter for light with a wavelength of less than 580nm is greater than 90%, and the transmission rate for light with a wavelength of not less than 580nm is 0.
  • the structure diagram of a dichroic prism group as shown in FIG. 9 is based on the dichroic prism group 6 shown in FIG.
  • the dichroic filter 66 is coated with a red dichroic filter 67 on the second surface 62-2 of the second prism 62; at this time, after the white light beam enters the first prism 61, it passes through the first prism 61. Two prisms 61 are transmitted, and the light beam reaches the blue dichroic filter 66.
  • the blue dichroic filter 66 reflects blue light and transmits red and green light; the blue light is reflected in the first prism 61 and is projected to
  • the prism 62 transmits and reaches the red dichroic filter 67.
  • the red dichroic filter 67 reflects red light and transmits green light; the red light is reflected in the second prism 62 and is projected to the second prism 62.
  • the blue light is totally reflected on the second surface 61-2 of the first prism 61 and is reflected back.
  • the first prism 61 it is reflected by the first prism 61 and projected onto the first image sensor 64-1; in the same way, there is a preset width of air between the second prism 62 and the third prism 63 During the interval, the red light is totally reflected on the second surface 62-2 of the second prism 62, reflected back to the second prism 62, reflected by the second prism 62, and projected to the second image sensor 64 -2 on.
  • a schematic structural diagram of a dichroic prism group includes three prisms arranged in sequence, and the irradiation direction of the light beam is perpendicular to the first surface 101-1 of the first prism 101, The distance between a vertex 101-0 of the first prism 101 and a vertex 102-0 of the second prism 102 is 1.5 mm, and the second surface 101-2 of the first prism 101 is in accordance with the direction of the light beam.
  • the angle of the set straight line is 60°, the side length of the side perpendicular to the incident direction of the reflected light on the third surface 101-3 of the first prism 101 is 7.22mm; the third surface of the second prism 102 The side length of the side perpendicular to the incident direction of the reflected light on each surface 102-3 is 6.77mm, and the angle between the first surface 102-1 and the second surface 102-2 of the second prism 102 Is 40°; the angle between the first surface 103-1 of the third prism 103 and the straight line set in the direction of beam irradiation is 80°, and the second surface 103-2 of the third prism 103 is perpendicular to The side length of the side of the incident direction of the transmitted light is 7.95mm, and the side length of the side of the third surface 103-3 of the third prism 103 is 8.06mm, where the incident direction of the transmitted light is the same as the irradiation direction of the beam .
  • the maximum side length of the photosensitive surface of the image sensor is 6.77mm.
  • the minimum side length of the photosensitive surface is about 5.1mm;
  • the minimum side length sets the thickness of each prism to 5.1 mm, which is not limited in the embodiment of the present application.
  • a dichroic long pass filter (long pass filter) and a dichroic short pass filter (short pass filter) can be used instead of the red dichroic filter
  • the embodiments of this application are not limited; among them, the long-wavelength filter refers to allowing longer wavelengths of light to pass through, and the short-wavelength filter refers to allowing shorter wavelengths. Light through.
  • FIG. 11(a) a schematic diagram of the spectrum of a 400nm long-wave pass filter
  • the abscissa in the schematic diagram of the spectrum is the wavelength, and the unit is nm
  • the ordinate in the schematic diagram of the spectrum is the transmission rate
  • FIG. 11(b) a schematic diagram of the spectrum of a 400nm short-wavelength pass filter, the abscissa in the schematic diagram of the spectrum is the wavelength, and the unit is nm; the ordinate in the schematic diagram of the spectrum is the transmission rate; It can be seen that the transmission rate of the 400nm short-wavelength filter to the three kinds of light with a wavelength of less than 400nm is between 80% and 100%, and the transmission rate of the three kinds of light with a wavelength of not less than 400nm is 0.
  • the filter of the first color is a long-wavelength pass filter of the first wavelength; it is set on the surface of the second prism adjacent to the third prism, or the third prism On the surface adjacent to the second prism, the second color filter is a short-wavelength pass filter of the second wavelength, the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light, and the second wavelength The maximum wavelength of green light or the minimum wavelength of red light;
  • the light beam enters the first prism, and the light beam passes through the long-wavelength filter of the first wavelength to reflect blue light and transmit red and green light.
  • the blue light is reflected in the first prism and enters the first image sensor, and the red and green light is emitted.
  • the red and green light passes through the short-wavelength pass filter of the second wavelength to reflect red light and transmit green light.
  • the red light is reflected in the second prism and enters the second image sensor, and the green light is emitted.
  • the green light is transmitted through the third prism to the third image sensor, so that the first image sensor, the second image sensor and the third image sensor can collect the gray information corresponding to the blue light. , Grayscale information corresponding to red light, and grayscale information corresponding to green light.
  • the long-pass filter of the first wavelength can only transmit light with a wavelength greater than the first wavelength
  • the short-wave pass filter of the second wavelength can only transmit light with a wavelength less than the second wavelength
  • the wavelength range of blue light is approximately 400-484nm
  • the wavelength range of green light is approximately 484-580nm
  • the wavelength range of red light is approximately 580-700nm.
  • the structure diagram of a dichroic prism group as shown in FIG. 12 is based on the dichroic prism group 6 as shown in FIG. 6, and the second surface 61-2 of the first prism 61 is coated with a long wave length of 484 nm.
  • the pass filter 111 is coated with a 580nm short-wavelength pass filter 112 on the second surface 62-2 of the second prism 62; at this time, after the white light beam enters the first prism 61, it passes through the first prism 61.
  • the prism 61 is transmitted, and the light beam reaches the 484nm long-wave pass filter 111.
  • the first image sensor 64-1 collects the gray information corresponding to the blue light in the beam; the red and green light is transmitted through the second prism 62 and reaches the 580nm short-wave pass filter 112, after passing the 580nm
  • the short-wave pass filter 112 reflects red light and transmits green light; the red light is reflected in the second prism 62 and projected to the second image sensor 64-2, and the second image sensor 64-2 collects the light beam
  • the gray information corresponding to the red light in the beam; the green light is transmitted through the third prism 63 and reaches the third image sensor 64-3, and the third image sensor 64-3 collects the gray information corresponding to the green light in the beam .
  • the filter of the first color is a long-wavelength pass filter of the first wavelength
  • the second color filter is a long-pass filter of the second wavelength
  • the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light
  • the second wavelength The maximum wavelength of green light or the minimum wavelength of red light
  • the light beam enters the first prism, and the light beam passes through the long-wavelength filter of the first wavelength to reflect blue light and transmit red and green light.
  • the blue light is reflected in the first prism and enters the first image sensor, and the red and green light is emitted.
  • the red and green light passes through the second wavelength long-wave pass filter to reflect red light and pass through the green light.
  • the green light is reflected in the second prism and enters the second image sensor.
  • the red light is transmitted through the third prism to the third image sensor, so that the first image sensor, the second image sensor and the third image sensor can collect the gray information corresponding to the blue light. , Grayscale information corresponding to green light, and grayscale information corresponding to red light.
  • the structure diagram of a dichroic prism group as shown in FIG. 13 is based on the dichroic prism group 6 as shown in FIG. 6, and the second surface 61-2 of the first prism 61 is coated with a long wave length of 484 nm.
  • the pass filter 121 is coated with a 580nm long-wave pass filter 122 on the second surface 62-2 of the second prism 62; at this time, after the white light beam enters the first prism 61, it passes through the first prism 61 The prism 61 is transmitted, and the light beam reaches the 484 nm long-wave pass filter 121.
  • the 484 nm long-wave pass filter 121 After the 484 nm long-wave pass filter 121, blue light is reflected and red and green light is transmitted; the blue light is reflected in the first prism 61 and is projected to the first prism 61.
  • the image sensor 64-1, the first image sensor 64-1 collects the gray information corresponding to the blue light in the beam; the red and green light is transmitted through the second prism 62 and reaches the 580nm long-pass filter 122, after passing the 580nm
  • the long-pass filter 122 reflects red light and transmits green light; the green light is reflected in the second prism 62 and is projected to the second image sensor 64-2, and the second image sensor 64-2 collects the light beam
  • the gray information corresponding to the green light in the beam; the red light is transmitted through the third prism 63 and reaches the third image sensor 64-3, and the third image sensor 64-3 collects the gray information corresponding to the red light in the beam .
  • the filter of the first color is a short-wavelength pass filter of the second wavelength; it is set on the surface of the second prism adjacent to the third prism, or the third prism
  • the second color filter is a long-pass filter of the first wavelength
  • the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light
  • the second wavelength The maximum wavelength of green light or the minimum wavelength of red light
  • the light beam enters the first prism, and the light beam passes through the short-wavelength pass filter of the second wavelength to reflect red light and pass through the green and blue light.
  • the red light is reflected in the first prism and enters the first image sensor, and the green and blue light is emitted.
  • the green and blue light pass through the long-wavelength filter of the first wavelength to reflect blue light and pass through the green light.
  • the blue light is reflected in the second prism and enters the second image sensor, and the green light enters the third prism.
  • the green light is transmitted to the third image sensor, so that the first image sensor, the second image sensor and the third image sensor can collect the gray information corresponding to the red light and the blue light respectively.
  • Corresponding gray-scale information and gray-scale information corresponding to green light; among them, green and blue light refers to cyan light including green light and blue light.
  • the schematic diagram of the structure of a dichroic prism group shown in FIG. 14 is based on the dichroic prism group 6 shown in FIG.
  • the pass filter 131 is coated with a 484nm long-wave pass filter 132 on the second surface 62-2 of the second prism 62; at this time, after the white light beam enters the first prism 61, it passes through the first prism 61.
  • the prism 61 is transmitted, and the light beam reaches the 580nm short-wave pass filter 131.
  • red light is reflected and green and blue light is transmitted; the red light is reflected in the first prism 61 and is projected to the first prism 61.
  • the first image sensor 64-1 collects the gray information corresponding to the red light in the beam; the green and blue light are transmitted through the second prism 62 and reach the 484nm long-pass filter 132, after 484nm
  • the long-wave pass filter 132 reflects blue light and transmits green light; the blue light is reflected in the second prism 62 and projected to the second image sensor 64-2, and the second image sensor 64-2 is collected into the light beam
  • the blue light corresponding to the gray information; the green light is transmitted through the third prism 63 and reaches the third image sensor 64-3, and the third image sensor 64-3 collects the gray information corresponding to the green light in the beam.
  • the filter of the first color is a short-wavelength pass filter of the second wavelength; it is set on the surface of the second prism adjacent to the third prism, or the third prism On the surface adjacent to the second prism, the second color filter is a short-wavelength pass filter of the first wavelength, the first wavelength is the maximum wavelength of blue light or the minimum wavelength of green light, and the second wavelength The maximum wavelength of green light or the minimum wavelength of red light;
  • the light beam enters the first prism, and the light beam passes through the short-wavelength pass filter of the second wavelength to reflect red light and pass through the green and blue light.
  • the red light is reflected in the first prism and enters the first image sensor, and the green and blue light is emitted.
  • the green and blue light pass through the short-wavelength filter of the first wavelength to reflect green light and pass blue light.
  • the green light is reflected in the second prism and enters the second image sensor, and the blue light enters the third prism.
  • Two prisms, the blue light is transmitted to the third image sensor through the third prism, so that the first image sensor, the second image sensor and the third image sensor can collect the gray information corresponding to the red light and the green light respectively. Corresponding grayscale information, and grayscale information corresponding to blue light.
  • the structure diagram of a dichroic prism group as shown in FIG. 15 is based on the dichroic prism group 6 shown in FIG.
  • the pass filter 141 is coated with a 484nm short-wave pass filter 142 on the second surface 62-2 of the second prism 62; at this time, after the white light beam enters the first prism 61, it passes through the first prism 61.
  • the prism 61 transmits, and the light beam reaches the 580nm short-wave pass filter 141.
  • red light is reflected and green and blue light is transmitted; the red light is reflected in the first prism 61 and is projected to the first prism 61.
  • the first image sensor 64-1 collects the gray information corresponding to the red light in the beam; the green and blue light are transmitted through the second prism 62 and reach the 484nm short-wave pass filter 142, after 484nm
  • the short-wavelength pass filter 142 reflects green light and transmits blue light; the green light is reflected in the second prism 62 and is projected to the second image sensor 64-2, and the second image sensor 64-2 collects the light beam
  • the gray information corresponding to the green light in the light beam; the blue light is transmitted through the third prism 63 and reaches the third image sensor 64-3, and the third image sensor 64-3 collects the gray information corresponding to the blue light in the light beam.
  • the camera device 16 includes:
  • the optical component 161 is used to converge and/or adjust the optical path of the incident light to generate a light beam that enters the beam splitting prism group 162.
  • the incident light is a composite light, for example, white light or natural light.
  • the camera device further includes: an image processor connected to the N image sensors; the image processor is used to superimpose the gray information corresponding to each of the N colors of light to generate a color image; where N The gray information corresponding to each color of light is obtained by collecting N-1 kinds of reflected light and transmitted light by N image sensors, and the N image sensors have a one-to-one correspondence with the N colors.
  • the optical component is at least one lens group; at least one lens group is used to converge incident light and emit light beams.
  • the optical component is a folding prism
  • the folding prism includes: at least one lens group and at least one reflecting prism; wherein the incident light passes through the convergence of the at least one lens group and the reflection of the at least one reflecting prism to emit a light beam.
  • the beam Since the incident light exits the beam through the folded prism, the beam then enters the beam splitting prism group.
  • a reflecting prism In order to ensure that the beam passes through at least two surfaces of each prism of the N prisms, and considering the size of the camera device, in addition to adopting a lens group to converge For incident light, it is also possible to set a reflecting prism to change the initial irradiation direction of the incident light, and it is also possible to install other lens groups behind a reflecting prism to converge the light beams whose irradiation direction is changed.
  • a camera device with a folding prism as shown in FIG. 17 adds a folding prism 171 to the dichroic prism group 6 shown in FIG. In the direction perpendicular to the light incident surface 172 of the first prism 61 in the dichroic prism group 6, it enters the dichroic prism group 6; the folding prism 171 includes a first lens group 171-1, a reflective prism 171-2, and a second lens group 171-1.
  • Lens group 171-3 it can be seen that the incident light is incident from the first lens group 171-1 of the camera device 17, after being converged by the first lens group 171-1, and then reflected by the reflecting prism 171-2, the incident light The initial irradiation direction of the lens is changed by 90°, and finally the first prism group 61 in the dichroic prism group 6 is incident through the second lens group 171-3.
  • the addition of the folding prism can reduce the height of the camera device, and can also be used to adjust the back focus length of the lens to ensure that the lens has a larger back focus length so that the incident light can be on the image sensor corresponding to each prism.
  • the number of lens groups in the folding prism can be changed, and the reflecting prism in the folding prism can also be changed.
  • the imaging device 16 may only include the second lens group 171-3, and the incident light is The second lens group 171-3 directly enters the first prism group 61 in the dichroic prism group 6; the embodiment of the present application does not limit it.
  • a camera method as shown in FIG. 18 is applied to a terminal provided with any camera device provided in the embodiments of the present application, and the method includes:
  • the user when the user is in a scene where the terminal is used for shooting, a color image needs to be collected.
  • the user can trigger the shooting function in the shooting setting interface of the terminal, and generate a shooting instruction by triggering, that is, the terminal receives the shooting instruction .
  • the terminal turns on the optical component so that the incident light passes through the optical component, emits a light beam, and the light beam enters the beam splitting prism group.
  • the beam splitting prism group collects the corresponding grayscale information of all colors of light in the beam.
  • the terminal controls the N image sensors to send gray information corresponding to each of the N colors of light to the image processor.
  • S104 Control the image processor to superimpose the gray information corresponding to each of the N colors of light to generate a color image.
  • the light beam is divided into N-1 kinds of reflected light and transmitted light through the filter in the dichroic prism group, and the N-1 kinds of reflected light and transmitted light are incident on the respective corresponding image sensors, so that each image sensor is separately Collect the gray information of one color of light in the beam, and then generate a color image according to the real gray information collected by all image sensors, which improves the light utilization and the truthfulness of the gray information, and further improves the color
  • the quality of the image secondly, the use of multiple image sensors for imaging, compared with one image sensor, the color authenticity and image quality of the collected color images are greatly improved; and the use of multiple image sensors for imaging is equivalent to increasing
  • the light-sensitive area and light collection volume are enlarged, and a high signal-to-noise ratio, excellent sensitivity and a wide dynamic range are realized when taking pictures.
  • the terminal includes:
  • Main body 180 The main body is provided with a controller 183 and a memory 184;
  • any one of the camera devices 182 provided in the embodiments of the present application is provided inside the body, and the camera device 182 is electrically connected to the controller 183;
  • the memory 184 is used to store executable instructions
  • the controller 183 is configured to implement the imaging method provided in the embodiment of the present application when executing the executable instructions stored in the memory 184.
  • the embodiment of the present application provides a computer-readable storage medium that stores executable instructions for causing the controller to execute to implement the imaging method provided by the embodiment of the present application.
  • the terminal may also include a bus system, and various components in the terminal are coupled together through the bus system. It can be understood that the bus system is used to realize the connection and communication between these components.
  • the bus system also includes a power bus, a control bus, and a status signal bus.
  • the controller can be implemented by software, hardware, firmware, or a combination thereof, and can use circuits, single or multiple application specific integrated circuits (ASIC), single or multiple general integrated circuits, single or multiple microprocessors A device, a single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices, so that the controller 183 can execute the corresponding steps of the imaging method in the embodiment.
  • ASIC application specific integrated circuits
  • microprocessors A device, a single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices, so that the controller 183 can execute the corresponding steps of the imaging method in the embodiment.
  • the components in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module.
  • the integrated unit is implemented in the form of a software function module and is not sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this embodiment is essentially or It is said that the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can It is a personal computer, a server, or a network device, etc.) or a processor (processor) that executes all or part of the steps of the method described in this embodiment.
  • the aforementioned storage media include: magnetic random access memory (FRAM, ferromagnetic random access memory), read-only memory (ROM, Read Only Memory), programmable read-only memory (PROM, Programmable Read-Only Memory), erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Flash Memory, Magnetic Surface Memory, Optical Disk
  • FRAM magnetic random access memory
  • ROM read-only memory
  • PROM programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • Flash Memory Magnetic Surface Memory
  • Optical Disk Various media that can store program codes, such as CD-ROM (Compact Disc Read-Only Memory), etc., are not limited in the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium that stores executable instructions for causing a processor to execute to implement the imaging method provided by the embodiment of the present application.
  • the embodiment of the application adopts the above-mentioned technical implementation scheme.
  • the light beam is divided into N-1 reflected light and transmitted light through the filter in the dichroic prism group, and the N-1 reflected light and transmitted light are incident on the respective corresponding image sensors.
  • each image sensor collects the gray information of one color of light in the beam, and then generates a color image based on the true gray information collected by all image sensors, which improves the light utilization rate and the authenticity of the gray information , In turn, improve the quality of color images.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种分光棱镜组(2)、摄像装置(16)、摄像方法及终端,分光棱镜组(2)包括:依次排列的N个棱镜(21);N为颜色基准中颜色种类的总数;设置在N个棱镜(21)各自对应的第一面上的N个图像传感器(22);设置在N个棱镜(21)中的N-1个相邻面上的N-1种颜色的滤光片(23),N-1种颜色为颜色基准中的任意N-1种颜色;其中,N-1个相邻面中第i个相邻面为第i个棱镜的与第i+1个棱镜相邻的面,或者为第i+1个棱镜的与第i个棱镜相邻的面,i为小于N的正整数;N-1种颜色的滤光片(23),用于对射入分光棱镜组(2)的光束进行过滤,滤出N-1种反射光和透射光;N个图像传感器(22),用于接收N-1种反射光和透射光,基于N-1种反射光和透射光生成彩色图像。

Description

分光棱镜组、摄像装置、摄像方法及终端 技术领域
本申请实施例涉及图像采集技术,尤其涉及一种分光棱镜组、摄像装置、摄像方法及终端。
背景技术
目前,对于拍摄彩色图像的摄像装置,由于感光元件只能检测光线的明暗程度(灰度值),在图像传感器中的感光元件上面设置彩色滤波阵列(CFA,Color Filter Array),CFA主要由红绿蓝(RGB,Red Green Blue)三种颜色的滤镜组成,在感光元件的每个像素块上设置一种颜色滤镜,摄像装置开始采集图像时,白光直接照射到图像传感器中的CFA上,经过滤波后的红光、绿光和蓝光照射在感光元件上,使得每个像素块记录一种颜色光线的灰度值,再根据所有像素块各自记录的反射光的灰度值,插值得到所有像素块各自的三色灰度值,对所有像素块各自的三色灰度值进行叠加,得到所有像素块各自的光线的颜色(波长),进而生成彩色图像。
由于上述方案采用CFA对白光进行过滤,每个像素上过滤掉两种颜色光线,导致光能量的利用率下降,并且,每个像素块上的被过滤掉的两种颜色光线的灰度值是通过插值求得的近似值,这两方面都会导致彩色图像的质量下降。
发明内容
本申请提供一种分光棱镜组、摄像装置、摄像方法及终端,能够实现提高彩色图像的质量。
本申请实施例的技术方案可以如下实现:
本申请实施例提供一种分光棱镜组,所述分光棱镜组包括:
依次排列的N个棱镜;N为颜色基准中颜色种类的总数;
设置在所述N个棱镜各自对应的第一面上的N个图像传感器;
设置在所述N个棱镜中的N-1个相邻面上的N-1种颜色的滤光片,所述N-1种颜色为所述颜色基准中的任意N-1种颜色;
其中,所述N-1个相邻面中第i个相邻面为第i个棱镜的与第i+1个棱镜相邻的面,或者为所述第i+1个棱镜的与第i个棱镜相邻的面,i为小于N的正整数;
所述N-1种颜色的滤光片,用于对射入所述分光棱镜组的光束进行过滤,滤出N-1种反射光和透射光;
所述N个图像传感器,用于接收所述N-1种反射光和所述透射光,基于所述N-1种反射光和所述透射光生成彩色图像。
在一些实施例中,前N-1个棱镜中第i个棱镜对应的第一面上,垂直于反射光的射入方向的边的边长,大于或等于第一面上设置的图像传感器的感光面的最大边长;第N个棱镜对应的第一面上,垂直于透射光的射入方向的边的边长,大于或等于第一面上设置的图像传感器的感光面的最大边长。
在一些实施例中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
设置在3个棱镜中的2个相邻面上的2种颜色的滤光片包括以下至少两个:用于反 射蓝色的蓝色二向色滤光片、用于反射红色的红色二向色滤光片、以及用于反射绿色的绿色二向色滤光片。
在一些实施例中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第一波长的长波通滤光片;
设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第二波长的短波通滤光片;所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长;
所述光束射入所述第1个棱镜,所述光束经过所述第一波长的长波通滤光片反射出蓝光、透过红绿光,所述蓝光在所述第1个棱镜中经过反射射入第1个图像传感器,所述红绿光射入所述第2个棱镜,所述红绿光经过所述第二波长的短波通滤光片反射出红光、透过绿光,所述红光在所述第2个棱镜中经过反射射入第2个图像传感器,所述绿光射入所述第3个棱镜,所述绿光经过所述第3个棱镜透射到第3个图像传感器,以使得所述第1个图像传感器、所述第2个图像传感器和所述第3个图像传感器,各自采集到所述蓝光对应的灰度信息、所述红光对应的灰度信息、以及所述绿光对应的灰度信息。
在一些实施例中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第一波长的长波通滤光片;
设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第二波长的长波通滤光片,所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长。
在一些实施例中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第二波长的短波通滤光片;
设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第一波长的长波通滤光片,所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长。
在一些实施例中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第二波长的短波通滤光片;
设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第一波长的短波通滤光片,所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长。
在一些实施例中,所述分光棱镜组还包括:覆盖在所述N个棱镜中的第一个棱镜的光束射入面上的增透膜。
在一些实施例中,前N-1个棱镜中第j个棱镜和第j+1个棱镜之间存在预设宽度的空气间隔,j为小于N-1的正整数;其中,所述空气间隔使得反射光在所述第j个棱镜中的与所述第j+1个棱镜相邻的面上发生全反射。
本申请实施例提供一种摄像装置,所述装置包括:
光学组件;
在所述光学组件的光线射出方向上设置的,如上述权利要求1至9任一项所述的分光棱镜组;
其中,所述光学组件用于对入射光进行汇聚和/或光路调整,生成射入所述分光棱镜组的光束。
在一些实施例中,所述光学组件为至少一个镜头组;
所述至少一个镜头组用于对所述入射光进行汇聚,射出所述光束。
在一些实施例中,所述光学组件为折叠棱镜,所述折叠棱镜包括:至少一个镜头组和至少一个反光棱镜;
其中,所述入射光经过所述至少一个镜头组的汇聚和所述至少一个反光棱镜的反射,射出所述光束。
在一些实施例中,所述装置还包括:与所述N个图像传感器连接的影像处理器;
所述影像处理器,用于对N种颜色的光线各自对应的灰度信息进行叠加,生成所述彩色图像;其中,所述N种颜色的光线各自对应的灰度信息为所述N个图像传感器对所述N-1种反射光和所述透射光进行采集得到的,所述N个图像传感器与所述N种颜色的一一对应。
本申请实施例提供一种摄像方法,应用于设置有如上述任一种摄像装置的终端中,所述方法包括:
接收拍摄指令;
响应于所述拍摄指令,开启光学组件,控制入射光透过所述光学组件,射出光束,所述光束射入分光棱镜组,所述光束经过N-1个相邻面上的N-1种颜色的滤光片滤出N-1种反射光和透射光,所述N-1种反射光和所述透射光射入所述N个图像传感器中各自对应的图像传感器;
控制所述N个图像传感器对所述N-1种反射光和所述透射光进行采集,得到N种颜色的光线各自对应的灰度信息,将所述N种颜色的光线各自对应的灰度信息发送至影像处理器;
控制所述影像处理器对所述N种颜色的光线各自对应的灰度信息进行叠加,生成彩色图像。
本申请实施例提供一种终端,所述终端包括:
本体;所述本体中设置有控制器和存储器;
围绕所述本体设置的壳体;
设置在所述本体内部的如上述任一种摄像装置,所述摄像装置与所述控制器电连接;
所述存储器,用于存储可执行指令;
所述控制器,用于执行所述存储器中存储的可执行指令时,实现如上述的摄像方法。
附图说明
图1为本申请实施例提供的一种拍摄彩色图像的摄像装置的示意图一;
图2为本申请实施例提供的覆盖有拜耳滤色镜的感光元件的示意图;
图3(a)为本申请实施例提供的一个覆盖红色滤镜的像素块的滤光示意图;
图3(b)为本申请实施例提供的一个覆盖绿色滤镜的像素块的滤光示意图;
图3(c)为本申请实施例提供的一个覆盖蓝色滤镜的像素块的滤光示意图;
图4为本申请实施例提供的覆盖有拜耳滤色镜的感光元件的采集示意图;
图5为本申请实施例提供的一种分光棱镜组的结构示意图一;
图6为本申请实施例提供的一种分光棱镜组的结构示意图二;
图7为本申请实施例提供的一种分光后的红绿蓝三原光的光谱示意图;
图8(a)为本申请实施例提供的一种蓝色二向色滤光片的光谱示意图;
图8(b)为本申请实施例提供的一种红色二向色滤光片的光谱示意图;
图9为本申请实施例提供的一种分光棱镜组的结构示意图三;
图10为本申请实施例提供的一种分光棱镜组的结构示意图四;
图11(a)为本申请实施例提供的一种400nm的长波通滤光片的光谱示意图;
图11(b)为本申请实施例提供的一种400nm的短波通滤光片的光谱示意图;
图12所示为本申请实施例提供的一种分光棱镜组的结构示意图五;
图13所示为本申请实施例提供的一种分光棱镜组的结构示意图六;
图14所示为本申请实施例提供的一种分光棱镜组的结构示意图七;
图15所示为本申请实施例提供的一种分光棱镜组的结构示意图八;
图16所示为本申请实施例提供的一种摄像装置的结构示意图;
图17所示为本申请实施例提供的一种带有折叠棱镜的摄像装置的结构示意图;
图18所示为本申请实施例提供的一种应用于具有摄像装置的终端中的摄像方法的流程图;
图19所示为本申请实施例提供的一种具有摄像装置的终端的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
下面参见图1,其为一种拍摄彩色图像的摄像装置的示意图,摄像装置1包括图像传感器11和影像处理器12(ISP,Image Signal Processor),图像传感器11包括感光元件和颜色滤波阵列CFA,CFA放置在感光元件的上方,CFA由红绿蓝RGB三种颜色的滤镜组成,红色滤镜只透过红光,绿色滤镜只透过绿光,蓝色滤镜只透过蓝光;CFA对复合光过滤后,形成红绿蓝三种颜色的光照射到感光元件上,感光元件的每个像素上被照射红光、绿光或蓝光,感光元件的每个像素上检测红光、绿光或蓝光的灰度值,由感光元件上的不同像素检测到的红绿蓝三个颜色通道的灰度信息,组成原始(RAW)图像数据;图像传感器11将RAW图像数据传输至影像处理器12,影像处理器12对RAW图像数据进行色彩还原,得到彩色图像。
需要说明的是,红绿蓝颜色基准(RGB颜色基准)采用红绿蓝三个颜色作为三原色,由红绿蓝三个颜色混合后生成所有颜色,同样地,对于白光、自然光或任意一种其他的复合光等,也由红光、绿光和蓝光组成,然而,由于感光元件只能检测光线的灰度值,不能检测到光线的颜色(波长),因此,采用CFA对光线进行过滤,使得感光元件上的每个像素块只检测一种颜色的光线的灰度值;其中,红光、绿光和蓝光都是指波长在某个范围内的所有光线。
在一些实施例中,CFA为拜耳滤色镜(Bayer filter),拜耳滤色镜是一种将RGB滤色器排列在感光元件的方格之上所形成的马赛克彩色滤色阵列,拜耳滤色镜的阵列有50%是绿色,25%是红色,25%是蓝色。
示例性地,如图2所示的覆盖有拜耳滤色镜的感光元件的示意图,最底层的白色方格为以像素为一个方格进行划分后的感光元件21,每个白色方格代表一个像素块,感光元件21上方为拜耳滤色镜22,拜耳滤色镜22分为三种颜色滤镜,每个像素块上覆盖有 一种颜色滤镜,每个像素块只记录RGB三种颜色中一种颜色的光线的灰度信息,图2中只示出了拜耳滤色镜的部分,未示出完全覆盖感光元件的拜耳滤色镜。
示例性地,如图3(a)所示的一个覆盖红色滤镜的像素块的滤光示意图,将红光、绿光和蓝光这三个颜色的光线,照射到红色滤镜31上,这三个颜色的光线经过红色滤镜31后,只有红光透过红色滤镜31照射到感光元件的像素块32上。
示例性地,如图3(b)所示的一个覆盖绿色滤镜的像素块的滤光示意图,将红光、绿光和蓝光这三个颜色的光线,照射到绿色滤镜33上,这三个颜色的光线经过绿色滤镜33后,只有绿光透过绿色滤镜33照射到感光元件的像素块34上。
示例性地,如图3(c)所示的一个覆盖蓝色滤镜的像素块的滤光示意图,将红光、绿光和蓝光这三个颜色的光线,照射到蓝色滤镜35上,这三个颜色的光线经过蓝色滤镜35后,只有蓝光透过蓝色滤镜35照射到感光元件的像素块36上。
示例性地,如图4所示的覆盖有拜耳滤色镜的感光元件的采集示意图,对于如图2所示的被拜耳滤色镜完全覆盖的感光元件,该感光元件上的像素块采集到不同颜色的光线的灰度信息,感光元件上覆盖有红色滤镜的像素块采集到红光的灰度信息41、覆盖有绿色滤镜的像素块采集到绿光的灰度信息42、以及覆盖有蓝色滤镜的像素块采集到蓝光的灰度信息43。
需要说明的是,感光元件上的不同像素块采集到不同颜色的光线的灰度信息,为了能够还原出每个像素块上的三种颜色光线的灰度信息,由不同像素块对应的不同颜色的光线的灰度信息,组成RAW图像数据,将原始图像数据传输至影像处理器,影像处理器中的去马赛克(Demosaic)模块对RAW图像数据进行色彩还原,得到RGB图像或YUV图像,其中,采用CFA在每个像素块上过滤掉光线中的两种颜色的光,降低了光能量的利用率,其次,去马赛克模块进行色彩还原时,根据4个RGGB像素点各自的一种颜色的光线的灰度值,插值得到这4个像素点中每个像素点对应的另两种颜色的光线的灰度值,再对每个像素点的三个颜色的光线的灰度值进行叠加,得到每个像素点的彩色信息,如此,插值得到每个像素点对应的另两种颜色的光线的灰度值为近似值,进而得到的每个像素点的彩色信息也是近似的,即每个像素点的彩色信息与实际颜色存在偏差,减低了彩色图像的真实程度或质量。
在一些实施例中,摄像装置可以应用在终端中,终端可以以各种形式来实施,例如,可以为包括诸如手机、平板电脑、笔记本电脑、掌上电脑等移动终端,以及诸如台式计算机等固定终端。
本领域技术人员可以理解,图1中示出的摄像装置的结构并不构成对摄像装置的限定,摄像装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
需要说明的是,本申请实施例可以基于图1所示的摄像装置所实现,下面基于图1进行摄像装置控制具体实施例的说明。
实施例一
本申请实施例提供了一种分光棱镜组,如图5所示的一种分光棱镜组的结构示意图,分光棱镜组2可以包括:
依次排列的N个棱镜21;N为颜色基准中颜色种类的总数;
设置在N个棱镜各自对应的第一面上的N个图像传感器22;
设置在N个棱镜中的N-1个相邻面上的N-1种颜色的滤光片23,N-1种颜色为颜色基准中的任意N-1种颜色;
其中,N-1个相邻面中第i个相邻面为第i个棱镜的与第i+1个棱镜相邻的面,或者第i+1个棱镜的与第i个棱镜相邻的面,i为小于N的正整数;
N-1种颜色的滤光片23,用于对射入分光棱镜组的光束进行过滤,滤出N-1种反射光和透射光;
N个图像传感器22,用于接收N-1种反射光和透射光,基于N-1种反射光和透射光生成彩色图像。
光束射入分光棱镜组,光束经过前j种颜色的滤光片,反射出第j种反射光,第j种反射光在第j个棱镜中经过反射,射入第j个棱镜上的第j个图像传感器,j为小于N-1的正整数;光束经过前N-1种颜色的滤光片,反射出第N-1种反射光、透过一种颜色的透射光,第N-1种反射光在第N-1个棱镜中经过反射,射入第N-1个棱镜上的第N-1个图像传感器,以及该透射光在第N个棱镜中经过透射,射入第N个棱镜上的第N个图像传感器;其中,前N-1个棱镜和第N个棱镜属于N个棱镜。
示例性地,光束照射到第1种颜色的滤光片上,反射出第1种反射光、透过不包括第1种反射光的光束;不包括第1种反射光的光束照射到第2种颜色的滤光片上,反射出第2种反射光、透过不包括第1种反射光和第2种反射光的光束;直至不包括前N-2种反射光的光束照射到第N-1种颜色的滤光片上,反射出第N-1种反射光、透过一种颜色的透射光;其中,第1种反射光、第2种反射光、…、第N-1种反射光和透射光,与N种颜色一一对应。
在一些实施例中,光束可以为一种复合光汇聚后产生的光束,复合光是指不同波长范围的光组成的光线,复合光包括白光、自然光等等。
在一些实施例中,按照光束的照射方向对N个棱镜进行依次排列,并使得光束透过N个棱镜中每个棱镜的至少两个面;其中,每个棱镜的至少两个面和自身的第一面不同,前N-1个棱镜各自对应的第一面为光束未通过的面,第N个棱镜对应的第一面为光束的射出面。
在一些实施例中,将N个棱镜,从光束的照射方向的开始端开始,依次在照射方向上进行排列,得到按照照射方向依次排列的第1个棱镜、第2个棱镜、…、第N个棱镜,前N-1个棱镜就是第1个棱镜至第N-1个棱镜。
需要说明的是,上述的光束的照射方向是射入分光棱镜组的光束的中心线所表示的光束的照射方向。
在一些实施例中,颜色基准是指工业界的一种颜色标准,即采用几种特定颜色,通过对这几种特定颜色的变化、以及这几种特征颜色之间的叠加来得到各种各样的颜色;颜色基准可以为红绿蓝颜色基准(RGB色彩模式),此时,N=3,本申请实施例不做限制。
在一些实施例中,N个图像传感器中第i个图像传感器的感光面,覆盖在第i个棱镜对应的第一面上;第i个图像传感器为CCD或CMOS。
在一些实施例中,分光棱镜组还包括:覆盖在N个棱镜中的第一个棱镜的光束射入面上的增透膜。
需要说明的是,光束从第1个棱镜的一个面上射入分光棱镜组中,将这个面称为第1个棱镜的光束射入面,由于增透膜通过减少反射光来增加光在表面的透过率,在第1个棱镜的光束射入面上镀层增透膜,让光束充分射入分光棱镜组中。
在一些实施例中,前N-1个棱镜中第i个棱镜对应的第一面上,垂直于反射光的射入方向的边的边长,大于或等于第一面上设置的图像传感器的感光面的最大边长;第N个棱镜对应的第一面上,垂直于透射光的射入方向的边的边长,大于或等于第一面上设置的N个图像传感器的感光面的最大边长。
需要说明的是,第i种反射光在第i个棱镜内经过反射后,以射入方向照射到第i个棱镜对应的第一面上,而第i个图像传感器是设置在第i个棱镜对应的第一面上,为 了保证第i个图像传感器的感光面完全覆盖第i个棱镜对应的第一面,即第i个图像传感器的感光面都采集到第i种反射光,可以设置第i个棱镜对应的第一面上的垂直于第i种反射光的射入方向的边的边长,大于或等于第i个图像传感器的感光面的最大边长,本申请实施例不做限制;其中,第i种反射光在第i个棱镜内经过反射,将第i种反射光射入第i个棱镜对应的第一面的方向称为射入方向;透射光的射入方向,就是透射光射入第N个棱镜对应的第一面的方法;射入方向也可以命名为传输方法。
在一些实施例中,前N-1个棱镜中第j个棱镜和第j+1个棱镜之间存在预设宽度的空气间隔,j为小于N-1的正整数;空气间隔使得反射光在第j个棱镜中的与第j+1个棱镜相邻的面上发生全反射。
在一些实施例中,预设宽度的取值范围为5um-10un,本申请实施例不做限制。
示例性地,如图6所示的一种分光棱镜组的结构示意图,颜色基准为红绿蓝颜色基准时,N=3,白光的光束射向分光棱镜组6,沿光束的照射方向依次排列有第1个棱镜61、第2个棱镜62和第3个棱镜63,第1个棱镜61对应的第一面61-1上覆盖有第1个图像传感器64-1,第2个棱镜62对应的第一面62-1上覆盖有第2个图像传感器64-2,第3个棱镜63对应的第一面63-1上覆盖有第3个图像传感器64-3;第1个棱镜61中的与第2个棱镜62相邻的面上,或第2个棱镜62中的与第1个棱镜61相邻的面上,设置有第1种颜色的滤光片;第2个棱镜62中的与第3个棱镜63相邻的面上,或第3个棱镜63中的与第2个棱镜62相邻的面上,设置有第2种颜色的滤光片;第1个棱镜61和第2个棱镜62之间存在预设宽度的空气间隔65。
需要说明的是,分光棱镜组为立体的棱镜组,图6所示的一种分光棱镜组的结构示意图,展示的是分光棱镜组的截面图。
需要说明的是,可以通过对分光棱镜组中每个棱镜的各个边长进行调整,以使得图像传感器的感光面完全覆盖在每个棱镜对应的第一面上、以及三种颜色的光各自在棱镜内的传输路径相等,本申请实施例对分光棱镜组中每个棱镜的边长不做限制。
在一些实施例中,向分光棱镜组射入白光的光束,即分光棱镜组用于将白光的光束分成为红光、绿光和蓝光,此时,可以将分光棱镜组称为白光分光棱镜组,本申请实施例不做限制。
在一些实施例中,颜色基准为RGB颜色基准时,N=3,设置在3个棱镜中的2个相邻面上的2种颜色的滤光片包括:用于反射蓝色的蓝色二向色滤光片、用于反射红色的红色二向色滤光片、以及用于反射绿色的绿色二向色滤光片。
在一些实施例,可以基于蓝光的波长范围大概为400-484nm、绿光的波长范围大概为484-580nm、以及红光的波长范围大概为580-700nm,分别设置蓝色二向色滤光片、红色二向色滤光片和绿色二向色滤光片对应的滤光波长。
示例性地,如图7所示的分光后的红绿蓝三原光的光谱示意图,该光谱示意图中的横坐标为波长,单位为nm;光谱示意图中的纵坐标为感光度,表示感光元件对不同波长的光的敏感程度;可以看出,波长大概从100nm到500nm的蓝光的光谱感光度的变化曲线71,波长大概从480nm到580nm的绿光的光谱感光度的变化曲线72,波长大概从580nm到780nm的红光的光谱感光度的变化曲线73。
示例性地,如图8(a)所示的蓝色二向色滤光片的光谱示意图,该光谱示意图中的横坐标为波长,单位为nm;光谱示意图中的纵坐标为传输率;蓝光的波长范围大概为400-484nm,可以看出,蓝色二向色滤光片对波长小于484nm的光的传输率为0,对波长不小于484nm的光的传输率大于90%。
示例性地,如图8(b)所示的红色二向色滤光片的光谱示意图,该光谱示意图中的横坐标为波长,单位为nm;光谱示意图中的纵坐标为传输率;红光的波长范围大概为 580-700nm,红色二向色滤光片对波长小于580nm的光的传输率大于90%,对波长不小于580nm的光的传输率为0。
示例性地,如图9所示的一种分光棱镜组的结构示意图,基于如图6所示的分光棱镜组6,在第1个棱镜61的第二个面61-2上镀层蓝色二向色滤光片66,在第2个棱镜62的第二个面62-2上镀层红色二向色滤光片67;此时,白光的光束射入第1个棱镜61后,经过第1个棱镜61透射,光束到达蓝色二向色滤光片66,经过蓝色二向色滤光片66反射出蓝光、透过红绿光;蓝光在第1个棱镜61中经过反射,投射到第1个棱镜61的第一面61-1上的第1个图像传感器64-1,第1个图像传感器64-1采集到光束中的蓝光对应的灰度信息;红绿光经过第2个棱镜62透射,到达红色二向色滤光片67,经过红色二向色滤光片67反射出红光、透过绿光;红光在第2个棱镜62中经过反射,投射到第2个棱镜62的第一面62-1上的第2个图像传感器64-2,第2个图像传感器64-2采集到光束中的红光对应的灰度信息;绿光经过第3个棱镜63透射,到达第3个棱镜63的第一面63-1上的第3个图像传感器64-3,第3个图像传感器64-3采集到光束中的绿光对应的灰度信息;其中,红绿光是指包含红光和绿光的黄色的光线。
需要说明的是,由于第1个棱镜61和第2个棱镜62之间存在预设宽度的空气间隔65,蓝光在第1个棱镜61的第二个面61-2上发生全反射,反射回第1个棱镜61中,经过第1个棱镜61的反射,投射到第1个图像传感器64-1上;同理,第2个棱镜62和第3个棱镜63之间存在预设宽度的空气间隔时,红光在第2个棱镜62的第二个面62-2上发生全反射,反射回第2个棱镜62中,经过第2个棱镜62的反射,投射到第2个图像传感器64-2上。
示例性地,如图10所示的一种分光棱镜组的结构示意图,分光棱镜组包括依次排列的3个棱镜,光束的照射方向垂直于第1个棱镜101的第一个面101-1,第1个棱镜101的一个顶点101-0和第2个棱镜102的一个顶点102-0之间的距离为1.5mm,第1个棱镜101的第二个面101-2和以光束的照射方向设置的直线的夹角为60°,第1个棱镜101的第三个面101-3上的垂直于反射光的射入方向的边的边长为7.22mm;第2个棱镜102的第三个面102-3上的垂直于反射光的射入方向的边的边长为6.77mm,第2个棱镜102的第一个面102-1和第二个面102-2之间的夹角为40°;第3个棱镜103的第一个面103-1和以光束的照射方向设置的直线的夹角为80°,第3个棱镜103的第二个面103-2上的垂直于透射光的射入方向的边的边长为7.95mm,第3个棱镜103的第三个面103-3的边的边长为8.06mm,这里透射光的射入方向和光束的照射方向相同。
示例性,图像传感器的感光面的最大边长为6.77mm,当图像传感器的感光面的两个边长比例为4:3,可知感光面的最小边长大约为5.1mm;可以根据感光面的最小边长设置每个棱镜的厚度为5.1mm,本申请实施例不做限制。
在一些实施例中,可以采用二向色性长波通滤光片(长波通滤光片)和二向色性短波通滤光片(短波通滤光片),替换红色二向色滤光片和蓝色二向色滤光片,本申请实施例不做限制;其中,长波长滤光片是指允许更长的波长的光透过,短波长滤光片是指允许更短的波长的光透过。
示例性地,如图11(a)所示的一种400nm的长波通滤光片的光谱示意图,该光谱示意图中的横坐标为波长,单位为nm;光谱示意图中的纵坐标为传输率;可以看出,400nm的长波通滤光片对波长小于400nm的三种光的传输率为0,对波长不小于400nm的三种光的传输率在80%至100%之间。
示例性地,如图11(b)所示的一种400nm的短波通滤光片的光谱示意图,该光谱示意图中的横坐标为波长,单位为nm;光谱示意图中的纵坐标为传输率;可以看出,400nm的短波通滤光片对波长小于400nm的三种光的传输率在80%至100%之间,对波 长不小于400nm的三种光的传输率为0。
在一些实施例中,颜色基准为RGB颜色基准时,N=3;其中,设置在第1个棱镜的与第2个棱镜相邻的面上的,或第2个棱镜的与第1个棱镜相邻的面上的,第1种颜色的滤光片为第一波长的长波通滤光片;设置在第2个棱镜的与第3个棱镜相邻的面上的,或第3个棱镜的与第2个棱镜相邻的面上的,第2种颜色的滤光片为第二波长的短波通滤光片,第一波长为蓝光的最大波长或绿光的最小波长,第二波长为绿光的最大波长或红光的最小波长;
光束射入第1个棱镜,光束经过第一波长的长波通滤光片反射出蓝光、透过红绿光,蓝光在第1个棱镜中经过反射射入第1个图像传感器,红绿光射入第2个棱镜,红绿光经过第二波长的短波通滤光片反射出红光、透过绿光,红光在第2个棱镜中经过反射射入第2个图像传感器,绿光射入第3个棱镜,绿光经过第3个棱镜透射到第3个图像传感器,以使得第1个图像传感器、第2个图像传感器和第3个图像传感器,各自采集到蓝光对应的灰度信息、红光对应的灰度信息、以及绿光对应的灰度信息。
在一些实施例中,第一波长的长波通滤光片只能透过波长大于第一波长的光,第二波长的短波通滤光片只能透过波长小于第二波长的光;可以基于蓝光的波长范围大概为400-484nm、绿光的波长范围大概为484-580nm、以及红光的波长范围大概为580-700nm,分别设置第一波长为484nm、第二波长为580nm,本申请实施例不做限制。
示例性地,如图12所示的一种分光棱镜组的结构示意图,基于如图6所示的分光棱镜组6,在第1个棱镜61的第二个面61-2上镀层484nm的长波通滤光片111,在第2个棱镜62的第二个面62-2上镀层580nm的短波通滤光片112;此时,白光的光束射入第1个棱镜61后,经过第1个棱镜61透射,光束到达484nm的长波通滤光片111,经过484nm的长波通滤光片111反射出蓝光、透过红绿光;蓝光在第1个棱镜61中经过反射,投射到第1个图像传感器64-1,第1个图像传感器64-1采集到光束中的蓝光对应的灰度信息;红绿光经过第2个棱镜62透射,到达580nm的短波通滤光片112,经过580nm的短波通滤光片112反射出红光、透过绿光;红光在第2个棱镜62中经过反射,投射到第2个图像传感器64-2,第2个图像传感器64-2采集到光束中的红光对应的灰度信息;绿光经过第3个棱镜63透射,到达第3个图像传感器64-3,第3个图像传感器64-3采集到光束中的绿光对应的灰度信息。
在一些实施例中,颜色基准为RGB颜色基准时,N=3;其中,设置在第1个棱镜的与第2个棱镜相邻的面上的,或第2个棱镜的与第1个棱镜相邻的面上的,第1种颜色的滤光片为第一波长的长波通滤光片;设置在第2个棱镜的与第3个棱镜相邻的面上的,或第3个棱镜的与第2个棱镜相邻的面上的,第2种颜色的滤光片为第二波长的长波通滤光片,第一波长为蓝光的最大波长或绿光的最小波长,第二波长为绿光的最大波长或红光的最小波长;
光束射入第1个棱镜,光束经过第一波长的长波通滤光片反射出蓝光、透过红绿光,蓝光在第1个棱镜中经过反射射入第1个图像传感器,红绿光射入第2个棱镜,红绿光经过第二波长的长波通滤光片反射出红光、透过绿光,绿光在第2个棱镜中经过反射射入第2个图像传感器,红光射入第3个棱镜,红光经过第3个棱镜透射到第3个图像传感器,以使得第1个图像传感器、第2个图像传感器和第3个图像传感器,各自采集到蓝光对应的灰度信息、绿光对应的灰度信息、以及红光对应的灰度信息。
示例性地,如图13所示的一种分光棱镜组的结构示意图,基于如图6所示的分光棱镜组6,在第1个棱镜61的第二个面61-2上镀层484nm的长波通滤光片121,在第2个棱镜62的第二个面62-2上镀层580nm的长波通滤光片122;此时,白光的光束射入第1个棱镜61后,经过第1个棱镜61透射,光束到达484nm的长波通滤光片121, 经过484nm的长波通滤光片121反射出蓝光、透过红绿光;蓝光在第1个棱镜61中经过反射,投射到第1个图像传感器64-1,第1个图像传感器64-1采集到光束中的蓝光对应的灰度信息;红绿光经过第2个棱镜62透射,到达580nm的长波通滤光片122,经过580nm的长波通滤光片122反射出红光、透过绿光;绿光在第2个棱镜62中经过反射,投射到第2个图像传感器64-2,第2个图像传感器64-2采集到光束中的绿光对应的灰度信息;红光经过第3个棱镜63透射,到达第3个图像传感器64-3,第3个图像传感器64-3采集到光束中的红光对应的灰度信息。
在一些实施例中,颜色基准为RGB颜色基准时,N=3;其中,设置在第1个棱镜的与第2个棱镜相邻的面上的,或第2个棱镜的与第1个棱镜相邻的面上的,第1种颜色的滤光片为第二波长的短波通滤光片;设置在第2个棱镜的与第3个棱镜相邻的面上的,或第3个棱镜的与第2个棱镜相邻的面上的,第2种颜色的滤光片为第一波长的长波通滤光片,第一波长为蓝光的最大波长或绿光的最小波长,第二波长为绿光的最大波长或红光的最小波长;
光束射入第1个棱镜,光束经过第二波长的短波通滤光片反射出红光、透过绿蓝光,红光在第1个棱镜中经过反射射入第1个图像传感器,绿蓝光射入第2个棱镜,绿蓝光经过第一波长的长波通滤光片反射出蓝光、透过绿光,蓝光在第2个棱镜中经过反射射入第2个图像传感器,绿光射入第3个棱镜,绿光经过第3个棱镜透射到第3个图像传感器,以使得第1个图像传感器、第2个图像传感器和第3个图像传感器,各自采集到红光对应的灰度信息、蓝光对应的灰度信息、以及绿光对应的灰度信息;其中,绿蓝光是指包含绿光和蓝光的青色的光线。
示例性地,如图14所示的一种分光棱镜组的结构示意图,基于如图6所示的分光棱镜组6,在第1个棱镜61的第二个面61-2上镀层580nm的短波通滤光片131,在第2个棱镜62的第二个面62-2上镀层484nm的长波通滤光片132;此时,白光的光束射入第1个棱镜61后,经过第1个棱镜61透射,光束到达580nm的短波通滤光片131,经过580nm的短波通滤光片131反射出红光、透过绿蓝光;红光在第1个棱镜61中经过反射,投射到第1个图像传感器64-1,第1个图像传感器64-1采集到光束中的红光对应的灰度信息;绿蓝光经过第2个棱镜62透射,到达484nm的长波通滤光片132,经过484nm的长波通滤光片132反射出蓝光、透过绿光;蓝光在第2个棱镜62中经过反射,投射到第2个图像传感器64-2,第2个图像传感器64-2采集到光束中的蓝光对应的灰度信息;绿光经过第3个棱镜63透射,到达第3个图像传感器64-3,第3个图像传感器64-3采集到光束中的绿光对应的灰度信息。
在一些实施例中,颜色基准为RGB颜色基准时,N=3;其中,设置在第1个棱镜的与第2个棱镜相邻的面上的,或第2个棱镜的与第1个棱镜相邻的面上的,第1种颜色的滤光片为第二波长的短波通滤光片;设置在第2个棱镜的与第3个棱镜相邻的面上的,或第3个棱镜的与第2个棱镜相邻的面上的,第2种颜色的滤光片为第一波长的短波通滤光片,第一波长为蓝光的最大波长或绿光的最小波长,第二波长为绿光的最大波长或红光的最小波长;
光束射入第1个棱镜,光束经过第二波长的短波通滤光片反射出红光、透过绿蓝光,红光在第1个棱镜中经过反射射入第1个图像传感器,绿蓝光射入第2个棱镜,绿蓝光经过第一波长的短波通滤光片反射出绿光、透过蓝光,绿光在第2个棱镜中经过反射射入第2个图像传感器,蓝光射入第3个棱镜,蓝光经过第3个棱镜透射到第3个图像传感器,以使得第1个图像传感器、第2个图像传感器和第3个图像传感器,各自采集到红光对应的灰度信息、绿光对应的灰度信息、以及蓝光对应的灰度信息。
示例性地,如图15所示的一种分光棱镜组的结构示意图,基于如图6所示的分光 棱镜组6,在第1个棱镜61的第二个面61-2上镀层580nm的短波通滤光片141,在第2个棱镜62的第二个面62-2上镀层484nm的短波通滤光片142;此时,白光的光束射入第1个棱镜61后,经过第1个棱镜61透射,光束到达580nm的短波通滤光片141,经过580nm的短波通滤光片141反射出红光、透过绿蓝光;红光在第1个棱镜61中经过反射,投射到第1个图像传感器64-1,第1个图像传感器64-1采集到光束中的红光对应的灰度信息;绿蓝光经过第2个棱镜62透射,到达484nm的短波通滤光片142,经过484nm的短波通滤光片142反射出绿光、透过蓝光;绿光在第2个棱镜62中经过反射,投射到第2个图像传感器64-2,第2个图像传感器64-2采集到光束中的绿光对应的灰度信息;蓝光经过第3个棱镜63透射,到达第3个图像传感器64-3,第3个图像传感器64-3采集到光束中的蓝光对应的灰度信息。
本申请实施例提供一种摄像装置,如图16所示的一种摄像装置,摄像装置16包括:
光学组件161;
在光学组件的光线射出方向上设置的,如本申请实施例提供的任一种分光棱镜组162;
其中,光学组件161用于对入射光进行汇聚和/或光路调整,生成射入分光棱镜组162的光束。
在一些实施例中,入射光为一种复合光,例如,白光或自然光。
在一些实施例中,摄像装置还包括:与N个图像传感器连接的影像处理器;影像处理器,用于对N种颜色的光线各自对应的灰度信息进行叠加,生成彩色图像;其中,N种颜色的光线各自对应的灰度信息为N个图像传感器对N-1种反射光和透射光进行采集得到的,N个图像传感器与N种颜色的一一对应。
在一些实施例中,光学组件为至少一个镜头组;至少一个镜头组用于对入射光进行汇聚,射出光束。
在一些实施例中,光学组件为折叠棱镜,折叠棱镜包括:至少一个镜头组和至少一个反光棱镜;其中,入射光经过至少一个镜头组的汇聚和至少一个反光棱镜的反射,射出光束。
由于入射光经过折叠棱镜射出光束,光束再射入分光棱镜组,为了保证光束通过N个棱镜中每个棱镜的至少两个面,以及考虑到摄像装置的尺寸大小,除了采用一个镜头组来汇聚入射光,还可能设置反光棱镜来改变入射光的初始照射方向,并且,还可能在一个反光棱镜后设置其他镜头组,来汇聚照射方向改变后的光束。
示例性地,如图17所示的一种带有折叠棱镜的摄像装置,对如图6所示的分光棱镜组6,增加折叠棱镜171,以使得入射光通过折叠棱镜171后射出的光束,以垂直于分光棱镜组6中的第1个棱镜61的光线射入面172的方向,射入分光棱镜组6;折叠棱镜171包括第一镜头组171-1、反光棱镜171-2和第二镜头组171-3;可以知道,入射光是从摄像装置17的第一镜头组171-1射入,经过第一镜头组171-1的汇聚,再经过反光棱镜171-2的反射,入射光的初始照射方向改变了90°,最后通过第二镜头组171-3射入分光棱镜组6中的第1个棱镜组61。
需要说明的是,折叠棱镜的增加,可以降低摄像装置的高度,还可以用于调整镜头的后焦长度,保证镜头有较大的后焦长度,使得入射光可以在每个棱镜对应的图像传感器上被采集;其中,折叠棱镜中的镜头组的个数是可以变化的,折叠棱镜中的反光棱镜也是可以改变的,例如,摄像装置16可以只包括第二镜头组171-3,入射光是从第二镜头组171-3直接射入分光棱镜组6中的第1个棱镜组61;本申请实施例不做限制。
在一些实施例中,如图18所示的一种摄像方法,该方法应用于设置有如本申请实施例提供的任一种摄像装置的终端中,该方法包括:
S101、接收拍摄指令;
在本申请实施例中,当用户在采用终端在进行拍摄的场景中时,需要采集彩色图像,用户可以在终端的拍摄设置界面中触发拍摄功能,通过触发生成拍摄指令,即终端接收到了拍摄指令。
S102、响应于拍摄指令,开启光学组件,控制入射光透过光学组件,射出光束,光束射入分光棱镜组,光束经过N-1个相邻面上的N-1种颜色的滤光片滤出N-1种反射光和透射光,N-1种反射光和透射光射入N个图像传感器中各自对应的图像传感器;
终端针对拍摄指令,开启光学组件,以使得入射光透过光学组件,射出光束,光束射入分光棱镜组,通过分光棱镜组采集到光束中的所有颜色的光线各自对应的灰度信息。
S103、控制N个图像传感器对N-1种反射光和透射光进行采集,得到N种颜色的光线各自对应的灰度信息,将N种颜色的光线各自对应的灰度信息发送至影像处理器;
终端控制N个图像传感器将N种颜色的光线各自对应的灰度信息,发送至影像处理器。
S104、控制影像处理器对N种颜色的光线各自对应的灰度信息进行叠加,生成彩色图像。
可以理解的是,光束经过分光棱镜组中的滤光片分成N-1种反射光和透射光,N-1种反射光和透射光射入各自对应的图像传感器上,这样由各个图像传感器分别采集光束中一种颜色的光线的灰度信息,再根据所有图像传感器采集到的真实的灰度信息,来生成彩色图像,提高了光线利用率和灰度信息的真实度,进而,提高了彩色图像的质量;其次,采用多个图像传感器进行成像,相较于一个图像传感器,采集到的彩色图像的颜色的真实度和影像质量大大提高;并且,采用多个图像传感器进行成像,相当于增大了感光面积和光线采集量,实现了拍照时具有很高的信噪比、极好的敏感度以及很宽的动态范围。
本申请实施例还提供了一种终端,如图19所示,终端包括:
本体180;所述本体中设置有控制器183和存储器184;
围绕所述本体180设置的壳体181;
设置在所述本体内部的本申请实施例提供的任一种摄像装置182,所述摄像装置182与所述控制器183电连接;
所述存储器184,用于存储可执行指令;
所述控制器183,用于执行所述存储器184中存储的可执行指令时,实现本申请实施例提供的摄像方法。
本申请实施例提供了一种计算机可读存储介质,存储有可执行指令,用于引起控制器执行时,实现本申请实施例提供的摄像方法。
终端还可以包括总线系统,终端中的各个组件通过总线系统耦合在一起。可理解,总线系统用于实现这些组件之间的连接通信。总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
其中,控制器可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该控制器183可以执行实施例中的摄像方法的相应步骤。
在本申请实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采 用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:磁性随机存取存储器(FRAM,ferromagnetic random access memory)、只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory)等各种可以存储程序代码的介质,本申请实施例不作限制。
由此,本申请实施例提供了一种计算机可读存储介质,存储有可执行指令,用于引起处理器执行时,实现本申请实施例提供的摄像方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本申请实施例采用上述技术实现方案,光束经过分光棱镜组中的滤光片被分成N-1种反射光和透射光,N-1种反射光和透射光射入各自对应的图像传感器上,这样由各个图像传感器分别采集光束中一种颜色的光线的灰度信息,再根据所有图像传感器采集到的真实的灰度信息,来生成彩色图像,提高了光线利用率和灰度信息的真实度,进而,提高了彩色图像的质量。

Claims (15)

  1. 一种分光棱镜组,其中,所述分光棱镜组包括:
    依次排列的N个棱镜;N为颜色基准中颜色种类的总数;
    设置在所述N个棱镜各自对应的第一面上的N个图像传感器;
    设置在所述N个棱镜中的N-1个相邻面上的N-1种颜色的滤光片,所述N-1种颜色为所述颜色基准中的任意N-1种颜色;
    其中,所述N-1个相邻面中第i个相邻面为第i个棱镜的与第i+1个棱镜相邻的面,或者为所述第i+1个棱镜的与第i个棱镜相邻的面,i为小于N的正整数;
    所述N-1种颜色的滤光片,用于对射入所述分光棱镜组的光束进行过滤,滤出N-1种反射光和透射光;
    所述N个图像传感器,用于接收所述N-1种反射光和所述透射光,基于所述N-1种反射光和所述透射光生成彩色图像。
  2. 根据权利要求1所述的分光棱镜组,其中,前N-1个棱镜中第i个棱镜对应的第一面上,垂直于反射光的射入方向的边的边长,大于或等于第一面上设置的图像传感器的感光面的最大边长;第N个棱镜对应的第一面上,垂直于透射光的射入方向的边的边长,大于或等于第一面上设置的图像传感器的感光面的最大边长。
  3. 根据权利要求1所述的分光棱镜组,其中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
    设置在3个棱镜中的2个相邻面上的2种颜色的滤光片包括以下至少两个:用于反射蓝色的蓝色二向色滤光片、用于反射红色的红色二向色滤光片、以及用于反射绿色的绿色二向色滤光片。
  4. 根据权利要求1所述的分光棱镜组,其中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
    设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第一波长的长波通滤光片;
    设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第二波长的短波通滤光片;所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长;
    所述光束射入所述第1个棱镜,所述光束经过所述第一波长的长波通滤光片反射出蓝光、透过红绿光,所述蓝光在所述第1个棱镜中经过反射射入第1个图像传感器,所述红绿光射入所述第2个棱镜,所述红绿光经过所述第二波长的短波通滤光片反射出红光、透过绿光,所述红光在所述第2个棱镜中经过反射射入第2个图像传感器,所述绿光射入所述第3个棱镜,所述绿光经过所述第3个棱镜透射到第3个图像传感器,以使得所述第1个图像传感器、所述第2个图像传感器和所述第3个图像传感器,各自采集到所述蓝光对应的灰度信息、所述红光对应的灰度信息、以及所述绿光对应的灰度信息。
  5. 根据权利要求1所述的分光棱镜组,其中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
    设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第一波长的长波通滤光片;
    设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第二波长的长波通滤光片,所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长。
  6. 根据权利要求1所述的分光棱镜组,其中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
    设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第二波长的短波通滤光片;
    设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第一波长的长波通滤光片,所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长。
  7. 根据权利要求1所述的分光棱镜组,其中,所述颜色基准为红绿蓝颜色基准时,N=3;其中,
    设置在第1个棱镜的与第2个棱镜相邻的面上的,或所述第2个棱镜的与所述第1个棱镜相邻的面上的,第1种颜色的滤光片为第二波长的短波通滤光片;
    设置在所述第2个棱镜的与第3个棱镜相邻的面上的,或所述第3个棱镜的与所述第2个棱镜相邻的面上的,第2种颜色的滤光片为第一波长的短波通滤光片,所述第一波长为蓝光的最大波长或绿光的最小波长,所述第二波长为绿光的最大波长或红光的最小波长。
  8. 根据权利要求1至7任一项所述的分光棱镜组,其中,所述分光棱镜组还包括:覆盖在所述N个棱镜中的第一个棱镜的光束射入面上的增透膜。
  9. 根据权利要求1所述的分光棱镜组,其中,前N-1个棱镜中第j个棱镜和第j+1个棱镜之间存在预设宽度的空气间隔,j为小于N-1的正整数;其中,所述空气间隔使得反射光在所述第j个棱镜中的与所述第j+1个棱镜相邻的面上发生全反射。
  10. 一种摄像装置,其中,所述装置包括:
    光学组件;
    在所述光学组件的光线射出方向上设置的,如上述权利要求1至9任一项所述的分光棱镜组;
    其中,所述光学组件用于对入射光进行汇聚和/或光路调整,生成射入所述分光棱镜组的光束。
  11. 根据权利要求10所述的装置,其中,
    所述光学组件为至少一个镜头组;
    所述至少一个镜头组用于对所述入射光进行汇聚,射出所述光束。
  12. 根据权利要求10所述的装置,其中,
    所述光学组件为折叠棱镜,所述折叠棱镜包括:至少一个镜头组和至少一个反光棱镜;
    其中,所述入射光经过所述至少一个镜头组的汇聚和所述至少一个反光棱镜的反射,射出所述光束。
  13. 根据权利要求10至12任一项所述的装置,其中,所述装置还包括:与所述N个图像传感器连接的影像处理器;
    所述影像处理器,用于对N种颜色的光线各自对应的灰度信息进行叠加,生成所述彩色图像;其中,所述N种颜色的光线各自对应的灰度信息为所述N个图像传感器对所述N-1种反射光和所述透射光进行采集得到的,所述N个图像传感器与所述N种颜色的一一对应。
  14. 一种摄像方法,其中,应用于设置有如上述权利要求10至13任一项所述的摄像装置的终端中,所述方法包括:
    接收拍摄指令;
    响应于所述拍摄指令,开启光学组件,控制入射光透过所述光学组件,射出光束,所述光束射入分光棱镜组,所述光束经过N-1个相邻面上的N-1种颜色的滤光片滤出N-1种反射光和透射光,所述N-1种反射光和所述透射光射入所述N个图像传感器中各自对应的图像传感器;
    控制所述N个图像传感器对所述N-1种反射光和所述透射光进行采集,得到N种颜色的光线各自对应的灰度信息,将所述N种颜色的光线各自对应的灰度信息发送至影像处理器;
    控制所述影像处理器对所述N种颜色的光线各自对应的灰度信息进行叠加,生成彩色图像。
  15. 一种终端,其中,所述终端包括:
    本体;所述本体中设置有控制器和存储器;
    围绕所述本体设置的壳体;
    设置在所述本体内部的如上述权利要求10-13任一项所述的摄像装置,所述摄像装置与所述控制器电连接;
    所述存储器,用于存储可执行指令;
    所述控制器,用于执行所述存储器中存储的可执行指令时,实现如上述权利要求14所述的摄像方法。
PCT/CN2019/109174 2019-09-29 2019-09-29 分光棱镜组、摄像装置、摄像方法及终端 WO2021056559A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980099097.7A CN114207498A (zh) 2019-09-29 2019-09-29 分光棱镜组、摄像装置、摄像方法及终端
PCT/CN2019/109174 WO2021056559A1 (zh) 2019-09-29 2019-09-29 分光棱镜组、摄像装置、摄像方法及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109174 WO2021056559A1 (zh) 2019-09-29 2019-09-29 分光棱镜组、摄像装置、摄像方法及终端

Publications (1)

Publication Number Publication Date
WO2021056559A1 true WO2021056559A1 (zh) 2021-04-01

Family

ID=75165361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109174 WO2021056559A1 (zh) 2019-09-29 2019-09-29 分光棱镜组、摄像装置、摄像方法及终端

Country Status (2)

Country Link
CN (1) CN114207498A (zh)
WO (1) WO2021056559A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018142A1 (en) * 2003-07-21 2005-01-27 Lg Electronics Inc. Projection system
CN201181360Y (zh) * 2008-03-12 2009-01-14 深圳市科创数字显示技术有限公司 激光投影系统
CN101598855A (zh) * 2008-06-02 2009-12-09 深圳市科创数字显示技术有限公司 激光投影成像系统
CN103823297A (zh) * 2014-01-27 2014-05-28 杭州科汀光学技术有限公司 一种分色增强的彩色夜视系统
CN103823296A (zh) * 2014-01-27 2014-05-28 杭州科汀光学技术有限公司 一种基于Philips型棱镜的彩色夜视系统
CN203720446U (zh) * 2014-01-27 2014-07-16 杭州科汀光学技术有限公司 一种基于Philips型棱镜的彩色夜视系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018142A1 (en) * 2003-07-21 2005-01-27 Lg Electronics Inc. Projection system
CN201181360Y (zh) * 2008-03-12 2009-01-14 深圳市科创数字显示技术有限公司 激光投影系统
CN101598855A (zh) * 2008-06-02 2009-12-09 深圳市科创数字显示技术有限公司 激光投影成像系统
CN103823297A (zh) * 2014-01-27 2014-05-28 杭州科汀光学技术有限公司 一种分色增强的彩色夜视系统
CN103823296A (zh) * 2014-01-27 2014-05-28 杭州科汀光学技术有限公司 一种基于Philips型棱镜的彩色夜视系统
CN203720446U (zh) * 2014-01-27 2014-07-16 杭州科汀光学技术有限公司 一种基于Philips型棱镜的彩色夜视系统

Also Published As

Publication number Publication date
CN114207498A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN103220534B (zh) 图像撷取装置与方法
US8134191B2 (en) Solid-state imaging device, signal processing method, and camera
CN102714738B (zh) 固体摄像元件和摄像装置
US8441732B2 (en) Whole beam image splitting system
CN107272149A (zh) 光学系统、电子设备、相机、方法、及计算机程序
US7515818B2 (en) Image capturing apparatus
US20070115376A1 (en) Image pickup apparatus having two image sensors
US8040611B2 (en) Color separation optical system and image pickup apparatus
KR20100137229A (ko) 디지털 카메라용 복합형 적외선 차단 필터
TW201031188A (en) Image capture device
CN102045500B (zh) 摄像装置及其控制方法
WO2021016900A1 (zh) 一种图像传感器和图像感光的方法
JP4506678B2 (ja) プリズム光学系および撮像装置
US7777970B2 (en) Super-wide-angle lens and imaging system having same
WO2011095026A1 (zh) 摄像方法及系统
JP5776006B2 (ja) 三板カメラ装置
US6698893B2 (en) Optical device suitable for separating and synthesizing light
US20090102953A1 (en) Performance digital image sensing
CN103529628A (zh) 投影装置及其投影、摄像方法
WO2021056559A1 (zh) 分光棱镜组、摄像装置、摄像方法及终端
EP2907300A1 (en) System for capturing scene and nir relighting effects in movie postproduction transmission
JP4820773B2 (ja) 色分解光学系および撮像装置
CN206515546U (zh) 一种应用于车载记录仪摄像头的镜片组
JP2009037180A (ja) 樹脂製光学素子用多層薄膜真空蒸着方法とその樹脂製光学素子を持つ撮影素子
CN101071261B (zh) 红外截止滤光片镀膜面的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946581

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19946581

Country of ref document: EP

Kind code of ref document: A1