WO2021056337A1 - 机器人关节驱动器及其布置方法、装置和机器人关节 - Google Patents

机器人关节驱动器及其布置方法、装置和机器人关节 Download PDF

Info

Publication number
WO2021056337A1
WO2021056337A1 PCT/CN2019/108178 CN2019108178W WO2021056337A1 WO 2021056337 A1 WO2021056337 A1 WO 2021056337A1 CN 2019108178 W CN2019108178 W CN 2019108178W WO 2021056337 A1 WO2021056337 A1 WO 2021056337A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot joint
wiring area
driver
area
substrate
Prior art date
Application number
PCT/CN2019/108178
Other languages
English (en)
French (fr)
Inventor
刘泽伟
王会锦
克里斯蒂安·巴赫曼
多米尼克·伯格曼
Original Assignee
睿信科机器人服份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿信科机器人服份有限公司 filed Critical 睿信科机器人服份有限公司
Priority to PCT/CN2019/108178 priority Critical patent/WO2021056337A1/zh
Publication of WO2021056337A1 publication Critical patent/WO2021056337A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions

Definitions

  • the invention relates to the technical field of robots, in particular to a robot joint driver and its arrangement method, device and robot joint.
  • a robot is a mechanical device that automatically performs work. It can accept human commands, run pre-arranged programs, or perform tasks based on principles and guidelines formulated with artificial intelligence technology. Robots can assist or replace human jobs, such as production, construction, or dangerous jobs. The robot driver is a key part to maintain the robot's movement and realize various movements. Robot drives usually include DC servo motor drives or synchronous AC servo motor drives, and so on.
  • Articulated robots also called articulated arm robots or articulated robotic arms, are one of the most common forms of industrial robots in today's industrial fields, and are suitable for mechanical automation operations in many industrial fields.
  • Joint robots usually contain multiple joints, such as base joints, shoulder joints, and elbow joints, and so on. Each joint may have different joint parameters, such as different diameters.
  • the embodiment of the present invention proposes a robot joint driver and an arrangement method, device and robot joint, which can improve the compatibility of the driver.
  • a robot joint driver including:
  • a substrate the substrate includes a circular hole, a first wiring area and a second wiring area, the first wiring area surrounds the circular hole on the first surface of the substrate; the second wiring area surrounds the first surface The first wiring area or the second wiring area surrounds the corresponding mapping area of the first wiring area on a second surface opposite to the first surface;
  • the control unit of the robot joint driver is arranged in the first wiring area, and a detachable structure suitable for being separated from the substrate is arranged on the outer periphery of the first wiring area.
  • an embodiment of the present invention proposes a drive including a detachable area, in which a control unit of the drive is arranged in the detachable area. Since the control logic contained in the control unit can be applied to joints of various sizes, a driver suitable for small-sized robot joints can be assembled based on the first wiring area, thereby improving compatibility.
  • the second wiring area includes a first wiring sub-area and a second wiring sub-area
  • the power stage unit of the robot joint driver is arranged in the first wiring sub-area, and the communication unit of the robot joint driver is arranged in the second wiring sub-area.
  • control unit in the first wiring area can be separated from the power stage unit and the communication unit in the second wiring area, thereby facilitating subsequent assembly of new power stage units and new Communication unit.
  • the detachable structure is a perforation arranged along the outer periphery of the first wiring area, or a buckle arranged along the outer periphery of the first wiring area.
  • the detachable structure of the embodiment of the present invention has various embodiments.
  • it further includes:
  • the first pin is arranged in the corresponding mapping area and is adapted to be coupled with the power stage unit of the robot joint driver to be assembled;
  • the second pin is arranged in the corresponding mapping area and is adapted to be coupled with the communication unit of the robot joint driver to be assembled.
  • first pin and the second pin when the first wiring area is separated from the second wiring area, it can be conveniently coupled with the power stage unit and the communication unit of the robot joint driver to be assembled, which can be fast Groundly assemble a robot joint driver suitable for small-sized joints.
  • the arrangement position of the first pin and the arrangement position of the second pin are symmetrical with respect to the circular aperture.
  • the substrate has a circular ring shape
  • the first wiring area has a circular ring shape
  • the outer radius of the first wiring area is smaller than the outer radius of the substrate.
  • the substrate and the first wiring area of the embodiment of the present invention have various embodiments.
  • a robot joint includes the robot joint driver as described in any one of the above.
  • a method for arranging robot joint drivers including:
  • the robot joint driver is separated from the first robot joint, wherein the robot joint driver includes a substrate, the substrate includes a circular hole, a first wiring area, and a second wiring area, and the first wiring area is on the first surface of the substrate
  • the circular hole is surrounded on the upper surface;
  • the second wiring area surrounds the first wiring area on a first surface, or the second wiring area surrounds the first wiring on a second surface opposite to the first surface
  • the corresponding mapping area of the area wherein the control unit of the robot joint driver is arranged in the first wiring area, and a detachable structure suitable for being separated from the substrate is arranged on the outer periphery of the first wiring area;
  • the first wiring area is arranged in a second robot joint, wherein the diameter of the second robot joint is smaller than the diameter of the first robot joint.
  • the embodiment of the present invention can conveniently separate the driver suitable for the small-sized robot joint from the large-sized robot joint.
  • a method for arranging robot joint drivers including:
  • each robot joint driver corresponding to a respective robot joint
  • each robot joint driver includes a substrate, the substrate includes a circular hole, a first wiring area and a second wiring area, the first wiring The area surrounds the circular hole on the first surface of the substrate; the second wiring area surrounds the first wiring area on the first surface, or the second wiring area is on the second surface opposite to the first surface
  • the corresponding mapping area surrounding the first wiring area wherein the control unit of the robot joint driver is arranged in the first wiring area, and the outer periphery of the first wiring area is arranged to be separated from the substrate Detachable structure;
  • the respective robot joints are classified into the first type joint and the second type joint, wherein the diameter of the first type joint is larger than the diameter of the second type joint;
  • the first wiring area separated from the corresponding robot joint driver is arranged.
  • the embodiments of the present invention can conveniently arrange the drivers of robots containing multiple types of joints, which is convenient for automatic operation.
  • An arrangement device for a robot joint driver including a processor and a memory
  • An application program that can be executed by the processor is stored in the memory, and is used to make the processor execute any of the method for arranging a robot joint driver described above.
  • a computer-readable storage medium in which computer-readable instructions are stored, and the computer-readable instructions are used to execute the method for arranging a robot joint driver as described above.
  • Fig. 1 is an exemplary schematic diagram of a robot joint driver according to an embodiment of the present invention.
  • Fig. 2 is an exemplary schematic diagram of a driver suitable for a smaller-sized robot joint, which is separated from the driver shown in Fig. 1 or Fig. 3 according to an embodiment of the present invention.
  • Fig. 3 is an exemplary side view of a robot joint driver according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of assembling a driver and a joint according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a six-axis robot according to an embodiment of the present invention.
  • Fig. 6 is a first exemplary flowchart of a method for arranging a robot joint driver according to an embodiment of the present invention.
  • Fig. 7 is a second exemplary flowchart of a method for arranging a robot joint driver according to an embodiment of the present invention.
  • Fig. 8 is an exemplary structure diagram of a robot joint driver arrangement device according to an embodiment of the present invention.
  • an embodiment of the present invention proposes a driver including a detachable area, wherein the detachable area is arranged Control unit with drive.
  • a complete driver with a detachable area can drive a larger size joint; when it needs to be applied to a smaller size joint, separate the detachable area from the driver and use
  • the separated detachable area assembles a drive suitable for smaller joints, thereby significantly improving the compatibility of the drive.
  • the present invention provides a flexible DC drive compatible with different joints in the robot.
  • Fig. 1 is an exemplary schematic diagram of a robot joint driver according to an embodiment of the present invention.
  • the robot joint driver 100 includes:
  • the substrate 106 includes a circular hole 101, a first wiring area 102, and a second wiring area 103.
  • the first wiring area 102 surrounds the circular hole 101 on the first surface 107 of the substrate 106; the second wiring area 103 is on the first surface 107.
  • a surface 108 surrounds the first wiring area 102.
  • the circular hole 101 is located in the center of the substrate 106, the first wiring area 102 surrounds the circular hole 101 in a ring shape on the first surface 107, and the second wiring area 103 is located in a ring shape on the radially outer side of the first wiring area 102,
  • the second wiring area 103 may extend to the outer periphery of the substrate 106.
  • the control unit of the robot joint driver 100 is arranged in the first wiring area 102, and the outer periphery 109 of the first wiring area 102 has a detachable structure suitable for being separated from the second wiring area 103 (not shown in FIG. 1).
  • the substrate 106 can be specifically implemented as FR-1 substrate board, FR-2 substrate board, FR-3 substrate board, FR-4 substrate board, FR-5 substrate board, FR-6 substrate board, G- 10 Base plate, CEM-1 base plate, CEM-2 base plate, CEM-3 base plate, CEM-4 base plate, CEM-5 base plate, nano aluminum nitride (AlN) base plate Or silicon carbide (SiC) substrate board, and so on.
  • AlN aluminum nitride
  • SiC silicon carbide
  • the circular hole 101 can be used for socketing on the robot joint, and can also accommodate various types of cables, such as power cables and communication cables.
  • the substrate 106 has a circular hole 101 as its center and has a circular ring shape; and the first wiring area 102 has a circular hole 101 as its circular center and has a circular ring shape.
  • the outer radius of the first wiring area 102 is smaller than the outer radius of the substrate 106.
  • the second wiring area 103 has a circular ring shape with the first wiring area 102 as the center, and surrounds the first wiring area 102.
  • FIG. 1 describes the embodiment of the present invention by taking the substrate 106 as a circular ring and the first wiring area 102 as a circular ring as an example.
  • the substrate 106 may be implemented as a circular ring with a circular hole 101
  • the first wiring area 102 may be implemented as a polygon (for example, a regular triangle or a square) surrounding the circular hole 101, and so on.
  • a conductor pattern of the control unit of the robot joint driver 100 is printed.
  • the control unit of the robot joint driver 100 may include: (1) a CPU for generating pulse width modulation (PWM) control signals; (2) a control signal amplifying module for amplifying the PWM control signals; (3) CPU And control the peripheral circuit of the signal amplification module, and so on.
  • PWM pulse width modulation
  • the second wiring area 103 includes a first wiring sub-area 104 and a second wiring sub-area 105; wherein the first wiring sub-area 104 is arranged with a power stage unit of the robot joint driver 100.
  • the communication unit of the robot joint driver 100 is arranged in the second wiring sub-area 105.
  • the wiring of the communication unit of the robot joint driver 100 is printed in the second wiring sub-region 105.
  • the communication unit of the robot joint driver 100 includes: (1) Communication interfaces, such as RS232 communication interface, Ethernet (Ethernet) communication interface, Controller Area Network (CAN) communication interface, RS485 communication interface, etc., these communication interfaces are all Connect with CPU; (2) Sensor interfaces, such as Hall sensor interface, incremental encoder interface, absolute encoder interface or tachometer motor interface, etc. These sensor interfaces are all connected with CPU.
  • the wiring of the power stage unit of the robot joint driver 100 is printed in the first wiring sub-region 104.
  • the power stage unit of the robot joint driver 100 includes: (1), a full-bridge power amplifier module, used to convert the control signal output by the control signal amplifier module into a large voltage signal capable of driving the motor; (2), a power conversion module , Used to convert the externally input voltage into voltage signals of various levels to supply power to the various components of the robot joint driver.
  • the control unit of the robot joint driver 100 arranged in the first wiring area 102 is connected to the communication unit arranged in the second wiring sub-area 104 via the first wiring 301 on the substrate 106.
  • the control unit of the robot joint driver 100 arranged in the first wiring area 102 is connected to the power stage unit arranged in the second wiring sub-area 105 via the second wiring 302 on the substrate 106.
  • the second wiring area 103 and the first wiring area 102 are exemplarily shown on the same surface of the substrate 106.
  • the first surface 107 of the substrate 106 extends radially outward to form a first wiring area 102 surrounding the circular hole 101.
  • the first wiring area 102 it extends radially outward on the first surface 10 of the substrate 106 to form a second wiring area 103 surrounding the first wiring area 102. It can be seen that both the first wiring area 102 and the second wiring area 103 are located on the first surface 107 of the substrate 106.
  • the second wiring area 103 and the first wiring area 102 may also be located on different surfaces of the substrate 106.
  • Fig. 3 is an exemplary side view of a robot joint driver according to an embodiment of the present invention.
  • the second wiring area 103 and the first wiring area 102 are respectively located on different surfaces of the substrate 106.
  • the first surface 107 of the substrate 106 extends radially outward to form a first wiring area 102 surrounding the circular hole 101.
  • the opposite surface of the first surface 107 on the substrate 10 is the second surface 108.
  • On the second surface 108 there is a virtual corresponding mapping area 202 that is symmetrical to the first wiring area 102 on the first surface 107 (indicated by a dotted line in FIG. 3).
  • Starting from the circular hole 101 it extends radially outward on the second surface 108 of the substrate 106 to form a second wiring area 103 surrounding the corresponding mapping area 202. It can be seen that the first wiring area 102 and the second wiring area 103 are respectively located on different surfaces of the substrate 106.
  • the robot joint driver 100 includes a control unit, a power stage unit, and a communication unit to form a fully functional robot joint driver.
  • the communication unit is used to receive control instructions from the robot controller; the control unit is used to convert control instructions. It is the motor control command; the power stage unit is used to drive the motor based on the motor control command.
  • the robot joint driver 100 shown in FIG. 1 or FIG. 3 may be arranged in a robot joint to drive the robot to move.
  • the robot joint driver 100 further includes:
  • the first pin 206 is arranged in the corresponding mapping area 202 and is adapted to be coupled with the power stage unit of the robot joint driver to be assembled;
  • the second pin 207 is arranged in the corresponding mapping area 202 and is adapted to be coupled with the communication unit of the robot joint driver to be assembled.
  • the first pins 206 and the second pins 207 arranged on the second surface 108 of the substrate 106 can be coupled to the robot joint driver to be assembled.
  • the first position and the second position are radially symmetric with respect to the circular hole 101.
  • the detachable structure arranged on the outer peripheral edge of the first wiring area 102 is a perforation arranged along the outer peripheral edge of the first wiring area 102, or a card arranged along the outer peripheral edge of the first wiring area 102 buckle.
  • the detachable structure when the detachable structure is implemented as perforations, by tearing the perforations, the first wiring area 102 (including the base of the first wiring area 102) where the control unit of the robot joint driver 100 is arranged can be easily removed.
  • the material part, which will not be repeated below) is separated from the substrate 106.
  • the perforations can be implemented as: smooth teeth, fur teeth, blind teeth or missing teeth, and so on.
  • the detachable structure when the detachable structure is implemented as a buckle, through the separation or connection of the buckle, the first wiring area 102 where the control unit of the robot joint driver 100 is arranged can be conveniently separated from the substrate 106 and Regroup.
  • the control unit in the first wiring area 102 is disconnected from the power stage unit in the first wiring sub-area 104 and the communication unit in the second wiring sub-area 105, respectively .
  • the control unit of the robot joint driver 100 is connected to the communication unit and the power stage unit through the first wiring 301 and the second wiring 302 arranged on the substrate 106, respectively.
  • the first wiring area 102 is separated from the substrate 106, and the first wiring 301 and the second wiring 302 are disconnected, so that the control unit in the first wiring area 102 and the control unit in the first wiring sub-area 104
  • the power stage unit and the communication unit in the second wiring sub-region 105 are disconnected respectively.
  • the control unit After the first wiring area 102 is separated from the substrate 106, the control unit remains in the first wiring area 102. Since the control logic contained in the control unit can be applied to joints of various sizes, a driver suitable for a small-sized robot joint can be assembled based on the first wiring area 102.
  • Fig. 2 is an exemplary schematic diagram of a driver suitable for a smaller-sized robot joint, which is separated from the driver shown in Fig. 1 or Fig. 3 according to an embodiment of the present invention.
  • the first wiring area 102 When the first wiring area 102 is separated from the base material 106 based on a detachable structure, the first wiring area 102 includes the following components: (1) a circular hole 101; (2) separated from the substrate 106 and connected to the first The portion of the base material where the wiring area 102 overlaps; (3) the control unit in the first wiring area 102 (not shown in the figure). Therefore, the disassembled first wiring area 102 can be applied to the robot joint driver to be assembled, wherein the joint to which the robot joint driver is to be assembled has a smaller size than the joint before disassembly.
  • the power stage unit of the robot joint driver to be assembled is connected to the first pin 206.
  • the size of the power stage unit of the robot joint driver to be assembled is generally smaller than the size of the power stage unit in the first wiring sub-region 104 before separation.
  • the power stage unit of the robot joint driver to be assembled includes: (1), a full-bridge power amplifier module, used to convert the control signal output by the control signal amplifier module into a large voltage signal that can drive the motor; (2), The power conversion module is used to convert the externally input voltage into voltage signals of various levels to supply power to the various components of the robot joint driver to be assembled.
  • the communication unit of the robot joint driver to be assembled includes: (1) Communication interfaces, such as RS232 communication interface, Ethernet communication interface, controller area network communication interface, RS485 communication interface, etc., these communication interfaces are all Connect with the CPU in the control unit in the first wiring area 102; (2) Sensor interfaces, such as Hall sensor interface, incremental encoder interface, absolute encoder interface or tachometer motor interface, etc., these sensor interfaces Both are connected to the CPU in the control unit in the first wiring area 102.
  • Communication interfaces such as RS232 communication interface, Ethernet communication interface, controller area network communication interface, RS485 communication interface, etc.
  • the arrangement area 204 of the power stage unit is all located in the corresponding mapping area 202 on the second surface 108 of the substrate 106; the robot joint to be assembled After the communication unit of the driver is plugged into the second pin 207, the arrangement area 205 of the communication unit unit is all located in the corresponding mapping area 202 on the second surface 108 of the substrate 106.
  • the size of the robot joint driver after assembly is the size of the first wiring area 102 in the robot joint driver 100 before separation. Therefore, the robot joint driver after assembly is reduced in size and can be applied to smaller joints.
  • the assembled robot joint driver includes a control unit, a power stage unit and a communication unit to form a fully functional robot joint driver.
  • the embodiment of the present invention also proposes a robot joint, including the above-mentioned robot joint driver 100.
  • Fig. 4 is a schematic diagram of assembling a driver and a joint according to an embodiment of the present invention.
  • the robot joint driver 100 is sleeved between the first connector 200 and the second connector 300, the first connector 200 is connected to the upper joint structure, and the second connector 300 is connected to the lower joint structure.
  • the following takes a six-axis robot as an example to specifically describe the joint assembly method of the embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a six-axis robot according to an embodiment of the present invention.
  • the six-axis robot includes a bottom joint 22, a shoulder joint 23, an elbow joint 24, a first wrist joint 25, a second wrist joint 26, and a third wrist joint 26.
  • the bottom joint 22, the shoulder joint 23, the elbow joint 24, the first wrist joint 25, the second wrist joint 26, and the third wrist joint 26 each have their own degrees of freedom.
  • the bottom joint 22 is arranged on the bracket 21; the shoulder joint 23 is connected in series to the bottom joint 22; the elbow joint 24 is connected in series to the shoulder joint 23; the first wrist joint 25 is connected in series to the elbow joint 24; the second wrist joint 26 is connected in series to the first wrist joint 25 ; The third wrist joint 26 is connected in series to the second wrist joint 26.
  • the robot controller 20 arranged outside the six-axis robot and the bottom joint 22 are connected by, for example, Profinet.
  • the bottom joint 22, the shoulder joint 23, the elbow joint 24, the first wrist joint 25, the second wrist joint 26 and the third wrist joint 27 are jointly connected to the CAN bus inside the six-axis robot.
  • the joint diameter when the joint diameter is greater than 100 mm, it can be regarded as a large joint; when the joint diameter is less than 80 mm, it can be regarded as a small joint.
  • the bottom joint 22, the shoulder joint 23, and the elbow joint 24 are recognized as large joints; the first wrist joint 25, the second wrist joint 26, and the third wrist joint 26 are recognized as small joints.
  • the driver 1 is directly arranged in the bottom joint 22 to drive the bottom joint 22; the driver 2 is directly arranged in the shoulder joint 23 to drive the shoulder joint 23; Directly arrange the driver 3 in the elbow joint 24 to drive the elbow joint 24.
  • the first wiring area of the driver 4 is separated, and the first pin in the overlap area of the first wiring area of the driver 4 on the bottom surface of the substrate of the driver 4 is coupled and adapted to the first pin.
  • a power stage unit of the wrist joint 25 is coupled to a communication unit adapted to the first wrist joint 25 on a second pin in the overlap area of the first wiring area of the driver 4 on the bottom surface of the substrate of the driver 4 , And then arrange the first wiring area of the driver 4 into the first wrist joint 25.
  • the first wiring area of the driver 5 is separated, and the first pin in the overlapping area of the first wiring area of the driver 5 on the bottom surface of the substrate of the driver 5 is coupled and adapted to the second wrist
  • the power stage unit of the joint 26 is coupled to a communication unit adapted to the second wrist joint 26 on the second pin located on the bottom surface of the substrate of the driver 5 in the overlapping area of the first wiring area, and then the driver The first wiring area of 5 is arranged into the second wrist joint 26.
  • the first wiring area of the driver 6 is separated, and the first pin in the overlapping area of the first wiring area of the driver 6 on the bottom surface of the substrate of the driver 6 is coupled and adapted to the third wrist.
  • the power stage unit of the joint 27 is coupled to the communication unit of the third wrist joint 27 on the second pin in the overlapping area of the first wiring area of the driver 6 on the bottom surface of the substrate of the driver 6, and then The first wiring area of the driver 6 is arranged in the third wrist joint 27.
  • the embodiment of the present invention also proposes a method for arranging a robot joint driver.
  • Fig. 6 is a first exemplary flowchart of a method for arranging a robot joint driver according to an embodiment of the present invention.
  • the method includes:
  • Step 601 Separate the robot joint driver from the first robot joint.
  • the robot joint driver includes a substrate.
  • the substrate includes a circular hole, a first wiring area and a second wiring area.
  • the first wiring area encloses a circle on the first surface of the substrate. Hole; the second wiring area surrounds the first wiring area on the first surface, or the second wiring area surrounds the corresponding mapping area of the first wiring area on the second surface opposite to the first surface; wherein the first wiring area is arranged
  • Step 602 Separate the first wiring area from the substrate based on the detachable structure.
  • Step 603 Arrange the first wiring area in the second robot joint, where the diameter of the second robot joint is smaller than the diameter of the first robot joint.
  • the robot joint driver further includes: a first pin, arranged in the corresponding mapping area, adapted to be coupled with a power stage unit of the robot joint driver for driving the second robot joint; and a second pin , Arranged in the corresponding mapping area, and configured to couple with the communication unit of the robot joint driver for driving the second robot joint.
  • the method further includes: plugging the power stage unit of the robot joint driver for driving the second robot joint to the first pin, and plugging the communication unit of the robot joint driver for driving the second robot joint to the second lead.
  • the feet constitute a fully functional robot joint driver.
  • Fig. 7 is a second exemplary flowchart of a method for arranging a robot joint driver according to an embodiment of the present invention.
  • the method includes:
  • Step 701 Obtain a plurality of robot joint drivers, each robot joint driver corresponding to a respective robot joint, wherein each robot joint driver includes a substrate, and the substrate includes a circular hole, a first wiring area and a second wiring area.
  • the wiring area surrounds the circular hole on the first surface of the substrate; the second wiring area surrounds the first wiring area on the first surface, or the second wiring area is on the second surface opposite to the first surface.
  • Step 702 Classify the respective robot joints into a first type joint and a second type joint, where the diameter of the first type joint is larger than the diameter of the second type joint.
  • Step 703 Arrange corresponding robot joint drivers in the first type of joints.
  • Step 704 For the second type of joint, separate the first wiring area from the second wiring area in the corresponding robot joint driver based on the detachable structure.
  • Step 705 In the second type of joint, arrange the first wiring area separated from the corresponding robot joint driver.
  • the robot joint driver further includes: a first pin, arranged in the corresponding mapping area, adapted to be coupled with a power stage unit of the robot joint driver for driving the second robot joint; and a second pin , Arranged in the corresponding mapping area, and configured to couple with the communication unit of the robot joint driver for driving the second robot joint.
  • Step 705 further includes: plugging the power stage units of the robot joint driver for driving the second type of joints to the respective first pins, respectively, and connecting the communication units of the robot joint driver for driving the second type of joints to the respective first pins. Plug into the respective second pins to form a fully functional robot joint driver.
  • the drivers of robots with multiple types of joints can be conveniently arranged to facilitate automated operations.
  • the embodiment of the present invention also proposes an arrangement device of a robot joint driver with a processor and a memory structure.
  • Fig. 8 is an exemplary structure diagram of a robot joint driver arrangement device according to an embodiment of the present invention.
  • the arrangement device 800 includes a processor 801 and a memory 802;
  • An application program executable by the processor 801 is stored in the memory 702 to enable the processor 701 to execute the method for arranging the robot joint driver as shown in FIG. 6 or the method for arranging the robot joint driver as shown in FIG. 7.
  • the memory 802 can be specifically implemented as a variety of storage media such as electrically erasable programmable read-only memory (EEPROM), flash memory (Flash memory), and programmable program read-only memory (PROM).
  • the processor 801 may be implemented to include one or more central processing units or one or more field programmable gate arrays, where the field programmable gate array integrates one or more central processing unit cores.
  • the central processing unit or central processing unit core may be implemented as a CPU or MCU.
  • a hardware module may include specially designed permanent circuits or logic devices (such as dedicated processors, such as FPGAs or ASICs) to complete specific operations.
  • the hardware module may also include programmable logic devices or circuits temporarily configured by software (for example, including general-purpose processors or other programmable processors) for performing specific operations.
  • software for example, including general-purpose processors or other programmable processors
  • the present invention also provides a machine-readable storage medium that stores instructions for making a machine execute the method described herein.
  • a system or device equipped with a storage medium may be provided, and the software program code for realizing the function of any one of the above-mentioned embodiments is stored on the storage medium, and the computer (or CPU or MPU of the system or device) ) Read and execute the program code stored in the storage medium.
  • an operating system or the like operating on the computer can also be used to complete part or all of the actual operations through instructions based on the program code.
  • Implementations of storage media used to provide program codes include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Magnetic tape, non-volatile memory card and ROM.
  • the program code can be downloaded from a server computer or cloud via a communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人关节驱动器,包括:基板(106),基板(106)包含圆孔(101)、第一布线区域(102)和第二布线区域(103),第一布线区域(102)在基板(106)的第一表面(107)上包围圆孔(101);第二布线区域(103)在第一表面(107)上包围第一布线区域(102),或第二布线区域(103)在与第一表面(107)相对的第二表面(108)上包围第一布线区域(102)的对应映射区域(202);其中第一布线区域(102)中布置有机器人关节驱动器的控制单元,第一布线区域(102)的外周缘布置有适于与基板分离的可拆卸结构。该机器人关节驱动器可以适用于具有不同关节直径的多种机器人关节,提升了兼容性。还提供了一种该机器人关节驱动器的布置方法、包含该机器人关节驱动器的装置和机器人关节以及存储有机器人关节驱动器的布置方法的计算机可读存储介质。

Description

机器人关节驱动器及其布置方法、装置和机器人关节 技术领域
本发明涉及机器人技术领域,特别是涉及一种机器人关节驱动器及其布置方法、装置和机器人关节。
背景技术
机器人是自动执行工作的机器装置。它既可以接受人类指挥,还可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领执行任务。机器人可以协助或取代人类工作,例如生产业、建筑业,或是危险工作。机器人驱动器是维持机器人运动并实现各种运动的关键部分。机器人驱动器通常包括直流伺服电动机驱动器或同步式交流伺服电动机驱动器,等等。
关节机器人也称关节手臂机器人或关节机械手臂,是当今工业领域中最常见的工业机器人的形态之一,适合于诸多工业领域的机械自动化作业。关节机器人通常包含多个关节,比如基座关节、肩关节和肘关节,等等。各个关节可能具有不同的关节参数,比如具有不同的直径。
目前,针对每个关节,都需要分别设置与关节参数相匹配的驱动器。各个关节的驱动器之间缺乏兼容性。
发明内容
本发明实施方式提出一种机器人关节驱动器及其布置方法、装置和机器人关节,可以提升驱动器的兼容性。
本发明实施方式的技术方案如下:
一种机器人关节驱动器,包括:
基板,所述基板包含圆孔、第一布线区域和第二布线区域,所述第一布线区域在基板的第一表面上包围所述圆孔;所述第二布线区域在第一表面上包围所述第一布线区域,或所述第二布线区域在与第一表面相对的第二表面上包围所述第一布线区域的对应映射区域;
其中所述第一布线区域中布置有所述机器人关节驱动器的控制单元,所述第一布线区域的外周缘布置有适于与所述基板分离的可拆卸结构。
因此,本发明实施方式提出一种包含可拆卸区域的驱动器,其中在可拆卸区域中布置有驱动器的控制单元。由于控制单元中包含的控制逻辑可以适用于各种尺寸的关节,因此可以基于第一布线区域组装出适用于小尺寸机器人关节的驱动器,从而提高了兼容性。
在一个实施方式中,所述第二布线区域包含第一布线子区域和第二布线子区域;
其中所述第一布线子区域中布置有所述机器人关节驱动器的功率级单元,所述第二布线子区域中布置有所述机器人关节驱动器的通信单元。
可见,当第一布线区域与第二布线区域分离后,第一布线区域中的控制单元可以与第二布线区域中的功率级单元和通信单元分离,从而便于后续组装新的功率级单元和新的通信单元。
在一个实施方式中,所述可拆卸结构为沿着所述第一布线区域的外周缘布置的齿孔,或沿着所述第一布线区域的外周缘布置的卡扣。
因此,本发明实施方式的可拆卸结构具有多种实施方式。
在一个实施方式中,还包括:
第一引脚,布置在所述对应映射区域中,适配于与待组装的机器人关节驱动器的功率级单元相耦合;
第二引脚,布置在所述对应映射区域中,适配于与待组装的机器人关节驱动器的通信单元相耦合。
可见,通过布置第一引脚和第二引脚,当第一布线区域与第二布线区域分离后,可以便利地与待组装的机器人关节驱动器的功率级单元和通信单元相耦合,从而可以快捷地组装出适用于小尺寸关节的机器人关节驱动器。
在一个实施方式中,所述第一引脚的布置位与所述第二引脚的布置位关于所述圆孔径向对称。
在一个实施方式中,所述基板为圆环形,所述第一布线区域为圆环形,且所述第一布线区域的外圆半径小于所述基板的外圆半径。
可见,本发明实施方式的基板与第一布线区域具有多种实施方式。
一种机器人关节,包括如上任一项所述的机器人关节驱动器。
一种机器人关节驱动器的布置方法,包括:
从第一机器人关节中分离出机器人关节驱动器,其中所述机器人关节驱动器包括基板,所述基板包含圆孔、第一布线区域和第二布线区域,所述第一布线区域在基板的第一表面上包围所述圆孔;所述第二布线区域在第一表面上包围所述第一布线区域,或所述第二布线区域在与第一表面相对的第二表面上包围所述第一布线区域的对应映射区域;其中所述第一布线区域中布置有所述机器人关节驱动器的控制单元,所述第一布线区域的外周缘布置有适于与所述基板分离的可拆卸结构;
基于所述可拆卸结构将所述第一布线区域与所述基板分离;
在第二机器人关节中布置所述第一布线区域,其中所述第二机器人关节的直径小于所述第一机器人关节的直径。
因此,本发明实施方式可以方便地从大尺寸机器人关节中分离出适用于小尺寸机器人关节的驱动器。
一种机器人关节驱动器的布置方法,包括:
获取多个机器人关节驱动器,每个机器人关节驱动器分别对应于各自机器人关节,其中每个机器人关节驱动器包括基板,所述基板包含圆孔、第一布线区域和第二布线区域,所述第一布线区域在基板的第一表面上包围所述圆孔;所述第二布线区域在第一表面上包围所述第一布线区域,或所述第二布线区域在与第一表面相对的第二表面上包围所述第一布线区域的对应映射区域;其中所述第一布线区域中布置有所述 机器人关节驱动器的控制单元,所述第一布线区域的外周缘布置有适于与所述基板分离的可拆卸结构;
将各自的机器人关节分类为第一类关节和第二类关节,其中第一类关节的直径大于第二类关节的直径;
在第一类关节中,布置对应的机器人关节驱动器;
针对第二类关节,基于所述可拆卸结构将对应的机器人关节驱动器中的第一布线区域与所述基板分离;
在第二类关节中,布置从对应的机器人关节驱动器中分离出的第一布线区域。
因此,本发明实施方式可以方便地布置包含多种类型关节的机器人的驱动器,便于自动化操作。
一种机器人关节驱动器的布置装置,包括处理器和存储器;
所述存储器中存储有可被所述处理器执行的应用程序,用于使得所述处理器执行如上任一所述的机器人关节驱动器的布置方法。
一种计算机可读存储介质,其中存储有计算机可读指令,该计算机可读指令用于执行如上任一所述的机器人关节驱动器的布置方法。
附图说明
图1为根据本发明实施方式的机器人关节驱动器的示范性示意图。
图2为根据本发明实施方式从依据图1或图3所示驱动器中分离出的、适用于更小尺寸机器人关节的驱动器的示范性示意图。
图3为根据本发明实施方式的机器人关节驱动器的示范性侧视图。
图4为根据本发明实施方式驱动器与关节的组装示意图。
图5为根据本发明实施方式的六轴机器人的示意图。
图6为根据本发明实施方式的机器人关节驱动器的布置方法的第一示范性流程图。
图7为根据本发明实施方式的机器人关节驱动器的布置方法的第二示范性流程图。
图8为根据本发明实施方式的机器人关节驱动器的布置装置的示范性结构图。
其中,附图标记如下:
标号 含义
100 驱动器
101 圆孔
102 第一布线区域
103 第二布线区域
104 第一布线子区域
105 第二布线子区域
106 基板
107 第一表面
108 第二表面
109 外周缘
202 第一布线区域的对应映射区域
204 待组装的机器人关节驱动器的功率级单元的布置区域
205 待组装的机器人关节驱动器的通信单元的布置区域
206 第一引脚
207 第二引脚
200 第一连接件
300 第二连接件
301 第一接线
302 第二接线
20 机器人控制器
21 支架
22 底部关节
23 肩关节
24 肘关节
25 第一腕关节
26 第二腕关节
27 第三腕关节
600 机器人关节驱动器的布置方法
601~603 步骤
700 机器人关节驱动器的布置方法
701~705 步骤
800 机器人关节驱动器的布置装置
801 处理器
802 存储器
具体实施方式
为了使本发明的技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以阐述性说明本发明,并不用于限定本发明的保护范围。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
考虑到现有技术中针对每个关节都分别设置与关节参数相匹配的驱动器所导致的兼容性低的缺点,本发明实施方式提出一种包含可拆卸区域的驱动器,其中在可拆卸区域中布置有驱动器的控制单元。当需要应用到较大尺寸的关节时,保留可拆卸区域的完整驱动器可以驱动较大尺寸的关节;当需要应用到较小尺寸的关节时,将该可拆卸区域从驱动器中分离出来,并利用分离出的可拆卸区域组装出适用于较小尺寸关节的驱动器,从而显著提升驱动器的兼容性。由此,本发明提供了一种能够兼容机器人中的不同关节的灵活的直流驱动器。
图1为根据本发明实施方式的机器人关节驱动器的示范性示意图。
如图1所示,机器人关节驱动器100包括:
基板106,该基板106包含圆孔101、第一布线区域102和第二布线区域103,其中第一布线区域102在基板106的第一表面107上包围圆孔101;第二布线区域103在第一表面108上包围第一布线区域102。优选的,圆孔101位于基板106的中央,第一布线区域102在第一表面107上呈环状围绕圆孔101,第二布线区域103呈环状位于第一布线区域102的径向外侧,比如第二布线区域103可以延伸到基板106的外周缘。
其中第一布线区域102中布置有机器人关节驱动器100的控制单元,而且第一布线区域102的外周缘109具有适于与第二布线区域103分离的可拆卸结构(图1中没有示出)。
基板106具体可以实施为FR-1基材板、FR-2基材板、FR-3基材板、FR-4基材板、FR-5基材板、FR-6基材板、G-10基材板、CEM-1基材板、CEM-2基材板、CEM-3基材板、CEM-4基材板、CEM-5基材板、纳米氮化铝(AlN)基材板或碳化硅(SiC)基材板,等等。
圆孔101可以被用于套接在机器人关节上,还可以容纳各种类型的线缆,比如电源线和通讯线等等。
优选地,如图1所示:基板106以圆孔101为环心,具有圆环形;第一布线区域102以圆孔101为环心,具有圆环形。第一布线区域102的外圆半径小于基板106的外圆半径。而且,第二布线区域103以第一布线区域102为环心,具有圆环形,且包围第一布线区域102。
图1以基板106为圆环形且第一布线区域102为圆环形为例对本发明实施方式进行描述,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。比如,基板106可以实施为具有圆孔101的圆环形,而第一布线区域102可以实施为包围圆孔101的多边形(比如,正三角 形或正方形),等等。
另外,以上还详细描述了基板106的具体实施方式,本领域技术人员可以意识到,这种描述同样仅是示范性的,并不用于限定本发明实施方式的保护范围。
优选地,在基板106上的第一布线区域102中,印制有机器人关节驱动器100的控制单元的布线(conductor pattern)。比如,机器人关节驱动器100的控制单元可以包含:(1)、用于生成脉冲宽度调制(PWM)控制信号的CPU;(2)、用于放大PWM控制信号的控制信号放大模块;(3)CPU和控制信号放大模块的外围电路,等等。
在一个实施方式中,第二布线区域103包含第一布线子区域104和第二布线子区域105;其中第一布线子区域104布置有机器人关节驱动器100的功率级单元(power stage unit),第二布线子区域105布置有机器人关节驱动器100的通信单元(communication unit)。
优选地,在第二布线子区域105中印制有机器人关节驱动器100的通信单元的布线。比如,机器人关节驱动器100的通信单元包括:(1)、通讯接口,比如RS232通讯接口、以太网(Ethernet)通讯接口、控制器局域网(CAN)通讯接口、RS485通讯接口等等,这些通讯接口均与CPU连接;(2)、传感器接口,比如霍尔传感器接口、增量式编码器接口、绝对值编码器接口或测速电机接口等等,这些传感器接口均与CPU连接。
优选地,在第一布线子区域104中印制有机器人关节驱动器100的功率级单元的布线。比如,机器人关节驱动器100的功率级单元包括:(1)、全桥功率放大模块,用于将控制信号放大模块输出的控制信号转换为能够驱动电机的大电压信号;(2)、电源转换模块,用于将外部输入的电压转换为各种电平的电压信号,以为机器人关节驱动器的各个元器件供电。
在第一布线区域102中布置的机器人关节驱动器100的控制单元,经由基板106上的第一接线301,与布置在第二布线子区域104中的通信单元连接。在第一布线区域102中布置的机器人关节驱动器100的控制单元,经由基板106上的第二接线302,与布置在第二布线子区域105中的功率级单元连接。
在图1中,示范性地示意出第二布线区域103和第一布线区域102位于基板106的相同表面上的情形。由图1可见,从圆孔101开始,在基板106的第一表面107上沿径向向外延伸以形成包围圆孔101的第一布线区域102。从第一布线区域102开始,在基板106的第一表面10上沿径向向外延伸以形成包围第一布线区域102的第二布线区域103。可见,第一布线区域102和第二布线区域103都位于基板106的第一表面107上。
实际上,第二布线区域103和第一布线区域102,还可以位于基板106的不同表面上。
图3为根据本发明实施方式的机器人关节驱动器的示范性侧视图。在图3中,示意出第二布线区域103和第一布线区域102分别位于基板106的不同表面上的情形。
在图3中,从圆孔101开始,在基板106的第一表面107上沿径向向外延伸以形成包围圆孔101的第 一布线区域102。第一表面107在基板10上的相对表面为第二表面108。在第二表面108上,具有与第一表面107上的第一布线区域102相对称的、虚拟的对应映射区域202(图3中以虚线示意)。从圆孔101开始,在基板106的第二表面108上沿径向向外延伸以形成包围对应映射区域202的第二布线区域103。可见,第一布线区域102和第二布线区域103分别位于基板106的不同表面上。
以上示范性描述了机器人关节驱动器100的控制单元、通信单元和功率级单元的典型实例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
可见,机器人关节驱动器100包含控制单元、功率级单元和通信单元,构成具有完整功能的机器人关节驱动器,其中:通信单元,用于从机器人控制器接收控制指令;控制单元,用于将控制指令转换为电机控制命令;功率级单元,用于基于电机控制命令驱动电机。
因此,可以将图1或图3所示的机器人关节驱动器100布置在机器人关节中,以驱动机器人运动。
在一个实施方式中,机器人关节驱动器100还包括:
第一引脚206,布置在对应映射区域202中,适配于与待组装的机器人关节驱动器的功率级单元相耦合;
第二引脚207,布置在对应映射区域202中,适配于与待组装的机器人关节驱动器的通信单元相耦合。
可见,当第一布线区域102与第二布线区域103分离时,通过在基板106的第二表面108上布置的第一引脚206和第二引脚207,可以耦合待组装的机器人关节驱动器的功率级单元和通信单元,从而组装出适用于较小尺寸关节的驱动器。优选地,第一位置与第二位置关于圆孔101径向对称。
在一个实施方式中,布置在第一布线区域102的外周缘的可拆卸结构为沿着第一布线区域102的外周边缘布置的齿孔,或沿着第一布线区域102的外周边缘布置的卡扣。
在一个实施方式中,当可拆卸结构实施为齿孔时,通过撕开齿孔,可以方便地将布置有机器人关节驱动器100的控制单元的第一布线区域102(含第一布线区域102的基材部分,下面不再赘述),与基材106分离。具体地,齿孔可以实施为:光齿、毛齿、盲齿或漏齿,等等。当可拆卸结构实施为齿孔时,第一布线区域102与第二布线区域103分离后,第一布线区域102与基材106将不再重新组合。
在一个实施方式中,当可拆卸结构实施为卡扣时,通过卡扣的分离或连接,可以方便地将布置有机器人关节驱动器100的控制单元的第一布线区域102与基材106相分离以及重新组合。
当第一布线区域102与基材106分离时,第一布线区域102中的控制单元,与第一布线子区域104中的功率级单元和第二布线子区域105中的通信单元分别断开连接。
依据本发明的一种实施方式,机器人关节驱动器100的控制单元通过布置在基板106上的第一接线301和第二接线302,与通信单元和功率级单元分别连接。当可拆卸结构断裂时,第一布线区域102与基材106分离,第一接线301和第二接线302分别断开,从而第一布线区域102中的控制单元与第一布线子区域104中的功率级单元和第二布线子区域105中的通信单元分别断开连接。
当第一布线区域102与基材106分离后,第一布线区域102中保留有控制单元。由于控制单元中包含的控制逻辑可以适用于各种尺寸的关节,因此可以基于第一布线区域102组装出适用于小尺寸机器人关节的驱动器。
图2为根据本发明实施方式从依据图1或图3所示的驱动器中分离出的、适用于更小尺寸机器人关节的驱动器的示范性示意图。
当基于可拆卸结构,将第一布线区域102与基材106分离之后,第一布线区域102包含如下组成部分:(1)圆孔101;(2)从基板106上分离出的、与第一布线区域102位置重叠的基材部分;(3)第一布线区域102中的控制单元(图中未示出)。因此,可以将该拆卸下的第一布线区域102应用到待组装的机器人关节驱动器中,其中待组装的机器人关节驱动器所适配的关节,相比较拆卸之前的关节具有更小尺寸。
在第一引脚206上接插待组装的机器人关节驱动器的功率级单元。待组装的机器人关节驱动器的功率级单元的尺寸,通常小于分离之前的、第一布线子区域104中的功率级单元的尺寸。类似地,待组装的机器人关节驱动器的功率级单元包括:(1)、全桥功率放大模块,用于将控制信号放大模块输出的控制信号转换为能够驱动电机的大电压信号;(2)、电源转换模块,用于将外部输入的电压转换为各种电平的电压信号,以为待组装的机器人关节驱动器的各个元器件供电。
在第二引脚207上接插待组装的机器人关节驱动器的通信单元。待组装的机器人关节驱动器的通信单元的尺寸,通常小于分离之前的、第二布线子区域105中的通信单元的尺寸。类似地,类似地,待组装的机器人关节驱动器的通信单元包括:(1)、通讯接口,比如RS232通讯接口、以太网通讯接口、控制器局域网通讯接口、RS485通讯接口等等,这些通讯接口均与第一布线区域102中的控制单元中的CPU连接;(2)、传感器接口,比如霍尔传感器接口、增量式编码器接口、绝对值编码器接口或测速电机接口等等,这些传感器接口均与第一布线区域102中的控制单元中的CPU连接。
待组装的机器人关节驱动器的功率级单元插接到第一引脚206后,该功率级单元的布置区域204全部位于基板106的第二表面108上的对应映射区域202中;待组装的机器人关节驱动器的通信单元插接到第二引脚207后,该通信单元单元的布置区域205全部位于基板106的第二表面108上的对应映射区域202中。
可见,组装完成后的机器人关节驱动器的尺寸即为分离之前的机器人关节驱动器100中的第一布线区域102的尺寸,因此组装完成后的机器人关节驱动器体积缩小,可以适用于较小尺寸的关节。而且,组装完成后的机器人关节驱动器,包含控制单元、功率级单元和通信单元,构成具有完整功能的机器人关节驱动器。
本发明实施方式还提出了一种机器人关节,包含上述的机器人关节驱动器100。
图4为根据本发明实施方式驱动器与关节的组装示意图。
其中,机器人关节驱动器100套接在第一连接件200和第二连接件300之间,第一连接件200与上级 关节结构连接,第二连接件300与下级关节结构连接。
本领域技术人员可以意识到,图4所示驱动器与关节的组装仅是示范性的,并不用于限定本发明实施方式的保护范围。
下面以六轴机器人为例,具体描述本发明实施方式的关节组装方式。
图5为根据本发明实施方式六轴机器人的示意图。
在图5中,六轴机器人包括底部关节22、肩关节23、肘关节24、第一腕关节25、第二腕关节26和第三腕关节26。
底部关节22、肩关节23、肘关节24、第一腕关节25、第二腕关节26和第三腕关节26分别具有自己的自由度。底部关节22布置在支架21上;肩关节23串联到底部关节22;肘关节24串联到肩关节23;第一腕关节25串联到肘关节24;第二腕关节26串联到第一腕关节25;第三腕关节26串联到第二腕关节26。
布置在六轴机器人之外的机器人控制器20与底部关节22通过例如Profinet连接。底部关节22、肩关节23、肘关节24、第一腕关节25、第二腕关节26和第三腕关节27共同连接到六轴机器人内部的CAN总线。
举例,当关节直径大于100毫米时,可以认定为大关节;当关节直径小于80毫米时,可以认定为小关节。其中,底部关节22、肩关节23、肘关节24被认定为大关节;第一腕关节25、第二腕关节26和第三腕关节26被认定为小关节。
在该六轴机器人的关节组装过程中:
首先,准备好6个如图1或图3所示的适用于大关节的驱动器,分别为驱动器1、驱动器2、驱动器3、驱动器4、驱动器5和驱动器6。
由于底部关节22、肩关节23、肘关节24都为大关节,因此直接将驱动器1布置在底部关节22中,以驱动底部关节22;直接将驱动器2布置在肩关节23中,以驱动肩关节23;直接将驱动器3布置在肘关节24中,以驱动肘关节24。
而且,针对驱动器4,分离出驱动器4的第一布线区域,在位于驱动器4的基板的底面上的、驱动器4的第一布线区域的位置重叠区域中的第一引脚上耦合适配于第一腕关节25的功率级单元,在位于驱动器4的基板的底面上的、驱动器4的第一布线区域的位置重叠区域中的第二引脚上耦合适配于第一腕关节25的通信单元,再将该驱动器4的第一布线区域布置到第一腕关节25中。
针对驱动器5,分离出驱动器5的第一布线区域,在位于驱动器5的基板的底面上的、驱动器5的第一布线区域的位置重叠区域中的第一引脚上耦合适配于第二腕关节26的功率级单元,在位于驱动器5的基板的底面上的、第一布线区域的位置重叠区域中的第二引脚上耦合适配于第二腕关节26的通信单元,再将该驱动器5的第一布线区域布置到第二腕关节26中。
针对驱动器6,分离出驱动器6的第一布线区域,在位于驱动器6的基板的底面上的、驱动器6的第一布线区域的位置重叠区域中的第一引脚上耦合适配于第三腕关节27的功率级单元,在位于驱动器6的基板的底面上的、驱动器6的第一布线区域的位置重叠区域中的第二引脚上耦合适配于第三腕关节27的通信单元,再将该驱动器6的第一布线区域布置到第三腕关节27中。
上述描述中,以六轴机器人为例描述本发明实施方式,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
本发明实施方式还提出了一种机器人关节驱动器的布置方法。
图6为根据本发明实施方式的机器人关节驱动器的布置方法的第一示范性流程图。
如图6所示,该方法包括:
步骤601:从第一机器人关节中分离出机器人关节驱动器,其中机器人关节驱动器包括基板,基板包含圆孔、第一布线区域和第二布线区域,第一布线区域在基板的第一表面上包围圆孔;第二布线区域在第一表面上包围第一布线区域,或第二布线区域在与第一表面相对的第二表面上包围第一布线区域的对应映射区域;其中第一布线区域中布置有机器人关节驱动器的控制单元,第一布线区域的外周缘布置有适于与基板分离的可拆卸结构。
步骤602:基于可拆卸结构将第一布线区域与基材分离。
步骤603:在第二机器人关节中布置第一布线区域,其中第二机器人关节的直径小于第一机器人关节的直径。
在一个实施方式中,机器人关节驱动器还包括:第一引脚,布置在对应映射区域中,适配于与用于驱动第二机器人关节的机器人关节驱动器的功率级单元相耦合;第二引脚,布置在对应映射区域中,配于与用于驱动第二机器人关节的机器人关节驱动器的通信单元相耦合。该方法进一步包括:将用于驱动第二机器人关节的机器人关节驱动器的功率级单元插接到第一引脚,将用于驱动第二机器人关节的机器人关节驱动器的通信单元插接到第二引脚,从而构成完整功能的机器人关节驱动器。
基于图6所示流程,可以方便地从大尺寸的机器人关节中分离出适用于小尺寸机器人关节的驱动器。
图7为根据本发明实施方式的机器人关节驱动器的布置方法的第二示范性流程图。
如图7所示,该方法包括:
步骤701:获取多个机器人关节驱动器,每个机器人关节驱动器分别对应于各自机器人关节,其中每个机器人关节驱动器包括基板,基板包含圆孔、第一布线区域和第二布线区域,所述第一布线区域在基板的第一表面上包围所述圆孔;所述第二布线区域在第一表面上包围所述第一布线区域,或所述第二布线区域在与第一表面相对的第二表面上包围所述第一布线区域的对应映射区域;其中所述第一布线区域中布置有所述机器人关节驱动器的控制单元,所述第一布线区域的外周缘布置有适于与所述基板分离的可拆卸结构。
步骤702:将各自的机器人关节分类为第一类关节和第二类关节,其中第一类关节的直径大于第二类关节的直径。
步骤703:在第一类关节中,布置对应的机器人关节驱动器。
步骤704:针对第二类关节,基于可拆卸结构将对应的机器人关节驱动器中的第一布线区域与第二布线区域分离。
步骤705:在第二类关节中,布置从对应的机器人关节驱动器中分离出的第一布线区域。
在一个实施方式中,机器人关节驱动器还包括:第一引脚,布置在对应映射区域中,适配于与用于驱动第二机器人关节的机器人关节驱动器的功率级单元相耦合;第二引脚,布置在对应映射区域中,配于与用于驱动第二机器人关节的机器人关节驱动器的通信单元相耦合。在步骤705中进一步包括:将用于驱动第二类关节的机器人关节驱动器的功率级单元分别插接到各自的第一引脚,将用于驱动第二类关节的机器人关节驱动器的通信单元分别插接到各自的第二引脚,从而构成完整功能的机器人关节驱动器。
基于图7所示流程,可以方便地布置包含多种类型关节的机器人的驱动器,便于自动化操作。
本发明实施方式还提出了一种具有处理器和存储器结构的机器人关节驱动器的布置装置。
图8为根据本发明实施方式的机器人关节驱动器的布置装置的示范性结构图。
如图8所示,布置装置800包括处理器801和存储器802;
存储器702中存储有可被处理器801执行的应用程序,用于使得处理器701执行如图6所示的机器人关节驱动器的布置方法,或如图7所示的机器人关节驱动器的布置方法。
其中,存储器802具体可以实施为电可擦可编程只读存储器(EEPROM)、快闪存储器(Flash memory)、可编程程序只读存储器(PROM)等多种存储介质。处理器801可以实施为包括一或多个中央处理器或一或多个现场可编程门阵列,其中现场可编程门阵列集成一或多个中央处理器核。具体地,中央处理器或中央处理器核可以实施为CPU或MCU。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
本发明还提供了一种机器可读的存储介质,存储用于使一机器执行如本文所述方法的指令。具体地, 可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。
用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机或云上下载程序代码。
以上所述,仅为本发明的较佳实施方式而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种机器人关节驱动器(100),其特征在于,包括:
    基板(106),所述基板(106)包含圆孔(101)、第一布线区域(102)和第二布线区域(103),所述第一布线区域(102)在所述基板(106)的第一表面(107)上包围所述圆孔(101);所述第二布线区域(103)在所述第一表面(108)上包围所述第一布线区域(102),或所述第二布线区域(103)在与第一表面(107)相对的第二表面(108)上包围第一布线区域(102)的对应映射区域(202);
    其中所述第一布线区域(102)中布置有所述机器人关节驱动器(100)的控制单元,所述第一布线区域(102)的外周缘布置有适于与所述基板(106)分离的可拆卸结构。
  2. 根据权利要求1所述的机器人关节驱动器(100),其特征在于,所述第二布线区域(103)包含第一布线子区域(104)和第二布线子区域(105);
    其中所述第一布线子区域(104)中布置有所述机器人关节驱动器(100)的功率级单元,所述第二布线子区域(105)中布置有所述机器人关节驱动器(100)的通信单元。
  3. 根据权利要求1所述的机器人关节驱动器(100),其特征在于,所述可拆卸结构为沿着所述第一布线区域(102)的外周缘布置的齿孔,或沿着所述第一布线区域(102)的外周缘布置的卡扣。
  4. 根据权利要求1所述的机器人关节驱动器(100),其特征在于,还包括:
    第一引脚(206),布置在所述对应映射区域(202)中,适配于与待组装的机器人关节驱动器的功率级单元相耦合;
    第二引脚(207),布置在所述对应映射区域(202)中,适配于与待组装的机器人关节驱动器的通信单元相耦合。
  5. 根据权利要求4所述的机器人关节驱动器(100),其特征在于,所述第一引脚(206)的布置位与所述第二引脚(207)的布置位关于所述圆孔(101)径向对称。
  6. 根据权利要求1所述的机器人关节驱动器(100),其特征在于,所述基板(106)为圆环形,所述第一布线区域(102)为圆环形,且所述第一布线区域(102)的外圆半径小于所述基板(106)的外圆半径。
  7. 一种机器人关节,其特征在于,包括如权利要求1-6中任一项所述的机器人关节驱动器(100)。
  8. 一种机器人关节驱动器的布置方法(600),其特征在于,包括:
    从第一机器人关节中分离出机器人关节驱动器(601),其中所述机器人关节驱动器包括基板,所述基板包含圆孔、第一布线区域和第二布线区域,所述第一布线区域在基板的第一表面上包围所述圆孔;所述第二布线区域在第一表面上包围所述第一布线区域,或所述第二布线区域在与第一表面相对的第二表面上包围所述第一布线区域的对应映射区域;其中所述第一布线区域中布置有所述机器人关节驱动器的控制单元,所述第一布线区域的外周缘布置有适于与所述基板分离的可拆卸结构;
    基于所述可拆卸结构将所述第一布线区域与所述基板分离(602);
    在第二机器人关节中布置所述第一布线区域(603),其中所述第二机器人关节的直径小于所述第一机器人关节的直径。
  9. 一种机器人关节驱动器的布置方法(700),其特征在于,包括:
    获取多个机器人关节驱动器(701),每个机器人关节驱动器分别对应于各自机器人关节,其中每个机器人关节驱动器包括基板,所述基板包含圆孔、第一布线区域和第二布线区域,所述第一布线区域在基板的第一表面上包围所述圆孔;所述第二布线区域在第一表面上包围所述第一布线区域,或所述第二布线区域在与第一表面相对的第二表面上包围所述第一布线区域的对应映射区域;其中所述第一布线区域中布置有所述机器人关节驱动器的控制单元,所述第一布线区域的外周缘布置有适于与所述基板分离的可拆卸结构;
    将各自的机器人关节分类为第一类关节和第二类关节(702),其中第一类关节的直径大于第二类关节的直径;
    在第一类关节中,布置对应的机器人关节驱动器(703);
    针对第二类关节,基于所述可拆卸结构将对应的机器人关节驱动器中的第一布线区域与所述基板分离(704);
    在第二类关节中,布置从对应的机器人关节驱动器中分离出的第一布线区域(705)。
  10. 一种机器人关节驱动器的布置装置(800),其特征在于,包括处理器(801)和存储器(802);
    所述存储器(802)中存储有可被所述处理器(801)执行的应用程序,用于使得所述处理器(801)执行如权利要求8所述的机器人关节驱动器的布置方法(600),或如权利要求9所述的机器人关节驱动器的布置方法(700)。
  11. 一种计算机可读存储介质,其特征在于,其中存储有计算机可读指令,该计算机可读指令用于执行如权利要求8所述的机器人关节驱动器的布置方法(600),或如权利要求9所述的机器人关节驱动器的布置方法(700)。
PCT/CN2019/108178 2019-09-26 2019-09-26 机器人关节驱动器及其布置方法、装置和机器人关节 WO2021056337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108178 WO2021056337A1 (zh) 2019-09-26 2019-09-26 机器人关节驱动器及其布置方法、装置和机器人关节

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108178 WO2021056337A1 (zh) 2019-09-26 2019-09-26 机器人关节驱动器及其布置方法、装置和机器人关节

Publications (1)

Publication Number Publication Date
WO2021056337A1 true WO2021056337A1 (zh) 2021-04-01

Family

ID=75165018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108178 WO2021056337A1 (zh) 2019-09-26 2019-09-26 机器人关节驱动器及其布置方法、装置和机器人关节

Country Status (1)

Country Link
WO (1) WO2021056337A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112012A (zh) * 2013-01-18 2013-05-22 杭州电子科技大学 具有柔顺特性的机器人关节驱动器
CN103192406A (zh) * 2013-04-08 2013-07-10 北京航空航天大学 一种可变刚度的机器人关节驱动器
CN106426104A (zh) * 2016-11-10 2017-02-22 慧灵科技(深圳)有限公司 一种直驱的水平关节四轴机器人
WO2017165964A1 (en) * 2016-03-31 2017-10-05 Novarc Technologies Inc. Robotic welding system
CN107738259A (zh) * 2017-10-13 2018-02-27 中国科学院深圳先进技术研究院 外骨骼机器人关节
JP2018047183A (ja) * 2016-09-23 2018-03-29 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察装置、医療用観察システム、及び制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112012A (zh) * 2013-01-18 2013-05-22 杭州电子科技大学 具有柔顺特性的机器人关节驱动器
CN103192406A (zh) * 2013-04-08 2013-07-10 北京航空航天大学 一种可变刚度的机器人关节驱动器
WO2017165964A1 (en) * 2016-03-31 2017-10-05 Novarc Technologies Inc. Robotic welding system
JP2018047183A (ja) * 2016-09-23 2018-03-29 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察装置、医療用観察システム、及び制御方法
CN106426104A (zh) * 2016-11-10 2017-02-22 慧灵科技(深圳)有限公司 一种直驱的水平关节四轴机器人
CN107738259A (zh) * 2017-10-13 2018-02-27 中国科学院深圳先进技术研究院 外骨骼机器人关节

Similar Documents

Publication Publication Date Title
KR102603939B1 (ko) 제3자 기여를 가진 산업용 로봇의 최종 사용자 프로그래밍 확장 방법
WO2011135938A1 (ja) 製造作業機および製造作業システム
CN103208224B (zh) 一种六自由度中型串联教学机器人
JPS6061803A (ja) コンピユ−タ化した自己構成式ロボツト制御システム
WO2011135961A1 (ja) 統括制御装置および、統括制御方法
WO2021056337A1 (zh) 机器人关节驱动器及其布置方法、装置和机器人关节
CN101971110B (zh) 可编程系统中的自主控制
US6731089B2 (en) Flexible and compact motor control module based on the can communication network
WO2018129799A1 (zh) 舵机、舵机集成和舵机的控制方法
US20220072703A1 (en) Suspended robot recovery
WO1988008158A1 (en) Robot controller
RU2660332C2 (ru) Способ работы устройства автоматизации
EP4230361A1 (en) System control device, robot control method, terminal device, terminal control method, and robot control system
US10987799B2 (en) Workpiece processing system
JPH07266281A (ja) ロボットの交換装置
CN205466215U (zh) 一种驱动舞台机械臂的控制装置及基于该装置的舞台机械臂控制系统
US10120371B2 (en) Method and system for automatically sequencing hole drilling operations supporting one-up assembly
Minca et al. Cycle time optimization of a reversible A/DML served by a mobile robotic system
CN204736219U (zh) 一种新型工业机器人控制系统
JPH10329072A (ja) 複数部材の自動組立方法
CN213005317U (zh) 一种可快速扩展的多机器人控制驱动一体机
KR20070034149A (ko) 로봇용의 모듈화된 센서부
JPH03282703A (ja) 汎用ロボット制御装置
CN211164033U (zh) 便于拆卸的机器人底座
CN101763062B (zh) 地址转换系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947083

Country of ref document: EP

Kind code of ref document: A1