WO2021056187A1 - 一种测速信号的发射方法和接收方法 - Google Patents

一种测速信号的发射方法和接收方法 Download PDF

Info

Publication number
WO2021056187A1
WO2021056187A1 PCT/CN2019/107526 CN2019107526W WO2021056187A1 WO 2021056187 A1 WO2021056187 A1 WO 2021056187A1 CN 2019107526 W CN2019107526 W CN 2019107526W WO 2021056187 A1 WO2021056187 A1 WO 2021056187A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
transmission mode
antenna transmission
antennas
mode sub
Prior art date
Application number
PCT/CN2019/107526
Other languages
English (en)
French (fr)
Inventor
王犇
李德建
朱金台
劳大鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980052600.3A priority Critical patent/CN112585877B/zh
Priority to EP19946829.9A priority patent/EP4024083A4/en
Priority to PCT/CN2019/107526 priority patent/WO2021056187A1/zh
Publication of WO2021056187A1 publication Critical patent/WO2021056187A1/zh
Priority to US17/703,081 priority patent/US20220214442A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/92Radar or analogous systems specially adapted for specific applications for traffic control for velocity measurement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6912Spread spectrum techniques using chirp

Definitions

  • This application relates to speed measurement technology, and in particular to a method for transmitting and receiving a speed measurement signal.
  • Speed measurement includes the measurement of the movement speed of pedestrians, animals, motor vehicles, non-motor vehicles, trains, and aircraft. It is an important research field of intelligent driving. In real applications, it is usually used to transmit speed measurement signals and receive target reflections. Sensors (such as millimeter-wave radar, lidar) for speed measurement signals for speed measurement. Velocity measurement mainly uses the principle of Doppler effect: when the target approaches the sensor, the frequency of the reflected signal will be higher than the transmit frequency; conversely, when the target moves away from the sensor, the frequency of the reflected signal will be lower than the transmit frequency. In this way, the relative speed between the target and the sensor can be calculated by changing the value of the frequency.
  • Chirp signal is a common speed measurement signal whose frequency changes with time. The change may be an increase in frequency or a decrease in frequency; it may be a linear change or a non-linear change. If this signal is moved to the audio, it sounds similar to the chirp of a bird's song, so it is named a chirp signal.
  • the carrier wave such as cosine wave, triangle wave, sawtooth wave or pulse square wave
  • the time-domain waveform of a chirp signal is
  • the reflected signal delay of the n T- th chirp signal can be expressed as Where c is the speed of light.
  • n(t) is the noise signal.
  • the transmitted signal and the reflected signal are mixed, and the mixer output is expressed as
  • Equation 5 can be abbreviated as
  • Equation 7 Considering that the Doppler frequency is defined as Equation 7 is further simplified to
  • this part is a discrete sampling of a sinusoidal signal with frequency f d with the sampling period as the sweep period T c.
  • Time-division multiplexing (TDM) mode has the advantages of simple hardware implementation and low mutual coupling effect, and is an important research direction of radar.
  • the above-mentioned speed measurement method may be based on the SIMO (Single-Input Multiple-Output) mode or the MIMO (Multiple-Input Multiple-Output) mode. It can be seen from formula 9:
  • the transmitting antennas transmit chirp in turn, which can obtain a larger virtual aperture, which can greatly improve the angular resolution, but the sampling period is increased to M T T c , which will lead to the maximum speed measurement
  • the range is reduced by M T times, and the speed estimation is blurred.
  • the embodiment of the present invention proposes a method for transmitting and receiving a speed measurement signal.
  • a method for transmitting a speed measurement signal including: generating multiple chirp signals for measuring the moving speed of one or more moving targets; transmitting the multiple chirp signals in a time division multiplexing repetitive cycle using M antennas Chirped signal; wherein, the time division multiplexing repetition period includes a single-antenna transmission mode sub-period and L continuous multi-antenna transmission mode sub-periods; the single-antenna transmission mode sub-period includes N sweep cycles, the N chirp signals of N sweep cycles are transmitted by one of the M antennas, or transmitted by at least two of the M antennas at the same time and there is a time delay between the at least two antennas Each sub-period of the multi-antenna transmission mode includes M sweep periods, and the M chirp signals of the M sweep periods are respectively transmitted in order by the M antennas; M and N are positive integers greater than 1, L is a positive integer.
  • the time delay between the at least two antennas is a relatively small time delay, preferably an integer multiple of the fast sampling period Ts, which is used to offset the difference in signal transmission path length caused by the position difference of the antennas, so that at least Two antennas transmitting speed measurement signals at the same time can effectively be regarded as transmitting speed measurement signals by one antenna, avoiding the unwanted BF (Beamforming, beamforming) effect that causes FOV (Field of View, field of view) to be reduced, and obtaining SNR at the same time (Signal to Noise Ratio, signal-to-noise ratio) has been greatly improved.
  • the order includes a preset order or a randomly generated order, and the order of the L multi-antenna transmission mode sub-periods is the same.
  • the ratio of the N to the L is greater than a first threshold.
  • the values of the L, the M, and the N should be So that the ratio of the number of zero values and the number of non-zero values appearing in the weight function w does not exceed the second threshold, the weight function
  • c is a vector including N+L ⁇ M elements
  • c - represents the vector inversion of c
  • the N+L ⁇ M elements respectively correspond to the one starting from the one single-antenna transmission mode sub-period or the one starting from the L consecutive multi-antenna transmission mode sub-periods
  • the element corresponding to the transmitting antenna of the single-antenna transmission mode sub-period is 1, which is different from that except for the single-antenna transmission mode sub-period.
  • the single-antenna transmission mode sub-period and the multi-antenna transmission mode is zero, or an integer multiple of the sweep period.
  • M, N, L, K or the time interval between the sub-period of the single-antenna transmission mode and the sub-period of the multi-antenna transmission mode in the above four implementation manners are all for preserving a larger virtual aperture. At the same time, increase the maximum speed range as much as possible.
  • a device for transmitting speed measurement signals which includes: a measurement signal generation module for generating multiple chirp signals for measuring the moving speed of one or more moving targets; a transmitting module for using M
  • the antenna transmits the multiple chirped signals in a time-division multiplexing repetition period; wherein the time-division multiplexing repetition period includes a single-antenna transmission mode sub-period and L continuous multi-antenna transmission mode sub-periods; the single-antenna transmission
  • the mode sub-period includes N sweep periods of the chirp signal, and the chirp signal of the N sweep periods is transmitted by one of the M antennas, or by at least two of the M antennas.
  • each multi-antenna transmission mode sub-period includes M sweep periods of the chirp signal, and the chirp signals of the M sweep periods are respectively
  • the M antennas are transmitted in order; M and N are positive integers greater than 1, and L is a positive integer.
  • the time delay between the at least two antennas is a relatively small time delay, preferably an integer multiple of the fast sampling period Ts, which is used to offset the difference in signal transmission path length caused by the position difference of the antennas, so that at least Two antennas transmitting speed measurement signals at the same time can effectively be regarded as transmitting speed measurement signals by one antenna, avoiding the unwanted BF (Beamforming, beamforming) effect that causes FOV (Field of View, field of view) to be reduced, and obtaining SNR at the same time (Signal to Noise Ratio, signal-to-noise ratio) has been greatly improved.
  • the order includes a preset order or a randomly generated order, and the order of the L multi-antenna transmission mode sub-periods is the same.
  • the ratio of the N to the L is greater than a first threshold.
  • the values of the L, the M, and the N should be So that the ratio of the number of zero values and the number of non-zero values appearing in the weight function w does not exceed the second threshold, the weight function
  • c is a vector including N+L ⁇ M elements
  • c - represents the vector inversion of c
  • the N+L ⁇ M elements respectively correspond to the one starting from the one single-antenna transmission mode sub-period or the one starting from the L consecutive multi-antenna transmission mode sub-periods
  • the element corresponding to the transmitting antenna of the single-antenna transmission mode sub-period is 1, which is different from that except for the single-antenna transmission mode sub-period.
  • the single-antenna transmission mode sub-period and the multi-antenna transmission mode is zero, or an integer multiple of the frequency sweep period of the chirp signal.
  • M, N, L, K or the time interval between the sub-period of the single-antenna transmission mode and the sub-period of the multi-antenna transmission mode in the above four implementation manners are all for preserving a larger virtual aperture. At the same time, increase the maximum speed range as much as possible.
  • a method for receiving speed measurement signals including: using multiple antennas to receive received signals reflected by one or more moving targets, the received signals including one or more time-division multiplexed repetitive period chirp signals
  • Each time division multiplexing repetition period includes a single antenna transmission mode subperiod and L continuous multi-antenna transmission mode subperiods
  • each single antenna transmission mode subperiod includes N frequency sweep periods
  • each The multi-antenna transmission mode sub-period includes M sweep periods
  • the N chirp signals of the N sweep periods and the K-th sweep period of the M sweep periods are generated by the same antenna.
  • the frequency sweep period is used as the sampling period Sampling the chirp signal of one of the one or more time division multiplexing repetition cycles to obtain data corresponding to N+L sampling points, where the N+L sampling points are respectively in the Within the N sweep cycles of a single-antenna transmission mode sub-period and within the K-th sweep period of each of the multi-antenna transmission mode sub-periods in the L consecutive multi-antenna transmission mode sub-periods;
  • the data corresponding to the N+L sampling points corresponding to each of the multiple antennas is used to construct a target vector;
  • the multiple target vectors of the multiple antennas are used to construct a target matrix X;
  • the covariance of the target matrix X is calculated Matrix R; extract the multiple elements in the order of the exponential coefficients of the multiple elements in the matrix R, and use the multiple elements to
  • the calculating the speed spectrum of the movement speed of the target according to the vector r includes: adopting fast speed according to the vector r Fourier transform (FFT), digital beamforming (DBF) or multiple signal classification (MUSIC) algorithms calculate the velocity spectrum of the movement velocity of the one or more targets.
  • FFT vector r Fourier transform
  • DBF digital beamforming
  • MUSIC multiple signal classification
  • the use of the multiple elements to form a vector r includes: At least two of the elements correspond to the same exponential coefficient, then the average value of the at least two elements is calculated as the element for composing the vector r, or one element of the at least two elements is selected as the element For the elements that make up the vector r.
  • a receiving device for speed measurement signals including: a receiving module, configured to use multiple antennas to receive received signals reflected by one or more moving targets, and the received signals include one or more time division multiplexing repeats A periodic chirp signal, each of the time-division multiplexing repetition periods includes a single-antenna transmission mode sub-period and L continuous multi-antenna transmission mode sub-periods, and each of the single-antenna transmission mode sub-periods includes N frequency sweeps Each of the multi-antenna transmission mode sub-periods includes M sweep periods, the N chirp signals of the N sweep periods and the K-th sweep period of the M sweep periods The signal is transmitted by the same antenna, where L, M, N, and K are all positive integers, and M and N are both greater than 1; the data acquisition module is used for the receiving of each antenna of the multiple antennas Signal, using the sweep period as the sampling period to sample the chirp signal of one of the one or more
  • the target vector construction module is used to construct the target vector with the data corresponding to the N+L sampling points corresponding to each antenna in the plurality of antennas; the target matrix construction module is used to use The multiple target vectors of the multiple antennas are used to construct a target matrix X; a covariance calculation module is used to calculate the covariance matrix R of the target matrix X; a vector construction module is used to calculate the multiple elements in the matrix R The exponential coefficients of, extract the multiple elements in order, and use the multiple elements to form a vector r; a velocity spectrum calculation module is used to calculate the velocity of the one or more targets according to the vector r Speed spectrum.
  • the speed measurement signal receiving device with the above structure can increase the maximum speed measurement range and reduce the entire speed measurement signal duration as much as possible while retaining a larger virtual aperture.
  • the calculating the speed spectrum of the movement speed of the target according to the vector r includes: adopting fast speed according to the vector r Fourier transform (FFT), digital beamforming (DBF) or multiple signal classification (MUSIC) algorithms calculate the velocity spectrum of the movement velocity of the one or more targets.
  • FFT vector r Fourier transform
  • DBF digital beamforming
  • MUSIC multiple signal classification
  • the use of the multiple elements to form a vector r includes: At least two of the elements correspond to the same exponential coefficient, then the average value of the at least two elements is calculated as the element for composing the vector r, or one element of the at least two elements is selected as the element For the elements that make up the vector r.
  • a device for transmitting speed measurement signals including a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program instructions to execute the first aspect or any one of the first aspects above.
  • a method of transmitting speed measurement signals including a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program instructions to execute the first aspect or any one of the first aspects above.
  • a device for receiving speed measurement signals including a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program instructions to execute the third aspect or any one of the above third aspects.
  • a method for receiving speed measurement signals including a memory and a processor, the memory stores computer program instructions, and the processor runs the computer program instructions to execute the third aspect or any one of the above third aspects.
  • a computer storage medium including computer instructions, which when the computer instructions are executed by a processor, cause the transmitting device to execute the speed measurement signal of the first aspect or any one of the implementations of the first aspect above Method of launch.
  • a computer storage medium including computer instructions, which when the computer instructions are executed by a processor, cause the receiving device to execute the speed measurement signal of the third aspect or any one of the above third aspects The receiving method.
  • a computer program product which when the computer program product runs on a processor, causes the transmitting device to execute the method for transmitting the speed measurement signal of the first aspect or any one of the implementations of the first aspect above .
  • a computer program product which when the computer program product runs on a processor, causes the receiving device to execute the speed measurement signal receiving method of the third aspect or any one of the implementation manners of the third aspect above .
  • a vehicle including the M antennas and the second aspect, any one of the implementation manners of the second aspect above, or the transmitting device of the fifth aspect.
  • a vehicle including the multiple antennas and the fourth aspect, any one of the implementation manners of the fourth aspect above, or the receiving device of the sixth aspect.
  • a radar including the M antennas and the second aspect, any one of the implementation manners of the second aspect above, or the transmitting device of the fifth aspect.
  • a radar including the multiple antennas and the fourth aspect, any one of the implementation manners of the fourth aspect above, or the receiving device of the sixth aspect.
  • Fig. 1 is a schematic diagram of the frequency of a plurality of continuous chirp signals in the form of a frequency-modulated continuous wave used for speed measurement in the prior art changing with time.
  • Fig. 2 is a schematic diagram of a typical application scenario for speed measurement in various embodiments of the present invention.
  • Fig. 3 is a flowchart of a method for transmitting a speed measurement signal provided in the first embodiment and the second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of M antennas transmitting multiple chirped signals in a time-division multiplexing repetitive period in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of M antennas transmitting multiple chirped signals in a time-division multiplexing repetitive period in the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the time delay of multiple antennas simultaneously transmitting multiple chirped signals in a sub-period of a single antenna transmission mode according to the second embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for receiving a speed measurement signal provided by Embodiment 3 of the present invention.
  • Fig. 8 is a schematic diagram of a data sampling manner in the third embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the phase relationship of multiple chirp signals received by each antenna in Embodiment 3 of the present invention.
  • Fig. 10 is a schematic diagram for describing an exemplary transmit antenna multiplexing mode of the third embodiment of the present invention.
  • Fig. 11 is an exemplary simulation effect diagram of the velocity spectrum obtained based on the third embodiment of the present invention.
  • Fig. 12 is an exemplary RD-map based on actual speed measurement obtained in the third embodiment of the present invention.
  • Fig. 13 is a structural block diagram of a vehicle/radar including the device for transmitting speed measurement signals provided by the fourth embodiment of the present invention.
  • Fig. 14 is a structural block diagram of a vehicle/radar including the speed measurement signal transmitting device provided by the fifth embodiment of the present invention.
  • Fig. 15 is a structural block diagram of a vehicle/radar including the speed measurement signal receiving device provided by the sixth embodiment of the present invention.
  • Fig. 16 is a structural block diagram of a vehicle/radar including the speed measurement signal receiving device provided by the seventh embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a typical application scenario for speed measurement in various embodiments of the present invention.
  • the figure shows an outdoor road traffic speed measurement scenario.
  • the speed measurement equipment transmits speed measurement signals to one or more moving targets, such as vehicles on the road or walking pedestrians.
  • the one or more moving targets reflect the speed measurement signals, and reflect back to the speed measurement based on the Doppler effect principle.
  • the speed measurement signal of the device is subjected to digital signal processing to obtain the moving speed of the one or more moving targets.
  • the various embodiments of the present invention can also be used in indoor obstacle avoidance, rail transit, aerial flight and road traffic scenes of various road forms.
  • the moving targets include but are not limited to pedestrians, animals, Motor vehicles, non-motor vehicles, trains, subways or aircraft.
  • the first embodiment of the present invention provides a method for transmitting a speed measurement signal, as shown in FIG. 3, including:
  • Step 301 Generate multiple chirp signals for measuring the movement speed of one or more moving targets
  • Step 302 Use M antennas to transmit the multiple chirped signals in a time-division multiplexing repetitive period.
  • each time-division multiplexing repetition period includes a single-antenna transmission mode sub-period and L continuous multi-antenna transmission mode sub-periods (each time-division multiplexing repetition period can be represented by a single-antenna transmission mode sub-period as shown in Figure 4.
  • the start of the period may also start with L continuous multi-antenna transmission mode sub-periods); the single-antenna transmission mode sub-period includes N sweep periods, and the N chirp signals of the N sweep periods are generated by the One of the M antennas (the chirp signal transmitted by the antenna is filled with gray in Figure 4) is transmitted; a transmitting antenna used in the single-antenna transmission mode sub-period must also be used in each multi-antenna transmission mode sub-period Each sub-period of the multi-antenna transmission mode includes M frequency sweep periods, and the M chirp signals of the M frequency sweep periods are respectively transmitted by the M antennas in order, and the order includes preset And the sequence of the L multi-antenna transmission mode sub-periods is the same, the transmitting antenna of the single-antenna transmission mode sub-period in FIG. 4 always transmits the multi-antenna transmission mode The K+1th chirp signal of the sub-period
  • the four parameters of M, N, L, and K can be optimally set, or the time interval between the single-antenna transmission mode sub-period and the multi-antenna transmission mode sub-period can be set rationally, so as to achieve greater retention. At the same time as the virtual aperture, the maximum speed range is increased as much as possible.
  • the first embodiment includes the following preferred setting methods:
  • the ratio of the N to the L is greater than a first threshold.
  • the value of the first threshold should be such that the target part on the Doppler profile does not have obvious target aliasing caused by the under-sampling of the slow Doppler sampling part.
  • the values of L, M, and N should be such that the ratio of the number of zero values and the number of non-zero values appearing in the weight function w does not exceed the second threshold, and the weight function
  • c is a vector including N+L ⁇ M elements
  • c - represents the vector inversion of c
  • the N+L ⁇ M elements respectively correspond to the N+L ⁇ M chirped signal transmitting antennas in the time division multiplexing repetition period
  • the single antenna transmitting mode The element corresponding to the transmitting antenna of the sub-period is 1, and the element corresponding to the other M-1 antennas except the transmitting antenna of the single-antenna transmission mode sub-period is 0.
  • the time interval between the single-antenna transmission mode sub-period and the multi-antenna transmission mode sub-period is zero, or an integer multiple of the frequency sweep period.
  • the second embodiment of the present invention provides another method for transmitting a speed measurement signal.
  • the steps involved are also shown in FIG. 3.
  • the difference between the second embodiment and the first embodiment is: the single antenna transmission mode sub-period in the second embodiment
  • the N chirp signals of the N sweep cycles within are simultaneously transmitted by at least two of the M antennas.
  • Fig. 5 is an example diagram of M antennas transmitting multiple chirped signals in a time-division multiplexing repetitive period in the second embodiment.
  • the four antennas simultaneously transmit four chirped signals.
  • the M antennas sequentially transmit M chirp signals, and the frequency sweep period of the chirp signals is T c .
  • the four antennas are marked as T0, T1, T2, and T3, respectively.
  • the time delays of antennas T1, T2, and T3 are ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • the value of ⁇ is an integer multiple of the fast sampling interval Ts.
  • the third embodiment of the present invention provides a method for receiving a speed measurement signal, as shown in FIG. 7, including:
  • Step 701 Use multiple antennas to receive received signals reflected by one or more moving targets, where the received signals include one or more time-division multiplexing repetitive periods of chirped signals, and each of the time-division multiplexing repetition periods includes one Single-antenna transmission mode sub-periods and L continuous multi-antenna transmission mode sub-periods, each of the single-antenna transmission mode sub-periods includes N frequency sweep periods, and each of the multi-antenna transmission mode sub-periods includes M frequency sweeps Period, the N chirp signals of the N sweep periods and the chirp signals of the K-th sweep period of the M sweep periods are transmitted by the same antenna, where L, M, N, and K are all Positive integer, and both M and N are greater than 1.
  • Step 702 Regarding the received signal received by each of the multiple antennas, use the sweep period as a sampling period to perform one time division multiplexing repetition period of the one or more time division multiplexing repetition periods Sampling of the chirped signal to obtain data corresponding to N+L sampling points.
  • the N+L sampling points are within the N sweep periods of the single-antenna transmission mode sub-period and the L continuous Within the K-th sweep period of each of the multi-antenna transmission mode sub-periods in the multi-antenna transmission mode sub-period.
  • the specific data sampling method can be shown in Figure 8, where: in the fast time direction 1 a fast sampling period T s is used to sample a chirp signal, including N s sampling points; in the slow time direction 2 are arranged in sequence All the chirp signals transmitted by the transmitting antenna in the sub-period of the single-antenna transmission mode in a time-division multiplexing repetition period including a single-antenna transmission mode sub-period and multiple consecutive multi-antenna transmission mode sub-periods are equivalent to slow
  • the sampling period in the time direction is the frequency sweep period T c ; the sampling signals on the receiving antennas are arranged in sequence in the receiving antenna arrangement direction 3, and the receiving antennas can be arranged in sequence or randomly according to the antenna sequence.
  • the two-dimensional sampling point of the gray grid pattern is sampled during the speed measurement, which is equivalent to "for the received signal received by each of the multiple antennas, the frequency sweep period is taken as the sampling period.
  • a time division multiplexing repetition period includes two multi-antenna transmission mode sub-periods and one single-antenna transmission mode sub-period.
  • a time division multiplexing repetition period includes two multi-antenna transmission mode sub-periods and one single-antenna transmission mode sub-period.
  • 4 transmissions are used to send 4 chirp signals in turn.
  • the single-antenna transmission mode sub-period includes 4 chirp signals, which are located at the end of the entire time-division multiplexing repetition period.
  • One time-division multiplexing repetition can be seen There are 6 chirp signals transmitted by the transmitting antenna of the single antenna transmission mode sub-period in the cycle, that is, the measurement signal shown in FIG. 10 received by each antenna in step 702 can obtain data of 6 sampling points.
  • the measured signal under the multiplexing mode of the transmitting antenna is reflected by the k-th moving target.
  • the phase vectors of the six chirped signals sampled at the receiving end are
  • the number before the sweep period Tc in Equation 10 is the exponential coefficient, and the exponential coefficient of the above-mentioned phase vector is [0, 4, 7, 8, 9, 10].
  • Step 703 Construct a target vector with data corresponding to the N+L sampling points corresponding to each antenna in the plurality of antennas.
  • the received signal of the nth receiving antenna can be expressed as
  • A [a 1 ,..., a K ], n n is noise, ⁇ k is the signal amplitude, and r k is the distance of the k-th target.
  • Step 704 using the multiple target vectors of the multiple antennas to construct a target matrix X.
  • the matrix composed of the received data of M R receiving antennas can be recorded as:
  • Step 705 Calculate the covariance matrix R of the target matrix X.
  • Step 706 Extract the multiple elements in the order of the exponential coefficients of the multiple elements in the matrix R, and use the multiple elements to form a vector r. If at least two elements in the plurality of elements correspond to the same exponential coefficient, the average value of the at least two elements is calculated as the element used to compose the vector r, or one element of the at least two elements is selected as As an element used to compose the vector r.
  • the elements of matrix R select 21 elements from the elements of matrix R with exponent coefficients ranging from -10 to 10, and place them in order from small to large or from large to small to form a vector r with a length of 21.
  • the exponential coefficient in the above table is 4
  • the element in the vector r corresponding to the exponent coefficient of 4 can be element (2,1) and element (4,2)
  • Any one of the elements may also be the average value of the element (2, 1) and the element (4, 2).
  • Step 707 Calculate a velocity spectrum about the movement velocity of the one or more targets according to the vector r.
  • FFT Fast Fourier Transform
  • DBF Digital Beam Forming
  • MUSIC Multiple Signal Classfication
  • the maximum speed estimation range obtained in this embodiment is the same as that in the SIMO mode, that is, the maximum speed measurement range is restored, and the requirement for the length of the sub-period of the single-antenna transmission mode is low, and the duration of the time-division multiplexing repetition period is relatively small. .
  • Figure 11 is a simulation effect diagram of the velocity spectrum obtained based on the speed measurement signal receiving method provided in the third embodiment of the present invention, where the horizontal axis represents the movement speed, and the vertical axis represents the velocity spectrum at the corresponding movement speed. It can be seen that- Two spectral peaks appeared at the two velocities of 10m/s and 2m/s, indicating that there are two moving targets with moving velocities of -10m/s and 2m/s, respectively.
  • the speed measurement signal receiving method described in the third embodiment of the present invention can be further combined with distance measurement to obtain an RD-map that reflects the speed and distance of the moving target at the same time.
  • the operation method is as follows:
  • step 702 in the third embodiment first perform fast sampling with a fast sampling period T s in the fast time direction 1 as shown in FIG. 8 to obtain N s fast sampling points, and perform such operations on the N s fast sampling points.
  • FFT time-domain to frequency-domain conversion to obtain N s fast-sampling frequency-domain data that is, in this step, the data in the fast-time direction 1 in Fig. 8 are sequentially N s fast-sampling frequency-domain data;
  • the data corresponding to the N+L sampling points in step 702 is the fast-sampling frequency-domain data corresponding to the N+L sampling points.
  • N+L slow sampling points are set to take the From the 1st to the N sth of the N s fast-sampling frequency-domain data, that is, steps 703 to 707 are sequentially executed N s times to obtain the respective velocity spectra corresponding to the N s fast-sampling frequency-domain data;
  • the distances of one or more targets can be calculated based on the N s fast sampling frequency domain data
  • further combining the respective speed spectra of the N s fast sampling frequency domain data can form an RD that can comprehensively reflect the distance-speed information.
  • -map see Figure 12, where the bright part represents the measured one or more moving targets, the horizontal axis is the Range axis, which is used for the distance of the one or more moving targets, and the vertical axis is the Doppler axis, which is used to indicate the distance of the one or more moving targets. State the movement speed of one or more moving targets.
  • the RD-map can be obtained by this method only when the speed measurement signal is a chirp signal whose frequency changes linearly with time.
  • the fourth embodiment of the present invention provides a device for transmitting speed measurement signals.
  • the device includes the following modules:
  • the measurement signal generation module 1301 is used to generate multiple chirp signals for measuring the movement speed of one or more moving targets;
  • the transmitting module 1302 is configured to use M antennas to transmit the multiple chirped signals in a time-division multiplexing repetitive period.
  • the time-division multiplexing repetition period includes a single-antenna transmission mode sub-period and L continuous multi-antenna transmission mode sub-periods;
  • the single-antenna transmission mode sub-period includes N frequency sweep periods of the chirp signal,
  • the chirp signals of the N sweep cycles are transmitted by one of the M antennas, or by at least two of the M antennas at the same time and there is a time delay between the at least two antennas
  • Each sub-period of the multi-antenna transmission mode includes M sweep periods of the chirp signal, and the chirp signals of the M sweep periods are respectively transmitted in order by the M antennas;
  • the transmitting antenna of the subperiod always transmits the K+1th chirp signal of the subperiod of the multi-antenna transmission mode;
  • M and N are integers greater than 1, L is a positive integer, and K is an integer greater than or equal to 0.
  • the time delay between the at least two antennas is a relatively small time delay, preferably an integer multiple of the fast sampling period Ts, which is used to offset the difference in signal transmission path length caused by the position difference of the antennas, so that at least two Antennas transmitting speed measurement signals at the same time can effectively be regarded as transmitting speed measurement signals by one antenna, avoiding the unwanted BF (Beamforming, beamforming) effect that causes FOV (Field of View, field of view) to decrease, and obtaining SNR (Signal) to Noise Ratio, signal-to-noise ratio) has been greatly improved.
  • Ts fast sampling period
  • the order includes a preset order or a randomly generated order, and the order of the L multi-antenna transmission mode sub-periods is the same.
  • the four parameters of M, N, L, and K can be optimally set, or the time interval between the single-antenna transmission mode sub-period and the multi-antenna transmission mode sub-period can be set rationally, so as to achieve greater retention. At the same time as the virtual aperture, the maximum speed range is increased as much as possible.
  • the fourth embodiment includes the following preferred setting methods:
  • the ratio of the N to the L is greater than a first threshold.
  • the value of the first threshold should be such that the target part on the Doppler profile does not have obvious target aliasing caused by the under-sampling of the slow Doppler sampling part.
  • the values of L, M, and N should be such that the ratio of the number of zero values and the number of non-zero values appearing in the weight function w does not exceed the second threshold, and the weight function
  • c is a vector including N+L ⁇ M elements
  • c - represents the vector inversion of c
  • the N+L ⁇ M elements respectively correspond to the N+L ⁇ M chirped signal transmitting antennas in the time division multiplexing repetition period
  • the single antenna transmitting mode The element corresponding to the transmitting antenna of the sub-period is 1, and the element corresponding to the other M-1 antennas except the transmitting antenna of the single-antenna transmission mode sub-period is 0.
  • the time interval between the single-antenna transmission mode sub-period and the multi-antenna transmission mode sub-period is zero, or an integer multiple of the frequency sweep period.
  • the fourth embodiment of the present invention can increase the maximum speed measurement range and reduce the entire speed measurement signal duration as much as possible while retaining a larger virtual aperture.
  • the device for transmitting speed measurement signals provided in the fourth embodiment of the present invention can be used in a vehicle or a radar.
  • the vehicle or radar further includes a plurality of transmitting antennas 1303, and the transmitting module 1302 in the transmitting device 13 uses the multiple The transmitting antenna 1303 transmits the multiple chirped signals in a repetitive period of time division multiplexing.
  • the radar includes, but is not limited to, millimeter wave radar, lidar and ultrasonic radar.
  • the fifth embodiment of the present invention provides a transmission device for speed measurement signals. See the transmission device 14 in FIG. 14, which includes a memory 1401 and a processor 1402.
  • the memory 1401 stores computer program instructions
  • the processor 1402 runs the computer program.
  • the instruction is to execute the speed measurement signal transmission method described in Embodiment 1 or Embodiment 2 shown in FIG. 3.
  • the processor 1402 includes, but is not limited to, various types of CPUs, DSPs, microcontrollers, microprocessors, or artificial intelligence processors.
  • the transmitting device of the speed measurement signal provided in the fifth embodiment of the present invention can be used in a vehicle or a radar.
  • the vehicle or the radar further includes a plurality of transmitting antennas 1403 for transmitting from the transmitting device 14 in a time-division multiplexing repetitive cycle.
  • the radar includes, but is not limited to, millimeter wave radar, lidar and ultrasonic radar.
  • the sixth embodiment of the present invention provides a receiving device for speed measurement signals.
  • the receiving device 15 includes the following modules:
  • the receiving module 1501 is configured to use multiple antennas to receive received signals reflected by one or more moving targets.
  • the received signals include one or more time-division multiplexed repetitive periods of chirped signals, and each of the time-division multiplexed repetitions
  • the period includes one single-antenna transmission mode sub-period and L continuous multi-antenna transmission mode sub-periods, each of the single-antenna transmission mode sub-periods includes N sweep periods, and each of the multi-antenna transmission mode sub-periods includes M
  • the N chirp signals of the N scan cycles and the chirp signals of the K-th scan cycle of the M scan cycles are transmitted by the same antenna, where L, M, N and K is a positive integer, and both M and N are greater than 1;
  • the data acquisition module 1502 is configured to, for the received signal received by each antenna of the multiple antennas, use the sweep period as a sampling period to perform a time division multiplexing cycle for one of the one or more time division multiplexing repetition cycles.
  • the chirp signal of the repetition period is multiplexed for sampling to obtain the data corresponding to N+L sampling points.
  • the N+L sampling points are respectively within the N sweep cycles of the single-antenna transmission mode sub-period and all Within the K-th sweep period of each of the L consecutive multi-antenna transmission mode sub-periods;
  • a target vector construction module 1503 configured to construct a target vector with data corresponding to the N+L sampling points corresponding to each antenna in the plurality of antennas;
  • the target matrix construction module 1504 is configured to use multiple target vectors of the multiple antennas to construct a target matrix X;
  • the covariance calculation module 1505 is used to calculate the covariance matrix R of the target matrix X;
  • the vector construction module 1506 is configured to sequentially extract the multiple elements in the order of the exponential coefficients of the multiple elements in the matrix R, and use the multiple elements to form a vector r;
  • the velocity spectrum calculation module 1507 is configured to calculate a velocity spectrum about the movement velocity of the one or more targets according to the vector r.
  • the speed measurement signal receiving device with the above structure can increase the maximum speed measurement range and reduce the entire speed measurement signal duration as much as possible while retaining a larger virtual aperture.
  • the calculation of the velocity spectrum of the movement velocity of the target according to the vector r includes: using fast Fourier transform (FFT), digital beamforming (DBF) or multiple signal classification (MUSIC) according to the vector r
  • FFT fast Fourier transform
  • DBF digital beamforming
  • MUSIC multiple signal classification
  • the use of the plurality of elements to form a vector r includes: if at least two elements of the plurality of elements correspond to the same exponent coefficient, calculating the average value of the at least two elements as a value for composing the vector r Element, or one of the at least two elements is selected as an element for composing the vector r.
  • the speed measurement signal receiving device provided in the sixth embodiment of the present invention can be used in a vehicle or a radar.
  • the vehicle or the radar further includes multiple receiving antennas 1508.
  • the receiving module 1501 in the receiving device 15 uses multiple receiving antennas.
  • 1508 receives the received signal reflected by one or more moving targets.
  • the radar includes, but is not limited to, millimeter wave radar, lidar and ultrasonic radar. Only one or more of the modules in the fourth and sixth embodiments described above can be implemented in software, hardware, firmware or a combination thereof.
  • the software or firmware includes but is not limited to computer program instructions or codes, and can be executed by a hardware processor.
  • the hardware includes, but is not limited to, various integrated circuits, such as a central processing unit (CPU), a digital signal processor (DSP), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the seventh embodiment of the present invention provides a receiving device for speed measurement signals.
  • a receiving device 16 in FIG. 16 including a memory 1601 and a processor 1602.
  • the memory 1601 stores computer program instructions, and the processor 1602 runs the computer program.
  • the instruction is to execute the speed measurement signal receiving method described in the third embodiment shown in FIG. 7.
  • the processor 1602 includes, but is not limited to, various types of CPUs, DSPs, microcontrollers, microprocessors, or artificial intelligence processors.
  • the speed measurement signal receiving device provided in the seventh embodiment of the present invention can be used in a vehicle or a radar.
  • the vehicle or the radar also includes a plurality of receiving antennas 1603, which are used to receive the signals reflected by one or more moving targets. Signal and provide the received signal to the receiving device 16.
  • the radar includes, but is not limited to, millimeter wave radar, lidar and ultrasonic radar.
  • the above-mentioned embodiments of the present invention can be used not only for intelligent driving tools with speed measurement requirements such as motor vehicles, non-motor vehicles, trains or aircrafts, but also for devices with speed measurement functions such as radars or sensors.
  • Application scenarios include but are not limited to assisted driving And driverless.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed device and method can be implemented in other ways within the scope of this application.
  • the above-described embodiments are only illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. .
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the described devices and methods and schematic diagrams of different embodiments can be combined or integrated with other systems, modules, technologies, or methods without departing from the scope of the present application.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electronic, mechanical or other forms.

Abstract

提供了一种测速信号的发射方法和接收方法,可应用于包括自动驾驶和辅助驾驶的智能驾驶系统,能够在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。发射方法包括:生成用于测量一个或多个运动目标的运动速度的多个啁啾信号(301);利用M个天线以时分复用重复周期发射多个啁啾信号(302);其中,时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期。

Description

一种测速信号的发射方法和接收方法 技术领域
本申请涉及速度测量技术,尤其涉及一种测速信号的发射方法和接收方法。
背景技术
速度测量包括对行人、动物、机动车、非机动车、火车和飞行器在内的目标的运动速度进行测量,是智能驾驶的重要研究领域,现实应用中通常采用能够发射测速信号并接收目标反射回的测速信号的传感器(例如毫米波雷达、激光雷达)进行测速。测速主要是利用多普勒效应原理:当目标向传感器靠近时,反射信号频率将高于发射频率;反之,当目标远离传感器而去时,反射信号频率将低于发射频率。如此即可借由频率的改变数值,计算出目标与传感器的相对速度。
啁啾信号(Chirp)是一种常见的测速信号,其频率随时间而改变。所述改变既可以是频率增加,也可以是频率减少;既可以是线性改变,也可以是非线性改变。这种信号如果被搬移到音频上则听起来类似鸟鸣的啾声,因此被命名为啁啾信号。
调频连续波(Frequency Modulated Continuous Waveform,FMWC)是一种常见的啁啾信号的波形(其频率随时间变化情况参见图1),可以通过使用时间函数f(t)=f 0+γt(公式1)调制载波(例如余弦波、三角波、锯齿波或者脉冲方波)得到,其中f 0为初始频率,γ为调频斜率,t∈[0,T c],T c为扫频周期。下面以图1所示的调频连续波形式的多个连续的啁啾信号为例,说明测速原理:
假设FMWC的载波为余弦信号,则一个啁啾信号的时域波形为
Figure PCTCN2019107526-appb-000001
假设有一个初始距离为r 0速度为v的目标,第n T个啁啾信号的反射信号时延可以表示为
Figure PCTCN2019107526-appb-000002
其中,c是光速。
对应的接收信号可以表示为
Figure PCTCN2019107526-appb-000003
其中n(t)为噪声信号。
将发射信号和反射信号进行混频,混频器输出表示为
Figure PCTCN2019107526-appb-000004
其中,
Figure PCTCN2019107526-appb-000005
值非常小,因此可以将该项忽略,公式5可简写为
Figure PCTCN2019107526-appb-000006
其中,
Figure PCTCN2019107526-appb-000007
是常数项,
Figure PCTCN2019107526-appb-000008
为交叉项也可省略掉。混频器输出进一步表示为
Figure PCTCN2019107526-appb-000009
考虑到多普勒频率定义为
Figure PCTCN2019107526-appb-000010
公式7进一步化简为
Figure PCTCN2019107526-appb-000011
仅考虑速度项,这部分是一个以采样周期为扫频周期T c的对一个频率为f d的正弦信号离散采样。考虑奈奎斯特采样定理,要求
Figure PCTCN2019107526-appb-000012
因此在采样周期确定为T c之后,最大的测速范围就确定,最大速度估计值为
Figure PCTCN2019107526-appb-000013
时分多路复用(Time-division multiplexing,TDM)模式具有硬件实现简单、互耦效应低等优点,是雷达的一个重要研究方向。上述测速方法可以基于SIMO(Single-Input Multiple-Output,单入多出)模式或者MIMO(Multiple-Input Multiple-Output,多入多出)模式。从公式9可以看到:
在SIMO模式下,仅有单个发射天线发射啁啾信号,采样周期T c是单倍的扫频周期,速度估计范围是最大的,但是SIMO模式下无法获得额外的虚拟阵列孔径,导致角度分辨率降低;
在MIMO模式下,假设有M T个发射天线,发射天线轮流发射chirp,能够获得较大的虚拟孔径,可大幅提高角度分辨率,但是采样周期增大为M TT c,这会导致最大测速范围下降M T倍,出现速度估计模糊。
亟需一种能够在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间的较易实现的方案。
发明内容
为了克服现有技术中存在的上述问题,本发明实施例提出一种测速信号的发射方法和接收方法。
第一方面,提供一种测速信号的发射方法,包括:生成用于测量一个或多个运动目标的运动速度的多个啁啾信号;利用M个天线以时分复用重复周期发射所述多个啁啾信号;其中,所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期;所述单天线发射模式子周期包括N个扫频周期,所述N个扫频周期的N个啁啾信号由所述M个天线中的一个天线发射,或者由所述M个天线中的至少两个天线同时发射且所述至少两个天线之间存在时延;每个多天线发射模式子周期包括M个扫频周期,所述M个扫频周期的M个啁啾信号分别由所述M个天线按照次序发射;M和N为大于1的正整数,L为正整数。
可选地,所述至少两个天线之间存在的时延是较微小的时延,优选为快采样周期Ts的整数倍,用于抵消天线的位置差异造成的信号传输路径长度差异,使至少两个天线同时发射测速信号从效果上能够被视为由一个天线发射测速信号,避免不想要的BF(Beamforming,波束赋形)效应导致FOV(Field of View,视场)减小,同时获得SNR(Signal to Noise Ratio,信噪比)的大幅提升。所述次序包括预设的次序或者随机生成的次序,并且所述L个多天线发射模式子周期的所述次序是相同的。通过上述SIMO与MIMO混合的发射方法,可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信 号持续时间。
根据第一方面,在所述测速信号的发射方法的第一种可能的实现方式中,所述N与所述L的比值大于第一阈值。
根据第一方面或第一方面的第一种可能的实现方式,在所述测速信号的发射方法的第二种可能的实现方式中,所述L、所述M和所述N的取值应使权重函数w中出现的0值个数与非0值个数的比值不超过第二阈值,所述权重函数
Figure PCTCN2019107526-appb-000014
其中c是包括N+L×M个元素的矢量,c -表示c的矢量反转,
Figure PCTCN2019107526-appb-000015
表示矢量的线性卷积运算,所述N+L×M个元素分别对应于以所述一个单天线发射模式子周期开始的或者以所述L个连续的多天线发射模式子周期开始的一个所述时分复用重复周期内的N+L×M个啁啾信号的发射天线,与所述单天线发射模式子周期的发射天线对应的所述元素为1,与除了所述单天线发射模式子周期的发射天线之外的其他M-1个天线对应的所述元素为0。
根据第一方面,或以上第一方面的任意一种实现方式,在所述测速信号的发射方法的第三种可能的实现方式中,所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔为零,或者为扫频周期的整数倍。
根据第一方面,或以上第一方面的任意一种实现方式,在所述测速信号的发射方法的第四种可能的实现方式中,所述单天线发射模式子周期的发射天线发射所述多天线发射模式子周期的第K+1个啁啾信号,其中K为大于或等于0的整数,所述M、N和K的关系满足:如果K=0,则N≥M-1;如果0<K≤M,则N≥M;如果K>M,则N≥K+1。
上述四种实现方式中关于M、N、L、K或者所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔的限定,均是为了在保留较大的虚拟孔径的同时,尽可能提高最大测速范围。
第二方面,提供一种测速信号的发射装置,包括:测量信号生成模块,用于生成用于测量一个或多个运动目标的运动速度的多个啁啾信号;发射模块,用于利用M个天线以时分复用重复周期发射所述多个啁啾信号;其中,所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期;所述单天线发射模式子周期包括所述啁啾信号的N个扫频周期,所述N个扫频周期的啁啾信号由所述M个天线中的一个天线发射,或者由所述M个天线中的至少两个天线同时发射且所述至少两个天线之间存在时延;每个多天线发射模式子周期包括所述啁啾信号的M个扫频周期,所述M个扫频周期的啁啾信号分别由所述M个天线按照次序发射;M和N为大于1的正整数,L为正整数。
可选地,所述至少两个天线之间存在的时延是较微小的时延,优选为快采样周期Ts的整数倍,用于抵消天线的位置差异造成的信号传输路径长度差异,使至少两个天线同时发射测速信号从效果上能够被视为由一个天线发射测速信号,避免不想要的BF(Beamforming,波束赋形)效应导致FOV(Field of View,视场)减小,同时获得SNR(Signal to Noise Ratio,信噪比)的大幅提升。所述次序包括预设的次序或者随机生成的次序,并且所述L个多天线发射模式子周期的所述次序是相同的。通过上述SIMO与MIMO混合的发射装置,可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。
根据第二方面,在所述测速信号的发射装置的第一种可能的实现方式中,所述N与所 述L的比值大于第一阈值。
根据第二方面或第二方面的第一种可能的实现方式,在所述测速信号的发射装置的第二种可能的实现方式中,所述L、所述M和所述N的取值应使权重函数w中出现的0值个数与非0值个数的比值不超过第二阈值,所述权重函数
Figure PCTCN2019107526-appb-000016
其中c是包括N+L×M个元素的矢量,c -表示c的矢量反转,
Figure PCTCN2019107526-appb-000017
表示矢量的线性卷积运算,所述N+L×M个元素分别对应于以所述一个单天线发射模式子周期开始的或者以所述L个连续的多天线发射模式子周期开始的一个所述时分复用重复周期内的N+L×M个啁啾信号的发射天线,与所述单天线发射模式子周期的发射天线对应的所述元素为1,与除了所述单天线发射模式子周期的发射天线之外的其他M-1个天线对应的所述元素为0。
根据第二方面,或以上第二方面的任意一种实现方式,在所述测速信号的发射装置的第三种可能的实现方式中,所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔为零,或者为所述啁啾信号的扫频周期的整数倍。
根据第二方面,或以上第二方面的任意一种实现方式,在所述测速信号的发射装置的第四种可能的实现方式中,所述单天线发射模式子周期的发射天线发射所述多天线发射模式子周期的第K+1个啁啾信号,其中K为大于或等于0的整数,所述M、N和K的关系满足:如果K=0,则N≥M-1;如果0<K≤M,则N≥M;如果K>M,则N≥K+1。
上述四种实现方式中关于M、N、L、K或者所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔的限定,均是为了在保留较大的虚拟孔径的同时,尽可能提高最大测速范围。
第三方面,提供一种测速信号的接收方法,包括:利用多个天线接收经一个或多个运动目标反射的接收信号,所述接收信号包括一个或多个时分复用重复周期的啁啾信号,每个所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期,每个所述单天线发射模式子周期包括N个扫频周期,每个所述多天线发射模式子周期包括M个扫频周期,所述N个扫频周期的N个啁啾信号与所述M个扫频周期的第K个扫频周期的啁啾信号由相同的天线发射,其中L、M、N和K均为正整数,并且M和N均大于1;针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内;以所述多个天线中每个天线对应的所述N+L个采样点对应的数据构建目标向量;利用所述多个天线的多个目标向量,构建目标矩阵X;计算所述目标矩阵X的协方差矩阵R;照所述矩阵R中多个元素的指数系数的大小顺序依次抽取所述多个元素,并利用所述多个元素组成矢量r;根据所述矢量r计算关于所述一个或多个目标的运动速度的速度谱。通过上述选取采样点的方法和对采样点对应的数据的处理方法,可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。
根据第三方面,在所述测速信号的接收方法的第一种可能的实现方式中,所述根据所述矢量r计算关于所述目标的运动速度的速度谱包括:根据所述矢量r采用快速傅里叶变换(FFT)、数字波束形成(DBF)或者多重信号分类(MUSIC)算法计算关于所述一个 或多个目标的运动速度的速度谱。
根据第三方面或第三方面的第一种可能的实现方式,在所述测速信号的接收方法的第二种可能的实现方式中,所述利用所述多个元素组成矢量r包括:如果多个元素中的至少两个元素对应相同的指数系数,则计算所述至少两个元素的平均值以作为用于组成矢量r的元素,或者选择所述至少两个元素中的一个元素以作为用于组成矢量r的元素。
第四方面,提供一种测速信号的接收装置,包括:接收模块,用于利用多个天线接收经一个或多个运动目标反射的接收信号,所述接收信号包括一个或多个时分复用重复周期的啁啾信号,每个所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期,每个所述单天线发射模式子周期包括N个扫频周期,每个所述多天线发射模式子周期包括M个扫频周期,所述N个扫频周期的N个啁啾信号与所述M个扫频周期的第K个扫频周期的啁啾信号由相同的天线发射,其中L、M、N和K均为正整数,并且M和N均大于1;数据获取模块,用于针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内;目标向量构建模块,用于以所述多个天线中每个天线对应的所述N+L个采样点对应的数据构建目标向量;目标矩阵构建模块,用于利用所述多个天线的多个目标向量,构建目标矩阵X;协方差计算模块,用于计算所述目标矩阵X的协方差矩阵R;矢量构建模块,用于按照所述矩阵R中多个元素的指数系数的大小顺序依次抽取所述多个元素,并利用所述多个元素组成矢量r;速度谱计算模块,用于根据所述矢量r计算关于所述一个或多个目标的运动速度的速度谱。上述结构的测速信号的接收装置可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。
根据第四方面,在所述测速信号的接收装置的第一种可能的实现方式中,所述根据所述矢量r计算关于所述目标的运动速度的速度谱包括:根据所述矢量r采用快速傅里叶变换(FFT)、数字波束形成(DBF)或者多重信号分类(MUSIC)算法计算关于所述一个或多个目标的运动速度的速度谱。
根据第四方面或第四方面的第一种可能的实现方式,在所述测速信号的接收装置的第二种可能的实现方式中,所述利用所述多个元素组成矢量r包括:如果多个元素中的至少两个元素对应相同的指数系数,则计算所述至少两个元素的平均值以作为用于组成矢量r的元素,或者选择所述至少两个元素中的一个元素以作为用于组成矢量r的元素。
第五方面,提供一种测速信号的发射装置,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行第一方面或以上第一方面的任意一种实现方式的测速信号的发射方法。
第六方面,提供一种测速信号的接收装置,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行第三方面或以上第三方面的任意一种实现方式的测速信号的接收方法。
第七方面,提供一种计算机存储介质,包括计算机指令,当所述计算机指令在被处理器运行时,使得所述发射装置执行第一方面或以上第一方面的任意一种实现方式的测速信 号的发射方法。
第八方面,提供一种计算机存储介质,包括计算机指令,当所述计算机指令在被处理器运行时,使得所述接收装置执行第三方面或以上第三方面的任意一种实现方式的测速信号的接收方法。
第九方面,提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使得所述发射装置执行第一方面或以上第一方面的任意一种实现方式的测速信号的发射方法。
第十方面,提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使得所述接收装置执行第三方面或以上第三方面的任意一种实现方式的测速信号的接收方法。
第十一方面,提供一种车辆,包括所述M个天线和第二方面、以上第二方面的任意一种实现方式或第五方面的发射装置。
第十二方面,提供一种车辆,包括所述多个天线和第四方面、以上第四方面的任意一种实现方式或第六方面的接收装置。
第十三方面,提供一种雷达,包括所述M个天线和第二方面、以上第二方面的任意一种实现方式或第五方面的发射装置。
第十四方面,提供一种雷达,包括所述多个天线和第四方面、以上第四方面的任意一种实现方式或第六方面的接收装置。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中用于测速的调频连续波形式的多个连续的啁啾信号的频率随时间变化情况的示意图。
图2是本发明各实施例进行测速的一个典型应用场景的示意图。
图3是本发明实施例一和实施例二所提供的测速信号的发射方法的流程图。
图4是本发明实施例一中M个天线以时分复用重复周期发射多个啁啾信号的示意图。
图5是本发明实施例二中M个天线以时分复用重复周期发射多个啁啾信号的示意图。
图6是本发明实施例二的单天线发射模式子周期中多个天线同时发送多个啁啾信号的时延示意图。
图7是本发明实施例三所提供的测速信号的接收方法的流程图。
图8是本发明实施例三中数据采样方式的示意图。
图9是本发明实施例三中每个天线接收的多个啁啾信号的相位关系示意图。
图10是用于描述本发明实施例三的示例性的发射天线复用方式的示意图。
图11是基于本发明实施例三得到的速度谱的示例性仿真效果图。
图12是基于本发明实施例三得到的速度实测示例性RD-map。
图13是包括本发明实施例四所提供的测速信号的发射装置的车辆/雷达的结构框图。
图14是包括本发明实施例五所提供的测速信号的发射装置的车辆/雷达的结构框图。
图15是包括本发明实施例六所提供的测速信号的接收装置的车辆/雷达的结构框图。
图16是包括本发明实施例七所提供的测速信号的接收装置的车辆/雷达的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2是本发明各实施例进行测速的一个典型应用场景的示意图,图中展示了一个室外路面交通的测速场景。测速设备发射测速信号到一个或多个运动目标,例如路上行驶的车辆或者行走的行人,所述一个或多个运动目标反射所述测速信号,基于多普勒效应原理对反射回到所述测速设备的测速信号进行数字信号处理,从而得到所述一个或多个运动目标的运动速度。除了图2所示的室外路面交通场景,本发明各实施例还可用于室内避障、轨道交通、空中飞行以及多种道路形式的路面交通场景,所述运动目标包括但不限于行人、动物、机动车、非机动车、火车、地铁或飞行器。
本发明实施例一提供一种测速信号的发射方法,如图3所示,包括:
步骤301,生成用于测量一个或多个运动目标的运动速度的多个啁啾信号;
步骤302,利用M个天线以时分复用重复周期发射所述多个啁啾信号。
实施例一中利用M个天线以时分复用重复周期发射所述多个啁啾信号的方式如图4所示。其中,每个时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期(每个时分复用重复周期既可以如图4所示由一个单天线发射模式子周期开始,也可以由L个连续的多天线发射模式子周期开始);所述单天线发射模式子周期包括N个扫频周期,所述N个扫频周期的N个啁啾信号由所述M个天线中的一个天线(图4中将该天线发射的啁啾信号用灰色填充)发射;单天线发射模式子周期中用到的一个发射天线,也要在每个多天线发射模式子周期中至少发送一次,每个多天线发射模式子周期包括M个扫频周期,所述M个扫频周期的M个啁啾信号分别由所述M个天线按照次序发射,所述次序包括预设的次序或者随机生成的次序,并且所述L个多天线发射模式子周期的所述次序是相同的,图4中所述单天线发射模式子周期的发射天线总是发射所述多天线发射模式子周期的第K+1个啁啾信号,其中,M和N为大于1的整数,L为正整数,K为大于或等于0的整数。
可通过优化设置M、N、L和K四个参数,或者合理设置所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔的限定,来实现在保留较大的虚拟孔径的同时,尽可能提高最大测速范围。实施例一包括以下几种优选的设置方式:
第一种,所述N与所述L的比值大于第一阈值。所述第一阈值的取值,应使得多谱勒谱(Doppler Profile)上目标部分不出现明显的由于多普勒维慢采样部分的欠采样导致的目标混叠。
第二种,所述L、所述M和所述N的取值应使权重函数w中出现的0值个数与非0值个数的比值不超过第二阈值,所述权重函数
Figure PCTCN2019107526-appb-000018
其中c是包括N+L×M个元 素的矢量,c -表示c的矢量反转,
Figure PCTCN2019107526-appb-000019
表示矢量的线性卷积运算,所述N+L×M个元素分别对应于一个所述时分复用重复周期内的N+L×M个啁啾信号的发射天线,与所述单天线发射模式子周期的发射天线对应的所述元素为1,与除了所述单天线发射模式子周期的发射天线之外的其他M-1个天线对应的所述元素为0。
第三种,所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔为零,或者为扫频周期的整数倍。
第四种,所述M、N和K的关系满足:
如果K=0,则N≥M-1;
如果0<K≤M,则N≥M;
如果K>M,则N≥K+1。
本发明实施例二提供另一种测速信号的发射方法,其包括的步骤也如图3所示,实施例二与实施例一不同之处在于:实施例二中所述单天线发射模式子周期内的N个扫频周期的N个啁啾信号由所述M个天线中的至少两个天线同时发射。图5是实施例二中M个天线以时分复用重复周期发射多个啁啾信号的一个示例图,其中在单天线发射模式子周期,四个天线同时发送四个啁啾信号,在每个多天线发射模式子周期,M个天线依次发射M个啁啾信号,所述啁啾信号的扫频周期为T c
为了避免不想要的BF(Beamforming,波束赋形)效应导致FOV(Field of View,视场)减小,所述至少两个天线之间存在微小时延,用于抵消天线的位置差异造成的信号传输路径长度差异,使至少两个天线同时发射测速信号从效果上能够被视为由一个天线发射测速信号,同时还可获得SNR(Signal to Noise Ratio,信噪比)的大幅提升。图6展示了图5中单天线发射模式子周期内同时发射四个啁啾信号的四个天线之间存在的微小时延,其中四个天线分别标记为T0、T1、T2和T3,相对于参考天线T0,天线T1、T2和T3的时延分别为τ1、τ2和τ3。作为一种优选方式,τ的取值为快采样间隔Ts的整数倍。
通过上述实施例一和实施例二中SIMO与MIMO混合的发射方法,可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。
本发明实施例三提供了一种测速信号的接收方法,如图7所示,包括:
步骤701,利用多个天线接收经一个或多个运动目标反射的接收信号,所述接收信号包括一个或多个时分复用重复周期的啁啾信号,每个所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期,每个所述单天线发射模式子周期包括N个扫频周期,每个所述多天线发射模式子周期包括M个扫频周期,所述N个扫频周期的N个啁啾信号与所述M个扫频周期的第K个扫频周期的啁啾信号由相同的天线发射,其中L、M、N和K均为正整数,并且M和N均大于1。
步骤702,针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内。
具体的数据采样方式可如图8所示,其中:在快时间方向①上以快采样周期T s对一个啁啾信号进行采样,包括N s个采样点;在慢时间方向②上依次排列着单天线发射模式 子周期内的发射天线在包括一个单天线发射模式子周期和多个连续的多天线发射模式子周期在内的一个时分复用重复周期内发射的所有啁啾信号,相当于慢时间方向的采样周期为扫频周期T c;在接收天线排列方向③上依次排列着各接收天线上的采样信号,接收天线可以按照天线序列依次排列或者随机排列。实施例三进行测速时对其中灰格图案的二维采样点进行采样,即相当于“针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内”。
首先说明本实施例中每个天线接收的多个啁啾信号的相位关系。在如图9上半部分所示的发射信号多天线时分复用方式下,根据前述公式8可知针对每个天线接收到的多个啁啾信号进行如前述步骤702进行采样得到的采样数据之间的相位差如图9下半部分所示。
下面详细描述数字信号处理过程,为了表述方便,使用图10所示的发射天线复用方式进行举例:一个时分复用重复周期包括两个多天线发射模式子周期和一个单天线发射模式子周期,每个多天线发射模式子周期内利用4根发射依次发送4个啁啾信号,单天线发射模式子周期包括4个啁啾信号,位于整个时分复用重复周期的尾部,可见一个时分复用重复周期内由单天线发射模式子周期的发射天线发射的啁啾信号为6个,即步骤702中针对每个天线接收的如图10所示的测量信号可得到6个采样点的数据。
如图10所示的发射天线复用方式下的测量信号经第k个运动目标反射后,参考图9可知,在接收端被采样的六个啁啾信号的相位向量为
Figure PCTCN2019107526-appb-000020
公式10中扫频周期Tc之前的数字为指数系数,上述相位向量的指数系数为[0,4,7,8,9,10]。
步骤703,以所述多个天线中每个天线对应的所述N+L个采样点对应的数据构建目标向量。
第n个接收天线的接收信号可以表示为
Figure PCTCN2019107526-appb-000021
式中,A=[a 1,...,a K],
Figure PCTCN2019107526-appb-000022
n n为噪声,ρ k为信号幅值,r k为第k个目标的距离。
步骤704,利用所述多个天线的多个目标向量,构建目标矩阵X。
M R根接收天线的接收数据组成的矩阵可以记做:
Figure PCTCN2019107526-appb-000023
其中
Figure PCTCN2019107526-appb-000024
步骤705,计算所述目标矩阵X的协方差矩阵R。
R=XX H(公式13),矩阵R的第(m,n)个元素为
Figure PCTCN2019107526-appb-000025
Figure PCTCN2019107526-appb-000026
在a k的指数系数为[0,4,7,8,9,10]的情况下,矩阵R各元素的指数系数分布情况如下所示:
表格1
0 -4 -7 -8 -9 -10
4 0 -4 -4 -5 -6
7 3 0 -1 -2 -3
8 4 1 0 -1 -2
9 5 2 1 0 -1
10 6 3 2 1 0
步骤706,按照所述矩阵R中多个元素的指数系数的大小顺序依次抽取所述多个元素,并利用所述多个元素组成矢量r。如果多个元素中的至少两个元素对应相同的指数系数,则计算所述至少两个元素的平均值以作为用于组成矢量r的元素,或者选择所述至少两个元素中的一个元素以作为用于组成矢量r的元素。
例如,根据指数系数为-10~10的矩阵R的元素中选出21个元素,按顺序从小到大或是从大到小摆放组成长度为21的矢量r,上表中指数系数为4的元素有两个,分别为元素(2,1)和元素(4,2),则对应于指数系数4的矢量r中的元素既可以取元素(2,1)和元素(4,2)中的任意一个,也可以为元素(2,1)与元素(4,2)的平均值。
步骤707,根据所述矢量r计算关于所述一个或多个目标的运动速度的速度谱。具体可以采用快速傅里叶变换(Fast Fourier Transform,FFT)、数字波束形成(Digital Beam Forming,DBF)或者多重信号分类(Multiple Signal Classfication,MUSIC)算法计算关于所述一个或多个目标的运动速度的速度谱。
采用本实施例描述的测量信号的接收方法,可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间,以接收图10所示的测量信号为例,采用本实施例得到的最大速度估计范围是与SIMO模式下的是一样的,即恢复到了最大测速范围,并且对单天线发射模式子周期的长度要求低,时分复用重复周期的时长也相对较小。
图11是基于本发明实施例三提供的测速信号的接收方法得到的速度谱的一个仿真效果图,其中横轴表示运动速度,纵轴表示对应运动速度下的速度谱,可以看到其中在-10m/s和2m/s两个速度处出现了两处谱线尖峰,说明存在运动速度分别为-10m/s和2m/s的两个运动目标。
本发明实施例三所描述的测速信号的接收方法还可以进一步与距离测量相结合,得到同时反映运动目标速度和距离的RD-map中,操作方法为:
在实施例三的步骤702之前,先在图8所示的快时间方向①上以快采样周期T s进行快采样,得到N s个快采样点,对所述N s个快采样点进行诸如FFT的时域到频域的转换,得到N s个快采样频域数据,即本步骤使得图8中快时间方向①的数据依次为N s个快采样频域数据;
步骤702中的所述N+L个采样点对应的数据为所述N+L个采样点对应的所述快采样频域数据,依次在步骤702中设置N+L个慢采样点取所述N s个快采样频域数据中的第1个至第N s个,即依次执行N s次步骤703~步骤707,得到N s个快采样频域数据各自对应 的速度谱;
由于根据N s个快采样频域数据可以计算一个或多个目标的距离,因此进一步结合所述N s个快采样频域数据各自对应的速度谱,可以形成能够综合反映距离-速度信息的RD-map,参见图12,其中亮色部分表示测量到的一个或多个运动目标,横轴为Range轴,用于所述一个或多个运动目标的距离,纵轴为Doppler轴,用于表示所述一个或多个运动目标的运动速度。需要说明的是,只有测速信号为频率随时间线性变化的啁啾信号时,才可以通过本方式得到RD-map。
本发明实施例四提供一种测速信号的发射装置,参见图13中的发射装置13,包括以下模块:
测量信号生成模块1301,用于生成用于测量一个或多个运动目标的运动速度的多个啁啾信号;
发射模块1302,用于利用M个天线以时分复用重复周期发射所述多个啁啾信号。
其中,所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期;所述单天线发射模式子周期包括所述啁啾信号的N个扫频周期,所述N个扫频周期的啁啾信号由所述M个天线中的一个天线发射,或者由所述M个天线中的至少两个天线同时发射且所述至少两个天线之间存在时延;每个多天线发射模式子周期包括所述啁啾信号的M个扫频周期,所述M个扫频周期的啁啾信号分别由所述M个天线按照次序发射;所述单天线发射模式子周期的发射天线总是发射所述多天线发射模式子周期的第K+1个啁啾信号;M和N为大于1的整数,L为正整数,K为大于或等于0的整数。
其中,所述至少两个天线之间存在的时延是较微小的时延,优选为快采样周期Ts的整数倍,用于抵消天线的位置差异造成的信号传输路径长度差异,使至少两个天线同时发射测速信号从效果上能够被视为由一个天线发射测速信号,避免不想要的BF(Beamforming,波束赋形)效应导致FOV(Field of View,视场)减小,同时获得SNR(Signal to Noise Ratio,信噪比)的大幅提升。
其中,所述次序包括预设的次序或者随机生成的次序,并且所述L个多天线发射模式子周期的所述次序是相同的。
可通过优化设置M、N、L和K四个参数,或者合理设置所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔的限定,来实现在保留较大的虚拟孔径的同时,尽可能提高最大测速范围。实施例四包括以下几种优选的设置方式:
第一种,所述N与所述L的比值大于第一阈值。所述第一阈值的取值,应使得多谱勒谱(Doppler Profile)上目标部分不出现明显的由于多普勒维慢采样部分的欠采样导致的目标混叠。
第二种,所述L、所述M和所述N的取值应使权重函数w中出现的0值个数与非0值个数的比值不超过第二阈值,所述权重函数
Figure PCTCN2019107526-appb-000027
其中c是包括N+L×M个元素的矢量,c -表示c的矢量反转,
Figure PCTCN2019107526-appb-000028
表示矢量的线性卷积运算,所述N+L×M个元素分别对应于一个所述时分复用重复周期内的N+L×M个啁啾信号的发射天线,与所述单天线发射模式子周期的发射天线对应的所述元素为1,与除了所述单天线发射模式子周期的发射天线之外的其他M-1个天线对应的所述元素为0。
第三种,所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔为 零,或者为扫频周期的整数倍。
第四种,所述M、N和K的关系满足:
如果K=0,则N≥M-1;
如果0<K≤M,则N≥M;
如果K>M,则N≥K+1。
通过上述SIMO与MIMO混合的发射装置,本发明实施例四可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。
本发明实施例四所提供的测速信号的发射装置可用于车辆或者雷达中,参见图13,所述车辆或者雷达还包括多个发射天线1303,发射装置13中的发射模块1302利用所述多个发射天线1303以时分复用重复周期发射所述多个啁啾信号。所述雷达包括但不限于毫米波雷达、激光雷达和超声波雷达。
本发明实施例五提供一种测速信号的发射装置,参见图14中的发射装置14,包括存储器1401和处理器1402,所述存储器1401存储计算机程序指令,所述处理器1402运行所述计算机程序指令以执行图3所示实施例一或实施例二所描述的测速信号的发射方法。处理器1402包括但不限于各类CPU、DSP、微控制器、微处理器或人工智能处理器。
本发明实施例五所提供的测速信号的发射装置可用于车辆或者雷达中,参见图14,所述车辆或者雷达还包括多个发射天线1403,用于以时分复用重复周期发射自发射装置14馈入的所述多个啁啾信号。所述雷达包括但不限于毫米波雷达、激光雷达和超声波雷达。
本发明实施例六提供一种测速信号的接收装置,参见图15中的接收装置15,包括以下模块:
接收模块1501,用于利用多个天线接收经一个或多个运动目标反射的接收信号,所述接收信号包括一个或多个时分复用重复周期的啁啾信号,每个所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期,每个所述单天线发射模式子周期包括N个扫频周期,每个所述多天线发射模式子周期包括M个扫频周期,所述N个扫频周期的N个啁啾信号与所述M个扫频周期的第K个扫频周期的啁啾信号由相同的天线发射,其中L、M、N和K均为正整数,并且M和N均大于1;
数据获取模块1502,用于针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内;
目标向量构建模块1503,用于以所述多个天线中每个天线对应的所述N+L个采样点对应的数据构建目标向量;
目标矩阵构建模块1504,用于利用所述多个天线的多个目标向量,构建目标矩阵X;
协方差计算模块1505,用于计算所述目标矩阵X的协方差矩阵R;
矢量构建模块1506,用于按照所述矩阵R中多个元素的指数系数的大小顺序依次抽取所述多个元素,并利用所述多个元素组成矢量r;
速度谱计算模块1507,用于根据所述矢量r计算关于所述一个或多个目标的运动速度 的速度谱。上述结构的测速信号的接收装置可以在保留较大的虚拟孔径的同时,提高最大测速范围并尽可能减少整个测速信号持续时间。
其中,所述根据所述矢量r计算关于所述目标的运动速度的速度谱包括:根据所述矢量r采用快速傅里叶变换(FFT)、数字波束形成(DBF)或者多重信号分类(MUSIC)算法计算关于所述一个或多个目标的运动速度的速度谱。
其中,所述利用所述多个元素组成矢量r包括:如果多个元素中的至少两个元素对应相同的指数系数,则计算所述至少两个元素的平均值以作为用于组成矢量r的元素,或者选择所述至少两个元素中的一个元素以作为用于组成矢量r的元素。
本发明实施例六所提供的测速信号的接收装置可用于车辆或者雷达中,参见图15,所述车辆或者雷达还包括多个接收天线1508,接收装置15中的接收模块1501利用多个接收天线1508接收经一个或多个运动目标反射的接收信号。所述雷达包括但不限于毫米波雷达、激光雷达和超声波雷达。上述实施例四和实施例六中各个模块的只一个或多个可以软件、硬件、固件或其结合实现。所述软件或固件包括但不限于计算机程序指令或代码,并可以被硬件处理器所执行。所述硬件包括但不限于各类集成电路,如中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或专用集成电路(ASIC)。
本发明实施例七提供一种测速信号的接收装置,参见图16中的接收装置16,包括存储器1601和处理器1602,所述存储器1601存储计算机程序指令,所述处理器1602运行所述计算机程序指令以执行图7所示实施例三所描述的测速信号的接收方法。处理器1602包括但不限于各类CPU、DSP、微控制器、微处理器或人工智能处理器。
本发明实施例七所提供的测速信号的接收装置可用于车辆或者雷达中,参见图16,所述车辆或者雷达还包括多个接收天线1603,用于接收经一个或多个运动目标反射的接收信号,并将所述接收信号提供给所述接收装置16。所述雷达包括但不限于毫米波雷达、激光雷达和超声波雷达。
本发明的上述实施例均既可用于机动车、非机动车、火车或飞行器等有测速需求的智能驾驶工具,又可用于雷达或传感器等具有测速功能的设备,应用场景包括但不限于辅助驾驶和无人驾驶。
本领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参照。
本领域技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的全部或部分步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述装置和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (26)

  1. 一种测速信号的发射方法,其特征在于,包括:
    生成用于测量一个或多个运动目标的运动速度的多个啁啾信号;
    利用M个天线以时分复用重复周期发射所述多个啁啾信号;
    其中,所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期;
    所述单天线发射模式子周期包括N个扫频周期,所述N个扫频周期的N个啁啾信号由所述M个天线中的一个天线发射,或者由所述M个天线中的至少两个天线同时发射且所述至少两个天线之间存在时延;
    每个多天线发射模式子周期包括M个扫频周期,所述M个扫频周期的M个啁啾信号分别由所述M个天线按照次序发射;
    M和N为大于1的正整数,L为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N与所述L的比值大于第一阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述L、所述M和所述N的取值应使权重函数w中出现的0值个数与非0值个数的比值不超过第二阈值,所述权重函数
    Figure PCTCN2019107526-appb-100001
    Figure PCTCN2019107526-appb-100002
    其中c是包括N+L×M个元素的矢量,C -表示c的矢量反转,
    Figure PCTCN2019107526-appb-100003
    表示矢量的线性卷积运算,所述N+L×M个元素分别对应于以所述一个单天线发射模式子周期开始的或者以所述L个连续的多天线发射模式子周期开始的一个所述时分复用重复周期内的N+L×M个啁啾信号的发射天线,与所述单天线发射模式子周期的发射天线对应的所述元素为1,与除了所述单天线发射模式子周期的发射天线之外的其他M-1个天线对应的所述元素为0。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔为零,或者为扫频周期的整数倍。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述单天线发射模式子周期的发射天线发射所述多天线发射模式子周期的第K+1个啁啾信号,其中K为大于或等于0的整数,所述M、N和K的关系满足:
    如果K=0,则N≥M-1;
    如果0<K≤M,则N≥M;
    如果K>M,则N≥K+1。
  6. 一种测速信号的发射装置,其特征在于,包括:
    测量信号生成模块,用于生成用于测量一个或多个运动目标的运动速度的多个啁啾信号;
    发射模块,用于利用M个天线以时分复用重复周期发射所述多个啁啾信号;
    其中,
    所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期;
    所述单天线发射模式子周期包括所述啁啾信号的N个扫频周期,所述N个扫频周期的啁啾信号由所述M个天线中的一个天线发射,或者由所述M个天线中的至少两个天线 同时发射且所述至少两个天线之间存在时延;
    每个多天线发射模式子周期包括所述啁啾信号的M个扫频周期,所述M个扫频周期的啁啾信号分别由所述M个天线按照次序发射;
    M和N为大于1的正整数,L为正整数。
  7. 根据权利要求6所述的装置,其特征在于,所述N与所述L的比值大于第一阈值。
  8. 根据权利要求6或7所述的装置,其特征在于,所述L、所述M和所述N的取值应使权重函数w中出现的0值个数与非0值个数的比值不超过第二阈值,所述权重函数
    Figure PCTCN2019107526-appb-100004
    Figure PCTCN2019107526-appb-100005
    其中c是包括N+L×M个元素的矢量,C -表示c的矢量反转,
    Figure PCTCN2019107526-appb-100006
    表示矢量的线性卷积运算,所述N+L×M个元素分别对应于以所述一个单天线发射模式子周期开始的或者以所述L个连续的多天线发射模式子周期开始的一个所述时分复用重复周期内的N+L×M个啁啾信号的发射天线,与所述单天线发射模式子周期的发射天线对应的所述元素为1,与除了所述单天线发射模式子周期的发射天线之外的其他M-1个天线对应的所述元素为0。
  9. 根据权利要求6-8任一项所述的装置,其特征在于,所述单天线发射模式子周期与所述多天线发射模式子周期之间的时间间隔为零,或者为所述啁啾信号的扫频周期的整数倍。
  10. 根据权利要求6-9任一项所述的装置,其特征在于,所述单天线发射模式子周期的发射天线发射所述多天线发射模式子周期的第K+1个啁啾信号,其中K为大于或等于0的整数,所述M、N和K的关系满足:
    如果K=0,则N≥M-1;
    如果0<K≤M,则N≥M;
    如果K>M,则N≥K+1。
  11. 一种测速信号的发射装置,其特征在于,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行权利要求1-5任一项所述的操作。
  12. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,使得所述发射装置执行如权利要求1-5任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,当所述计算机程序产品在处理器上运行时,使得所述发射装置执行如权利要求1-5任一项所述的方法。
  14. 一种测速信号的接收方法,其特征在于,包括:
    利用多个天线接收经一个或多个运动目标反射的接收信号,所述接收信号包括一个或多个时分复用重复周期的啁啾信号,每个所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期,每个所述单天线发射模式子周期包括N个扫频周期,每个所述多天线发射模式子周期包括M个扫频周期,所述N个扫频周期的N个啁啾信号与所述M个扫频周期的第K个扫频周期的啁啾信号由相同的天线发射,其中L、M、N和K均为正整数,并且M和N均大于1;
    针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周 期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内;
    以所述多个天线中每个天线对应的所述N+L个采样点对应的数据构建目标向量;
    利用所述多个天线的多个目标向量,构建目标矩阵X;
    计算所述目标矩阵X的协方差矩阵R;
    按照所述矩阵R中多个元素的指数系数的大小顺序依次抽取所述多个元素,并利用所述多个元素组成矢量r;
    根据所述矢量r计算关于所述一个或多个目标的运动速度的速度谱。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述矢量r计算关于所述目标的运动速度的速度谱包括:
    根据所述矢量r采用快速傅里叶变换(FFT)、数字波束形成(DBF)或者多重信号分类(MUSIC)算法计算关于所述一个或多个目标的运动速度的速度谱。
  16. 根据权利要求14或15所述的方法,其特征在于,所述利用所述多个元素组成矢量r包括:
    如果多个元素中的至少两个元素对应相同的指数系数,则计算所述至少两个元素的平均值以作为用于组成矢量r的元素,或者选择所述至少两个元素中的一个元素以作为用于组成矢量r的元素。
  17. 一种测速信号的接收装置,其特征在于,包括:
    接收模块,用于利用多个天线接收经一个或多个运动目标反射的接收信号,所述接收信号包括一个或多个时分复用重复周期的啁啾信号,每个所述时分复用重复周期包括一个单天线发射模式子周期和L个连续的多天线发射模式子周期,每个所述单天线发射模式子周期包括N个扫频周期,每个所述多天线发射模式子周期包括M个扫频周期,所述N个扫频周期的N个啁啾信号与所述M个扫频周期的第K个扫频周期的啁啾信号由相同的天线发射,其中L、M、N和K均为正整数,并且M和N均大于1;
    数据获取模块,用于针对所述多个天线中的每个天线接收的所述接收信号,以所述扫频周期作为采样周期对所述一个或多个时分复用重复周期中的一个时分复用重复周期的啁啾信号进行采样,得到N+L个采样点对应的数据,所述N+L个采样点分别在所述一个单天线发射模式子周期的N个扫频周期内和所述L个连续的多天线发射模式子周期中每一个所述多天线发射模式子周期的第K个扫频周期内;
    目标向量构建模块,用于以所述多个天线中每个天线对应的所述N+L个采样点对应的数据构建目标向量;
    目标矩阵构建模块,用于利用所述多个天线的多个目标向量,构建目标矩阵X;
    协方差计算模块,用于计算所述目标矩阵X的协方差矩阵R;
    矢量构建模块,用于按照所述矩阵R中多个元素的指数系数的大小顺序依次抽取所述多个元素,并利用所述多个元素组成矢量r;
    速度谱计算模块,用于根据所述矢量r计算关于所述一个或多个目标的运动速度的速度谱。
  18. 根据权利要求17所述的装置,其特征在于,所述根据所述矢量r计算关于所述目标的运动速度的速度谱包括:
    根据所述矢量r采用快速傅里叶变换(FFT)、数字波束形成(DBF)或者多重信号分类(MUSIC)算法计算关于所述一个或多个目标的运动速度的速度谱。
  19. 根据权利要求17或18所述的装置,其特征在于,所述利用所述多个元素组成矢量r包括:
    如果多个元素中的至少两个元素对应相同的指数系数,则计算所述至少两个元素的平均值以作为用于组成矢量r的元素,或者选择所述至少两个元素中的一个元素以作为用于组成矢量r的元素。
  20. 一种测速信号的接收装置,其特征在于,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行权利要求14-16任一项所述的操作。
  21. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,使得所述接收装置执行如权利要求14-16任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在处理器上运行时,使得所述接收装置执行如权利要求14-16任一项所述的方法。
  23. 一种车辆,其特征在于,包括所述M个天线和权利要求6-11任一项所述的发射装置。
  24. 一种车辆,其特征在于,包括所述多个天线和权利要求17-20任一项所述的接收装置。
  25. 一种雷达,其特征在于,包括所述M个天线和权利要求6-11任一项所述的发射装置。
  26. 一种雷达,其特征在于,包括所述多个天线和权利要求17-20任一项所述的接收装置。
PCT/CN2019/107526 2019-09-24 2019-09-24 一种测速信号的发射方法和接收方法 WO2021056187A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980052600.3A CN112585877B (zh) 2019-09-24 2019-09-24 一种测速信号的发射方法和接收方法
EP19946829.9A EP4024083A4 (en) 2019-09-24 2019-09-24 TRANSMISSION METHOD AND RECEIVING METHOD OF A SPEED MEASUREMENT SIGNAL
PCT/CN2019/107526 WO2021056187A1 (zh) 2019-09-24 2019-09-24 一种测速信号的发射方法和接收方法
US17/703,081 US20220214442A1 (en) 2019-09-24 2022-03-24 Velocity Measurement Signal Transmission Method and Receiving Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107526 WO2021056187A1 (zh) 2019-09-24 2019-09-24 一种测速信号的发射方法和接收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/703,081 Continuation US20220214442A1 (en) 2019-09-24 2022-03-24 Velocity Measurement Signal Transmission Method and Receiving Method

Publications (1)

Publication Number Publication Date
WO2021056187A1 true WO2021056187A1 (zh) 2021-04-01

Family

ID=75117150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107526 WO2021056187A1 (zh) 2019-09-24 2019-09-24 一种测速信号的发射方法和接收方法

Country Status (4)

Country Link
US (1) US20220214442A1 (zh)
EP (1) EP4024083A4 (zh)
CN (1) CN112585877B (zh)
WO (1) WO2021056187A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121301A1 (de) * 2022-08-23 2024-02-29 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Kognitives Radar zur eindeutigen Messung der Geschwindigkeit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039497A (zh) * 2007-04-28 2007-09-19 北京邮电大学 宽带信道测量的方法及系统
CN102362439A (zh) * 2009-01-26 2012-02-22 德雷塞尔大学 用于在mimo系统中选择可重新配置天线的系统和方法
CN104181517A (zh) * 2013-05-24 2014-12-03 罗伯特·博世有限公司 用于运行多输入多输出雷达的方法
CN104793192A (zh) * 2014-01-21 2015-07-22 罗伯特·博世有限公司 用于角度估计的方法以及用于机动车的雷达传感器
US20170293027A1 (en) * 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
CN108387877A (zh) * 2018-05-25 2018-08-10 中国人民解放军国防科技大学 一种多输入多输出雷达的运动目标相位修正方法
US20180252809A1 (en) * 2016-04-07 2018-09-06 Uhnder, Inc. Software defined automotive radar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811535B2 (en) * 2009-07-17 2014-08-19 Mitre Corporation Time-frequency space constructions of families of signals
US8797208B2 (en) * 2010-12-13 2014-08-05 Sony Corporation Active radar system and method
US9933520B1 (en) * 2015-06-29 2018-04-03 Waymo Llc Orthogonal linear frequency modulation for MIMO radar
US10274594B2 (en) * 2016-12-06 2019-04-30 GM Global Technology Operations LLC Direct Doppler-free velocity measurement in linear frequency modulation radar
DE102018102816B3 (de) * 2018-02-08 2019-07-04 Infineon Technologies Ag Radar mit phasenkorrektur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039497A (zh) * 2007-04-28 2007-09-19 北京邮电大学 宽带信道测量的方法及系统
CN102362439A (zh) * 2009-01-26 2012-02-22 德雷塞尔大学 用于在mimo系统中选择可重新配置天线的系统和方法
CN104181517A (zh) * 2013-05-24 2014-12-03 罗伯特·博世有限公司 用于运行多输入多输出雷达的方法
CN104793192A (zh) * 2014-01-21 2015-07-22 罗伯特·博世有限公司 用于角度估计的方法以及用于机动车的雷达传感器
US20170293027A1 (en) * 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US20180252809A1 (en) * 2016-04-07 2018-09-06 Uhnder, Inc. Software defined automotive radar
CN108387877A (zh) * 2018-05-25 2018-08-10 中国人民解放军国防科技大学 一种多输入多输出雷达的运动目标相位修正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024083A4 *

Also Published As

Publication number Publication date
EP4024083A1 (en) 2022-07-06
CN112585877B (zh) 2021-10-15
EP4024083A4 (en) 2022-11-30
US20220214442A1 (en) 2022-07-07
CN112585877A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6726253B2 (ja) 干渉抑制を用いるレーダー検出
CN104181517B (zh) 用于运行多输入多输出雷达的方法
US9730219B2 (en) Method for determining a time multiplexing sequence for a MIMO radar
CN106842166B (zh) 一种适用于线性调频连续波雷达系统的解速度模糊方法
JP6331195B2 (ja) レーダ装置
JP2021505892A (ja) Fmcwレーダーシステムのためのレーダー処理チェーン
JP5631763B2 (ja) Mimoレーダシステム、送信装置、受信装置及びmimoレーダ信号処理方法
KR20150094240A (ko) 레이더를 이용한 표적 검출 장치 및 표적을 검출하는 방법
CN111157981A (zh) 多入多出调频连续波雷达系统
CN106371097A (zh) 雷达系统
KR102445130B1 (ko) 레이더 표적의 횡방향 상대 속도 성분을 확인하기 위한 방법 및 장치
JP6384018B2 (ja) 車載用レーダ装置
WO2021129581A1 (zh) 一种信号处理方法及装置
CN108152809A (zh) 线性调频雷达中的直接无多普勒速度测量
JP2022093367A (ja) 情報測定方法および情報測定装置
JP2007192575A (ja) 目標測位装置
NL2029890B1 (en) Radar apparatus, system, and method
WO2021056187A1 (zh) 一种测速信号的发射方法和接收方法
WO2022027320A1 (zh) 一种基于雷达信号的发射方法和装置
WO2022000333A1 (zh) 一种雷达探测方法及相关装置
WO2022000332A1 (zh) 一种雷达探测方法及相关装置
CN110927724A (zh) 毫米波雷达泥石流智能监测系统与方法
Sommer et al. 3D multiple input single output near field automotive synthetic aperture radar
JP2007192573A (ja) 目標測位装置
Zheng et al. A deep learning approach for Doppler unfolding in automotive TDM MIMO radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019946829

Country of ref document: EP

Effective date: 20220331