WO2021054603A1 - 이차전지 제조방법 및 이차전지 - Google Patents

이차전지 제조방법 및 이차전지 Download PDF

Info

Publication number
WO2021054603A1
WO2021054603A1 PCT/KR2020/010210 KR2020010210W WO2021054603A1 WO 2021054603 A1 WO2021054603 A1 WO 2021054603A1 KR 2020010210 W KR2020010210 W KR 2020010210W WO 2021054603 A1 WO2021054603 A1 WO 2021054603A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
secondary battery
manufacturing
degas
case
Prior art date
Application number
PCT/KR2020/010210
Other languages
English (en)
French (fr)
Inventor
차인영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/606,942 priority Critical patent/US11876185B2/en
Priority to EP20865190.1A priority patent/EP3944386A4/en
Priority to CN202080029906.XA priority patent/CN113767515B/zh
Publication of WO2021054603A1 publication Critical patent/WO2021054603A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery manufacturing method and a secondary battery.
  • secondary batteries can be recharged, and due to their small size and high capacity, many research and developments have been made in recent years. As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing.
  • Secondary batteries are classified into coin-type batteries, cylindrical batteries, prismatic batteries, and pouch-type batteries according to the shape of the battery case.
  • an electrode assembly mounted inside a battery case is a power plant capable of charging and discharging having a stacked structure of electrodes and separators.
  • the electrode assembly is a jelly-roll type in which a separator is interposed between the positive electrode and the negative electrode in a sheet type coated with an active material, and a stack type in which a plurality of positive and negative electrodes are sequentially stacked with a separator interposed therebetween.
  • stack-type unit cells may be roughly classified into a stack-and-folding type wound with a long-length separation film.
  • a lithium ion secondary battery is manufactured through processes such as primary charging, aging, and de-gas after accommodating an electrode assembly and an electrolyte solution inside a pouch.
  • processes such as primary charging, aging, and de-gas after accommodating an electrode assembly and an electrolyte solution inside a pouch.
  • the gas remaining in the electrode causes precipitation of lithium ions.
  • Patent Literature Korean Patent Application Publication No. 10-2014-0015647
  • One aspect of the present invention is to provide a secondary battery manufacturing method and a secondary battery capable of automatically discharging internal gas generated when the secondary battery is manufactured by charging and activating it.
  • a method of manufacturing a secondary battery comprises accommodating an electrode assembly in a battery case including an accommodating portion in which an electrode assembly is accommodated and a gas pocket portion connected to the accommodating portion to collect gas generated in the accommodating portion.
  • a secondary battery according to an embodiment of the present invention may be manufactured by a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • a first sealing part is formed in the gas pocket part of the battery case to form a non-fused part and a fused part for degas, so that when the secondary battery is charged, the gas generated when the internal pressure increases, the non-fused for degas.
  • the wealth expands, and the internal gas can be automatically discharged to the outside through the non-fused part for degas. Accordingly, an increase in the volume of the secondary battery is prevented, and the gas does not remain in the electrode, so that precipitation of lithium ions may be prevented.
  • FIG. 1 is a flow chart showing a method of manufacturing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a state before the electrode assembly is accommodated in the receiving step of the method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG 3 is a plan view showing a state in which an electrode assembly is accommodated in an accommodating step of a method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG 4 is a plan view showing a first sealing step in a method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing a second sealing step in the method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG. 6 is a plan view showing a step of removing a second sealing part in a method of manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG. 7 is a plan view showing a third sealing step in the method of manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG. 8 is a plan view showing a second sealing step in a method for manufacturing a secondary battery according to a second embodiment of the present invention.
  • FIG. 9 is a plan view showing a second sealing step in a method for manufacturing a secondary battery according to a third embodiment of the present invention.
  • FIG. 10 is a plan view showing a second sealing step in a method for manufacturing a secondary battery according to a fourth embodiment of the present invention.
  • FIG. 11 is a plan view showing a second sealing step and a temporary sealing step in a method for manufacturing a secondary battery according to a fifth embodiment of the present invention.
  • FIG. 12 is a plan view showing a step of removing a second sealing part in a method for manufacturing a secondary battery according to a fifth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along line A-A' in FIG. 12.
  • FIG. 1 is a flow chart showing a method for manufacturing a secondary battery according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a state before an electrode assembly is accommodated in an accommodating step of the method for manufacturing a secondary battery according to the first embodiment of the present invention
  • Figure 3 is a plan view showing a state in which the electrode assembly is accommodated in the receiving step of the method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG. 4 is a plan view showing a first sealing step in the method for manufacturing a secondary battery according to the first embodiment of the present invention
  • FIG. 5 is a second sealing step in the method for manufacturing a secondary battery according to the first embodiment of the present invention
  • 6 is a plan view showing a second sealing part removing step in a method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • the method of manufacturing a secondary battery according to the first embodiment of the present invention includes an accommodating step (S10) of accommodating the electrode assembly 120 in the battery case 110 and the battery case 110.
  • a first sealing step (S20) of sealing along the outer circumferential surfaces (a, b, c), an electrolyte solution injection step (S30) of injecting an electrolyte, and a first sealing part 116 and a second sealing part 117 are formed.
  • the secondary battery manufacturing method includes an aging step in which a predetermined time elapses so that the electrode assembly 120 is impregnated with the electrolyte, and sealing the portion from which the gas pocket portion 114 is removed. It may further include a third sealing step.
  • the gas generated inside the receiving part 113 is connected to the receiving part 113 and the receiving part 113 in which the electrode assembly 120 is accommodated.
  • the electrode assembly 120 may be accommodated in the battery case 110 including the gas pocket portion 114 for collecting.
  • the battery case 110 is folded along an imaginary line X to accommodate it. It can cover the part 113.
  • the battery case 110 may include an upper case 111 and a lower case 112.
  • the battery case 110 may be made of a flexible material.
  • the electrode assembly 120 is a power generating device capable of charging and discharging, and may be formed in a form in which electrodes and separators are alternately stacked.
  • the electrode includes an anode and a cathode, and an anode, a separator, and a cathode may be alternately positioned.
  • the electrode assembly 120 may further include an electrode lead 121 connected to an end of the electrode.
  • the electrode assembly 120 may be electrically connected to an external device through the electrode lead 121.
  • the first sealing step (S20) is sealed along the outer circumferential surfaces (a, b, c) of the battery case 110, except for the end of the gas pocket portion 114. have. That is, the first sealing step (S20) except for the outer circumferential surface (d) located at the end of the gas pocket portion 114 in the four directions of the entire outer circumferential surface (a, b, c, d) of the battery case 110,
  • the initial sealing portion 115 may be formed by sealing the three-way outer circumferential surfaces (a, b, c) of the battery case 110.
  • the electrolyte may be injected into the receiving part 113 through the end of the gas pocket part 114.
  • the electrolyte injection step (S30) for example, by inserting an injection pipe into the end of the gas pocket portion 114, the electrolyte may be injected from the gas pocket portion 114 toward the receiving portion 113.
  • the end of the gas pocket portion 114 is double-sealed, but the first sealing portion 116 is formed on the side close to the receiving portion 113,
  • the second sealing part 117 may be formed on the far side.
  • the first sealing part 116 may be formed discontinuously so that the unfused part S12 and the fused part S11 for degas are formed along the sealing line L. . Accordingly, when the internal pressure increases with the gas generated through the subsequent charging step (S60), the unfused portion (S12) for degas opens, and the internal gas can be discharged to the outside through the unfused portion (S12) for degas. have.
  • the upper case 111 and the lower case 112 are heat-sealed to each other to form the first sealing part 116 and the second sealing part 117, but not for degassing.
  • the first sealing portion 116 may be sealed so that portions of the upper case 111 and the lower case 112 positioned in the portion S12 contact each other.
  • the second sealing step (S40) may be sealed such that, for example, a plurality of unfused portions (S12) for degas are formed.
  • the second sealing part 117 may be formed by continuously sealing the edge of the gas pocket part 114 in the battery case 110.
  • the end of the gas pocket part 114 is double-sealed, but the first sealing part 116 is partially sealed along the end of the gas pocket part 114, and the second sealing part ( 117) can be completely sealed.
  • the first sealing part 116 forms a discontinuous sealing line to form an unsealed unsealed part, but the second sealing part 117 is continuously formed with a sealing line so that there is no non-fused part.
  • a fused sealing line can be formed.
  • the part in which the second sealing part 117 is formed may be removed from the battery case 110.
  • the second sealing part 117 is cut along the virtual line between the first sealing part 116 and the second sealing part 117.
  • the formed part can be removed.
  • the charging step S60 may be charged by applying electricity to the electrode assembly 120. At this time, the secondary battery 100 may be activated through the charging step (S60).
  • a predetermined time may elapse so that the electrode assembly 120 is impregnated with the electrolyte.
  • a predetermined time may elapse so that the electrode assembly 120 is impregnated with the electrolyte.
  • the electrode and the separator is impregnated with the electrolyte, and lithium ions can be smoothly moved.
  • FIG. 7 is a plan view showing a third sealing step in the method of manufacturing a secondary battery according to the first embodiment of the present invention.
  • the third sealing step after passing through the charging step (S60), the gas pocket portion 114 is cut and removed from the battery case 110, and the gas pocket portion is removed from the battery case 110.
  • the secondary battery 100 may be manufactured by sealing the portion from which the 114 is removed. In this case, for example, after the charging step S60, the aging step may be further performed, and then the third sealing step may be performed.
  • the sealing sealing portion 118 is formed in the portion where the gas pocket portion 114 is removed from the battery case 110 through the third sealing step, the inside of the battery case 110 may be sealed.
  • the method of manufacturing a secondary battery according to the first embodiment of the present invention configured as described above is the gas pocket portion 114 of the battery case 110 in the second sealing step (S40).
  • the first sealing part 116 is formed so that the non-fused part (S12) and the fused part (S11) for degas are formed, so that when the secondary battery 100 is charged, the gas generated when the internal pressure is increased.
  • the unfused portion (S12) is opened, and internal gas can be automatically discharged to the outside through the unfused portion (S12) for degas. Accordingly, an increase in the volume of the secondary battery 100 is prevented, gas does not remain in the electrode, so that precipitation of lithium ions may be prevented.
  • the battery case 110 is double-sealed so that the first sealing portion 116 partially sealed and the second sealing portion 117 partially sealed in the second sealing step (S40) are formed, and before the charging step (S30)
  • the second sealing part 117 By removing the second sealing part 117, after injecting the electrolyte into the inside of the battery case 110 through the electrolyte injecting step (S30), external gases, etc., during the manufacturing process between the charging steps (S60), are transferred to the battery case 110 ) Can be prevented from entering the interior.
  • the width of the non-fused portion S12 for degas is a battery case. It can be sealed so that it is formed in a shape that becomes narrower toward the end of (110).
  • FIG. 8 is a plan view showing a second sealing step in a method for manufacturing a secondary battery according to a second embodiment of the present invention.
  • the secondary battery manufacturing method according to the second embodiment of the present invention is compared with the secondary battery manufacturing method according to the first embodiment described above, the first sealing in the second sealing step (S40).
  • the first sealing in the second sealing step (S40) There is a difference in manufacturing the secondary battery 200 by forming the portion 216 in a different shape. Therefore, in the present embodiment, overlapping content with the first embodiment will be omitted, and differences will be described.
  • the first sealing part 216 and the second sealing part 217 are formed, and the first sealing part 216 is sealed. It may be formed discontinuously so that the unfused portion S22 and the fused portion S21 for degas are formed along the line.
  • the width of the non-fused portion (S22) for degas may be sealed so that the width of the unfused portion (S22) becomes narrower toward the end of the battery case (210).
  • the first sealing portion 216 is formed so that one side of both sides of the unfused portion for degas (S22) is formed in a linear shape and the other side is formed in a diagonal shape. I can.
  • FIG. 9 is a plan view showing a second sealing step in a method for manufacturing a secondary battery according to a third embodiment of the present invention.
  • the secondary battery manufacturing method according to the third embodiment of the present invention is compared with the secondary battery manufacturing method according to the first and second embodiments described above, the second sealing step (S40).
  • the second sealing step (S40) There is a difference in manufacturing the secondary battery 300 by forming the first sealing part 316 in a different shape. Accordingly, in the present embodiment, overlapping content with the above-described embodiments will be omitted, and differences will be described.
  • the first sealing part 316 and the second sealing part 317 are formed, but the non-fused part for degas (S32) And a first sealing part 316 to form a fusion part S31.
  • the first sealing part 316 may be formed so that the unfused part S32 for degas is bent in a plurality.
  • the unfused portion for degas (S32) is opened to form a plurality of bent passages, and the internal gas is used in the unfused portion for degas ( It may be discharged to the outside of the battery case 310 through S32).
  • FIG. 10 is a plan view showing a second sealing step in a method for manufacturing a secondary battery according to a fourth embodiment of the present invention.
  • the secondary battery manufacturing method according to the fourth embodiment of the present invention is compared with the secondary battery manufacturing method according to the first to third embodiments described above, the second sealing step (S40). There is a difference in manufacturing the secondary battery 400 by forming the first sealing portion 416 in a different shape. Accordingly, in the present embodiment, overlapping content with the above-described embodiments will be omitted, and differences will be described.
  • the first sealing part 416 and the second sealing part 417 are formed, but the non-fused part for degas (S42) And the first sealing part 416 may be formed so that the fusion part S41 is formed.
  • the second sealing step (S40) may be sealed such that, for example, the unfused portion (S42) for degas is bent into a plurality of pieces.
  • the non-fused portion (S42) for degas may be sealed so as to be bent in a zig-zag (Zig-Zag) shape.
  • the unfused portion for degas (S42) is opened to form a zigzag bent passage, and the internal gas is transferred to the unfused portion for degas ( It may be discharged to the outside of the battery case 410 through S42).
  • FIG. 11 is a plan view showing a second sealing step and a temporary sealing step in a method for manufacturing a secondary battery according to a fifth embodiment of the present invention
  • FIG. 12 is a second sealing step in the method for manufacturing a secondary battery according to the fifth embodiment of the present invention. It is a plan view showing the part removal step
  • FIG. 13 is a cross-sectional view taken along line A-A' in FIG. 12.
  • the secondary battery manufacturing method according to the fifth embodiment of the present invention further includes a temporary sealing step as compared to the secondary battery manufacturing method according to the first to fourth embodiments described above.
  • a temporary sealing step as compared to the secondary battery manufacturing method according to the first to fourth embodiments described above.
  • the second sealing step (S40) in the method for manufacturing a secondary battery according to the fifth embodiment of the present invention includes a first sealing part 516 and a second sealing part 517.
  • the first sealing part 516 may be formed so that the unfused part S52 and the fused part S51 for degas are formed.
  • the non-fused portion (S52) for degas may be sealed in a zigzag bent shape.
  • the adhesive solution (V) is placed at the end of the non-fused part for degas (S52), so that the upper case 111 and the lower case 112 are located in the non-fused part for degas (S52). It can stick. Accordingly, after the second sealing part 517 is removed through the second sealing part removing step (S50), foreign matter or moisture is prevented from flowing into the battery case 510 through the non-fused part for degas (S52). Can be prevented.
  • the internal pressure reaches a predetermined pressure or more, the adhesive force between the portions of the upper case 111 and the lower case 112 positioned in the non-fused portion S52 for degas is released, and gas may be discharged.
  • the temporary sealing step may be performed after forming the first sealing portion 516 in the second sealing step (S40), for example.
  • the temporary sealing step may be performed in a state in which the second sealing part 517 is removed after the second sealing part removing step S50 as another example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명에 따른 이차전지 제조방법은, 전극 조립체가 수용되는 수용부 및 상기 수용부와 연결되어 상기 수용부의 내부에서 발생한 가스를 포집하는 가스 포켓부를 포함하는 전지 케이스에 전극 조립체를 수용시키는 수용단계와, 상기 전지 케이스의 외주면을 따라 실링하되 상기 가스 포켓부의 단부를 제외하고 실링하는 제1 실링단계와, 상기 가스 포켓부의 단부를 통해 상기 수용부로 전해액을 주액하는 전해액 주액단계와, 상기 가스 포켓부의 단부를 이중실링하되, 상기 수용부와 가까운 측에 제1 실링부를 형성시키고, 먼 측에 제2 실링부를 형성시키는 제2 실링단계와, 상기 전지 케이스에서 상기 제2 실링부가 형성된 부분을 제거하는 제2 실링부 제거단계, 및 상기 전극 조립체에 전기를 인가하여 충전시키는 충전단계를 포함한다.

Description

이차전지 제조방법 및 이차전지
관련출원과의 상호인용
본 출원은 2019년 09월 16일자 한국특허출원 제10-2019-0113711호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지 제조방법 및 이차전지에 관한 것이다.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다.
이차 전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차 전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다.
전극 조립체는 활물질이 도포된 시트형의 양극과 음극 사이에 분리막을 개재(介在)하여 권취한 젤리 롤(Jelly-roll)형, 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형, 및 스택형의 단위 셀들을 긴 길이의 분리필름으로 권취한 스택 앤 폴딩형으로 대략 분류할 수 있다.
한편, 리튬 이온 이차전지는 파우치의 내부에 전극 조립체 및 전해액을 수용시킨 후, 1차 충전, 에이징(Aging), 디가스(De-gas) 등의 공정을 거쳐 제조된다. 여기서, 1차 충전 이후 파우치 내에 잔류 가스가 많을 경우 셀의 부피 증가로 이후 공정을 위한 이동 공정에 어려움이 초래되는 문제가 있어왔다. 특히, 전극 내에 잔류하는 기체는 리튬 이온의 석출을 일으키는 문제가 있어왔다.
[선행기술문헌] : (특허문헌) 한국 공개특허 제10-2014-0015647호
본 발명의 하나의 관점은 이차전지의 제조 시, 충전하여 활성화 시킬 때 발생되는 내부 가스를 자동으로 배출시킬 수 있는 이차전지 제조방법 및 이차전지를 제공하기 위한 것이다.
본 발명의 실시예에 따른 이차전지 제조방법은, 전극 조립체가 수용되는 수용부 및 상기 수용부와 연결되어 상기 수용부의 내부에서 발생한 가스를 포집하는 가스 포켓부를 포함하는 전지 케이스에 전극 조립체를 수용시키는 수용단계와, 상기 전지 케이스의 외주면을 따라 실링하되 상기 가스 포켓부의 단부를 제외하고 실링하는 제1 실링단계와, 상기 가스 포켓부의 단부를 통해 상기 수용부로 전해액을 주액하는 전해액 주액단계와, 상기 가스 포켓부의 단부를 이중실링하되, 상기 수용부와 가까운 측에 제1 실링부를 형성시키고, 먼 측에 제2 실링부를 형성시키는 제2 실링단계와, 상기 전지 케이스에서 상기 제2 실링부가 형성된 부분을 제거하는 제2 실링부 제거단계, 및 상기 전극 조립체에 전기를 인가하여 충전시키는 충전단계를 포함하고, 상기 제2 실링단계는 상기 제1 실링부를 실링 라인을 따라 디개스용 미융착부 및 융착부가 형성되도록 불연속적으로 형성시켜, 상기 충전단계를 통해 발생되는 가스로 내부 압력 증가 시 상기 디개스용 미융착부가 벌어지며 내부 가스가 상기 디개스용 미융착부를 통해 외부로 배출할 수 있다.
한편, 본 발명의 실시예에 따른 이차전지는, 본 발명의 실시예에 따른 이차전지 제조방법으로 제조될 수 있다.
본 발명에 따르면, 전지 케이스의 가스 포켓부에 디개스용 미융착부 및 융착부가 형성되도록 제1 실링부를 형성시켜, 이차전지를 충전할 때, 발생되는 가스로 내부 압력 증가 시 디개스용 미융착부가 벌어지며 내부 가스가 디개스용 미융착부를 통해 외부로 자동 배출될 수 있다. 이에 따라, 이차전지의 부피 증가를 방지하고, 전극 내에 기체가 잔류하지 않게 되어 리튬 이온의 석출이 방지될 수 있다.
도 1은 본 발명의 실시예에 따른 이차전지 제조방법을 나타낸 순서도이다.
도 2는 본 발명의 제1 실시예에 따른 이차전지 제조방법의 수용단계에서 전극 조립체가 수용하기 전 상태를 나타낸 평면도이다.
도 3은 본 발명의 제1 실시예에 따른 이차전지 제조방법의 수용단계에서 전극 조립체가 수용된 상태를 나타낸 평면도이다.
도 4는 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제1 실링단계를 나타낸 평면도이다.
도 5는 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 6은 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제2 실링부 제거단계를 나타낸 평면도이다.
도 7은 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제3 실링단계를 나타낸 평면도이다.
도 8은 본 발명의 제2 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 9는 본 발명의 제3 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 10은 본 발명의 제4 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 11은 본 발명의 제5 실시예에 따른 이차전지 제조방법에서 제2 실링단계 및 가 밀봉단계를 나타낸 평면도이다.
도 12는 본 발명의 제5 실시예에 따른 이차전지 제조방법에서 제2 실링부 제거단계를 나타낸 평면도이다.
도 13은 도 12에서 A-A'선을 따라 절개한 단면도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
도 1은 본 발명의 실시예에 따른 이차전지 제조방법을 나타낸 순서도이고, 도 2는 본 발명의 제1 실시예에 따른 이차전지 제조방법의 수용단계에서 전극 조립체가 수용하기 전 상태를 나타낸 평면도이며, 도 3은 본 발명의 제1 실시예에 따른 이차전지 제조방법의 수용단계에서 전극 조립체가 수용된 상태를 나타낸 평면도이다.
또한, 도 4는 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제1 실링단계를 나타낸 평면도이고, 도 5는 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이며, 도 6은 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제2 실링부 제거단계를 나타낸 평면도이다.
도 1 내지 도 6을 참고하면, 본 발명의 제1 실시예에 따른 이차전지 제조방법은 전지 케이스(110)에 전극 조립체(120)를 수용시키는 수용단계(S10)와, 전지 케이스(110)의 외주면(a,b,c)을 따라 실링하는 제1 실링단계(S20)와, 전해액을 주액하는 전해액 주액단계(S30)와, 제1 실링부(116) 및 제2 실링부(117)를 형성시키는 제2 실링단계(S40)와, 제2 실링부(117)가 형성된 부분을 제거하는 제2 실링부 제거단계(S50), 및 전극 조립체(120)에 전기를 인가하여 충전시키는 충전단계(S60)를 포함한다.
또한, 본 발명의 제1 실시예에 따른 이차전지 제조방법은 전극 조립체(120)가 전해액에 함침되도록 일정 시간 경과시키는 에이징 단계, 및 가스 포켓부(114)가 제거된 부위를 실링(Sealing)하는 제3 실링단계를 더 포함할 수 있다.
보다 상세히, 도 1 내지 도 3을 참고하면, 수용단계(S10)는 전극 조립체(120)가 수용되는 수용부(113) 및 수용부(113)와 연결되어 수용부(113)의 내부에서 발생한 가스를 포집하는 가스 포켓부(114)를 포함하는 전지 케이스(110)에 전극 조립체(120)를 수용시킬 수 있다.
이때, 수용단계(S10)는 시트 형태의 전지 케이스(110)에 형성된 수용부(113)에 전극 조립체(120)를 수용시킨 후, 가상의 선(X)을 따라 전지 케이스(110)를 접어 수용부(113)를 덮을 수 있다.
여기서, 전지 케이스(110)는 상부 케이스(111) 및 하부 케이스(112)를 포함할 수 있다.
그리고, 전지 케이스(110)는 플랙서블(Flexible) 재질로 이루어질 수 있다.
전극 조립체(120)는 충방전이 가능한 발전소자로서, 전극 및 분리막이 교대로 적층되어 결집된 형태로 형성될 수 있다.
전극은 양극 및 음극을 포함하여, 양극, 분리막, 및 음극이 교대로 위치될 수 있다.
또한, 전극 조립체(120)는 전극의 단부와 연결된 전극 리드(121)를 더 포함할 수 있다. 여기서, 전극 리드(121)를 통해 전극 조립체(120)는 외부장치와 전기적으로 연결될 수 있다.
도 1 및 도 4를 참고하면, 제1 실링단계(S20)는 전지 케이스(110)의 외주면(a,b,c)을 따라 실링하되, 가스 포켓부(114)의 단부를 제외하고 실링할 수 있다. 즉, 제1 실링단계(S20)는 전지 케이스(110)의 4방향 전체 외주면(a,b,c,d)에서 가스 포켓부(114)의 단부에 위치되는 외주면(d)을 제외하고, 나머지 전지 케이스(110)의 3방향 외주면(a,b,c)을 실링하여 초기 실링부(115)를 형성시킬 수 있다.
전해액 주액단계(S30)는 가스 포켓부(114)의 단부를 통해 수용부(113)로 전해액을 주액할 수 있다. 이때, 전해액 주액단계(S30)는 예를 들어 가스 포켓부(114)의 단부로 주액관을 삽입하여 전해액을 가스 포켓부(114)에서 수용부(113) 방향으로 주액할 수 있다.
도 1 및 도 5를 참고하면, 제2 실링단계(S40)는 가스 포켓부(114)의 단부를 이중실링하되, 수용부(113)와 가까운 측에 제1 실링부(116)를 형성시키고, 먼 측에 제2 실링부(117)를 형성시킬 수 있다.
또한, 제2 실링단계(S40)는 제1 실링부(116)를 실링 라인(L)을 따라 디개스용 미융착부(S12) 및 융착부(S11)가 형성되도록 불연속적으로 형성시킬 수 있다. 이에 따라, 이후 충전단계(S60)를 통해 발생되는 가스로 내부 압력 증가 시 디개스용 미융착부(S12)가 벌어지며 내부 가스가 디개스용 미융착부(S12)를 통해 외부로 배출될 수 있다.
또한, 제2 실링단계(S40)는 상부 케이스(111) 및 하부 케이스(112)를 상호 열융착시키며 제1 실링부(116) 및 제2 실링부(117)를 형성시키되, 디개스용 미융착부(S12)에 위치된 상부 케이스(111) 및 하부 케이스(112) 부분은 상호 접하도록 제1 실링부(116)를 실링할 수 있다.
아울러, 제2 실링단계(S40)는 예를 들어 디개스용 미융착부(S12)가 다수개 형성되도록 실링할 수 있다.
그리고, 제2 실링단계(S40)는 제2 실링부(117)를 전지 케이스(110)에서 가스 포켓부(114)의 가장자리를 연속적으로 실링하여 형성시킬 수 있다.
즉, 제2 실링단계(S40)는 가스 포켓부(114)의 단부를 이중실링하되, 가스 포켓부(114)의 단부를 따라 제1 실링부(116)를 부분 실링시키고, 제2 실링부(117)를 완전 실링할 수 있다. 이때, 제1 실링부(116)는 불연속적인 실링 라인을 형성하여 실링되지 않은 미융착 부분이 형성되지만, 제2 실링부(117)는 연속적으로 실링 라인이 형성되어 미융착 부분이 없이 연속적으로 완전 융착된 실링 라인을 형성할 수 있다.
도 1, 도 5 및 도 6을 참고하면, 제2 실링부 제거단계(S50)는 전지 케이스(110)에서 제2 실링부(117)가 형성된 부분을 제거할 수 있다.
이때, 제2 실링부 제거단계(S50)는 제1 실링부(116) 및 제2 실링부(117) 사이의 가상의 라인을 따라 전지 케이스(110) 부분을 절개하여 제2 실링부(117)가 형성된 부분을 제거할 수 있다.
충전단계(S60)는 전극 조립체(120)에 전기를 인가하여 충전시킬 수 있다. 이때, 충전단계(S60)를 통해 이차전지(100)가 활성화 될 수 있다.
에이징(aging) 단계는 충전단계(S60)를 거친 후, 전극 조립체(120)가 전해액에 함침되도록 일정 시간 경과시킬 수 있다. 이때, 에이징 단계를 통해 전극 및 분리막 사이 사이가 전해액에 함침되며 리튬 이온의 이동을 원활하게 할 수 있다.
도 7은 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제3 실링단계를 나타낸 평면도이다.
도 1 및 도 7을 참고하면, 제3 실링단계는 충전단계(S60)를 거친 후, 전지 케이스(110)에서 가스 포켓부(114)를 절단하여 제거하고, 전지 케이스(110)에서 가스 포켓부(114)가 제거된 부위를 실링하여 이차전지(100)를 제조할 수 있다. 이때, 예를 들어 충전단계(S60) 이후 에이징 단계를 더 거친 후 제3 실링단계를 실행할 수 있다.
여기서, 제3 실링단계를 통해 전지 케이스(110)에서 가스 포켓부(114)가 제거된 부위에 밀봉 실링부(118)가 형성되면 전지 케이스(110)의 내부를 밀봉할 수 있다.
도 1, 도 5 및 도 6을 참고하면, 상기와 같이 구성된 본 발명의 제1 실시예에 따른 이차전지 제조방법은 제2 실링단계(S40)에서 전지 케이스(110)의 가스 포켓부(114)에 디개스용 미융착부(S12) 및 융착부(S11)가 형성되도록 제1 실링부(116)를 형성시켜, 이차전지(100)를 충전할 때, 발생되는 가스로 내부 압력 증가 시 디개스용 미융착부(S12)가 벌어지며 내부 가스가 디개스용 미융착부(S12)를 통해 외부로 자동 배출될 수 있다. 이에 따라, 이차전지(100)의 부피 증가를 방지하고, 전극 내에 기체가 잔류하지 않게 되어 리튬 이온의 석출이 방지될 수 있다.
또한, 제2 실링단계(S40)에서 부분 실링된 제1 실링부(116) 및 완전 실링된 제2 실링부(117)가 형성되도록 전지 케이스(110)를 이중실링하고, 충전단계(S30) 전에 제2 실링부(117)를 제거함으로써, 전해액 주액단계(S30)를 통해 전해액을 전지 케이스(110)의 내부로 주액한 이후 충전단계(S60) 사이의 제조과정에서 외부 기체 등이 전지 케이스(110)의 내부로 유입되는 것을 방지할 수 있다.
한편, 도 1 및 도 5를 참고하면, 본 발명의 제1 실시예에 따른 이차전지 제조방법에서 제2 실링단계(S40)는 예를 들어 디개스용 미융착부(S12)의 너비가 전지 케이스(110)의 끝단 방향으로 갈수록 좁아지는 형태로 형성되도록 실링할 수 있다.
도 8은 본 발명의 제2 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 1 및 도 8을 참고하면, 본 발명의 제2 실시예에 따른 이차전지 제조방법은 전술한 제1 실시예에 따른 이차전지 제조방법과 비교할 때, 제2 실링단계(S40)에서 제1 실링부(216)를 다른 형태로 형성시켜 이차전지(200)를 제조하는 차이가 있다. 따라서, 본 실시예는 제1 실시예와 중복되는 내용은 생략하고, 차이점을 기술하도록 한다.
본 발명의 제2 실시예에 따른 이차전지 제조방법에서 제2 실링단계(S40)는 제1 실링부(216) 및 제2 실링부(217)를 형성시키되, 제1 실링부(216)를 실링 라인을 따라 디개스용 미융착부(S22) 및 융착부(S21)가 형성되도록 불연속적으로 형성시킬 수 있다. 여기서, 제2 실링단계(S40)는 예를 들어 디개스용 미융착부(S22)의 너비가 전지 케이스(210)의 끝단 방향으로 갈수록 좁아지는 형태로 형성되도록 실링할 수 있다.
이때, 제2 실링단계(S40)는 디개스용 미융착부(S22)의 양측변 중에서 일측변은 직선형태로 형성되고, 타측변은 대각선 형태로 형성되도록 제1 실링부(216)를 형성시킬 수 있다.
도 9는 본 발명의 제3 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 1 및 도 9를 참고하면, 본 발명의 제3 실시예에 따른 이차전지 제조방법은 전술한 제1 실시예 및 제2 실시에 따른 이차전지 제조방법과 비교할 때, 제2 실링단계(S40)에서 제1 실링부(316)를 다른 형태로 형성시켜 이차전지(300)를 제조하는 차이가 있다. 따라서, 본 실시예는 전술한 실시예들과 중복되는 내용은 생략하고, 차이점을 기술하도록 한다.
본 발명의 제3 실시예에 따른 이차전지 제조방법에서 제2 실링단계(S40)는 제1 실링부(316) 및 제2 실링부(317)를 형성시키되, 디개스용 미융착부(S32) 및 융착부(S31)가 형성되도록 제1 실링부(316)를 형성시킬 수 있다. 여기서, 제2 실링단계(S40)는 예를 들어 디개스용 미융착부(S32)가 복수개로 절곡된 형태가 되도록 제1 실링부(316)를 형성시킬 수 있다. 이에 따라, 이후 충전단계(S60)를 통해 발생되는 가스로 내부 압력 증가 시, 디개스용 미융착부(S32)가 벌어지며 다수로 절곡된 통로를 형성시키며 내부 가스가 디개스용 미융착부(S32)를 통해 전지 케이스(310)외부로 배출될 수 있다.
도 10은 본 발명의 제4 실시예에 따른 이차전지 제조방법에서 제2 실링단계를 나타낸 평면도이다.
도 1 및 도 10을 참고하면, 본 발명의 제4 실시예에 따른 이차전지 제조방법은 전술한 제1 실시예 내지 제3 실시에 따른 이차전지 제조방법과 비교할 때, 제2 실링단계(S40)에서 제1 실링부(416)를 다른 형태로 형성시켜 이차전지(400)를 제조하는 차이가 있다. 따라서, 본 실시예는 전술한 실시예들과 중복되는 내용은 생략하고, 차이점을 기술하도록 한다.
본 발명의 제4 실시예에 따른 이차전지 제조방법에서 제2 실링단계(S40)는 제1 실링부(416) 및 제2 실링부(417)를 형성시키되, 디개스용 미융착부(S42) 및 융착부(S41)가 형성되도록 제1 실링부(416)를 형성시킬 수 있다. 여기서, 제2 실링단계(S40)는 예를 들어 디개스용 미융착부(S42)가 복수개로 절곡된 형태가 되도록 실링할 수 있다.
이때, 제2 실링단계(S40)에서 디개스용 미융착부(S42)는 지그재그(Zig-Zag)로 절곡된 형태가 되도록 실링할 수 있다.
이에 따라, 이후 충전단계(S60)를 통해 발생되는 가스로 내부 압력 증가 시, 디개스용 미융착부(S42)가 벌어지며 지그재그로 절곡된 통로를 형성시키며 내부 가스가 디개스용 미융착부(S42)를 통해 전지 케이스(410)외부로 배출될 수 있다.
도 11은 본 발명의 제5 실시예에 따른 이차전지 제조방법에서 제2 실링단계 및 가 밀봉단계를 나타낸 평면도이고, 도 12는 본 발명의 제5 실시예에 따른 이차전지 제조방법에서 제2 실링부 제거단계를 나타낸 평면도이며, 도 13은 도 12에서 A-A'선을 따라 절개한 단면도이다.
도 1 및 도 11을 참고하면, 본 발명의 제5 실시예에 따른 이차전지 제조방법은 전술한 제1 실시예 내지 제4 실시예에 따른 이차전지 제조방법과 비교할 때, 가 밀봉단계를 더 포함하여 이차전지(500)를 제조하는 차이가 있다. 따라서, 본 실시예는 전술한 실시예들과 중복되는 내용은 생략하고, 차이점을 기술하도록 한다.
도 1, 및 도 11 내지 도 13을 참고하면, 본 발명의 제5 실시예에 따른 이차전지 제조방법에서 제2 실링단계(S40)는 제1 실링부(516) 및 제2 실링부(517)를 형성시키되, 디개스용 미융착부(S52) 및 융착부(S51)가 형성되도록 제1 실링부(516)를 형성시킬 수 있다. 여기서, 제2 실링단계(S40)는 예를 들어 디개스용 미융착부(S52)가 지그재그로 절곡된 형태가 되도록 실링할 수 있다.
가 밀봉단계는 디개스용 미융착부(S52)의 단부에 점착액(V)을 위치시켜 디개스용 미융착부(S52)에 위치된 상부 케이스(111) 및 하부 케이스(112) 부분을 상호 점착시킬 수 있다. 이에 따라, 제2 실링부 제거단계(S50)를 통해 제2 실링부(517)가 제거된 후 디개스용 미융착부(S52)를 통해 이물질 또는 수분이 전지 케이스(510) 내부로 유입되는 것을 방지할 수 있다. 여기서, 내부 압력이 소정 압력 이상에 도달되면 디개스용 미융착부(S52)에 위치된 상부 케이스(111) 및 하부 케이스(112) 부분 사이의 점착력이 해제되며 가스가 배출될 수 있다.
한편, 가 밀봉단계는 일례로 제2 실링단계(S40)에서 제1 실링부(516)를 형성시킨 후 실행될 수 있다.
또한, 가 밀봉단계는 다른 예로 제2 실링부 제거단계(S50) 후에 제2 실링부(517)가 제거된 상태에서 실행될 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 이차전지 제조방법은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
100,200,300,400,500: 이차전지
110,210,310,410,510: 전지 케이스
111: 상부 케이스
112: 하부 케이스
113: 수용부
114: 가스 포켓부
115: 초기 실링부
116,216,316,416,516 : 제1 실링부
117,217,317,417,517 : 제2 실링부
118: 밀봉 실링부
120: 전극 조립체
121: 전극 리드
a,b,c,d: 외주면
S11,S21,S31,S41,S51: 융착부
S12,S22,S32,S42,S52: 미융착부
V: 점착액

Claims (14)

  1. 전극 조립체가 수용되는 수용부 및 상기 수용부와 연결되어 상기 수용부의 내부에서 발생한 가스를 포집하는 가스 포켓부를 포함하는 전지 케이스에 전극 조립체를 수용시키는 수용단계;
    상기 전지 케이스의 외주면을 따라 실링하되 상기 가스 포켓부의 단부를 제외하고 실링하는 제1 실링단계;
    상기 가스 포켓부의 단부를 통해 상기 수용부로 전해액을 주액하는 전해액 주액단계;
    상기 가스 포켓부의 단부를 이중실링하되, 상기 수용부와 가까운 측에 제1 실링부를 형성시키고, 먼 측에 제2 실링부를 형성시키는 제2 실링단계;
    상기 전지 케이스에서 상기 제2 실링부가 형성된 부분을 제거하는 제2 실링부 제거단계; 및
    상기 전극 조립체에 전기를 인가하여 충전시키는 충전단계를 포함하고,
    상기 제2 실링단계는 상기 제1 실링부를 실링 라인을 따라 디개스용 미융착부 및 융착부가 형성되도록 불연속적으로 형성시켜, 상기 충전단계를 통해 발생되는 가스로 내부 압력 증가 시 상기 디개스용 미융착부가 벌어지며 내부 가스가 상기 디개스용 미융착부를 통해 외부로 배출되는 이차전지 제조방법.
  2. 청구항 1에 있어서,
    상기 충전단계를 거친 후,
    상기 전극 조립체가 상기 전해액에 함침되도록 일정 시간 경과시키는 에이징 단계를 더 포함하는 이차전지 제조방법.
  3. 청구항 1에 있어서,
    상기 전지 케이스는 상부 케이스 및 하부 케이스를 포함하고,
    상기 제2 실링단계는 상기 상부 케이스 및 상기 하부 케이스를 상호 열융착시키며 상기 제1 실링부 및 상기 제2 실링부를 형성시키되,
    상기 디개스용 미융착부에 위치된 상기 상부 케이스 및 상기 하부 케이스 부분은 상호 접하도록 상기 제1 실링부를 실링하는 이차전지 제조방법.
  4. 청구항 3에 있어서,
    상기 제2 실링단계는
    상기 디개스용 미융착부가 다수개 형성되도록 실링하는 이차전지 제조방법.
  5. 청구항 3에 있어서,
    상기 제2 실링단계는
    상기 디개스용 미융착부의 너비가 상기 전지 케이스의 끝단 방향으로 갈수록 좁아지는 형태로 형성되도록 상기 제1 실링부를 형성시키는 이차전지 제조방법.
  6. 청구항 5에 있어서,
    상기 제2 실링단계는
    상기 디개스용 미융착부의 양측변 중에서 일측변은 직선형태로 형성되고, 타측변은 대각선 형태로 형성되도록 상기 제1 실링부를 형성시키는 이차전지 제조방법.
  7. 청구항 3에 있어서,
    상기 제2 실링단계는
    상기 디개스용 미융착부가 복수개로 절곡된 형태가 되도록 상기 제1 실링부를 형성시키는 이차전지 제조방법.
  8. 청구항 7에 있어서,
    상기 제2 실링단계에서
    상기 디개스용 미융착부는 지그재그로 절곡된 형태가 되도록 상기 제1 실링부를 형성시키는 이차전지 제조방법.
  9. 청구항 3에 있어서,
    상기 디개스용 미융착부의 단부에 점착액을 위치시켜 디개스용 미융착부에 위치된 상기 상부 케이스 및 상기 하부 케이스 부분을 상호 점착시키는 가 밀봉단계를 더 포함하여,
    내부 압력이 소정 압력 이상에 도달되면 상기 디개스용 미융착부에 위치된 상기 상부 케이스 및 상기 하부 케이스 부분 사이의 점착력이 해제되며 가스가 배출되는 이차전지 제조방법.
  10. 청구항 9에 있어서,
    상기 가 밀봉단계는
    상기 제2 실링단계에서 상기 제1 실링부를 형성시킨 후 실행되는 이차전지 제조방법.
  11. 청구항 9에 있어서,
    상기 가 밀봉단계는
    상기 제2 실링부 제거단계 후에 상기 제2 실링부가 제거된 상태에서 실행되는 이차전지 제조방법.
  12. 청구항 1에 있어서,
    상기 충전단계를 거친 후,
    상기 전지 케이스에서 상기 가스 포켓부를 절단하여 제거하고, 상기 전지 케이스에서 상기 가스 포켓부가 제거된 부위를 실링하는 제3 실링단계를 더 포함하는 이차전지 제조방법.
  13. 청구항 1에 있어서,
    상기 전지 케이스는 플랙서블(Flexible) 재질로 이루어지는 이차전지 제조방법.
  14. 청구항 1 내지 청구항 13 중 어느 한 항에 기재된 이차전지 제조방법으로 제조된 이차전지.
PCT/KR2020/010210 2019-09-16 2020-08-03 이차전지 제조방법 및 이차전지 WO2021054603A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/606,942 US11876185B2 (en) 2019-09-16 2020-08-03 Method for manufacturing secondary battery and secondary battery
EP20865190.1A EP3944386A4 (en) 2019-09-16 2020-08-03 SECONDARY BATTERY PRODUCTION METHOD AND SECONDARY BATTERY
CN202080029906.XA CN113767515B (zh) 2019-09-16 2020-08-03 制造二次电池的方法和二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0113711 2019-09-16
KR1020190113711A KR20210032219A (ko) 2019-09-16 2019-09-16 이차전지 제조방법 및 이차전지

Publications (1)

Publication Number Publication Date
WO2021054603A1 true WO2021054603A1 (ko) 2021-03-25

Family

ID=74883023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010210 WO2021054603A1 (ko) 2019-09-16 2020-08-03 이차전지 제조방법 및 이차전지

Country Status (5)

Country Link
US (1) US11876185B2 (ko)
EP (1) EP3944386A4 (ko)
KR (1) KR20210032219A (ko)
CN (1) CN113767515B (ko)
WO (1) WO2021054603A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285275A1 (de) * 2021-07-12 2023-01-19 Körber Technologies Gmbh Verfahren zur herstellung eines verbundelements sowie korrespondierendes zwischenprodukt und maschine
US20230088026A1 (en) * 2021-09-17 2023-03-23 GM Global Technology Operations LLC System for detection and termination of thermal runaway in battery cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172952B (zh) * 2022-09-07 2022-12-02 楚能新能源股份有限公司 一种软包电芯气袋结构及软包电芯封装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015647A (ko) 2012-06-22 2014-02-07 주식회사 엘지화학 이차전지용 전극조립체, 그 제조방법 및 이를 이용한 이차전지
KR20140046174A (ko) * 2012-10-10 2014-04-18 에스케이이노베이션 주식회사 파우치형 이차전지 제조방법 및 파우치형 이차전지
KR20160080559A (ko) * 2014-12-30 2016-07-08 주식회사 엘지화학 실링부가 보강된 파우치형 이차 전지 및 이의 제조 방법
KR20180059373A (ko) * 2016-11-25 2018-06-04 주식회사 엘지화학 파우치형 이차전지의 제조방법 및 이에 사용되는 지그
KR20190042797A (ko) * 2017-10-17 2019-04-25 주식회사 엘지화학 패턴 실링 단계를 포함하는 파우치형 이차전지의 제조방법
KR20190055594A (ko) * 2017-11-15 2019-05-23 주식회사 엘지화학 이차 전지 및 그의 제조 방법, 이차 전지용 파우치 및 그의 제조 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040081521A (ko) 2003-03-13 2004-09-22 주식회사 엘지화학 전지 케이스에 안전판이 구비된 리튬 2차 전지 및 그제조방법
JP2009021067A (ja) 2007-07-11 2009-01-29 Fuji Heavy Ind Ltd 蓄電組立体
JP2010267593A (ja) 2009-05-18 2010-11-25 Fuji Heavy Ind Ltd 蓄電デバイス
KR101082196B1 (ko) 2009-12-23 2011-11-09 삼성에스디아이 주식회사 이차 전지 및 이차 전지의 제조방법
JP6084232B2 (ja) * 2012-02-02 2017-02-22 エルジー・ケム・リミテッド ジグザグ状のシール部を含む二次電池
JP5958545B2 (ja) 2012-09-14 2016-08-02 日産自動車株式会社 車載用バッテリパックの圧力開放構造
CN103000960A (zh) * 2012-12-27 2013-03-27 天津力神电池股份有限公司 锂离子软包装电池的封装方法及封装装置
EP3098891A4 (en) * 2014-01-24 2016-11-30 Nissan Motor ELECTRICAL DEVICE
KR101675012B1 (ko) * 2014-03-31 2016-11-10 주식회사 엘지화학 배터리 셀 제조방법
JP6593626B2 (ja) * 2015-06-17 2019-10-23 セイコーインスツル株式会社 電気化学セル
KR102006669B1 (ko) * 2015-08-13 2019-08-02 주식회사 엘지화학 열가소성 수지를 적용한 전지케이스 및 이를 포함하는 전지셀 제조방법
CN205543089U (zh) * 2016-01-22 2016-08-31 北京波士顿动力电池有限公司 一种锂离子电池
KR102123078B1 (ko) 2016-05-24 2020-06-15 주식회사 엘지화학 이차전지의 제조방법
KR102069213B1 (ko) * 2017-01-23 2020-01-22 주식회사 엘지화학 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
KR102649923B1 (ko) * 2017-02-13 2024-03-20 주식회사 엘지에너지솔루션 파우치형 이차전지의 제조방법
KR102143625B1 (ko) 2017-11-14 2020-08-11 삼성에스디아이 주식회사 미실링부를 갖는 파우치 타입 이차 전지
KR102320016B1 (ko) 2017-12-15 2021-11-02 주식회사 엘지에너지솔루션 이차전지의 제조방법
KR20190074591A (ko) * 2017-12-20 2019-06-28 주식회사 엘지화학 이차전지 제조방법 및 이차전지 제조장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015647A (ko) 2012-06-22 2014-02-07 주식회사 엘지화학 이차전지용 전극조립체, 그 제조방법 및 이를 이용한 이차전지
KR20140046174A (ko) * 2012-10-10 2014-04-18 에스케이이노베이션 주식회사 파우치형 이차전지 제조방법 및 파우치형 이차전지
KR20160080559A (ko) * 2014-12-30 2016-07-08 주식회사 엘지화학 실링부가 보강된 파우치형 이차 전지 및 이의 제조 방법
KR20180059373A (ko) * 2016-11-25 2018-06-04 주식회사 엘지화학 파우치형 이차전지의 제조방법 및 이에 사용되는 지그
KR20190042797A (ko) * 2017-10-17 2019-04-25 주식회사 엘지화학 패턴 실링 단계를 포함하는 파우치형 이차전지의 제조방법
KR20190055594A (ko) * 2017-11-15 2019-05-23 주식회사 엘지화학 이차 전지 및 그의 제조 방법, 이차 전지용 파우치 및 그의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944386A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285275A1 (de) * 2021-07-12 2023-01-19 Körber Technologies Gmbh Verfahren zur herstellung eines verbundelements sowie korrespondierendes zwischenprodukt und maschine
US20230088026A1 (en) * 2021-09-17 2023-03-23 GM Global Technology Operations LLC System for detection and termination of thermal runaway in battery cells

Also Published As

Publication number Publication date
US11876185B2 (en) 2024-01-16
EP3944386A4 (en) 2022-06-15
CN113767515B (zh) 2024-02-23
EP3944386A1 (en) 2022-01-26
CN113767515A (zh) 2021-12-07
US20220238924A1 (en) 2022-07-28
KR20210032219A (ko) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2021054603A1 (ko) 이차전지 제조방법 및 이차전지
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2019208911A1 (ko) 가스배출수단이 구비된 파우치형 이차전지
WO2014073751A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
WO2020159306A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
WO2011115464A2 (ko) 파우치형 케이스 및 이를 포함하는 전지팩
WO2014168397A1 (ko) 라운드 코너를 포함하는 전지셀
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
WO2014017864A1 (ko) 이차전지
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2012177083A2 (ko) 파우치 및 파우치형 이차전지
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2021038545A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2021107315A1 (ko) 전극조립체 및 그 제조방법
WO2021075710A1 (ko) 이차 전지 및 이를 포함하는 디바이스
WO2018048095A1 (ko) 이차 전지
WO2022108335A1 (ko) 이차전지 및 그 제조방법
WO2022215881A1 (ko) 이차전지 및 이의 제조 방법
WO2018056557A1 (ko) 이차 전지, 전극 조립체 및 전극 조립체 제조 방법
WO2022010237A1 (ko) 이차전지
WO2018074846A1 (ko) 이차 전지
WO2021153922A1 (ko) 이차전지 및 이차전지의 제조 방법
WO2020111695A1 (ko) 셀 성능 측정방법
WO2022092570A1 (ko) 포케팅 양극체의 제조방법, 포케팅 양극체 및 포케팅 양극체를 포함하는 전극조립체
WO2022139448A1 (ko) 파우치 및 이를 포함하는 이차전지와, 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020865190

Country of ref document: EP

Effective date: 20211018

NENP Non-entry into the national phase

Ref country code: DE