WO2021054284A1 - Pattern formation composition and pattern formation method - Google Patents

Pattern formation composition and pattern formation method Download PDF

Info

Publication number
WO2021054284A1
WO2021054284A1 PCT/JP2020/034708 JP2020034708W WO2021054284A1 WO 2021054284 A1 WO2021054284 A1 WO 2021054284A1 JP 2020034708 W JP2020034708 W JP 2020034708W WO 2021054284 A1 WO2021054284 A1 WO 2021054284A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
group
metal
forming film
atom
Prior art date
Application number
PCT/JP2020/034708
Other languages
French (fr)
Japanese (ja)
Inventor
田中 宏樹
泰明 田中
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019172107A external-priority patent/JP7342563B2/en
Priority claimed from JP2019172108A external-priority patent/JP7347066B2/en
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2021054284A1 publication Critical patent/WO2021054284A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a pattern-forming composition and a pattern-forming method.
  • a pattern forming method include a double patterning method, a lithography method using an electron beam, a nanoimprint method, and an induced self-assembling material (Directed Self Assembly, hereinafter also referred to as a pattern forming self-assembling composition).
  • the pattern formation method by self-assembly used is known.
  • the self-assembling composition for pattern formation performs self-assembling by performing phase separation, an expensive electron beam drawing apparatus is not required, and the patterning process complicated as seen in the double patterning method is not complicated, so that the cost is increased. There are the above merits.
  • diblock copolymers such as polystyrene-polymethylmethacrylate (PS-PMMA) are known (for example, Patent Document 1).
  • Patent Document 2 discloses a self-assembling composition for pattern formation having a styrene-based polymer, an acrylic-based polymer, or the like as a main chain and having a group containing a heteroatom at the end thereof.
  • an etching step may be provided in which the pattern is used as a protective film and the pattern shape is further processed on the silicon wafer substrate.
  • the etching processability at the time of processing the pattern shape on the substrate may be inferior, which has been a problem.
  • the present inventors have studied for the purpose of providing a pattern forming composition capable of forming a pattern forming film exhibiting excellent etching processability. I proceeded.
  • the present invention has the following configuration.
  • a pattern-forming composition containing a polymer Let Pr be the free volume radius of the polymer When the nuclear radius of the metal introduced when forming a pattern from the pattern forming composition is Mr. A composition for pattern formation that satisfies the condition of 2 ⁇ Pr / Mr ⁇ 3.3. [2] When the pattern-forming composition is applied onto a substrate to form a pattern-forming film having a thickness of 300 nm, and a metal gas is introduced into the pattern-forming film under a pressure of 500 Pa for 300 seconds. The total content of metal contained in the pattern forming film is 4.0 atom% or more.
  • the A / B value is 10.0 or less.
  • the pattern-forming composition [3] The pattern-forming composition according to [1] or [2], wherein the polymer contains a unit derived from a sugar derivative. [4] The pattern according to [3], wherein the unit derived from the sugar derivative includes at least one selected from the structure represented by the following general formula (103) and the structure represented by the following general formula (104).
  • R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, and a plurality of them. Some R 1s may be the same or different; R 5 represents a hydrogen atom or an alkyl group; X 1 and Y 1 each independently represent a single bond or a linking group; r represents an integer greater than or equal to 1.
  • R 11 represents a hydrogen atom, an alkyl group having 1 or more and 3 or less carbon atoms or a hydroxyl group
  • R 12 Represents a hydrogen atom, a hydroxyl group, an acetyl group, a methoxycarbonyl group, an aryl group, an allyl group, a glycidyl ether group, a glycidyl ester group, an isocyanate ester group or a pyridyl group.
  • the total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more.
  • the A / B value is 10.0 or less.
  • the pattern forming method according to [8]. [10] The pattern forming method according to [8] or [9], further comprising a step of forming a pattern on the pattern forming film after the step of forming the pattern forming film.
  • the present invention it is possible to improve the etching processability when processing a pattern shape on a substrate after forming a pattern forming film from a pattern forming composition.
  • FIG. 1 is a graph showing the depth profile (XPS measurement) of the Al content in the pattern forming film obtained in Examples and Comparative Examples.
  • FIG. 2 is a schematic view illustrating a process of forming a pattern on a substrate.
  • the present invention relates to a pattern-forming composition containing a polymer.
  • a metal is introduced into the pattern-forming film formed from the pattern-forming composition of the present invention.
  • the nuclear radius of the metal introduced into the pattern-forming film is Mr, and the pattern-forming film of the present invention is used.
  • the free volume radius of the polymer contained in the composition is Pr
  • the condition of 2 ⁇ Pr / Mr ⁇ 3.3 is satisfied.
  • the present invention relates to a pattern forming composition containing a polymer having a free volume radius (Pr) satisfying the above conditions with respect to the nuclear radius (Mr) of the metal introduced in the pattern forming step. It is a thing.
  • the nuclear radius (Mr) of the metal introduced into the pattern-forming film is determined by E Clementi, D L Ramondo, WP Reinhardt (1963), J Chem Phys. It is a value quoted from 38: 2686. Even when the metal introduced into the pattern forming film is a metal oxide such as Al 2 O 3 , the nuclear radius of the metal element (Al) may satisfy the above conditions.
  • the free volume radius (Pr) of the polymer is a value measured as follows. First, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 500 nm, it is fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film. Next, the free volume radius (Pr) of the polymer is calculated by measuring the positron annihilation lifetime of the formed pattern-forming film.
  • the pattern-forming film is installed in the positron annihilation lifetime measuring device.
  • the positron annihilation life measuring device for example, a small positron beam generator PALS-200A manufactured by Fuji Invac can be used.
  • the preferred free volume radius (Pr) of the polymer depends on the nuclear radius of the metal introduced into the pattern forming film, but for example, the free volume radius (Pr) of the polymer is preferably 0.10 nm or more, and is 0. It is more preferably 20 nm or more, and further preferably 0.25 nm or more.
  • the free volume radius (Pr) of the polymer is preferably 0.50 nm or less, more preferably 0.40 nm or less, and further preferably 0.35 nm or less.
  • the content of the unit derived from the sugar derivative constituting the polymer is adjusted, the degree of polymerization of the sugar portion and the length of the sugar chain are adjusted. It is conceivable to adjust or appropriately adjust the content of the constituent units other than the unit derived from the sugar derivative.
  • the value of Pr / Mr may be 2 or more, preferably 2.1 or more, more preferably 2.2 or more, further preferably 2.3 or more, and 2.4 or more. Is particularly preferable.
  • the Pr / Mr value may be 3.3 or less, preferably 3.2 or less, more preferably 3.1 or less, and even more preferably 3.0 or less.
  • the etching processability can be evaluated by calculating the etching selectivity, and the etching selectivity can be calculated, for example, as follows.
  • a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass.
  • the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 300 nm, it is fired on a hot plate at 230 ° C. for 1 minute to form a pattern-forming film.
  • the mask is masked with an ArF excimer laser exposure machine so as to have a line-and-space shape (line width 100 nm, space width 100 nm), and exposure is performed using a commercially available ArF resist. Then, after firing on a hot plate at 105 ° C. for 1 minute, a line-and-space pattern is produced by immersing the developing solution. Next, this pattern sample is subjected to oxygen plasma treatment (100 sccm, 4 Pa, 100 W, 60 seconds) on the substrate by an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) to form a line and space pattern on the pattern forming film. To do.
  • oxygen plasma treatment 100 sccm, 4 Pa, 100 W, 60 seconds
  • this pattern-forming film was placed in ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was introduced at 95 ° C. for 300 seconds. , Introduce steam for 150 seconds. By repeating this operation three times, Al 2 O 3 is introduced into the pattern forming film.
  • plasma treatment 100 sccm, 0.4 Pa, 200 W, 120 seconds
  • ICP plasma etching apparatus manufactured by Tokyo Electron Limited
  • the cross section where the pattern of the silicon oxide film is formed before and after the plasma treatment is observed with a scanning electron microscope (SEM) JSM7800F (manufactured by JEOL Ltd.) at an acceleration voltage of 1.5 kV, an emission current of 37.0 ⁇ A, and a magnification of 100,000 times. Then, the thickness of the pattern-forming film into which the metal is introduced and the depth of processing into the silicon oxide film portion are measured, and the etching selectivity is calculated by the following formula.
  • Etching selectivity Processing depth to silicon oxide film / (Thickness of pattern forming film before plasma treatment-Thickness of pattern forming film after plasma treatment)
  • the etching selectivity is preferably larger than 2.0, more preferably 2.5 or more, further preferably 3.0 or more, further preferably 5.0 or more, and 10.0 or more. Is particularly preferable.
  • the etching selectivity is within the above range, it can be determined that the etching processability when processing the pattern shape on the substrate is good. If the etching processability is good, it is generally possible to dig deep into the substrate.
  • the maximum metal content (atom%) when the metal is introduced into the pattern forming film is preferably 15 atom% or more, more preferably 20 atom% or more, and more preferably 25 atom% or more. It is more preferable to have.
  • the maximum metal content (atom%) when a metal is introduced into the pattern forming film is calculated as follows. First, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 300 nm, it is fired on a hot plate at 230 ° C.
  • the pattern-forming film was placed in an ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was introduced at 95 ° C. for 300 seconds. Introduce steam for 150 seconds. By repeating this operation three times, Al 2 O 3 is introduced into the pattern forming film.
  • the pattern-forming film after the introduction of Al 2 O 3 was installed in an XPS device (Nexsa XPS System manufactured by Thermo Fisher Scientific), and the concentration profile of Al element in the film thickness direction was determined by XPS analysis (X-ray photoelectron spectroscopy analysis). obtain.
  • the film thickness of the pattern forming film after the introduction of Al 2 O 3 is formed by scratching the sample surface with tweezers to expose the surface of the silicon substrate, and the step portion is formed by a palpation type profilometer (stock company). Obtained by measuring with the company Kosaka Seisakusho model number: ET-4000). That is, the maximum metal content (atom%) is the metal content at the thickness in which the most metal is contained in the thickness direction of the pattern forming film.
  • the metals to be introduced into the pattern forming film include Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga and Ge. , As, Rb, Sr, Y, Zr, Nb, Mo, Ru, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt , Au, Hg, Tl, Pb, Bi, Po, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like. Above all, it is preferable to use Al, B, Si, Sn, Te, Zr, and W as the metal to be introduced into the pattern forming film.
  • the pattern-forming composition when the pattern-forming composition is applied onto a substrate to form a pattern-forming film having a thickness of 300 nm, and a metal gas is introduced into the pattern-forming film under a pressure of 500 Pa for 300 seconds, a pattern is formed.
  • the total metal content in the forming film is 4.0 atom% or more, the maximum metal content in the thickness direction of the pattern forming film is Aatom%, and the metal content at the midpoint in the thickness direction of the pattern forming film.
  • the value of A / B is preferably 10.0 or less.
  • the pattern-forming composition of the present embodiment may satisfy the above conditions in the total content of the metal introduced in the pattern-forming step and the metal distribution in the pattern-forming film.
  • the pattern-forming composition of the present embodiment satisfies the above conditions, it is necessary to more effectively enhance the etching processability when processing the pattern shape on the substrate after forming the pattern-forming film from the pattern-forming composition. Can be done.
  • the total metal content (atom%) contained in the pattern forming film should be 4.0 atom% or more. It is preferable that the content is 4.5 atom% or more, and more preferably 5.0 atom% or more.
  • the total content of the metal contained in the pattern forming film is preferably 60 atom% or less, and more preferably 50 atom% or less.
  • the total metal content (atom%) is the content of the metal with respect to the total atomic weight in the pattern-forming film.
  • the total content of the metal contained in the pattern-forming film can be adjusted by selecting the metal species or adjusting the structural units constituting the polymer.
  • the total metal content (atom%) in the pattern-forming film is a value calculated from the depth profile (XPS measurement) of the Al content in the pattern-forming film, as will be described later. Specifically, the Al content at each depth in the pattern-forming film is plotted, an approximate curve is obtained by the nonlinear least squares method, and this is used as a depth profile. This profile is used to calculate the area of the film thickness range obtained by the stylus type step meter in the measurement of the maximum metal content (atom%) in the thickness direction of the pattern forming film described later from the integrated value. For simplicity, the profile printed on paper may be cut out and the total content may be calculated by weight comparison. At that time, the total content of 0% is set to 0 g by weight, and the total content of 100% is set so that the depth profiles are all 100%, and the weight of the printed and cut out product is used.
  • the maximum metal content in the thickness direction of the pattern forming film is set to Atom%
  • the maximum metal content in the thickness direction of the pattern forming film is set to Atom%.
  • the A / B value is preferably 10.0 or less, more preferably 9.0 or less, and 8.5 or less. The following is more preferable. Further, the A / B value is preferably 2 or less, and particularly preferably 1.5 or less. The A / B value can be adjusted by selecting the metal type or adjusting the constituent units constituting the polymer.
  • the fact that the A / B value is within the above range means that the metal infiltrates in the depth direction in the pattern forming film.
  • the surface of the pattern forming film contains the most metal.
  • the metal is used not only for the surface of the pattern-forming film but also for pattern-forming. It can also be distributed in the depth direction of the membrane. As a result, the strength of the pattern-forming film in the thickness direction can be increased, and a strong pattern-forming film is formed as a whole. As a result, it is possible to improve the etching processability when processing the pattern shape on the substrate after forming the pattern forming film on the substrate.
  • the maximum metal content (atom%) in the thickness direction of the pattern forming film is calculated as follows. First, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 300 nm, it is fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film.
  • the pattern-forming film was placed in an ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was introduced at 95 ° C. for 300 seconds. Introduce steam for 150 seconds. By repeating this operation three times, Al 2 O 3 is introduced into the pattern forming film.
  • the pattern-forming film after the introduction of Al 2 O 3 was installed in an XPS device (Nexsa XPS System manufactured by Thermo Fisher Scientific), and in XPS analysis (X-ray photoelectron spectroscopy analysis), sputtering using Ar ions and surface element concentration. The measurement and the film thickness measurement are repeated to obtain the concentration profile of the Al element in the film thickness direction.
  • the concentration profile of the Al element is, for example, a profile as shown in FIG.
  • the film thickness of the pattern forming film after the introduction of Al 2 O 3 is a tactile profilometer (Kosaka Co., Ltd.) that measures the stepped portion formed between the element concentration measurement performed portion and the unsputtered portion formed at each sputtering time. It is obtained by measuring with the model number: ET-4000) manufactured by Seisakusho. Then, the maximum concentration of the obtained Al element in the obtained concentration profile of the Al element becomes the maximum metal content (atom%).
  • the maximum metal content (atom%) in the thickness direction of the pattern forming film is preferably 15 atom% or more, more preferably 17 atom% or more, further preferably 20 atom% or more, and 25 atom% or more. Is particularly preferable. Further, the maximum metal content (atom%) in the thickness direction of the pattern forming film is preferably 50 atom% or less.
  • the metal content (atom%) at the midpoint in the thickness direction of the pattern forming film is the Al element in the film thickness direction obtained when the maximum metal content (atom%) in the thickness direction of the pattern forming film was calculated. It can be calculated from the concentration profile of. It can be calculated by reading the metal content at the midpoint in the thickness direction of the pattern forming film from the concentration profile of the Al element in the film thickness direction.
  • the metal content (atom%) at the midpoint in the thickness direction of the pattern forming film is preferably 1.5 atom% or more, more preferably 5 atom% or more, and further preferably 15 atom% or more. , 25 atom% or more is particularly preferable. Further, the metal content (atom%) at the midpoint in the thickness direction of the pattern forming film is preferably 50 atom% or less.
  • the pattern-forming composition of the present embodiment is preferably a pattern-forming mask material. That is, the pattern-forming film formed from the pattern-forming composition of the present embodiment preferably serves as a protective film when etching the substrate.
  • the pattern-forming film formed from the pattern-forming composition of the present embodiment can also be expected to have an effect on the gas permeability required for the nanoimprint method. Such a pattern-forming film may be peeled off after the etching step.
  • the pattern-forming composition of the present embodiment may be a pattern-forming self-organizing composition.
  • self-assembly Directed Self-Assembly
  • self-assembled film By applying a self-assembled composition for pattern formation on a substrate and performing annealing or the like, a film having a phase-separated structure by self-assembly (self-assembled film) is formed, and the self-assembled film is formed.
  • a pattern can be formed on the substrate.
  • Such a pattern shape serves as a protective film, and the substrate can be subjected to a desired etching process.
  • the pattern-forming composition of the present invention preferably contains a polymer, and the polymer preferably contains a unit derived from a sugar derivative.
  • the sugar derivative may be a monosaccharide-derived sugar derivative or a structure in which a plurality of monosaccharide-derived sugar derivatives are bonded.
  • the unit derived from the sugar derivative may be a structural unit having a sugar derivative-derived structure in the side chain, or a structural unit having a sugar derivative-derived structure in the main chain. There may be.
  • the unit derived from the sugar derivative is preferably at least one selected from the unit derived from the pentose derivative and the unit derived from the hexose derivative.
  • the pentose derivative is not particularly limited as long as it has a structure derived from pentose in which the hydroxyl group of the known monosaccharide or polysaccharide pentose is modified with at least a substituent.
  • the pentose derivative is preferably at least one selected from hemicellulose derivatives, xylose derivatives and xylooligosaccharide derivatives, and more preferably at least one selected from hemicellulose derivatives and xylooligosaccharide derivatives.
  • the hexose derivative is not particularly limited as long as it has a structure derived from hexose in which the hydroxyl group of the hexose of a known monosaccharide or polysaccharide is modified with at least a substituent.
  • the hexose derivative is preferably at least one selected from a glucose derivative and a cellulose derivative, and more preferably a cellulose derivative.
  • the unit derived from the sugar derivative is preferably at least one selected from the unit derived from the cellulose derivative, the unit derived from the hemicellulose derivative and the unit derived from the xylooligosaccharide derivative.
  • the unit derived from the sugar derivative preferably contains at least one selected from the structure represented by the following general formula (103) and the structure represented by the following general formula (104).
  • R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, and a plurality of them. there R 1 may be different even in the same.
  • R 5 represents a hydrogen atom or an alkyl group.
  • X 1 and Y 1 independently represent a single bond or a linking group, respectively.
  • r represents an integer of 1 or more, * mark any oxygen atoms r is or represents any one of the binding sites of R 1, or in place of R 1 bonded to R 1 in the case of two or more Represents the binding site with one.
  • R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, respectively.
  • a plurality of R 1s may be the same or different.
  • R 1 is independently a hydrogen atom or an acyl group having 1 or more and 3 or less carbon atoms.
  • the above alkyl group also includes a sugar chain. That is, the sugar chain portion in the general formulas (103) and (104) may further have a branched chain.
  • R 1 is an alkyl group or an acyl group
  • the number of carbon atoms thereof can be appropriately selected depending on the intended purpose.
  • the number of carbon atoms is preferably 2 or more, preferably 200 or less, more preferably 100 or less, further preferably 20 or less, and particularly preferably 4 or less.
  • R 1 examples include, for example, an acetyl group, a propanoyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, a chloroacetyl group, a trifluoroacetyl group, and a cyclopentanecarbonyl group.
  • Cyclohexanecarbonyl group benzoyl group, methoxybenzoyl group, chlorobenzoyl group and other acyl groups; methyl group, ethyl group, propyl group, butyl group, t-butyl group and other alkyl groups and the like.
  • an acetyl group, a propanoyl group, a butyryl group, and an isobutyryl group are preferable, and an acetyl group is particularly preferable.
  • R 5 represents a hydrogen atom or an alkyl group.
  • R 5 is preferably a hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms, and particularly preferably a hydrogen atom or a methyl group.
  • X 1 and Y 1 independently represent a single bond or a linking group, respectively.
  • X 1 is a linking group
  • the X 1 an alkylene group, -O -, - NH 2 - , but include groups containing a carbonyl group, or X 1 is a single bond, or carbon atoms It is preferably an alkylene group having 1 or more and 6 or less, and more preferably an alkylene group having 1 or more and 3 or less carbon atoms.
  • Y 1 may be a linking group in which these groups are combined. Among them, Y 1 is preferably a linking group represented by the following structural formula.
  • * mark represents the binding site with the main chain side
  • * mark represents the binding site with the sugar unit of the side chain
  • r represents an integer of 1 or more, and may be 2 or more or 3 or more. Further, r is preferably 1500 or less, more preferably 1200 or less, further preferably 500 or less, further preferably 100 or less, and particularly preferably 50 or less. Most preferably, it is 10 or less.
  • the average degree of polymerization of the sugar unit is the same as the preferable range of r above.
  • the average degree of polymerization of sugar units is the number of sugar units forming one sugar part, and when the sugar part has a side chain structure, the number of sugar units constituting the side chain is also included in the average degree of polymerization. Is done.
  • the average degree of polymerization of the above sugar units can be calculated by the following measuring method. First, the solution containing the sugar derivative is kept at 50 ° C. and centrifuged at 15,000 rpm for 15 minutes to remove insoluble matter. Then, the total sugar amount and the reducing sugar amount (both in terms of xylose) of the supernatant are measured.
  • the average degree of polymerization is calculated by dividing the total amount of sugar by the amount of reducing sugar. If the above measurement method cannot be adopted, gel permeation chromatography, size exclusion chromatography, light scattering method, viscosity method, terminal group quantification method, sedimentation velocity method, MULDI-TOF-MS method, structural analysis method by NMR, etc. May be adopted.
  • 1 H-NMR is used to show the integral value of the peak derived from the sugar chain (around 3.3-5.5 ppm) and the peak derived from other components of the sugar derivative. The integral value is calculated, and the average degree of polymerization is calculated from the ratio of each integral value.
  • R 1 in the general formulas (103) and (104) is not a hydrogen atom
  • the integrated value of the peak derived from -OR 1 can be used instead of the peak derived from the sugar chain (however, in this case).
  • -OR 1 R 1 is not a sugar chain).
  • R 1 is an alkyl group having a substituent
  • R 1 may be a sugar chain, so that there is only one binding site marked with * in the general formulas (103) and (104). However, in reality, the sugar chain may have a side chain consisting of additional sugar chains.
  • the unit derived from the sugar derivative includes at least one selected from the structure represented by the general formula (103) and the structure represented by the general formula (104), and is represented by the general formula (103). It is preferable that the structure is mainly contained. It is considered that this is because the structure represented by the general formula (103) is more compact than the structure represented by the general formula (104), and the free volume radius of the polymer can be easily controlled.
  • the polymer contained in the pattern-forming composition is preferably a copolymer.
  • the copolymer may be a block copolymer, but is preferably a random copolymer. By using a random copolymer, a more homogeneous pattern-forming film can be formed.
  • the polymer contained in the pattern-forming composition is a copolymer
  • the polymer preferably has a structure represented by the following general formula (105).
  • W 1 represents a carbon atom or a silicon atom. Above all, W 1 is preferably a carbon atom.
  • W 2 represents -CR 2- , -O-, -S- or -SiR 2- (where R is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Represented, a plurality of Rs may be the same or different). Among them, W 2 is preferably -CR 2- , and more preferably -CH 2-.
  • R 11 represents a hydrogen atom, an alkyl group having 1 or more and 3 or less carbon atoms, or a hydroxyl group.
  • R 12 represents a hydrogen atom, a hydroxyl group, an acetyl group, a methoxycarbonyl group, an aryl group, an allyl group, a glycidyl ether group, a glycidyl ester group, an isocyanate ester group or a pyridyl group.
  • the glycidyl ether group is preferably a group represented by -CH 2 -OR 3 -epoxy, and a glycidyl ester.
  • the group is preferably a group represented by -COO-R 3 -epoxy, and the isocyanate ester group is preferably a group represented by -COO-R 3- NCO.
  • R 3 is an alkylene group which may have a substituent.
  • alkylene group which may have a substituent examples include -CH 2 -,-(CH 2 ) 2 -,-(CH 2 ) 3 -,-(CH 2 ) 4 -,-(CH 2 ) 5 -, -CH 2 OCH 2 -,-(CH 2 ) 2 OCH 2 -,-(CH 2 ) 3 OCH 2 -,-(CH 2 ) 4 OCH 2 -,-(CH 2 ) 5 OCH 2 -etc.
  • the alkylene group which may have a substituent may be a cycloalkylene group or a crosslinked cyclic cycloalkylene group.
  • R 12 is preferably a methoxycarbonyl group, an aryl group, a glycidyl ether group, a glycidyl ester group or a pyridyl group, more preferably a glycidyl ester group or an aryl group, and a glycidyl ester group or a phenyl group. Is even more preferable. It is also preferable that the phenyl group is a phenyl group having a substituent.
  • phenyl group having a substituent examples include a 4-t-butylphenyl group, a methoxyphenyl group, a dimethoxyphenyl group, a trimethoxyphenyl group, a trimethylsilylphenyl group, a tetramethyldisilylphenyl group and the like. It is also preferable that R 12 is a naphthalene group.
  • R 12 is preferably a phenyl group, and in this case, the unit derived from the structure represented by the general formula (105) is a unit derived from a styrene compound.
  • the styrene compound include styrene, o-methylstyrene, p-methylstyrene, ethylstyrene, p-methoxystyrene, p-phenylstyrene, 2,4-dimethylstyrene, pn-octylstyrene, and pn-.
  • the styrene compound is preferably at least one selected from styrene and trimethylsilyl styrene, and more preferably styrene.
  • R 12 is a glycidyl ester group.
  • the unit derived from the structure represented by the general formula (105) is a unit derived from the glycidyl acrylate compound.
  • the glycidyl acrylate compound include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, oxylan-2-ylmethyl-2-ethylidene pentanoete and the like.
  • the glycidyl acrylate compound is preferably at least one selected from glycidyl methacrylate and 4-hydroxybutyl acrylate glycidyl ether.
  • the weight average molecular weight (Mw) of the polymer is preferably 500 or more, more preferably 1000 or more, and further preferably 1500 or more.
  • the weight average molecular weight (Mw) of the polymer is preferably 1 million or less, more preferably 500,000 or less, further preferably 300,000 or less, and even more preferably 250,000 or less. ..
  • the weight average molecular weight (Mw) of the polymer is a value measured by GPC in terms of polystyrene.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) of the polymer to the number average molecular weight (Mn) is preferably 1 or more. Further, Mw / Mn is preferably 2 or less, more preferably 1.5 or less, and further preferably 1.3 or less. By setting Mw / Mn within the above range, the pattern-forming composition of the present embodiment can form a fine and good pattern structure with higher accuracy.
  • the polymer contains a unit derived from a sugar derivative, and the content of the unit derived from the sugar derivative in the polymer is preferably 60% by mass or more, more preferably 65% by mass or more, 70. It is more preferably mass% or more.
  • the content of the unit derived from the sugar derivative in the polymer is preferably 90% by mass or less, and more preferably 85% by mass or less.
  • the content of the unit represented by the general formula (105) in the polymer may be 5% by mass or more or 10% by mass or more with respect to the total mass of the polymer. Further, the content of the unit represented by the general formula (105) in the polymer is preferably 40% by mass or less, and more preferably 30% by mass or less. The content of the unit represented by the general formula (105) in the polymer can be calculated by 1 1 H-NMR.
  • the polymer may have other structural units in addition to the above-mentioned structural units.
  • other structural units include lactic acid-derived units, siloxane bond-containing units, amide bond-containing units, urea bond-containing units, and the like.
  • the polymer can be synthesized by a known polymerization method such as living radical polymerization, living anionic polymerization, or atom transfer radical polymerization.
  • a polymer in the case of living radical polymerization, a polymer can be obtained by reacting with a monomer using a polymerization initiator such as AIBN ( ⁇ , ⁇ '-azobisisobutyronitrile).
  • a polymer in the case of living anionic polymerization, a polymer can be obtained by reacting butyllithium with a monomer in the presence of lithium chloride.
  • the sugar portion of the sugar derivative as described above may be obtained by synthesis, but may be obtained by combining the steps of extracting from lignocellulose derived from woody plants or herbaceous plants.
  • a method of extracting from a woody plant, a lignocellulose derived from a herbaceous plant, or the like is adopted in order to obtain a sugar portion, the extraction method described in JP-A-2012-100546 or the like can be used.
  • Xylan can be extracted by, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2012-180424.
  • cellulose can be extracted by, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2014-148629.
  • acetylation or halogenation it is preferable to modify the OH group of the sugar portion using the above extraction method by acetylation or halogenation.
  • an acetyl group is introduced, an acetylated sugar derivative can be obtained by reacting with acetic anhydride.
  • the compound having the structure represented by the general formula (105) may be formed by synthesis, or a commercially available product may be used.
  • a known synthesis method can be adopted.
  • Copolymers are available from Macromolecules Vol. 36, No. It can be synthesized with reference to 6, 2003. Specifically, a sugar derivative and a compound having a structure represented by the general formula (105) are put in a solvent containing DMF, water, acetonitrile and the like, and a reducing agent is added. Examples of the reducing agent include NaCNBH 3 and the like. Then, the mixture is stirred at 30 ° C. or higher and 100 ° C. or lower for 1 day or more and 20 days or less, and a reducing agent is appropriately added as necessary. A precipitate can be obtained by adding water, and a copolymer can be obtained by vacuum drying the solid content.
  • Examples of the method for synthesizing the copolymer include a synthesis method using radical polymerization, RAFT polymerization, ATRP polymerization, click reaction, and NMP polymerization, in addition to the above methods.
  • Radical polymerization is a polymerization reaction that occurs when an initiator is added to generate two free radicals by a thermal reaction or a photoreaction.
  • the monomer eg, a styrene monomer and a sugar methacrylate compound in which methacrylic acid is added to the ⁇ -1 position at the end of the xylooligosaccharide
  • the initiator for example, an azo compound such as azobisisobutyronitrile (AIBN)
  • AIBN azobisisobutyronitrile
  • RAFT polymerization is a radical-initiated polymerization reaction involving an exchange chain reaction using a thiocarbonylthio group.
  • a method can be taken in which the OH group attached to the terminal 1 position of the xylooligosaccharide is converted into a thiocarbonylthio group, and then the styrene monomer is reacted at 30 ° C. or higher and 100 ° C. or lower to synthesize a copolymer (Material Maters vol). .5, No.1 Latest Polymer Synthesis Sigma Aldrich Japan Co., Ltd.).
  • the terminal OH group of the sugar halogenated metal complex [(CuCl, CuCl 2, CuBr , CuBr 2 or CuI, etc.) + TPMA (tris (2- pyridylmethyl) amine)], MeTREN (tris [2- (dimethylamino ) Ethyl] amine), etc.), a monomer (eg, styrene monomer), and a polymerization initiator (2,2,5-trimethyl-3- (1-phenylethoxy) -4-phenyl-3-azahexane). Allows the synthesis of sugar copolymers (eg, sugar-styrene block copolymers).
  • sugar copolymers eg, sugar-styrene block copolymers.
  • NMP polymerization by heating with an alkoxyamine derivative as an initiator, a reaction with a monomer molecule is caused to generate nitroxide. After that, radicals are generated by thermal dissociation, and the polymerization reaction proceeds.
  • NMP polymerization is a kind of living radical polymerization reaction.
  • a monomer for example, a styrene monomer and a sugar methacrylate compound in which methacrylic acid is added to the ⁇ -1 position at the end of a xylooligosaccharide
  • TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
  • a polystyrene-polysaccharide methacrylate random copolymer can be synthesized by heating at 140 ° C.
  • the click reaction is a 1,3-bipolar azide / alkyne cycloaddition reaction using a sugar having a propargyl group and a Cu catalyst.
  • the solvent is preferably an organic solvent, and examples of the organic solvent include alcohol-based solvents, ether-based solvents, ketone-based solvents, sulfur-containing solvents, amide-based solvents, ester-based solvents, hydrocarbon-based solvents, and the like. Be done. These solvents may be used alone or in combination of two or more.
  • alcohol-based solvents examples include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, and 2-methylbutanol.
  • polyhydric alcohol partially ether-based solvent
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2.
  • -Ethylbutyl ether diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, diethylene glycol dimethyl ether, diethylene glycol ethylmethyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene Examples thereof include glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, and dipropylene glycol monopropyl ether.
  • PGME propylene glycol monomethyl ether
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether, tetrahydrofuran (THF) and the like.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone and methyl-n.
  • sulfur-containing solvent examples include dimethyl sulfoxide and the like.
  • amide solvent examples include N, N'-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide. , N-methylpropionamide, N-methylpyrrolidone and the like.
  • ester solvent examples include diethyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate and acetic acid.
  • hydrocarbon solvent for example, as an aliphatic hydrocarbon solvent, n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, methylcyclohexane, etc .; as aromatic hydrocarbon solvents, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, etc. Examples thereof include i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene and anisole.
  • propylene glycol monomethyl ether acetate (PGMEA), N, N-dimethylformamide (DMF), propylene glycol monomethyl ether (PGME), anisole, ethanol, methanol, acetone, methyl ethyl ketone, hexane, tetrahydrofuran (THF), dimethyl sulfoxide.
  • DMSO dimethyl methoxysulfoxide
  • 1H-trifluoroethanol 1H, 1H-pentafluoropropanol
  • 6- (perfluoroethyl) hexanol ethyl acetate, propyl acetate, butyl acetate, cyclohexanone, furfural
  • PGMEA or DMF is further preferred.
  • PGMEA is even more preferred.
  • These solvents may be used alone or in combination of two or more.
  • the content of the polymer in the pattern-forming composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the total mass of the pattern-forming composition.
  • the polymer content is preferably 30% by mass or less with respect to the total mass of the pattern-forming composition.
  • an ionic liquid When producing the pattern-forming composition, an ionic liquid may be further blended as an optional component.
  • An ionic liquid is a solvent that is liquid at 100 ° C. or lower and is composed only of ions. At least one of the cation part and the anion part of the ion constituting the ionic liquid is composed of organic ions.
  • the pattern-forming composition contains an ionic liquid, the compatibility between the polymer and the organic solvent can be enhanced.
  • the ionic liquid also has a function of promoting phase separation of the block copolymer.
  • the ionic liquid is composed of a cation part and an anion part, and the cation part of the ionic liquid is not particularly limited, and one generally used for the cation part of the ionic liquid can be used.
  • Preferred examples of the cation portion of the ionic liquid include nitrogen-containing aromatic ions, ammonium ions, and phosphonium ions.
  • nitrogen-containing aromatic cation examples include pyridinium ion, pyridadinium ion, pyrimidinium ion, pyrazinium ion, imidazolium ion, pyrazonium ion, oxazolium ion, 1,2,3-triazolium ion, 1, Examples thereof include 2,4-triazolium ion, thiazolium ion, piperidinium ion and pyroridinium ion.
  • anion portion of the ionic liquid examples include halogen ion, carboxylate ion, phosphinate ion, phosphate ion, phosphonate ion, bis (trifluoromethylsulfonyl) imide ion and the like, and bis (trifluoromethylsulfonyl) imide ion is preferable.
  • the halogen ion examples include chloride ion, bromide ion, and iodide ion, and chloride ion is preferable.
  • carboxylate ion examples include formate ion, acetate ion, propionate ion, butyrate ion, hexanoate ion, maleate ion, fumarate ion, oxalate ion, rectate ion, and pyruvate ion.
  • Format ion, acetate ion, propionate ion are preferable.
  • the pattern-forming composition may contain, for example, a surfactant or the like as an optional component.
  • a surfactant When the pattern-forming composition contains a surfactant, the coatability of pattern-forming to a substrate or the like can be improved.
  • Preferred surfactants include nonionic surfactants, fluorine-based surfactants and silicone-based surfactants. These may be used alone or in combination of two or more.
  • the pattern-forming composition may further contain a catalyst as an optional component.
  • a catalyst include acid compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium-p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, ammonium dodecylbenzenesulfonic acid, and hydroxybenzoic acid.
  • curing agent examples include ethylenediamine, diethylenetriamine, triethylenetetramine, diethylaminopropylamine, dimethylaminopropylamine, m-xylenediamine, m-phenylenediamine, triethylamine, benzyldimethylamine and the like.
  • the pattern-forming composition of the present embodiment may contain a monomer component constituting the polymer.
  • a monomer component constituting the polymer For example, various monomers constituting the polymer can be appropriately added in order to improve the desired properties.
  • the present invention is a step of applying the above-mentioned pattern-forming composition containing a polymer onto a substrate to form a pattern-forming film, and a step of introducing a metal into at least a part of the pattern-forming film for metal-containing pattern formation.
  • a pattern forming method including.
  • the free volume radius of the polymer is Pr and the nuclear radius of the metal is Mr, the condition of 2 ⁇ Pr / Mr ⁇ 3.3 is satisfied.
  • the pattern forming method of the present invention it is possible to improve the etching processability when processing the pattern shape on the substrate after forming the pattern forming film from the pattern forming composition.
  • the total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more
  • the maximum metal content in the thickness direction of the metal-containing pattern forming film is Aatom%
  • the thickness of the pattern forming film is set to Aatom%.
  • the metal content at the midpoint in the direction is Batom%
  • the A / B value is preferably 10.0 or less. That is, the step of obtaining the metal-containing pattern forming film is a step of introducing the metal so that the total content of the metal contained in the metal-containing pattern forming film and the A / B value satisfy the above conditions. preferable.
  • Examples of the substrate used in the pattern forming method of the present embodiment include substrates such as glass, silicon, SiN, GaN, and AlN. Further, a substrate made of an organic material such as PET, PE, PEO, PS, cycloolefin polymer, polylactic acid, and cellulose nanofiber may be used. Further, a plurality of layers made of different materials may be sandwiched between the substrate and the guide pattern forming layer.
  • the material is not particularly specified, but is, for example , an inorganic material such as SiO 2 , SiN, Al 2 O 3 , AlN, GaN, GaAs, W, SOC, SOG, or a commercially available adhesive. Organic materials can be mentioned.
  • the method of applying the pattern-forming composition on the substrate to form the pattern-forming film is not particularly limited, and examples thereof include a method of applying the pattern-forming composition to be used by a spin coating method or the like. Be done.
  • the pattern forming method of the present embodiment preferably further includes a step of forming a pattern on the pattern forming film after the step of forming the pattern forming film.
  • the step of forming the pattern first, as shown in FIG. 2A, the pattern forming film 20 is formed by applying the pattern forming composition on the substrate 10. Then, as shown in FIG. 2B, at least a part of the pattern forming film 20 is removed so as to have a pattern shape desired to be formed on the substrate 10. For example, by laminating a resist film on the pattern forming film 20 and performing exposure and development processing, a pattern shape as shown in FIG. 2B can be formed.
  • Examples of the method for removing a part of the pattern forming film include reactive ion etching (RIE) such as chemical dry etching and chemical wet etching (wet development), spatter etching, and physical etching such as ion beam etching.
  • RIE reactive ion etching
  • wet development chemical dry etching
  • spatter etching spatter etching
  • physical etching such as ion beam etching.
  • Removal of the pattern forming film is, for example, tetrafluoromethane, perfluorocyclobutane (C 4 F 8), perfluoropropane (C 3 F 8), perfluoroethane (C 2 F 6), boron trichloride, trifluoroethylene It can be performed by dry etching with gases such as methane dioxide, trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, chlorine, helium, sulfur hexafluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride. preferable.
  • gases such as methane dioxide, trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, chlorine, helium, sulfur hexafluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride. preferable.
  • a chemical wet etching step can be adopted as a step of removing a part of the pattern forming film.
  • Wet etching methods include, for example, a method of reacting with acetic acid for treatment, a method of reacting with a mixed solution of alcohol and water such as ethanol and i-propanol, and a method of treating with acetic acid or alcohol after irradiating with UV light or EB light.
  • the processing method and the like can be mentioned.
  • a pattern can be formed on the pattern forming film as described above.
  • the pattern to be formed is preferably a line-and-space pattern, a hole pattern, or a pillar pattern.
  • the pattern forming method of the present embodiment includes a step of introducing a metal into at least a part of the pattern forming film to obtain a metal-containing pattern forming film.
  • the step of obtaining the metal-containing pattern forming film is preferably provided after the pattern shape is formed on the pattern forming film, but the metal introduction is performed before the pattern shape is formed on the pattern forming film.
  • a process may be provided.
  • Metals introduced into the pattern forming film include Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ru, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Examples thereof include Pt, Au, Hg, Tl, Pb, Bi, Po, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the step of introducing the metal into the pattern-forming film can be carried out by, for example, the method described in Journal of Photopolymer Science and Technology Volume 29, Number 5 (2016) 653-657.
  • a method using a metal complex gas, a method of applying a solution containing the metal, or a method of introducing the metal into the resist by an ion implant method can be adopted. It can.
  • metal introduction step it is preferable to adopt a method of spraying the metal complex gas on the pattern forming film.
  • the metal is introduced so that the total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more, and more preferably 4.5 atom.
  • the metal is introduced so as to be% or more, more preferably 5.0 atom% or more.
  • the upper limit of the total content of the metal contained in the metal-containing pattern forming film is preferably 60 atom% or less, and more preferably 50 atom% or less.
  • the metal of the pattern-forming film is introduced so that the A / B value is 10.0 or less.
  • A is the maximum metal content (atom%) in the thickness direction of the metal-containing pattern forming film
  • B is the metal content (atom%) at the midpoint in the thickness direction of the pattern forming film. ..
  • the metal gas is sprayed on the pattern forming film, and the spray pressure of the metal gas at this time is preferably 10 Pa or more, more preferably 50 Pa or more. It is more preferably 100 Pa or more.
  • the spray pressure of the metal gas is preferably 700 Pa or less, more preferably 650 Pa or less, and even more preferably 600 Pa or less.
  • the spraying time of the metal gas is preferably 5 seconds or longer, more preferably 15 seconds or longer, and even more preferably 30 seconds or longer.
  • the spraying time of the metal gas is preferably 1800 seconds or less, more preferably 1200 seconds or less, and further preferably 900 seconds or less.
  • the total amount of metal contained in the metal-containing pattern-forming film is total. It is preferable that the content is 4.0 atom% or more and the A / B value is 10.0 or less.
  • this etching step is a step of etching a substrate using a patterned pattern-forming film as a protective film (mask).
  • RIE reactive ion etching
  • wet development chemical dry etching and chemical wet etching
  • physical etching such as spatter etching and ion beam etching.
  • Processing of the substrate for example, tetrafluoromethane, perfluorocyclobutane (C 4 F 8), perfluoropropane (C 3 F 8), trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, chlorine, sulfur hexafluoride , Difluoromethane, nitrogen trifluoride, chlorine trifluoride and other gases are preferably used for dry etching.
  • a chemical wet etching process can be adopted in the etching process.
  • Wet etching methods include, for example, a method of reacting with acetic acid for treatment, a method of reacting with a mixed solution of alcohol and water such as ethanol and i-propanol, and a method of treating with acetic acid or alcohol after irradiating with UV light or EB light.
  • the processing method and the like can be mentioned.
  • Example 1 [Synthesis of copolymer 1] (Synthesis of Acetyl Sugar Methacrylate 1) 20 g of xylose was added to a mixed solution of 250 g of acetic anhydride and 320 g of acetic acid, and the mixture was stirred at 30 ° C. for 2 hours. Approximately 5 times the amount of cold water of the solution was added slowly with stirring, and after stirring for 2 hours, the mixture was allowed to stand overnight.
  • acetylxylose methacrylate 1 The structure of the obtained acetylxylose methacrylate 1 is as follows.
  • the obtained copolymer 1 contains the following structural units.
  • copolymer was dissolved in PGMEA so as to have 13% by mass of the copolymer and 0.3% by mass of the p-toluenesulfonic acid of the polymerization catalyst to obtain a copolymer solution sample.
  • Example 2 Synthesis of copolymer 2 (Synthesis of Acetylxylose Methacrylate-Styrene-Glysidyl Methacrylate Random Copolymer)
  • the same method as in Example 1 except that the amount of styrene added was changed from 2.6 g to 2.3 g and the amount of glycidyl methacrylate added was changed from 2.6 g to 0.8 g. 12.0 g of copolymer 2 was obtained.
  • the copolymer solution sample was obtained in the same manner as in Example 1.
  • Example 3 [Synthesis of copolymer 3] (Synthesis of Acetylxylose Methacrylate-Styrene Random Copolymer)
  • 12.0 g of the copolymer 3 was obtained by the same method as in Example 1 except that the amount of styrene added was changed from 2.6 g to 2.1 g and glycidyl methacrylate was not added.
  • the copolymer solution sample was obtained in the same manner as in Example 1.
  • Example 4 [Synthesis of copolymer 4] (Synthesis of Acetyl Xylotriose Methacrylate-Styrene Random Copolymer)
  • 12.1 g of the copolymer 4 was obtained by the same method as in Example 1 except that xylose was changed to xylotriose.
  • the copolymer solution sample was obtained in the same manner as in Example 1.
  • the obtained copolymer 4 contains the following structural units.
  • the copolymer solution samples obtained in Examples and Comparative Examples were spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness was 300 nm, it was fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film.
  • the pattern-forming film thus formed was placed in an ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was added at 95 ° C. for 300 seconds. After the introduction, steam was introduced for 150 seconds. By repeating this operation three times, Al 2 O 3 was introduced into the pattern-forming film.
  • ALD atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN
  • the copolymer film-forming sample after the introduction of Al 2 O 3 was placed in an XPS device (Nexsa XPS System manufactured by Thermo Fisher Scientific), and surface elements were subjected to sputtering using Ar ions and XPS analysis (X-ray photoelectron spectroscopy). The concentration measurement and the film thickness measurement were sequentially repeated to obtain a concentration profile of the Al element (nuclear radius 0.118 nm) in the film thickness direction.
  • the step portion generated in the element concentration measurement part and the unsputtered part is measured for each sputtering time by a tactile profilometer (manufactured by Kosaka Seisakusho Co., Ltd.
  • model number It was obtained by measuring with ET-4000).
  • the "Al content in the film” shown in Table 2 is calculated from the obtained depth profile and corresponds to the total measurement of the Al element content in the film.
  • the “maximum Al content” shown in Table 2 is the Al element content at the point where the Al element concentration in the film in each profile is maximum.
  • the “Al content at 1/2 of the total film thickness” shown in Table 2 is the Al element content at the intermediate point of the film thickness of each profile.
  • the “A / B ratio” shown in Table 2 is the ratio of the Al element content calculated by the following formula.
  • a / B ratio maximum Al element content / Al content at 1/2 of the total film thickness
  • this pattern sample is subjected to oxygen plasma treatment (100 sccm, 4 Pa, 100 W, 60 seconds) on the substrate by an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) to remove the photoresist and form a pattern forming film. A line-and-space pattern was formed. Then, the metal was introduced into the pattern-forming film in the same manner as in the evaluation of the metal introduction rate of the copolymer. Using this pattern as a mask, plasma treatment (100 sccm, 0.4 Pa, 200 W, 120 seconds) is performed with an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) using ethane hexafluoride (C 2 F 6) and Ar gas to silicon. The oxide film was dry-etched.
  • ICP plasma etching apparatus manufactured by Tokyo Electron Limited
  • Etching selectivity Processing depth to silicon oxide film / (Thickness of pattern forming film before plasma treatment-Thickness of pattern forming film after plasma treatment) Then, the etching processability was evaluated according to the following criteria.
  • Example 5 Examples except that trimethyl borate (B (OCH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing a metal into the pattern forming film in Example 1.
  • TMA trimethylaluminum, Al (CH 3 ) 3
  • a concentration profile of element B (nucleus radius 0.087 nm) in the film thickness direction was obtained by the same method as in [Measurement of Al content] described above.
  • the "B content in the film” shown in Table 3 is calculated from the obtained depth profile and corresponds to the total measurement of the B element content in the film.
  • the “maximum B content” shown in Table 3 is the B element content at the point where the B element concentration in the film in each profile is maximum.
  • the “B content at 1/2 of the total film thickness” shown in Table 3 is the B element content at the intermediate point of the film thickness of each profile.
  • the "A / B ratio” shown in Table 3 is the ratio of the B element content calculated by the following formula.
  • a / B ratio maximum B element content / B content at 1/2 of the total film thickness
  • Example 6 Example 1 except that trimethylantimony (Sb (CH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing the metal into the pattern forming film in Example 1.
  • TMA trimethylaluminum, Al (CH 3 ) 3
  • the concentration profile of the Sb element (nucleus radius 0.133 nm) in the film thickness direction was obtained by the same method as the above-mentioned [Measurement of Al content].
  • the “Sb content in the film” shown in Table 4 is calculated from the obtained depth profile and corresponds to the total measurement of the Sb element content in the film.
  • the “maximum B content” shown in Table 4 is the Sb element content at the point where the Sb element concentration in the film in each profile is maximum.
  • the “Sb content at 1/2 of the total film thickness” shown in Table 4 is the Sb element content at the intermediate point of the film thickness of each profile.
  • the “A / B ratio” shown in Table 4 is the ratio of the Sb element content calculated by the following formula.
  • a / B ratio maximum Sb element content / Sb content at 1/2 of the total film thickness
  • Example 2 Example 1 except that trimethylindium (In (CH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing a metal into the pattern forming film in Example 1.
  • TMA trimethylaluminum, Al (CH 3 ) 3
  • the concentration profile of the In element (nucleus radius 0.156 nm) in the film thickness direction was obtained by the same method as the above-mentioned [Measurement of Al content].
  • the "In content in the film” shown in Table 5 is calculated from the obtained depth profile and corresponds to the total measurement of the In element content in the film.
  • the "maximum In content” shown in Table 5 is the In element content at the point where the In element concentration in the film in each profile is maximum.
  • the “In content at 1/2 of the total film thickness” shown in Table 5 is the In element content at the intermediate point of the film thickness of each profile.
  • the “A / B ratio” shown in Table 5 is the ratio of the In element content calculated by the following formula.
  • a / B ratio maximum In element content / In content at 1/2 of total film thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention addresses the problem of providing a pattern formation composition that makes it possible to form a pattern formation film that exhibits excellent etchability. The present invention relates to a pattern formation composition that includes a polymer. When Pr is the free volume radius of the polymer and Mr is the nuclear radius of a metal that is introduced when a pattern is formed from the pattern formation composition, 2≤Pr/Mr≤3.3.

Description

パターン形成用組成物及びパターン形成方法Pattern-forming composition and pattern-forming method
 本発明は、パターン形成用組成物及びパターン形成方法に関する。 The present invention relates to a pattern-forming composition and a pattern-forming method.
 半導体等の電子デバイスは微細化による高精細化が要求されている。また、半導体デバイスのパターンについては、形状の多様化も検討されている。このようなパターンの形成方法としては、ダブルパターニング法や、電子線を用いたリソグラフィ法、ナノインプリント法、誘導自己組織化材料(Directed Self Assembly、以下、パターン形成用自己組織化組成物ともいう)を用いた自己組織化によるパターン形成方法が知られている。 Electronic devices such as semiconductors are required to have higher definition by miniaturization. In addition, diversification of shapes of semiconductor device patterns is also being studied. Examples of such a pattern forming method include a double patterning method, a lithography method using an electron beam, a nanoimprint method, and an induced self-assembling material (Directed Self Assembly, hereinafter also referred to as a pattern forming self-assembling composition). The pattern formation method by self-assembly used is known.
 パターン形成用自己組織化組成物は、相分離を行うことで自己組織化を行うため、高価な電子線描画装置が不要で、ダブルパターニング法で見られるパターニングプロセスの複雑化が生じないため、コスト上のメリットがある。パターン形成用自己組織化組成物としては、例えば、ポリスチレン-ポリメチルメタクリレート(PS-PMMA)等のジブロックコポリマーが知られている(例えば、特許文献1)。 Since the self-assembling composition for pattern formation performs self-assembling by performing phase separation, an expensive electron beam drawing apparatus is not required, and the patterning process complicated as seen in the double patterning method is not complicated, so that the cost is increased. There are the above merits. As a self-assembling composition for pattern formation, for example, diblock copolymers such as polystyrene-polymethylmethacrylate (PS-PMMA) are known (for example, Patent Document 1).
 パターン形成用自己組織化組成物としては、PS-PMMA以外の材料を用いることも検討されている。例えば、特許文献2には、スチレン系重合体や、アクリル系重合体等を主鎖とし、その末端にヘテロ原子を含む基を有するパターン形成用自己組織化組成物が開示されている。 It is also being considered to use a material other than PS-PMMA as the self-assembling composition for pattern formation. For example, Patent Document 2 discloses a self-assembling composition for pattern formation having a styrene-based polymer, an acrylic-based polymer, or the like as a main chain and having a group containing a heteroatom at the end thereof.
US2012/0241411 A1US2012 / 0241411 A1 特開2014-5325号公報Japanese Unexamined Patent Publication No. 2014-5325
 上述したようパターン形成用自己組織化組成物を用いてパターンを形成した後には、該パターンを保護膜として、さらにシリコンウエハー基板にパターン形状を加工するエッチング工程が設けられることがある。しかしながら、従来の方法では、基板にパターン形状を加工する際のエッチング加工性が劣る場合があり、問題となっていた。 After forming a pattern using the self-assembling composition for pattern formation as described above, an etching step may be provided in which the pattern is used as a protective film and the pattern shape is further processed on the silicon wafer substrate. However, in the conventional method, the etching processability at the time of processing the pattern shape on the substrate may be inferior, which has been a problem.
 そこで本発明者らは、このような従来技術の課題を解決するために、優れたエッチング加工性を発揮するパターン形成用膜を形成し得るパターン形成用組成物を提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors have studied for the purpose of providing a pattern forming composition capable of forming a pattern forming film exhibiting excellent etching processability. I proceeded.
 具体的に、本発明は、以下の構成を有する。 Specifically, the present invention has the following configuration.
[1] ポリマーを含むパターン形成用組成物であって、
 ポリマーの自由体積半径をPrとし、
 パターン形成用組成物からパターンを形成する際に導入される金属の原子核半径をMrとした場合、
 2≦Pr/Mr≦3.3の条件を満たす、パターン形成用組成物。
[2] パターン形成用組成物を基板上に塗布して、厚みが300nmのパターン形成用膜を形成し、パターン形成用膜に500Paの圧力下で300秒間金属ガスを導入した場合、
 パターン形成用膜に含まれる金属の総含有量が4.0atom%以上となり、
 パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値が10.0以下となる、[1]に記載のパターン形成用組成物。
[3] ポリマーは、糖誘導体に由来する単位を含む、[1]又は[2]に記載のパターン形成用組成物。
[4] 糖誘導体に由来する単位は、下記一般式(103)で表される構造及び下記一般式(104)で表される構造から選択される少なくとも一方を含む、[3]に記載のパターン形成用組成物;
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 一般式(103)及び(104)中、Rはそれぞれ独立に水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルキル基、アシル基、アリール基、トリメチルシリル基又はホスホリル基を表し、複数あるRは同一であっても異なっていてもよい;Rは水素原子又はアルキル基を表す;X及びYはそれぞれ独立に単結合又は連結基を表す;rは1以上の整数を表し、*印はrが2以上の場合にRのいずれか1つとの結合部位を表すか、もしくはRに代わってRが結合している酸素原子のいずれか1つとの結合部位を表す。
[5] ポリマーは、下記一般式(105)で表される構造をさらに有する、[4]に記載のパターン形成用組成物;
Figure JPOXMLDOC01-appb-C000006
 一般式(105)中、Wは炭素原子又はケイ素原子を表し、Wは、-CR-、-O-、-S-又は-SiR-を表す(但し、Rは水素原子又は炭素数が1~5のアルキル基を表し、複数あるRは同一であっても異なっていてもよい);R11は水素原子、炭素数が1以上3以下のアルキル基又は水酸基を表し、R12は水素原子、水酸基、アセチル基、メトキシカルボニル基、アリール基、アリル基、グリシジルエーテル基、グリシジルエステル基、イソシアネートエステル基又はピリジル基を表す。
[6] ポリマーは、糖誘導体に由来する単位を含み、ポリマーにおける糖誘導体に由来する単位の含有率は60~90質量%である、[1]~[5]のいずれかに記載のパターン形成用組成物。
[7] パターン形成用マスク材料である、[1]~[6]のいずれかに記載のパターン形成用組成物。
[8] ポリマーを含むパターン形成用組成物を基板上に塗布し、パターン形成用膜を形成する工程と、
 パターン形成用膜の少なくとも一部に金属を導入し、金属含有パターン形成用膜を得る工程と、を含むパターン形成方法であって、
 ポリマーの自由体積半径をPrとし、
 金属の原子核半径をMrとした場合、
 2≦Pr/Mr≦3.3の条件を満たす、パターン形成方法。
[9] 金属含有パターン形成用膜に含まれる金属の総含有量が4.0atom%以上であり、
 金属含有パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値が10.0以下である、[8]に記載のパターン形成方法。
[10] パターン形成用膜を形成する工程の後に、パターン形成用膜にパターンを形成する工程をさらに含む、[8]又は[9]に記載のパターン形成方法。
[11] 金属含有パターン形成用膜を得る工程の後に、エッチング工程をさらに含む、[8]~[10]のいずれかに記載のパターン形成方法。
[1] A pattern-forming composition containing a polymer.
Let Pr be the free volume radius of the polymer
When the nuclear radius of the metal introduced when forming a pattern from the pattern forming composition is Mr.
A composition for pattern formation that satisfies the condition of 2 ≦ Pr / Mr ≦ 3.3.
[2] When the pattern-forming composition is applied onto a substrate to form a pattern-forming film having a thickness of 300 nm, and a metal gas is introduced into the pattern-forming film under a pressure of 500 Pa for 300 seconds.
The total content of metal contained in the pattern forming film is 4.0 atom% or more.
When the maximum metal content in the thickness direction of the pattern forming film is Aatom% and the metal content at the midpoint in the thickness direction of the pattern forming film is Batom%, the A / B value is 10.0 or less. , [1]. The pattern-forming composition.
[3] The pattern-forming composition according to [1] or [2], wherein the polymer contains a unit derived from a sugar derivative.
[4] The pattern according to [3], wherein the unit derived from the sugar derivative includes at least one selected from the structure represented by the following general formula (103) and the structure represented by the following general formula (104). Composition for formation;
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
In the general formulas (103) and (104), R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, and a plurality of them. Some R 1s may be the same or different; R 5 represents a hydrogen atom or an alkyl group; X 1 and Y 1 each independently represent a single bond or a linking group; r represents an integer greater than or equal to 1. represents, * or mark represents any one of the binding sites of R 1 when r is 2 or more, or any one of the binding sites of the oxygen atom R 1 in place of R 1 is attached Represent.
[5] The pattern-forming composition according to [4], wherein the polymer further has a structure represented by the following general formula (105);
Figure JPOXMLDOC01-appb-C000006
In the general formula (105), W 1 represents a carbon atom or a silicon atom, and W 2 represents -CR 2- , -O-, -S- or -SiR 2- (where R is a hydrogen atom or carbon. Represents an alkyl group having a number of 1 to 5, and a plurality of Rs may be the same or different); R 11 represents a hydrogen atom, an alkyl group having 1 or more and 3 or less carbon atoms or a hydroxyl group, and R 12 Represents a hydrogen atom, a hydroxyl group, an acetyl group, a methoxycarbonyl group, an aryl group, an allyl group, a glycidyl ether group, a glycidyl ester group, an isocyanate ester group or a pyridyl group.
[6] The pattern formation according to any one of [1] to [5], wherein the polymer contains a unit derived from a sugar derivative, and the content of the unit derived from the sugar derivative in the polymer is 60 to 90% by mass. Composition for.
[7] The pattern-forming composition according to any one of [1] to [6], which is a pattern-forming mask material.
[8] A step of applying a pattern-forming composition containing a polymer onto a substrate to form a pattern-forming film, and
A pattern forming method including a step of introducing a metal into at least a part of a pattern forming film to obtain a metal-containing pattern forming film.
Let Pr be the free volume radius of the polymer
When the nucleus radius of the metal is Mr,
A pattern forming method that satisfies the condition of 2 ≦ Pr / Mr ≦ 3.3.
[9] The total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more.
When the maximum metal content in the thickness direction of the metal-containing pattern forming film is Aatom% and the metal content at the midpoint in the thickness direction of the pattern forming film is Batom%, the A / B value is 10.0 or less. The pattern forming method according to [8].
[10] The pattern forming method according to [8] or [9], further comprising a step of forming a pattern on the pattern forming film after the step of forming the pattern forming film.
[11] The pattern forming method according to any one of [8] to [10], further comprising an etching step after the step of obtaining a metal-containing pattern forming film.
 本発明によれば、パターン形成用組成物からパターン形成用膜を形成した後に、基板にパターン形状を加工する際のエッチング加工性を高めることができる。 According to the present invention, it is possible to improve the etching processability when processing a pattern shape on a substrate after forming a pattern forming film from a pattern forming composition.
図1は、実施例及び比較例で得られたパターン形成用膜におけるAl含有量の深さプロファイル(XPS測定)を示すグラフである。FIG. 1 is a graph showing the depth profile (XPS measurement) of the Al content in the pattern forming film obtained in Examples and Comparative Examples. 図2は、基板にパターンを形成する工程を説明する概略図である。FIG. 2 is a schematic view illustrating a process of forming a pattern on a substrate.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において置換・無置換を明記していない置換基については、その基に任意の置換基を有していてもよい意味である。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments. It should be noted that, with respect to a substituent for which substitution / non-substitution is not specified in the present specification, it means that the group may have an arbitrary substituent.
(パターン形成用組成物)
 本発明は、ポリマーを含むパターン形成用組成物に関する。本発明のパターン形成用組成物から形成されるパターン形成用膜には金属が導入されるが、このとき、パターン形成用膜に導入される金属の原子核半径をMrとし、本発明のパターン形成用組成物に含まれるポリマーの自由体積半径をPrとした場合、2≦Pr/Mr≦3.3の条件を満たす。このように、本発明は、パターン形成工程において、導入される金属の原子核半径(Mr)に対して、上記条件を満たすような自由体積半径(Pr)を有するポリマーを含むパターン形成用組成物に関するものである。
(Composition for pattern formation)
The present invention relates to a pattern-forming composition containing a polymer. A metal is introduced into the pattern-forming film formed from the pattern-forming composition of the present invention. At this time, the nuclear radius of the metal introduced into the pattern-forming film is Mr, and the pattern-forming film of the present invention is used. When the free volume radius of the polymer contained in the composition is Pr, the condition of 2 ≦ Pr / Mr ≦ 3.3 is satisfied. As described above, the present invention relates to a pattern forming composition containing a polymer having a free volume radius (Pr) satisfying the above conditions with respect to the nuclear radius (Mr) of the metal introduced in the pattern forming step. It is a thing.
 ここで、パターン形成用膜に導入される金属の原子核半径(Mr)は、E Clementi, D L Raimondi, W P Reinhardt (1963) J Chem Phys.38:2686から引用される値である。なお、パターン形成用膜に導入される金属がAlといった金属酸化物などである場合においても金属元素(Al)の原子核半径が上記条件を満たしていればよい。 Here, the nuclear radius (Mr) of the metal introduced into the pattern-forming film is determined by E Clementi, D L Ramondo, WP Reinhardt (1963), J Chem Phys. It is a value quoted from 38: 2686. Even when the metal introduced into the pattern forming film is a metal oxide such as Al 2 O 3 , the nuclear radius of the metal element (Al) may satisfy the above conditions.
 また、ポリマーの自由体積半径(Pr)は、以下のようにして測定される値である。まず、ポリマー3質量%、p-トルエンスルホン酸0.3質量%となるようPGMEAに溶解して、コポリマー溶液サンプルを得る。そして、コポリマー溶液サンプルを2インチのシリコンウエハー基板上にスピンコーティングする。膜厚が500nmとなるように塗布した後、ホットプレート上において230℃で5分間焼成し、パターン形成用膜を形成する。次いで、形成したパターン形成用膜について陽電子消滅寿命を測定することで、ポリマーの自由体積半径(Pr)を算出する。具体的には、パターン形成用膜を陽電子消滅寿命測定装置に設置する。陽電子線源として22Naベースの陽電子ビームを用い、γ線検出器としてBaF製シンチレーターと光電子増倍管を用い、以下の条件で陽電子消滅寿命を測定する。なお、陽電子消滅寿命測定装置としては、例えば、フジ・インバック製の小型陽電子ビーム発生装置PALS-200Aを用いることができる。
 装置定数:263~272ps,24.55ps/ch
 ビーム強度:1.5keV
 測定深さ:0~25μm(推定)
 測定温度:室温
 測定雰囲気:真空
 総カウント数:約5000000カウント
 試料前処理:室温で真空脱気
 以上により得られた陽電子消滅寿命曲線を非線形最小二乗プログラムPOSITRONFITにより解析し、平均自由体積半径を算出し、ポリマーの自由体積半径(Pr)とする。
The free volume radius (Pr) of the polymer is a value measured as follows. First, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 500 nm, it is fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film. Next, the free volume radius (Pr) of the polymer is calculated by measuring the positron annihilation lifetime of the formed pattern-forming film. Specifically, the pattern-forming film is installed in the positron annihilation lifetime measuring device. Using 22Na based positron beam as positron source, using BaF 2 made scintillator and a photomultiplier tube as a γ-ray detector, measuring a positron annihilation lifetime under the following conditions. As the positron annihilation life measuring device, for example, a small positron beam generator PALS-200A manufactured by Fuji Invac can be used.
Device constants: 263 to 272 ps, 24.55 ps / ch
Beam intensity: 1.5 keV
Measurement depth: 0 to 25 μm (estimated)
Measurement temperature: Room temperature Measurement atmosphere: Vacuum Total number of counts: Approximately 5,000,000 counts Sample pretreatment: Vacuum degassing at room temperature The positron annihilation lifetime curve obtained above is analyzed by the nonlinear minimum square program POSITRONFIT to calculate the average free volume radius. , The free volume radius (Pr) of the polymer.
 好ましいポリマーの自由体積半径(Pr)は、パターン形成用膜に導入される金属の原子核半径によって異なるが、例えば、ポリマーの自由体積半径(Pr)は、0.10nm以上であることが好ましく、0.20nm以上であることがより好ましく、0.25nm以上であることがさらに好ましい。また、ポリマーの自由体積半径(Pr)は、0.50nm以下であることが好ましく、0.40nm以下であることがより好ましく、0.35nm以下であることがさらに好ましい。ポリマーの自由体積半径(Pr)を上記範囲内とするためには、例えば、ポリマーを構成する糖誘導体に由来する単位の含有率を調整したり、糖部分の重合度や糖鎖の長さを調整したり、糖誘導体に由来する単位以外の他の構成単位の含有率を適宜調整することが考えられる。 The preferred free volume radius (Pr) of the polymer depends on the nuclear radius of the metal introduced into the pattern forming film, but for example, the free volume radius (Pr) of the polymer is preferably 0.10 nm or more, and is 0. It is more preferably 20 nm or more, and further preferably 0.25 nm or more. The free volume radius (Pr) of the polymer is preferably 0.50 nm or less, more preferably 0.40 nm or less, and further preferably 0.35 nm or less. In order to keep the free volume radius (Pr) of the polymer within the above range, for example, the content of the unit derived from the sugar derivative constituting the polymer is adjusted, the degree of polymerization of the sugar portion and the length of the sugar chain are adjusted. It is conceivable to adjust or appropriately adjust the content of the constituent units other than the unit derived from the sugar derivative.
 Pr/Mrの値は、2以上であればよく、2.1以上であることが好ましく、2.2以上であることがより好ましく、2.3以上であることがさらに好ましく、2.4以上であることが特に好ましい。また、Pr/Mrの値は、3.3以下であればよく、3.2以下であることが好ましく、3.1以下であることがより好ましく、3.0以下であることがさらに好ましい。Pr/Mrの値を上記範囲内とすることにより、パターン形成用膜への金属の浸透性を高めることができ、これにより高強度のパターン形成用膜を形成することができる。このため、パターン形成用組成物からパターン形成用膜を形成した後に、基板にパターン形状を加工する際のエッチング加工性をより効果的に高めることができる。 The value of Pr / Mr may be 2 or more, preferably 2.1 or more, more preferably 2.2 or more, further preferably 2.3 or more, and 2.4 or more. Is particularly preferable. The Pr / Mr value may be 3.3 or less, preferably 3.2 or less, more preferably 3.1 or less, and even more preferably 3.0 or less. By setting the Pr / Mr value within the above range, the permeability of the metal to the pattern forming film can be enhanced, and thus a high-strength pattern forming film can be formed. Therefore, it is possible to more effectively enhance the etching processability when processing the pattern shape on the substrate after forming the pattern forming film from the pattern forming composition.
 ここで、エッチング加工性は、エッチング選択比を算出することで評価でき、エッチング選択比は例えば、以下のようにして算出できる。エッチング選択比を算出するためには、まず、ポリマー3質量%、p-トルエンスルホン酸0.3質量%となるようPGMEAに溶解して、コポリマー溶液サンプルを得る。そして、コポリマー溶液サンプルを2インチのシリコンウエハー基板上にスピンコーティングする。膜厚が300nmとなるように塗布した後、ホットプレート上において230℃で1分間焼成し、パターン形成用膜を形成する。次いで、ArFエキシマレーザー露光機にてラインアンドスペース(ライン幅100nm、スペース幅100nm)の形状となるようにマスクし、市販のArFレジストを用いて露光を行う。その後、ホットプレート上において105℃で1分間焼成した後、現像液を浸漬することで、ラインアンドスペースパターンを作製する。次にこのパターンサンプルを、ICPプラズマエッチング装置(東京エレクトロン社製)にて、基板を酸素プラズマ処理(100sccm、4Pa、100W、60秒間)することで、パターン形成用膜にラインアンドスペースパターンを形成する。その後、このパターン形成用膜を、ALD(原子層堆積装置:PICUSAN社製 SUNALE R-100B)に入れ、95℃にてTMA(トリメチルアルミニウム、Al(CH)ガスを300秒導入した後、水蒸気を150秒導入する。この操作を3回繰り返すことで、パターン形成用膜にAlを導入する。このパターンをマスクとして、六フッ化エタン(C)とArガスを使用しICPプラズマエッチング装置(東京エレクトロン社製)でプラズマ処理(100sccm、0.4Pa、200W、120秒間)を行ないシリコン酸化膜のドライエッチング加工を行う。そしてプラズマ処理前後のシリコン酸化膜のパターン形成されている断面を走査型電子顕微鏡(SEM)JSM7800F(日本電子製)で、加速電圧1.5kV、エミッション電流37.0μA、倍率100,000倍で観察し、それぞれ金属導入されたパターン形成用膜の厚みと、シリコン酸化膜部へ加工された深さを測定し、下記の式によりエッチング選択比を算出する。
 エッチング選択比=シリコン酸化膜への加工深さ/(プラズマ処理前パターン形成用膜の厚み-プラズマ処理後パターン形成用膜の厚み)
 エッチング選択比は2.0より大きいことが好ましく、2.5以上であることがより好ましく、3.0以上であることがさらに好ましく、5.0以上であることが一層好ましく、10.0以上であることが特に好ましい。本明細書においては、エッチング選択比が上記範囲内である場合に、基板にパターン形状を加工する際のエッチング加工性が良好であると判定できる。なお、エッチング加工性が良好である場合、一般的には、基板の深堀りが可能となる。
Here, the etching processability can be evaluated by calculating the etching selectivity, and the etching selectivity can be calculated, for example, as follows. In order to calculate the etching selectivity, first, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 300 nm, it is fired on a hot plate at 230 ° C. for 1 minute to form a pattern-forming film. Next, the mask is masked with an ArF excimer laser exposure machine so as to have a line-and-space shape (line width 100 nm, space width 100 nm), and exposure is performed using a commercially available ArF resist. Then, after firing on a hot plate at 105 ° C. for 1 minute, a line-and-space pattern is produced by immersing the developing solution. Next, this pattern sample is subjected to oxygen plasma treatment (100 sccm, 4 Pa, 100 W, 60 seconds) on the substrate by an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) to form a line and space pattern on the pattern forming film. To do. Then, this pattern-forming film was placed in ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was introduced at 95 ° C. for 300 seconds. , Introduce steam for 150 seconds. By repeating this operation three times, Al 2 O 3 is introduced into the pattern forming film. Using this pattern as a mask, plasma treatment (100 sccm, 0.4 Pa, 200 W, 120 seconds) is performed with an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) using ethane hexafluoride (C 2 F 6) and Ar gas to silicon. Perform dry etching processing of the oxide film. Then, the cross section where the pattern of the silicon oxide film is formed before and after the plasma treatment is observed with a scanning electron microscope (SEM) JSM7800F (manufactured by JEOL Ltd.) at an acceleration voltage of 1.5 kV, an emission current of 37.0 μA, and a magnification of 100,000 times. Then, the thickness of the pattern-forming film into which the metal is introduced and the depth of processing into the silicon oxide film portion are measured, and the etching selectivity is calculated by the following formula.
Etching selectivity = Processing depth to silicon oxide film / (Thickness of pattern forming film before plasma treatment-Thickness of pattern forming film after plasma treatment)
The etching selectivity is preferably larger than 2.0, more preferably 2.5 or more, further preferably 3.0 or more, further preferably 5.0 or more, and 10.0 or more. Is particularly preferable. In the present specification, when the etching selectivity is within the above range, it can be determined that the etching processability when processing the pattern shape on the substrate is good. If the etching processability is good, it is generally possible to dig deep into the substrate.
 本実施形態においては、パターン形成用膜に金属を導入した際の最大金属含有率(atom%)は、15atom%以上であることが好ましく、20atom%以上であることがより好ましく、25atom%以上であることがさらに好ましい。なお、パターン形成用膜に金属を導入した際の最大金属含有率(atom%)は以下のようにして算出する。まず、ポリマー3質量%、p-トルエンスルホン酸0.3質量%となるようPGMEAに溶解して、コポリマー溶液サンプルを得る。そして、コポリマー溶液サンプルを2インチのシリコンウエハー基板上にスピンコーティングする。膜厚が300nmとなるように塗布した後、ホットプレート上において230℃で5分間焼成し、パターン形成用膜を形成する。次いで、パターン形成用膜を、ALD(原子層堆積装置:PICUSAN社製 SUNALE R-100B)に入れ、95℃にてTMA(トリメチルアルミニウム、Al(CH)ガスを300秒導入した後、水蒸気を150秒導入する。この操作を3回繰り返すことで、パターン形成用膜にAlを導入する。Al導入後のパターン形成用膜を、XPS装置(Thermo Fisher Scientific社製 Nexsa XPS System )に設置し、XPS分析(X線光電子分光分析)で膜厚方向でのAl元素の濃度プロファイルを得る。なお、Al導入後のパターン形成用膜の膜厚は、サンプル表面にピンセットで傷をつけてシリコン基板表面を露出させることで段差を形成し、この段差部分を触診式段差計(株式会社小坂製作所製 型番:ET-4000)にて測定することで求める。すなわち、最大金属含有率(atom%)とは、パターン形成用膜の厚み方向において、最も多く金属が含有されている厚みにおける金属含有率である。 In the present embodiment, the maximum metal content (atom%) when the metal is introduced into the pattern forming film is preferably 15 atom% or more, more preferably 20 atom% or more, and more preferably 25 atom% or more. It is more preferable to have. The maximum metal content (atom%) when a metal is introduced into the pattern forming film is calculated as follows. First, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 300 nm, it is fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film. Next, the pattern-forming film was placed in an ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was introduced at 95 ° C. for 300 seconds. Introduce steam for 150 seconds. By repeating this operation three times, Al 2 O 3 is introduced into the pattern forming film. The pattern-forming film after the introduction of Al 2 O 3 was installed in an XPS device (Nexsa XPS System manufactured by Thermo Fisher Scientific), and the concentration profile of Al element in the film thickness direction was determined by XPS analysis (X-ray photoelectron spectroscopy analysis). obtain. The film thickness of the pattern forming film after the introduction of Al 2 O 3 is formed by scratching the sample surface with tweezers to expose the surface of the silicon substrate, and the step portion is formed by a palpation type profilometer (stock company). Obtained by measuring with the company Kosaka Seisakusho model number: ET-4000). That is, the maximum metal content (atom%) is the metal content at the thickness in which the most metal is contained in the thickness direction of the pattern forming film.
 パターン形成用膜に導入する金属としては、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Rb、Sr、Y、Zr、Nb、Mo、Ru、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ba、La、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Po、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどが挙げられる。中でも、パターン形成用膜に導入する金属としては、Al、B、Si、Sn、Te、Zr、Wを用いることが好ましい。 The metals to be introduced into the pattern forming film include Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga and Ge. , As, Rb, Sr, Y, Zr, Nb, Mo, Ru, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt , Au, Hg, Tl, Pb, Bi, Po, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like. Above all, it is preferable to use Al, B, Si, Sn, Te, Zr, and W as the metal to be introduced into the pattern forming film.
 一実施形態において、パターン形成用組成物を基板上に塗布して、厚みが300nmのパターン形成用膜を形成し、パターン形成用膜に500Paの圧力下で300秒間金属ガスを導入した場合、パターン形成用膜に含まれる金属の総含有量が4.0atom%以上となり、パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値は10.0以下となることが好ましい。このように、本実施形態のパターン形成用組成物は、パターン形成工程において、導入される金属の総含有量とパターン形成用膜中における金属分布が上記条件を満たすものであってもよい。 In one embodiment, when the pattern-forming composition is applied onto a substrate to form a pattern-forming film having a thickness of 300 nm, and a metal gas is introduced into the pattern-forming film under a pressure of 500 Pa for 300 seconds, a pattern is formed. The total metal content in the forming film is 4.0 atom% or more, the maximum metal content in the thickness direction of the pattern forming film is Aatom%, and the metal content at the midpoint in the thickness direction of the pattern forming film. When is Batom%, the value of A / B is preferably 10.0 or less. As described above, the pattern-forming composition of the present embodiment may satisfy the above conditions in the total content of the metal introduced in the pattern-forming step and the metal distribution in the pattern-forming film.
 本実施形態のパターン形成用組成物が上記条件を満たす場合、パターン形成用組成物からパターン形成用膜を形成した後に、基板にパターン形状を加工する際のエッチング加工性をより効果的に高めることができる。 When the pattern-forming composition of the present embodiment satisfies the above conditions, it is necessary to more effectively enhance the etching processability when processing the pattern shape on the substrate after forming the pattern-forming film from the pattern-forming composition. Can be done.
 本実施形態においては、パターン形成用膜に500Paの圧力下で300秒間金属ガスを導入した場合、パターン形成用膜に含まれる金属の総含有量(atom%)は、4.0atom%以上であればよく、4.5atom%以上であることが好ましく、5.0atom%以上であることがより好ましい。また、パターン形成用膜に含まれる金属の総含有量は、60atom%以下であることが好ましく、50atom%以下であることがより好ましい。なお、金属の総含有量(atom%)はパターン形成用膜中の総原子量に対する金属の含有量である。パターン形成用膜に含まれる金属の総含有量は、金属種を選択したり、ポリマーを構成する構成単位を調整することで調整することができる。パターン形成用膜における金属の総含有量(atom%)は、後述するように、パターン形成用膜におけるAl含有量の深さプロファイル(XPS測定)より算出される値である。具体的には、パターン形成用膜における各深さでのAl含有量をプロットし、非線形最小二乗法にて近似曲線を得て、これを深さプロファイルとする。このプロファイルを後述するパターン形成用膜の厚み方向における最大金属含有率(atom%)の測定において触針式段差計で求めた膜厚範囲のエリアを積分値から算出する。簡易的には、紙に印刷したプロファイルを切り出し、重量比較によって、総含有量を算出しても良い。その際、総含有量0%は重量0g、総含有量100%は深さプロファイルがすべて100%となるように設定し、それを印刷、切り出したものの重量を用いる。 In the present embodiment, when the metal gas is introduced into the pattern forming film under a pressure of 500 Pa for 300 seconds, the total metal content (atom%) contained in the pattern forming film should be 4.0 atom% or more. It is preferable that the content is 4.5 atom% or more, and more preferably 5.0 atom% or more. The total content of the metal contained in the pattern forming film is preferably 60 atom% or less, and more preferably 50 atom% or less. The total metal content (atom%) is the content of the metal with respect to the total atomic weight in the pattern-forming film. The total content of the metal contained in the pattern-forming film can be adjusted by selecting the metal species or adjusting the structural units constituting the polymer. The total metal content (atom%) in the pattern-forming film is a value calculated from the depth profile (XPS measurement) of the Al content in the pattern-forming film, as will be described later. Specifically, the Al content at each depth in the pattern-forming film is plotted, an approximate curve is obtained by the nonlinear least squares method, and this is used as a depth profile. This profile is used to calculate the area of the film thickness range obtained by the stylus type step meter in the measurement of the maximum metal content (atom%) in the thickness direction of the pattern forming film described later from the integrated value. For simplicity, the profile printed on paper may be cut out and the total content may be calculated by weight comparison. At that time, the total content of 0% is set to 0 g by weight, and the total content of 100% is set so that the depth profiles are all 100%, and the weight of the printed and cut out product is used.
 本実施形態においては、パターン形成用膜に500Paの圧力下で300秒間金属ガスを導入した場合、パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値は、A/Bの値は10.0以下であることが好ましく、9.0以下であることがより好ましく、8.5以下であることがさらに好ましい。また、A/Bの値は2以下であることも好ましく、1.5以下であることが特に好ましい。A/Bの値は金属種を選択したり、ポリマーを構成する構成単位を調整することで調整することができる。 In the present embodiment, when a metal gas is introduced into the pattern forming film under a pressure of 500 Pa for 300 seconds, the maximum metal content in the thickness direction of the pattern forming film is set to Atom%, and the maximum metal content in the thickness direction of the pattern forming film is set to Atom%. When the metal content at the intermediate point is Batom%, the A / B value is preferably 10.0 or less, more preferably 9.0 or less, and 8.5 or less. The following is more preferable. Further, the A / B value is preferably 2 or less, and particularly preferably 1.5 or less. The A / B value can be adjusted by selecting the metal type or adjusting the constituent units constituting the polymer.
 本実施形態において、A/Bの値が上記範囲内であることは、パターン形成用膜において、金属が深さ方向にも浸潤していることを意味している。通常、パターン形成用膜に金属ガスを導入した場合、パターン形成用膜の表面に最も金属が含有されることになる。しかしながら、本実施形態においては、ポリマーの構造、糖誘導体の比率、糖鎖の長さ、架橋基の比率等を適宜コントロールすることにより、金属がパターン形成用膜の表面のみならず、パターン形成用膜の深さ方向にも分布することができる。これにより、パターン形成用膜の厚み方向の強度を高めることができ、全体として強固なパターン形成用膜が形成されることとなる。その結果、基板上にパターン形成用膜を形成した後に、基板にパターン形状を加工する際のエッチング加工性を高めることができる。 In the present embodiment, the fact that the A / B value is within the above range means that the metal infiltrates in the depth direction in the pattern forming film. Usually, when a metal gas is introduced into the pattern forming film, the surface of the pattern forming film contains the most metal. However, in the present embodiment, by appropriately controlling the structure of the polymer, the ratio of sugar derivatives, the length of sugar chains, the ratio of cross-linking groups, etc., the metal is used not only for the surface of the pattern-forming film but also for pattern-forming. It can also be distributed in the depth direction of the membrane. As a result, the strength of the pattern-forming film in the thickness direction can be increased, and a strong pattern-forming film is formed as a whole. As a result, it is possible to improve the etching processability when processing the pattern shape on the substrate after forming the pattern forming film on the substrate.
 パターン形成用膜の厚み方向における最大金属含有率(atom%)は以下のようにして算出する。まず、ポリマー3質量%、p-トルエンスルホン酸0.3質量%となるようPGMEAに溶解して、コポリマー溶液サンプルを得る。そして、コポリマー溶液サンプルを2インチのシリコンウエハー基板上にスピンコーティングする。膜厚が300nmとなるように塗布した後、ホットプレート上において230℃で5分間焼成し、パターン形成用膜を形成する。次いで、パターン形成用膜を、ALD(原子層堆積装置:PICUSAN社製 SUNALE R-100B)に入れ、95℃にてTMA(トリメチルアルミニウム、Al(CH)ガスを300秒導入した後、水蒸気を150秒導入する。この操作を3回繰り返すことで、パターン形成用膜にAlを導入する。Al導入後のパターン形成用膜を、XPS装置(Thermo Fisher Scientific社製 Nexsa XPS System )に設置し、XPS分析(X線光電子分光分析)で、Arイオンを用いたスパッタリングと表面元素濃度測定ならびに膜厚測定を繰り返し、膜厚方向でのAl元素の濃度プロファイルを得る。Al元素の濃度プロファイルは、例えば、図1に示されるようなプロファイルとなる。なお、Al導入後のパターン形成用膜の膜厚は、各スパッタリング時間毎に形成された元素濃度測定実施部分と未スパッタリング部分に生じた段差部分を、触診式段差計(株式会社小坂製作所製 型番:ET-4000)にて測定することで求める。そして、得られたAl元素の濃度プロファイルにおいて得られたAl元素の最大濃度が最大金属含有率(atom%)となる。 The maximum metal content (atom%) in the thickness direction of the pattern forming film is calculated as follows. First, a copolymer solution sample is obtained by dissolving in PGMEA so that the polymer content is 3% by mass and p-toluenesulfonic acid is 0.3% by mass. Then, the copolymer solution sample is spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness is 300 nm, it is fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film. Next, the pattern-forming film was placed in an ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was introduced at 95 ° C. for 300 seconds. Introduce steam for 150 seconds. By repeating this operation three times, Al 2 O 3 is introduced into the pattern forming film. The pattern-forming film after the introduction of Al 2 O 3 was installed in an XPS device (Nexsa XPS System manufactured by Thermo Fisher Scientific), and in XPS analysis (X-ray photoelectron spectroscopy analysis), sputtering using Ar ions and surface element concentration. The measurement and the film thickness measurement are repeated to obtain the concentration profile of the Al element in the film thickness direction. The concentration profile of the Al element is, for example, a profile as shown in FIG. The film thickness of the pattern forming film after the introduction of Al 2 O 3 is a tactile profilometer (Kosaka Co., Ltd.) that measures the stepped portion formed between the element concentration measurement performed portion and the unsputtered portion formed at each sputtering time. It is obtained by measuring with the model number: ET-4000) manufactured by Seisakusho. Then, the maximum concentration of the obtained Al element in the obtained concentration profile of the Al element becomes the maximum metal content (atom%).
 パターン形成用膜の厚み方向における最大金属含有率(atom%)は、15atom%以上であることが好ましく、17atom%以上であることがより好ましく、20atom%以上であることがさらに好ましく、25atom%以上であることが特に好ましい。また、パターン形成用膜の厚み方向における最大金属含有率(atom%)は、50atom%以下であることが好ましい。パターン形成用膜の厚み方向における最大金属含有率を上記範囲内とすることにより、基板にパターン形状を加工する際のエッチング加工性をより効果的に高めることができる。 The maximum metal content (atom%) in the thickness direction of the pattern forming film is preferably 15 atom% or more, more preferably 17 atom% or more, further preferably 20 atom% or more, and 25 atom% or more. Is particularly preferable. Further, the maximum metal content (atom%) in the thickness direction of the pattern forming film is preferably 50 atom% or less. By setting the maximum metal content in the thickness direction of the pattern forming film within the above range, the etching processability when processing the pattern shape on the substrate can be more effectively enhanced.
 パターン形成用膜の厚み方向の中間点における金属含有率(atom%)は、パターン形成用膜の厚み方向における最大金属含有率(atom%)を算出した際に取得した膜厚方向でのAl元素の濃度プロファイルから算出することができる。膜厚方向でのAl元素の濃度プロファイルから、パターン形成用膜の厚み方向の中間点における金属含有率を読み取ることで、算出することができる。 The metal content (atom%) at the midpoint in the thickness direction of the pattern forming film is the Al element in the film thickness direction obtained when the maximum metal content (atom%) in the thickness direction of the pattern forming film was calculated. It can be calculated from the concentration profile of. It can be calculated by reading the metal content at the midpoint in the thickness direction of the pattern forming film from the concentration profile of the Al element in the film thickness direction.
 パターン形成用膜の厚み方向の中間点における金属含有率(atom%)は、1.5atom%以上であることが好ましく、5atom%以上であることがより好ましく、15atom%以上であることがさらに好ましく、25atom%以上であることが特に好ましい。また、パターン形成用膜の厚み方向の中間点における金属含有率(atom%)は、50atom%以下であることが好ましい。パターン形成用膜の厚み方向の中間点における金属含有率を上記範囲内とすることにより、基板にパターン形状を加工する際のエッチング加工性をより効果的に高めることができる。 The metal content (atom%) at the midpoint in the thickness direction of the pattern forming film is preferably 1.5 atom% or more, more preferably 5 atom% or more, and further preferably 15 atom% or more. , 25 atom% or more is particularly preferable. Further, the metal content (atom%) at the midpoint in the thickness direction of the pattern forming film is preferably 50 atom% or less. By setting the metal content at the midpoint in the thickness direction of the pattern forming film within the above range, the etching processability when processing the pattern shape on the substrate can be more effectively improved.
 本実施形態のパターン形成用組成物は、パターン形成用マスク材料であることが好ましい。すなわち、本実施形態のパターン形成用組成物から形成されるパターン形成用膜は、基板をエッチングする際の保護膜となることが好ましい。本実施形態のパターン形成用組成物から形成されるパターン形成用膜は、ナノインプリント法に必要なガス透過性に対しても効果を期待できる。このようなパターン形成用膜はエッチング工程の後に剥離除去されてもよい。 The pattern-forming composition of the present embodiment is preferably a pattern-forming mask material. That is, the pattern-forming film formed from the pattern-forming composition of the present embodiment preferably serves as a protective film when etching the substrate. The pattern-forming film formed from the pattern-forming composition of the present embodiment can also be expected to have an effect on the gas permeability required for the nanoimprint method. Such a pattern-forming film may be peeled off after the etching step.
 また、本実施形態のパターン形成用組成物は、パターン形成用自己組織化組成物であってもよい。本明細書における自己組織化(Directed Self-Assembly)とは、外的要因からの制御のみに起因せず、自発的に組織や構造を構築する現象を指す。例えば、パターン形成用自己組織化組成物を基板上に塗布し、アニーリング等を行うことにより、自己組織化による相分離構造を有する膜(自己組織化膜)を形成し、この自己組織化膜における一部の相を除去することにより、基板上にパターンを形成することができる。このようなパターン形状が保護膜となり、基板に所望のエッチング処理を施すことが可能となる。 Further, the pattern-forming composition of the present embodiment may be a pattern-forming self-organizing composition. In the present specification, self-assembly (Directed Self-Assembly) refers to a phenomenon in which an organization or structure is spontaneously constructed without being caused only by control from external factors. For example, by applying a self-assembled composition for pattern formation on a substrate and performing annealing or the like, a film having a phase-separated structure by self-assembly (self-assembled film) is formed, and the self-assembled film is formed. By removing some of the phases, a pattern can be formed on the substrate. Such a pattern shape serves as a protective film, and the substrate can be subjected to a desired etching process.
(ポリマー)
 本発明のパターン形成用組成物はポリマーを含み、該ポリマーは糖誘導体に由来する単位を含むものであることが好ましい。糖誘導体は、単糖由来の糖誘導体であっても、単糖由来の糖誘導体が複数結合した構造であってもよい。また、糖誘導体に由来する単位を含むポリマーにおいて、糖誘導体に由来する単位は、側鎖に糖誘導体由来構造を有する構成単位であってもよく、主鎖に糖誘導体由来構造を有する構成単位であってもよい。
(polymer)
The pattern-forming composition of the present invention preferably contains a polymer, and the polymer preferably contains a unit derived from a sugar derivative. The sugar derivative may be a monosaccharide-derived sugar derivative or a structure in which a plurality of monosaccharide-derived sugar derivatives are bonded. Further, in the polymer containing a unit derived from a sugar derivative, the unit derived from the sugar derivative may be a structural unit having a sugar derivative-derived structure in the side chain, or a structural unit having a sugar derivative-derived structure in the main chain. There may be.
 糖誘導体に由来する単位は、ペントース誘導体に由来する単位及びヘキソース誘導体に由来する単位から選択される少なくとも一種であることが好ましい。
 ペントース誘導体は、公知の単糖類または多糖類のペントースのヒドロキシル基が少なくとも置換基で修飾されたペントース由来の構造であれば、特に制限はない。ペントース誘導体としては、ヘミセルロース誘導体、キシロース誘導体及びキシロオリゴ糖誘導体から選択される少なくとも一種であることが好ましく、ヘミセルロース誘導体及びキシロオリゴ糖誘導体から選択される少なくとも一種であることがより好ましい。
 ヘキソース誘導体としては、公知の単糖類または多糖類のヘキソースのヒドロキシル基が少なくとも置換基で修飾されたヘキソース由来の構造であれば、特に制限はない。ヘキソース誘導体としては、グルコース誘導体及びセルロース誘導体から選択される少なくとも一種であることが好ましく、セルロース誘導体であることがより好ましい。
 中でも、糖誘導体に由来する単位は、セルロース誘導体に由来する単位、ヘミセルロース誘導体に由来する単位及びキシロオリゴ糖誘導体に由来する単位から選択される少なくとも一種であることが好ましい。
The unit derived from the sugar derivative is preferably at least one selected from the unit derived from the pentose derivative and the unit derived from the hexose derivative.
The pentose derivative is not particularly limited as long as it has a structure derived from pentose in which the hydroxyl group of the known monosaccharide or polysaccharide pentose is modified with at least a substituent. The pentose derivative is preferably at least one selected from hemicellulose derivatives, xylose derivatives and xylooligosaccharide derivatives, and more preferably at least one selected from hemicellulose derivatives and xylooligosaccharide derivatives.
The hexose derivative is not particularly limited as long as it has a structure derived from hexose in which the hydroxyl group of the hexose of a known monosaccharide or polysaccharide is modified with at least a substituent. The hexose derivative is preferably at least one selected from a glucose derivative and a cellulose derivative, and more preferably a cellulose derivative.
Among them, the unit derived from the sugar derivative is preferably at least one selected from the unit derived from the cellulose derivative, the unit derived from the hemicellulose derivative and the unit derived from the xylooligosaccharide derivative.
 中でも、糖誘導体に由来する単位は、下記一般式(103)で表される構造及び下記一般式(104)で表される構造から選択される少なくとも一方を含むものであることが好ましい。 Among them, the unit derived from the sugar derivative preferably contains at least one selected from the structure represented by the following general formula (103) and the structure represented by the following general formula (104).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(103)及び(104)中、Rはそれぞれ独立に水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルキル基、アシル基、アリール基、トリメチルシリル基又はホスホリル基を表し、複数あるRは同一であっても異なっていてもよい。Rは水素原子又はアルキル基を表す。X及びYはそれぞれ独立に単結合又は連結基を表す。rは1以上の整数を表し、*印はrが2以上の場合にRのいずれか1つとの結合部位を表すか、もしくはRに代わってRが結合している酸素原子のいずれか1つとの結合部位を表す。 In the general formulas (103) and (104), R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, and a plurality of them. there R 1 may be different even in the same. R 5 represents a hydrogen atom or an alkyl group. X 1 and Y 1 independently represent a single bond or a linking group, respectively. r represents an integer of 1 or more, * mark any oxygen atoms r is or represents any one of the binding sites of R 1, or in place of R 1 bonded to R 1 in the case of two or more Represents the binding site with one.
 一般式(103)及び(104)中、Rは、それぞれ独立に水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルキル基、アシル基、アリール基、トリメチルシリル基又はホスホリル基を表し、複数あるRは同一であっても異なっていてもよい。中でも、Rは、それぞれ独立に水素原子又は炭素数1以上3以下のアシル基であることが好ましい。なお、上記のアルキル基には、糖鎖も含まれる。すなわち、一般式(103)及び(104)における糖鎖部分はさらに分岐鎖を有していてもよい。 In the general formulas (103) and (104), R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, respectively. A plurality of R 1s may be the same or different. Above all, it is preferable that R 1 is independently a hydrogen atom or an acyl group having 1 or more and 3 or less carbon atoms. The above alkyl group also includes a sugar chain. That is, the sugar chain portion in the general formulas (103) and (104) may further have a branched chain.
 Rがアルキル基又はアシル基である場合、その炭素数は、目的に応じて適宜選択することができる。例えば、炭素数は2以上であることが好ましく、200以下であることが好ましく、100以下であることがより好ましく、20以下であることがさらに好ましく、4以下であることが特に好ましい。 When R 1 is an alkyl group or an acyl group, the number of carbon atoms thereof can be appropriately selected depending on the intended purpose. For example, the number of carbon atoms is preferably 2 or more, preferably 200 or less, more preferably 100 or less, further preferably 20 or less, and particularly preferably 4 or less.
 Rの具体例としては、例えば、アセチル基、プロパノイル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、クロロアセチル基、トリフルオロアセチル基、シクロペンタンカルボニル基、シクロヘキサンカルボニル基、ベンゾイル基、メトキシベンゾイル基、クロロベンゾイル基等のアシル基;メチル基、エチル基、プロピル基、ブチル基、t-ブチル基等のアルキル基などが挙げられる。これらの中でも、アセチル基、プロパノイル基、ブチリル基、イソブチリル基が好ましく、アセチル基が特に好ましい。 Specific examples of R 1 include, for example, an acetyl group, a propanoyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, a chloroacetyl group, a trifluoroacetyl group, and a cyclopentanecarbonyl group. , Cyclohexanecarbonyl group, benzoyl group, methoxybenzoyl group, chlorobenzoyl group and other acyl groups; methyl group, ethyl group, propyl group, butyl group, t-butyl group and other alkyl groups and the like. Among these, an acetyl group, a propanoyl group, a butyryl group, and an isobutyryl group are preferable, and an acetyl group is particularly preferable.
 一般式(103)及び(104)中、Rは水素原子又はアルキル基を表す。中でも、Rは水素原子又は炭素数が1以上3以下のアルキル基であることが好ましく、水素原子又はメチル基であることが特に好ましい。 In the general formulas (103) and (104), R 5 represents a hydrogen atom or an alkyl group. Among them, R 5 is preferably a hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms, and particularly preferably a hydrogen atom or a methyl group.
 一般式(103)及び(104)中、X及びYはそれぞれ独立に単結合または連結基を表す。
 Xが連結基である場合、Xとしては、アルキレン基、-O-、-NH-、カルボニル基などを含む基が挙げられるが、Xは単結合であるか、もしくは炭素数が1以上6以下のアルキレン基であることが好ましく、炭素数が1以上3以下のアルキレン基であることがより好ましい。
 Yが連結基である場合、Yとしては、アルキレン基、フェニレン基、-O-、-C(=O)O-などを含む基が挙げられる。Yはこれらの基を組み合わせた連結基であってもよい。中でもYは下記構造式で表される連結基であることが好ましい。
In the general formulas (103) and (104), X 1 and Y 1 independently represent a single bond or a linking group, respectively.
When X 1 is a linking group, the X 1, an alkylene group, -O -, - NH 2 - , but include groups containing a carbonyl group, or X 1 is a single bond, or carbon atoms It is preferably an alkylene group having 1 or more and 6 or less, and more preferably an alkylene group having 1 or more and 3 or less carbon atoms.
When Y 1 is a linking group, examples of Y 1 include a group containing an alkylene group, a phenylene group, -O-, -C (= O) O-, and the like. Y 1 may be a linking group in which these groups are combined. Among them, Y 1 is preferably a linking group represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記構造式中、※印は主鎖側との結合部位を表し、*印は、側鎖の糖単位との結合部位を表す。 In the above structural formula, * mark represents the binding site with the main chain side, and * mark represents the binding site with the sugar unit of the side chain.
 一般式(103)及び(104)中、rは1以上の整数を表し、2以上であってもよく、3以上であってもよい。また、rは、1500以下であることが好ましく、1200以下であることがより好ましく、500以下であることがさらに好ましく、100以下であることがよりさらに好ましく、50以下であることが特に好ましく、10以下であることが最も好ましい。 In the general formulas (103) and (104), r represents an integer of 1 or more, and may be 2 or more or 3 or more. Further, r is preferably 1500 or less, more preferably 1200 or less, further preferably 500 or less, further preferably 100 or less, and particularly preferably 50 or less. Most preferably, it is 10 or less.
 糖単位の平均重合度は、上記rの好ましい範囲と同様である。なお、糖単位の平均重合度は1つの糖部を形成する糖単位数であり、糖部が側鎖構造を有している場合は、側鎖を構成する糖単位数も平均重合度に含まれる。上記の糖単位の平均重合度は下記の測定方法によって算出することができる。
 まず、糖誘導体を含む溶液を50℃に保ち15000rpmで15分間遠心分離し不溶物を除去する。その後、上清液の全糖量と還元糖量(共にキシロース換算)を測定する。そして全糖量を還元糖量で割ることで平均重合度が算出される。なお、上記測定方法が採用できない場合は、ゲル浸透クロマトグラフィー、サイズ排除クロマトグラフィー、光散乱法、粘度法、末端基定量法、沈降速度法、MULDI-TOF-MS法、NMRによる構造解析法などを採用してもよい。
 糖単位の平均重合度をコポリマー合成後に測定する場合は、H-NMRで糖鎖由来のピーク(3.3-5.5ppm付近)の積分値と、糖誘導体のその他の成分由来のピークの積分値を算出し、各積分値の比より平均重合度を算出する。なお、一般式(103)及び(104)におけるRが水素原子でない場合には、糖鎖由来のピークの代わりに-OR基由来のピークの積分値を使用することもできる(但しこの場合の-OR基のRは糖鎖ではない)。
The average degree of polymerization of the sugar unit is the same as the preferable range of r above. The average degree of polymerization of sugar units is the number of sugar units forming one sugar part, and when the sugar part has a side chain structure, the number of sugar units constituting the side chain is also included in the average degree of polymerization. Is done. The average degree of polymerization of the above sugar units can be calculated by the following measuring method.
First, the solution containing the sugar derivative is kept at 50 ° C. and centrifuged at 15,000 rpm for 15 minutes to remove insoluble matter. Then, the total sugar amount and the reducing sugar amount (both in terms of xylose) of the supernatant are measured. Then, the average degree of polymerization is calculated by dividing the total amount of sugar by the amount of reducing sugar. If the above measurement method cannot be adopted, gel permeation chromatography, size exclusion chromatography, light scattering method, viscosity method, terminal group quantification method, sedimentation velocity method, MULDI-TOF-MS method, structural analysis method by NMR, etc. May be adopted.
When measuring the average degree of polymerization of sugar units after copolymer synthesis, 1 H-NMR is used to show the integral value of the peak derived from the sugar chain (around 3.3-5.5 ppm) and the peak derived from other components of the sugar derivative. The integral value is calculated, and the average degree of polymerization is calculated from the ratio of each integral value. When R 1 in the general formulas (103) and (104) is not a hydrogen atom, the integrated value of the peak derived from -OR 1 can be used instead of the peak derived from the sugar chain (however, in this case). -OR 1 R 1 is not a sugar chain).
 一般式(103)及び(104)における*印は、rが2以上の場合にRのいずれか1つとの結合部位を表すか、もしくはRに代わってRが結合している酸素原子のいずれか1つとの結合部位を表す。すなわち、一般式(103)及び(104)における糖単位の重合箇所は、糖単位におけるRもしくは、Rが結合している酸素原子のいずれであってもよく、いずれか1箇所が重合箇所であることが好ましい。なお、Rが置換基を有するアルキル基である場合には、Rは糖鎖であってもよいため、一般式(103)及び(104)における*印の結合部位は1箇所であっても、実際には、糖鎖はさらなる糖鎖からなる側鎖を有する場合もある。 * Mark in the general formula (103) and (104), an oxygen atom which r is any representative of any one of the binding sites of R 1, or in place of R 1 bonded to R 1 in the case of two or more Represents a binding site with any one of. That is, the polymerization site of the sugar unit in the general formulas (103) and (104) may be either R 1 in the sugar unit or the oxygen atom to which R 1 is bonded, and any one of the polymerization sites is the polymerization site. Is preferable. When R 1 is an alkyl group having a substituent, R 1 may be a sugar chain, so that there is only one binding site marked with * in the general formulas (103) and (104). However, in reality, the sugar chain may have a side chain consisting of additional sugar chains.
 糖誘導体に由来する単位は上記一般式(103)で表される構造、及び上記一般式(104)で表される構造から選択される少なくとも一方を含むものであるが、上記一般式(103)で表される構造を主に含むものであることが好ましい。これは上記一般式(103)で表される構造が上記一般式(104)で表される構造よりもよりコンパクトであり、ポリマーの自由体積半径のコントロールがしやすくなるためと考えられる。 The unit derived from the sugar derivative includes at least one selected from the structure represented by the general formula (103) and the structure represented by the general formula (104), and is represented by the general formula (103). It is preferable that the structure is mainly contained. It is considered that this is because the structure represented by the general formula (103) is more compact than the structure represented by the general formula (104), and the free volume radius of the polymer can be easily controlled.
 パターン形成用組成物に含まれるポリマーは、コポリマーであることが好ましい。コポリマーは、ブロックコポリマーであってもよいが、ランダムコポリマーであることが好ましい。ランダムコポリマーを用いることにより、より均質なパターン形成用膜を形成することができる。 The polymer contained in the pattern-forming composition is preferably a copolymer. The copolymer may be a block copolymer, but is preferably a random copolymer. By using a random copolymer, a more homogeneous pattern-forming film can be formed.
 パターン形成用組成物に含まれるポリマーがコポリマーである場合、ポリマーは、さらに下記一般式(105)で表される構造を有することが好ましい。 When the polymer contained in the pattern-forming composition is a copolymer, the polymer preferably has a structure represented by the following general formula (105).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(105)中、Wは炭素原子又はケイ素原子を表す。中でも、Wは炭素原子であることが好ましい。また、一般式(105)中、Wは、-CR-、-O-、-S-又は-SiR-を表す(但し、Rは水素原子又は炭素数が1~5のアルキル基を表し、複数あるRは同一であっても異なっていてもよい)。中でも、Wは-CR-であることが好ましく、-CH-であることがより好ましい。 In the general formula (105), W 1 represents a carbon atom or a silicon atom. Above all, W 1 is preferably a carbon atom. Further, in the general formula (105), W 2 represents -CR 2- , -O-, -S- or -SiR 2- (where R is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Represented, a plurality of Rs may be the same or different). Among them, W 2 is preferably -CR 2- , and more preferably -CH 2-.
 一般式(105)中、R11は水素原子、炭素数が1以上3以下のアルキル基又は水酸基を表す。炭素数が1以上3以下のアルキル基は、メチル基であることが好ましく、R11は水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。 In the general formula (105), R 11 represents a hydrogen atom, an alkyl group having 1 or more and 3 or less carbon atoms, or a hydroxyl group. Alkyl group having 1 to 3 carbon atoms, preferably a methyl group, R 11 is more preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
 一般式(105)中、R12は水素原子、水酸基、アセチル基、メトキシカルボニル基、アリール基、アリル基、グリシジルエーテル基、グリシジルエステル基、イソシアネートエステル基又はピリジル基を表す。アリル基は、-R-CH=CHで表される基であることが好ましく、グリシジルエーテル基は、-CHO-R-エポキシで表される基であることが好ましく、グリシジルエステル基は、-COO-R-エポキシで表される基であることが好ましく、イソシアネートエストテル基は、-COO-R-NCOで表される基であることが好ましい。ここで、Rは置換基を有してもよいアルキレン基である。置換基を有してもよいアルキレン基としては、例えば、-CH-、-(CH-、-(CH-、-(CH-、-(CH-、-CHOCH-、-(CHOCH-、-(CHOCH-、-(CHOCH-、-(CHOCH-等を挙げることができる。また、置換基を有してもよいアルキレン基はシクロアルキレン基であってもよく、橋かけ環式シクロアルキレン基であってもよい。 In the general formula (105), R 12 represents a hydrogen atom, a hydroxyl group, an acetyl group, a methoxycarbonyl group, an aryl group, an allyl group, a glycidyl ether group, a glycidyl ester group, an isocyanate ester group or a pyridyl group. The allyl group is preferably a group represented by -R 3 -CH = CH 2 , and the glycidyl ether group is preferably a group represented by -CH 2 -OR 3 -epoxy, and a glycidyl ester. The group is preferably a group represented by -COO-R 3 -epoxy, and the isocyanate ester group is preferably a group represented by -COO-R 3- NCO. Here, R 3 is an alkylene group which may have a substituent. Examples of the alkylene group which may have a substituent include -CH 2 -,-(CH 2 ) 2 -,-(CH 2 ) 3 -,-(CH 2 ) 4 -,-(CH 2 ) 5 -, -CH 2 OCH 2 -,-(CH 2 ) 2 OCH 2 -,-(CH 2 ) 3 OCH 2 -,-(CH 2 ) 4 OCH 2 -,-(CH 2 ) 5 OCH 2 -etc. Can be mentioned. Further, the alkylene group which may have a substituent may be a cycloalkylene group or a crosslinked cyclic cycloalkylene group.
 中でも、R12はメトキシカルボニル基、アリール基、グリシジルエーテル基、グリシジルエステル基又はピリジル基であることが好ましく、グリシジルエステル基又はアリール基であることがより好ましく、グリシジルエステル基又はフェニル基であることがさらに好ましい。また、フェニル基は置換基を有するフェニル基であることも好ましい。置換基を有するフェニル基としては、例えば、4-t-ブチルフェニル基、メトキシフェニル基、ジメトキシフェニル基、トリメトキシフェニル基、トリメチルシリルフェニル基、テトラメチルジシリルフェニル基等を挙げることができる。また、R12はナフタレン基であることも好ましい。 Among them, R 12 is preferably a methoxycarbonyl group, an aryl group, a glycidyl ether group, a glycidyl ester group or a pyridyl group, more preferably a glycidyl ester group or an aryl group, and a glycidyl ester group or a phenyl group. Is even more preferable. It is also preferable that the phenyl group is a phenyl group having a substituent. Examples of the phenyl group having a substituent include a 4-t-butylphenyl group, a methoxyphenyl group, a dimethoxyphenyl group, a trimethoxyphenyl group, a trimethylsilylphenyl group, a tetramethyldisilylphenyl group and the like. It is also preferable that R 12 is a naphthalene group.
 上述したようにR12はフェニル基であることが好ましく、この場合、一般式(105)で表される構造に由来する単位は、スチレン化合物に由来する単位である。スチレン化合物としては、例えば、スチレン、o-メチルスチレン、p-メチルスチレン、エチルスチレン、p-メトキシスチレン、p-フェニルスチレン、2,4-ジメチルスチレン、p-n-オクチルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、クロロスチレン、ブロモスチレン、トリメチルシリルスチレン、ヒドロキシスチレン、3,4,5-メトキシスチレン、ペンタメチルジシリルスチレン等が挙げられる。中でも、スチレン化合物は、スチレン及びトリメチルシリルスチレンから選択される少なくとも一種であることが好ましく、スチレンであることがより好ましい。 As described above, R 12 is preferably a phenyl group, and in this case, the unit derived from the structure represented by the general formula (105) is a unit derived from a styrene compound. Examples of the styrene compound include styrene, o-methylstyrene, p-methylstyrene, ethylstyrene, p-methoxystyrene, p-phenylstyrene, 2,4-dimethylstyrene, pn-octylstyrene, and pn-. Examples thereof include decylstyrene, pn-dodecylstyrene, chlorostyrene, bromostyrene, trimethylsilylstyrene, hydroxystyrene, 3,4,5-methoxystyrene, pentamethyldisilylstyrene and the like. Among them, the styrene compound is preferably at least one selected from styrene and trimethylsilyl styrene, and more preferably styrene.
 また、R12はグリシジルエステル基であることも好ましい。この場合、一般式(105)で表される構造に由来する単位はグリシジルアクリレート化合物に由来する単位である。グリシジルアクリレート化合物としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、オキシラン‐2‐イルメチル‐2‐エチリデンペンタノエーテ等が挙げられる。中でも、グリシジルアクリレート化合物は、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテルから選択される少なくとも一種であることが好ましい。 It is also preferable that R 12 is a glycidyl ester group. In this case, the unit derived from the structure represented by the general formula (105) is a unit derived from the glycidyl acrylate compound. Examples of the glycidyl acrylate compound include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, oxylan-2-ylmethyl-2-ethylidene pentanoete and the like. Among them, the glycidyl acrylate compound is preferably at least one selected from glycidyl methacrylate and 4-hydroxybutyl acrylate glycidyl ether.
 ポリマーの重量平均分子量(Mw)は、500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることがさらに好ましい。また、ポリマーの重量平均分子量(Mw)は、100万以下であることが好ましく、50万以下であることがより好ましく、30万以下であることがさらに好ましく、25万以下であることが一層好ましい。なお、ポリマーの重量平均分子量(Mw)は、GPCによるポリスチレン換算で測定された値である。 The weight average molecular weight (Mw) of the polymer is preferably 500 or more, more preferably 1000 or more, and further preferably 1500 or more. The weight average molecular weight (Mw) of the polymer is preferably 1 million or less, more preferably 500,000 or less, further preferably 300,000 or less, and even more preferably 250,000 or less. .. The weight average molecular weight (Mw) of the polymer is a value measured by GPC in terms of polystyrene.
 ポリマーの重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、1以上であることが好ましい。また、Mw/Mnは、2以下であることが好ましく、1.5以下であることがより好ましく、1.3以下であることがさらに好ましい。Mw/Mnを上記範囲内とすることにより、本実施形態のパターン形成用組成物は、より精度の高い微細で良好なパターン構造を形成することができる。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) of the polymer to the number average molecular weight (Mn) is preferably 1 or more. Further, Mw / Mn is preferably 2 or less, more preferably 1.5 or less, and further preferably 1.3 or less. By setting Mw / Mn within the above range, the pattern-forming composition of the present embodiment can form a fine and good pattern structure with higher accuracy.
 上述したようにポリマーは、糖誘導体に由来する単位を含み、ポリマーにおける糖誘導体に由来する単位の含有率は60質量%以上であることが好ましく、65質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。また、ポリマーにおける糖誘導体に由来する単位の含有率は90質量%以下であることが好ましく、85質量%以下であることがより好ましい。ポリマーにおける糖誘導体に由来する単位の含有率を上記範囲内とすることにより、有機溶媒への溶解度を高めることができる。 As described above, the polymer contains a unit derived from a sugar derivative, and the content of the unit derived from the sugar derivative in the polymer is preferably 60% by mass or more, more preferably 65% by mass or more, 70. It is more preferably mass% or more. The content of the unit derived from the sugar derivative in the polymer is preferably 90% by mass or less, and more preferably 85% by mass or less. By setting the content of the unit derived from the sugar derivative in the polymer within the above range, the solubility in an organic solvent can be increased.
 また、ポリマーにおける一般式(105)で表される単位の含有率は、ポリマーの全質量に対して、5質量%以上であってもよく、10質量%以上であってもよい。また、ポリマーにおける一般式(105)で表される単位の含有率は40質量%以下であることが好ましく、30質量%以下であることがより好ましい。なお、ポリマーにおける一般式(105)で表される単位の含有率はH-NMRにより、算出することができる。 Further, the content of the unit represented by the general formula (105) in the polymer may be 5% by mass or more or 10% by mass or more with respect to the total mass of the polymer. Further, the content of the unit represented by the general formula (105) in the polymer is preferably 40% by mass or less, and more preferably 30% by mass or less. The content of the unit represented by the general formula (105) in the polymer can be calculated by 1 1 H-NMR.
 なお、ポリマーは、上記構成単位以外に、その他の構成単位を有していてもよい。他の構成単位としては、例えば、乳酸由来単位、シロキサン結合含有単位、アミド結合含有単位、尿素結合含有単位等を挙げることができる。 The polymer may have other structural units in addition to the above-mentioned structural units. Examples of other structural units include lactic acid-derived units, siloxane bond-containing units, amide bond-containing units, urea bond-containing units, and the like.
(ポリマーの合成方法)
 ポリマーの合成は、リビングラジカル重合やリビングアニオン重合、原子移動ラジカル重合といった公知の重合法で行うことができる。例えばリビングラジカル重合の場合、AIBN(α、α’-アゾビスイソブチロニトリル)といった重合開始剤を用い、モノマーと反応させることによってポリマーを得ることができる。リビングアニオン重合の場合、塩化リチウムの存在下でブチルリチウムとモノマーを反応させることによってポリマーを得ることができる。
(Polymer synthesis method)
The polymer can be synthesized by a known polymerization method such as living radical polymerization, living anionic polymerization, or atom transfer radical polymerization. For example, in the case of living radical polymerization, a polymer can be obtained by reacting with a monomer using a polymerization initiator such as AIBN (α, α'-azobisisobutyronitrile). In the case of living anionic polymerization, a polymer can be obtained by reacting butyllithium with a monomer in the presence of lithium chloride.
 上述したような糖誘導体における糖部は、合成で得てもよいが、木本性植物、あるいは草本性植物由来のリグノセルロース等から抽出する工程を組み合わせて得てもよい。糖部を得る場合に木本性植物、あるいは草本性植物由来のリグノセルロース等から抽出する方法を採用する場合は、特開2012-100546号公報等に記載の抽出方法を利用することができる。キシランについては、例えば特開2012-180424号公報に開示されている方法で抽出することができる。また、セルロースについては、例えば特開2014-148629号公報に開示されている方法で抽出することができる。 The sugar portion of the sugar derivative as described above may be obtained by synthesis, but may be obtained by combining the steps of extracting from lignocellulose derived from woody plants or herbaceous plants. When a method of extracting from a woody plant, a lignocellulose derived from a herbaceous plant, or the like is adopted in order to obtain a sugar portion, the extraction method described in JP-A-2012-100546 or the like can be used. Xylan can be extracted by, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2012-180424. Further, cellulose can be extracted by, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2014-148629.
 糖誘導体を得る際には、上記抽出方法を用いた糖部のOH基をアセチル化やハロゲン化などして修飾して用いることが好ましい。例えばアセチル基を導入する場合、無水酢酸と反応させることによりアセチル化した糖誘導体を得ることができる。 When obtaining a sugar derivative, it is preferable to modify the OH group of the sugar portion using the above extraction method by acetylation or halogenation. For example, when an acetyl group is introduced, an acetylated sugar derivative can be obtained by reacting with acetic anhydride.
 一般式(105)で表される構造を有する化合物は合成により形成してもよく、市販品を用いてもよい。一般式(105)で表される構造を有する化合物を合成する場合は、公知の合成方法を採用することができる。また、市販品を用いる場合は、例えば、Amino-terminated PS(Mw=12300Da、Mw/Mn=1.02、ポリマーソース社製)、アリルグリシジルエーテル(東京化成工業社製)、グリシジルアクリレート(東京化成工業社製)、グリシジルメタクリレート(東京化成工業社製)、4-ヒドロキシブチルアクリレートグリシジルエーテル(三菱化学社製)、オキシラン‐2‐イルメチル‐2‐エチリデンペンタノエーテ(Achemica社製)、3,4-エポキシシクロヘキシルメチルメタアクリレート(ダイセル社製)等を用いることができる。 The compound having the structure represented by the general formula (105) may be formed by synthesis, or a commercially available product may be used. When synthesizing a compound having a structure represented by the general formula (105), a known synthesis method can be adopted. When using a commercially available product, for example, Amino-terminated PS (Mw = 12300Da, Mw / Mn = 1.02, manufactured by Polymer Source Co., Ltd.), allyl glycidyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.), glycidyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), glycidyl acrylate (Tokyo Chemical Industry Co., Ltd.) (Manufactured by Kogyo Co., Ltd.), Glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), 4-Hydroxybutyl acrylate glycidyl ether (manufactured by Mitsubishi Chemical Co., Ltd.), Oxylan-2-ylmethyl-2-ethylidene pentanoete (manufactured by Achemica), 3,4 -Epoxycyclohexylmethylmethacrylate (manufactured by Daicel) or the like can be used.
 コポリマーは、Macromolecules Vol.36,No.6, 2003を参考に合成することができる。具体的には、DMF、水、アセトニトリル等を含む溶媒に糖誘導体と、一般式(105)で表される構造を有する化合物を入れ、還元剤を添加する。還元剤としては、NaCNBH等を挙げることができる。その後、30℃以上100℃以下で1日以上20日以下撹拌し、必要に応じて還元剤を適宜追加する。水を添加することで沈殿物を得て、固形分を真空乾燥することでコポリマーを得ることができる。 Copolymers are available from Macromolecules Vol. 36, No. It can be synthesized with reference to 6, 2003. Specifically, a sugar derivative and a compound having a structure represented by the general formula (105) are put in a solvent containing DMF, water, acetonitrile and the like, and a reducing agent is added. Examples of the reducing agent include NaCNBH 3 and the like. Then, the mixture is stirred at 30 ° C. or higher and 100 ° C. or lower for 1 day or more and 20 days or less, and a reducing agent is appropriately added as necessary. A precipitate can be obtained by adding water, and a copolymer can be obtained by vacuum drying the solid content.
 コポリマーの合成方法としては、上記の方法の他に、ラジカル重合、RAFT重合、ATRP重合、クリック反応、NMP重合を用いた合成方法を挙げることができる。
 ラジカル重合は開始剤を添加して熱反応や光反応で2個のフリーラジカルを生じさせることで起こる重合反応である。モノマー(例えばスチレンモノマーとキシロオリゴ糖の末端のβ-1位にメタクリル酸を付加した糖メタクリレート化合物)と開始剤(例えばアゾビスブチロニトリル(AIBN)のようなアゾ化合物)を150℃で加熱することでポリスチレン-ポリ糖メタクリレートランダムコポリマーを合成することができる。
 RAFT重合は、チオカルボニルチオ基を利用した交換連鎖反応を伴う、ラジカル開始重合反応である。例えばキシロオリゴ糖の末端1位についたOH基をチオカルボニルチオ基に変換し、その後スチレンモノマーを30℃以上100℃以下で反応させてコポリマーを合成する、という手法を取ることができる(Material Matters vol.5, No.1 最新高分子合成 シグマアルドリッチジャパン株式会社)。
 ATRP重合は、糖の末端OH基をハロゲン化し、金属錯体[(CuCl、CuCl、CuBr、CuBrもしくはCuI等)+TPMA(tris(2-pyridylmethyl)amine)]、MeTREN(tris[2-(dimethylamino)ethyl]amine)など)、モノマー(例えばスチレンモノマー)、及び、重合開始剤(2,2,5-トリメチル-3-(1-フェニルエトキシ)-4-フェニル-3-アザヘキサン)を反応させることにより、糖コポリマー(例えば糖-スチレンブロックコポリマー)を合成することができる。
 NMP重合は、アルコキシアミン誘導体を開始剤として加熱することで、モノマー分子とカップリングと反応を起こしニトロキシドを生じさせる。その後、熱解離によりラジカルが生じることでポリマー化反応が進む。このようなNMP重合は、リビングラジカル重合反応の一種である。モノマー(例えばスチレンモノマーとキシロオリゴ糖の末端のβ-1位にメタクリル酸を付加した糖メタクリレート化合物)とを混合し、2,2,6,6-tetramethylpiperidine 1-oxyl(TEMPO)を開始剤とし、140℃で加熱することでポリスチレン-ポリ糖メタクリレートランダムコポリマーを合成することができる。
 クリック反応は、プロパルギル基をもつ糖とCu触媒を用いた1,3-双極アジド/アルキン環化付加反応である。
Examples of the method for synthesizing the copolymer include a synthesis method using radical polymerization, RAFT polymerization, ATRP polymerization, click reaction, and NMP polymerization, in addition to the above methods.
Radical polymerization is a polymerization reaction that occurs when an initiator is added to generate two free radicals by a thermal reaction or a photoreaction. The monomer (eg, a styrene monomer and a sugar methacrylate compound in which methacrylic acid is added to the β-1 position at the end of the xylooligosaccharide) and the initiator (for example, an azo compound such as azobisisobutyronitrile (AIBN)) are heated at 150 ° C. This makes it possible to synthesize a polystyrene-polysaccharide methacrylate random copolymer.
RAFT polymerization is a radical-initiated polymerization reaction involving an exchange chain reaction using a thiocarbonylthio group. For example, a method can be taken in which the OH group attached to the terminal 1 position of the xylooligosaccharide is converted into a thiocarbonylthio group, and then the styrene monomer is reacted at 30 ° C. or higher and 100 ° C. or lower to synthesize a copolymer (Material Maters vol). .5, No.1 Latest Polymer Synthesis Sigma Aldrich Japan Co., Ltd.).
ATRP polymerization, the terminal OH group of the sugar halogenated metal complex [(CuCl, CuCl 2, CuBr , CuBr 2 or CuI, etc.) + TPMA (tris (2- pyridylmethyl) amine)], MeTREN (tris [2- (dimethylamino ) Ethyl] amine), etc.), a monomer (eg, styrene monomer), and a polymerization initiator (2,2,5-trimethyl-3- (1-phenylethoxy) -4-phenyl-3-azahexane). Allows the synthesis of sugar copolymers (eg, sugar-styrene block copolymers).
In NMP polymerization, by heating with an alkoxyamine derivative as an initiator, a reaction with a monomer molecule is caused to generate nitroxide. After that, radicals are generated by thermal dissociation, and the polymerization reaction proceeds. Such NMP polymerization is a kind of living radical polymerization reaction. A monomer (for example, a styrene monomer and a sugar methacrylate compound in which methacrylic acid is added to the β-1 position at the end of a xylooligosaccharide) is mixed, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) is used as an initiator. A polystyrene-polysaccharide methacrylate random copolymer can be synthesized by heating at 140 ° C.
The click reaction is a 1,3-bipolar azide / alkyne cycloaddition reaction using a sugar having a propargyl group and a Cu catalyst.
(パターン形成用組成物の製造方法)
 パターン形成用組成物の製造方法では、上述したポリマーと溶媒を混合することが好ましい。溶媒は、有機溶媒であることが好ましく、有機溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、含硫黄系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。これらの溶媒は、単独で又は2種以上を組み合わせて用いてもよい。
(Manufacturing method of composition for pattern formation)
In the method for producing a pattern-forming composition, it is preferable to mix the above-mentioned polymer and solvent. The solvent is preferably an organic solvent, and examples of the organic solvent include alcohol-based solvents, ether-based solvents, ketone-based solvents, sulfur-containing solvents, amide-based solvents, ester-based solvents, hydrocarbon-based solvents, and the like. Be done. These solvents may be used alone or in combination of two or more.
 アルコール系溶媒としては、例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等;エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1H,1H-トリフルオロエタノール、1H,1H-ペンタフルオロプロパノール、6-(パーフルオロエチル)ヘキサノール等;を挙げることができる。 Examples of alcohol-based solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, and 2-methylbutanol. , Se-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethyl Hexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, furfuryl alcohol , Phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, diacetone alcohol, etc .; ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentanol Diol, 2-methyl-2,4-pentandiol, 2,5-hexanediol, 2,4-heptandiol, 2-ethyl-1,3-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene Glycols, 1H, 1H-trifluoroethanol, 1H, 1H-pentafluoropropanol, 6- (perfluoroethyl) hexanol, etc .; can be mentioned.
 また、多価アルコール部分エーテル系溶媒として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。 Further, as the polyhydric alcohol partially ether-based solvent, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2. -Ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, diethylene glycol dimethyl ether, diethylene glycol ethylmethyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene Examples thereof include glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, and dipropylene glycol monopropyl ether.
 エーテル系溶媒としては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、テトラヒドロフラン(THF)等が挙げられる。 Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether, tetrahydrofuran (THF) and the like.
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン、フルフラール等が挙げられる。 Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone and methyl-n. -Hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentandione, acetonylacetone, acetophenone, furfural and the like can be mentioned.
 含硫黄系溶媒としては、例えばジメチルスルホキシドなどが挙げられる。 Examples of the sulfur-containing solvent include dimethyl sulfoxide and the like.
 アミド系溶媒としては、例えば、N,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等が挙げられる。 Examples of the amide solvent include N, N'-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide. , N-methylpropionamide, N-methylpyrrolidone and the like.
 エステル系溶媒としては、例えば、ジエチルカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル(PGMEA)、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、3-メトキシプロピオン酸メチル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。 Examples of the ester solvent include diethyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate and acetic acid. sec-butyl, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate, acet Methyl acetate, ethyl acetoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl acetate ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene acetate Glycol monoethyl ether, propylene glycol monopropyl ether acetate, propylene glycol monobutyl acetate ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl acetate ether, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n-propionic acid Butyl, i-amyl propionate, methyl 3-methoxypropionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, diethyl malonate, dimethyl phthalate , Diethyl phthalate and the like.
 炭化水素系溶媒としては、例えば、脂肪族炭化水素系溶媒として、n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等;芳香族炭化水素系溶媒として、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、i-プロピルベンゼン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンゼン、n-アミルナフタレン、アニソール等が挙げられる。 As the hydrocarbon solvent, for example, as an aliphatic hydrocarbon solvent, n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, methylcyclohexane, etc .; as aromatic hydrocarbon solvents, benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, etc. Examples thereof include i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene and anisole.
 これらの中でも、酢酸プロピレングリコールモノメチルエーテル(PGMEA)、N,N-ジメチルホルムアミド(DMF)、プロピレングリコールモノメチルエーテル(PGME)、アニソール、エタノール、メタノール、アセトン、メチルエチルケトン、ヘキサン、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、1H,1H-トリフルオロエタノール、1H,1H-ペンタフルオロプロパノール、6-(パーフルオロエチル)ヘキサノール、酢酸エチル、酢酸プロピル、酢酸ブチル、シクロヘキサノン、フルフラールがより好ましく、PGMEA又はDMFがさらに好ましく、PGMEAがよりさらに好ましい。これらの溶媒は、単独で又は2種以上を組み合わせて用いてもよい。 Among these, propylene glycol monomethyl ether acetate (PGMEA), N, N-dimethylformamide (DMF), propylene glycol monomethyl ether (PGME), anisole, ethanol, methanol, acetone, methyl ethyl ketone, hexane, tetrahydrofuran (THF), dimethyl sulfoxide. (DMSO), 1H, 1H-trifluoroethanol, 1H, 1H-pentafluoropropanol, 6- (perfluoroethyl) hexanol, ethyl acetate, propyl acetate, butyl acetate, cyclohexanone, furfural are more preferred, and PGMEA or DMF is further preferred. Preferably, PGMEA is even more preferred. These solvents may be used alone or in combination of two or more.
 パターン形成用組成物中のポリマーの含有量は、パターン形成用組成物の全質量に対して、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、ポリマーの含有量は、パターン形成用組成物の全質量に対して、30質量%以下であることが好ましい。 The content of the polymer in the pattern-forming composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the total mass of the pattern-forming composition. The polymer content is preferably 30% by mass or less with respect to the total mass of the pattern-forming composition.
<任意成分>
 パターン形成用組成物を製造する際には、任意成分として、イオン液体をさらに配合してもよい。イオン液体とは、100℃以下で液体であり、かつ、イオンのみから構成される溶媒をいう。イオン液体を構成するイオンは、カチオン部及びアニオン部の少なくとも一方が有機イオンから構成される。
<Arbitrary ingredient>
When producing the pattern-forming composition, an ionic liquid may be further blended as an optional component. An ionic liquid is a solvent that is liquid at 100 ° C. or lower and is composed only of ions. At least one of the cation part and the anion part of the ion constituting the ionic liquid is composed of organic ions.
 パターン形成用組成物がイオン液体を含むことにより、ポリマーと有機溶剤の相溶性を高めることができる。また、イオン液体は、ブロックコポリマーの相分離を促進する働きも有している。 Since the pattern-forming composition contains an ionic liquid, the compatibility between the polymer and the organic solvent can be enhanced. The ionic liquid also has a function of promoting phase separation of the block copolymer.
 イオン液体は、カチオン部とアニオン部から成り、イオン液体のカチオン部としては、特に限定されるものではなく、一般的にイオン液体のカチオン部に用いられるものを使用することができる。イオン液体のカチオン部の好ましいものとしては、含窒素芳香族イオン、アンモニウムイオン、フォスフォニウムイオンが挙げられる。 The ionic liquid is composed of a cation part and an anion part, and the cation part of the ionic liquid is not particularly limited, and one generally used for the cation part of the ionic liquid can be used. Preferred examples of the cation portion of the ionic liquid include nitrogen-containing aromatic ions, ammonium ions, and phosphonium ions.
 含窒素芳香族カチオンとしては、例えばピリジニウムイオン、ピリダジニウムイオン、ピリミジニウムイオン、ピラジニウムイオン、イミダゾリウムイオン、ピラゾニウムイオン、オキサゾリウムイオン、1,2,3-トリアゾリウムイオン、1,2,4-トリアゾリウムイオン、チアゾリウムイオン、ピペリジニウムイオン、ピロリジニウムイオン等が挙げられる。 Examples of the nitrogen-containing aromatic cation include pyridinium ion, pyridadinium ion, pyrimidinium ion, pyrazinium ion, imidazolium ion, pyrazonium ion, oxazolium ion, 1,2,3-triazolium ion, 1, Examples thereof include 2,4-triazolium ion, thiazolium ion, piperidinium ion and pyroridinium ion.
 イオン液体のアニオン部としては、ハロゲンイオン、カルボキシレートイオン、ホスフィネートイオン、ホスフェートイオン、ホスホネイトイオン、ビス(トリフルオロメチルスルフォニル)イミドイオン等が挙げられ、ビス(トリフルオロメチルスルフォニル)イミドイオンが好ましい。ハロゲンイオンとしては、クロライドイオン、ブロマイドイオン、ヨウダイドイオンが挙げられ、クロライドイオンが好ましい。カルボキシレートイオンとしては、ホルメートイオン、アセテートイオン、プロピオネートイオン、ブチレートイオン、ヘキサノエートイオン、マレエートイオン、フマレートイオン、オキサレートイオン、レクテートイオン、ピルベートイオン等が挙げられ、ホルメートイオン、アセテートイオン、プロピオネートイオンが好ましい。 Examples of the anion portion of the ionic liquid include halogen ion, carboxylate ion, phosphinate ion, phosphate ion, phosphonate ion, bis (trifluoromethylsulfonyl) imide ion and the like, and bis (trifluoromethylsulfonyl) imide ion is preferable. Examples of the halogen ion include chloride ion, bromide ion, and iodide ion, and chloride ion is preferable. Examples of the carboxylate ion include formate ion, acetate ion, propionate ion, butyrate ion, hexanoate ion, maleate ion, fumarate ion, oxalate ion, rectate ion, and pyruvate ion. , Format ion, acetate ion, propionate ion are preferable.
 パターン形成用組成物は、任意成分として、例えば、界面活性剤等を含むものであってもよい。パターン形成用組成物が界面活性剤を含有することで、パターン形成の基板等への塗布性を向上させることができる。好ましい界面活性剤としては、ノニオン系界面活性剤、フッ素系界面活性剤及びシリコーン系界面活性剤が挙げられる。これらは、単独で又は2種以上を組み合わせて用いてもよい。 The pattern-forming composition may contain, for example, a surfactant or the like as an optional component. When the pattern-forming composition contains a surfactant, the coatability of pattern-forming to a substrate or the like can be improved. Preferred surfactants include nonionic surfactants, fluorine-based surfactants and silicone-based surfactants. These may be used alone or in combination of two or more.
 また、パターン形成用組成物は、任意成分として、触媒をさらに含んでいてもよい。触媒としては、例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウム-p-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ドデシルベンゼンスルホン酸アンモニウム、ヒドロキシ安息香酸等の酸化合物や、硬化剤として、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ジエチルアミノプロピルアミン、ジメチルアミノプロピルアミン、m-キシレンジアミン、m-フェニレンジアミン、トリエチルアミン、ベンジルジメチルアミン等が挙げられる。 Further, the pattern-forming composition may further contain a catalyst as an optional component. Examples of the catalyst include acid compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium-p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, ammonium dodecylbenzenesulfonic acid, and hydroxybenzoic acid. Examples of the curing agent include ethylenediamine, diethylenetriamine, triethylenetetramine, diethylaminopropylamine, dimethylaminopropylamine, m-xylenediamine, m-phenylenediamine, triethylamine, benzyldimethylamine and the like.
 本実施形態のパターン形成用組成物には、ポリマーを構成するモノマー成分が含まれていてもよい。例えば、目的の特性を向上させるためにポリマーを構成する各種モノマーを適宜添加することができる。 The pattern-forming composition of the present embodiment may contain a monomer component constituting the polymer. For example, various monomers constituting the polymer can be appropriately added in order to improve the desired properties.
(パターン形成方法)
 本発明は、上述したポリマーを含むパターン形成用組成物を基板上に塗布し、パターン形成用膜を形成する工程と、パターン形成用膜の少なくとも一部に金属を導入し、金属含有パターン形成用膜を得ると、を含むパターン形成方法に関するものでもある。ここで、ポリマーの自由体積半径をPrとし、金属の原子核半径をMrとした場合、2≦Pr/Mr≦3.3の条件を満たす。本発明のパターン形成方法によれば、パターン形成用組成物からパターン形成用膜を形成した後に基板にパターン形状を加工する際のエッチング加工性を高めることができる。
(Pattern formation method)
The present invention is a step of applying the above-mentioned pattern-forming composition containing a polymer onto a substrate to form a pattern-forming film, and a step of introducing a metal into at least a part of the pattern-forming film for metal-containing pattern formation. Once the film is obtained, it is also related to a pattern forming method including. Here, when the free volume radius of the polymer is Pr and the nuclear radius of the metal is Mr, the condition of 2 ≦ Pr / Mr ≦ 3.3 is satisfied. According to the pattern forming method of the present invention, it is possible to improve the etching processability when processing the pattern shape on the substrate after forming the pattern forming film from the pattern forming composition.
 また、金属含有パターン形成用膜に含まれる金属の総含有量は4.0atom%以上であり、金属含有パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値が10.0以下であることが好ましい。すなわち、金属含有パターン形成用膜を得る工程は、金属含有パターン形成用膜に含まれる金属の総含有量と、A/Bの値が上記条件を満たすように金属を導入する工程であることが好ましい。金属含有パターン形成用膜を得る工程を上記条件とすることにより、パターン形成用組成物からパターン形成用膜を形成した後に基板にパターン形状を加工する際のエッチング加工性をより効果的に高めることができる。 Further, the total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more, the maximum metal content in the thickness direction of the metal-containing pattern forming film is Aatom%, and the thickness of the pattern forming film is set to Aatom%. When the metal content at the midpoint in the direction is Batom%, the A / B value is preferably 10.0 or less. That is, the step of obtaining the metal-containing pattern forming film is a step of introducing the metal so that the total content of the metal contained in the metal-containing pattern forming film and the A / B value satisfy the above conditions. preferable. By setting the step of obtaining the metal-containing pattern forming film as the above conditions, the etching processability when processing the pattern shape on the substrate after forming the pattern forming film from the pattern forming composition can be more effectively enhanced. Can be done.
 本実施形態のパターン形成方法において用いる基板としては、例えば、ガラス、シリコン、SiN、GaN、AlN等の基板を挙げることができる。また、PET,PE,PEO,PS,シクロオレフィンポリマー、ポリ乳酸、セルロースナノファイバーのような有機材料からなる基板を用いてもよい。また、基板とガイドパターン形成層の間には、異なる材料からなる層を複数層挟んでいても良い。この材料としては、特に特定されるものではないが、例えばSiO、SiN,Al、AlN、GaN、GaAs、W、SOC、SOGなどの無機材料や、市販されている接着剤のような有機材料を挙げることができる。 Examples of the substrate used in the pattern forming method of the present embodiment include substrates such as glass, silicon, SiN, GaN, and AlN. Further, a substrate made of an organic material such as PET, PE, PEO, PS, cycloolefin polymer, polylactic acid, and cellulose nanofiber may be used. Further, a plurality of layers made of different materials may be sandwiched between the substrate and the guide pattern forming layer. The material is not particularly specified, but is, for example , an inorganic material such as SiO 2 , SiN, Al 2 O 3 , AlN, GaN, GaAs, W, SOC, SOG, or a commercially available adhesive. Organic materials can be mentioned.
 パターン形成用組成物を基板上に塗布してパターン形成用膜を形成する方法としては、特に制限されないが、例えば、使用されるパターン形成用組成物をスピンコート法等によって塗布する方法等が挙げられる。 The method of applying the pattern-forming composition on the substrate to form the pattern-forming film is not particularly limited, and examples thereof include a method of applying the pattern-forming composition to be used by a spin coating method or the like. Be done.
 本実施形態のパターン形成方法は、パターン形成用膜を形成する工程の後に、パターン形成用膜にパターンを形成する工程をさらに含むことが好ましい。パターンを形成する工程においては、まず、図2(a)に示されるように、基板10上にパターン形成用組成物を塗布することでパターン形成用膜20を形成する。そして、図2(b)に示されるように、パターン形成用膜20の一部は、基板10に形成したいパターン形状となるように少なくとも一部が除去される。例えば、パターン形成用膜20上にレジスト膜を積層し、露光及び現像処理を行うことで、図2(b)に示されるようなパターン形状を形成することができる。 The pattern forming method of the present embodiment preferably further includes a step of forming a pattern on the pattern forming film after the step of forming the pattern forming film. In the step of forming the pattern, first, as shown in FIG. 2A, the pattern forming film 20 is formed by applying the pattern forming composition on the substrate 10. Then, as shown in FIG. 2B, at least a part of the pattern forming film 20 is removed so as to have a pattern shape desired to be formed on the substrate 10. For example, by laminating a resist film on the pattern forming film 20 and performing exposure and development processing, a pattern shape as shown in FIG. 2B can be formed.
 パターン形成用膜の一部を除去する方法としては、例えば、ケミカルドライエッチング、ケミカルウェットエッチング(湿式現像)等の反応性イオンエッチング(RIE)、スパッタエッチング、イオンビームエッチング等の物理的エッチング等の公知の方法が挙げられる。パターン形成用膜の除去は、例えば、テトラフルオロメタン、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、パーフルオロエタン(C)、三塩化ホウ素、三フッ化メタン、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、塩素、ヘリウム、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素等のガスを用いたドライエッチングによって行われることが好ましい。 Examples of the method for removing a part of the pattern forming film include reactive ion etching (RIE) such as chemical dry etching and chemical wet etching (wet development), spatter etching, and physical etching such as ion beam etching. Known methods can be mentioned. Removal of the pattern forming film is, for example, tetrafluoromethane, perfluorocyclobutane (C 4 F 8), perfluoropropane (C 3 F 8), perfluoroethane (C 2 F 6), boron trichloride, trifluoroethylene It can be performed by dry etching with gases such as methane dioxide, trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, chlorine, helium, sulfur hexafluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride. preferable.
 また、パターン形成用膜の一部を除去する工程としてケミカルウェットエッチング工程を採用することもできる。ウェットエッチングの手法としては、例えば酢酸と反応させて処理する方法、エタノールやi-プロパノールといったアルコールと水の混合溶液を反応させて処理する方法、UV光又はEB光を照射した後に酢酸又はアルコールで処理する方法などが挙げられる。 Further, a chemical wet etching step can be adopted as a step of removing a part of the pattern forming film. Wet etching methods include, for example, a method of reacting with acetic acid for treatment, a method of reacting with a mixed solution of alcohol and water such as ethanol and i-propanol, and a method of treating with acetic acid or alcohol after irradiating with UV light or EB light. The processing method and the like can be mentioned.
 以上のようにしてパターン形成用膜にパターンを形成することができる。形成されるパターンとしては、ラインアンドスペースパターン、ホールパターン又はピラーパターンであることが好ましい。 A pattern can be formed on the pattern forming film as described above. The pattern to be formed is preferably a line-and-space pattern, a hole pattern, or a pillar pattern.
 本実施形態のパターン形成方法は、パターン形成用膜の少なくとも一部に金属を導入し、金属含有パターン形成用膜を得る工程を含む。金属含有パターン形成用膜を得る工程(金属導入工程)は、パターン形成用膜にパターン形状が形成された後に設けられることが好ましいが、パターン形成用膜にパターン形状が形成される前に金属導入工程が設けられてもよい。パターン形成用膜に導入される金属としては、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Rb、Sr、Y、Zr、Nb、Mo、Ru、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ba、La、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Po、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどが挙げられる。パターン形成用膜に金属を導入する工程は、例えばJornal of Photopolymer Science and Technology Volume29, Number5(2016)653-657に記載されている方法により行うことができる。また、パターン形成用膜に金属を導入する場合には、金属錯体ガスを使用する方法、金属を含む溶液を塗布する方法、あるいは、イオンインプラント法により金属をレジストに導入する方法を採用することができる。中でも、金属含有パターン形成用膜を得る工程(金属導入工程)では、パターン形成用膜に金属錯体ガスを噴霧する方法を採用することが好ましい。 The pattern forming method of the present embodiment includes a step of introducing a metal into at least a part of the pattern forming film to obtain a metal-containing pattern forming film. The step of obtaining the metal-containing pattern forming film (metal introduction step) is preferably provided after the pattern shape is formed on the pattern forming film, but the metal introduction is performed before the pattern shape is formed on the pattern forming film. A process may be provided. Metals introduced into the pattern forming film include Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ru, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Examples thereof include Pt, Au, Hg, Tl, Pb, Bi, Po, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The step of introducing the metal into the pattern-forming film can be carried out by, for example, the method described in Journal of Photopolymer Science and Technology Volume 29, Number 5 (2016) 653-657. When introducing a metal into the pattern-forming film, a method using a metal complex gas, a method of applying a solution containing the metal, or a method of introducing the metal into the resist by an ion implant method can be adopted. it can. Above all, in the step of obtaining the metal-containing pattern forming film (metal introduction step), it is preferable to adopt a method of spraying the metal complex gas on the pattern forming film.
 金属含有パターン形成用膜を得る工程では、金属含有パターン形成用膜に含まれる金属の総含有量が4.0atom%以上となるように金属が導入されることが好ましく、より好ましくは4.5atom%以上、さらに好ましくは5.0atom%以上となるように金属が導入される。なお、金属含有パターン形成用膜に含まれる金属の総含有量の上限値は60atom%以下であることが好ましく、50atom%以下であることがより好ましい。そして、金属含有パターン形成用膜を得る工程では、A/Bの値が10.0以下となるようにパターン形成用膜の金属が導入されることが好ましい。ここで、Aは、金属含有パターン形成用膜の厚み方向における最大金属含有率(atom%)であり、Bは、パターン形成用膜の厚み方向の中間点における金属含有率(atom%)である。 In the step of obtaining the metal-containing pattern forming film, it is preferable that the metal is introduced so that the total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more, and more preferably 4.5 atom. The metal is introduced so as to be% or more, more preferably 5.0 atom% or more. The upper limit of the total content of the metal contained in the metal-containing pattern forming film is preferably 60 atom% or less, and more preferably 50 atom% or less. Then, in the step of obtaining the metal-containing pattern-forming film, it is preferable that the metal of the pattern-forming film is introduced so that the A / B value is 10.0 or less. Here, A is the maximum metal content (atom%) in the thickness direction of the metal-containing pattern forming film, and B is the metal content (atom%) at the midpoint in the thickness direction of the pattern forming film. ..
 金属含有パターン形成用膜を得る工程では、パターン形成用膜に金属ガスを噴霧するが、この際の金属ガスの噴霧圧は、10Pa以上であることが好ましく、50Pa以上であることがより好ましく、100Pa以上であることがさらに好ましい。金属ガスの噴霧圧は、700Pa以下であることが好ましく、650Pa以下であることがより好ましく、600Pa以下であることがさらに好ましい。また、金属ガスの噴霧時間は、5秒以上であることが好ましく、15秒以上であることがより好ましく、30秒以上であることがさらに好ましい。金属ガスの噴霧時間は、1800秒以下であることが好ましく、1200秒以下であることがより好ましく、900秒以下であることがさらに好ましい。なお、金属含有パターン形成用膜を得る工程では、例えば、パターン形成用膜に対して、500Paの圧力下で300秒間金属ガスを噴霧した際に、金属含有パターン形成用膜に含まれる金属の総含有量が4.0atom%以上となり、かつA/Bの値が10.0以下となることが好ましい。 In the step of obtaining the metal-containing pattern forming film, the metal gas is sprayed on the pattern forming film, and the spray pressure of the metal gas at this time is preferably 10 Pa or more, more preferably 50 Pa or more. It is more preferably 100 Pa or more. The spray pressure of the metal gas is preferably 700 Pa or less, more preferably 650 Pa or less, and even more preferably 600 Pa or less. The spraying time of the metal gas is preferably 5 seconds or longer, more preferably 15 seconds or longer, and even more preferably 30 seconds or longer. The spraying time of the metal gas is preferably 1800 seconds or less, more preferably 1200 seconds or less, and further preferably 900 seconds or less. In the step of obtaining the metal-containing pattern-forming film, for example, when the metal gas is sprayed on the pattern-forming film for 300 seconds under a pressure of 500 Pa, the total amount of metal contained in the metal-containing pattern-forming film is total. It is preferable that the content is 4.0 atom% or more and the A / B value is 10.0 or less.
 パターン形成用膜の少なくとも一部に金属を導入し、金属含有パターン形成用膜を得るの後には、エッチング工程がさらに設けられることが好ましい。このエッチング工程とは、図2(c)に示されるように、パターニングされたパターン形成用膜を保護膜(マスク)として基板をエッチングする工程である。 It is preferable that an etching step is further provided after the metal is introduced into at least a part of the pattern forming film to obtain the metal-containing pattern forming film. As shown in FIG. 2C, this etching step is a step of etching a substrate using a patterned pattern-forming film as a protective film (mask).
 エッチング工程において基板を加工する方法としては、例えば、ケミカルドライエッチング、ケミカルウェットエッチング(湿式現像)等の反応性イオンエッチング(RIE)、スパッタエッチング、イオンビームエッチング等の物理的エッチング等の公知の方法が挙げられる。基板の加工は、例えば、テトラフルオロメタン、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、塩素、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素等のガスを用いたドライエッチングによって行われることが好ましい。 Known methods for processing the substrate in the etching step include, for example, reactive ion etching (RIE) such as chemical dry etching and chemical wet etching (wet development), and physical etching such as spatter etching and ion beam etching. Can be mentioned. Processing of the substrate, for example, tetrafluoromethane, perfluorocyclobutane (C 4 F 8), perfluoropropane (C 3 F 8), trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, chlorine, sulfur hexafluoride , Difluoromethane, nitrogen trifluoride, chlorine trifluoride and other gases are preferably used for dry etching.
 また、エッチング工程では、ケミカルウェットエッチング工程を採用することもできる。ウェットエッチングの手法としては、例えば酢酸と反応させて処理する方法、エタノールやi-プロパノールといったアルコールと水の混合溶液を反応させて処理する方法、UV光またはEB光を照射した後に酢酸またはアルコールで処理する方法などが挙げられる。 In addition, a chemical wet etching process can be adopted in the etching process. Wet etching methods include, for example, a method of reacting with acetic acid for treatment, a method of reacting with a mixed solution of alcohol and water such as ethanol and i-propanol, and a method of treating with acetic acid or alcohol after irradiating with UV light or EB light. The processing method and the like can be mentioned.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described in more detail below with reference to Examples and Comparative Examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed in a limited manner by the specific examples shown below.
(実施例1)
[コポリマー1の合成]
(アセチル糖メタクリレート1の合成)
 キシロース20gを無水酢酸250gと酢酸320gの混合溶液へ添加し、30℃で2時間撹拌した。溶液のおよそ5倍量の冷水を撹拌しながらゆっくりと加え、2時間撹拌したのちに1晩静置した。フラスコ中でTHF400mLにエチレンジアミン1.2gと酢酸01.4gを加えて0℃にした溶液に、析出した結晶10gを加え、4時間撹拌した。これを冷水1Lに注入し、ジクロロメタンで2回抽出した。この抽出物20g、ジクロロメタン300mL及びトリエチルアミン4.8gをフラスコに入れ、-30℃に冷却した。塩化メタクリロイル2.8gを加えて2時間撹拌した。これを冷水300mLに注入し、ジクロロメタンで2回抽出し、溶媒を濃縮することにより、アセチルキシロースメタクリレート1を16.1g得た。得られたアセチルキシロースメタクリレート1の構造は以下のとおりである。
(Example 1)
[Synthesis of copolymer 1]
(Synthesis of Acetyl Sugar Methacrylate 1)
20 g of xylose was added to a mixed solution of 250 g of acetic anhydride and 320 g of acetic acid, and the mixture was stirred at 30 ° C. for 2 hours. Approximately 5 times the amount of cold water of the solution was added slowly with stirring, and after stirring for 2 hours, the mixture was allowed to stand overnight. To a solution prepared by adding 1.2 g of ethylenediamine and 01.4 g of acetic acid to 400 mL of THF in a flask and bringing the temperature to 0 ° C., 10 g of precipitated crystals was added, and the mixture was stirred for 4 hours. This was injected into 1 L of cold water and extracted twice with dichloromethane. 20 g of this extract, 300 mL of dichloromethane and 4.8 g of triethylamine were placed in a flask and cooled to −30 ° C. 2.8 g of methacryloyl chloride was added and the mixture was stirred for 2 hours. This was injected into 300 mL of cold water, extracted twice with dichloromethane, and the solvent was concentrated to obtain 16.1 g of acetylxylose methacrylate 1. The structure of the obtained acetylxylose methacrylate 1 is as follows.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(アセチルキシロースメタクリレート-スチレン-グリシジルメタクリレートランダムコポリマーの合成)
 アセチル糖メタクリレート12.0g、スチレン(東京化成社製)2.6g、グリシジルメタクリレート(東京化成社製)2.6g、溶媒としてTHF100g、重合開始剤としてアゾビスイソブチロニトリル0.8gをフラスコに入れた後、ガラス容器を密閉し、窒素置換した窒素雰囲気下、78℃に昇温し6.0時間撹拌した。その後、室温に戻し、ガラス容器内を大気下とし、得られた溶液にメタノール300g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液を吸引ろ過し、白色のコポリマー1 12gを得た。得られたコポリマー1は以下の構成単位を含む。
(Synthesis of Acetylxylose Methacrylate-Styrene-Glysidyl Methacrylate Random Copolymer)
12.0 g of acetyl sugar methacrylate, 2.6 g of styrene (manufactured by Tokyo Kasei Co., Ltd.), 2.6 g of glycidyl methacrylate (manufactured by Tokyo Kasei Co., Ltd.), 100 g of THF as a solvent, and 0.8 g of azobisisobutyronitrile as a polymerization initiator in a flask. After the introduction, the glass container was sealed, the temperature was raised to 78 ° C. under a nitrogen atmosphere substituted with nitrogen, and the mixture was stirred for 6.0 hours. Then, the temperature was returned to room temperature, the inside of the glass container was placed under the atmosphere, and the solution was added dropwise to 300 g of methanol to precipitate a polymer. Then, the solution containing the precipitated polymer was suction-filtered to obtain 112 g of a white copolymer. The obtained copolymer 1 contains the following structural units.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[溶液サンプルの調製]
 コポリマー1 3質量%、重合触媒のp-トルエンスルホン酸0.3質量%となるようPGMEAに溶解し、コポリマー溶液サンプルを得た。
[Preparation of solution sample]
The copolymer was dissolved in PGMEA so as to have 13% by mass of the copolymer and 0.3% by mass of the p-toluenesulfonic acid of the polymerization catalyst to obtain a copolymer solution sample.
(実施例2)
[コポリマー2の合成]
(アセチルキシロースメタクリレート-スチレン-グリシジルメタクリレートランダムコポリマーの合成)
 コポリマー1の合成にて、スチレンの添加量を2.6gから2.3gに変更し、グリシジルメタクリレートの添加量を2.6gから0.8gに変更した以外は実施例1と同様の方法にてコポリマー2 12.0gを得た。また、実施例1と同様にしてコポリマー溶液サンプルを得た。
(Example 2)
[Synthesis of copolymer 2]
(Synthesis of Acetylxylose Methacrylate-Styrene-Glysidyl Methacrylate Random Copolymer)
In the synthesis of the copolymer 1, the same method as in Example 1 except that the amount of styrene added was changed from 2.6 g to 2.3 g and the amount of glycidyl methacrylate added was changed from 2.6 g to 0.8 g. 12.0 g of copolymer 2 was obtained. Moreover, the copolymer solution sample was obtained in the same manner as in Example 1.
(実施例3)
[コポリマー3の合成]
(アセチルキシロースメタクリレート-スチレンランダムコポリマーの合成)
 コポリマー1の合成にて、スチレンの添加量を2.6gから2.1gに変更し、グリシジルメタクリレートを添加しなかった以外は実施例1と同様の方法にてコポリマー3 12.0gを得た。また、実施例1と同様にしてコポリマー溶液サンプルを得た。
(Example 3)
[Synthesis of copolymer 3]
(Synthesis of Acetylxylose Methacrylate-Styrene Random Copolymer)
In the synthesis of the copolymer 1, 12.0 g of the copolymer 3 was obtained by the same method as in Example 1 except that the amount of styrene added was changed from 2.6 g to 2.1 g and glycidyl methacrylate was not added. Moreover, the copolymer solution sample was obtained in the same manner as in Example 1.
(実施例4)
[コポリマー4の合成]
(アセチルキシロトリオースメタクリレート-スチレンランダムコポリマーの合成)
 コポリマー1の合成にて、キシロースからキシロトリオースに変更した以外は実施例1と同様の方法にてコポリマー4 12.1gを得た。また、実施例1と同様にしてコポリマー溶液サンプルを得た。得られたコポリマー4は以下の構成単位を含む。
Figure JPOXMLDOC01-appb-C000013
(Example 4)
[Synthesis of copolymer 4]
(Synthesis of Acetyl Xylotriose Methacrylate-Styrene Random Copolymer)
In the synthesis of the copolymer 1, 12.1 g of the copolymer 4 was obtained by the same method as in Example 1 except that xylose was changed to xylotriose. Moreover, the copolymer solution sample was obtained in the same manner as in Example 1. The obtained copolymer 4 contains the following structural units.
Figure JPOXMLDOC01-appb-C000013
[コポリマーの分析]
(単位(l):単位(m):単位(n)の比率)
 H-NMRにより、コポリマーを構成する単位(l)と単位(m):単位(n)の比率(質量比)を求めて、算出し、結果を表1に示した。具体的には、実施例及び比較例で得られたコポリマー10mg秤量、重クロロホルム1mLに溶解してNMR用溶液を調製し、得られた溶液をNMRサンプルチューブ(関東化学社)に移し、FT-NMR(JNM-ECZ600R:JEOL社)によりH-NMR測定を行った。
[Analysis of copolymer]
(Unit (l): Unit (m): Unit (n) ratio)
1 The ratio (mass ratio) of the unit (l) and the unit (m): the unit (n) constituting the copolymer was obtained and calculated by 1 H-NMR, and the results are shown in Table 1. Specifically, 10 mg of the copolymers obtained in Examples and Comparative Examples were weighed and dissolved in 1 mL of deuterated chloroform to prepare a solution for NMR, and the obtained solution was transferred to an NMR sample tube (Kanto Chemical Co., Ltd.) and FT-. 1 H-NMR measurement was performed by NMR (JNM-ECZ600R: JEOL Ltd.).
[自由体積半径の評価]
 実施例及び比較例で得られたコポリマー溶液サンプルを2インチのシリコンウエハー基板上にスピンコーティングした。膜厚が500nmとなるように塗布した後、ホットプレート上において230℃で5分間焼成し、パターン形成用膜を形成した。
 このようにして形成したパターン形成用膜を、さらに15mm×15mm角に切り出し、フジ・インバック製小型陽電子ビーム発生装置PALS-200A(薄膜対応陽電子消滅寿命測定装置)に設置した。陽電子線源として22Naベースの陽電子ビームを用い、γ線検出器としてBaF製シンチレーターと光電子増倍管を用い、以下の条件で陽電子消滅寿命を測定した。
 装置定数:263~272ps,24.55ps/ch
 ビーム強度:1.5keV
 測定深さ:0~25μm(推定)
 測定温度:室温
 測定雰囲気:真空
 総カウント数:約5000000カウント
 試料前処理:室温で真空脱気
 以上により得られた陽電子消滅寿命曲線を非線形最小二乗プログラムPOSITRONFITにより解析し、平均自由体積半径を算出した。その結果を表1に示した。
[Evaluation of free volume radius]
The copolymer solution samples obtained in Examples and Comparative Examples were spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness was 500 nm, it was fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film.
The pattern-forming film thus formed was further cut into a 15 mm × 15 mm square and installed in a small positron beam generator PALS-200A (thin film compatible positron annihilation life measuring device) manufactured by Fuji Invac. Using 22Na based positron beam as positron source, using BaF 2 made scintillator and a photomultiplier tube as a γ-ray detectors to measure the positron annihilation lifetime under the following conditions.
Device constants: 263 to 272 ps, 24.55 ps / ch
Beam intensity: 1.5 keV
Measurement depth: 0 to 25 μm (estimated)
Measurement temperature: Room temperature Measurement atmosphere: Vacuum Total number of counts: Approximately 5,000,000 counts Sample pretreatment: Vacuum degassing at room temperature The positron annihilation lifetime curve obtained above was analyzed by the nonlinear least squares program POSITRONFIT, and the average free volume radius was calculated. .. The results are shown in Table 1.
[Al含有量の測定]
 実施例及び比較例で得られたコポリマー溶液サンプルを2インチのシリコンウエハー基板上にスピンコーティングした。膜厚が300nmとなるように塗布した後、ホットプレート上において230℃で5分間焼成し、パターン形成用膜を形成した。
 このようにして形成したパターン形成用膜を、ALD(原子層堆積装置:PICUSAN社製 SUNALE R-100B)に入れ、95℃にてTMA(トリメチルアルミニウム、Al(CH)ガスを300秒導入した後、水蒸気を150秒導入した。この操作を3回繰り返すことで、パターン形成用膜にAlを導入した。
 Al導入後のコポリマー成膜サンプルを、XPS装置(Thermo Fisher Scientific社製 Nexsa XPS System)内に設置し、Arイオンを用いたスパッタリングと、XPS分析(X線光電子分光分析)による表面元素濃度の測定ならびに膜厚測定を順次繰り返し、膜厚方向でのAl元素(原子核半径0.118nm)の濃度プロファイルを得た。Al導入後のパターン形成用膜の膜厚は、各スパッタリング時間毎に、元素濃度測定実施部分と未スパッタリング部分に生じた段差部分を、触診式段差計(株式会社小坂製作所製 型番:ET-4000)にて測定することで求めた。
 表2に示した「膜中Al含有量」は、得られた深さプロファイルより計算により求めたもので、膜中のAl元素含有量の総合計量に相当する。
 表2に示した「最大Al含有率」とは、各プロファイルにおける膜中のAl元素濃度が最大となる点のAl元素含有率である。
 表2に示した「総膜厚の1/2におけるAl含有率」とは、各プロファイルの膜厚中間点におけるAl元素含有率である。
 表2に示した「A/B比」とは、次式で求めたAl元素含有量の比率である。
A/B比=最大Al元素含有率/総膜厚の1/2におけるAl含有率
[Measurement of Al content]
The copolymer solution samples obtained in Examples and Comparative Examples were spin-coated on a 2-inch silicon wafer substrate. After coating so that the film thickness was 300 nm, it was fired on a hot plate at 230 ° C. for 5 minutes to form a pattern-forming film.
The pattern-forming film thus formed was placed in an ALD (atomic layer deposition apparatus: SUNALE R-100B manufactured by PICUSAN), and TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas was added at 95 ° C. for 300 seconds. After the introduction, steam was introduced for 150 seconds. By repeating this operation three times, Al 2 O 3 was introduced into the pattern-forming film.
The copolymer film-forming sample after the introduction of Al 2 O 3 was placed in an XPS device (Nexsa XPS System manufactured by Thermo Fisher Scientific), and surface elements were subjected to sputtering using Ar ions and XPS analysis (X-ray photoelectron spectroscopy). The concentration measurement and the film thickness measurement were sequentially repeated to obtain a concentration profile of the Al element (nuclear radius 0.118 nm) in the film thickness direction. For the film thickness of the pattern forming film after the introduction of Al 2 O 3, the step portion generated in the element concentration measurement part and the unsputtered part is measured for each sputtering time by a tactile profilometer (manufactured by Kosaka Seisakusho Co., Ltd. model number: It was obtained by measuring with ET-4000).
The "Al content in the film" shown in Table 2 is calculated from the obtained depth profile and corresponds to the total measurement of the Al element content in the film.
The "maximum Al content" shown in Table 2 is the Al element content at the point where the Al element concentration in the film in each profile is maximum.
The “Al content at 1/2 of the total film thickness” shown in Table 2 is the Al element content at the intermediate point of the film thickness of each profile.
The "A / B ratio" shown in Table 2 is the ratio of the Al element content calculated by the following formula.
A / B ratio = maximum Al element content / Al content at 1/2 of the total film thickness
[エッチング選択比測定用サンプルの作製]
 実施例及び比較例で得られたコポリマー溶液サンプルを、シリコン酸化膜(膜厚2um)付2インチのシリコンウエハー基板上にスピンコーティングした。膜厚が300nmとなるように塗布した後、ホットプレート上で230℃1分間焼成し、パターン形成用膜を形成した。
 ArFエキシマレーザー露光機にてラインアンドスペース(ライン幅100nm、スペース幅100nm)の形状となるようにマスクし、市販のArFレジストを用いて露光を行った。その後、ホットプレート上において105℃で1分間焼成した後、現像液を浸漬することで、ラインアンドスペースパターンを作製した。
 次にこのパターンサンプルを、ICPプラズマエッチング装置(東京エレクトロン社製)にて、基板を酸素プラズマ処理(100sccm、4Pa、100W、60秒間)することで、フォトレジストが除去され、パターン形成用膜にラインアンドスペースパターンが形成された。その後、コポリマーの金属導入率の評価と同様にして、パターン形成用膜に金属導入した。このパターンをマスクとして、六フッ化エタン(C)とArガスを使用しICPプラズマエッチング装置(東京エレクトロン社製)でプラズマ処理(100sccm、0.4Pa、200W、120秒間)を行ないシリコン酸化膜のドライエッチング加工を行った。
[Preparation of sample for etching selectivity measurement]
The copolymer solution samples obtained in Examples and Comparative Examples were spin-coated on a 2-inch silicon wafer substrate with a silicon oxide film (thickness 2 um). After coating so that the film thickness was 300 nm, it was fired on a hot plate at 230 ° C. for 1 minute to form a pattern-forming film.
The mask was masked with an ArF excimer laser exposure machine so as to have a line-and-space shape (line width 100 nm, space width 100 nm), and exposure was performed using a commercially available ArF resist. Then, after firing on a hot plate at 105 ° C. for 1 minute, a line-and-space pattern was prepared by immersing the developer.
Next, this pattern sample is subjected to oxygen plasma treatment (100 sccm, 4 Pa, 100 W, 60 seconds) on the substrate by an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) to remove the photoresist and form a pattern forming film. A line-and-space pattern was formed. Then, the metal was introduced into the pattern-forming film in the same manner as in the evaluation of the metal introduction rate of the copolymer. Using this pattern as a mask, plasma treatment (100 sccm, 0.4 Pa, 200 W, 120 seconds) is performed with an ICP plasma etching apparatus (manufactured by Tokyo Electron Limited) using ethane hexafluoride (C 2 F 6) and Ar gas to silicon. The oxide film was dry-etched.
[エッチング加工性の評価]
 六フッ化エタン(C)とArガスを使用したプラズマ処理前後のシリコン酸化膜のパターン形成されている断面を走査型電子顕微鏡(SEM)JSM7800F(日本電子製)で、加速電圧1.5kV、エミッション電流37.0μA、倍率100,000倍で観察し、それぞれ金属導入されたパターン形成用膜の厚み(図2(b)における厚みcと、図2(c)における厚みc’)と、シリコン酸化膜部へ加工された深さ(図2(c)における深さd)を測定した。そして、下記の式によりエッチング選択比を算出した。
 エッチング選択比=シリコン酸化膜への加工深さ/(プラズマ処理前パターン形成用膜の厚み-プラズマ処理後パターン形成用膜の厚み)
 そして、エッチング加工性を以下の基準で評価した。
A:エッチング選択比が10以上であるもの
B:エッチング選択比が2以上10未満であるもの
C:エッチング選択比が2未満であるもの
[Evaluation of etching processability]
A scanning electron microscope (SEM) JSM7800F (manufactured by JEOL Ltd.) was used to examine the cross-section of the silicon oxide film before and after plasma treatment using ethane hexafluoride (C 2 F 6) and Ar gas with an acceleration voltage of 1. Observed at 5 kV, emission current 37.0 μA, and magnification 100,000 times, the thickness of the metal-introduced pattern-forming film (thickness c in FIG. 2 (b) and thickness c'in FIG. 2 (c)) , The depth processed into the silicon oxide film portion (depth d in FIG. 2C) was measured. Then, the etching selectivity was calculated by the following formula.
Etching selectivity = Processing depth to silicon oxide film / (Thickness of pattern forming film before plasma treatment-Thickness of pattern forming film after plasma treatment)
Then, the etching processability was evaluated according to the following criteria.
A: Etching selectivity of 10 or more B: Etching selectivity of 2 or more and less than 10 C: Etching selectivity of less than 2
(実施例5)
 実施例1においてパターン形成用膜に金属を導入する際、TMA(トリメチルアルミニウム、Al(CH)ガスに代えてホウ酸トリメチル(B(OCH)ガスを用いた以外は実施例1と同様に各種評価を行った。
(Example 5)
Examples except that trimethyl borate (B (OCH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing a metal into the pattern forming film in Example 1. Various evaluations were performed in the same manner as in 1.
(比較例1)
 実施例1においてパターン形成用膜に金属を導入する際、TMA(トリメチルアルミニウム、Al(CH)ガスに代えてホウ酸トリメチル(B(OCH)ガスを用いた以外は実施例3と同様に各種評価を行った。
(Comparative Example 1)
Examples except that trimethyl borate (B (OCH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing a metal into the pattern forming film in Example 1. Various evaluations were performed in the same manner as in 3.
[B含有量の測定]
 上述した[Al含有量の測定]と同様の方法で膜厚方向でのB元素(原子核半径0.087nm)の濃度プロファイルを得た。
 表3に示した「膜中B含有量」は、得られた深さプロファイルより計算により求めたもので、膜中のB元素含有量の総合計量に相当する。
 表3に示した「最大B含有率」とは、各プロファイルにおける膜中のB元素濃度が最大となる点のB元素含有率である。
 表3に示した「総膜厚の1/2におけるB含有率」とは、各プロファイルの膜厚中間点におけるB元素含有率である。
 表3に示した「A/B比」とは、次式で求めたB元素含有量の比率である。
A/B比=最大B元素含有率/総膜厚の1/2におけるB含有率
[Measurement of B content]
A concentration profile of element B (nucleus radius 0.087 nm) in the film thickness direction was obtained by the same method as in [Measurement of Al content] described above.
The "B content in the film" shown in Table 3 is calculated from the obtained depth profile and corresponds to the total measurement of the B element content in the film.
The “maximum B content” shown in Table 3 is the B element content at the point where the B element concentration in the film in each profile is maximum.
The “B content at 1/2 of the total film thickness” shown in Table 3 is the B element content at the intermediate point of the film thickness of each profile.
The "A / B ratio" shown in Table 3 is the ratio of the B element content calculated by the following formula.
A / B ratio = maximum B element content / B content at 1/2 of the total film thickness
(実施例6)
 実施例1においてパターン形成用膜に金属を導入する際、TMA(トリメチルアルミニウム、Al(CH)ガスに代えてトリメチルアンチモン(Sb(CH)ガスを用いた以外は実施例1と同様に各種評価を行った。
(Example 6)
Example 1 except that trimethylantimony (Sb (CH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing the metal into the pattern forming film in Example 1. Various evaluations were performed in the same manner as above.
[Sb含有量の測定]
 上述した[Al含有量の測定]と同様の方法で膜厚方向でのSb元素(原子核半径0.133nm)の濃度プロファイルを得た。
 表4に示した「膜中Sb含有量」は、得られた深さプロファイルより計算により求めたもので、膜中のSb元素含有量の総合計量に相当する。
 表4に示した「最大B含有率」とは、各プロファイルにおける膜中のSb元素濃度が最大となる点のSb元素含有率である。
 表4に示した「総膜厚の1/2におけるSb含有率」とは、各プロファイルの膜厚中間点におけるSb元素含有率である。
 表4に示した「A/B比」とは、次式で求めたSb元素含有量の比率である。
A/B比=最大Sb元素含有率/総膜厚の1/2におけるSb含有率
[Measurement of Sb content]
The concentration profile of the Sb element (nucleus radius 0.133 nm) in the film thickness direction was obtained by the same method as the above-mentioned [Measurement of Al content].
The “Sb content in the film” shown in Table 4 is calculated from the obtained depth profile and corresponds to the total measurement of the Sb element content in the film.
The “maximum B content” shown in Table 4 is the Sb element content at the point where the Sb element concentration in the film in each profile is maximum.
The “Sb content at 1/2 of the total film thickness” shown in Table 4 is the Sb element content at the intermediate point of the film thickness of each profile.
The “A / B ratio” shown in Table 4 is the ratio of the Sb element content calculated by the following formula.
A / B ratio = maximum Sb element content / Sb content at 1/2 of the total film thickness
(比較例2)
 実施例1においてパターン形成用膜に金属を導入する際、TMA(トリメチルアルミニウム、Al(CH)ガスに代えてトリメチルインジウム(In(CH)ガスを用いた以外は実施例1と同様に各種評価を行った。
(Comparative Example 2)
Example 1 except that trimethylindium (In (CH 3 ) 3 ) gas was used instead of TMA (trimethylaluminum, Al (CH 3 ) 3 ) gas when introducing a metal into the pattern forming film in Example 1. Various evaluations were performed in the same manner as above.
[In含有量の測定]
 上述した[Al含有量の測定]と同様の方法で膜厚方向でのIn元素(原子核半径0.156nm)の濃度プロファイルを得た。
 表5に示した「膜中In含有量」は、得られた深さプロファイルより計算により求めたもので、膜中のIn元素含有量の総合計量に相当する。
 表5に示した「最大In含有率」とは、各プロファイルにおける膜中のIn元素濃度が最大となる点のIn元素含有率である。
 表5に示した「総膜厚の1/2におけるIn含有率」とは、各プロファイルの膜厚中間点におけるIn元素含有率である。
 表5に示した「A/B比」とは、次式で求めたIn元素含有量の比率である。
A/B比=最大In元素含有率/総膜厚の1/2におけるIn含有率
[Measurement of In content]
The concentration profile of the In element (nucleus radius 0.156 nm) in the film thickness direction was obtained by the same method as the above-mentioned [Measurement of Al content].
The "In content in the film" shown in Table 5 is calculated from the obtained depth profile and corresponds to the total measurement of the In element content in the film.
The "maximum In content" shown in Table 5 is the In element content at the point where the In element concentration in the film in each profile is maximum.
The "In content at 1/2 of the total film thickness" shown in Table 5 is the In element content at the intermediate point of the film thickness of each profile.
The “A / B ratio” shown in Table 5 is the ratio of the In element content calculated by the following formula.
A / B ratio = maximum In element content / In content at 1/2 of total film thickness
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1において、原子核半径は、E Clementi, D L Raimondi, W P Reinhardt (1963) J Chem Phys. 38:2686の記載に基づいた値である。 In Table 1, the nuclear radii are E Crementi, DL Ramondo, WP Reinhardt (1963), J Chem Phys. It is a value based on the description of 38: 2686.
 実施例では、2≦Pr/Mr≦3.3の条件を満たしていたため、エッチング加工性が良好であった。一方、2≦Pr/Mr≦3.3の条件を満たしていない比較例ではエッチング加工性が劣る結果であった。 In the example, since the condition of 2 ≦ Pr / Mr ≦ 3.3 was satisfied, the etching processability was good. On the other hand, in the comparative example in which the condition of 2 ≦ Pr / Mr ≦ 3.3 was not satisfied, the etching processability was inferior.
10   基板
20   パターン形成用膜
10 Substrate 20 Pattern forming film

Claims (11)

  1.  ポリマーを含むパターン形成用組成物であって、
     前記ポリマーの自由体積半径をPrとし、
     前記パターン形成用組成物からパターンを形成する際に導入される金属の原子核半径をMrとした場合、
     2≦Pr/Mr≦3.3の条件を満たす、パターン形成用組成物。
    A pattern-forming composition containing a polymer.
    Let Pr be the free volume radius of the polymer.
    When the nuclear radius of the metal introduced when forming a pattern from the pattern-forming composition is Mr.
    A composition for pattern formation that satisfies the condition of 2 ≦ Pr / Mr ≦ 3.3.
  2.  前記パターン形成用組成物を基板上に塗布して、厚みが300nmのパターン形成用膜を形成し、前記パターン形成用膜に500Paの圧力下で300秒間金属ガスを導入した場合、
     前記パターン形成用膜に含まれる金属の総含有量が4.0atom%以上となり、
     前記パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、前記パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値が10.0以下となる、請求項1に記載のパターン形成用組成物。
    When the pattern-forming composition is applied onto a substrate to form a pattern-forming film having a thickness of 300 nm, and a metal gas is introduced into the pattern-forming film under a pressure of 500 Pa for 300 seconds.
    The total content of the metal contained in the pattern forming film is 4.0 atom% or more.
    When the maximum metal content in the thickness direction of the pattern forming film is Aatom% and the metal content at the intermediate point in the thickness direction of the pattern forming film is Batom%, the A / B value is 10.0 or less. The pattern-forming composition according to claim 1.
  3.  前記ポリマーは、糖誘導体に由来する単位を含む、請求項1又は2に記載のパターン形成用組成物。 The pattern-forming composition according to claim 1 or 2, wherein the polymer contains a unit derived from a sugar derivative.
  4.  前記糖誘導体に由来する単位は、下記一般式(103)で表される構造及び下記一般式(104)で表される構造から選択される少なくとも一方を含む、請求項3に記載のパターン形成用組成物;
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     一般式(103)及び(104)中、Rはそれぞれ独立に水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルキル基、アシル基、アリール基、トリメチルシリル基又はホスホリル基を表し、複数あるRは同一であっても異なっていてもよい;Rは水素原子又はアルキル基を表す;X及びYはそれぞれ独立に単結合又は連結基を表す;rは1以上の整数を表し、*印はrが2以上の場合にRのいずれか1つとの結合部位を表すか、もしくはRに代わってRが結合している酸素原子のいずれか1つとの結合部位を表す。
    The pattern-forming unit according to claim 3, wherein the unit derived from the sugar derivative includes at least one selected from the structure represented by the following general formula (103) and the structure represented by the following general formula (104). Composition;
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    In the general formulas (103) and (104), R 1 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, an acyl group, an aryl group, a trimethylsilyl group or a phosphoryl group, and a plurality of them. Some R 1s may be the same or different; R 5 represents a hydrogen atom or an alkyl group; X 1 and Y 1 each independently represent a single bond or a linking group; r represents an integer greater than or equal to 1. represents, * or mark represents any one of the binding sites of R 1 when r is 2 or more, or any one of the binding sites of the oxygen atom R 1 in place of R 1 is attached Represent.
  5.  前記ポリマーは、下記一般式(105)で表される構造をさらに有する、請求項4に記載のパターン形成用組成物;
    Figure JPOXMLDOC01-appb-C000003
     一般式(105)中、Wは炭素原子又はケイ素原子を表し、Wは、-CR-、-O-、-S-又は-SiR-を表す(但し、Rは水素原子又は炭素数が1~5のアルキル基を表し、複数あるRは同一であっても異なっていてもよい);R11は水素原子、炭素数が1以上3以下のアルキル基又は水酸基を表し、R12は水素原子、水酸基、アセチル基、メトキシカルボニル基、アリール基、アリル基、グリシジルエーテル基、グリシジルエステル基、イソシアネートエステル基又はピリジル基を表す。
    The pattern-forming composition according to claim 4, wherein the polymer further has a structure represented by the following general formula (105);
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (105), W 1 represents a carbon atom or a silicon atom, and W 2 represents -CR 2- , -O-, -S- or -SiR 2- (where R is a hydrogen atom or carbon. Represents an alkyl group having a number of 1 to 5, and a plurality of Rs may be the same or different); R 11 represents a hydrogen atom, an alkyl group having 1 or more and 3 or less carbon atoms or a hydroxyl group, and R 12 Represents a hydrogen atom, a hydroxyl group, an acetyl group, a methoxycarbonyl group, an aryl group, an allyl group, a glycidyl ether group, a glycidyl ester group, an isocyanate ester group or a pyridyl group.
  6.  前記ポリマーは、糖誘導体に由来する単位を含み、前記ポリマーにおける前記糖誘導体に由来する単位の含有率は60~90質量%である、請求項1~5のいずれか1項に記載のパターン形成用組成物。 The pattern formation according to any one of claims 1 to 5, wherein the polymer contains a unit derived from a sugar derivative, and the content of the unit derived from the sugar derivative in the polymer is 60 to 90% by mass. Composition for.
  7.  パターン形成用マスク材料である、請求項1~6のいずれか1項に記載のパターン形成用組成物。 The pattern-forming composition according to any one of claims 1 to 6, which is a pattern-forming mask material.
  8.  ポリマーを含むパターン形成用組成物を基板上に塗布し、パターン形成用膜を形成する工程と、
     前記パターン形成用膜の少なくとも一部に金属を導入し、金属含有パターン形成用膜を得る工程と、を含むパターン形成方法であって、
     前記ポリマーの自由体積半径をPrとし、
     前記金属の原子核半径をMrとした場合、
     2≦Pr/Mr≦3.3の条件を満たす、パターン形成方法。
    A step of applying a pattern-forming composition containing a polymer onto a substrate to form a pattern-forming film, and
    A pattern forming method including a step of introducing a metal into at least a part of the pattern forming film to obtain a metal-containing pattern forming film.
    Let Pr be the free volume radius of the polymer.
    When the nucleus radius of the metal is Mr,
    A pattern forming method that satisfies the condition of 2 ≦ Pr / Mr ≦ 3.3.
  9.  前記金属含有パターン形成用膜に含まれる金属の総含有量が4.0atom%以上であり、
     前記金属含有パターン形成用膜の厚み方向における最大金属含有率をAatom%とし、前記パターン形成用膜の厚み方向の中間点における金属含有率をBatom%とした場合、A/Bの値が10.0以下である、請求項8に記載のパターン形成方法。
    The total content of the metal contained in the metal-containing pattern forming film is 4.0 atom% or more.
    When the maximum metal content in the thickness direction of the metal-containing pattern forming film is Aatom% and the metal content at the midpoint in the thickness direction of the pattern forming film is Batom%, the A / B value is 10. The pattern forming method according to claim 8, wherein the pattern is 0 or less.
  10.  前記パターン形成用膜を形成する工程の後に、前記パターン形成用膜にパターンを形成する工程をさらに含む、請求項8又は9に記載のパターン形成方法。 The pattern forming method according to claim 8 or 9, further comprising a step of forming a pattern on the pattern forming film after the step of forming the pattern forming film.
  11.  前記金属含有パターン形成用膜を得る工程の後に、エッチング工程をさらに含む、請求項8~10のいずれか1項に記載のパターン形成方法。 The pattern forming method according to any one of claims 8 to 10, further comprising an etching step after the step of obtaining the metal-containing pattern forming film.
PCT/JP2020/034708 2019-09-20 2020-09-14 Pattern formation composition and pattern formation method WO2021054284A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019172107A JP7342563B2 (en) 2019-09-20 2019-09-20 Pattern forming composition and pattern forming method
JP2019-172107 2019-09-20
JP2019-172108 2019-09-20
JP2019172108A JP7347066B2 (en) 2019-09-20 2019-09-20 Pattern forming composition and pattern forming method

Publications (1)

Publication Number Publication Date
WO2021054284A1 true WO2021054284A1 (en) 2021-03-25

Family

ID=74883197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034708 WO2021054284A1 (en) 2019-09-20 2020-09-14 Pattern formation composition and pattern formation method

Country Status (2)

Country Link
TW (1) TW202119131A (en)
WO (1) WO2021054284A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174724A (en) * 1989-09-01 1991-07-29 Toshiba Corp Method of forming pattern
JP2018049902A (en) * 2016-09-21 2018-03-29 大日本印刷株式会社 Pattern forming method and method for manufacturing uneven structure
JP2019054063A (en) * 2017-09-13 2019-04-04 東芝メモリ株式会社 Semiconductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174724A (en) * 1989-09-01 1991-07-29 Toshiba Corp Method of forming pattern
JP2018049902A (en) * 2016-09-21 2018-03-29 大日本印刷株式会社 Pattern forming method and method for manufacturing uneven structure
JP2019054063A (en) * 2017-09-13 2019-04-04 東芝メモリ株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
TW202119131A (en) 2021-05-16

Similar Documents

Publication Publication Date Title
EP2859023B1 (en) Neutral layer polymer composition for directed self assembly and processes thereof
JP7184036B2 (en) Underlayer film forming composition, pattern forming method and pattern forming underlayer film forming copolymer
US20210147603A1 (en) Self-assembly composition for pattern formation and pattern forming method
JP7290148B2 (en) Pattern-forming material, pattern-forming method, and pattern-forming material monomer
JP7268672B2 (en) Underlayer film forming composition, pattern forming method, copolymer and monomer for underlayer film forming composition
WO2021002351A1 (en) Pattern formation method, resist material, and pattern formation device
JP2023158014A (en) Composition for forming pattern and pattern forming method
JP7347066B2 (en) Pattern forming composition and pattern forming method
JP7338271B2 (en) Resist material and pattern forming method
JP6813028B2 (en) Pattern formation method, base material and laminate
WO2021054284A1 (en) Pattern formation composition and pattern formation method
JP6801829B1 (en) Resist material and pattern formation method
WO2021002350A1 (en) Resist material and method for forming pattern
JP6811957B2 (en) A resin composition for forming a phase-separated structure, and a method for producing a structure containing the phase-separated structure.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865980

Country of ref document: EP

Kind code of ref document: A1