WO2021054002A1 - 無線端末装置、通信制御方法、通信制御プログラム及び基地局 - Google Patents

無線端末装置、通信制御方法、通信制御プログラム及び基地局 Download PDF

Info

Publication number
WO2021054002A1
WO2021054002A1 PCT/JP2020/030657 JP2020030657W WO2021054002A1 WO 2021054002 A1 WO2021054002 A1 WO 2021054002A1 JP 2020030657 W JP2020030657 W JP 2020030657W WO 2021054002 A1 WO2021054002 A1 WO 2021054002A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
information
qos
terminal
wireless communication
Prior art date
Application number
PCT/JP2020/030657
Other languages
English (en)
French (fr)
Inventor
博允 内山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN202080064181.8A priority Critical patent/CN114365536A/zh
Priority to JP2021546545A priority patent/JPWO2021054002A1/ja
Priority to US17/640,835 priority patent/US20220345945A1/en
Priority to EP20864538.2A priority patent/EP4024988A4/en
Publication of WO2021054002A1 publication Critical patent/WO2021054002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • This disclosure relates to wireless terminal devices, communication control methods, communication control programs, and base stations.
  • Patent Document 1 a method for stable communication has been proposed by providing a plurality of transmission / reception units (antennas) for wireless communication (for example, Patent Document 1).
  • a configuration is proposed in which a plurality of transmission / reception units (antennas) are provided at four corners of the operating table.
  • the present disclosure proposes a wireless terminal device, a communication control method, a communication control program, and a base station that can improve the communication quality of the wireless connection of medical devices arranged in the space of a medical institution.
  • the wireless terminal device of one form according to the present disclosure is a wireless terminal device that wirelessly communicates with a medical device arranged in the space of a medical institution, and is a device indicating the type of the medical device.
  • An acquisition unit that acquires communication policy information determined by information and QoS (Quality of Service) information based on transmission information indicating the type of transmission content transmitted by the medical device, and the wireless communication based on the communication policy information. It is provided with a communication control unit for controlling the above.
  • QoS Quality of Service
  • First Embodiment 1-1 Outline of communication control processing according to the first embodiment of the present disclosure 1-2.
  • Procedure of communication control processing according to the first embodiment 1-6 Outline of communication control system 1-6-1.
  • QoS related information 1-7 Conceptual diagram of communication control system 2.
  • Second Embodiment 2-1 Outline of communication control processing according to the second embodiment of the present disclosure 2-2. Configuration of base station and server according to the second embodiment 3.
  • Third Embodiment 3-1 Third Embodiment 3-1.
  • FIG. 1 is a diagram showing an example of communication control processing according to the first embodiment of the present disclosure. Further, FIG. 1 is a diagram showing a configuration example of the communication control system 1 according to the first embodiment of the present disclosure.
  • the communication control process according to the first embodiment of the present disclosure is realized by the communication control system 1 shown in FIG.
  • the communication control system 1 is a system that executes communication control according to QoS (Quality of Service).
  • the communication control system 1 includes a base station 100 and a plurality of terminals 200.
  • the communication control system 1 includes a terminal 200-3 which is a terminal C.
  • the terminal 200 includes three or more terminals 200, such as (see FIG. 2) and terminal 200-4 (see FIG. 2), which is terminal D.
  • terminals 200-1 to 200-4 and the like are described without particular distinction, they are described as the terminal 200.
  • the terminal 200 is a wireless terminal device that wirelessly communicates with a medical device arranged in the space of a medical institution.
  • the terminal 200 may be any device as long as it is a device that performs wireless communication at the time of surgery or in a medical field, for example.
  • the terminal 200 may be a pacemaker, a particle beam therapy device, an artificial dialyzer, an infusion pump, an automatic peritoneal perfusion device, an artificial heart-lung machine, a multi-person dialysate supply device, or the like.
  • the terminal 200 includes a component blood sampling device, a respirator, an X-ray imaging device, an electrocardiograph, an ultrasonic diagnostic device, an infusion set for an infusion pump, a catheter-related device, a hearing aid, a home massager, a blood gas analyzer, and the like. May be. Further, the terminal 200 may be a monitor, a display, a medical robot, an endoscope, a surgical light, a medical bed, a nurse call device, a drip-related device, or the like. That is, the medical device referred to here is a concept including various devices used at the time of surgery or in the medical field.
  • FIG. 1 shows a case where the terminal 200 is a medical device arranged in an operating room (operating room 5, etc. in FIG. 2).
  • the terminal 200 wirelessly communicates with another terminal 200 and the base station 100.
  • the terminal 200-1 is a monitor and the terminal 200-2 is a sphygmomanometer, the details of which will be described with reference to FIG.
  • the terminal 200 may be various devices such as an IP converter as long as it is a device that wirelessly communicates with a medical device arranged in the space of a medical institution, and details of this point will be described later.
  • the base station 100 is a device that provides a wireless communication service to the terminal 200.
  • the base station 100 is a device used for communication between terminals 200.
  • the base station 100 is a base station that provides a wireless communication service by a predetermined wireless communication system.
  • the wireless communication system is a 5th generation mobile communication system (5G).
  • the wireless communication system will be described as being a 5th generation mobile communication system (5G).
  • the wireless communication system is various cellular wireless communication systems such as the 4th generation mobile communication system (4G) if communication control processing can be applied, and local wireless communication such as Wi-Fi (registered trademark). System technology may be used as wireless communication in the physical layer.
  • the base station 100 performs wireless communication with a terminal 200 located in the space of a medical institution (operating room 5 or the like in FIG. 2). For example, the base station 100 transmits a downlink signal to the terminal 200 and receives an uplink signal from the terminal 200.
  • the communication control system 1 may be a system in which the above-mentioned cellular system (cellular wireless communication system) and Wi-Fi system are fused.
  • the communication control system 1 may be a system in which 5G (fifth generation mobile communication system) integrates Wi-Fi communication. In this case, in the communication control system 1, Wi-Fi communication may be performed, and resource control of Wi-Fi or the like may be performed by the base station 100.
  • Communication is performed between the base station 100, the terminal 200-1, and the terminal 200-2 by wireless communication corresponding to a predetermined wireless communication system.
  • Information is transmitted and received between the base station 100 and the terminal 200 by wireless communication corresponding to 5G.
  • each terminal 200 transmits / receives information to / from another terminal 200 by wireless communication corresponding to 5G.
  • the terminal 200 may have a function of direct communication between terminals. In this case, the terminal 200 enables direct communication between the terminals while obtaining control support from the base station.
  • Control from a base station includes, for example, allocation of wireless resources in a direct communication link between terminals, transmission power control, provision of QoS control policy, and interference control to other terminals.
  • the communication control system 1 shown in FIG. 1 may include a plurality of base stations 100. Further, the communication control system 1 may include various components, not limited to the base station 100 and the terminal 200. For example, the communication control system 1 may include components such as a server such as the server 300 shown in FIG. For example, the server includes a core network such as an EPC (Evolved Packet Core) or a 5G core. The case where the integrated QoS level, communication parameters, etc. are determined on the server side will be described later.
  • the base station 100A enables connection to an external network via the core network.
  • the base station 100 acquires information related to QoS control (QoS control-related information) from terminal 200-1, which is terminal A (step S1). For example, the base station 100 transmits a request notification of QoS control-related information to the terminal 200-1, and receives the QoS control-related information from the terminal 200-1. For example, when the message type (type) to be transmitted is determined, the terminal 200 transmits the message and the priority information (QoS information) corresponding to each message to the base station 100 as QoS control-related information.
  • the monitor terminal 200-1 transmits the packet message type related to the monitor data and the priority information of each to the base station 100. For example, the terminal 200-1 transmits three types of packet message types and their respective priority information (see FIG. 7) to the base station.
  • the priority (QoS level) of monitor message type # 1 is "1"
  • the QoS level of monitor message type # 2 is "2”
  • the QoS level of monitor message type # 3 is "2”.
  • Priority information indicating that it is "3" is transmitted to the base station.
  • parameters such as QoS Indentifier (5GQI) standardized by 5G NR (New Radio) may be used.
  • the base station 100 acquires QoS control-related information from the terminal 200-2, which is the terminal B (step S2). For example, the base station 100 transmits a request notification of QoS control-related information to the terminal 200-2, and receives the QoS control-related information from the terminal 200-2.
  • the terminal 200-2 which is a sphygmomanometer, transmits real-time data of the sphygmomanometer, and transmits packet message types related to the sphygmomanometer and their respective priority information to the base station 100. For example, the terminal 200-2 transmits three types of packet message types and their respective priority information to the base station.
  • the terminal 200-2 has a sphygmomanometer message type # 1 priority (QoS level) of "1", a sphygmomanometer message type # 2 QoS level of "2", and a sphygmomanometer message type # 3 QoS. Priority information indicating that the level is "3" is transmitted to the base station.
  • the base station 100 that has obtained the QoS control related information creates an integrated QoS control table (step S3).
  • the base station 100 determines an integrated QoS level (importance level) based on the QoS control-related information acquired from the terminals 200-1 and the terminal 200-2.
  • the base station 100 has three types of monitor message types # 1 to # 3 of the monitor terminal 200-1 and three types of sphygmomanometer message types # 1 of the sphygmomanometer terminal 200-2.
  • ⁇ # 3 determine the integrated QoS level (see FIG. 4).
  • monitor message type # 1 is "1"
  • sphygmomanometer message type # 1 is "2”
  • monitor message type # 2 is "3”
  • sphygmomanometer message type # 2 is "4"
  • monitor message type Determine the integrated QoS level where # 3 is "5" and sphygmomanometer message type # 3 is "6".
  • the base station 100 creates a table for determining a control method of wireless communication parameters according to the integrated QoS level (integrated QoS level).
  • Base station 100 determines wireless communication parameters for each of the integrated QoS levels "1" to "6".
  • the base station 100 determines wireless communication parameters such as transmission power, allocated frequency resources, and coding rate.
  • the base station 100 determines wireless communication parameters (see FIG. 5) so that the higher the integrated QoS level, the larger the transmission power, the larger the allocated frequency resource, and the better the coding rate.
  • the base station 100 transmits information indicating the determined wireless communication parameter to the terminal 200-1 (step S4).
  • the base station 100 transmits information indicating wireless communication parameters such as transmission power, allocated frequency resource, and coding rate to the terminal 200-1.
  • the base station 100 transmits information indicating wireless communication parameters to the terminal 200-1 as communication policy information.
  • the base station 100 transmits information indicating a message type corresponding to each of the integrated QoS levels and information indicating a wireless communication parameter of each message type to the terminal 200-1.
  • the terminal 200-1 acquires the information indicating the wireless communication parameter as the communication policy information.
  • the terminal 200-1 acquires information indicating a message type corresponding to each of the integrated QoS levels and information indicating a wireless communication parameter of each message type.
  • the base station 100 transmits information indicating the determined wireless communication parameter to the terminal 200-2 (step S5).
  • the base station 100 transmits information indicating wireless communication parameters such as transmission power, allocated frequency resources, and coding rate to the terminal 200-2.
  • the base station 100 transmits information indicating wireless communication parameters to the terminal 200-2 as communication policy information.
  • the base station 100 transmits information indicating a message type corresponding to each of the integrated QoS levels and information indicating a wireless communication parameter of each message type to the terminal 200-2.
  • the terminal 200-2 acquires information indicating wireless communication parameters as communication policy information.
  • the terminal 200-2 acquires information indicating a message type corresponding to each of the integrated QoS levels and information indicating a wireless communication parameter of each message type.
  • the terminal 200 controls wireless communication based on the communication policy information (step S6).
  • Each terminal 200 controls wireless communication based on the acquired communication policy information.
  • Each terminal 200 controls wireless communication based on the acquired transmission power, allocated frequency resource, coding rate, and the like.
  • Each terminal 200 transmits a message to another terminal 200 using the acquired communication policy information.
  • the terminal 200 transmits a message of a message type with a transmission power, an allocated frequency resource, a coding rate, or the like corresponding to the message type.
  • each terminal 200 may communicate directly with another terminal 200, or may communicate with the base station 100.
  • the base station 100 controls wireless communication between terminals 200 based on communication policy information.
  • the base station 100 controls wireless communication between terminals 200 by transmitting communication policy information to terminals 200 and causing the terminals 200 to communicate with each other based on the communication policy information. Further, in the case of base station communication, for example, the base station 100 transmits data (message) received from one terminal 200 to the destination terminal 200 using wireless communication parameters corresponding to the message type of the message. To do.
  • the communication control system 1 creates an integrated QoS table even between terminals 200 having different QoS tables, and collectively controls the wireless communication links to perform appropriate communication for each traffic priority. It is possible to provide a wireless communication service that can be performed.
  • the communication control system 1 can improve the connection stability of the device based on the QoS control, instead of improving the connection stability by increasing the number of receiving devices by using the short-range wireless terminal.
  • FIG. 2 is a diagram showing an example of application of the communication control system according to the first embodiment to an operating room.
  • the communication control system 1 controls wireless communication in a private space such as an operating room such as an operating room 5.
  • a communication control system 1 provided in an operating room 5 with a private base station 100 such as 5G or 4G controls a wireless communication link.
  • the base station 100 may be provided near the ceiling of the operating room 5 as shown in FIG.
  • the base station 100 may be provided near the ceiling.
  • the base station 100 may be provided near the ceiling.
  • the base station 100 may be provided at any position as long as it is possible to control the wireless communication of the terminal 200 in the operating room 5.
  • a lighting device 6 such as a base station 100 or a surgical light is arranged near the ceiling of the operating room 5. Further, in the operating room 5, a terminal 200-1 which is a monitor, a terminal 200-2 which is a sphygmomanometer, a terminal 200-3 which is an endoscope, a terminal 200-4 which is another monitor, and the like are arranged. To. Further, in the example of FIG. 2, an operator 8 such as a doctor performs treatment on a patient (not shown) on the operating table 7.
  • the base station 100 controls communication between terminals 200. It controls the wireless communication CM1 between the terminal 200-2 having a high integrated QoS level and the terminal 200-3, and the wireless communication CM2 between the terminal 200-1 having a low integrated QoS level and the terminal 200-4.
  • the base station 100 determines a wireless communication parameter according to the integrated QoS level, and transmits information indicating the determined wireless communication parameter to each terminal 200 to control communication between the terminals 200.
  • terminals 200-1 to 200-4 control wireless communication based on communication policy information such as information indicating wireless communication parameters.
  • the logical entity (Management entity) that controls the wireless communication link is not limited to the base station 100, and may be physically arranged on the server side such as the core network. Further, as described above, the wireless communication link may be direct communication (device-to-device communication) between devices (terminals 200), or downlink or uplink communication via the base station 100.
  • the logical entity (Management entity) implements wireless communication control for each link according to the QoS level of the traffic in each device (terminal 200).
  • the base station 100 and the terminal 200 can improve the communication quality of the wireless connection of the medical equipment arranged in the space of the medical institution such as the operating room. Further, the communication control system 1 can improve the communication quality of the wireless connection such as the connection stability of the wireless connection of a plurality of medical devices in the operating room.
  • the communication band is a finite resource, so all communication must be performed at the same time. Is expected to be impossible. In such a case, packet loss or delay may occur in communication, connection stability (communication quality) may deteriorate, and information that the surgeon needs to see in real time may not be visible, which may hinder the progress of surgery. is there. Further, since a plurality of medical devices are medical devices sold by different companies, there is also a problem that it is difficult to coordinate communication between the medical devices.
  • the communication control system 1 performs QoS control by the local communication base (base station 100). For example, the communication control system 1 realizes communication quality that does not hinder the progress of surgery by determining the priority of communication by biting an adapter (wireless terminal). In addition, the priority of communication can be determined by dropping the local communication terminal into an entity table (a table in which the QoS level, the type of medical device, and the type of communication content are linked).
  • an entity table a table in which the QoS level, the type of medical device, and the type of communication content are linked.
  • the communication control system 1 can reliably transmit a packet having a high priority to a destination by determining QoS (integrated quality of service). In addition, it is important to improve the quality of packets in order to use finite resources (orthogonal in time, space, frequency, and need to be scheduled). Therefore, the communication control system 1 can improve the communication quality (quality) by determining the priority (importance) of the packet for each traffic. The communication control system 1 can improve the communication quality by reducing the packet loss (lowering the packet error rate), reducing the delay, increasing the amount of frequency allocation (increasing the bandwidth), and the like.
  • QoS integrated quality of service
  • the communication control system 1 can improve the communication quality by applying a lot of coding to a small amount of data and increasing the transmission power (increasing the reception strength / transmission strength). Further, the communication control system 1 can send some communications with higher communication quality than other communications by determining the priority as described above. For example, the communication control system 1 uses QoS levels (integrated QoS levels) to share frequencies, schedule, and determine time occupancy. The communication control system 1 may perform communication control such as switching the communication in the unlicensed band to the license band. Further, the communication control system 1 may perform link switching control between the link via the base station and the direct communication between terminals.
  • QoS levels integrated QoS levels
  • the communication control system 1 can improve the communication quality.
  • the communication control system 1 communicates according to the communication policy information determined based on the QoS level. For example, when the integrated QoS level is "1" to "5", the communication control system 1 is required to display the image of the endoscope on the display device with as little delay as possible, so that the integrated QoS level is set to "1". 5 ”(maximum value) is determined.
  • the communication control system 1 also determines the integrated QoS level of monitoring information such as heartbeat to "5" (maximum value).
  • the communication control system 1 does not require real-time communication such as transmission of images from the operating room camera for photographing the state of surgery and transmission of recorded images of the endoscope (recorded and saved in the server). Determine the integrated QoS level to "1" (lowest value). By performing such processing, the communication control system 1 can reliably deliver information that requires real-time performance with little delay, and realizes communication quality that does not hinder the progress of surgery.
  • FIG. 3 is a diagram showing a configuration example of a base station according to the first embodiment.
  • the base station 100 includes an antenna unit 110, a communication unit 120, a storage unit 140, and a control unit 150.
  • the antenna unit 110 radiates the signal output by the communication unit 120 into space as a radio wave. Further, the antenna unit 210 converts a radio wave in space into a signal and outputs the signal to the communication unit 120.
  • the antenna unit 110 has an antenna used for wireless communication.
  • the communication unit 120 transmits and receives signals. For example, the communication unit 120 transmits a downlink signal to the terminal 200 and receives an uplink signal from the terminal 200.
  • the communication unit 120 performs wireless communication with a medical device arranged in the space of the medical institution.
  • the communication unit 120 wirelessly communicates with the medical device arranged in the operating room.
  • the communication unit 120 is realized by, for example, a NIC (Network Interface Card), a communication circuit, or the like.
  • the communication unit 120 transmits / receives information to / from the terminal 200 by wireless communication.
  • the communication unit 120 may be connected to a predetermined network (network N or the like in FIG. 12) by wire or wirelessly, and may transmit and receive information to and from another device or the like via the predetermined network. ..
  • the storage unit 140 is realized by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
  • the storage unit 140 includes an integrated QoS information storage unit 141 and a communication parameter information storage unit 142.
  • the storage unit 140 stores various types of information, not limited to the information shown in the integrated QoS information storage unit 141 and the communication parameter information storage unit 142.
  • the storage unit 140 may store the information collected from each terminal 200.
  • the storage unit 140 may store the QoS-related information collected from each terminal 200.
  • the integrated QoS information storage unit 141 stores the integrated QoS information.
  • the integrated QoS information storage unit 141 stores various information related to QoS that integrates the QoS information collected from each terminal 200.
  • FIG. 4 is a diagram showing an example of an integrated QoS information storage unit according to the first embodiment.
  • the integrated QoS information storage unit 141 shown in FIG. 4 includes items such as “post-integration QoS level” and “allocation source QoS level”.
  • Post-integration QoS level indicates the post-integration QoS level.
  • the “allocation source QoS level” indicates the QoS level at the allocation source, that is, the terminal 200 that is the provider of the QoS information. In the example of FIG. 4, it is assumed that the larger the numerical value of the integrated QoS level and the allocation source QoS level, the higher the importance (priority).
  • the integrated QoS level "1" corresponds to the QoS level "1" in the terminal A (terminal 200-1). That is, it indicates that the QoS level after integration of the messages of the QoS level "1" transmitted by the terminal A is "1". As described above, in the case of FIG. 4, it is shown that the message of the QoS level "1" transmitted by the terminal A has the lowest priority.
  • the post-integration QoS level "2" indicates that it corresponds to the QoS level "1" in the terminal B (terminal 200-2). That is, it indicates that the QoS level after integration of the messages of the QoS level "1" transmitted by the terminal B is "2". As described above, in the case of FIG. 4, it is shown that the message of the QoS level "2" transmitted by the terminal B has a higher priority than the message of the QoS level "1" transmitted by the terminal A.
  • the post-integration QoS level "6" indicates that it corresponds to the QoS level "3" in the terminal B (terminal 200-2). That is, it indicates that the QoS level after integration of the messages of the QoS level "3" transmitted by the terminal B is "6". As described above, in the case of FIG. 4, it is shown that the message of the QoS level "3" transmitted by the terminal B has the highest priority.
  • the integrated QoS information storage unit 141 is not limited to the above, and various information may be stored depending on the purpose.
  • the communication parameter information storage unit 142 stores various information related to communication parameters.
  • the communication parameter information storage unit 142 stores the wireless communication parameters set based on the integrated QoS.
  • FIG. 5 is a diagram showing an example of a communication parameter information storage unit according to the first embodiment.
  • the integrated communication parameter information storage unit 142 shown in FIG. 5 includes items such as “post-integration QoS level” and “wireless communication parameter”.
  • the “wireless communication parameter” includes items such as "transmission power”, “allocated frequency resource (number of resource blocks)", and "coding rate”.
  • the “wireless communication parameter” is not limited to the above, and may include various items such as "communication timing", “packet error rate”, and "communication delay”.
  • Post-integration QoS level indicates the post-integration QoS level.
  • Wireless communication parameter indicates a parameter corresponding to the QoS level after each integration.
  • Transmission power indicates the transmission power when transmitting the corresponding post-integration QoS level message.
  • the “transmission power” is a value corresponding to a predetermined unit such as W (watt).
  • Allocated frequency resource (number of resource blocks) indicates the allocated frequency resource when transmitting the corresponding post-integration QoS level message.
  • Code rate indicates the code rate when transmitting the corresponding post-integration QoS level message.
  • the integrated QoS level “1" indicates that the transmission power is "30", the allocated frequency resource is "100”, and the coding rate is "0.9".
  • the message of the QoS level “1” after integration indicates that the transmission power is the smallest, the allocated frequency resource is small, and the coding rate is poor.
  • the post-integration QoS level "2" indicates that the transmission power is "32", the allocated frequency resource is "200”, and the coding rate is "0.7". As described above, in the case of FIG. 4, the message of the post-integration QoS level "2" has a larger transmission power, more allocated frequency resources, and a better coding rate than the post-integration QoS level "1" message. Is shown.
  • the communication parameter information storage unit 142 is not limited to the above, and various information may be stored depending on the purpose.
  • control unit 150 for example, a program (for example, a communication control program or a determination program according to the present disclosure) stored inside the base station 100 by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like is a RAM (Random). It is realized by executing Access Memory) etc. as a work area. Further, the control unit 150 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • control unit 150 includes an acquisition unit 151, a communication control unit 152, and a determination unit 153, and realizes or executes an information processing function or operation described below.
  • the internal configuration of the control unit 150 is not limited to the configuration shown in FIG. 3, and may be another configuration as long as it is a configuration for performing information processing described later.
  • the acquisition unit 151 acquires various information.
  • the acquisition unit 151 acquires various information from an external information processing device.
  • the acquisition unit 151 acquires various information from the storage unit 140.
  • the acquisition unit 151 stores the acquired information in the storage unit 140.
  • the acquisition unit 151 acquires the communication policy information determined by the device information indicating the type of the medical device and the QoS information based on the transmission information indicating the type of the transmission content transmitted by the medical device.
  • the communication control unit 152 controls communication.
  • the communication control unit 152 controls the communication by the communication unit 120.
  • the communication control unit 152 controls the communication by the communication unit 120 based on the information stored in the storage unit 140.
  • the communication control unit 152 controls the communication by the communication unit 120 in response to the determination by the determination unit 153.
  • the communication control unit 152 controls communication between other devices.
  • the communication control unit 152 controls communication between external information processing devices.
  • the communication control unit 152 controls the communication between the terminals 200.
  • the communication control unit 152 controls the communication between the terminals 200 based on the information stored in the storage unit 140.
  • the communication control unit 152 controls the communication between the terminals 200 based on the information acquired by the acquisition unit 151.
  • the communication control unit 152 controls wireless communication between medical devices based on the communication policy information.
  • the communication control unit 152 controls wireless communication based on the communication policy information.
  • the communication control unit 152 controls wireless communication in a communication mode determined based on the communication policy information.
  • the communication control unit 152 controls wireless communication at the communication timing based on the communication policy information.
  • the communication control unit 152 controls wireless communication at a packet error rate based on communication policy information.
  • the communication control unit 152 controls wireless communication by lowering the packet error rate as the priority is higher.
  • the communication control unit 152 controls wireless communication with a communication delay based on the communication policy information.
  • the communication control unit 152 controls wireless communication by reducing the delay as the priority is higher.
  • the communication control unit 152 controls wireless communication at an assigned frequency based on communication policy information.
  • the communication control unit 152 controls wireless communication by increasing the amount of frequency allocation as the priority is higher.
  • the communication control unit 152 controls wireless communication based on the strength of transmission / reception based on the communication policy information.
  • the communication control unit 152 controls wireless communication by increasing the intensity of transmission / reception as the priority is higher.
  • the communication control unit 152 controls wireless communication by increasing the transmission power as the priority is higher.
  • the communication control unit 152 controls wireless communication at a coding rate based on the communication policy information.
  • the communication control unit 152 controls the wireless communication of the message based on the QoS determined by the determination unit 153.
  • the communication control unit 152 controls the wireless communication of the message based on the QoS level determined by the determination unit 153.
  • the decision unit 153 decides various information.
  • the determination unit 153 determines various information. For example, the determination unit 153 determines various information based on the information from the external information processing device and the information stored in the storage unit 120. The determination unit 153 determines various information based on the information from the external information processing device and the information stored in the storage unit 120. The determination unit 153 generates various information based on the information from the external information processing device and the information stored in the storage unit 120. The determination unit 153 determines various information based on the various information acquired by the acquisition unit 131.
  • the determination unit 153 determines the communication policy information based on the device information indicating the type of the medical device and the QoS information based on the transmission information indicating the type of the transmission content transmitted by the medical device. The determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the type of traffic. The determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the use of the traffic. The determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the traffic pattern.
  • the determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the size of the traffic.
  • the determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the buffer amount of the traffic.
  • the determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the delay request value of the traffic.
  • the determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic.
  • the determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic.
  • the determination unit 153 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic.
  • the determination unit 153 determines the communication policy information
  • the determination unit 153 determines the type of message to be transmitted to another device, and determines the QoS of the message.
  • the determination unit 153 determines the QoS of the message by image recognition.
  • the determination unit 153 determines the QoS of the message based on the header information of the message.
  • the determination unit 153 determines the QoS of the message based on the metadata of the message.
  • the determination unit 153 determines the QoS of the message based on the information regarding DICOM (Digital Imaging and COmmunications in Medicine) of the message.
  • the determination unit 153 determines the QoS level of the message.
  • FIG. 6 is a diagram showing a configuration example of a terminal according to the first embodiment. Note that FIG. 6 illustrates only the configuration related to the communication control process among the configurations of the terminal 200. For example, among the configurations of the terminal 200 which is a medical device, the illustration of the configuration related to the display function of the monitor, the measurement function of the blood pressure monitor, and the like is omitted.
  • the terminal 200 has an antenna unit 210, a communication unit 220, a storage unit 240, and a control unit 250.
  • the antenna unit 210 radiates the signal output by the communication unit 220 into space as a radio wave. Further, the antenna unit 210 converts a radio wave in space into a signal and outputs the signal to the communication unit 220.
  • the antenna unit 210 has an antenna used for wireless communication.
  • the communication unit 220 transmits and receives signals. For example, the communication unit 220 receives the downlink signal from the base station 100 and transmits the uplink signal to the base station 100.
  • the communication unit 220 wirelessly communicates with a medical device arranged in the space of the medical institution.
  • the communication unit 220 wirelessly communicates with the medical device arranged in the operating room.
  • the communication unit 220 is realized by, for example, a NIC or a communication circuit.
  • the communication unit 220 transmits / receives information to / from the base station 100 by wireless communication.
  • the storage unit 240 is realized by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
  • the storage unit 240 has a QoS information storage unit 241 and a setting information storage unit 242.
  • the setting information storage unit 242 stores various information related to the setting.
  • the setting information storage unit 242 stores communication policy information.
  • the setting information storage unit 242 stores information indicating wireless communication parameters as communication policy information.
  • the storage unit 240 stores various types of information, not limited to the information shown in the QoS information storage unit 241 and the setting information storage unit 242.
  • the storage unit 240 may store information received from another terminal 200 or a base station 100.
  • the QoS information storage unit 241 stores the QoS information of its own device (terminal 200).
  • the QoS information storage unit 241 stores various information related to QoS corresponding to the transmission of the own device (terminal 200).
  • FIG. 7 is a diagram showing an example of a QoS information storage unit according to the first embodiment.
  • the QoS information storage unit 241 shown in FIG. 7 includes items such as "QoS level" and "transmission content".
  • QoS level indicates a QoS level.
  • Transmission content indicates the content of data transmitted by the corresponding QoS.
  • the “transmission content” is illustrated by an abstract code such as "INF1", but the “transmission content” includes various information (transmission information) related to the transmission content.
  • the QoS level “1" indicates that the transmission content is “INF1”. Further, the QoS level “2" indicates that the transmission content is “INF2”.
  • the QoS information storage unit 241 is not limited to the above, and various information may be stored depending on the purpose.
  • the control unit 250 is realized by, for example, a CPU, an MPU, or the like executing a program stored inside the terminal 200 (for example, a communication control program according to the present disclosure) with a RAM or the like as a work area. Further, the control unit 250 may be realized by an integrated circuit such as an ASIC or FPGA.
  • control unit 250 has an acquisition unit 251 and a communication control unit 252, and realizes or executes an information processing function or operation described below.
  • the internal configuration of the control unit 250 is not limited to the configuration shown in FIG. 6, and may be another configuration as long as it is a configuration for performing information processing described later.
  • the acquisition unit 251 acquires various information.
  • the acquisition unit 251 acquires various information from an external information processing device.
  • the acquisition unit 251 acquires various information from the storage unit 240.
  • the acquisition unit 251 stores the acquired information in the storage unit 240.
  • the acquisition unit 251 acquires the communication policy information determined by the device information indicating the type of the medical device and the QoS information based on the transmission information indicating the type of the transmission content transmitted by the medical device.
  • Communication control unit 252 controls communication.
  • the communication control unit 252 controls the communication by the communication unit 220.
  • the communication control unit 252 controls the communication by the communication unit 220 based on the information stored in the storage unit 240.
  • the communication control unit 252 controls wireless communication with the medical device according to the control by the base station 100.
  • the communication control unit 252 controls wireless communication based on the communication policy information set by the base station 100.
  • the communication control unit 252 controls wireless communication based on the communication policy information.
  • the communication control unit 252 controls wireless communication in a communication mode determined based on the communication policy information.
  • the communication control unit 252 controls wireless communication at the communication timing based on the communication policy information.
  • the communication control unit 252 controls wireless communication at a packet error rate based on the communication policy information.
  • the communication control unit 252 controls wireless communication by lowering the packet error rate as the priority is higher.
  • the communication control unit 252 controls wireless communication with a communication delay based on the communication policy information.
  • the communication control unit 252 controls wireless communication by reducing the delay as the priority is higher.
  • the communication control unit 252 controls wireless communication at an assigned frequency based on the communication policy information.
  • the communication control unit 252 controls wireless communication by increasing the amount of frequency allocation as the priority is higher.
  • the communication control unit 252 controls wireless communication based on the strength of transmission / reception based on the communication policy information.
  • the communication control unit 252 controls wireless communication by increasing the intensity of transmission / reception as the priority is higher.
  • the communication control unit 252 controls wireless communication by increasing the transmission power as the priority is higher.
  • the communication control unit 252 controls wireless communication at a coding rate based on the communication policy information.
  • FIG. 8 is a flowchart showing a procedure for processing a communication control report according to the first embodiment.
  • the terminal 200 acquires the communication policy information determined by the device information indicating the type of the medical device and the QoS information based on the transmission information indicating the type of the transmission content transmitted by the medical device (step). S101). For example, the terminal 200 acquires communication policy information from the base station 100.
  • the terminal 200 controls wireless communication based on the communication policy information (step S102).
  • the terminal 200 controls wireless communication based on the acquired transmission power, the allocated frequency resource, the coding rate, and the like.
  • the terminal 200 wirelessly communicates with the medical device arranged in the space of the medical institution (step S103).
  • the terminal 200 transmits a message of a message type with a transmission power, an allocated frequency resource, a coding rate, or the like corresponding to the message type.
  • FIG. 9 is a sequence diagram showing a procedure of communication control report processing according to the first embodiment.
  • QoS-related control is performed on the base station 100 side.
  • the base station 100 requests the terminal 200-1 which is the terminal A and the terminal 200-2 which is the terminal B to collect information regarding QoS (step S201).
  • the base station 100 transmits a request notification of QoS control-related information, and obtains QoS control-related information from each terminal 200.
  • the base station 100 transmits a request notification of QoS control-related information to the terminal 200-1 (step S202).
  • the base station 100 notifies the terminal 200-1 of the request for QoS control-related information (step S203).
  • the terminal 200-1 In response to the request notification, the terminal 200-1 notifies the base station 100 of the information related to QoS held by the terminal 200-1 as the information related to QoS control (step S204). For example, when the message type to be transmitted is determined on the terminal 200-1 side, the terminal 200-1 transmits the message and the priority information (QuoS information) corresponding to each message to the base station 100.
  • the terminal 200-1 transmits the message and the priority information (QuoS information) corresponding to each message to the base station 100.
  • the base station 100 transmits a request notification of QoS control related information to the terminal 200-2 (step S205).
  • the base station 100 notifies the terminal 200-2 of the request for QoS control-related information (step S206).
  • the terminal 200-2 notifies the base station 100 of the information related to QoS held by the terminal 200-2 as the QoS control-related information (step S207).
  • the base station 100 may simultaneously notify the terminal 200-1 and the terminal 200-2 of the request for QoS control-related information, or the terminal 200-2 may receive the QoS control-related information before the terminal 200-1. You may carry out the request notification of.
  • the base station 100 creates an integrated QoS control (step S208).
  • the base station 100 associates the type of traffic generated in each device (terminal 200) with the wireless communication control corresponding to each traffic, and creates a unified integrated QoS control in the system. For example, base station 100 determines integrated QoS levels and radio communication parameters. Then, the base station 100 creates the information shown in the integrated QoS information storage unit 121 and the information shown in the communication parameter information storage unit 122 as integrated QoS control.
  • the base station 100 transmits the integrated QoS control to the terminal 200-1 (step S209).
  • the base station 100 transmits information indicating the integrated QoS level and wireless communication parameters to the terminal 200-1.
  • the terminal 200-1 acquires the integrated QoS control indicating the integrated QoS level and the wireless communication parameters.
  • Base station 100 transmits integrated QoS control to terminal 200-2 (step S210).
  • the base station 100 transmits information indicating the integrated QoS level and wireless communication parameters to the terminal 200-2.
  • the terminal 200-2 acquires the integrated QoS control indicating the integrated QoS level and the wireless communication parameters.
  • the terminal 200-1 performs transmission control according to QoS (step S212).
  • the terminal 200-1 performs communication control using setting information such as wireless communication parameters set for each QoS level.
  • the terminal 200-1 transmits the packet using the wireless communication parameters such as the transmission power, the allocated frequency resource, and the coding rate corresponding to the packet to be transmitted (step S213).
  • the terminal 200-2 receives the packet from the terminal 200-1 (step S214).
  • the direct communication between the terminals 200 is shown as an example, but the communication via the base station 100 is also processed in the same manner.
  • the communication control system 1 integrates the QoS level (rank) for each wireless traffic (packet) among the plurality of devices (terminals 200), and controls the wireless link according to the QoS level.
  • the level (rank) that is directly related to human life is the highest, and the level (rank) that is related to human life but does not have a significant impact is the next highest, and is not related to human life.
  • the level (rank) is set to the lowest. For example, when the higher the importance is, the smaller the value is set, the level (rank) of those directly related to human life is "1", and the level (rank) of those related to human life but not having a significant effect is "2".
  • the level (rank) of things that are not related to human life is set to "3". For example, when the higher the importance is set, the higher the value is set, the level (rank) of those directly related to human life is "3", and the level (rank) of those related to human life but not having a significant effect is "2". , The level (rank) of things that are not related to human life is set to "1".
  • the above level (rank) setting value is an example, and various values may be set according to the number of levels (rank) and the like.
  • wireless communication control examples include control according to the priority of the wireless link according to QoS, robust communication of high priority communication, spatiotemporal frequency resource allocation, transmission power control, modulation / demodulation control, and the like.
  • the communication control system 1 performs this. Further, the communication control system 1 may perform wireless communication control such as refraining from transmitting low-priority communication, time-frequency resource management, and spatial interference control.
  • the base station 100 transmits a QoS control-related information request to the terminal A which is a monitor and the terminal B which is a sphygmomanometer.
  • the terminals A and B notify the base station 100 of the QoS control-related information in response to a request from the base station 100.
  • the terminal A transmits the information of the video monitor to another monitor, and transmits the packet message type related to the monitor data and the priority information of each to the base station 100.
  • the terminal B transmits real-time data of the sphygmomanometer, and transmits the packet message type related to the sphygmomanometer and the priority information of each to the base station 100.
  • the base station 100 side creates an integrated QoS table using the obtained message type and priority information, and controls wireless communication.
  • the base station 100 side grasps the content of the message from the control information and data information of the terminal A and the terminal B, and recognizes that the monitor-related information and the electrocardiogram information are transmitted, respectively. In response to this, the base station 100 side creates an integrated QoS table and controls wireless communication.
  • the base station 100 that has obtained the QoS control related information creates an integrated QoS control table as shown in FIG.
  • the base station 100 collectively assigns QoS level (importance level) to the QoS control-related information in each device (terminal 200), and controls the wireless communication traffic according to each importance level.
  • QoS level importance level
  • information such as importance levels 1, 2, and 3 is sent from device # 1 (terminal A). The higher the value, the higher the importance.
  • information such as importance levels 1, 2, and 3 is sent from device # 2 (terminal B).
  • the base station 100 uses various information to determine the integrated importance level (integrated QoS level) as shown in FIG.
  • the base station 100 creates a table for determining a control method of wireless communication parameters according to the integrated QoS level.
  • Base station 100 determines wireless communication parameters as shown in FIG. In terms of transmission power and resources, it is assumed that the larger the number, the better the parameter is assigned. In the coding rate, a small numerical value is a parameter that can obtain good performance.
  • the communication control system 1 may perform link switching of base station terminal-to-terminal communication, terminal-to-terminal communication, time frequency resource allocation, and band usage switching. For example, the communication control system 1 may switch the band used from 2.4 GHz to 5 GHz. Further, the communication control system 1 may switch the used band from the unlicensed frequency band to the licensed frequency band. The communication control system 1 may switch the used band from the licensed frequency band to the unlicensed frequency band.
  • the communication control system 1 may switch the transmission method (Tx diversity, MIMO (Multiple Input Multiple Output) transmission, Beamforming weight change). For example, the communication control system 1 may perform link coordination. For example, the communication control system 1 may temporarily stop the communication and secure the resource of the link to be prioritized.
  • Tx diversity Transmission Multiple Division Multiple Output
  • MIMO Multiple Input Multiple Output
  • Beamforming weight change For example, the communication control system 1 may perform link coordination.
  • the communication control system 1 may temporarily stop the communication and secure the resource of the link to be prioritized.
  • the communication control system 1 may change the modulation and the coding rate.
  • the modification referred to here may be switching such as QPSK (Quadrature Phase Shift Keying) and 16QAM (Quadrature Amplitude Modulation).
  • the communication control system 1 may change the transmission power. For example, the communication control system 1 may switch the transmission module. When there are a plurality of modules, the communication control system 1 switches transmission points using a specific module. Switching transmission points includes switching distributed transmission points and switching physical antennas. Switching transmission points includes various methods for achieving spatial diversity.
  • the communication control system 1 may notify the system user of an alert when it is unlikely that the communication quality can be satisfied by any of the above-mentioned controls. Display it to make people aware.
  • the communication control system 1 After creating the QoS control table, the communication control system 1 sets the terminals 200 and controls the wireless communication parameters according to each traffic. When traffic is generated at terminal A, terminal A sets parameters for wireless communication using the generated traffic and the set integrated QoS control table. After setting the parameters of the wireless communication, packet transmission is performed to achieve transmission / reception with the terminal B.
  • the communication control system 1 may create a QoS table including not only wireless communication but also existing wired traffic such as DICOM.
  • the control of the wireless communication parameter by the communication control system 1 may be to control the parameter relatively according to the QoS status of another communication link. For example, when there are three links and two of the three are packets with very high QoS, the packet transmission of the remaining one link with low QoS has a predetermined weight value (weight ⁇ , etc.) in a predetermined parameter. May be controlled by multiplying by, and performing communication with further reduced performance.
  • additional control of wireless communication parameters may be performed by using the congestion degree level of the band, interference information from a specific link, etc., but the details of this point will be described later.
  • the QoS-related information may include information such as transmission information.
  • the transmission information may include various information related to traffic such as information indicating the type of traffic and information indicating the purpose of the traffic.
  • the transmission information may include information indicating whether the type of traffic is audio, video, or the like.
  • the transmission information may include information indicating whether the traffic is used for communication of important data, backup processing, or the like.
  • the terminal 200 notifies the QoS-related information to the base station 100 in response to the request from the base station 100 is shown, but the base station 100 and the terminal 200 are related to QoS by various means.
  • Information may be obtained.
  • the base station 100 and the terminal 200 analyze the transmission control information, the data traffic, and the packet information from the terminal 200 side on the base station 100 side without transmitting the request notification of the QoS control related information, thereby performing the QoS information. You may acquire QoS related information such as.
  • the base station 100 or the terminal 200 may acquire QoS control-related information by determining or extracting the information.
  • the base station 100 and the terminal 200 may extract QoS information from information related to data traffic.
  • the base station 100 and the terminal 200 may use the following information for specifying QoS information.
  • the base station 100 and the terminal 200 may extract QoS information from information indicating what kind of traffic there is, such as a traffic type, a traffic pattern, and a traffic cycle.
  • the base station 100 and the terminal 200 may extract QoS information from the characteristics of transmission timing on the time axis such as Periodic, Aperiodic, and Event trigger.
  • the base station 100 and the terminal 200 may extract QoS information from information on the purpose of traffic and the message being sent.
  • the base station 100 or the terminal 200 may read a data signal (message information) transmitted in a packet header or the like, and specify the use of traffic based on the read information.
  • the base station 100 and the terminal 200 may estimate QoS information from the traffic pattern (Periodic, Aperiodic, Event trigger), the size of the traffic, and the size of the data being sent.
  • the base station 100 and the terminal 200 may treat large data as important data.
  • the base station 100 and the terminal 200 may determine that the larger the capacity of the data, the higher the importance.
  • the base station 100 and the terminal 200 may determine (specify) the QoS information based on the amount of the traffic buffer. For example, information such as Buffer status report may be sent from the transmitting side terminal 200 to the receiving side terminal 200 to notify how much traffic is accumulated on the transmitting side. As a result, the base station 100 and the terminal 200 may preferentially process the traffic as data having high QoS if the buffer is large, for example.
  • the base station 100 and the terminal 200 may determine (specify) the QoS information based on the traffic delay request value. For example, the base station 100 and the terminal 200 put a traffic delay request value in a packet header or the like, and determine QoS based on that information. For example, the base station 100 and the terminal 200 may be set as high QoS if there is a strict delay requirement. Further, the base station 100 and the terminal 200 may determine (specify) the QoS information based on the reliability request value of the traffic. For example, the base station 100 or the terminal 200 may put a reliability request value in a packet header or the like and determine QoS based on the information. For example, the base station 100 and the terminal 200 may be set as high QoS as long as they have high reliability requirements.
  • the base station 100 and the terminal 200 may determine (specify) the QoS information based on the traffic cycle.
  • traffic information may be quantified in advance as a score such as a critical level.
  • the importance level may be linked to QoS and used as QoS information.
  • a low important level value for example, 2
  • a high important level value for example, 8
  • QoS control-related information may be (quasi) statically exchanged between the terminal 200 and the base station 100, or may be dynamically exchanged.
  • the priority information (QoS information) of the packet and the information such as the priority position in the terminal 200 may be notified for each packet transmission.
  • QoS information QoS information
  • static communication it may be exchanged once when Power is on (at startup), and in the case of quasi-static, it may be exchanged periodically, for example, every few seconds.
  • FIG. 10 is a conceptual diagram showing an example of the communication control system according to the first embodiment. Specifically, FIG. 10 is a conceptual diagram showing an example of a communication control system in a case where an integrated QoS control table is created on the base station 100 side.
  • the communication control system shown in FIG. 10 corresponds to the communication control system 1, and includes terminals 200-1 to 200-3 and a base station 100.
  • Adapter in the base station 100 indicates a function used to realize wireless communication control.
  • "Adapter” corresponds to a function for integrating QoS settings for each traffic.
  • the function of "Adapter” corresponds to the function of the determination unit 153 shown in FIG.
  • the "policy control entity" in the base station 100 controls the "Adapter” and creates an integrated QoS table from the QoS tables of terminals 200-1 to 200-3.
  • base station 100 corresponds to an entity that implements a wireless communication link.
  • Base station 100 generates an integrated QoS control table by "Adapter”.
  • the base station 100 controls the communication of terminals 200-1 to 200-3 by the integrated QoS control table.
  • the base station 100 creates a comprehensive QoS control table in the system according to the direction of the policy control entity by using the QoS list information in each terminal 200.
  • Each terminal 200 controls the communication unit according to the set integrated QoS control table and its own generated traffic, and performs wireless link control.
  • the "policy control entity” may change the Configuration (setting) according to the situation.
  • the setting of the “policy control entity” may be changed according to the operation, the operation content, or the operation.
  • the setting of the "policy control entity” may be changed according to the time and place and the user such as a doctor (operator).
  • the “policy control entity” may be set for each doctor.
  • the setting of the "policy control entity” may be changed according to the device (terminal 200) in the network.
  • the “policy control entity” may change its settings according to the type and number of terminals 200 in the network and the available communication resources (frequency band, etc.).
  • the "policy control entity” may have a fixed operation or may dynamically change its settings.
  • the base station 100 determines the integrated QoS level, wireless communication parameters, etc.
  • the device for determining the integrated QoS level, wireless communication parameters, etc. is not limited to the base station. It may be the device of.
  • the server 300 determines the integrated QoS level, wireless communication parameters, and the like will be described as an example. The same points as those of the base station 100 and the terminal 200 according to the first embodiment will be omitted as appropriate.
  • FIG. 11 is a diagram showing an example of communication control processing according to the second embodiment of the present disclosure.
  • the configuration of the communication control system 1A shown in FIG. 11 will be described.
  • the communication control system 1A includes a base station 100A, a plurality of terminals 200, and a server 300.
  • the base station 100A is communicably connected to the server 300 via a predetermined network N (Internet or the like) by wire or wirelessly.
  • the base station 100A transmits / receives information to / from the server 300.
  • the server 300 is an information processing device used to provide a wireless communication service.
  • the server 300 makes various decisions using the information acquired from the base station 100A.
  • the server 300 determines the integrated QoS level and communication parameters.
  • the server 300 may be a core network such as an EPC (Evolved Packet Core).
  • the base station 100A acquires information related to QoS control (QoS control-related information) from the terminal 200-1 which is the terminal A (step S21).
  • the terminal 200-1 transmits three types of packet message types and their respective priority information (see FIG. 7) to the base station.
  • the priority (QoS level) of monitor message type # 1 is "1”
  • the QoS level of monitor message type # 2 is "2”
  • the QoS level of monitor message type # 3 is "2”.
  • Priority information indicating that it is "3" is transmitted to the base station.
  • the base station 100A acquires the QoS control related information from the terminal 200-2 which is the terminal B (step S22).
  • the terminal 200-2 has a sphygmomanometer message type # 1 priority (QoS level) of "1", a sphygmomanometer message type # 2 QoS level of "2", and a sphygmomanometer message type # 3 QoS. Priority information indicating that the level is "3" is transmitted to the base station.
  • the base station 100A that has obtained the QoS control-related information transmits the QoS control-related information to the server 300 (step S23).
  • the base station 100A transmits the QoS control-related information acquired from the terminals 200-1 and the terminal 200-2 to the server 300.
  • the server 300 that has obtained the QoS control related information creates an integrated QoS control table (step S24). For example, the server 300 determines the integrated QoS level (importance level) based on the QoS control related information of the terminal 200-1 and the terminal 200-2.
  • the monitor message type # 1 is "1”
  • the sphygmomanometer message type # 1 is "2”
  • the monitor message type # 2 is "3”
  • the sphygmomanometer message type # 2 is "4"
  • the monitor message type # Determine the integrated QoS level where 3 is "5" and sphygmomanometer message type # 3 is "6".
  • the server 300 creates a table for determining the control method of the wireless communication parameter according to the integrated QoS level (integrated QoS level).
  • the server 300 determines the wireless communication parameters for each of the integrated QoS levels "1" to "6".
  • the server 300 determines wireless communication parameters such as transmission power, allocated frequency resources, and coding rate.
  • the server 300 determines the wireless communication parameters so that the higher the integrated QoS level, the larger the transmission power, the larger the allocated frequency resource, and the better the coding rate.
  • the server 300 transmits information indicating the determined integrated QoS level and wireless communication parameters to the base station 100A (step S25). Then, the base station 100A, which has acquired the information indicating the integrated QoS level and the wireless communication parameters from the server 300, transmits the information indicating the wireless communication parameters to the terminal 200-1 (step S26).
  • the base station 100A transmits information indicating wireless communication parameters such as transmission power, allocated frequency resource, and coding rate to the terminal 200-1. For example, the base station 100A transmits information indicating a message type corresponding to each of the integrated QoS levels and information indicating a wireless communication parameter of each message type to the terminal 200-1.
  • the terminal 200-1 acquires the information indicating the wireless communication parameter as the communication policy information.
  • the base station 100A transmits information indicating the determined wireless communication parameter to the terminal 200-2 (step S27).
  • the base station 100A transmits information indicating wireless communication parameters such as transmission power, allocated frequency resource, and coding rate to the terminal 200-2.
  • the base station 100A transmits information indicating a message type corresponding to each of the integrated QoS levels and information indicating a wireless communication parameter of each message type to the terminal 200-2.
  • the terminal 200-2 acquires information indicating wireless communication parameters as communication policy information.
  • the terminal 200 controls wireless communication based on the communication policy information (step S28). Each terminal 200 controls wireless communication based on the acquired communication policy information.
  • FIG. 12 is a diagram showing a configuration example of a base station and a server according to the second embodiment.
  • the base station 100A has a communication unit 120, a storage unit 140, and a control unit 150A.
  • the communication unit 120 has a network communication unit that communicates with an external information processing device via the network N.
  • the communication unit 120 communicates with the server 300 via the network N.
  • the control unit 150A is different from the control unit 150 of the base station 100 in that it does not have the determination unit 153.
  • a program stored inside the base station 100A (for example, a communication control program according to the present disclosure) is executed by a CPU, an MPU, or the like using a RAM or the like as a work area. It is realized by.
  • the control unit 150A may be realized by an integrated circuit such as an ASIC or FPGA.
  • the server 300 has an "Adapter” function.
  • the "Adapter” in FIG. 12 has the same function as the "Adapter” in FIG.
  • the server 300 has the function of the determination unit 153 shown in FIG.
  • the server 300 determines various information.
  • the server 300 determines the communication policy information based on the device information indicating the type of the medical device and the QoS information based on the transmission information indicating the type of the transmission content transmitted by the medical device.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the type of traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the use of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the traffic pattern.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the size of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the buffer amount of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the delay request value of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic.
  • the server 300 determines the communication policy information based on the QoS information based on the transmission information
  • the server 300 determines the type of message to be transmitted to another device and determines the QoS of the message.
  • the server 300 determines the QoS of the message by image recognition.
  • the server 300 determines the QoS of the message based on the header information of the message.
  • the server 300 determines the QoS of the message based on the metadata of the message.
  • the server 300 determines the QoS of the message based on the information about the DICOM of the message.
  • the server 300 determines the QoS level of the message.
  • FIG. 13 is a diagram showing an example of communication control processing according to the third embodiment of the present disclosure. Specifically, FIG. 13 is a sequence diagram showing a procedure of communication control report processing according to the third embodiment. Further, FIG. 13 is a diagram showing a configuration example of the communication control system 1B according to the third embodiment of the present disclosure.
  • the communication control system 1B shown in FIG. 13 includes a base station 100B and a plurality of terminals 200B.
  • the communication control system 1B includes a base station 100B and a plurality of terminals 200B.
  • the terminals 200B-1 which is a terminal A and a terminal 200B-2 which is a terminal B are shown, but three or more terminals 200B are included.
  • the terminals 200B-1 to 200B-2 and the like are described without particular distinction, they are described as the terminal 200B.
  • the terminal 200B is a wireless terminal device that wirelessly communicates with a medical device arranged in the space of a medical institution. For example, the terminal 200B determines the integrated QoS level, wireless communication parameters, and the like. Then, the terminal 200B sets transmission control parameters according to the integrated QoS table when traffic is generated from the integrated QoS control table and its own traffic, and performs communication.
  • the base station 100B is a device that provides a wireless communication service to the terminal 200B, like the base station 100 and the base station 100A.
  • the base station 100B is a device used for communication between terminals 200B.
  • the base station 100B may have a determination unit 153 like the base station 100, or may not have a determination unit 153 like the base station 100A.
  • Communication is performed between the base station 100B, the terminal 200B-1, and the terminal 200B-2 by wireless communication corresponding to a predetermined wireless communication system.
  • Information is transmitted and received between the base station 100B and the terminal 200B by wireless communication corresponding to 5G. Further, each terminal 200B transmits / receives information to / from another terminal 200B by wireless communication corresponding to 5G.
  • the communication control system 1B shown in FIG. 13 may include a plurality of base stations 100B. Further, the communication control system 1B is not limited to the base station 100B and the terminal 200B, and may include various components. For example, the communication control system 1B may include components such as a server such as the server 300 shown in FIG.
  • the base station 100B side gives an integrated QoS creation instruction to the terminals 200B-1 and 200B-2, and updates the QoS table in each terminal 200B.
  • the base station 100B gives an integrated QoS creation instruction to the terminals 200B-1 and 200B-2 (step S301).
  • a table of traffic and communication control in each terminal 200B is created in advance on the base station 100B side, and is set in each terminal 200B.
  • the base station 100B creates a traffic and communication control table in the terminal 200B, transmits the information created in the terminal 200B-1 (step S302), and transmits the information created in the terminal 200B-1. (Step S303).
  • the wireless communication parameters are set according to the set QoS control table and the traffic in the terminal 200B.
  • terminal 200B creates integrated QoS control.
  • the terminal 200B-1 sets the wireless communication parameters according to the set QoS control table and the traffic in the terminal 200B-1.
  • the terminal 200B-1 determines the integrated QoS level based on the set QoS control table and the traffic in the terminal 200B-1, and determines the wireless communication parameter according to the determined integrated QoS level.
  • the terminal 200B-1 determines the integrated QoS level, wireless communication parameters, and the like.
  • the terminal 200B-1 creates integrated QoS information and information indicating wireless communication parameters as integrated QoS control (step S304).
  • the terminal 200B-1 reports to the base station 100B side and requests the revision of the information (integrated QoS table, QoS control table, etc.). You may.
  • the terminal 200B-2 sets the wireless communication parameters according to the set QoS control table and the traffic in the terminal 200B-2. For example, the terminal 200B-2 determines the integrated QoS level based on the set QoS control table and the traffic in the terminal 200B-2, and determines the wireless communication parameter according to the determined integrated QoS level. The terminal 200B-2 determines the integrated QoS level, wireless communication parameters, and the like. The terminal 200B-2 creates integrated QoS information and information indicating wireless communication parameters as integrated QoS control (step S305).
  • the specific terminal 200B may create an integrated QoS control, not limited to the case where each terminal 200B creates an integrated QoS control.
  • one terminal 200B may create an integrated QoS control, and the created integrated QoS control may be transmitted to each terminal 200B.
  • one terminal 200B may acquire the QoS-related information of each terminal 200, create an integrated QoS control, and transmit the created integrated QoS control to each terminal 200B like the base station 100. The details of the case where one terminal 200B creates the integrated QoS control will be described later.
  • the terminal 200B-1 When traffic occurs (step S306), the terminal 200B-1 performs transmission control according to QoS (step S307).
  • the terminal 200B-1 performs communication control using setting information such as wireless communication parameters set for each QoS level.
  • the terminal 200B-1 transmits a packet using wireless communication parameters such as transmission power, allocated frequency resource, and coding rate corresponding to the packet to be transmitted (step S308).
  • the terminal 200B-2 receives the packet from the terminal 200B-1 (step S309).
  • the direct communication between the terminals 200B is shown as an example, but the communication via the base station 100B is also processed in the same manner.
  • FIG. 14 is a diagram showing a configuration example of a terminal according to a third embodiment.
  • the terminal 200B has a communication unit 220, a storage unit 240B, and a control unit 250B.
  • the storage unit 240B is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 240B includes a QoS information storage unit 241, a setting information storage unit 242, and an integrated QoS storage unit 243.
  • the integrated QoS information storage unit 243 stores the integrated QoS information. Since the information stored in the integrated QoS information storage unit 243 is the same as that of the integrated QoS information storage unit 141 shown in FIG. 4, the description thereof will be omitted.
  • control unit 250B similarly to the control unit 250, for example, a program stored inside the terminal 200B (for example, a communication control program according to the present disclosure) is executed by a CPU, an MPU, or the like using a RAM or the like as a work area. Is realized by. Further, the control unit 250B may be realized by an integrated circuit such as an ASIC or FPGA.
  • control unit 250B includes an acquisition unit 251, a communication control unit 252, and a determination unit 253, and realizes or executes an information processing function or operation described below.
  • the internal configuration of the control unit 250 is not limited to the configuration shown in FIG. 14, and may be any other configuration as long as it is a configuration for performing information processing described later.
  • the communication control unit 252 controls the wireless communication of the message based on the QoS determined by the determination unit 253.
  • the communication control unit 252 controls the wireless communication of the message based on the QoS level determined by the determination unit 253.
  • the determination unit 253 determines the communication policy information based on the device information indicating the type of the medical device and the QoS information based on the transmission information indicating the type of the transmission content transmitted by the medical device. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the type of traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the use of the traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the traffic pattern. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the size of the traffic.
  • the determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the buffer amount of the traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the delay request value of the traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the trust request value of the traffic. The determination unit 253 determines the communication policy information based on the QoS information based on the transmission information which is the information indicating the traffic cycle.
  • the determination unit 253 determines the type of message to be transmitted to another device and determines the QoS of the message.
  • the determination unit 253 determines the QoS of the message by image recognition.
  • the determination unit 253 determines the QoS of the message based on the header information of the message.
  • the determination unit 253 determines the QoS of the message based on the metadata of the message.
  • the determination unit 253 determines the QoS of the message based on the information about the DICOM of the message.
  • the determination unit 253 determines the QoS level of the message.
  • FIG. 14 is a conceptual diagram showing an example of the communication control system according to the third embodiment. Specifically, FIG. 14 is a conceptual diagram showing an example of a communication control system in a case where an integrated QoS control table is created on the terminal 200B side.
  • the communication control system shown in FIG. 14 corresponds to the communication control system 1B, and includes terminals 200B-1 to 200B-3 and a base station 100B.
  • Adapter in the terminal 200B indicates a function used to realize wireless communication control.
  • "Adapter” corresponds to a function for integrating QoS settings for each traffic.
  • the function of "Adapter” corresponds to the function of the determination unit 253 shown in FIG.
  • the "policy control entity" in the base station 100B controls the "Adapter” of the terminals 200B-1 to 200B-3, and causes the terminals 200B-1 to 200B-3 to create an integrated QoS table.
  • terminals 200B-1 to 200B-3 generate an integrated QoS control table by "Adapter”.
  • the terminals 200B-1 to 200B-3 control communication by the integrated QoS control table.
  • the base station 100 side controls only the Adapter control that converts the QoS list by the policy control entity into the comprehensive QoS control table.
  • each medical device determines the integrated QoS level, wireless communication parameters, etc. is shown, but among the wireless terminal devices, only the predetermined wireless terminal device has the integrated QoS level. And wireless communication parameters may be determined.
  • the same points as the above-mentioned base stations 100, 100A, 100B and terminals 200, 200B will be omitted as appropriate.
  • FIG. 16 is a diagram showing a configuration example of a communication control system according to a fourth embodiment of the present disclosure.
  • the communication control system 1C includes one terminal 200B and a plurality of terminals 200.
  • the communication control system 1C includes a terminal 200B that determines the integrated QoS level and wireless communication parameters, and a plurality of terminals 200 that control communication according to the integrated QoS level and wireless communication parameters acquired from the terminal 200B. And are included.
  • the terminal 200B-20 which is an IP converter
  • the terminal 200-21 which is a surgical field camera
  • the terminal 200-22 which is an endoscopic camera
  • the terminal 200-23 which is a microscope
  • the terminal 200- which is a 4K monitor.
  • the communication control system 1C is not limited to the six terminals 200 of the terminals 200-21 to 200-26, and may include various terminals 200. Further, the communication control system 1C shown in FIG. 16 may include a plurality of terminals 100B.
  • the terminal 200B-20 is an IP converter that wirelessly transmits various data such as 4K and HD (High Definition) images and control signals.
  • the terminal 200B-20 is a medical IP converter that wirelessly transmits data such as various images inside and outside the operating room.
  • the terminal 200B-20 transmits / receives information to / from terminals 200 such as terminals 200-21 to 200-26 by wireless communication corresponding to 5G.
  • the terminal 200B-20 which is an IP converter, converts various data into IP (Internet Protocol) and transmits the data.
  • the terminal 200B-20 is wirelessly connected to various terminals 200 including 4K medical devices (terminals 200-24, etc.) by wireless communication, and by converting various data of video signals from input to output into IP. Transmission of video and control signals.
  • the communication control system 1C it is possible to realize a simple system construction in the space of a medical institution such as an operating room.
  • the terminal 200B-20 which is an IP converter, has an "Adapter” function used to realize wireless communication control.
  • the "Adapter” in the terminal 200B-20 corresponds to a function for integrating QoS settings for each traffic.
  • the function of "Adapter” corresponds to the function of the determination unit 253 of the terminal 200B shown in FIG.
  • the terminal 200B-20 requests the terminals 200-21 to 200-26 to transmit the QoS-related information, and acquires the QoS-related information from the terminals 200-21 to 200-26.
  • the terminal 200B-20 creates an integrated QoS control using the QoS-related information of the terminals 200-21 to 200-26, and transmits the created integrated QoS control to the terminals 200-21 to 200-26.
  • the terminal controls the wireless communication parameters according to the transmitted packet and the integrated QoS table, but in addition to this, the base station side may additionally control the wireless communication.
  • the base station side may additionally control the wireless communication.
  • a device that is expected to interfere with other devices such as an electric knife may be used, and even in an environment where such interference occurs, the communication quality of wireless communication is high. Need to be secured.
  • FIG. 17 is a diagram showing a configuration example of a communication control system according to a fifth embodiment of the present disclosure.
  • the base station 100D performs interference detection and performs communication control is shown, but the wireless terminal device may perform interference detection and perform communication control.
  • the same points as the above-mentioned base stations 100, 100A, 100B and terminals 200, 200B will be omitted as appropriate.
  • FIG. 17 is a diagram showing a configuration example of a communication control system according to a fifth embodiment of the present disclosure.
  • FIG. 17 shows an example of wireless communication link additional control for predictable interference.
  • the communication control system 1D includes a base station 100D and a plurality of terminals 200.
  • the communication control system 1D includes three or more terminals 200. It may be.
  • the base station 100D is a device that provides a wireless communication service to the terminal 200 in the same manner as the base station 100.
  • the base station 100D is connected to the terminal 200-11, which is an electronic knife, by a predetermined interface IF.
  • the base station 100D wirelessly communicates with the terminal 200-12, which is an electrocardiograph, by the wireless communication RC corresponding to 5G.
  • the base station 100D determines the integrated QoS level, wireless communication parameters, and the like.
  • the base station 100D has a function of an interference detection unit that detects interference related to communication. Further, the base station 100D may set the profile of the interfering device which is the interfering terminal 200.
  • the control unit 150D (not shown) of the base station 100D differs from the control unit 150 of the base station 100 in that it has a device motion detection unit 154 and an interference measurement unit 155.
  • the base station 100D has an interference measuring unit 155 that functions as an interference detecting unit that detects interference related to communication.
  • the communication control unit 152 of the base station 100D controls wireless communication based on the interference detected by the interference detection unit.
  • the device motion detection unit 154 detects the motion of the device (terminal 200).
  • the device motion detection unit 154 acquires information indicating that an operation has been performed by the user, for example, when the motion button of the device (terminal 200) is pressed.
  • the device motion detection unit 154 detects information generated by the operation of the device (terminal 200), for example.
  • the interference measurement unit 155 appropriately uses various techniques related to interference detection and the like to detect interference related to communication and measure interference.
  • the interference measurement unit 155 changes the measurement frequency of the interference measurement unit according to the type of the operating device (terminal 200) and the operating status of the device (terminal 200).
  • the interference measurement unit 155 performs interference measurement every Xms, for example, when the target device (terminal 200) starts to operate. (Terminal 200) For example, when interference from a specific type of device (terminal 200) is detected, interference measurement with a measurement frequency according to the device (terminal 200) is performed.
  • the interference measurement unit 155 changes the subsequent interference measurement frequency based on the interference detection result obtained first.
  • the interference measuring unit 155 is changed according to, for example, the interference level and the interference pattern obtained at the beginning.
  • the interference measurement unit 155 generates a specific interference pattern for each device (terminal 200), and embeds information in the interference.
  • FIG. 18 is a diagram showing an example of a process related to the measurement of interference according to the fifth embodiment. Specifically, FIG. 18 shows an example of generating a specific interference pattern.
  • the interference measuring unit 155 generates an interference pattern characteristic of the initial interference.
  • the interference measurement unit 155 generates an interference pattern characteristic of the initial interference as shown in the interference pattern PT1.
  • the interference measurement unit 155 optimizes the measurement method.
  • the interference measurement unit 155 optimizes the measurement method as shown in the target TG1.
  • the communication control unit 152 controls communication based on the information measured by the interference measurement unit 155.
  • the communication control unit 152 switches the frequency according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 switches between a licensed band and an unlicensed band according to the information measured by the interference measuring unit 155.
  • the communication control unit 152 controls the transmission power according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 increases the transmission power of the link to be protected according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 changes the coding rate according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 increases the coding rate of the link to be protected according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 executes the repetition transmission according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 enables retransmission transmission to the link to be protected according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 performs HARQ (Hybrid Automatic Repeat reQuest) transmission according to the information measured by the interference measurement unit 155.
  • HARQ Hybrid Automatic Repeat reQuest
  • the communication control unit 152 changes the transmission method according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 changes the transmission method of the link to be protected according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 may perform a process for improving the quality and reliability of communication, that is, a so-called transmission diversity process, according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 may perform MIMO transmission according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 may perform priority control according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 lowers the communication quality of the link that is less necessary to be protected and raises the communication quality of the link to be protected according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 may change the packet transmission, the pattern change, or the resource allocation method according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 allocates resources according to the information measured by the interference measurement unit 155 so as to avoid the interference pattern of the device (terminal 200).
  • the communication control unit 152 may switch from wireless to wired communication according to the information measured by the interference measurement unit 155.
  • the communication control unit 152 switches to wired communication according to the information measured by the interference measurement unit 155. Further, the communication control unit 152 may notify a person (administrator of the communication control system 1D, etc.) of the necessity of switching.
  • the communication control system 1D may perform wireless communication control in consideration of these expected interferences.
  • the communication control system 1D detects the activation of a device such as an electric knife that is expected to affect wireless communication in the operating room environment, and predicts interference with the wireless communication used. Then, the communication control system 1D resets the transmission / reception control parameters of the wireless communication in the situation where the occurrence of interference is predicted, and realizes the wireless communication with high interference resistance.
  • the base station 100D of the communication control system 1D executes the above-described processing such as detection and prediction.
  • Base station 100D takes measures against predictable interference.
  • the device motion detection unit 154 of the base station 100D activates a device (for example, terminal 200-12, etc.) that may affect wireless communication such as terminal 200-11, which is an electric knife, in an environment such as an operating room. It functions as a detection unit to detect.
  • the interference measurement unit 155 of the base station 100D functions as an interference prediction unit that predicts interference with the wireless communication used.
  • the communication control unit 152 of the base station 100D resets the transmission / reception control parameters of wireless communication in a situation where interference is predicted to occur, and performs wireless communication with high interference resistance.
  • the above-mentioned processing may be performed on the wireless terminal device side.
  • the terminal 200 which is a wireless terminal device, has an interference detection unit that detects interference related to communication.
  • the interference detection unit appropriately uses various techniques related to interference detection and the like to detect interference related to communication and measure interference.
  • the terminal 200 may have an interference measuring unit 155 or a device motion detecting unit 154 that functions as an interference detecting unit.
  • the communication control unit 252 of the terminal 200 controls wireless communication based on the interference detected by the interference detection unit.
  • the communication control system 1D can appropriately execute the wireless communication control in consideration of the interference even when the occurrence of the interference caused by the terminal 200 is expected.
  • FIG. 19 is a diagram showing a configuration example of a communication control system according to a modified example of the present disclosure.
  • FIG. 19 illustrates the case where the four antenna panels 61-1 to 61-4 are arranged in the shadowless lamp 60, but the number of antenna panels 61 arranged in the shadowless lamp 60 is limited to four. Absent. Further, the antenna panel 61-5 is also arranged near the terminal 200-2. In FIG. 19, it is assumed that the shadowless lamp 60 is provided with four antenna panels 61-1 to 61-4 as shown as the antenna panels 61-5. When the antenna panels 61-1 to 61-5 and the like will be described without particular distinction, they will be referred to as the antenna panel 61.
  • the base station 100 uses the antenna panel 61 to perform wireless communication. For example, the base station 100 wirelessly communicates with the terminal 200 using the antenna panel 61.
  • the antenna panel 61 which is a plurality of MIMO communication antennas attached to the ceiling, wall, shadowless lamp 60, etc., is used as LOS (Line Of Sight) / NLOS. Judgment is made according to the situation of (Non Line Of Sight).
  • the communication control system 1E determines the quality of the wireless link.
  • the base station 100 determines the antenna panel 61 according to the situation of LOS / NLOS.
  • the base station 100 may have a determination unit that determines the antenna panel 61 according to the situation of LOS / NLOS.
  • the communication control system 1E controls to activate / deactivate the antenna panel 61 according to the determination of LOS / NLOS of the antenna panel 61.
  • the communication control system 1E may recognize the space and collectively control or learn the beamforming in the room.
  • base station 100 may function as a beamforming management entity.
  • the base station 100 controls to start / stop the antenna panel 61 according to the determination of LOS / NLOS of the antenna panel 61.
  • the base station 100 may have an operation control unit that controls to start / stop the antenna panel 61 according to the determination of LOS / NLOS of the antenna panel 61.
  • the base station 100 may recognize the space and collectively control or learn the beamforming in the room.
  • the communication control system 1E can solve the problem of blocking MIMO communication due to the head or body during surgery, and can establish a stable and robust wireless communication link.
  • the communication control system 1E shown in FIG. 19 learns the wireless communication link state and appropriately switches the communication link from the behavior prediction of the obstacle before the occurrence of blocking.
  • the communication control system 1E may include components such as a server such as the server 300 shown in FIG.
  • various controls on the server side are performed.
  • the server performs information collection processing corresponding to the information collection block for learning.
  • the server acquires position information between transmission and reception, 3D capture information of the operating room, position information of obstacles, and communication quality results at each communication link.
  • a communication quality report is set in the terminal 200 from the base station 100.
  • the server performs learning processing corresponding to the learning block.
  • the server determines the optimum link and beamforming setting information in each communication environment.
  • the server performs prediction processing corresponding to the behavior prediction block.
  • the server uses a camera to predict the behavior of a moving object.
  • the server performs the judgment process corresponding to the judgment block.
  • the server determines the necessity of link switching or the switching of beamforming setting information from the behavior prediction information and the learning information.
  • the server performs processing corresponding to link switching and beamforming setting change block.
  • the server instructs Activate / Deactivate of a plurality of transmitting nodes.
  • the server implements the beamforming settings used by the transmitting node.
  • the server-side processing described above may be performed by the base station 100.
  • the base station 100 shows a case where the antenna panel 61-3 is used among the plurality of antenna panels 61 to communicate with the terminal 200-3. Then, in the example of FIG. 19, the case where the communication with the terminal 200-3 by the antenna panel 61-3 is blocked by the operator 8 due to the movement of the position of the operator 8 or the like is shown. Therefore, the base station 100 switches the communication with the terminal 200-3 by the antenna panel 61-3 to the communication by the antenna panel 61-4 or the communication by the antenna panel 61-5.
  • the communication control unit 152 of the base station 100 controls wireless communication according to the position of the antenna.
  • the communication control unit 152 of the base station 100 controls wireless communication by various techniques related to wireless communication.
  • the communication control unit 152 of the base station 100 controls wireless communication by beamforming.
  • the communication control unit 152 of the base station 100 controls wireless communication by switching the antenna panel 61 used for communication among the plurality of antenna panels 61. For example, the communication control unit 152 of the base station 100 selects the antenna panel 61-4 having the strongest reception strength among the plurality of antenna panels 61 as the antenna to be used for communication, and uses the selected antenna panel 61-4. Wireless communication may be performed.
  • the antenna unit 110 of the base station 100 may have a plurality of antennas used for wireless communication.
  • the communication control unit 152 of the base station 100 controls wireless communication according to the positions of a plurality of antennas.
  • the communication control unit 152 of the base station 100 controls wireless communication by switching the antenna used for communication among the plurality of antennas.
  • the above-mentioned processing may be performed on the wireless terminal device side.
  • the communication control unit 252 of the terminal 200 which is a wireless terminal device, controls wireless communication according to the position of the antenna.
  • the communication control unit 252 of the terminal 200 controls wireless communication by beamforming.
  • the communication control unit 252 of the terminal 200 controls wireless communication by various techniques related to wireless communication.
  • the communication control unit 252 of the terminal 200 controls wireless communication by beamforming.
  • the antenna unit 210 of the terminal 200 may have a plurality of antennas used for wireless communication.
  • the communication control unit 252 of the terminal 200 controls wireless communication according to the positions of a plurality of antennas.
  • the communication control unit 252 of the terminal 200 controls wireless communication by switching the antenna used for communication among the plurality of antennas.
  • the communication control unit 252 of the terminal 200 may select the antenna having the strongest reception strength among the plurality of antennas as the antenna used for communication, and perform wireless communication using the selected antenna.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of them may be functionally or physically distributed / physically in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the wireless terminal device (terminals 200, 200B in the embodiment) according to the present disclosure is a wireless terminal device that wirelessly communicates with a medical device arranged in the space of a medical institution, and is an acquisition unit (embodiment).
  • the first acquisition unit 251) and a communication control unit (communication control unit 252 in the embodiment) are provided.
  • the acquisition unit acquires communication policy information determined by device information indicating the type of medical device and QoS (Quality of Service) information based on transmission information indicating the type of transmission content transmitted by the medical device.
  • the communication control unit controls wireless communication based on the communication policy information.
  • the wireless terminal device controls wireless communication based on communication policy information according to QoS based on the type of medical device and the type of transmission content transmitted by the medical device, thereby becoming a medical device.
  • Wireless communication can be performed according to the corresponding QoS. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the wireless terminal device wirelessly communicates with the medical equipment arranged in the operating room.
  • the wireless terminal device has a communication policy according to QoS based on the type of medical device to communicate with and the type of transmission content transmitted by the medical device when wirelessly communicating with the medical device arranged in the operating room.
  • the communication control unit controls wireless communication at the communication timing based on the communication policy information.
  • the wireless terminal device can perform wireless communication at an appropriate communication timing in consideration of QoS by controlling the wireless communication at the communication timing based on the communication policy information. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the communication control unit controls wireless communication with a packet error rate based on communication policy information.
  • the wireless terminal device can perform wireless communication at an appropriate packet error rate in consideration of QoS by controlling wireless communication at a packet error rate based on the communication policy information. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the communication control unit controls wireless communication by reducing the delay as the priority is higher.
  • the higher the priority the more the wireless terminal device controls the wireless communication by reducing the delay, so that the wireless terminal device can perform the wireless communication with an appropriate communication delay in consideration of QoS. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the communication control unit controls wireless communication at the assigned frequency based on the communication policy information.
  • the wireless terminal device can perform wireless communication with an appropriate frequency allocation amount in consideration of QoS by controlling the wireless communication with the assigned frequency based on the communication policy information. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the communication control unit controls wireless communication based on the strength of transmission and reception based on the communication policy information.
  • the wireless terminal device can perform wireless communication with an appropriate transmission / reception strength in consideration of QoS by controlling the wireless communication with the transmission / reception strength based on the communication policy information. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the wireless terminal device includes a determination unit (determination unit 253 in the embodiment).
  • the determination unit determines the type of message to be transmitted to another device and determines the QoS of the message.
  • the communication control unit controls the wireless communication of the message based on the QoS determined by the determination unit.
  • the wireless terminal device can control the wireless communication of the message according to the QoS of the message determined based on the type of the message, and the communication of the wireless connection of the medical device arranged in the space of the medical institution. The quality can be improved.
  • the determination unit determines the QoS of the message based on the header information of the message.
  • the wireless terminal device can control the wireless communication of the message according to the QoS of the message determined based on the header information of the message, and the wireless connection of the medical device arranged in the space of the medical institution can be performed. Communication quality can be improved.
  • the determination unit determines the QoS of the message based on the metadata of the message.
  • the wireless terminal device can control the wireless communication of the message according to the QoS of the message determined based on the metadata of the message, and the wireless connection of the medical device arranged in the space of the medical institution can be performed. Communication quality can be improved.
  • the transmission information is information indicating the type of traffic.
  • the wireless terminal device can perform wireless communication according to the QoS corresponding to the traffic type by controlling the wireless communication based on the communication policy information according to the QoS based on the traffic type. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the transmission information is information indicating the use of traffic.
  • the wireless terminal device can perform wireless communication according to the QoS corresponding to the traffic use by controlling the wireless communication based on the communication policy information according to the QoS based on the traffic use. Therefore, the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the communication control unit controls wireless communication with the medical device according to the control by the base station.
  • the wireless terminal device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution by controlling the wireless communication with the medical device according to the control by the base station. it can.
  • the wireless terminal device is an IP converter.
  • the IP converter which is an example of a wireless terminal device, controls wireless communication based on communication policy information according to QoS based on the type of medical device and the type of transmission content transmitted by the medical device. Wireless communication can be performed according to the QoS corresponding to the device. Therefore, the IP converter can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the wireless terminal device is a medical device.
  • the IP converter which is an example of a wireless terminal device, controls wireless communication based on communication policy information according to QoS based on the type of medical device and the type of transmission content transmitted by the medical device. Wireless communication can be performed according to the QoS corresponding to the device. Therefore, the medical device can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the wireless terminal device is provided with an interference detection unit.
  • the interference detection unit detects interference related to communication.
  • the communication control unit controls wireless communication based on the interference detected by the interference detection unit.
  • the wireless terminal device can control wireless communication based on the detected interference, and can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the wireless terminal device includes an antenna (antenna unit 210 in the embodiment).
  • the antenna is used for wireless communication.
  • the communication control unit controls wireless communication according to the position of the antenna.
  • the wireless terminal device can control wireless communication in consideration of the position of the antenna, and can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • the base stations are wireless terminal devices that perform wireless communication with medical devices arranged in the space of a medical institution, and are acquired.
  • a unit (acquisition unit 151 in the embodiment) and a communication control unit (communication control unit 152 in the embodiment) are provided.
  • the acquisition unit acquires communication policy information determined by device information indicating the type of medical device arranged in the space of the medical institution and QoS information based on the transmission information indicating the type of transmission content transmitted by the medical device. ..
  • the communication control unit controls wireless communication between medical devices based on the communication policy information.
  • the base station controls wireless communication between medical devices based on communication policy information according to QoS based on the type of medical device and the type of transmission content transmitted by the medical device.
  • Wireless communication between medical devices can be controlled according to QoS. Therefore, the base station can improve the communication quality of the wireless connection of the medical device arranged in the space of the medical institution.
  • FIG. 20 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of information processing devices such as base stations 100, 100A, 100B, 100D and terminals 200, 200B.
  • the computer 1000 includes a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processing corresponding to various programs.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program that depends on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by the program.
  • the HDD 1400 is a recording medium for recording an information processing program according to the present disclosure, which is an example of program data 1450.
  • the communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
  • the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
  • the media is, for example, an optical recording medium such as DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk), a magneto-optical recording medium such as MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • an optical recording medium such as DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk)
  • a magneto-optical recording medium such as MO (Magneto-Optical disk)
  • a tape medium such as a magnetic tape
  • magnetic recording medium or a semiconductor memory.
  • the present technology can also have the following configurations.
  • It is a wireless terminal device that performs wireless communication with medical equipment placed in the space of a medical institution.
  • An acquisition unit that acquires communication policy information determined by device information indicating the type of medical device and QoS (Quality of Service) information based on transmission information indicating the type of transmission content transmitted by the medical device.
  • a communication control unit that controls the wireless communication based on the communication policy information,
  • a wireless terminal device comprising.
  • the wireless terminal device according to (1) which performs wireless communication with a medical device arranged in an operating room.
  • the communication control unit The wireless terminal device according to (1) or (2), which controls the wireless communication in a communication mode determined based on the communication policy information.
  • the communication control unit The wireless terminal device according to (3), which controls the wireless communication at a communication timing based on the communication policy information.
  • the communication control unit The wireless terminal device according to (3) or (4), which controls the wireless communication with a packet error rate based on the communication policy information.
  • the communication control unit The wireless terminal device according to (5), wherein the higher the priority, the lower the packet error rate to control the wireless communication.
  • the communication control unit The wireless terminal device according to any one of (3) to (6), which controls the wireless communication by a communication delay based on the communication policy information.
  • the communication control unit The wireless terminal device according to (7), wherein the higher the priority, the smaller the delay to control the wireless communication.
  • the communication control unit The wireless terminal device according to any one of (3) to (8), which controls the wireless communication at an assigned frequency based on the communication policy information.
  • the communication control unit The wireless terminal device according to (9), wherein the higher the priority, the greater the amount of frequency allocation to control the wireless communication.
  • the communication control unit The wireless terminal device according to any one of (3) to (10), wherein the wireless communication is controlled by the strength of transmission / reception based on the communication policy information.
  • (12) The communication control unit The wireless terminal device according to (11), wherein the higher the priority, the stronger the transmission / reception intensity to control the wireless communication.
  • the communication control unit The wireless terminal device according to (12), wherein the higher the priority, the higher the transmission power to control the wireless communication.
  • the communication control unit The wireless terminal device according to any one of (3) to (13), wherein the wireless communication is controlled by a coding rate based on the communication policy information.
  • a determination unit that determines the type of message to be sent to another device and determines the QoS of the message.
  • the communication control unit The wireless terminal device according to any one of (1) to (14), which controls the wireless communication of the message based on the QoS determined by the determination unit.
  • the decision unit The wireless terminal device according to (15), which determines the QoS of the message by image recognition.
  • the decision unit The wireless terminal device according to (15) or (16), which determines the QoS of the message based on the header information of the message.
  • the decision unit The wireless terminal device according to any one of (15) to (17), which determines the QoS of the message based on the metadata of the message. (19) The decision unit The wireless terminal device according to (18), which determines the QoS of the message based on the information about DICOM of the message. (20) The decision unit Determine the QoS level of the message The communication control unit The wireless terminal device according to any one of (15) to (19), which controls the wireless communication of the message based on the QoS level determined by the determination unit. (21) The transmitted information is The wireless terminal device according to any one of (1) to (20), which is information indicating a type of traffic. (22) The transmitted information is The wireless terminal device according to any one of (1) to (21), which is information indicating the use of traffic.
  • the transmitted information is The wireless terminal device according to any one of (1) to (22), which is information indicating a traffic pattern.
  • the transmitted information is The wireless terminal device according to any one of (1) to (23), which is information indicating the size of traffic.
  • the transmitted information is The wireless terminal device according to any one of (1) to (24), which is information indicating a traffic buffer amount.
  • the transmitted information is The wireless terminal device according to any one of (1) to (25), which is information indicating a traffic delay request value.
  • the transmitted information is The wireless terminal device according to any one of (1) to (26), which is information indicating a traffic trust request value.
  • the transmitted information is The wireless terminal device according to any one of (1) to (27), which is information indicating a traffic cycle.
  • the communication control unit The wireless terminal device according to any one of (1) to (28), which controls the wireless communication with the medical device according to the control by the base station.
  • the communication control unit The wireless terminal device according to (29), which controls the wireless communication based on the communication policy information set by the base station.
  • the wireless terminal device (35) Interference detector that detects interference related to communication, With The communication control unit The wireless terminal device according to any one of (1) to (34), which controls the wireless communication based on the interference detected by the interference detection unit. (36) Antenna used for wireless communication, With The communication control unit The wireless terminal device according to any one of (1) to (35), which controls the wireless communication according to the position of the antenna. (37) The communication control unit The wireless terminal device according to (36), wherein the wireless communication is controlled by beamforming. (38) Multiple antennas used for the wireless communication, With The communication control unit The wireless terminal device according to any one of (1) to (37), which controls the wireless communication according to the positions of the plurality of antennas.
  • the communication control unit The wireless terminal device according to (38), wherein among the plurality of antennas, the antenna used for communication is switched to control the wireless communication.
  • It is a communication control method that performs wireless communication with medical equipment placed in the space of a medical institution. Acquires communication policy information determined by device information indicating the type of the medical device and QoS information based on the QoS information indicating the type of transmission content transmitted by the medical device. A communication control method for controlling the wireless communication based on the communication policy information.
  • a communication control program that controls the wireless communication based on the communication policy information.
  • An acquisition unit that acquires communication policy information determined by device information indicating the type of medical device arranged in the space of a medical institution and QoS information based on the transmission information indicating the type of transmission content transmitted by the medical device.
  • a communication control unit that controls wireless communication between the medical devices based on the communication policy information, Base station with.
  • Communication control system 100 Base station 120 Communication unit 140 Storage unit 141 Integrated QoS information storage unit 142 Communication parameter information storage unit 150 Control unit 151 Acquisition unit 152 Communication control unit 153 Decision unit 200 Terminal (wireless terminal device) 220 Communication unit 240 Storage unit 241 QoS information storage unit 242 Setting information storage unit 250 Control unit 251 Acquisition unit 252 Communication control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示に係る無線端末装置は、医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置であり、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS(Quality of Service)情報により決定された通信ポリシー情報を取得する取得部と、通信ポリシー情報に基づいて無線通信を制御する通信制御部と、を備える。

Description

無線端末装置、通信制御方法、通信制御プログラム及び基地局
 本開示は、無線端末装置、通信制御方法、通信制御プログラム及び基地局に関する。
 近年、様々な医療機器が手術に用いられており、手術室内には複数の医療機器が設けられる。これらの医療機器を全て有線で接続すると配線が複雑となり、また、手術室メンバーが移動する際に配線が移動を阻害してしまう。そこで、医療機器の無線化が求められているが、複数の医療機器が無線化すると様々なトラフィックが発生し、無線接続の接続安定性が下がることが懸念されている。
 そこで、無線通信を行う送受信部(アンテナ)を複数設けることで、安定的に通信を行う手法が提案されている(例えば、特許文献1)。特許文献1に記載の技術では、手術台の4隅に送受信部(アンテナ)を複数設ける構成が提案されている。
特開2016-87248号公報
 しかしながら、従来技術においては、アンテナといった通信に用いる構成要素(装置)の数を増やして、接続安定性といった通信品質の向上を図っており、新たな装置の追加が必要となり、構成が複雑になるといった課題がある。また、手術台等の手術室で用いられる用具にアンテナを設置する場合、設置作業等が必要になり、コストが増大するといった課題もある。そのため、新たな装置を設けることなく、複数の医療機器の通信の接続品質を向上することが望まれている。
 そこで、本開示では、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる無線端末装置、通信制御方法、通信制御プログラム及び基地局を提案する。
 上記の課題を解決するために、本開示に係る一形態の無線端末装置は、医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置であり、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS(Quality of Service)情報により決定された通信ポリシー情報を取得する取得部と、前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御部と、を備える。
本開示の第1の実施形態に係る通信制御処理の一例を示す図である。 第1の実施形態に係る通信制御システムの手術室への適用の一例を示す図である。 第1の実施形態に係る基地局の構成例を示す図である。 第1の実施形態に係る統合QoS情報記憶部の一例を示す図である。 第1の実施形態に係る通信パラメータ情報記憶部の一例を示す図である。 第1の実施形態に係る端末の構成例を示す図である。 第1の実施形態に係るQoS情報記憶部の一例を示す図である。 第1の実施形態に係る通信制御報処理の手順を示すフローチャートである。 第1の実施形態に係る通信制御報処理の手順を示すシーケンス図である。 第1の実施形態に係る通信制御システムの一例を示す概念図である。 本開示の第2の実施形態に係る通信制御処理の一例を示す図である。 第2の実施形態に係る基地局及びサーバの構成例を示す図である。 本開示の第3の実施形態に係る通信制御処理の一例を示す図である。 第3の実施形態に係る端末の構成例を示す図である。 第3の実施形態に係る通信制御システムの一例を示す概念図である。 本開示の第4の実施形態に係る通信制御システムの構成例を示す図である。 本開示の第5の実施形態に係る通信制御システムの構成例を示す図である。 第5の実施形態に係る干渉の測定に関する処理の一例を示す図である。 本開示の変形例に係る通信制御システムの構成例を示す図である。 基地局や端末の機能を実現するコンピュータの一例を示すハードウェア構成図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、この実施形態により本願にかかる無線端末装置、通信制御方法、通信制御プログラム及び基地局が限定されるものではない。また、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 以下に示す項目順序に従って本開示を説明する。
  1.第1の実施形態
   1-1.本開示の第1の実施形態に係る通信制御処理の概要
   1-2.通信制御システムの手術室への適用例
   1-3.第1の実施形態に係る基地局の構成
   1-4.第1の実施形態に係る端末の構成
   1-5.第1の実施形態に係る通信制御処理の手順
   1-6.通信制御システムの概要
    1-6-1.統合QoSレベル
    1-6-2.無線通信パラメータ
    1-6-3.QoS関連情報
   1-7.通信制御システムの概念図
  2.第2の実施形態
   2-1.本開示の第2の実施形態に係る通信制御処理の概要
   2-2.第2の実施形態に係る基地局及びサーバの構成
  3.第3の実施形態
   3-1.本開示の第3の実施形態に係る通信制御処理の概要
   3-2.第3の実施形態に係る端末の構成
   3-3.通信制御システムの概念図
  4.第4の実施形態
   4-1.本開示の第4の実施形態に係る通信制御システムの構成
  5.第5の実施形態
   5-1.本開示の第5の実施形態に係る通信制御システムの構成
  6.その他の実施形態
   6-1.その他の構成例
   6-2.その他
  7.本開示に係る効果
  8.ハードウェア構成
[1.第1の実施形態]
[1-1.本開示の第1の実施形態に係る通信制御処理の概要]
 図1は、本開示の第1の実施形態に係る通信制御処理の一例を示す図である。また、図1は、本開示の第1の実施形態に係る通信制御システム1の構成例を示す図である。本開示の第1の実施形態に係る通信制御処理は、図1に示す通信制御システム1によって実現される。通信制御システム1は、QoS(Quality of Service)に応じた通信制御を実行するシステムである。
 まず、図1に示す通信制御システム1の構成について説明する。図1に示すように、通信制御システム1は、基地局100と、複数の端末200とが含まれる。図1の例では、端末Aである端末200-1と、端末Bである端末200-2の2つの端末200のみを図示するが、通信制御システム1には、端末Cである端末200-3(図2参照)や端末Dである端末200-4(図2参照)等、3以上の端末200が含まれる。また、端末200-1~端末200-4等について、特に区別せずに説明する場合は、端末200と記載する。
 端末200は、医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置である。端末200は、例えば手術時や医療現場で無線通信を行う機器であれば、どのような機器であってもよい。例えば、端末200は、ペースメーカ、粒子線治療装置、人工透析器、輸液ポンプ、自動腹膜灌流用装置、人工心肺装置、多人数用透析液供給装置などであってもよい。また、端末200は、成分採血装置、人工呼吸器、X線撮影装置、心電計、超音波診断装置、輸液ポンプ用輸液セット、カテーテル関連機器、補聴器、家庭用マッサージ器、血液ガス分析装置などであってもよい。また、端末200は、モニター、ディスプレイ、医療ロボ、内視鏡、無影灯、医療ベッド、ナースコール機器、点滴関連機器などであってもよい。すなわち、ここでいう医療機器とは、手術時や医療現場で用いられる種々の機器を含む概念である。
 図1の例では、端末200が手術室(図2中の手術室5等)内に配置された医療機器である場合を示す。端末200は、他の端末200や基地局100と無線通信を行う。なお、端末200-1は、モニターであり、端末200-2は、血圧計であるが、詳細は図2で説明する。また、端末200は、医療機関の空間内に配置された医療機器と無線通信を行う装置であれば、例えばIPコンバータといった種々の装置であってもよいが、この点についての詳細は後述する。
 基地局100は、端末200に無線通信サービスを提供する装置である。基地局100は、端末200間の通信に用いられる装置である。例えば、基地局100は、所定の無線通信システムによる無線通信サービスを提供する基地局である。例えば、無線通信システムは、第5世代移動通信システム(5G)である。以下では、無線通信システムは、第5世代移動通信システム(5G)であるものとして説明する。なお、無線通信システムは、通信制御処理が適用可能であれば、第4世代移動通信システム(4G)等の種々のセルラー無線通信システムであり、Wi-Fi(登録商標)のようなローカル無線通信システム技術が物理層の無線通信として用いられてもよい。基地局100は、医療機関の空間内(図2中の手術室5等)に位置する端末200との無線通信を行う。例えば、基地局100は、端末200へのダウンリンク信号を送信し、端末200からのアップリンク信号を受信する。例えば、通信制御システム1は、上述のようなセルラーシステム(セルラー無線通信システム)とWi-Fiシステムとが融合したシステムであってもよい。例えば、通信制御システム1は、5G(第5世代移動通信システム)がWi-Fi通信を統合したシステムであってもよい。この場合、通信制御システム1においては、Wi-Fi通信が行われ、Wi-Fiのリソース制御等は基地局100によって行われてもよい。
 基地局100と、端末200-1と、端末200-2との間は所定の無線通信システムに対応する無線通信により通信が行われる。基地局100と、端末200とは、5Gに対応する無線通信により情報の送受信が行われる。また、各端末200は、5Gに対応する無線通信により他の端末200との間で情報の送受信が行われる。また、端末200は端末間直接通信の機能を有してもよい。この場合、端末200は基地局からの制御のサポートを得ながら端末間の直接通信を行うことを可能とする。基地局からの制御とは、例えば端末間直接通信リンクにおける無線リソースの割当であったり、送信電力制御やQoS制御ポリシーの提供や他端末への干渉制御など多岐にわたる。また、基地局が不在の場合においては、端末200は自律的に端末間直接通信を行うことができる。この場合上記のような基地局からの制御は得られないが、自律的に無線センシング等を行いWi―Fi通信のように無線通信リンクを確立することを可能とする。なお、図1に示した通信制御システム1には、複数の基地局100が含まれてもよい。また、通信制御システム1には、基地局100や端末200に限らず種々の構成要素が含まれてもよい。例えば、通信制御システム1には、図11に示すサーバ300のようなサーバ等の構成要素が含まれてもよい。例えば、サーバは、EPC(Evolved Packet Core)や5Gコアといったコアネットワークを含む。なお、サーバ側で統合QoSレベルや通信パラメータなどを決定する場合については後述する。基地局100Aはコアネットワークを経由することで外部ネットワークへの接続を可能とする。
 まず、基地局100は、端末Aである端末200-1から、QoSの制御に関連する情報(QoS制御関連情報)を取得する(ステップS1)。例えば、基地局100は、端末200-1にQoS制御関連情報の要求通知を送信し、端末200-1からQoS制御関連情報を受信する。例えば、端末200は、送信するメッセージタイプ(種別)が決まっている場合、そのメッセージ及び各メッセージに対応した優先度情報(QoS情報)をQoS制御関連情報として基地局100へ送信する。モニターである端末200-1は、モニターデータに関するパケットメッセージタイプ及びそれぞれの優先度情報を基地局100に送信する。例えば、端末200-1は、3種類のパケットメッセージタイプ及びそれぞれの優先度情報(図7参照)を基地局に送信する。端末200-1は、モニターメッセージタイプ#1の優先度(QoSレベル)が「1」であり、モニターメッセージタイプ#2のQoSレベルが「2」であり、モニターメッセージタイプ#3のQoSレベルが「3」であることを示す優先度情報を基地局に送信する。なお、メッセージタイプのレベルが大きい程、メッセージタイプの重要度(優先度)が高いことを示す。なお、ここでのQoS情報として、5G NR(New Radio)で規格化されているQoS Identifier(5GQI)のようなパラメータが用いられてもよい。
 また、基地局100は、端末Bである端末200-2から、QoS制御関連情報を取得する(ステップS2)。例えば、基地局100は、端末200-2にQoS制御関連情報の要求通知を送信し、端末200-2からQoS制御関連情報を受信する。血圧計である端末200-2は、血圧計のリアルタイムデータを送信するものであり、血圧計に関するパケットメッセージタイプ及びそれぞれの優先度情報を基地局100に送信する。例えば、端末200-2は、3種類のパケットメッセージタイプ及びそれぞれの優先度情報を基地局に送信する。端末200-2は、血圧計メッセージタイプ#1の優先度(QoSレベル)が「1」であり、血圧計メッセージタイプ#2のQoSレベルが「2」であり、血圧計メッセージタイプ#3のQoSレベルが「3」であることを示す優先度情報を基地局に送信する。
 QoS制御関連情報を入手した基地局100は、統合QoS制御テーブルを作成する(ステップS3)。例えば、基地局100は、端末200-1及び端末200-2から取得したQoS制御関連情報に基づいて、統合したQoSレベル(重要度レベル)を決定する。図1の例では、基地局100は、モニターである端末200-1の3種類のモニターメッセージタイプ#1~#3、及び血圧計である端末200-2の3種類の血圧計メッセージタイプ#1~#3について、統合QoSレベル(図4参照)を決定する。基地局100は、モニターメッセージタイプ#1が「1」、血圧計メッセージタイプ#1が「2」、モニターメッセージタイプ#2が「3」、血圧計メッセージタイプ#2が「4」、モニターメッセージタイプ#3が「5」、血圧計メッセージタイプ#3が「6」である統合QoSレベルを決定する。
 また、基地局100は、統合後のQoSレベル(統合QoSレベル)に応じて無線通信パラメータの制御方法を決定するためのテーブルを作成する。基地局100は、統合QoSレベル「1」~「6」の各々について、無線通信パラメータを決定する。基地局100は、送信電力や割当周波数リソースや符号化率等の無線通信パラメータを決定する。基地局100は、統合QoSレベルが高い程、送信電力が大きく、割当周波数リソースが多く、符号化率が良くなるように、無線通信パラメータ(図5参照)を決定する。
 そして、基地局100は、決定した無線通信パラメータを示す情報を端末200-1に送信する(ステップS4)。基地局100は、送信電力や割当周波数リソースや符号化率等の無線通信パラメータを示す情報を端末200-1に送信する。例えば、基地局100は、無線通信パラメータを示す情報を通信ポリシー情報として端末200-1に送信する。例えば、基地局100は、統合QoSレベルの各々に対応するメッセージタイプを示す情報と、各メッセージタイプの無線通信パラメータを示す情報を端末200-1に送信する。端末200-1は、無線通信パラメータを示す情報を通信ポリシー情報として取得する。例えば、端末200-1は、統合QoSレベルの各々に対応するメッセージタイプを示す情報と、各メッセージタイプの無線通信パラメータを示す情報を取得する。
 また、基地局100は、決定した無線通信パラメータを示す情報を端末200-2に送信する(ステップS5)。基地局100は、送信電力や割当周波数リソースや符号化率等の無線通信パラメータを示す情報を端末200-2に送信する。例えば、基地局100は、無線通信パラメータを示す情報を通信ポリシー情報として端末200-2に送信する。例えば、基地局100は、統合QoSレベルの各々に対応するメッセージタイプを示す情報と、各メッセージタイプの無線通信パラメータを示す情報を端末200-2に送信する。端末200-2は、無線通信パラメータを示す情報を通信ポリシー情報として取得する。例えば、端末200-2は、統合QoSレベルの各々に対応するメッセージタイプを示す情報と、各メッセージタイプの無線通信パラメータを示す情報を取得する。
 そして、端末200は、通信ポリシー情報に基づいて無線通信を制御する(ステップS6)。各端末200は、取得した通信ポリシー情報に基づいて、無線通信を制御する。各端末200は、取得した送信電力や割当周波数リソースや符号化率等に基づいて、無線通信を制御する。各端末200は、取得した通信ポリシー情報を用いてメッセージを他の端末200へ送信する。端末200は、メッセージタイプのメッセージを、そのメッセージタイプに対応する送信電力や割当周波数リソースや符号化率等で送信する。なお、各端末200は、他の端末200と直接通信してもよいし、基地局100を介して通信してもよい。例えば、基地局100は、通信ポリシー情報に基づいて端末200間の無線通信を制御する。基地局100は、通信ポリシー情報を端末200に送信し、通信ポリシー情報に基づいて端末200間で通信を行わせることにより、端末200間の無線通信を制御する。また、基地局通信の場合、例えば、基地局100は、一の端末200から受信したデータ(メッセージ)を、そのメッセージのメッセージタイプに対応する無線通信パラメータを用いて送信先となる端末200へ送信する。
 例えば、無線LAN等の従来のアンライセンス帯を用いた通信では、機器間通信を行う場合、それぞれの通信が平等に行われていた。一方で、医療向けのような人の命にかかわるような通信においては、送信パケットの優先度を考慮した通信が必要となる。特に、優先度の高い生命にかかわるようなトラフィックと、あまり重要ではないトラフィックが混在した場合、優先度の高いトラフィックを優先するような制御は必須である。
 上記のような制御を実現するには、送信されるトラフィックに応じて無線通信のリンク制御を行うことが必要となる。しかしながら医療機器通信においては、共通のトラフィックごとの優先度決めのルールが存在していないため、優先度制御が非常に困難である。そのため、機器間でトラフィックの種類に応じて共通の優先度制御を設定し、無線通信の制御を行うようなシステムが求められる。
 そこで、通信制御システム1は、異なるQoSテーブルを持った端末200間においても、統合QoSテーブルを作成し、無線通信リンクの制御を一括して行うことで、トラフィックの優先度ごとに適切な通信を行える無線通信サービスを提供することができる。通信制御システム1は、近距離無線端末を用いて、受信装置の数を増やすなどにより、接続安定性を上げるのではなく、QoS制御に基づいて機器の接続安定性を向上させることができる。
[1-2.通信制御システムの手術室への適用例]
 通信制御システム1は、手術室等の医療機関の空間内に配置された医療機器の無線通信に関する制御を行う。図2を用いて、通信制御システム1が手術室5内の端末200の無線通信に関する制御を行う場合について説明する。図2は、第1の実施形態に係る通信制御システムの手術室への適用の一例を示す図である。
 図2に示すように、通信制御システム1は、手術室5のような手術室等のプライベート空間における無線通信の制御を行う。例えば、5Gや4G等のプライベートな基地局100が手術室5に設けられた通信制御システム1が無線通信リンクの制御を実施する。例えば、基地局100は、図2に示すように手術室5の天井付近に設けられてもよい。例えば、直進性が高い周波数帯の電波を用いて通信が行われる場合、基地局100は、天井付近に設けられてもよい。例えば、5Gに対応する無線通信である場合、基地局100は、天井付近に設けられてもよい。なお、基地局100は、手術室5内の端末200の無線通信に関する制御が可能であれば、どのような位置に設けられてもよい。
 図2に示す例では、手術室5の天井付近に基地局100や無影灯のような照明機器6が配置される。また、手術室5内には、モニターである端末200-1、血圧計である端末200-2、内視鏡である端末200-3、及び他のモニターである端末200-4等が配置される。また、図2の例では、手術台7上の患者(図示せず)に対して医者などの術者8が処置を行う。
 例えば、基地局100は、端末200間の通信制御を行う。統合QoSレベルが高い端末200-2と、端末200-3との間の無線通信CM1や、統合QoSレベルが低い端末200-1と、端末200-4との間の無線通信CM2を制御する。例えば、基地局100は、統合QoSレベルに応じて無線通信パラメータを決定し、決定した無線通信パラメータを示す情報を各端末200に送信することにより、端末200間の通信制御を行う。例えば、端末200-1~端末200-4は、無線通信パラメータを示す情報等の通信ポリシー情報に基づいて無線通信を制御する。
 例えば、無線通信リンク制御を行う論理エンティティ(Management entity)は、基地局100に限らず、他にコアネットワーク等のサーバ側に物理的に配置されてもよい。また、上述のように、無線通信リンクは、機器(端末200)間の直接通信(デバイス間通信)でもよく、基地局100を経由したダウンリンク、アップリンク通信でもよい。各機器(端末200)におけるトラフィックのQoSレベルに応じて、論理エンティティ(Management entity)はリンクごとの無線通信制御を実施する。
 これにより、基地局100や端末200は、手術室といった医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。また、通信制御システム1は、手術室の複数の医療機器の無線接続の接続安定性といった、無線接続の通信品質を向上させることができる。
 例えば、手術室の複数の医療機器が無線化すると、手術室内のローカル通信基地(統合通信制御端末)との通信する際に、通信帯域は有限リソースであるために、全ての通信を同時にすることはできなくなることが想定される。このような場合、通信においてパケットロスや遅延が発生し、接続安定性(通信品質)が下がり、リアルタイムで術者が見る必要の情報が見えなくなるなどが起こり、手術の進行を妨げてしまう虞がある。また、複数の医療機器はそれぞれ別企業が販売している医療機器であるため、各医療機器同士で通信の調整を行うことは難しいという課題もある。
 そこで、通信制御システム1は、ローカル通信基地(基地局100)によるQoS制御を行う。例えば、通信制御システム1は、アダプタ(無線端末)をかませることで通信の優先度を決定することで、手術の進行を妨げない通信品質を実現する。また、ローカル通信端末にはエンティティテーブル(QoSレベルと医療機器の種別、通信内容の種別が紐づいたテーブル)に落とし込むことで、通信に優先度を決めることができる。
 通信制御システム1は、QoS(統合QoS)を決定することにより、優先度の高いパケットを確実に送信先に送信することができる。また、有限なリソース(時間、空間、周波数で直交、スケジューリングする必要がある)を使うために、パケットのクオリティを上げることが重要となる。そこで、通信制御システム1は、パケットをトラフィックごとに優先度(重要度)を決定することで、通信品質(クオリティ)を高めることができる。通信制御システム1は、パケットロスを下げる(パケットエラーレートを下げる)ことや、遅延を減らすことや、周波数を割り当てる量を増やす(帯域が増える)ことなどにより通信品質を高めることができる。また、通信制御システム1は、少量のデータに符号化をたくさんほどこすことや、送信パワーを強くする(受信強度・送信強度をあげる)ことなどにより通信品質を高めることができる。また、通信制御システム1は、上述のように優先度が決定することにより、一部の通信を他の通信より通信品質を上げて送ることができる。例えば、通信制御システム1は、周波数をシェアしたり、スケジューリングしたり、時間の占有時間を決定したりするにQoSレベル(統合QoSレベル)を用いる。通信制御システム1は、アンライセンス帯の通信をライセンス帯に切り替えるなどの通信制御を行ってもよい。また、通信制御システム1は、基地局経由のリンクと端末間直接通信のリンク切り替え制御を行ってもよい。
 上記のような制御により、通信制御システム1は、通信品質を向上することができる。通信制御システム1は、QoSレベルに基づいて定められた通信ポリシー情報に従って通信する。例えば、統合QoSレベルが「1」~「5」である場合、通信制御システム1は、内視鏡の映像は可能な限り遅延なく表示装置に表示することが求められるために統合QoSレベルを「5」(最大値)に決定する。通信制御システム1は、心拍などのモニタリング情報も統合QoSレベルを「5」(最大値)に決定する。また、通信制御システム1は、手術の様子を撮るための手術室カメラの映像の送信や内視鏡の録画映像の送信(録画してサーバに保存)などの通信はリアルタイム性が要求されないため、統合QoSレベルを「1」(最低値)に決定する。このような処理を行うことにより、通信制御システム1は、リアルタイム性が求められる情報は遅延少なく確実に届けることが可能となり、手術の進行を妨げない通信品質を実現する。
[1-3.第1の実施形態に係る基地局の構成]
 次に、第1の実施形態に係る基地局100の構成について説明する。図3は、第1の実施形態に係る基地局の構成例を示す図である。
 図3に示すように、基地局100は、アンテナ部110と、通信部120と、記憶部140と、制御部150とを有する。
 アンテナ部110は、通信部120により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を通信部120へ出力する。例えば、アンテナ部110は、無線通信に用いるアンテナを有する。
 通信部120は、信号を送受信する。例えば、通信部120は、端末200へのダウンリンク信号を送信し、端末200からのアップリンク信号を受信する。通信部120は、医療機関の空間内に配置された医療機器と無線通信を行う。通信部120は、手術室内に配置された医療機器と無線通信を行う。
 通信部120は、例えば、NIC(Network Interface Card)や通信回路等によって実現される。通信部120は、端末200との間で無線通信により情報を送受信する。また、通信部120は、所定のネットワーク(図12中のネットワークN等)と有線又は無線で接続され、所定のネットワークを介して、他の装置等との間で情報の送受信を行ってもよい。
 記憶部140は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部140は、統合QoS情報記憶部141と通信パラメータ情報記憶部142とを有する。なお、記憶部140は、統合QoS情報記憶部141や通信パラメータ情報記憶部142に示す情報に限らず、各種の情報が記憶される。記憶部140は、各端末200から収集した情報が記憶されてもよい。例えば、記憶部140は、各端末200から収集したQoS関連情報が記憶されてもよい。
 第1の実施形態に係る統合QoS情報記憶部141は、統合したQoS情報を記憶する。統合QoS情報記憶部141は、各端末200から収集したQoS情報を統合したQoSに関する各種情報を記憶する。図4は、第1の実施形態に係る統合QoS情報記憶部の一例を示す図である。図4に示す統合QoS情報記憶部141には、「統合後QoSレベル」、「割当元QoSレベル」といった項目が含まれる。
 「統合後QoSレベル」は、統合後のQoSレベルを示す。「割当元QoSレベル」は、割当元、すなわちQoS情報の提供元である端末200でのQoSレベルを示す。なお、図4の例では、統合後QoSレベルや割当元QoSレベルは、数値が大きい程、重要度(優先度)が高いことを示すものとする。
 図4の例では、統合後QoSレベル「1」は、端末A(端末200-1)でのQoSレベル「1」に対応することを示す。すなわち、端末Aが送信するQoSレベル「1」のメッセージの統合後QoSレベルが「1」であることを示す。このように、図4の場合、端末Aが送信するQoSレベル「1」のメッセージが最も優先度が低いことを示す。
 また、統合後QoSレベル「2」は、端末B(端末200-2)でのQoSレベル「1」に対応することを示す。すなわち、端末Bが送信するQoSレベル「1」のメッセージの統合後QoSレベルが「2」であることを示す。このように、図4の場合、端末Bが送信するQoSレベル「2」のメッセージの方が、端末Aが送信するQoSレベル「1」のメッセージがよりも優先度が高いことを示す。
 また、統合後QoSレベル「6」は、端末B(端末200-2)でのQoSレベル「3」に対応することを示す。すなわち、端末Bが送信するQoSレベル「3」のメッセージの統合後QoSレベルが「6」であることを示す。このように、図4の場合、端末Bが送信するQoSレベル「3」のメッセージが最も優先度が高いことを示す。
 なお、上記は一例であり、統合QoS情報記憶部141は、上記に限らず、目的に応じて種々の情報を記憶してもよい。
 第1の実施形態に係る通信パラメータ情報記憶部142は、通信パラメータに関する各種情報を記憶する。通信パラメータ情報記憶部142は、統合したQoSに基づき設定された無線通信パラメータを記憶する。図5は、第1の実施形態に係る通信パラメータ情報記憶部の一例を示す図である。図5に示す統合通信パラメータ情報記憶部142には、「統合後QoSレベル」、「無線通信パラメータ」といった項目が含まれる。「無線通信パラメータ」には、「送信電力」、「割当周波数リソース(Resource block数)」、「符号化率」といった項目が含まれる。なお、「無線通信パラメータ」は、上記に限らず、「通信タイミング」、「パケットエラー率」、「通信遅延」等の種々の項目が含まれてもよい。
 「統合後QoSレベル」は、統合後のQoSレベルを示す。「無線通信パラメータ」は、各統合後QoSレベルに対応するパラメータを示す。「送信電力」は、対応する統合後QoSレベルのメッセージを送信する場合の送信電力を示す。「送信電力」は、例えばW(ワット)等の所定の単位に対応する値である。「割当周波数リソース(Resource block数)」は、対応する統合後QoSレベルのメッセージを送信する場合の割当周波数リソースを示す。「符号化率」は、対応する統合後QoSレベルのメッセージを送信する場合の符号化率を示す。
 図4の例では、統合後QoSレベル「1」は、送信電力が「30」であり、割当周波数リソースが「100」であり、符号化率が「0.9」であることを示す。このように、図4の場合、統合後QoSレベル「1」のメッセージが最も送信電力が小さく、割当周波数リソースが少なく、符号化率が悪いことを示す。
 統合後QoSレベル「2」は、送信電力が「32」であり、割当周波数リソースが「200」であり、符号化率が「0.7」であることを示す。このように、図4の場合、統合後QoSレベル「2」のメッセージの方が、統合後QoSレベル「1」のメッセージよりも送信電力が大きく、割当周波数リソースが多く、符号化率が良いことを示す。
 なお、上記は一例であり、通信パラメータ情報記憶部142は、上記に限らず、目的に応じて種々の情報を記憶してもよい。
 図3に戻り、説明を続ける。制御部150は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、基地局100内部に記憶されたプログラム(例えば、本開示に係る通信制御プログラムや決定プログラム)がRAM(Random Access Memory)等を作業領域として実行されることにより実現される。また、制御部150は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。
 図3に示すように、制御部150は、取得部151と、通信制御部152と、決定部153とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部150の内部構成は、図3に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。
 取得部151は、各種情報を取得する。取得部151は、外部の情報処理装置から各種情報を取得する。取得部151は、記憶部140から各種情報を取得する。取得部151は、取得した情報を記憶部140に格納する。取得部151は、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得する。
 通信制御部152は、通信を制御する。通信制御部152は、通信部120による通信を制御する。通信制御部152は、記憶部140に記憶された情報に基づいて、通信部120による通信を制御する。通信制御部152は、決定部153による決定に応じて、通信部120による通信を制御する。
 通信制御部152は、他の装置間の通信を制御する。通信制御部152は、外部の情報処理装置間の通信を制御する。通信制御部152は、端末200間の通信を制御する。通信制御部152は、記憶部140に記憶された情報に基づいて、端末200間の通信を制御する。通信制御部152は、取得部151により取得された情報に基づいて、端末200間の通信を制御する。通信制御部152は、通信ポリシー情報に基づいて医療機器間の無線通信を制御する。
 通信制御部152は、通信ポリシー情報に基づいて無線通信を制御する。通信制御部152は、通信ポリシー情報に基づき決定される通信態様で無線通信を制御する。通信制御部152は、通信ポリシー情報に基づく通信タイミングで無線通信を制御する。通信制御部152は、通信ポリシー情報に基づくパケットエラー率で無線通信を制御する。通信制御部152は、優先度が高い程、パケットエラー率を下げて無線通信を制御する。通信制御部152は、通信ポリシー情報に基づく通信遅延で無線通信を制御する。通信制御部152は、優先度が高い程、遅延を減らして無線通信を制御する。
 通信制御部152は、通信ポリシー情報に基づく割当て周波数で無線通信を制御する。通信制御部152は、優先度が高い程、周波数を割り当てる量を増やして無線通信を制御する。通信制御部152は、通信ポリシー情報に基づく送受信の強度で無線通信を制御する。通信制御部152は、優先度が高い程、送受信の強度を強くして無線通信を制御する。通信制御部152は、優先度が高い程、送信電力を上げて無線通信を制御する。通信制御部152は、通信ポリシー情報に基づく符号化率で無線通信を制御する。
 通信制御部152は、決定部153により決定されたQoSに基づいて、メッセージの無線通信を制御する。通信制御部152は、決定部153により決定されたQoSレベルに基づいて、メッセージの無線通信を制御する。
 決定部153は、各種情報を決定する。決定部153は、各種情報を判定する。例えば、決定部153は、外部の情報処理装置からの情報や記憶部120に記憶された情報に基づいて、各種情報を決定する。決定部153は、外部の情報処理装置からの情報や記憶部120に記憶された情報に基づいて、各種情報を判定する。決定部153は、外部の情報処理装置からの情報や記憶部120に記憶された情報に基づいて、各種情報を生成する。決定部153は、取得部131により取得された各種情報に基づいて、各種情報を決定する。
 決定部153は、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックの種別を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックの用途を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックのパターンを示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。
 決定部153は、トラフィックのサイズを示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックのバッファー量を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックの遅延要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックの信頼要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックの信頼要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部153は、トラフィックの周期を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。
 決定部153は、他の装置へ送信対象となるメッセージの種別を判定し、メッセージのQoSを決定する。決定部153は、画像認識により、メッセージのQoSを決定する。決定部153は、メッセージのヘッダ情報に基づいて、メッセージのQoSを決定する。決定部153は、メッセージのメタデータに基づいて、メッセージのQoSを決定する。決定部153は、メッセージのDICOM(Digital Imaging and COmmunications in Medicine)に関する情報に基づいて、メッセージのQoSを決定する。決定部153は、メッセージのQoSレベルを決定する。
[1-4.第1の実施形態に係る端末の構成]
 次に、第1の実施形態に係る通信制御処理を実行する無線端末装置の一例である端末200の構成について説明する。図6は、第1の実施形態に係る端末の構成例を示す図である。なお、図6では、端末200の構成のうち、通信制御処理に関連する構成のみを図示する。例えば、医療機器である端末200の構成のうち、モニターの表示機能や血圧計の計測機能等に関する構成の図示を省略する。
 図6に示すように、端末200は、アンテナ部210と、通信部220と、記憶部240と、制御部250とを有する。
 アンテナ部210は、通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を通信部220へ出力する。例えば、アンテナ部210は、無線通信に用いるアンテナを有する。
 通信部220は、信号を送受信する。例えば、通信部220は、基地局100からのダウンリンク信号を受信し、基地局100へのアップリンク信号を送信する。通信部220は、医療機関の空間内に配置された医療機器と無線通信を行う。通信部220は、手術室内に配置された医療機器と無線通信を行う。
 通信部220は、例えば、NICや通信回路等によって実現される。通信部220は、基地局100との間で無線通信により情報を送受信する。
 記憶部240は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部240は、QoS情報記憶部241と設定情報記憶部242とを有する。図示を省略するが設定情報記憶部242は、設定に関する各種情報が記憶される。設定情報記憶部242は、通信ポリシー情報を記憶する。設定情報記憶部242は、無線通信パラメータを示す情報を通信ポリシー情報として記憶する。なお、記憶部240は、QoS情報記憶部241と設定情報記憶部242に示す情報に限らず、各種の情報が記憶される。記憶部240は、他の端末200や基地局100から受信した情報が記憶されてもよい。
 第1の実施形態に係るQoS情報記憶部241は、自装置(端末200)のQoS情報を記憶する。QoS情報記憶部241は、自装置(端末200)の送信に対応するQoSに関する各種情報を記憶する。図7は、第1の実施形態に係るQoS情報記憶部の一例を示す図である。図7に示すQoS情報記憶部241には、「QoSレベル」、「送信内容」といった項目が含まれる。
 「QoSレベル」は、QoSレベルを示す。「送信内容」は、対応するQoSで送信されるデータの内容を示す。なお、図7の例では、「送信内容」を「INF1」といった抽象的な符号で図示するが、「送信内容」には送信内容に関する各種情報(送信情報)が含まれる。
 図7の例では、QoSレベル「1」は、送信内容が「INF1」であることを示す。また、QoSレベル「2」は、送信内容が「INF2」であることを示す。
 なお、上記は一例であり、QoS情報記憶部241は、上記に限らず、目的に応じて種々の情報を記憶してもよい。
 図6に戻り、説明を続ける。制御部250は、例えば、CPUやMPU等によって、端末200内部に記憶されたプログラム(例えば、本開示に係る通信制御プログラム)がRAM等を作業領域として実行されることにより実現される。また、制御部250は、例えば、ASICやFPGA等の集積回路により実現されてもよい。
 図6に示すように、制御部250は、取得部251と、通信制御部252とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部250の内部構成は、図6に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。
 取得部251は、各種情報を取得する。取得部251は、外部の情報処理装置から各種情報を取得する。取得部251は、記憶部240から各種情報を取得する。取得部251は、取得した情報を記憶部240に格納する。取得部251は、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得する。
 通信制御部252は、通信を制御する。通信制御部252は、通信部220による通信を制御する。通信制御部252は、記憶部240に記憶された情報に基づいて、通信部220による通信を制御する。
 通信制御部252は、基地局100による制御に応じて、医療機器との無線通信を制御する。通信制御部252は、基地局100により設定された通信ポリシー情報に基づいて無線通信を制御する。
 通信制御部252は、通信ポリシー情報に基づいて無線通信を制御する。通信制御部252は、通信ポリシー情報に基づき決定される通信態様で無線通信を制御する。通信制御部252は、通信ポリシー情報に基づく通信タイミングで無線通信を制御する。通信制御部252は、通信ポリシー情報に基づくパケットエラー率で無線通信を制御する。通信制御部252は、優先度が高い程、パケットエラー率を下げて無線通信を制御する。通信制御部252は、通信ポリシー情報に基づく通信遅延で無線通信を制御する。通信制御部252は、優先度が高い程、遅延を減らして無線通信を制御する。
 通信制御部252は、通信ポリシー情報に基づく割当て周波数で無線通信を制御する。通信制御部252は、優先度が高い程、周波数を割り当てる量を増やして無線通信を制御する。通信制御部252は、通信ポリシー情報に基づく送受信の強度で無線通信を制御する。通信制御部252は、優先度が高い程、送受信の強度を強くして無線通信を制御する。通信制御部252は、優先度が高い程、送信電力を上げて無線通信を制御する。通信制御部252は、通信ポリシー情報に基づく符号化率で無線通信を制御する。
[1-5.第1の実施形態に係る通信制御報処理の手順]
 次に、図8及び図9を用いて、第1の実施形態に係る通信制御報処理の手順について説明する。まず、図8を用いて、第1の実施形態に係る学習処理の流れについて説明する。図8は、第1の実施形態に係る通信制御報処理の手順を示すフローチャートである。
 図8に示すように、端末200は、医療機器の種別を示す機器情報と、医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得する(ステップS101)。例えば、端末200は、基地局100から通信ポリシー情報を取得する。
 端末200は、通信ポリシー情報に基づいて無線通信を制御する(ステップS102)。端末200は、取得した送信電力や割当周波数リソースや符号化率等に基づいて、無線通信を制御する。そして、端末200は、医療機関の空間内に配置された医療機器と無線通信を行う(ステップS103)。端末200は、メッセージタイプのメッセージを、そのメッセージタイプに対応する送信電力や割当周波数リソースや符号化率等で送信する。
 次に、図9を用いて、全体の処理フローについて説明する。図9は、第1の実施形態に係る通信制御報処理の手順を示すシーケンス図である。
 まず、基地局100側でQoS関連の制御を実施する。基地局100は、端末Aである端末200-1や端末Bである端末200-2に対してQoSに関する情報収集の要求を実施する(ステップS201)。例えば、基地局100は、QoS制御関連情報の要求通知を送信し、各端末200よりQoS制御関連情報を得る。基地局100は、端末200-1にQoS制御関連情報の要求通知を送信する(ステップS202)。これにより、基地局100は、端末200-1にQoS制御関連情報の要求を通知する(ステップS203)。端末200-1は、要求通知に応じて、端末200-1で保有するQoSに関連する情報をQoS制御関連情報として基地局100へと通知する(ステップS204)。例えば端末200-1側で送信されるメッセージタイプが決まっていた場合、端末200-1は、そのメッセージ及び各メッセージに対応した優先度情報(QoS情報)を基地局100へ送信する。
 また、基地局100は、端末200-2にQoS制御関連情報の要求通知を送信する(ステップS205)。これにより、基地局100は、端末200-2にQoS制御関連情報の要求を通知する(ステップS206)。端末200-2は、要求通知に応じて、端末200-2で保有するQoSに関連する情報をQoS制御関連情報として基地局100へと通知する(ステップS207)。なお、基地局100は、端末200-1及び端末200-2に同時にQoS制御関連情報の要求通知を実施してもよいし、端末200-1よりも先に端末200-2にQoS制御関連情報の要求通知を実施してもよい。
 そして、基地局100は、統合QoS制御を作成する(ステップS208)。基地局100は、各機器(端末200)において発生するトラフィックの種類と、それぞれのトラフィックに対応する無線通信制御を紐付け、システム内で統一した統合QoS制御を作成する。例えば、基地局100は、統合QoSレベルや無線通信パラメータを決定する。そして、基地局100は、統合QoS情報記憶部121に示す情報や、通信パラメータ情報記憶部122に示す情報を統合QoS制御として作成する。
 そして、基地局100は、統合QoS制御を端末200-1に送信する(ステップS209)。基地局100は、統合QoSレベルや無線通信パラメータを示す情報を端末200-1に送信する。これにより、端末200-1は、統合QoSレベルや無線通信パラメータを示す統合QoS制御を取得する。基地局100は、統合QoS制御を端末200-2に送信する(ステップS210)。基地局100は、統合QoSレベルや無線通信パラメータを示す情報を端末200-2に送信する。これにより、端末200-2は、統合QoSレベルや無線通信パラメータを示す統合QoS制御を取得する。
 そして、端末200-1は、トラフィックが発生した場合(ステップS211)、QoSに応じた送信制御を行う(ステップS212)。端末200-1は、QoSレベルごとに設定された無線通信パラメータ等の設定情報を用いて、通信制御を行う。端末200-1は、送信するパケットに対応する送信電力や割当周波数リソースや符号化率等の無線通信パラメータを用いてパケットを送信する(ステップS213)。そして、端末200-2は、端末200-1からのパケットを受信する(ステップS214)。なお、図9の例では、端末200間の直接通信を一例として示したが、基地局100を介した通信も同様に処理される。
[1-6.通信制御システムの概要]
 上述のように、通信制御システム1は、複数の機器(端末200)間において、無線トラフィック(パケット)ごとのQoSレベル(ランク)を統合し、QoSレベルに応じて無線リンクの制御を実施する。QoSレベル(ランク)の一例としては、人命に直結するもののレベル(ランク)が最も高く、人命に関連するが重大な影響を及ぼさないもののレベル(ランク)がその次に高く、人命に関連しないもののレベル(ランク)が最も低く設定される。例えば、重要度が高い程小さい値が設定される場合、人命に直結するもののレベル(ランク)が「1」、人命に関連するが重大な影響を及ぼさないもののレベル(ランク)が「2」、人命に関連しないもののレベル(ランク)が「3」に設定される。また、例えば、重要度が高い程大きい値が設定される場合、人命に直結するもののレベル(ランク)が「3」、人命に関連するが重大な影響を及ぼさないもののレベル(ランク)が「2」、人命に関連しないもののレベル(ランク)が「1」に設定される。なお、上記のレベル(ランク)の設定値は一例であり、レベル(ランク)の数などに応じて、種々の値が設定されてもよい。
 また、無線通信制御の例としては、QoSに応じた無線リンクの優先度に応じた制御、優先度が高い通信をロバストに通信させること、時間空間周波数リソース割当、送信電力制御、変復調制御等を通信制御システム1が行う。また、通信制御システム1は、優先度の低い通信の送信を控えること、時間周波数のリソース管理、空間の干渉制御等を、無線通信制御として行ってもよい。
 ここで、図9に示した処理の具体例を説明する。例えば、基地局100が、モニターである端末Aや血圧計である端末Bに対して、QoS制御関連情報要求を送信する。端末A、Bは、基地局100から要求に応じて、QoS制御関連情報を基地局100に通知する。端末Aでは、映像モニターの情報を他モニターに送信するものであり、モニターデータに関するパケットメッセージタイプ及びそれぞれの優先度情報を基地局100に送信する。また、端末Bでは、血圧計のリアルタイムデータを送信するものであり、血圧計に関するパケットメッセージタイプ及びそれぞれの優先度情報を基地局100に送信する。基地局100側では得られたメッセージタイプと優先度情報を用いて、統合QoSテーブルを作成し、無線通信の制御を実施する。
 例えば、端末Aではモニター情報の送信を扱い、端末Bでは心電図の情報をサーバ側へと送信するケースを想定する。この場合、基地局100側では、端末Aと端末Bの制御情報やデータ情報からメッセージの内容を把握し、それぞれモニター関連の情報及び心電図情報が送られていることを認識する。これに応じて、基地局100側で統合QoSテーブルを作成し、無線通信の制御を実施する。
 [1-6-1.統合QoSレベル]
 QoS制御関連情報を入手した基地局100は、図4に示すような、統合QoS制御テーブルを作成する。例えば、基地局100は、各機器(端末200)におけるQoS制御関連情報をまとめてQoSレベル(重要度レベル)を付与し、それぞれの重要度レベルに応じて無線通信トラフィックの制御を実施する。例えば、機器#1(端末A)より重要度レベル1,2,3といった情報が送られる。なお、数値が高いほど重要度が高いことを示す。また、機器#2(端末B)より重要度レベル1,2,3といった情報が送られる。この場合、基地局100は、種々の情報を用いて、図4に示すような統合された重要度レベル(統合QoSレベル)を決定する。
 [1-6-2.無線通信パラメータ]
 基地局100は、統合後のQoSレベルに応じて無線通信パラメータの制御方法を決定するためのテーブルを作成する。基地局100は、図5に示すような、無線通信パラメータを決定する。なお、送信電力、リソースにおいては数字の大きい方がよりよいパラメータを割り当てられているものとする。符号化率においては小さい数値がよいパフォーマンスを得られるパラメータとする。
 なお、統合後のQoSレベルの設定ポリシーや、統合後のQoSレベルと無線通信のパラメータ割り当ての設定ポリシー等は別途異なるポリシー制御エンティティより制御されてもよい。例えば、以下のような制御可能な無線通信パラメータを対象としてもよい。通信制御システム1は、基地局端末間通信、端末間通信のリンク切り替えや時間周波数リソース割り当てや使用帯域切り替えをおこなってもよい。例えば、通信制御システム1は、使用帯域を2.4GHzから5GHzに切り替えてもよい。また、通信制御システム1は、使用帯域をアンライセンス周波数帯からライセンス周波数帯に切り替えてもよい。通信制御システム1は、使用帯域をライセンス周波数帯からアンライセンス周波数帯に切り替えてもよい。
 また、通信制御システム1は、送信方法(Tx diversity、MIMO(Multiple Input Multiple Output)送信、Beamforming ウエイト変更)を切り替えてもよい。例えば、通信制御システム1は、リンクコーディネーションを行ってもよい。例えば、通信制御システム1は、一時的に通信を停止し、優先すべきリンクのリソースを確保してもよい。
 また、通信制御システム1は、Modulation、符号化率(coding rate)の変更を行ってもよい。ここでいう、Modulationの変更は、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)などの切り替えであってもよい。
 また、通信制御システム1は、送信電力を変更してもよい。例えば、通信制御システム1は、送信モジュール切り替えてもよい。通信制御システム1は、複数モジュールがある場合、特定のモジュールを用いて送信ポイントの切り替えを実施する。送信ポイントの切り替えは、分散送信ポイントの切り替えや物理アンテナ切り替えなどを含む。送信ポイントの切り替えは、空間ダイバーシティ実現のための種々の方法を含む。
 また、通信制御システム1は、上述のようないずれの制御によっても、通信品質を満たせそうにない場合、システムユーザにアラートを通知してもよい。表示させ人に気づかせる。
 通信制御システム1は、QoS制御テーブル作成後、各端末200に設定を行い、各トラフィックに応じて無線通信パラメータの制御を実施する。端末Aでトラフィックが発生した際に、端末Aは発生したトラフィックと設定された統合QoS制御テーブルを用いて無線通信のパラメータ設定を実施する。無線通信のパラメータ設定後、パケット送信を行い、端末Bとの送受信を達成する。
 通信制御システム1は、トラフィックは無線通信だけでなく、DICOMのような既存の有線トラフィックを含んでQoSテーブルを作成してもよい。通信制御システム1による無線通信パラメータの制御は、他の通信リンクのQoS状況に応じて、相対的にパラメータを制御することであってもよい。例えば、リンクが3つあり、3つのうち2つが非常にQoSの高いパケットであった場合、残りのQoSの低い1つのリンクのパケット送信は、所定のパラメータに所定の重み値(ウェイトα等)を乗算し、さらにパフォーマンスを下げた通信を行う等の制御が行われてもよい。この他にも、帯域の混雑度レベルや特定リンクからの干渉情報等を用いて、無線通信パラメータの追加制御を実施してもよいがこの点についての詳細は後述する。
 [1-6-3.QoS関連情報]
 QoS関連情報には、各種の情報が含まれてもよい。例えば、QoS関連情報には、送信情報等の情報が含まれてもよい。送信情報は、トラフィックの種別を示す情報や、トラフィックの用途を示す情報といったトラフィックに関する各種情報を含んでもよい。例えば、送信情報は、トラフィックの種別が音声や映像等のいずれであるかを示す情報を含んでもよい。例えば、送信情報は、トラフィックの用途が重要データの通信やバックアップ処理等のいずれであるかを示す情報を含んでもよい。
 また、上述した例では、基地局100からの要求に応じて、端末200がQoS関連情報を基地局100へ通知する場合を示したが、基地局100や端末200は、種々の手段によりQoS関連情報を取得してもよい。例えば、基地局100や端末200は、QoS制御関連情報の要求通知を送信することなく、端末200側からの送信制御情報やデータトラフィック、パケットの情報を基地局100側で解析することによりQoS情報等のQoS関連情報を取得してもよい。
 例えば、基地局100や端末200は、情報の判定や抽出によりQoS制御関連情報を取得してもよい。基地局100や端末200は、データトラフィックに関連する情報から、QoS情報を抽出してもよい。基地局100や端末200は、QoS情報特定のために以下の情報を用いてもよい。基地局100や端末200は、トラフィックの種類、トラフィックのパターン、トラフィックの周期など、どのようなトラフィックがあるかを示す情報からQoS情報を抽出してもよい。例えば、基地局100や端末200は、Periodic、Aperiodic、Event triggerなどの時間軸上の送信タイミングの特徴からQoS情報を抽出してもよい。
 また、基地局100や端末200は、トラフィックの用途、送られているメッセージに関する情報から、QoS情報を抽出してもよい。例えば、基地局100や端末200は、パケットのヘッダ等で送信されているデータ信号(メッセージ情報)を読み取り、読み取った情報を基にトラフィックの用途を特定してもよい。基地局100や端末200は、トラフィックのパターン(Periodic, Aperiodic, Event trigger)やトラフィックのサイズや送られてきているデータサイズからQoS情報を推定してもよい。例えば、基地局100や端末200は、大きいデータであれば重要データとして取り扱ってもよい。例えば、基地局100や端末200は、容量が大きいデータ程、重要度が高いと判定してもよい。
 また、基地局100や端末200は、トラフィックのバッファー量に基づいて、QoS情報を判定(特定)してもよい。例えば、送信側の端末200から受信側の端末200へ、Buffer status report等の情報を送り、どれだけのトラフィックが送信側にたまっているかを通知してもよい。これにより、基地局100や端末200は例えばバッファーが多い状態であれば、そのトラフィックをQoSの高いデータとして優先的に処理してもよい。
 また、基地局100や端末200は、トラフィックの遅延要求値に基づいて、QoS情報を判定(特定)してもよい。例えば、基地局100や端末200は、パケットヘッダ等にトラフィックの遅延要求値を入れ、その情報をベースにQoSを判断する。例えば、例えば、基地局100や端末200は、厳しい遅延要求であれば高いQoSとして設定してもよい。また、基地局100や端末200は、トラフィックの信頼性要求値に基づいて、QoS情報を判定(特定)してもよい。例えば、基地局100や端末200は、パケットヘッダ等に信頼性要求値を入れ、その情報をベースにQoSを判定してもよい。例えば、基地局100や端末200は、高い信頼性要求値であれば高いQoSとして設定してもよい。
 また、基地局100や端末200は、トラフィックの周期に基づいて、QoS情報を判定(特定)してもよい。例えば、トラフィック情報は事前に重要レベルのようなスコアとして数値化されていてもよい。重要度レベルはQoSに紐付けて、QoS情報として使用してもよい。例えば、モニター間通信のようなトラフィックであれば重要レベルの低い値(例えば2)とし、電気メス制御に関するトラフィックであれば重要レベルの高い値(例えば8)などにしてもよい。
 また、例えば、QoS制御関連情報は(準)静的に端末200と基地局100との間でやり取りされてもよいし、動的にやり取りされてもよい。動的にやり取りされる場合では、パケット送信ごとにそのパケットの優先度情報(QoS情報)、及びその端末200においてどの程度の優先度の位置づけなのかといった情報を通知してもよい。静的にやり取りする場合は、Power on時(起動時)などに一度やり取りを行ったり、準静的の場合は定期的に例えば数秒ごとにやり取りを行ったりしてもよい。
[1-7.通信制御システムの概念図]
 ここで、図10を用いて、通信制御システムにおける各機能やハードウェア構成やデータを概念的に示す。図10は、第1の実施形態に係る通信制御システムの一例を示す概念図である。具体的には、図10は、基地局100側で統合QoS制御テーブルを作成するケースにおける通信制御システムの一例を示す概念図である。図10に示す通信制御システムは、通信制御システム1に対応し、端末200-1~200-3や基地局100が含まれる。
 基地局100中の「Adapter」は、無線通信制御を実現するために用いられる機能を示す。例えば、「Adapter」は、各トラフィックに対するQoSの設定を統合するための機能に対応する。例えば、「Adapter」の機能は、図3に示す決定部153の機能に対応する。
 基地局100中の「ポリシー制御エンティティ」は、「Adapter」を制御して、端末200-1~200-3のQoSテーブルから統合QoSテーブルを作成する。例えば、基地局100は、無線通信リンクを実現するエンティティに対応する。基地局100は、「Adapter」により、統合QoS制御テーブルを生成する。基地局100は、統合QoS制御テーブルにより、端末200-1~200-3の通信を制御する。
 このように、図10では、各端末200におけるQoSリスト情報を用いて、ポリシー制御エンティティのダイレクションに応じて、基地局100がシステムにおける総合QoS制御テーブルを作成する。各端末200では設定された統合QoS制御テーブル及び自身の発生トラフィックに応じて通信部の制御を実施し、無線リンク制御を行う。
 なお、「ポリシー制御エンティティ」は、状況に応じてConfiguration(設定)を変更してもよい。例えば、「ポリシー制御エンティティ」は、手術や手術内容やオペレーションに応じて、設定を変更してもよい。例えば、「ポリシー制御エンティティ」は、時間や場所や医者(術者)等の使用者に応じて、設定を変更してもよい。「ポリシー制御エンティティ」は、医者ごとに設定されてもよい。例えば、「ポリシー制御エンティティ」は、ネットワーク内の機器(端末200)に応じて、設定を変更してもよい。例えば、「ポリシー制御エンティティ」は、ネットワーク内の端末200の種類や数や使用可能な通信リソース(周波数帯域等)に応じて、設定を変更してもよい。例えば、「ポリシー制御エンティティ」は、固定的な運用をしてもよく、動的に設定を変更してもよい。
[2.第2の実施形態]
 上記第1の実施形態においては、基地局100が統合QoSレベルや無線通信パラメータ等を決定する場合を示したが、統合QoSレベルや無線通信パラメータ等を決定する装置は、基地局に限らず他の装置であってもよい。第2の実施形態では、サーバ300が統合QoSレベルや無線通信パラメータ等を決定する場合を一例として説明する。なお、第1の実施形態に係る基地局100や端末200と同様の点については、適宜説明を省略する。
[2-1.本開示の第2の実施形態に係る通信制御処理の概要]
 まず、第2の実施形態に係る通信制御処理の概要について、図11を用いて説明する。図11は、本開示の第2の実施形態に係る通信制御処理の一例を示す図である。図11に示す通信制御システム1Aの構成について説明する。図11に示すように、通信制御システム1Aは、基地局100Aと、複数の端末200と、サーバ300とが含まれる。基地局100Aは、サーバ300と所定のネットワークN(インターネット等)を介して、有線または無線により通信可能に接続される。基地局100Aは、サーバ300との間で情報を送受信する。
 サーバ300は、無線通信サービスを提供に用いられる情報処理装置である。サーバ300は、基地局100Aから取得した情報を用いて各種の決定を行う。サーバ300は、統合QoSレベルや通信パラメータを決定する。例えば、サーバ300は、EPC(Evolved Packet Core)といったコアネットワークであってもよい。
 まず、基地局100Aは、端末Aである端末200-1から、QoSの制御に関連する情報(QoS制御関連情報)を取得する(ステップS21)。例えば、端末200-1は、3種類のパケットメッセージタイプ及びそれぞれの優先度情報(図7参照)を基地局に送信する。端末200-1は、モニターメッセージタイプ#1の優先度(QoSレベル)が「1」であり、モニターメッセージタイプ#2のQoSレベルが「2」であり、モニターメッセージタイプ#3のQoSレベルが「3」であることを示す優先度情報を基地局に送信する。
 また、基地局100Aは、端末Bである端末200-2から、QoS制御関連情報を取得する(ステップS22)。端末200-2は、血圧計メッセージタイプ#1の優先度(QoSレベル)が「1」であり、血圧計メッセージタイプ#2のQoSレベルが「2」であり、血圧計メッセージタイプ#3のQoSレベルが「3」であることを示す優先度情報を基地局に送信する。
 QoS制御関連情報を入手した基地局100Aは、QoS制御関連情報をサーバ300へ送信する(ステップS23)。基地局100Aは、端末200-1及び端末200-2から取得したQoS制御関連情報をサーバ300へ送信する。
 QoS制御関連情報を入手したサーバ300は、統合QoS制御テーブルを作成する(ステップS24)。例えば、サーバ300は、端末200-1及び端末200-2のQoS制御関連情報に基づいて、統合したQoSレベル(重要度レベル)を決定する。サーバ300は、モニターメッセージタイプ#1が「1」、血圧計メッセージタイプ#1が「2」、モニターメッセージタイプ#2が「3」、血圧計メッセージタイプ#2が「4」、モニターメッセージタイプ#3が「5」、血圧計メッセージタイプ#3が「6」である統合QoSレベルを決定する。
 また、サーバ300は、統合後のQoSレベル(統合QoSレベル)に応じて無線通信パラメータの制御方法を決定するためのテーブルを作成する。サーバ300は、統合QoSレベル「1」~「6」の各々について、無線通信パラメータを決定する。サーバ300は、送信電力や割当周波数リソースや符号化率等の無線通信パラメータを決定する。サーバ300は、統合QoSレベルが高い程、送信電力が大きく、割当周波数リソースが多く、符号化率が良くなるように、無線通信パラメータを決定する。
 そして、サーバ300は、決定した統合QoSレベルや無線通信パラメータを示す情報を基地局100Aに送信する(ステップS25)。そして、サーバ300から統合QoSレベルや無線通信パラメータを示す情報を取得した基地局100Aは、無線通信パラメータを示す情報を端末200-1に送信する(ステップS26)。基地局100Aは、送信電力や割当周波数リソースや符号化率等の無線通信パラメータを示す情報を端末200-1に送信する。例えば、基地局100Aは、統合QoSレベルの各々に対応するメッセージタイプを示す情報と、各メッセージタイプの無線通信パラメータを示す情報を端末200-1に送信する。端末200-1は、無線通信パラメータを示す情報を通信ポリシー情報として取得する。
 また、基地局100Aは、決定した無線通信パラメータを示す情報を端末200-2に送信する(ステップS27)。基地局100Aは、送信電力や割当周波数リソースや符号化率等の無線通信パラメータを示す情報を端末200-2に送信する。例えば、基地局100Aは、統合QoSレベルの各々に対応するメッセージタイプを示す情報と、各メッセージタイプの無線通信パラメータを示す情報を端末200-2に送信する。端末200-2は、無線通信パラメータを示す情報を通信ポリシー情報として取得する。
 そして、端末200は、通信ポリシー情報に基づいて無線通信を制御する(ステップS28)。各端末200は、取得した通信ポリシー情報に基づいて、無線通信を制御する。
[2-2.第2の実施形態に係る基地局及びサーバの構成]
 まず、第2の実施形態に係る通信制御処理を実行する基地局100Aの構成について説明する。図12は、第2の実施形態に係る基地局及びサーバの構成例を示す図である。
 図12に示すように、基地局100Aは、通信部120と、記憶部140と、制御部150Aとを有する。通信部120は、ネットワークNを介して外部の情報処理装置と通信するネットワーク通信部を有する。通信部120は、ネットワークNを介してサーバ300と通信する。また、制御部150Aは、決定部153を有しない点で基地局100の制御部150と相違する。制御部150Aは、制御部150と同様に、例えば、CPUやMPU等によって、基地局100A内部に記憶されたプログラム(例えば、本開示に係る通信制御プログラム)がRAM等を作業領域として実行されることにより実現される。また、制御部150Aは、例えば、ASICやFPGA等の集積回路により実現されてもよい。
 図12に示すように、サーバ300は、「Adapter」の機能を有する。例えば、図12中の「Adapter」は、図10の「Adapter」と同様の機能を有する。サーバ300は、図3に示す決定部153の機能を有する。
 サーバ300は、各種情報を決定する。サーバ300は、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックの種別を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックの用途を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックのパターンを示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。
 サーバ300は、トラフィックのサイズを示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックのバッファー量を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックの遅延要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックの信頼要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックの信頼要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。サーバ300は、トラフィックの周期を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。
 サーバ300は、他の装置へ送信対象となるメッセージの種別を判定し、メッセージのQoSを決定する。サーバ300は、画像認識により、メッセージのQoSを決定する。サーバ300は、メッセージのヘッダ情報に基づいて、メッセージのQoSを決定する。サーバ300は、メッセージのメタデータに基づいて、メッセージのQoSを決定する。サーバ300は、メッセージのDICOMに関する情報に基づいて、メッセージのQoSを決定する。サーバ300は、メッセージのQoSレベルを決定する。
[3.第3の実施形態]
 上記第1の実施形態や第2の実施形態においては、基地局100やサーバ300が統合QoSレベルや無線通信パラメータ等を決定する場合を示したが、無線端末装置が統合QoSレベルや無線通信パラメータ等を決定してもよい。なお、上述した基地局100、100Aや端末200と同様の点については、適宜説明を省略する。
[3-1.本開示の第3の実施形態に係る通信制御処理の概要]
 まず、第3の実施形態に係る通信制御処理の概要について、図13を用いて説明する。図13は、本開示の第3の実施形態に係る通信制御処理の一例を示す図である。具体的には、図13は、第3の実施形態に係る通信制御報処理の手順を示すシーケンス図である。また、図13は、本開示の第3の実施形態に係る通信制御システム1Bの構成例を示す図である。
 まず、図13に示す通信制御システム1Bの構成について説明する。図13に示すように、通信制御システム1Bは、基地局100Bと、複数の端末200Bとが含まれる。図13の例では、端末Aである端末200B-1と、端末Bである端末200B-2の2つの端末200Bのみを図示するが、3以上の端末200Bが含まれる。また、端末200B-1~端末200B-2等について、特に区別せずに説明する場合は、端末200Bと記載する。
 端末200Bは、端末200と同様に、医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置である。例えば、端末200Bは、統合QoSレベルや無線通信パラメータ等を決定する。そして、端末200Bは、統合QoS制御テーブル及び自身のトラフィックから、トラフィック発生時に統合QoSテーブルに応じた送信制御パラメータの設定を行い、通信を行う。
 基地局100Bは、基地局100や基地局100Aと同様に、端末200Bに無線通信サービスを提供する装置である。基地局100Bは、端末200B間の通信に用いられる装置である。例えば、基地局100Bは、基地局100のように決定部153を有してもよいし、基地局100Aのように決定部153を有しなくてもよい。
 基地局100Bと、端末200B-1と、端末200B-2との間は所定の無線通信システムに対応する無線通信により通信が行われる。基地局100Bと、端末200Bとは、5Gに対応する無線通信により情報の送受信が行われる。また、各端末200Bは、5Gに対応する無線通信により他の端末200Bとの間で情報の送受信が行われる。なお、図13に示した通信制御システム1Bには、複数の基地局100Bが含まれてもよい。また、通信制御システム1Bには、基地局100Bや端末200Bに限らず種々の構成要素が含まれてもよい。例えば、通信制御システム1Bには、図11に示すサーバ300のようなサーバ等の構成要素が含まれてもよい。
 ここから、通信制御報処理の手順を説明する。通信制御システム1Bでは、基地局100B側から端末200B-1、200B-2に対して統合QoS作成指示を行い、各端末200BにおけるQoSテーブルの更新を行う。基地局100Bは、端末200B-1、200B-2に対して統合QoS作成指示を行う(ステップS301)。基地局100B側で事前に各端末200Bにおけるトラフィックと通信制御のテーブルを作成し、各端末200Bへと設定する。図13の例では、基地局100Bは、端末200Bにおけるトラフィックと通信制御のテーブルを作成し、端末200B-1に作成した情報を送信し(ステップS302)、端末200B-1に作成した情報を送信する(ステップS303)。
 そして、端末200Bにおいては、設定されたQoS制御テーブルと端末200Bにおけるトラフィックにより無線通信パラメータの設定を実施する。例えば、端末200Bは、統合QoS制御を作成する。端末200B-1は、設定されたQoS制御テーブルと端末200B-1におけるトラフィックにより無線通信パラメータの設定を実施する。例えば、端末200B-1は、設定されたQoS制御テーブルと端末200B-1におけるトラフィックに基づいて、統合QoSレベルを決定し、決定した統合QoSレベルに応じて無線通信パラメータを決定する。端末200B-1は、統合QoSレベルや無線通信パラメータ等を決定する。端末200B-1は、統合QoSの情報や、無線通信パラメータを示す情報を統合QoS制御として作成する(ステップS304)。この場合、端末200B-1は、QoS制御テーブルに端末200B-1におけるトラフィックの該当がない場合は、基地局100B側にレポートし、情報(統合QoSテーブル、QoS制御テーブル等)の改定を要求してもよい。
 また、端末200B-2は、設定されたQoS制御テーブルと端末200B-2におけるトラフィックにより無線通信パラメータの設定を実施する。例えば、端末200B-2は、設定されたQoS制御テーブルと端末200B-2におけるトラフィックに基づいて、統合QoSレベルを決定し、決定した統合QoSレベルに応じて無線通信パラメータを決定する。端末200B-2は、統合QoSレベルや無線通信パラメータ等を決定する。端末200B-2は、統合QoSの情報や、無線通信パラメータを示す情報を統合QoS制御として作成する(ステップS305)。
 なお、各端末200Bが統合QoS制御を作成する場合に限らず、特定の端末200Bが統合QoS制御を作成してもよい。例えば、1つの端末200Bが統合QoS制御を作成し、各端末200Bへ作成した統合QoS制御を送信してもよい。この場合、1つの端末200Bが基地局100のように、各端末200のQoS関連情報を取得して、統合QoS制御を作成し、各端末200Bへ作成した統合QoS制御を送信してもよい。なお、1つの端末200Bが統合QoS制御を作成する場合についての詳細は後述する。
 端末200B-1は、トラフィックが発生した場合(ステップS306)、QoSに応じた送信制御を行う(ステップS307)。端末200B-1は、QoSレベルごとに設定された無線通信パラメータ等の設定情報を用いて、通信制御を行う。端末200B-1は、送信するパケットに対応する送信電力や割当周波数リソースや符号化率等の無線通信パラメータを用いてパケットを送信する(ステップS308)。そして、端末200B-2は、端末200B-1からのパケットを受信する(ステップS309)。なお、図9の例では、端末200B間の直接通信を一例として示したが、基地局100Bを介した通信も同様に処理される。
[3-2.第3の実施形態に係る端末の構成]
 次に、第3の実施形態に係る通信制御処理を実行する無線端末装置の一例である端末200Bの構成について説明する。図14は、第3の実施形態に係る端末の構成例を示す図である。図14に示すように、端末200Bは、通信部220と、記憶部240Bと、制御部250Bとを有する。
 記憶部240Bは、記憶部240と同様に、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部240Bは、QoS情報記憶部241と設定情報記憶部242と統合QoS記憶部243とを有する。
 第2の実施形態に係る統合QoS情報記憶部243は、統合したQoS情報を記憶する。なお、統合QoS情報記憶部243に記憶される情報は、図4に示す統合QoS情報記憶部141と同様であるため説明を省略する。
 制御部250Bは、制御部250と同様に、例えば、CPUやMPU等によって、端末200B内部に記憶されたプログラム(例えば、本開示に係る通信制御プログラム)がRAM等を作業領域として実行されることにより実現される。また、制御部250Bは、例えば、ASICやFPGA等の集積回路により実現されてもよい。
 図14に示すように、制御部250Bは、取得部251と、通信制御部252と、決定部253とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部250の内部構成は、図14に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。
 通信制御部252は、決定部253により決定されたQoSに基づいて、メッセージの無線通信を制御する。通信制御部252は、決定部253により決定されたQoSレベルに基づいて、メッセージの無線通信を制御する。
 決定部253は、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックの種別を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックの用途を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックのパターンを示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックのサイズを示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。
 決定部253は、トラフィックのバッファー量を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックの遅延要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックの信頼要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックの信頼要求値を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。決定部253は、トラフィックの周期を示す情報である送信情報に基づくQoS情報により通信ポリシー情報を決定する。
 決定部253は、他の装置へ送信対象となるメッセージの種別を判定し、メッセージのQoSを決定する。決定部253は、画像認識により、メッセージのQoSを決定する。決定部253は、メッセージのヘッダ情報に基づいて、メッセージのQoSを決定する。決定部253は、メッセージのメタデータに基づいて、メッセージのQoSを決定する。決定部253は、メッセージのDICOMに関する情報に基づいて、メッセージのQoSを決定する。決定部253は、メッセージのQoSレベルを決定する。
[3-3.通信制御システムの概念図]
 ここで、図14を用いて、通信制御システムにおける各機能やハードウェア構成やデータを概念的に示す。図14は、第3の実施形態に係る通信制御システムの一例を示す概念図である。具体的には、図14は、端末200B側で統合QoS制御テーブルを作成するケースにおける通信制御システムの一例を示す概念図である。図14に示す通信制御システムは、通信制御システム1Bに対応し、端末200B-1~200B-3や基地局100Bが含まれる。
 端末200B中の「Adapter」は、無線通信制御を実現するために用いられる機能を示す。例えば、「Adapter」は、各トラフィックに対するQoSの設定を統合するための機能に対応する。例えば、「Adapter」の機能は、図14に示す決定部253の機能に対応する。
 基地局100B中の「ポリシー制御エンティティ」は、端末200B-1~200B-3の「Adapter」を制御して、端末200B-1~200B-3に統合QoSテーブルを作成させる。例えば、端末200B-1~200B-3は、「Adapter」により、統合QoS制御テーブルを生成する。端末200B-1~200B-3は、統合QoS制御テーブルにより通信を制御する。このように、図15では、基地局100側からはポリシー制御エンティティによるQoSリストを総合QoS制御テーブルへと変換するAdapter制御のみの制御を実施する。
[4.第4の実施形態]
 上記第3の実施形態においては、各医療機器(端末200B)が統合QoSレベルや無線通信パラメータ等を決定する場合を示したが、無線端末装置のうち、所定の無線端末装置のみが統合QoSレベルや無線通信パラメータ等を決定してもよい。なお、上述した基地局100、100A、100Bや端末200、200Bと同様の点については、適宜説明を省略する。
[4-1.本開示の第4の実施形態に係る通信制御システムの構成]
 まず、第4の実施形態に係る通信制御処理を実行する通信制御システム1Cの構成について説明する。図16は、本開示の第4の実施形態に係る通信制御システムの構成例を示す図である。
 図16に示すように、通信制御システム1Cは、1つの端末200Bと、複数の端末200とが含まれる。このように、通信制御システム1Cには、統合QoSレベルや無線通信パラメータ等を決定する端末200Bと、端末200Bから取得した統合QoSレベルや無線通信パラメータ等に応じて通信を制御する複数の端末200とが含まれる。図16の例では、IPコンバータである端末200B-20、術野カメラである端末200-21、内視鏡カメラである端末200-22、顕微鏡ある端末200-23、4Kモニターである端末200-24、レコーダ(記憶装置)である端末200-25、血圧計である端末200-26を示す。なお、通信制御システム1Cには、端末200-21~200-26の6つの端末200のみに限らず、種々の端末200が含まれてもよい。また、図16に示した通信制御システム1Cには、複数の端末100Bが含まれてもよい。
 端末200B-20は、4KやHD(High Definition)の映像や制御信号等の各種のデータを無線により伝送するIPコンバータである。図16の例では、端末200B-20は、手術室内外のさまざまな映像等のデータを無線により伝送する医療用のIPコンバータである。端末200B-20は、5Gに対応する無線通信により端末200-21~200-26等の端末200との間で情報の送受信を行う。
 例えば、IPコンバータである端末200B-20は、各種のデータをIP(Internet Protocol)化して伝送する。端末200B-20は、4K医療機器(端末200-24等)を含むさまざまな端末200と無線通信可能に接続され、入力から出力までの映像信号の各種のデータをIP化することで、無線での映像・制御信号の伝送を行う。これにより、通信制御システム1Cでは、手術室等の医療機関の空間でシンプルなシステム構築を実現することができる。
 IPコンバータである端末200B-20は、無線通信制御を実現するために用いられる「Adapter」機能を有する。端末200B-20中の「Adapter」は、各トラフィックに対するQoSの設定を統合するための機能に対応する。例えば、「Adapter」の機能は、図14に示す端末200Bの決定部253の機能に対応する。図16の例では、端末200B-20は、端末200-21~200-26にQoS関連情報の送信を要求し、端末200-21~200-26からQoS関連情報を取得する。そして、端末200B-20は、端末200-21~200-26のQoS関連情報を用いて統合QoS制御を作成し、端末200-21~200-26へ作成した統合QoS制御を送信する。
[5.第5の実施形態]
 次に、医療特有の通信制御例として、特殊干渉に対する通信制御について述べる。上述したいくつかの実施形態では、端末が送信パケット及び統合QoSテーブルに応じて無線通信パラメータの制御を実施するが、これに加えて、基地局側で無線通信の追加制御を行ってもよい。例えば、手術室内等、医療機関の空間内では電気メス等の他機器への干渉が予想される機器が用いられる場合があり、このような干渉が発生する環境下においても、無線通信の通信品質を担保する必要がある。
 そのため、通信制御システムは、干渉を検知して、干渉に応じた通信制御を行ってもよい。この点について、図17を用いて説明する。図17は、本開示の第5の実施形態に係る通信制御システムの構成例を示す図である。なお、図17の例では、基地局100Dが干渉検知を行い、通信制御を行う場合を示すが、無線端末装置が干渉検知を行い、通信制御を行ってもよい。なお、上述した基地局100、100A、100Bや端末200、200Bと同様の点については、適宜説明を省略する。
[5-1.本開示の第5の実施形態に係る通信制御システムの構成]
 まず、第5の実施形態に係る通信制御処理を実行する通信制御システム1Dの構成について説明する。図17は、本開示の第5の実施形態に係る通信制御システムの構成例を示す図である。図17は、予想可能な干渉に対する無線通信リンク追加制御の例を示す。
 図17に示すように、通信制御システム1Dは、基地局100Dと、複数の端末200とが含まれる。図17の例では、電子メスである端末200-11と、心電計である端末200-12の2つの端末200のみを図示するが、通信制御システム1Dには、3以上の端末200が含まれてもよい。
 基地局100Dは、基地局100と同様に端末200に無線通信サービスを提供する装置である。図17の例では、基地局100Dは、所定のインターフェイスIFにより電子メスである端末200-11に接続される。また、基地局100Dは、5Gに対応する無線通信RCにより、心電計である端末200-12と無線通信する。例えば、基地局100Dは、統合QoSレベルや無線通信パラメータ等を決定する。基地局100Dは、通信に関する干渉を検知する干渉検知部の機能を有する。また、基地局100Dは、干渉する端末200である干渉機器のプロファイルを設定してもよい。
 基地局100Dの制御部150D(図示省略)は、機器動作検知部154と、干渉測定部155とを有する点で基地局100の制御部150と相違する。基地局100Dは、通信に関する干渉を検知する干渉検知部として機能する干渉測定部155を有する。基地局100Dの通信制御部152は、干渉検知部により検知された干渉に基づいて無線通信を制御する。
 機器動作検知部154は、機器(端末200)の動作検出を行う。機器動作検知部154は、例えば機器(端末200)の動作ボタンが押されるなどのユーザにより操作が行われたことを示す情報を取得する。機器動作検知部154は、例えば機器(端末200)の動作によって発生する情報を検知する。
 干渉測定部155は、干渉検知等に関する種々の技術を適宜用いて、通信に関する干渉を検知したり、干渉を測定したりする。干渉測定部155は、動作する機器(端末200)の種類や機器(端末200)の動作状況に応じて干渉測定部の測定頻度を変更する。干渉測定部155は、例えば対象機器(端末200)が動作し始めた際に、Xmsごとに干渉測定を実施する。(端末200)例えば特定種類の機器(端末200)からの干渉を検知した場合、その機器(端末200)に応じた測定頻度の干渉測定を実施する。干渉測定部155は、初めに得られた干渉の検出結果をもとに以後の干渉測定頻度を変更する。干渉測定部155は、例えば初めに得られる干渉レベル、干渉パターンに応じて変更する。干渉測定部155は、図18に示すように機器(端末200)ごとに特定の干渉パターンを生成するようにし、干渉の中に情報を埋め込む。図18は、第5の実施形態に係る干渉の測定に関する処理の一例を示す図である。具体的には、図18は、特定の干渉パターン生成例を示す。
 図18の例では、干渉測定部155は、初期の干渉に特徴的な干渉パターンを生成する。干渉測定部155は、干渉パターンPT1に示すような初期の干渉に特徴的な干渉パターンを生成する。干渉測定部155は、測定方法の最適化を行う。干渉測定部155は、対象TG1に示すように測定方法の最適化を行う。
 通信制御部152は、干渉測定部155により測定される情報に基づいて、通信を制御する。通信制御部152は、干渉測定部155により測定される情報に応じて、周波数を切り替える。通信制御部152は、干渉測定部155により測定される情報に応じて、ライセンスバンド、アンライセンスバンドの切り替えを行う。通信制御部152は、干渉測定部155により測定される情報に応じて、送信電力を制御する。通信制御部152は、干渉測定部155により測定される情報に応じて、保護すべきリンクの送信電力を上げる。
 通信制御部152は、干渉測定部155により測定される情報に応じて、符号化率変更する。通信制御部152は、干渉測定部155により測定される情報に応じて、保護すべきリンクの符号化率を上げる。通信制御部152は、干渉測定部155により測定される情報に応じて、Repetition送信を実施する。通信制御部152は、干渉測定部155により測定される情報に応じて、保護すべきリンクに再送送信をEnableする。例えば、通信制御部152は、干渉測定部155により測定される情報に応じて、HARQ(Hybrid Automatic Repeat reQuest)送信を行う。
 通信制御部152は、干渉測定部155により測定される情報に応じて、送信方式を変更する。通信制御部152は、干渉測定部155により測定される情報に応じて、保護すべきリンクの送信方法を変更する。例えば、通信制御部152は、干渉測定部155により測定される情報に応じて、通信の質や信頼性の向上を図る処理、いわゆる送信ダイバーシチの処理を行ってもよい。また、例えば、通信制御部152は、干渉測定部155により測定される情報に応じて、MIMO送信を行ってもよい。
 通信制御部152は、干渉測定部155により測定される情報に応じて、優先度制御を行ってもよい。通信制御部152は、干渉測定部155により測定される情報に応じて、保護する必要性が低いリンクの通信品質を下げ、保護すべきリンクの通信品質を上げる。通信制御部152は、干渉測定部155により測定される情報に応じて、パケット送信やパターン変更やリソース割り当て方法を変更してもよい。通信制御部152は、干渉測定部155により測定される情報に応じて、機器(端末200)の干渉パターンを避けるようにリソース割り当てを実施する。通信制御部152は、干渉測定部155により測定される情報に応じて、無線から有線通信への切り替えを行ってもよい。通信制御部152は、干渉測定部155により測定される情報に応じて、有線通信への切り替えを行う。また、通信制御部152は、切り替え実施の必要性の通知を人(通信制御システム1Dの管理者等)に行ってもよい。
 例えば、通信制御システム1Dは、医療機器特有の電気メスである端末200-11等の大きな干渉発生が予想される場合、これら予想される干渉を考慮した無線通信制御を行ってもよい。通信制御システム1Dは、手術室環境において、電気メス等の無線通信に影響を与えると想定される装置の起動を検出し、使用している無線通信に対する干渉を予測する。そして、通信制御システム1Dは、干渉発生が予測される状況において、無線通信の送受信制御パラメータを再設定し、耐干渉性の高い無線通信を実現する。例えば、通信制御システム1Dの基地局100Dが上述した検出、予測等の処理を実行する。
 基地局100Dは、予測可能な干渉について対策を行う。基地局100Dの機器動作検知部154は、手術室等の環境において、電気メスである端末200-11等の無線通信に影響を与える可能性がある装置(例えば端末200-12等)の起動を検出する検出部として機能する。また、基地局100Dの干渉測定部155は、使用している無線通信に対する干渉を予測する干渉予測部として機能する。基地局100Dの通信制御部152は、干渉発生が予測される状況において、無線通信の送受信制御パラメータを再設定し、耐干渉性の高い無線通信を行う。
 また、上述した処理は、無線端末装置側で行ってもよい。この場合、無線端末装置である端末200は、通信に関する干渉を検知する干渉検知部を有する。干渉検知部は、干渉検知等に関する種々の技術を適宜用いて、通信に関する干渉を検知したり、干渉を測定したりする。例えば、端末200は、干渉検知部として機能する干渉測定部155や機器動作検知部154を有してもよい。端末200の通信制御部252は、干渉検知部により検知された干渉に基づいて無線通信を制御する。上述した処理により、通信制御システム1Dは、端末200による干渉発の生が予想される場合であっても、干渉を考慮した無線通信制御を適切に実行することができる。
[6.その他の実施形態]
 上述した各実施形態に係る処理は、上記各実施形態以外にも種々の異なる形態(変形例)にて実施されてよい。例えば、上述した例では、基地局100、100A、100B、100Cや端末200、200Bである無線端末装置が別体である場合を示したが、通信制御システムには、基地局として機能する無線端末装置が含まれてもよい。
[6-1.その他の構成例]
 ここで、医療特有の通信制御例として、無線通信のブロッキングに対する通信制御について述べる。端末200は送信パケット及び統合QoSテーブルに応じて無線通信パラメータの制御を実施するが、これに加えて、基地局100側で無線通信の追加制御を行ってもよい。このように、通信制御システムは、無線通信のブロッキングに対応した通信制御を行ってもよい。この点について、図19を用いて説明する。図19は、本開示の変形例に係る通信制御システムの構成例を示す図である。
 図19に示す手術室5には、複数のアンテナパネル61が無影灯60に配置される。図19では、4つのアンテナパネル61-1~61-4が無影灯60に配置される場合を図示するが、無影灯60に配置されるアンテナパネル61の数は、4つに限られない。また、端末200―2の付近にもアンテナパネル61-5が配置される。図19では、アンテナパネル61-5として図示するような4つのアンテナパネル61-1~61-4が無影灯60に設けられているものとする。なお、アンテナパネル61-1~61-5等について、特に区別せずに説明する場合は、アンテナパネル61と記載する。基地局100は、アンテナパネル61を用いて無線通信を行う。例えば、基地局100は、アンテナパネル61を用いて端末200と無線通信を行う。
 例えば、通信制御システム1Eは、図19に示すような手術室5において、天井や壁や無影灯60等につけた複数のMIMO通信アンテナであるアンテナパネル61を、LOS(Line Of Sight)/NLOS(Non Line Of Sight)の状況に応じて判定する。通信制御システム1Eは、無線リンクの品質を判定する。例えば、基地局100は、アンテナパネル61を、LOS/NLOSの状況に応じて判定する。この場合、基地局100は、アンテナパネル61を、LOS/NLOSの状況に応じて判定する判定部を有してもよい。
 そして、通信制御システム1Eは、アンテナパネル61のLOS/NLOSの判定に応じて、アンテナパネル61をActivate(始動)/Deactivate(停止)する制御を行う。例えば、通信制御システム1Eは、空間を認識し、室内のビームフォーミングの制御を一括で行ってもよいし、学習してもよい。例えば、基地局100は、ビームフォーミングマネジメントエンティティとして機能してもよい。基地局100は、アンテナパネル61のLOS/NLOSの判定に応じて、アンテナパネル61を始動/停止する制御を行う。この場合、基地局100は、アンテナパネル61のLOS/NLOSの判定に応じて、アンテナパネル61を始動/停止する制御を行う動作制御部を有してもよい。例えば、基地局100は、空間を認識し、室内のビームフォーミングの制御を一括で行ってもよいし、学習してもよい。
 これにより、通信制御システム1Eは、手術中頭や体等によるMIMO通信のブロッキング問題を解決し、安定的(Stable)で堅牢(Robust)な無線通信リンクを確立することができる。
 例えば、図19に示す通信制御システム1Eは、無線通信リンク状態を学習し、障害物の行動予測からブロッキング発生前に通信リンクを適切に切り替える。例えば、通信制御システム1Eには、図11に示すサーバ300のようなサーバ等の構成要素が含まれてもよい。通信制御システム1Eでは、サーバ側の種々の制御が行われる。サーバは、学習のための情報収集ブロックに対応する情報収集処理を行う。サーバは、送受信間の位置情報や手術室の3Dキャプチャ情報や障害物の位置情報や各通信リンクにおける通信品質結果を取得する。例えば、上記情報をサーバが収集するために、端末200に通信品質のレポートを基地局100から設定する。
 サーバは、学習ブロックに対応する学習処理を行う。サーバは、各通信環境における最適リンク及びビームフォーミング設定情報を決定する。サーバは、行動予測ブロックに対応する予測処理を行う。サーバは、カメラを用いて動く物体の行動予測を実施する。
 サーバは、判定ブロックに対応する判定処理を行う。サーバは、行動予測情報及び学習情報からリンク切り替えの必要性もしくはビームフォーミング設定情報の切り替え判定を実施する。
 サーバは、リンク切り替え、ビームフォーミング設定変更ブロックに対応する処理を行う。サーバは、複数の送信ノードのActivate(始動)/Deactivate(停止)を指示する。サーバは、送信ノードで用いるビームフォーミング設定を実施する。なお、上述したサーバ側の処理は、基地局100が行ってもよい。
 例えば、図19の例では、基地局100は、複数のアンテナパネル61のうち、アンテナパネル61-3を用いて、端末200-3と通信していた場合を示す。そして、図19の例では、術者8の位置の移動などにより、アンテナパネル61-3による端末200-3との通信が、術者8によりブロックされている状態になった場合を示す。そのため、基地局100は、アンテナパネル61-3による端末200-3との通信を、アンテナパネル61-4による通信またはアンテナパネル61-5による通信に切り替える。
 基地局100の通信制御部152は、アンテナの位置に応じて無線通信を制御する。基地局100の通信制御部152は、無線通信に関する種々の技術により無線通信を制御する。基地局100の通信制御部152は、ビームフォーミングにより無線通信を制御する。基地局100の通信制御部152は、複数のアンテナパネル61のうち、通信に用いるアンテナパネル61を切り替えて無線通信を制御する。例えば、基地局100の通信制御部152は、複数のアンテナパネル61のうち、最も受信強度が強いアンテナパネル61-4を、通信に用いるアンテナとして選択し、選択したアンテナパネル61-4を用いて無線通信を行ってもよい。
 基地局100のアンテナ部110は、無線通信に用いる複数のアンテナを有してもよい。基地局100の通信制御部152は、複数のアンテナの位置に応じて無線通信を制御する。基地局100の通信制御部152は、複数のアンテナのうち、通信に用いるアンテナを切り替えて無線通信を制御する。
 また、上述した処理は、無線端末装置側で行ってもよい。この場合、無線端末装置である端末200の通信制御部252は、アンテナの位置に応じて無線通信を制御する。端末200の通信制御部252は、ビームフォーミングにより無線通信を制御する。端末200の通信制御部252は、無線通信に関する種々の技術により無線通信を制御する。端末200の通信制御部252は、ビームフォーミングにより無線通信を制御する。
 端末200のアンテナ部210は、無線通信に用いる複数のアンテナを有してもよい。端末200の通信制御部252は、複数のアンテナの位置に応じて無線通信を制御する。端末200の通信制御部252は、複数のアンテナのうち、通信に用いるアンテナを切り替えて無線通信を制御する。端末200の通信制御部252は、複数のアンテナのうち、最も受信強度が強いアンテナを、通信に用いるアンテナとして選択し、選択したアンテナを用いて無線通信を行ってもよい。
[6-2.その他]
 また、上記各実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
 また、上述してきた各実施形態及び変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
[7.本開示に係る効果]
 上述のように、本開示に係る無線端末装置(実施形態では端末200、200B)は、医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置であり、取得部(実施形態では第一の取得部251)と、通信制御部(実施形態では通信制御部252)とを備える。取得部は、医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS(Quality of Service)情報により決定された通信ポリシー情報を取得する。通信制御部は、通信ポリシー情報に基づいて無線通信を制御する。
 これにより、本開示に係る無線端末装置は、医療機器の種別や、医療機器が送信する送信内容の種別に基づくQoSに応じた通信ポリシー情報に基づいて無線通信を制御することで、医療機器に対応するQoSに応じた無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、無線端末装置は、手術室内に配置された医療機器と無線通信を行う。これにより、無線端末装置は、手術室内に配置された医療機器と無線通信を行う際に、通信を行う医療機器の種別や、医療機器が送信する送信内容の種別に基づくQoSに応じた通信ポリシー情報に基づいて無線通信を制御することで、QoSに応じた手術室内での無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、通信制御部は、通信ポリシー情報に基づく通信タイミングで無線通信を制御する。これにより、無線端末装置は、通信ポリシー情報に基づく通信タイミングで無線通信を制御することで、QoSを加味した適切な通信タイミングで無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、通信制御部は、通信ポリシー情報に基づくパケットエラー率で無線通信を制御する。これにより、無線端末装置は、通信ポリシー情報に基づくパケットエラー率で無線通信を制御することで、QoSを加味した適切なパケットエラー率で無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、通信制御部は、優先度が高い程遅延を減らして無線通信を制御する。これにより、無線端末装置は、優先度が高い程、遅延を減らして無線通信を制御することで、QoSを加味した適切な通信遅延で無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、通信制御部は、通信ポリシー情報に基づく割当て周波数で無線通信を制御する。これにより、無線端末装置は、通信ポリシー情報に基づく割当て周波数で無線通信を制御することで、QoSを加味した適切な周波数の割当て量で無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、通信制御部は、通信ポリシー情報に基づく送受信の強度で無線通信を制御する。これにより、無線端末装置は、通信ポリシー情報に基づく送受信の強度で無線通信を制御することで、QoSを加味した適切な送受信の強度で無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、無線端末装置は、決定部(実施形態では決定部253)を備える。決定部は、他の装置へ送信対象となるメッセージの種別を判定し、メッセージのQoSを決定する。通信制御部は、決定部により決定されたQoSに基づいて、メッセージの無線通信を制御する。これにより、無線端末装置は、メッセージの種別を基に判定したメッセージのQoSに応じて、メッセージの無線通信を制御することができ、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、決定部は、メッセージのヘッダ情報に基づいて、メッセージのQoSを決定する。これにより、無線端末装置は、メッセージのヘッダ情報を基に判定したメッセージのQoSに応じて、メッセージの無線通信を制御することができ、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、決定部は、メッセージのメタデータに基づいて、メッセージのQoSを決定する。これにより、無線端末装置は、メッセージのメタデータを基に判定したメッセージのQoSに応じて、メッセージの無線通信を制御することができ、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、送信情報は、トラフィックの種別を示す情報である。これにより、無線端末装置は、トラフィックの種別に基づくQoSに応じた通信ポリシー情報に基づいて無線通信を制御することで、トラフィックの種別に対応するQoSに応じた無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、送信情報は、トラフィックの用途を示す情報である。これにより、無線端末装置は、トラフィックの用途に基づくQoSに応じた通信ポリシー情報に基づいて無線通信を制御することで、トラフィックの用途に対応するQoSに応じた無線通信を行うことができる。したがって、無線端末装置は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、通信制御部は、基地局による制御に応じて、医療機器との無線通信を制御する。これにより、無線端末装置は、基地局による制御に応じて、医療機器との無線通信を制御することで、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、無線端末装置は、IPコンバータである。これにより、無線端末装置の一例であるIPコンバータは、医療機器の種別や、医療機器が送信する送信内容の種別に基づくQoSに応じた通信ポリシー情報に基づいて無線通信を制御することで、医療機器に対応するQoSに応じた無線通信を行うことができる。したがって、IPコンバータは、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、無線端末装置は、医療機器である。これにより、無線端末装置の一例であるIPコンバータは、医療機器の種別や、医療機器が送信する送信内容の種別に基づくQoSに応じた通信ポリシー情報に基づいて無線通信を制御することで、医療機器に対応するQoSに応じた無線通信を行うことができる。したがって、医療機器は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、無線端末装置は、干渉検知部を備える。干渉検知部は、通信に関する干渉を検知する。通信制御部は、干渉検知部により検知された干渉に基づいて無線通信を制御する。これにより、無線端末装置は、検知した干渉に基に無線通信を制御することができ、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 また、無線端末装置は、アンテナ(実施形態ではアンテナ部210)を備える。アンテナは、無線通信に用いられる。通信制御部は、アンテナの位置に応じて無線通信を制御する。これにより、無線端末装置は、アンテナの位置を加味して無線通信を制御することができ、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
 上述のように、本開示に係る基地局(実施形態では基地局100、100A、100B、100D)は、医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置であり、取得部(実施形態では取得部151)と、通信制御部(実施形態では通信制御部152)とを備える。取得部は、医療機関の空間内に配置された医療機器の種別を示す機器情報と、医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得する。通信制御部は、通信ポリシー情報に基づいて医療機器間の無線通信を制御する。
 これにより、本開示に係る基地局は、医療機器の種別や、医療機器が送信する送信内容の種別に基づくQoSに応じた通信ポリシー情報に基づいて医療機器間の無線通信を制御することで、QoSに応じて医療機器間の無線通信を制御することができる。したがって、基地局は、医療機関の空間内に配置された医療機器の無線接続の通信品質を向上させることができる。
[8.ハードウェア構成]
 上述してきた各実施形態に係る基地局100、100A、100B、100Dや端末200、200B等の情報機器は、例えば図20に示すような構成のコンピュータ1000によって実現される。図20は、基地局100、100A、100B、100Dや端末200、200B等の情報処理装置の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。以下、第1の実施形態に係る端末200を例に挙げて説明する。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る情報処理プログラムを記録する記録媒体である。
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。例えば、コンピュータ1000が実施形態に係る端末200として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた情報処理プログラムを実行することにより、制御部250等の機能を実現する。また、HDD1400には、本開示に係る情報処理プログラムや、記憶部240内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置であり、
 医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS(Quality of Service)情報により決定された通信ポリシー情報を取得する取得部と、
 前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御部と、
 を備える無線端末装置。
(2)
 手術室内に配置された医療機器と前記無線通信を行う(1)に記載の無線端末装置。
(3)
 前記通信制御部は、
 前記通信ポリシー情報に基づき決定される通信態様で前記無線通信を制御する
 (1)または(2)に記載の無線端末装置。
(4)
 前記通信制御部は、
 前記通信ポリシー情報に基づく通信タイミングで前記無線通信を制御する
 (3)に記載の無線端末装置。
(5)
 前記通信制御部は、
 前記通信ポリシー情報に基づくパケットエラー率で前記無線通信を制御する
 (3)または(4)に記載の無線端末装置。
(6)
 前記通信制御部は、
 優先度が高い程パケットエラー率を下げて前記無線通信を制御する
 (5)に記載の無線端末装置。
(7)
 前記通信制御部は、
 前記通信ポリシー情報に基づく通信遅延で前記無線通信を制御する
 (3)~(6)のいずれか1項に記載の無線端末装置。
(8)
 前記通信制御部は、
 優先度が高い程遅延を減らして前記無線通信を制御する
 (7)に記載の無線端末装置。
(9)
 前記通信制御部は、
 前記通信ポリシー情報に基づく割当て周波数で前記無線通信を制御する
 (3)~(8)のいずれか1項に記載の無線端末装置。
(10)
 前記通信制御部は、
 優先度が高い程周波数を割り当てる量を増やして前記無線通信を制御する
 (9)に記載の無線端末装置。
(11)
 前記通信制御部は、
 前記通信ポリシー情報に基づく送受信の強度で前記無線通信を制御する
 (3)~(10)のいずれか1項に記載の無線端末装置。
(12)
 前記通信制御部は、
 優先度が高い程送受信の強度を強くして前記無線通信を制御する
 (11)に記載の無線端末装置。
(13)
 前記通信制御部は、
 優先度が高い程送信電力を上げて前記無線通信を制御する
 (12)に記載の無線端末装置。
(14)
 前記通信制御部は、
 前記通信ポリシー情報に基づく符号化率で前記無線通信を制御する
 (3)~(13)のいずれか1項に記載の無線端末装置。
(15)
 他の装置へ送信対象となるメッセージの種別を判定し、前記メッセージのQoSを決定する決定部、
 を備え、
 前記通信制御部は、
 前記決定部により決定された前記QoSに基づいて、前記メッセージの前記無線通信を制御する
 (1)~(14)のいずれか1項に記載の無線端末装置。
(16)
 前記決定部は、
 画像認識により、前記メッセージのQoSを決定する
 (15)に記載の無線端末装置。
(17)
 前記決定部は、
 前記メッセージのヘッダ情報に基づいて、前記メッセージのQoSを決定する
 (15)または(16)に記載の無線端末装置。
(18)
 前記決定部は、
 前記メッセージのメタデータに基づいて、前記メッセージのQoSを決定する
 (15)~(17)のいずれか1項に記載の無線端末装置。
(19)
 前記決定部は、
 前記メッセージのDICOMに関する情報に基づいて、前記メッセージのQoSを決定する
 (18)に記載の無線端末装置。
(20)
 前記決定部は、
 前記メッセージのQoSレベルを決定し、
 前記通信制御部は、
 前記決定部により決定された前記QoSレベルに基づいて、前記メッセージの前記無線通信を制御する
 (15)~(19)のいずれか1項に記載の無線端末装置。
(21)
 前記送信情報は、
 トラフィックの種別を示す情報である
 (1)~(20)のいずれか1項に記載の無線端末装置。
(22)
 前記送信情報は、
 トラフィックの用途を示す情報である
 (1)~(21)のいずれか1項に記載の無線端末装置。
(23)
 前記送信情報は、
 トラフィックのパターンを示す情報である
 (1)~(22)のいずれか1項に記載の無線端末装置。
(24)
 前記送信情報は、
 トラフィックのサイズを示す情報である
 (1)~(23)のいずれか1項に記載の無線端末装置。
(25)
 前記送信情報は、
 トラフィックのバッファー量を示す情報である
 (1)~(24)のいずれか1項に記載の無線端末装置。
(26)
 前記送信情報は、
 トラフィックの遅延要求値を示す情報である
 (1)~(25)のいずれか1項に記載の無線端末装置。
(27)
 前記送信情報は、
 トラフィックの信頼要求値を示す情報である
 (1)~(26)のいずれか1項に記載の無線端末装置。
(28)
 前記送信情報は、
 トラフィックの周期を示す情報である
 (1)~(27)のいずれか1項に記載の無線端末装置。
(29)
 前記通信制御部は、
 基地局による制御に応じて、医療機器との前記無線通信を制御する
 (1)~(28)のいずれか1項に記載の無線端末装置。
(30)
 前記通信制御部は、
 基地局により設定された前記通信ポリシー情報に基づいて前記無線通信を制御する
 (29)に記載の無線端末装置。
(31)
 IPコンバータである(1)~(30)のいずれか1項に記載の無線端末装置。
(32)
 前記医療機関の空間内に配置されたIPコンバータである(31)に記載の無線端末装置。
(33)
 医療機器である(1)~(32)のいずれか1項に記載の無線端末装置。
(34)
 前記医療機関の空間内に配置された医療機器である(33)に記載の無線端末装置。
(35)
 通信に関する干渉を検知する干渉検知部、
 を備え、
 前記通信制御部は、
 前記干渉検知部により検知された干渉に基づいて前記無線通信を制御する
 (1)~(34)のいずれか1項に記載の無線端末装置。
(36)
 前記無線通信に用いるアンテナ、
 を備え、
 前記通信制御部は、
 前記アンテナの位置に応じて前記無線通信を制御する
 (1)~(35)のいずれか1項に記載の無線端末装置。
(37)
 前記通信制御部は、
 ビームフォーミングにより前記無線通信を制御する
 (36)に記載の無線端末装置。
(38)
 前記無線通信に用いる複数のアンテナ、
 を備え、
 前記通信制御部は、
 前記複数のアンテナの位置に応じて前記無線通信を制御する
 (1)~(37)のいずれか1項に記載の無線端末装置。
(39)
 前記通信制御部は、
 前記複数のアンテナのうち、通信に用いるアンテナを切り替えて前記無線通信を制御する
 (38)に記載の無線端末装置。
(40)
 医療機関の空間内に配置された医療機器と無線通信を行う通信制御方法であり、
 前記医療機器の種別を示す機器情報と、前記医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得し、
 前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御方法。
(41)
 医療機関の空間内に配置された医療機器と無線通信を行う通信制御プログラムであり、
 前記医療機器の種別を示す機器情報と、前記医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得し、
 前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御プログラム。
(42)
 医療機関の空間内に配置された医療機器の種別を示す機器情報と、前記医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得する取得部と、
 前記通信ポリシー情報に基づいて前記医療機器間の無線通信を制御する通信制御部と、
 を備える基地局。
 1 通信制御システム
 100 基地局
 120 通信部
 140 記憶部
 141 統合QoS情報記憶部
 142 通信パラメータ情報記憶部
 150 制御部
 151 取得部
 152 通信制御部
 153 決定部
 200 端末(無線端末装置)
 220 通信部
 240 記憶部
 241 QoS情報記憶部
 242 設定情報記憶部
 250 制御部
 251 取得部
 252 通信制御部

Claims (20)

  1.  医療機関の空間内に配置された医療機器と無線通信を行う無線端末装置であり、
     医療機器の種別を示す機器情報と、当該医療機器が送信する送信内容の種別を示す送信情報に基づくQoS(Quality of Service)情報により決定された通信ポリシー情報を取得する取得部と、
     前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御部と、
     を備える無線端末装置。
  2.  手術室内に配置された医療機器と前記無線通信を行う請求項1に記載の無線端末装置。
  3.  前記通信制御部は、
     前記通信ポリシー情報に基づく通信タイミングで前記無線通信を制御する
     請求項1に記載の無線端末装置。
  4.  前記通信制御部は、
     前記通信ポリシー情報に基づくパケットエラー率で前記無線通信を制御する
     請求項1に記載の無線端末装置。
  5.  前記通信制御部は、
     優先度が高い程遅延を減らして前記無線通信を制御する
     請求項1に記載の無線端末装置。
  6.  前記通信制御部は、
     前記通信ポリシー情報に基づく割当て周波数で前記無線通信を制御する
     請求項1に記載の無線端末装置。
  7.  前記通信制御部は、
     前記通信ポリシー情報に基づく送受信の強度で前記無線通信を制御する
     請求項1に記載の無線端末装置。
  8.  他の装置へ送信対象となるメッセージの種別を判定し、前記メッセージのQoSを決定する決定部、
     を備え、
     前記通信制御部は、
     前記決定部により決定された前記QoSに基づいて、前記メッセージの前記無線通信を制御する
     請求項1に記載の無線端末装置。
  9.  前記決定部は、
     前記メッセージのヘッダ情報に基づいて、前記メッセージのQoSを決定する
     請求項8に記載の無線端末装置。
  10.  前記決定部は、
     前記メッセージのメタデータに基づいて、前記メッセージのQoSを決定する
     請求項8に記載の無線端末装置。
  11.  前記送信情報は、
     トラフィックの種別を示す情報である
     請求項1に記載の無線端末装置。
  12.  前記送信情報は、
     トラフィックの用途を示す情報である
     請求項1に記載の無線端末装置。
  13.  前記通信制御部は、
     基地局による制御に応じて、医療機器との前記無線通信を制御する
     請求項1に記載の無線端末装置。
  14.  IPコンバータである請求項1に記載の無線端末装置。
  15.  医療機器である請求項1に記載の無線端末装置。
  16.  通信に関する干渉を検知する干渉検知部、
     を備え、
     前記通信制御部は、
     前記干渉検知部により検知された干渉に基づいて前記無線通信を制御する
     請求項1に記載の無線端末装置。
  17.  前記無線通信に用いるアンテナ、
     を備え、
     前記通信制御部は、
     前記アンテナの位置に応じて前記無線通信を制御する
     請求項1に記載の無線端末装置。
  18.  医療機関の空間内に配置された医療機器と無線通信を行う通信制御方法であり、
     前記医療機器の種別を示す機器情報と、前記医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得し、
     前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御方法。
  19.  医療機関の空間内に配置された医療機器と無線通信を行う通信制御プログラムであり、
     前記医療機器の種別を示す機器情報と、前記医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得し、
     前記通信ポリシー情報に基づいて前記無線通信を制御する通信制御プログラム。
  20.  医療機関の空間内に配置された医療機器の種別を示す機器情報と、前記医療機器が送信する送信内容の種別を示す送信情報に基づくQoS情報により決定された通信ポリシー情報を取得する取得部と、
     前記通信ポリシー情報に基づいて前記医療機器間の無線通信を制御する通信制御部と、
     を備える基地局。
PCT/JP2020/030657 2019-09-19 2020-08-12 無線端末装置、通信制御方法、通信制御プログラム及び基地局 WO2021054002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080064181.8A CN114365536A (zh) 2019-09-19 2020-08-12 无线终端设备、通信控制方法、通信控制程序和基站
JP2021546545A JPWO2021054002A1 (ja) 2019-09-19 2020-08-12
US17/640,835 US20220345945A1 (en) 2019-09-19 2020-08-12 Wireless terminal apparatus, communication control method, communication control program, and base station
EP20864538.2A EP4024988A4 (en) 2019-09-19 2020-08-12 WIRELESS TERMINAL DEVICE, COMMUNICATION CONTROL METHOD, COMMUNICATION CONTROL PROGRAM AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170010 2019-09-19
JP2019-170010 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021054002A1 true WO2021054002A1 (ja) 2021-03-25

Family

ID=74883488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030657 WO2021054002A1 (ja) 2019-09-19 2020-08-12 無線端末装置、通信制御方法、通信制御プログラム及び基地局

Country Status (5)

Country Link
US (1) US20220345945A1 (ja)
EP (1) EP4024988A4 (ja)
JP (1) JPWO2021054002A1 (ja)
CN (1) CN114365536A (ja)
WO (1) WO2021054002A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016087248A (ja) 2014-11-07 2016-05-23 ソニー株式会社 観察装置及び観察システム
JP2017513291A (ja) * 2014-03-27 2017-05-25 インテル コーポレイション QCI内のQoSを意識する電波資源割り当てをサポートするシステム、方法および装置
US20170303322A1 (en) * 2014-10-03 2017-10-19 Interdigital Patent Holdings, Inc. Optimizations for prose communications
WO2017199379A1 (ja) * 2016-05-18 2017-11-23 富士通株式会社 基地局、制御装置、無線端末、及び無線通信システム
US20190223054A1 (en) * 2016-09-23 2019-07-18 Huawei Technologies Co., Ltd. Quality of service class indicator structure and corresponding controllers and control methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2673989A4 (en) * 2011-02-07 2015-03-11 Nokia Solutions & Networks Oy SCALING OF TRANSMISSION PERFORMANCE IN WIRELESS SYSTEMS WITH SEVERAL ANTENNAS
US20140349660A1 (en) * 2013-05-23 2014-11-27 Telefonaktiebolaget L M Ericsson (Publ) Resource scheduling in a mobile communication network supporting machine-to-machine (m2m) and user equipment (ue) traffic
WO2018089334A1 (en) * 2016-11-10 2018-05-17 Think Surgical, Inc. Remote mentoring station
US11510108B2 (en) * 2018-02-16 2022-11-22 Idac Holdings, Inc. Methods and devices to determine the quality of service mechanisms for vehicle-to-everything mobile device communications
US11025745B2 (en) * 2018-06-28 2021-06-01 Intel Corporation Technologies for end-to-end quality of service deadline-aware I/O scheduling
WO2020040572A1 (ko) * 2018-08-22 2020-02-27 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
CN111385912A (zh) * 2018-12-28 2020-07-07 展讯通信(上海)有限公司 一种小区变更方法及装置、存储介质、终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513291A (ja) * 2014-03-27 2017-05-25 インテル コーポレイション QCI内のQoSを意識する電波資源割り当てをサポートするシステム、方法および装置
US20170303322A1 (en) * 2014-10-03 2017-10-19 Interdigital Patent Holdings, Inc. Optimizations for prose communications
JP2016087248A (ja) 2014-11-07 2016-05-23 ソニー株式会社 観察装置及び観察システム
WO2017199379A1 (ja) * 2016-05-18 2017-11-23 富士通株式会社 基地局、制御装置、無線端末、及び無線通信システム
US20190223054A1 (en) * 2016-09-23 2019-07-18 Huawei Technologies Co., Ltd. Quality of service class indicator structure and corresponding controllers and control methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024988A4

Also Published As

Publication number Publication date
CN114365536A (zh) 2022-04-15
EP4024988A1 (en) 2022-07-06
EP4024988A4 (en) 2022-10-05
US20220345945A1 (en) 2022-10-27
JPWO2021054002A1 (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
Almashaqbeh et al. QoS-aware health monitoring system using cloud-based WBANs
Kim et al. Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems
Ullah et al. Traffic priority based delay-aware and energy efficient path allocation routing protocol for wireless body area network
Ko et al. MEDiSN: Medical emergency detection in sensor networks
Golmie et al. Performance analysis of low rate wireless technologies for medical applications
JP5403074B2 (ja) 近距離無線ネットワークの改善
US10264488B2 (en) Multi-channel communication scheme for medical body area network (MBAN) to meet duty cycle regulation
EP2884887B1 (en) Coordinator switching method for medical body area networks
JP2009177817A (ja) 通信システム
Syed et al. On cognitive radio-based wireless body area networks for medical applications
EP4101147B1 (en) Method and apparatus for selecting a target edge application server in an edge computing environment
Shih et al. A data parasitizing scheme for effective health monitoring in wireless body area networks
Hasan et al. Software-defined application-specific traffic management for wireless body area networks
Kumar et al. Resilient Edge: Building an adaptive and resilient multi-communication network for IoT Edge using LPWAN and WiFi
WO2021054002A1 (ja) 無線端末装置、通信制御方法、通信制御プログラム及び基地局
Bakhsh Multi-tier mobile healthcare system using heterogeneous wireless sensor networks
Pawar et al. Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery
KR101077086B1 (ko) 저소비 전력형 무선 데이터 전송방법
Enkoji Dynamic Eap Based Medium Access Control Protocol for Ieee 802.15. 6 Wireless Body Area Networks
Gomes Modeling and Experimental Performance Analysis of ZigBee-IEEE 802.15. 4 for Wireless Body Area Networks
Kumar et al. Resilient Edge: Can we achieve Network Resiliency at the IoT Edge using LPWAN and WiFi?
Niyato et al. Fourth generation heterogeneous wireless access networks for eHealth services: Architecture and radio resource management
AL MAMOON PRIORITY AWARE ARCHITECTURE AND COMMUNICATION PROTOCOLS FOR A COGNITIVE RADIO BASED HOSPITAL
KR20240008847A (ko) 업링크 직교 주파수 분할 다중 접속(ul-ofdm)를 이용한 wi-fi 감지를 위한 시스템들 및 방법들
KR101077087B1 (ko) 저소비 전력형 무선 데이터 전송방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021546545

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864538

Country of ref document: EP

Effective date: 20220329