WO2021053993A1 - Acid generator and curable composition containing same - Google Patents
Acid generator and curable composition containing same Download PDFInfo
- Publication number
- WO2021053993A1 WO2021053993A1 PCT/JP2020/030342 JP2020030342W WO2021053993A1 WO 2021053993 A1 WO2021053993 A1 WO 2021053993A1 JP 2020030342 W JP2020030342 W JP 2020030342W WO 2021053993 A1 WO2021053993 A1 WO 2021053993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid generator
- group
- curable composition
- synthesis
- examples
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/56—Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
Definitions
- the present invention relates to an acid generator suitable for forming a cured product having excellent curability, heat resistance, and heat-resistant yellowing, a curable composition containing the acid generator, and a cured product using the same.
- onium salts such as iodonium and sulfonium salts are known as cationic polymerization initiators that cure cationically polymerizable compounds such as epoxy compounds by irradiation with active energy rays such as heat, light, and electron beams.
- an electronic device is equipped with a small and thin image sensor, and the image sensor is generally composed of a solid-state image sensor (CCD image sensor, CMOS image sensor, etc.) and an optical element such as a lens.
- a cationic curable composition is preferably used as compared with a radical curable composition because curing inhibition by oxygen does not occur and shrinkage during curing is small.
- the optical elements mounted on electronic devices are required to have heat resistance and heat-resistant yellowing that can be mounted by soldering by a reflow method for the purpose of improving manufacturing efficiency.
- the use of lead has been restricted due to consideration for the environment, and soldering has been performed using lead-free solder. Therefore, higher heat resistance (about 270 ° C.) and heat-resistant yellowing are required. became.
- An acid consisting of an anion having a specific structure with aluminum as the central element as a cationic polymerization initiator (acid generator) that does not contain toxic metals and has high cationic polymerization performance and cross-linking reaction performance such as SbF 6 -salt. Generators have been proposed (Patent Documents 5 and 6). However, although it is excellent in curability, there is a problem that the transparency is lowered after the heat resistance test of the cured product, and its application to members requiring the above optical characteristics has not progressed.
- an object of the present invention is excellent in curability, and excellent in heat resistance and heat-resistant yellowing by applying light irradiation or heat treatment (that is, the shape is maintained even under high temperature conditions such as soldering by a reflow method). It is an object of the present invention to provide an acid generator suitable for forming a cured product (which is capable of forming a cured product which is resistant to yellowing) and a curable composition containing the same. Another object of the present invention is to provide a cured product obtained by curing the curable composition, which has curability, heat resistance, and heat-resistant yellowing.
- the present inventor has found that an anion having a specific structure can be used as an acid generator in the process of examining an anion having aluminum as a central element, and has completed the present invention as a result of diligent studies to solve the above problems. It is a thing.
- the present invention is a curable composition containing an acid generator containing an onium salt represented by the following general formula (1), and the acid generator and a cationically polymerizable compound.
- R 1 to R 3 are phenyl groups which may independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or a substituent, and R 1 Part or all of the hydrogen atoms bonded to at least one group of ⁇ R 3 are replaced with fluorine atoms, and 30% to 70% of the total hydrogen atoms bonded to the groups of R 1 to R 3 are Substituted with a fluorine atom; E represents an element of valence n selected from S, I, N or P, n is an integer of 1 to 3 and R 4 is an organic group attached to E.
- the number of R 4 is n + 1, (n + 1 ) number of R 4 may respectively be the same or different from each other, two or more R 4 may bond directly or -O -, - S -, - SO -, - SO 2 -, - NH -, - CO -, - COO -, - CONH-, may form a ring structure containing an element E through an alkylene group or a phenylene group.
- the present invention also provides a cured product obtained by curing the curable composition described above.
- the optical element can be mounted on the board by reflow soldering together with other parts, and an optical device equipped with the optical element can be manufactured with excellent work efficiency. .. It can also be used for in-vehicle electronic devices that require heat resistance.
- the acid generator of the present invention contains an onium salt represented by the following general formula (1).
- R 1 to R 3 are phenyl groups which may independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or a substituent, and R 1 Part or all of the hydrogen atoms bonded to at least one group of ⁇ R 3 are replaced with fluorine atoms, and 30% to 70% of the total hydrogen atoms bonded to the groups of R 1 to R 3 are Substituted with a fluorine atom; E represents an element of valence n selected from S, I, N or P, n is an integer of 1 to 3 and R 4 is an organic group attached to E.
- the number of R 4 is n + 1, (n + 1 ) number of R 4 may respectively be the same or different from each other, two or more R 4 may bond directly or -O -, - S -, - SO -, - SO 2 -, - NH -, - CO -, - COO -, - CONH-, may form a ring structure containing an element E through an alkylene group or a phenylene group.
- examples of the alkyl group having 1 to 8 carbon atoms in R 1 to R 3 include linear alkyl groups (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl and the like.
- Branched alkyl groups isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-ethylhexyl and 1,1,3,3-tetramethylbutyl, etc.
- cycloalkyl groups (, etc.) Cyclopropyl, cyclobutyl, cyclopentyl can be mentioned.
- the alkenyl group having 2 to 8 carbon atoms in R 1 to R 3 includes a linear or branched alkenyl group (vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2). -Butenyl, 3-butenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl, etc.), and cycloalkenyl groups (2-cyclohexenyl). And 3-cyclohexenyl, etc.).
- the phenyl group which may have a substituent in R 1 to R 3 is an alkyl having 1 to 8 carbon atoms as a part of the hydrogen atom in the phenyl group in addition to the phenyl group. It represents a group, an alkenyl group having 2 to 8 carbon atoms, a nitro group, an alkoxy group represented by -OR 5 , an alkylthio group represented by -SR 6 , or a group substituted with a chlorine atom or a bromine atom.
- examples of the alkyl group having 1 to 8 carbon atoms and the alkenyl group having 2 to 8 carbon atoms are the same as those described in R 1 to R 3 of the general formula (1).
- alkoxy group represented by -OR 5 alkylthio group represented by -SR 6 include an alkyl group of R 5 ⁇ R 6 as 1 to 8 carbon atoms, specifically the Alkyl groups having 1 to 8 carbon atoms can be mentioned.
- Alkoxy groups represented by -OR 5 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2-. Methylbutoxy and the like can be mentioned.
- Examples of the alkylthio group represented by -SR 6 include methylthio, ethylthio, butylthio, hexylthio, cyclohexylthio and the like.
- an alkyl group having 1 to 8 carbon atoms preferably an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group represented by -OR 5, chlorine atom, or bromine It is an atom, more preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 2 to 4 carbon atoms, or a chlorine atom.
- Medium R 1 ⁇ R 3 from the viewpoint of ready availability of starting material, preferably an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, a phenyl group and, It is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or a phenyl group substituted with a chlorine atom. Further, it is more preferable that the total number of carbon atoms in R 1 to R 3 is 4 to 9.
- the groups in R 1 to R 3 in the formula (1) may be the same or different, and a part or all of the hydrogen atoms bonded to at least one group are substituted with fluorine atoms, and R 1 to R 1 to 30% to 70% of all the hydrogen atoms bonded to the group of R 3 are those substituted with a fluorine atom.
- This is called the fluorine substitution rate.
- the fluorine substitution rate needs to be 30% to 70%. If the fluorine substitution rate is less than 30%, the anion formed becomes unstable and it becomes difficult to use it as an acid generator, which is unsuitable.
- anion structure of the acid generator represented by the general formula (1) for example, those represented by the following chemical formulas (A-1) to (A-14) can be preferably exemplified.
- R 4 in the formula (1) represents an organic group bonded to E, and may be the same or different.
- alkyl group R 4 ⁇ 1 carbon atoms in 18, straight-chain alkyl group (methyl, ethyl, n- propyl, n- butyl, n- pentyl, n- octyl, n- decyl, n- dodecyl, n- Tetradecyl, n-hexadecyl and n-octadecyl, etc.), branched alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-ethylhexyl and 1,1,3,3- Tetramethylbutyl, etc.), cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), crosslinked cyclic alkyl groups
- alkenyl groups of R 4 having 2 to 18 carbon atoms in a straight or branched alkenyl group (vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl -1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl, etc.), cycloalkenyl groups (2-cyclohexenyl, 3-cyclohexenyl, etc.) and aryl Examples include alkenyl groups (styryl, cinnamyl, etc.).
- the aryl groups of R 4 C 6 -C in 14 (following carbon number of the substituent is not included), a monocyclic aryl group (such as phenyl), condensed polycyclic aryl group (naphthyl, anthracenyl, phenanthrenyl, Anthraquinolyl, fluorenyl, naphthoquinolyl, etc.) and aromatic heterocyclic hydrocarbon groups (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, etc.
- a monocyclic aryl group such as phenyl
- condensed polycyclic aryl group naphthyl, anthracenyl, phenanthrenyl, Anthraquinolyl, fluorenyl, naphthoquinolyl, etc.
- aromatic heterocyclic hydrocarbon groups
- the aryl group includes an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, and a nitro group.
- an alkoxy group represented by -OR 5 an alkylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, and -NR 9 the amino group represented by R 10, a R 5 ⁇ R 10 are mentioned an alkyl group having 1 to 8 carbon atoms and an alkyl group having 1 to 8 carbon atoms among the alkyl groups mentioned specifically ..
- R 5 to R 10 include aryl groups having 6 to 14 carbon atoms, and specific examples thereof include the above-mentioned aryl groups having 6 to 14 carbon atoms.
- Alkoxy groups represented by -OR 5 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2-. Methylbutoxy and the like can be mentioned.
- Examples of the aryloxy group represented by ⁇ OR 5 include phenoxy and naphthoxy.
- Examples of the alkylthio group represented by -SR 6 include methylthio, ethylthio, butylthio, hexylthio, cyclohexylthio and the like.
- Examples of the arylthio group represented by -SR 6 include phenylthio, naphthylthio, biphenylthio, 2-thioxanthonylthio and the like.
- Examples of the acyl group represented by R 7 CO- include acetyl, propanoyl, butanoyl, pivaloyl and benzoyl.
- Examples of the amino group represented by ⁇ NR 9 R 10 include methylamino, ethylamino, propylamino, dimethylamino, diethylamino, methylethylamino, dipropylamino, dipropylamino and piperidino.
- Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
- cationic polymerization initiating ability aspect preferred are an alkyl group having 1 to 18 carbon atoms, an aryl group and a nitro group having 6 to 14 carbon atoms, a hydroxyl group, an alkyl group having 1 to 18 carbon atoms, -OR
- An alkoxy group represented by 5 an arylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, or 6 to 6 carbon atoms substituted with a chlorine atom. It is an aryl group of 14.
- an alkyl group having 1 to 18 carbon atoms a phenyl group and a hydroxyl group
- an alkyl group having 1 to 18 carbon atoms an alkoxy group represented by -OR 5
- arylthio group represented by -SR 6 an acetyl group
- Benzoyl group phenyl group substituted with acetoxy group.
- the two or more R 4 may bond directly or -O -, - S -, - SO -, - SO 2 -, - NH -, - CO -, - COO -, - CONH-, an alkylene group or a phenylene group
- a ring structure containing the element E may be formed through the ring.
- E in formula (1) is, S (sulfur), I (iodine) is selected from N (nitrogen) or P (phosphorus), represents an element of valency n, and with an organic radical R 4 onium Form [E + ].
- n represents the valence of the element E and is an integer of 1 to 3.
- Corresponding onium ions are ammonium, phosphonium, sulfonium, and iodonium. Of these, ammonium, phosphonium, sulfonium, and iodonium, which are stable and easy to handle, are preferable, and sulfonium and iodonium, which are excellent in cationic polymerization performance and cross-linking reaction performance, are more preferable.
- ammonium ions include tetraalkylammoniums such as tetramethylammonium, ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium, and tetraethylammonium; N, N-dimethylpyrrolidinium, N-ethyl-N-methylpyrrolidi.
- Pyrrolidiniums such as Nium, N, N-diethylpyrrolidinium; N, N'-dimethylimidazolinium, N, N'-diethylimidazolinium, N-ethyl-N'-methylimidazolinium, 1,3 Imidazolinium such as 4-trimethylimidazolinium, 1,2,3,4-tetramethylimidazolinium; tetrahydropyrimidinium such as N, N'-dimethyltetrahydropyrimidinium; N, N'-dimethylmol Morphorinium such as holinium; piperidinium such as N, N'-diethylpiperidinium; pyridinium such as N-methylpyridinium, N-benzylpyridinium, N-phenacylpyridium; N, N'-dimethylimidazolium, etc.
- Imidazolium such as N-methylquinolium, N-benzylquinolium, N-phenacylquinolium; isoquinolium such as N-methylisoquinolium; thiazonium such as benzylbenzothiazonium, phenacylbenzothiazonium Acridium such as benzylacrydium and phenacylacrydium can be mentioned.
- phosphonium ions include tetraarylphosphoniums such as tetraphenyl phosphonium, tetra-p-tolyl phosphonium, tetrakis (2-methoxyphenyl) phosphonium, tetrakis (3-methoxyphenyl) phosphonium, and tetrakis (4-methoxyphenyl) phosphonium.
- tetraarylphosphoniums such as tetraphenyl phosphonium, tetra-p-tolyl phosphonium, tetrakis (2-methoxyphenyl) phosphonium, tetrakis (3-methoxyphenyl) phosphonium, and tetrakis (4-methoxyphenyl) phosphonium.
- Triarylphosphoniums such as triphenylbenzylphosphonium, triphenylphenacylphosphonium, triphenylmethylphosphonium, triphenylbutylphosphonium; triethylbenzylphosphonium, tributylbenzylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, tetrahexylphosphonium, triethylphenacilphosphonium , Tetraalkylphosphoniums such as tributylphenacilphosphoniums and the like.
- sulfonium ion examples include triphenylsulfonium, tri-p-tolylsulfonium, tri-o-tolylsulfonium, tris (4-methoxyphenyl) sulfonium, 1-naphthyldiphenylsulfonium, 2-naphthyldiphenylsulfonium, and tris (4).
- iodonium ions include diphenyl iodonium, di-p-tolyl iodonium, di (4-tert-butylphenyl) iodonium, di (4-dodecylphenyl) iodonium, di (4-methoxyphenyl) iodonium, (4-methoxyphenyl) iodonium.
- Phenyl Iodonium Di (4-decyloxyphenyl) Iodonium, 4- (2-Hydroxytetradecyloxy) Phenylphenyl Iodonium, 4-Isopropylphenyl (p-Trill) Iodonium, Phenyl (2,4,6- Examples include iodonium ions such as trimethoxyphenyl) iodonium and 4-isobutylphenyl (p-tolyl) iodonium.
- the onium salt represented by the formula (1) of the present invention can be produced by a metathesis method.
- the compound decomposition method is, for example, New Experimental Chemistry Course 14-I (1978, Maruzen) p-448; Advance in Composer Science, 62, 1-48 (1984); New Experimental Chemistry Course 14-III (1978, Maruzen). ) Pp1838-1846; Organic Sulfur Chemistry (Synthetic Reactions, 1982, Chemistry), Chapter 8, pp237-280; Nihon Kagaku Magazine, 87, (5), 74 (1966); , Japanese Patent Application Laid-Open No. 61-212554, Japanese Patent Application Laid-Open No. 61-100557, Japanese Patent Application Laid-Open No.
- the solvent water or an organic solvent can be used.
- the organic solvent include hydrocarbons (hexane, heptane, toluene, xylene, etc.), cyclic ethers (tetrahexyl, dioxane, etc.), chlorine-based solvents (chloroform, dichloromethane, etc.), alcohols (methanol, ethanol, isopropyl alcohol, etc.), ketones (methanol, ethanol, isopropyl alcohol, etc.), ketones ( Includes acetone, methyl ethyl ketone and methyl isobutyl ketone, etc.), nitriles (acetriform, etc.) and polar organic solvents (dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, etc.). These solvents may be used alone or in combination of two or more.
- the desired onium salt thus produced is separated by crystals or oil.
- an oily substance it is obtained by separating the precipitated oily substance from the organic solvent solution and further distilling off the organic solvent contained in the oily substance.
- crystals it is obtained by separating the precipitated solid from the organic solvent solution and further distilling off the organic solvent contained in the solid.
- the desired onium salt thus obtained can be purified by a method such as recrystallization or washing with water or a solvent, if necessary.
- Purification by recrystallization dissolves the target onium salt in a small amount of organic solvent, and separation from the organic solvent is performed by directly (or after concentrating) the poor solvent in the organic solvent solution containing the target onium salt. In addition, it can be carried out by precipitating the desired onium salt.
- the poor solvent used here include chain ethers (diethyl ether, dipropyl ether, etc.), esters (ethyl acetate, butyl acetate, etc.), aliphatic hydrocarbons (hexane, cyclohexane, etc.) and aromatic hydrocarbons (toluene and cyclohexane, etc.).
- Xylene, etc. is included.
- Purification can also be performed by utilizing the difference in solubility depending on the temperature. Purification can be performed by recrystallization (a method utilizing the difference in solubility due to cooling, a method of adding a poor solvent to precipitate, and a combination thereof).
- the target product is an oil (when it does not crystallize)
- the oil can be purified by washing with water or a poor solvent.
- the structure of the thus obtained onium salts generally analytical techniques, for example, 1 H, 13 C, 19 F, the nuclear magnetic resonance spectrum, such as that identified by like infrared absorption spectrum or elemental analysis Can be done.
- the acid generator of the present invention may be used alone or in combination of two or more.
- the onium salt (acid generator) represented by the formula (1) may be dissolved in advance in a solvent that does not inhibit the polymerization or cross-linking reaction in order to facilitate dissolution in the cationically polymerizable compound.
- the solvent examples include carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate and diethyl carbonate; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone and 2-heptanone; ethylene glycol and ethylene glycol.
- Polyhydric alcohols such as monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate, dipropylene glycol and dipropylene glycol monoacetate monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether.
- cyclic ethers such as dioxane; ethyl acetate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, ethyl ethoxyacetate , Methyl methoxypropionate, ethyl ethoxypropionate, methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl Esters such as acetate and 3-methyl-3-methoxybutyl acetate; aromatic hydrocarbons such as toluene and xylene can be mentioned.
- the ratio of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 1000 parts by weight, based on 100 parts by weight of the onium salt (acid generator) represented by the formula (1) of the present invention. It is 500 parts by weight.
- the solvent used may be used alone or in combination of two or more.
- the curable composition of the present invention comprises the above acid generator and a cationically polymerizable compound.
- Examples of the cationically polymerizable compound that is a constituent of the curable composition include cyclic ethers (epoxides and oxetane, etc.), ethylenically unsaturated compounds (vinyl ether, styrene, etc.), bicycloorthoesters, spirooltocarbonates, spirooltoesters, and the like.
- cyclic ethers epoxides and oxetane, etc.
- ethylenically unsaturated compounds vinyl ether, styrene, etc.
- bicycloorthoesters e.g., spirooltocarbonates, spirooltoesters, and the like.
- JP-A-11-060996, JP-A-09-302269, JP-A-2003-026993, JP-A-2002-206017 Japanese Patent Application Laid-Open No.
- Japanese Patent Application Laid-Open No. 10-212343 Japanese Patent Application Laid-Open No. 2000-119306
- Japanese Patent Application Laid-Open No. 10-67812 Japanese Patent Application Laid-Open No. 2000-186071, Japanese Patent Application Laid-Open No. 08-85775, Japanese Patent Application Laid-Open No. 08-134405, Kai 2008-20838, Japanese Patent Application Laid-Open No. 2008-20389, Japanese Patent Application Laid-Open No. 2008-20841, Japanese Patent Application Laid-Open No. 2008-26660, Japanese Patent Application Laid-Open No. 2008-26644, Japanese Patent Application Laid-Open No.
- epoxide known epoxides and the like can be used, and aromatic epoxides, alicyclic epoxides, heterocyclic epoxides and aliphatic epoxides are included.
- aromatic epoxide examples include glycidyl ethers of monovalent or polyvalent phenols (phenols, bisphenol A, phenol novolacs and compounds having alkylene oxide adducts thereof) having at least one aromatic ring.
- the alicyclic epoxide is a compound obtained by epoxidizing a compound having at least one cyclohexene or cyclopentene ring with an oxidizing agent (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, (3).
- heterocyclic epoxide examples include heterocycles other than epoxy groups in the molecule [for example, tetrahydrofuran ring, tetrahydropyran ring, morpholin ring, chroman ring, isochroman ring, tetrahydrothiophene ring, tetrahydrothiopyran ring, aziridine ring, pyrolysine ring.
- Isocyanurate 1- (2-methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxidepropyl) isocyanurate, diallyl monoglycidyl isocyanurate , 1,3-Diallyl-5- (2-methylepoxidepropyl) isocyanurate, 1,3-bis (2-methylpropenyl) -5-glycidyl isocyanurate, 1,3-bis (2-methylpropenyl) -5 -(2-Methylepoxidepropyl) isocyanurate, triglycidyl isocyanurate, tris (2-methylepoxidepropyl) isocyanurate, 1,3,4,6-tetraglycidyl glycoluryl, 1,3,4,6-tetrakis ( 2-Methylepoxide propyl) glycol uryl, 1-allyl-3,4,6-trig
- Aliphatic epoxides include aliphatic polyhydric alcohols, polyglycidyl ethers of this alkylene oxide adduct (1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.), and aliphatic polybasic acids. Examples thereof include polyglycidyl esters (diglycidyl tetrahydrophthalate, etc.) and epoxidized long-chain unsaturated compounds (epoxidized soybean oil, epoxidized polybutadiene, etc.).
- oxetane known ones and the like can be used, for example, 3-ethyl-3-hydroxymethyloxetane, 2-ethylhexyl (3-ethyl-3-oxetanylmethyl) ether, 2-hydroxyethyl (3-ethyl-3-3).
- Oxetanylmethyl) ether 2-hydroxypropyl (3-ethyl-3-oxetanylmethyl) ether, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, oxetanylsilsesquioxetane, phenol novolac oxetane, etc.
- Oxetanylmethyl) ether 2-hydroxypropyl (3-ethyl-3-oxetanylmethyl) ether, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, oxetanylsil
- ethylenically unsaturated compound known cationically polymerizable monomers and the like can be used, and includes aliphatic monovinyl ethers, aromatic monovinyl ethers, polyfunctional vinyl ethers, styrene and cationically polymerizable nitrogen-containing monomers.
- Examples of the aliphatic monovinyl ether include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether and the like.
- aromatic monovinyl ether examples include 2-phenoxyethyl vinyl ether, phenyl vinyl ether and p-methoxyphenyl vinyl ether.
- polyfunctional vinyl ether examples include butanediol-1,4-divinyl ether and triethylene glycol divinyl ether.
- styrene examples include styrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butoxystyrene and the like.
- Examples of the cationically polymerizable nitrogen-containing monomer include N-vinylcarbazole and N-vinylpyrrolidone.
- Bicycloorthoesters include 1-phenyl-4-ethyl-2,6,7-trioxabicyclo [2.2.2] octane and 1-ethyl-4-hydroxymethyl-2,6,7-trioxabicyclo. -[2.2.2] Octane and the like can be mentioned.
- spiro orthocarbonate examples include 1,5,7,11-tetraoxaspiro [5.5] undecane and 3,9-dibenzyl-1,5,7,11-tetraoxaspiro [5.5] undecane. Be done.
- Spiro orthoesters include 1,4,6-trioxaspiro [4.4] nonane, 2-methyl-1,4,6-trioxaspiro [4.4] nonane and 1,4,6-trioxas. Pyro [4.5] decane and the like can be mentioned.
- a polyorganosiloxane having at least one cationically polymerizable group in one molecule can be used (Japanese Patent Laid-Open No. 2001-348482, JP-A-2000-281965, JP-A-7-242828, JP. Japanese Unexamined Patent Publication No. 2008-195931, Journal of Polymer. Sci., Part A, Polymer. Chem., Vol. 28,497 (1990), etc.). These polyorganosiloxanes may be linear, branched, or cyclic, or may be a mixture thereof.
- cationically polymerizable compounds epoxides, oxetane and vinyl ethers are preferable, and epoxides and oxetanees are more preferable, and alicyclic epoxides and oxetanees are particularly preferable. Further, these cationically polymerizable compounds may be used alone or in combination of two or more.
- the content of the onium salt (acid generator) represented by the formula (1) of the present invention in the curable composition is preferably 0.05 to 20 parts by weight, more preferably 0.05 to 20 parts by weight, based on 100 parts by weight of the cationically polymerizable compound. It is preferably 0.1 to 10 parts by weight. Within this range, the polymerization of the cationically polymerizable compound becomes more sufficient, and the physical properties of the cured product become even better. This content is determined by various factors such as the properties of the cationically polymerizable compound, the type and irradiation amount of the active energy ray (when the active energy ray is used), the heating temperature, the curing time, the humidity, and the thickness of the coating film. Determined by consideration and not limited to the above range.
- the curable composition of the present invention may contain known additives (sensitizers, pigments, fillers, conductive particles, antistatic agents, flame retardants, defoamers, flow modifiers, photostabilizers, if necessary. Agents, antioxidants, adhesion-imparting agents, ion-supplementing agents, anti-coloring agents, solvents, non-reactive resins, radically polymerizable compounds, etc.) can be contained.
- sensitizer known sensitizers (Japanese Patent Laid-Open No. 11-279212, JP-A-09-183960, etc.) can be used, and benzoquinone ⁇ 1,4-benzoquinone, 1,2-benzoquinone, etc. ⁇ ; naphthoquinone ⁇ 1,4-naphthoquinone, 1,2-naphthoquinone, etc. ⁇ ; Anthracene ⁇ 2-methylanthracene, 2-ethylanthracene, etc. ⁇ , anthracene ⁇ anthracene, 9,10-dibutoxyanthracene, 9,10-dimethoxyanthracene, 9, 10-Diethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-dipropoxyanthracene, etc. ⁇ ; pyrene; 1,2-benzanthracene; perylene; tetracene; coron
- the content of the sensitizer is preferably 1 to 300 parts by weight, more preferably 5 to 200 parts by weight, based on 100 parts by weight of the acid generator.
- pigment known pigments and the like can be used, and examples thereof include inorganic pigments (titanium oxide, iron oxide, carbon black, etc.) and organic pigments (azo pigments, cyanine pigments, phthalocyanine pigments, quinacridone pigments, etc.).
- inorganic pigments titanium oxide, iron oxide, carbon black, etc.
- organic pigments azo pigments, cyanine pigments, phthalocyanine pigments, quinacridone pigments, etc.
- the content of the pigment is preferably 0.5 to 400,000 parts by weight, more preferably 10 to 150,000 parts by weight, based on 100 parts by weight of the acid generator.
- filler known fillers and the like can be used, and molten silica, crystalline silica, calcium carbonate, aluminum oxide, aluminum hydroxide, zirconium oxide, magnesium carbonate, mica, talc, calcium silicate, lithium aluminum silicate and the like can be used. Can be mentioned.
- the content of the filler is preferably 50 to 600,000 parts by weight, more preferably 300 to 200,000 parts by weight, based on 100 parts by weight of the acid generator.
- conductive particles known conductive particles can be used, and metal particles such as Ni, Ag, Au, Cu, Pd, Pb, Sn, Fe, Ni, and Al, and plated metals obtained by further metal-plating these metal particles. Particles, plated resin particles obtained by metal-plating resin particles, and particles of a conductive substance such as carbon can be used.
- the content of the conductive particles is preferably 50,000 to 30,000 parts by weight, more preferably 100 to 20,000 parts by weight, based on 100 parts by weight of the acid generator.
- antistatic agent known antistatic agents and the like can be used, and examples thereof include non-ionic antistatic agents, anionic antistatic agents, cationic antistatic agents, amphoteric antistatic agents and polymer antistatic agents. ..
- the content of the antistatic agent is preferably 0.1 to 20000 parts by weight, more preferably 0.6 to 5000 parts by weight, based on 100 parts of the acid generator.
- a known flame retardant or the like can be used, and an inorganic flame retardant ⁇ antimony trioxide, antimony pentoxide, tin oxide, tin hydroxide, molybdenum oxide, zinc borate, barium metaborate, red phosphorus, aluminum hydroxide , Magnesium hydroxide and calcium aluminate ⁇ ; brominated flame retardants ⁇ tetrabromophthalic anhydride, hexabromobenzene and decabromobiphenyl ethers, etc. ⁇ ; and phosphate ester flame retardants ⁇ tris (tribromophenyl) phosphate, etc. ⁇ Be done.
- the content of the flame retardant is preferably 0.5 to 40,000 parts by weight, more preferably 5 to 10,000 parts by weight, based on 100 parts by weight of the acid generator.
- the defoaming agent a known defoaming agent or the like can be used, and an alcohol defoaming agent, a metal soap defoaming agent, a phosphoric acid ester defoaming agent, a fatty acid ester defoaming agent, a polyether defoaming agent, a silicone defoaming agent. And mineral oil defoamers and the like.
- known fluidity adjusters and the like can be used, and examples thereof include hydrogenated castor oil, polyethylene oxide, organic bentonite, colloidal silica, amidowax, metal soap and acrylic acid ester polymer.
- known light stabilizers and the like can be used, and ultraviolet absorption type stabilizers ⁇ benzotriazole, benzophenone, salicylate, cyanoacrylate and derivatives thereof, etc. ⁇ ; radical supplement type stabilizers ⁇ hindered amine, etc. ⁇ ; and quenching. Examples include type stabilizers ⁇ nickel complexes, etc. ⁇ .
- antioxidants and the like can be used, and examples thereof include phenol-based antioxidants (monophenol-based, bisphenol-based and polymer phenol-based, etc.), sulfur-based antioxidants, phosphorus-based antioxidants, and the like. Be done.
- adhesion-imparting agent a known adhesion-imparting agent or the like can be used, and examples thereof include a coupling agent, a silane coupling agent, and a titanium coupling agent.
- ion catching agent known ion catching agents and the like can be used, and examples thereof include organic aluminum (alkoxyaluminum, phenoxyaluminum and the like) and the like.
- antioxidants are effective, and phenol-based antioxidants (monophenol-based, bisphenol-based, high-molecular-weight phenol-based, etc.), sulfur-based oxidation. Examples thereof include antioxidants and phosphorus-based antioxidants.
- the content of each is 0 with respect to 100 parts of the acid generator. It is preferably 1 to 20000 parts by weight, more preferably 0.5 to 5000 parts by weight.
- the solvent is not limited as long as it can be used for dissolving a cationically polymerizable compound or adjusting the viscosity of an energy ray-curable composition, and the above-mentioned solvent for an acid generator can be used.
- the content of the solvent is preferably 50 to 2000000 parts by weight, more preferably 200 to 500,000 parts by weight, based on 100 parts by weight of the acid generator.
- Non-reactive resins include polyester, polyvinyl acetate, polyvinyl chloride, polybutadiene, polycarbonate, polystyrene, polyvinyl ether, polyvinyl butyral, polybutene, styrene butadiene block copolymer hydrogenated material, and (meth) acrylic acid ester.
- Examples include coalescence and polyurethane.
- the number average molecular weight of these resins is preferably 1000 to 500,000, more preferably 5000 to 100,000 (the number average molecular weight is a value measured by a general method such as GPC).
- the content of the non-reactive resin is preferably 5 to 400,000 parts by weight, more preferably 50 to 150,000 parts by weight, based on 100 parts by weight of the acid generator.
- non-reactive resin When a non-reactive resin is contained, it is desirable to dissolve the non-reactive resin in a solvent in advance in order to easily dissolve the non-reactive resin with a cationically polymerizable compound or the like.
- Known radically polymerizable compounds include ⁇ Photopolymer Social gathering edition "Photopolymer Handbook” (1989, Industrial Research Council), General Technology Center edition “UV / EB Curing Technology” (1982, General Technology Center), Radtech Research. "UV / EB Curing Materials” (1992, CMC) edited by the Society, “Causes of Curing Failure / Inhibition in UV Curing and Countermeasures” (2003, Technical Information Association) ⁇ , etc. It can be used and includes monofunctional monomers, bifunctional monomers, polyfunctional monomers, epoxy (meth) acrylates, polyester (meth) acrylates and urethane (meth) acrylates.
- the content of the radically polymerizable compound is preferably 5 to 400,000 parts by weight, more preferably 50 to 150,000 parts by weight, based on 100 parts by weight of the acid generator.
- radical polymerization initiator that initiates polymerization by heat or light in order to increase the molecular weight of these by radical polymerization.
- radical polymerization initiator known radical polymerization initiators and the like can be used, and thermal radical polymerization initiators (organic peroxides, azo compounds, etc.) and photoradical polymerization initiators (acetophenone-based initiators, benzophenone-based initiators, etc.) Michler ketone-based initiators, benzoin-based initiators, thioxanthone-based initiators, acylphosphine-based initiators, etc.) are included.
- thermal radical polymerization initiators organic peroxides, azo compounds, etc.
- photoradical polymerization initiators acetophenone-based initiators, benzophenone-based initiators, etc.
- Michler ketone-based initiators Michler ketone-based initiators
- benzoin-based initiators benzoin-based initiators
- thioxanthone-based initiators thioxanthone-based initiators
- acylphosphine-based initiators etc.
- the content of the radical polymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the radically polymerizable compound. ..
- a cationically polymerizable compound, an acid generator and, if necessary, an additive are uniformly mixed and dissolved at room temperature (about 20 to 30 ° C.) or, if necessary, heating (about 40 to 90 ° C.). It can be prepared by kneading with 3 rolls or the like.
- the curable composition of the present invention can be cured by irradiating it with energy rays to obtain a cured product.
- the energy ray may be any as long as it has the energy to induce the decomposition of the acid generator of the present invention, but it may be a low pressure, medium pressure, high pressure or ultra high pressure mercury lamp, metal halide lamp, LED lamp, excimer lamp, carbon arc lamp. , fluorescent lamps, semiconductor solid-state laser, argon laser, the He-Cd laser, KrF excimer laser, ArF excimer laser or F 2 ultraviolet to visible light region derived from a laser or the like (wavelength: about 100 to about 800 nm) energy ray is preferred .
- the energy ray radiation having high energy such as an electron beam or an X-ray can also be used.
- the energy ray irradiation time is affected by the intensity of the energy ray and the permeability of the energy ray to the energy ray curable composition, but at room temperature (about 20 to 30 ° C.), about 0.1 to 10 seconds is sufficient. Is. However, when the energy ray permeability is low or the film thickness of the energy ray curable composition is thick, it may be preferable to take a longer time.
- the energy ray-curable compositions are cured by cationic polymerization 0.1 seconds to several minutes after the energy ray irradiation, but if necessary, after the energy ray irradiation, the room temperature (about 20 to 30 ° C.) to 250 It is also possible to aftercure by heating at ° C for several seconds to several hours.
- the curable composition of the present invention can be cured by heating to obtain a cured product.
- heating method for curing conventionally known methods such as heat circulation heating, infrared heating, and high frequency heating can be used.
- the heating temperature required for curing is not particularly limited as long as the curing proceeds sufficiently and does not deteriorate the substrate, but is preferably in the range of 50 to 250 ° C, more preferably 80 to 200 ° C.
- the heating time depends on the heating temperature, it is preferably several minutes to several hours from the viewpoint of productivity.
- the cured product obtained by curing the curable composition of the present invention has excellent heat resistance, and the 5% weight loss temperature is, for example, 260 ° C. or higher, preferably 280 ° C. or higher, and particularly preferably 300 ° C. or higher.
- the 5% weight loss temperature is determined by differential thermal-thermogravimetric simultaneous measurement (TG-DTA). Therefore, the shape can be maintained even under high temperature conditions such as soldering by the reflow method.
- the cured product obtained by curing the curable composition of the present invention has excellent transparency, and the yellowness (YI) of the cured product before being subjected to the heat resistance test is, for example, 1.5 or less. Further, the cured product obtained by curing the curable composition of the present invention can suppress yellowing and maintain transparency even under high temperature conditions such as soldering by a reflow method, and has been subjected to a heat resistance test.
- the yellowness (YI) of the later cured product is, for example, 1.5 or less.
- the method for measuring the yellowness is as described in the examples.
- An optical element containing a cured product obtained by curing the curable composition of the present invention as a constituent element has both excellent heat resistance and heat-resistant yellowing.
- optical elements used for lenses, prisms, LEDs, organic EL elements, semiconductor lasers, transistors, solar cells, CCD image sensors, optical waveguides, optical fibers, alternative glasses (for example, display substrates, hard disk substrates, polarizing films) and the like. is preferably used as.
- the optical element containing the cured product obtained by curing the curable composition of the present invention as a constituent element has excellent heat resistance, it can be mounted together with other parts by reflow processing at the time of substrate mounting. Is. It can also be used for in-vehicle electronic devices that require heat resistance.
- Examples of the optical device provided with the above optical elements include portable electronic devices such as mobile phones, smartphones, and tablet PCs; near-infrared sensors, millimeter-wave radars, LED spot lighting devices, near-infrared LED lighting devices, and mirror monitors. , Instrument panels, head-mounted display (projection type) combiners, head-up display combiners, and other in-vehicle electronic devices.
- parts mean parts by weight and% means% by weight.
- Synthesis Example 2 Synthesis of Lithium Tetrakis (2-Pentafluoroethyl-2-Propoxy) Aluminate (A-2)
- A-2 Synthesis of Lithium Tetrakis (2-Pentafluoroethyl-2-Propoxy) Aluminate
- 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-pentafluoroethyl-2.
- -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 22.3 g of propanol (15.6 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-2) (yield 84%, fluorine substitution rate 45%).
- Synthesis Example 3 Synthesis of Lithium Tetrakis (2-Heptafluoropropyl-2-Propoxy) Aluminate (A-3)
- A-3 Synthesis of Lithium Tetrakis (2-Heptafluoropropyl-2-Propoxy) Aluminate (A-3)
- 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-heptafluoropropyl-2.
- -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 28.5 g of propanol (18.0 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-3) (yield 76%, fluorine substitution rate 54%).
- Synthesis Example 4 Synthesis of lithium tetrakis (hexafluoro-tert-butoxy) aluminate (A-4)
- A-4 Synthesis of lithium tetrakis (hexafluoro-tert-butoxy) aluminate (A-4)
- 16.0 g of 2-trifluoromethyl-2-propanol was converted to 22.8 g of hexafluoro-tert-butanol.
- a white solid was obtained in the same manner as in Synthesis Example 1 except for the modification (16.0 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-4) (yield 84%, fluorine substitution rate 67%).
- Synthesis Example 5 Synthesis of Lithium Tetrakis (2-Vinyl-Hexafluoro-2-Propoxy) Aluminate (A-5)
- a slightly yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 24.3 g of -2-propanol (15.7 g). It was confirmed by 1 H-NMR and F-NMR that this slightly yellow solid was (A-5) (yield 78%, fluorine substitution rate 67%).
- Synthesis Example 6 Synthesis of Lithium Tetrakis (2-allyl-Hexafluoro-2-Propoxy) Aluminate (A-6)
- A-6 Synthesis of Lithium Tetrakis (2-allyl-Hexafluoro-2-Propoxy) Aluminate (A-6)
- 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-allyl-hexafluoro.
- a slightly yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 26.0 g of -2-propanol (13.2 g). It was confirmed by 1 H-NMR and F-NMR that this slightly yellow solid was (A-6) (yield 61%, fluorine substitution rate 55%).
- Synthesis Example 7 Synthesis of Lithium Tetrakis (2-Phenyl-Hexafluoro-2-Propoxy) Aluminate (A-7)
- a white solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 30.5 g of -2-propanol (17.5 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-7) (yield 70%, fluorine substitution rate 55%).
- Synthesis Example 8 Synthesis of Lithium Tetrakis (2-Pentafluorophenyl-2-Propoxy) Aluminate (A-8)
- Synthesis Example 1 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-pentafluorophenyl-2.
- -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 33.3 g of propanol (15.9 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-8) (yield 68%, fluorine substitution rate 45%).
- Synthesis Example 9 Synthesis of Lithium Tetrakis (2-p-Trill-Hexafluoro-2-Propoxy) Aluminate (A-9)
- Synthesis Example 1 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-p-.
- a pale yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 32.3 g of trill-hexafluoro-2-propanol (12.5 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-9) (yield 47%, fluorine substitution rate 46%).
- Synthesis Example 10 Synthesis of lithium tetrakis (2-p-chlorophenyl-hexafluoro-2-propoxy) aluminate (A-10)
- A-10 Synthesis of lithium tetrakis (2-p-chlorophenyl-hexafluoro-2-propoxy) aluminate (A-10)
- 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-p-.
- a pale yellow solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 34.8 g of chlorophenyl-hexafluoro-2-propanol (12.8 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-10) (yield 45%, fluorine substitution rate 60%).
- Synthesis Example 12 Synthesis of lithium tris (2-phenyl-hexafluoro-2-propoxy) (nonafluoro-tert-butoxy) aluminate (A-12)
- 13.6 g of hexafluoro-tert-butanol was added in 2-.
- a pale yellow solid was prepared in the same manner as in Synthesis Example 11 except that 18.3 g of phenyl-hexafluoro-2-propanol and 6.4 g of 2-trifluoromethyl-2-propanol were changed to 11.8 g of nonafluoro-tert-butanol. Obtained (13.6 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-12) (yield 55%, fluorine substitution rate 64%).
- Synthesis Example 13 Synthesis of lithium tris (2-trifluoromethyl-2-propoxy) (nonafluoro-tert-butoxy) aluminate (A-13)
- Synthesis Example 11 13.6 g of hexafluoro-tert-butanol was added to 2-tri.
- a white solid was obtained in the same manner as in Synthesis Example 11 except that 9.6 g of fluoromethyl-2-propanol and 6.4 g of 2-trifluoromethyl-2-propanol were changed to 11.8 g of nonafluoro-tert-butanol. 7.1 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-13) (yield 44%, fluorine substitution rate 50%).
- the reaction solution was cooled to room temperature, poured into 500 g of ion-exchanged water, extracted with 500 g of dichloromethane, and washed with ion-exchanged water until the pH of the aqueous layer became neutral.
- the dichloromethane layer was transferred to a rotary evaporator and the solvent was evaporated to give a brown liquid product.
- Examples 2 to 13 Synthesis of acid generators (AG102 to AG113)
- the lithium salt (A-1) was changed to the lithium salt (A-2) to (A-13), but the same as in Example 1.
- acid generators (AG102 to AG113) were obtained, respectively.
- Example 14 Synthesis of thiodi-p-phenylenebis (diphenylsulfonium) di [tetrakis (2-trifluoromethyl-2-propoxy)] aluminate (AG201)
- the method (thiodi-p) of Patent Document Japanese Patent Laid-Open No. 2013-227368).
- -A method for synthesizing phenylene bis (diphenylsulfonium) bis (hexafluorophosphate)) was used as a reference to obtain an acid generator (AG201) using a lithium salt (A-1) instead of potassium hexafluorophosphate.
- reaction solution was cooled to room temperature, poured into 100 mL of ion-exchanged water, extracted with 100 g of dichloromethane, and washed with water until the pH of the aqueous layer became neutral.
- the dichloromethane layer was transferred to a rotary evaporator and the solvent was distilled off to obtain a brown solid. This was washed with ethyl acetate / hexane, and the organic solvent was concentrated to obtain 20 g of [4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium methanesulfonate (intermediate-2).
- Example 40 (4-Isopropylphenyl) Trilliodonium Tetrakiss (2-trifluoromethyl-2-propoxy) Aluminate (A401) Synthesis Add 20 g of 4-methyliodobenzene to a reaction vessel, and further add 50 g of acetic acid and 10 g of sulfuric acid. 10 g of potassium persulfate was added little by little at 15 ° C. or lower while cooling in an ice-water bath. The reaction was carried out at 20 ° C. for 4 hours, and 24.4 g of cumene (isopropylbenzene) was added dropwise thereto so as not to exceed 20 ° C. Then, it was reacted at room temperature for 20 hours.
- reaction solution was added to 500 parts of an aqueous solution containing an equimolar lithium salt (A-1), and the mixture was further stirred for 3 hours.
- 500 parts of dichloromethane was added thereto. After standing, the aqueous layer was removed by liquid separation, and the organic layer was washed 5 times with 100 parts of water. Dichloromethane was concentrated and recrystallized from cyclohexane to obtain an acid generator (A401).
- Examples 54 to 65 Synthesis of acid generators (AG502 to AG513)
- the acid generators were obtained in the same manner as in Example 53, except that they were changed to lithium salts (A-2) to (A-13). (AG502 to AG513) were obtained.
- Example 66 Synthesis of phenyl (2,4,6-trimethoxyphenyl) iodonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG601) Phenyl (2,4,6-trimethoxyphenyl) in a reaction vessel. 5.4 g of iodonium p-toluenesulfonate and 50 g of dichloromethane were added. While stirring, 50 parts of an aqueous solution containing an equimolar lithium salt (A-1) was added, and the mixture was stirred at room temperature for 8 hours. After standing, the aqueous layer was removed by liquid separation, and the organic layer was further washed with 50 parts of water 5 times. An acid generator (AG601) was obtained by distilling off the organic solvent under reduced pressure.
- A-1 equimolar lithium salt
- Example 66 the acid generators were obtained in the same manner as in Example 66, except that they were changed to lithium salts (A-2) to (A-13). (AG602 to AG613) were obtained.
- Example 105 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG901) 3.4 g of 4-acetoxyphenyldimethylsulfonium hexafluorophosphate was dissolved in 50 g of dichloromethane and equimolar. 30 g of an aqueous solution containing the lithium salt (A-1) of No. 1 was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG901).
- Examples 119 to 130 Synthesis of acid generators (AG1002 to AG1013) Acid generators in the same manner as in Example 118, except that they were changed to lithium salts (A-2) to (A-13) in Example 118. (AG1002 to AG1013) were obtained.
- Example 123 Comparative Example 12-Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (nonafluoro-tert-pentoxy) aluminate (AG923)
- A-23) was used instead of the lithium salt (A-1).
- An acid generator (AG923) was obtained in the same manner as in Example 105 (fluorine substitution rate 81%).
- EP-1 2,2-bis (4-glycidyloxyphenyl) propane
- EP-2 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate
- EP-3 3-ethyl-3- ⁇ [(3-Epoxyoxetane-3-yl) methoxy] methyl ⁇ oxetane
- the curability of the obtained cured product was confirmed based on the presence or absence of tackiness on the surface. The presence or absence of tackiness was judged by palpation. Evaluation Criteria ⁇ : There was no tackiness on the surface and there was no change in the surface shape of the cured product ⁇ : There was no tackiness on the surface, but the surface shape of the cured product changed ⁇ : The surface had tackiness
- Transparency-1 A spacer made of Teflon (registered trademark) having a length of 20 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared and sandwiched between slide glasses (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). The curable composition was cast into the gaps, irradiated with light in the same manner as described above, and left at room temperature for 60 minutes after the light irradiation to obtain a cured product. Transparency -1 was evaluated by measuring the transparency (YI) of the obtained cured product using a spectrophotometer (trade name "U-3900", manufactured by Hitachi High-Technologies Corporation). As for the yellowness (YI), the value of the 2 degree field of view in the D65 light source was read.
- YI yellowness
- Heat-resistant transparency (transparency-2)] Heat resistance based on the reflow temperature profile (maximum temperature: 270 ° C) described in the JEDEC standard using a tabletop reflow furnace (manufactured by Shinapec) for the cured product obtained by the same method as the above [Transparency-1] evaluation. After the test was carried out three times in succession, the heat-resistant transparency (transparency-2) was evaluated by measuring the transparency (YI) in the same manner as described above.
- the curable composition obtained by the present invention is excellent in cationic polymerization ability by light irradiation and excellent in heat resistance and transparency of the obtained cured product.
- the fluorine content of the anion portion in the acid generator of the present invention particularly affects the heat resistance and transparency, and is compared with Examples 131 to 169 (fluorine content of 70% or less) in Tables 7 to 8 and Comparative Examples 17 to 20 (fluorine).
- Examples 188 to 226 in Tables 9 to 10 with Comparative Examples 33 to 36 it is effective for heat resistance and transparency that the fluorine content of the anion is 70% or less. You can see that.
- EP-1 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate
- EP-2 2,2-bis (4-glycidyloxyphenyl) propane
- EP-3 3-ethyl-3- ⁇ [(3-Epoxyoxetane-3-yl) methoxy] methyl ⁇ oxetane
- the curability of the obtained cured product was confirmed based on the presence or absence of tackiness on the surface. The presence or absence of tackiness was judged by palpation. Evaluation Criteria ⁇ : There was no tackiness on the surface and there was no change in the surface shape of the cured product ⁇ : There was no tackiness on the surface, but the surface shape of the cured product changed ⁇ : The surface had tackiness
- Transparency-1 A spacer made of Teflon (registered trademark) having a length of 20 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared and sandwiched between slide glasses (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap and heated in the same manner as described above to obtain a cured product. Transparency -1 was evaluated by measuring the transparency (YI) of the obtained cured product using a spectrophotometer (trade name "U-3900", manufactured by Hitachi High-Technologies Corporation). As for the yellowness (YI), the value of the 2 degree field of view in the D65 light source was read.
- YI yellowness
- Heat-resistant transparency (transparency-2)] Heat resistance based on the reflow temperature profile (maximum temperature: 270 ° C) described in the JEDEC standard using a tabletop reflow furnace (manufactured by Shinapec) for the cured product obtained by the same method as the above [Transparency-1] evaluation. After the test was carried out three times in succession, the heat-resistant transparency (transparency-2) was evaluated by measuring the transparency (YI) in the same manner as described above.
- the curable composition obtained by the present invention is excellent in cationic polymerization ability by heat and excellent in heat resistance and transparency of the obtained cured product.
- the fluorine content of the anion portion in the acid generator of the present invention particularly affects the heat resistance and transparency, and is compared with Examples 245 to 270 (fluorine content of 70% or less) and Comparative Examples 49 to 52 (fluorine content) in Table 11.
- Examples 283 to 308 and Comparative Examples 65 to 68 in Table 12 greater than 70%
- a fluorine content of an anion of 70% or less is effective for heat resistance and transparency.
- the curable composition of the present invention Since the curable composition of the present invention has the above-mentioned structure, it is excellent in curability, and by subjecting it to light irradiation or heat treatment, a cured product having excellent curability, transparency, heat resistance, and heat-resistant yellowing is formed. Can be done. Therefore, the curable composition of the present invention comprises an optical element material (lens or prism material, encapsulant, optical waveguide forming material, adhesive, optical fiber forming material, imprint material, alternative glass forming material, etc.), resist, coating. It can be suitably used as an agent or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Epoxy Resins (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention provides: an acid generator which is suitable for the formation of a cured product that has excellent curability, heat resistance and thermal yellowing resistance; a curable composition which contains this acid generator; and a cured product which is obtained using this curable composition. The present invention is an acid generator which contains an onium salt represented by general formula (1). (In the formula, each of R1 to R3 independently represents an alkyl group having from 1 to 8 carbon atoms, an alkenyl group having from 2 to 8 carbon atoms or an optionally substituted phenyl group; some or all of hydrogen atoms bonded to at least one of the R1 to R3 groups are substituted by fluorine atoms, and from 30% to 70% of all hydrogen atoms bonded to the R1 to R3 groups are substituted by fluorine atoms; E represents an n-valent element selected from among S, I, N and P; n represents an integer from 1 to 3; and R4 represents an organic group bonded to E.)
Description
本発明は、硬化性、耐熱性、及び耐熱黄変性に優れた硬化物を形成するために好適な酸発生剤とこれを含む硬化性組成物、それを用いた硬化物に関する。
The present invention relates to an acid generator suitable for forming a cured product having excellent curability, heat resistance, and heat-resistant yellowing, a curable composition containing the acid generator, and a cured product using the same.
従来、熱あるいは光、電子線などの活性エネルギー線照射によってエポキシ化合物などのカチオン重合性化合物を硬化させるカチオン重合開始剤として、ヨードニウムやスルホニウム塩等のオニウム塩が知られている。
Conventionally, onium salts such as iodonium and sulfonium salts are known as cationic polymerization initiators that cure cationically polymerizable compounds such as epoxy compounds by irradiation with active energy rays such as heat, light, and electron beams.
カチオン重合性化合物の硬化性能や酸触媒による架橋反応性能はアニオンの種類で異なり、一般的にはBF4
-<PF6
-<SbF6
-の順に良くなる。しかし、重合や架橋性能の良いSbF6
-を含有するカチオン重合開始剤(酸発生剤)は、Sbの毒性の問題から使用用途が限定されるため、毒性金属を含まず、SbF6
-のような高いカチオン重合開始能を有するカチオン重合開始剤が求められている。
Crosslinking performance due to curing performance and acid catalyst cationically polymerizable compounds different in kind of anion, typically BF 4 - <PF 6 - < SbF 6 - better in the order of. However, SbF 6 good polymerization and crosslinking performance - cationic polymerization initiator containing (acid generator), since the intended use is limited from toxicity problems of Sb, free of toxic metals, SbF 6 - like There is a demand for a cationic polymerization initiator having a high ability to initiate cationic polymerization.
一方、携帯電話、スマートフォン等の携帯型電子機器の需要が拡大している。このような電子機器には小型で薄型の撮像ユニットが搭載されており、前記撮像ユニットは、一般に、固体撮像素子(CCD型イメージセンサやCMOS型イメージセンサ等)とレンズ等の光学素子より構成されている。レンズ等の光学素子の材料としては、酸素による硬化阻害が起こらない点、及び硬化時の収縮が小さい点から、ラジカル硬化性組成物に比べカチオン硬化性組成物が好ましく使用される。
On the other hand, demand for portable electronic devices such as mobile phones and smartphones is increasing. Such an electronic device is equipped with a small and thin image sensor, and the image sensor is generally composed of a solid-state image sensor (CCD image sensor, CMOS image sensor, etc.) and an optical element such as a lens. ing. As a material for an optical element such as a lens, a cationic curable composition is preferably used as compared with a radical curable composition because curing inhibition by oxygen does not occur and shrinkage during curing is small.
また、電子機器に搭載される光学素子には、製造の効率化を図る目的から、リフロー方式による半田付けにより実装可能な耐熱性及び耐熱黄変性を有することが求められる。さらに近年、環境への配慮から鉛の使用が制限され、鉛フリー半田を使用して半田付けが行われるようになったため、更に高い耐熱性(約270℃)及び耐熱黄変性が求められるようになった。
In addition, the optical elements mounted on electronic devices are required to have heat resistance and heat-resistant yellowing that can be mounted by soldering by a reflow method for the purpose of improving manufacturing efficiency. Furthermore, in recent years, the use of lead has been restricted due to consideration for the environment, and soldering has been performed using lead-free solder. Therefore, higher heat resistance (about 270 ° C.) and heat-resistant yellowing are required. became.
毒性金属を含まず、SbF6
-塩のような高いカチオン重合性能や架橋反応性能を有するカチオン重合開始剤(酸発生剤)として、アルミニウムを中心元素とする、特定の構造を有するアニオンからなる酸発生剤が提案されている(特許文献5および特許文献6)。しかしながら硬化性に優れるものの、硬化物の耐熱試験後には透明性が低下する問題があり、上記の光学特性が必要な部材への適用が進んでいなかった。
An acid consisting of an anion having a specific structure with aluminum as the central element as a cationic polymerization initiator (acid generator) that does not contain toxic metals and has high cationic polymerization performance and cross-linking reaction performance such as SbF 6 -salt. Generators have been proposed (Patent Documents 5 and 6). However, although it is excellent in curability, there is a problem that the transparency is lowered after the heat resistance test of the cured product, and its application to members requiring the above optical characteristics has not progressed.
従って、本発明の目的は、硬化性に優れ、光照射又は加熱処理を施すことにより、耐熱性及び耐熱黄変性に優れた(すなわち、リフロー方式による半田付け等の高温条件下においても形状を保持することができ、且つ黄変しにくい)硬化物を形成するのに好適な酸発生剤およびこれを含む硬化性組成物を提供することにある。
本発明の他の目的は、前記硬化性組成物を硬化して得られる硬化物であって、硬化性、耐熱性、及び耐熱黄変性を兼ね備えた硬化物を提供することにある。 Therefore, an object of the present invention is excellent in curability, and excellent in heat resistance and heat-resistant yellowing by applying light irradiation or heat treatment (that is, the shape is maintained even under high temperature conditions such as soldering by a reflow method). It is an object of the present invention to provide an acid generator suitable for forming a cured product (which is capable of forming a cured product which is resistant to yellowing) and a curable composition containing the same.
Another object of the present invention is to provide a cured product obtained by curing the curable composition, which has curability, heat resistance, and heat-resistant yellowing.
本発明の他の目的は、前記硬化性組成物を硬化して得られる硬化物であって、硬化性、耐熱性、及び耐熱黄変性を兼ね備えた硬化物を提供することにある。 Therefore, an object of the present invention is excellent in curability, and excellent in heat resistance and heat-resistant yellowing by applying light irradiation or heat treatment (that is, the shape is maintained even under high temperature conditions such as soldering by a reflow method). It is an object of the present invention to provide an acid generator suitable for forming a cured product (which is capable of forming a cured product which is resistant to yellowing) and a curable composition containing the same.
Another object of the present invention is to provide a cured product obtained by curing the curable composition, which has curability, heat resistance, and heat-resistant yellowing.
本発明者はアルミニウムを中心元素とするアニオンの検討過程において、特定の構造を有するアニオンが酸発生剤として利用できることを見出し、さらに上記課題を解決するため鋭意検討した結果、本発明を完成させたものである。
The present inventor has found that an anion having a specific structure can be used as an acid generator in the process of examining an anion having aluminum as a central element, and has completed the present invention as a result of diligent studies to solve the above problems. It is a thing.
すなわち、本発明は、下記一般式(1)で表されるオニウム塩を含有する酸発生剤、および該酸発生剤とカチオン重合性化合物とを含有してなる、硬化性組成物である。
That is, the present invention is a curable composition containing an acid generator containing an onium salt represented by the following general formula (1), and the acid generator and a cationically polymerizable compound.
[式中、R1~R3は、互いに独立して、炭素数1~8のアルキル基、炭素数2~8のアルケニル基または置換基を有していてもよいフェニル基であり、R1~R3のうち少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR1~R3の基に結合する全水素原子のうち30%~70%がフッ素原子で置換されており;EはS、I、NまたはPから選ばれる原子価nの元素を表し、nは1~3の整数であり、R4はEに結合している有機基であり、R4の個数はn+1であり、(n+1)個のR4はそれぞれ互いに同一であっても異なっても良く、2個以上のR4が互いに直接または-O-、-S-、-SO-、-SO2-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]
[In the formula, R 1 to R 3 are phenyl groups which may independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or a substituent, and R 1 Part or all of the hydrogen atoms bonded to at least one group of ~ R 3 are replaced with fluorine atoms, and 30% to 70% of the total hydrogen atoms bonded to the groups of R 1 to R 3 are Substituted with a fluorine atom; E represents an element of valence n selected from S, I, N or P, n is an integer of 1 to 3 and R 4 is an organic group attached to E. There, the number of R 4 is n + 1, (n + 1 ) number of R 4 may respectively be the same or different from each other, two or more R 4 may bond directly or -O -, - S -, - SO -, - SO 2 -, - NH -, - CO -, - COO -, - CONH-, may form a ring structure containing an element E through an alkylene group or a phenylene group. ]
本発明は、また前記に記載の硬化性組成物を硬化した硬化物を提供する。
The present invention also provides a cured product obtained by curing the curable composition described above.
本発明の硬化性組成物は上記構成を有するため硬化性に優れ、光照射又は加熱処理を施すことにより、硬化性、透明性、耐熱性、及び耐熱黄変性に優れた硬化物を形成することができる。硬化性、透明性に優れ、リフロー方式による半田付け等の高温条件下においても変形しにくく黄変しにくい特性(=耐熱性及び耐熱黄変性)を有する硬化物を形成することができる。例えば本発明の硬化性組成物を光学素子材料として使用した場合、得られる光学素子は透明性に優れ、リフロー半田付け工程に付しても黄変が抑制されるので、光学特性を高く維持することができる。そのため、光学素子を別工程で実装する必要がなく、他の部品と共に一括してリフロー半田付けにより基板実装することができ、光学素子を搭載した光学装置を優れた作業効率で製造することができる。また、耐熱性が求められる車載用電子機器にも使用することができる。
Since the curable composition of the present invention has the above-mentioned structure, it is excellent in curability, and by subjecting it to light irradiation or heat treatment, a cured product having excellent curability, transparency, heat resistance, and heat-resistant yellowing is formed. Can be done. It is possible to form a cured product having excellent curability and transparency, and having characteristics (= heat resistance and heat-resistant yellowing) that are hard to be deformed and yellowed even under high temperature conditions such as soldering by a reflow method. For example, when the curable composition of the present invention is used as an optical element material, the obtained optical element has excellent transparency and yellowing is suppressed even when subjected to a reflow soldering step, so that high optical characteristics are maintained. be able to. Therefore, it is not necessary to mount the optical element in a separate process, and the optical element can be mounted on the board by reflow soldering together with other parts, and an optical device equipped with the optical element can be manufactured with excellent work efficiency. .. It can also be used for in-vehicle electronic devices that require heat resistance.
以下、本発明の実施形態について詳細に説明する。
本発明の酸発生剤は下記一般式(1)で表されるオニウム塩を含有する。 Hereinafter, embodiments of the present invention will be described in detail.
The acid generator of the present invention contains an onium salt represented by the following general formula (1).
本発明の酸発生剤は下記一般式(1)で表されるオニウム塩を含有する。 Hereinafter, embodiments of the present invention will be described in detail.
The acid generator of the present invention contains an onium salt represented by the following general formula (1).
[式中、R1~R3は、互いに独立して、炭素数1~8のアルキル基、炭素数2~8のアルケニル基または置換基を有していてもよいフェニル基であり、R1~R3のうち少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR1~R3の基に結合する全水素原子のうち30%~70%がフッ素原子で置換されており;EはS、I、NまたはPから選ばれる原子価nの元素を表し、nは1~3の整数であり、R4はEに結合している有機基であり、R4の個数はn+1であり、(n+1)個のR4はそれぞれ互いに同一であっても異なっても良く、2個以上のR4が互いに直接または-O-、-S-、-SO-、-SO2-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]
[In the formula, R 1 to R 3 are phenyl groups which may independently have an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or a substituent, and R 1 Part or all of the hydrogen atoms bonded to at least one group of ~ R 3 are replaced with fluorine atoms, and 30% to 70% of the total hydrogen atoms bonded to the groups of R 1 to R 3 are Substituted with a fluorine atom; E represents an element of valence n selected from S, I, N or P, n is an integer of 1 to 3 and R 4 is an organic group attached to E. There, the number of R 4 is n + 1, (n + 1 ) number of R 4 may respectively be the same or different from each other, two or more R 4 may bond directly or -O -, - S -, - SO -, - SO 2 -, - NH -, - CO -, - COO -, - CONH-, may form a ring structure containing an element E through an alkylene group or a phenylene group. ]
一般式(1)中、R1~R3における、炭素数1~8のアルキル基としては、直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル及びn-オクチル等)、分岐アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル、2-エチルヘキシル及び1,1,3,3-テトラメチルブチル等)及びシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチルが挙げられる。
In the general formula (1), examples of the alkyl group having 1 to 8 carbon atoms in R 1 to R 3 include linear alkyl groups (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl and the like. ), Branched alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-ethylhexyl and 1,1,3,3-tetramethylbutyl, etc.) and cycloalkyl groups (, etc.) Cyclopropyl, cyclobutyl, cyclopentyl can be mentioned.
一般式(1)中、R1~R3における、炭素数2~8のアルケニル基としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル及び2-メチル-2-プロペニル等)、及びシクロアルケニル基(2-シクロヘキセニル及び3-シクロヘキセニル等)が挙げられる。
In the general formula (1), the alkenyl group having 2 to 8 carbon atoms in R 1 to R 3 includes a linear or branched alkenyl group (vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2). -Butenyl, 3-butenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl, etc.), and cycloalkenyl groups (2-cyclohexenyl). And 3-cyclohexenyl, etc.).
一般式(1)中、R1~R3における、置換基を有していてもよいフェニル基とは、フェニル基のほか、フェニル基中の水素原子の一部が炭素数1~8のアルキル基、炭素数2~8のアルケニル基、ニトロ基、-OR5で表されるアルコキシ基、-SR6で表されるアルキルチオ基、塩素原子、又は臭素原子で置換されているものを表す。
In the general formula (1), the phenyl group which may have a substituent in R 1 to R 3 is an alkyl having 1 to 8 carbon atoms as a part of the hydrogen atom in the phenyl group in addition to the phenyl group. It represents a group, an alkenyl group having 2 to 8 carbon atoms, a nitro group, an alkoxy group represented by -OR 5 , an alkylthio group represented by -SR 6 , or a group substituted with a chlorine atom or a bromine atom.
上記置換基において炭素数1~8のアルキル基および炭素数2~8のアルケニル基としては上記一般式(1)のR1~R3で説明したものと同じものが挙げられる。
In the above-mentioned substituents, examples of the alkyl group having 1 to 8 carbon atoms and the alkenyl group having 2 to 8 carbon atoms are the same as those described in R 1 to R 3 of the general formula (1).
上記置換基において、-OR5で表されるアルコキシ基、-SR6で表されるアルキルチオ基の、R5~R6としては炭素数1~8のアルキル基が挙げられ、具体的には上記のアルキル基のうち炭素数1~8のアルキル基が挙げられる。
In the above substituents, an alkoxy group represented by -OR 5, alkylthio group represented by -SR 6, include an alkyl group of R 5 ~ R 6 as 1 to 8 carbon atoms, specifically the Alkyl groups having 1 to 8 carbon atoms can be mentioned.
-OR5で表されるアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、iso-ペントキシ、neo-ペントキシ及び2-メチルブトキシ等が挙げられる。
-SR6で表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。 Alkoxy groups represented by -OR 5 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2-. Methylbutoxy and the like can be mentioned.
Examples of the alkylthio group represented by -SR 6 include methylthio, ethylthio, butylthio, hexylthio, cyclohexylthio and the like.
-SR6で表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。 Alkoxy groups represented by -OR 5 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2-. Methylbutoxy and the like can be mentioned.
Examples of the alkylthio group represented by -SR 6 include methylthio, ethylthio, butylthio, hexylthio, cyclohexylthio and the like.
これら置換基において、原料の入手しやすさの観点から、好ましくは炭素数1~8のアルキル基、炭素数2~8のアルケニル基、-OR5で表されるアルコキシ基、塩素原子、又は臭素原子であり、さらに好ましくは炭素数1~4のアルキル基、炭素数2~4のアルケニル基又は塩素原子である。
In these substituents, from the viewpoint of ready availability of starting material, preferably an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group represented by -OR 5, chlorine atom, or bromine It is an atom, more preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 2 to 4 carbon atoms, or a chlorine atom.
式(1)中R1~R3における基の中で、原料の入手しやすさの観点から、好ましくは炭素数1~4のアルキル基、炭素数2~4のアルケニル基、フェニル基、及び炭素数1~4のアルキル基、炭素数2~4のアルケニル基又は塩素原子が置換したフェニル基である。また、R1~R3における合計炭素数が4~9であるものがより好ましい。
Among the groups in the formula (1) Medium R 1 ~ R 3, from the viewpoint of ready availability of starting material, preferably an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, a phenyl group and, It is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or a phenyl group substituted with a chlorine atom. Further, it is more preferable that the total number of carbon atoms in R 1 to R 3 is 4 to 9.
さらに式(1)中R1~R3における基は、同一でも異なっていてもよく、少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR1~R3の基に結合する全水素原子のうち30%~70%がフッ素原子で置換されているものである。これをフッ素置換率という。
硬化物の耐熱性および耐熱黄変性、特に耐熱黄変性の観点から、フッ素置換率が30%~70%である必要がある。フッ素置換率が30%未満の場合、形成するアニオンが不安定となり酸発生剤としての使用が困難となり不適である。 Further, the groups in R 1 to R 3 in the formula (1) may be the same or different, and a part or all of the hydrogen atoms bonded to at least one group are substituted with fluorine atoms, and R 1 to R 1 to 30% to 70% of all the hydrogen atoms bonded to the group of R 3 are those substituted with a fluorine atom. This is called the fluorine substitution rate.
From the viewpoint of heat resistance and heat-resistant yellowing of the cured product, particularly heat-resistant yellowing, the fluorine substitution rate needs to be 30% to 70%. If the fluorine substitution rate is less than 30%, the anion formed becomes unstable and it becomes difficult to use it as an acid generator, which is unsuitable.
硬化物の耐熱性および耐熱黄変性、特に耐熱黄変性の観点から、フッ素置換率が30%~70%である必要がある。フッ素置換率が30%未満の場合、形成するアニオンが不安定となり酸発生剤としての使用が困難となり不適である。 Further, the groups in R 1 to R 3 in the formula (1) may be the same or different, and a part or all of the hydrogen atoms bonded to at least one group are substituted with fluorine atoms, and R 1 to R 1 to 30% to 70% of all the hydrogen atoms bonded to the group of R 3 are those substituted with a fluorine atom. This is called the fluorine substitution rate.
From the viewpoint of heat resistance and heat-resistant yellowing of the cured product, particularly heat-resistant yellowing, the fluorine substitution rate needs to be 30% to 70%. If the fluorine substitution rate is less than 30%, the anion formed becomes unstable and it becomes difficult to use it as an acid generator, which is unsuitable.
一般式(1)で表される酸発生剤のアニオン構造としては、たとえば、以下化学式(A-1)~(A-14)で表されるものが好ましく例示できる。
As the anion structure of the acid generator represented by the general formula (1), for example, those represented by the following chemical formulas (A-1) to (A-14) can be preferably exemplified.
式(1)中のR4はEに結合している有機基を表し、同一であっても異なってもよい。R4としては、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、および炭素数6~14のアリール基が挙げられ、アリール基はさらに炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-OR5で表されるアルコキシ基若しくはアリールオキシ基、-SR6で表されるアルキルチオ基若しくはアリールチオ基、R7CO-で表されるアシル基、R8COO-で表されるアシロキシ基、-NR9R10で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
R 4 in the formula (1) represents an organic group bonded to E, and may be the same or different. The R 4, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, and include an aryl group having 6 to 14 carbon atoms, aryl groups may be further substituted alkyl group having 1 to 18 carbon atoms, carbon an alkenyl group having 2 to 18, an aryl group having 6 to 14 carbon atoms, a nitro group, a hydroxyl group, a cyano group, an alkoxy group or aryloxy group represented by -OR 5, an alkylthio group or arylthio represented by -SR 6 It may be substituted with a group, an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, an amino group represented by -NR 9 R 10, or a halogen atom.
上記R4における炭素数1~18のアルキル基としては、直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、分岐アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル、2-エチルヘキシル及び1,1,3,3-テトラメチルブチル等)、シクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)、架橋環式アルキル基(ノルボルニル、アダマンチル及びピナニル等)及びアリールアルキル基(ベンジル、ナフチルメチル、フェネチル、ベンズヒドリル及びフェナシル等)が挙げられる。
Examples of the alkyl group R 4 ~ 1 carbon atoms in 18, straight-chain alkyl group (methyl, ethyl, n- propyl, n- butyl, n- pentyl, n- octyl, n- decyl, n- dodecyl, n- Tetradecyl, n-hexadecyl and n-octadecyl, etc.), branched alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-ethylhexyl and 1,1,3,3- Tetramethylbutyl, etc.), cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), crosslinked cyclic alkyl groups (norbornyl, adamantyl, pinanyl, etc.) and arylalkyl groups (benzyl, naphthylmethyl, phenethyl, benzhydryl, phenacyl, etc.) ).
上記R4における炭素数2~18のアルケニル基としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル及び2-メチル-2-プロぺニル等)、シクロアルケニル基(2-シクロヘキセニル及び3-シクロヘキセニル等)及びアリールアルケニル基(スチリル及びシンナミル等)が挙げられる。
The alkenyl groups of R 4 having 2 to 18 carbon atoms in a straight or branched alkenyl group (vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl -1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl, etc.), cycloalkenyl groups (2-cyclohexenyl, 3-cyclohexenyl, etc.) and aryl Examples include alkenyl groups (styryl, cinnamyl, etc.).
上記R4における炭素数6~14(以下の置換基の炭素数は含まない)のアリール基としては、単環式アリール基(フェニル等)、縮合多環式アリール基(ナフチル、アントラセニル、フェナンスレニル、アントラキノリル、フルオレニル及びナフトキノリル等)及び芳香族複素環炭化水素基(チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル等単環式複素環;及びインドリル、ベンゾフラニル、イソベンゾフラニル、ベンゾチエニル、イソベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、クマリニル、ジベンゾチエニル、キサントニル、チオキサントニル、ジベンゾフラニル等縮合多環式複素環)が挙げられる。
The aryl groups of R 4 C 6 -C in 14 (following carbon number of the substituent is not included), a monocyclic aryl group (such as phenyl), condensed polycyclic aryl group (naphthyl, anthracenyl, phenanthrenyl, Anthraquinolyl, fluorenyl, naphthoquinolyl, etc.) and aromatic heterocyclic hydrocarbon groups (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, etc. monocyclic heterocycles; and indrill, benzofuranyl, isobenzofuranyl, etc. Benzothiolyl, isobenzothienyl, quinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, carbazolyl, acridinyl, phenothiazine, phenazinyl, xanthenyl, thiantranyl, phenoxadinyl, phenoxatyynyl, chromanyl, isochromanyl, cumarinyl, dibenzothienyl, xanthonyl Nyl isocondensed polycyclic heterocycle).
アリール基としては、以上の他に、アリール基中の水素原子の一部が炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-OR5で表されるアルコキシ基若しくはアリールオキシ基、-SR6で表されるアルキルチオ基若しくはアリールチオ基、R7CO-で表されるアシル基、R8COO-で表されるアシロキシ基、-NR9R10で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
In addition to the above, the aryl group includes an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, and a nitro group. A hydroxyl group, a cyano group, an alkoxy group or an aryloxy group represented by -OR 5 , an alkylthio group or an arylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, and an acyl group represented by R 8 COO-. It may be substituted with an acyloxy group, an amino group represented by −NR 9 R 10, or a halogen atom.
上記置換基において、-OR5で表されるアルコキシ基、-SR6で表されるアルキルチオ基、R7CO-で表されるアシル基、R8COO-で表されるアシロキシ基、-NR9R10で表されるアミノ基の、R5~R10としては炭素数1~8のアルキル基が挙げられ、具体的には上記のアルキル基のうち炭素数1~8のアルキル基が挙げられる。
Among the above substituents, an alkoxy group represented by -OR 5 , an alkylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, and -NR 9 the amino group represented by R 10, a R 5 ~ R 10 are mentioned an alkyl group having 1 to 8 carbon atoms and an alkyl group having 1 to 8 carbon atoms among the alkyl groups mentioned specifically ..
上記置換基において、-OR5で表されるアリールオキシ基、-SR6で表されるアリールチオ基、R7CO-で表されるアシル基、R8COO-で表されるアシロキシ基、-NR9R10で表されるアミノ基の、R5~R10としては炭素数6~14のアリール基が挙げられ、具体的には上記の炭素数6~14のアリール基が挙げられる。
Among the above substituents, an aryloxy group represented by -OR 5 , an arylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, and -NR 9 Of the amino groups represented by R 10 , R 5 to R 10 include aryl groups having 6 to 14 carbon atoms, and specific examples thereof include the above-mentioned aryl groups having 6 to 14 carbon atoms.
-OR5で表されるアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、iso-ペントキシ、neo-ペントキシ及び2-メチルブトキシ等が挙げられる。
-OR5で表されるアリールオキシ基としては、フェノキシ、ナフトキシ等が挙げられる。
-SR6で表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。
-SR6で表されるアリールチオ基としては、フェニルチオ、ナフチルチオ、ビフェニルチオ、2-チオキサントニルチオ等が挙げられる。
R7CO-で表されるアシル基としては、アセチル、プロパノイル、ブタノイル、ピバロイル及びベンゾイル等が挙げられる。
R8COO-で表されるアシロキシ基としては、アセトキシ、ブタノイルオキシ及びベンゾイルオキシ等が挙げられる。
-NR9R10で表されるアミノ基としては、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノ、ジプロピルアミノ、ジプロピルアミノ及びピペリジノ等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。 Alkoxy groups represented by -OR 5 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2-. Methylbutoxy and the like can be mentioned.
Examples of the aryloxy group represented by −OR 5 include phenoxy and naphthoxy.
Examples of the alkylthio group represented by -SR 6 include methylthio, ethylthio, butylthio, hexylthio, cyclohexylthio and the like.
Examples of the arylthio group represented by -SR 6 include phenylthio, naphthylthio, biphenylthio, 2-thioxanthonylthio and the like.
Examples of the acyl group represented by R 7 CO- include acetyl, propanoyl, butanoyl, pivaloyl and benzoyl.
As the acyloxy group represented by R 8 COO-, acetoxy, butanoyloxy and a benzoyloxy and the like.
Examples of the amino group represented by −NR 9 R 10 include methylamino, ethylamino, propylamino, dimethylamino, diethylamino, methylethylamino, dipropylamino, dipropylamino and piperidino.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
-OR5で表されるアリールオキシ基としては、フェノキシ、ナフトキシ等が挙げられる。
-SR6で表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。
-SR6で表されるアリールチオ基としては、フェニルチオ、ナフチルチオ、ビフェニルチオ、2-チオキサントニルチオ等が挙げられる。
R7CO-で表されるアシル基としては、アセチル、プロパノイル、ブタノイル、ピバロイル及びベンゾイル等が挙げられる。
R8COO-で表されるアシロキシ基としては、アセトキシ、ブタノイルオキシ及びベンゾイルオキシ等が挙げられる。
-NR9R10で表されるアミノ基としては、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノ、ジプロピルアミノ、ジプロピルアミノ及びピペリジノ等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。 Alkoxy groups represented by -OR 5 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2-. Methylbutoxy and the like can be mentioned.
Examples of the aryloxy group represented by −OR 5 include phenoxy and naphthoxy.
Examples of the alkylthio group represented by -SR 6 include methylthio, ethylthio, butylthio, hexylthio, cyclohexylthio and the like.
Examples of the arylthio group represented by -SR 6 include phenylthio, naphthylthio, biphenylthio, 2-thioxanthonylthio and the like.
Examples of the acyl group represented by R 7 CO- include acetyl, propanoyl, butanoyl, pivaloyl and benzoyl.
As the acyloxy group represented by R 8 COO-, acetoxy, butanoyloxy and a benzoyloxy and the like.
Examples of the amino group represented by −NR 9 R 10 include methylamino, ethylamino, propylamino, dimethylamino, diethylamino, methylethylamino, dipropylamino, dipropylamino and piperidino.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
上記R4のうち、カチオン重合開始能の観点で好ましいのは炭素数1~18のアルキル基、炭素数6~14のアリール基及びニトロ基、水酸基、炭素数1~18のアルキル基、-OR5で表されるアルコキシ基、-SR6で表されるアリールチオ基、R7CO-で表されるアシル基、R8COO-で表されるアシロキシ基又は塩素原子で置換された炭素数6~14のアリール基である。
さらに好ましいのは、炭素数1~18のアルキル基、フェニル基及び水酸基、炭素数1~18のアルキル基、-OR5で表されるアルコキシ基、-SR6で表されるアリールチオ基、アセチル基、ベンゾイル基、アセトキシ基で置換されたフェニル基である。 Above of R 4, cationic polymerization initiating ability aspect preferred are an alkyl group having 1 to 18 carbon atoms, an aryl group and a nitro group having 6 to 14 carbon atoms, a hydroxyl group, an alkyl group having 1 to 18 carbon atoms, -OR An alkoxy group represented by 5 , an arylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, or 6 to 6 carbon atoms substituted with a chlorine atom. It is an aryl group of 14.
Further preferred are an alkyl group having 1 to 18 carbon atoms, a phenyl group and a hydroxyl group, an alkyl group having 1 to 18 carbon atoms, an alkoxy group represented by -OR 5, arylthio group represented by -SR 6, an acetyl group , Benzoyl group, phenyl group substituted with acetoxy group.
さらに好ましいのは、炭素数1~18のアルキル基、フェニル基及び水酸基、炭素数1~18のアルキル基、-OR5で表されるアルコキシ基、-SR6で表されるアリールチオ基、アセチル基、ベンゾイル基、アセトキシ基で置換されたフェニル基である。 Above of R 4, cationic polymerization initiating ability aspect preferred are an alkyl group having 1 to 18 carbon atoms, an aryl group and a nitro group having 6 to 14 carbon atoms, a hydroxyl group, an alkyl group having 1 to 18 carbon atoms, -OR An alkoxy group represented by 5 , an arylthio group represented by -SR 6 , an acyl group represented by R 7 CO-, an acyloxy group represented by R 8 COO-, or 6 to 6 carbon atoms substituted with a chlorine atom. It is an aryl group of 14.
Further preferred are an alkyl group having 1 to 18 carbon atoms, a phenyl group and a hydroxyl group, an alkyl group having 1 to 18 carbon atoms, an alkoxy group represented by -OR 5, arylthio group represented by -SR 6, an acetyl group , Benzoyl group, phenyl group substituted with acetoxy group.
また2個以上のR4が互いに直接または-O-、-S-、-SO-、-SO2-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。
The two or more R 4 may bond directly or -O -, - S -, - SO -, - SO 2 -, - NH -, - CO -, - COO -, - CONH-, an alkylene group or a phenylene group A ring structure containing the element E may be formed through the ring.
式(1)中のEは、S(硫黄)、I(ヨウ素)、N(窒素)またはP(リン)から選ばれる、原子価nの元素を表し、有機基R4と結合してオニウムイオン[E+]を形成する。nは元素Eの原子価を表し、1~3の整数である。
対応するオニウムイオンとしてはアンモニウム、ホスホニウム、スルホニウム、ヨードニウムである。中でも、安定で取り扱いが容易な、アンモニウム、ホスホニウム、スルホニウム、ヨードニウムが好ましく、カチオン重合性能や架橋反応性能に優れるスルホニウム、ヨードニウムがさらに好ましい。 E in formula (1) is, S (sulfur), I (iodine) is selected from N (nitrogen) or P (phosphorus), represents an element of valency n, and with an organic radical R 4 onium Form [E + ]. n represents the valence of the element E and is an integer of 1 to 3.
Corresponding onium ions are ammonium, phosphonium, sulfonium, and iodonium. Of these, ammonium, phosphonium, sulfonium, and iodonium, which are stable and easy to handle, are preferable, and sulfonium and iodonium, which are excellent in cationic polymerization performance and cross-linking reaction performance, are more preferable.
対応するオニウムイオンとしてはアンモニウム、ホスホニウム、スルホニウム、ヨードニウムである。中でも、安定で取り扱いが容易な、アンモニウム、ホスホニウム、スルホニウム、ヨードニウムが好ましく、カチオン重合性能や架橋反応性能に優れるスルホニウム、ヨードニウムがさらに好ましい。 E in formula (1) is, S (sulfur), I (iodine) is selected from N (nitrogen) or P (phosphorus), represents an element of valency n, and with an organic radical R 4 onium Form [E + ]. n represents the valence of the element E and is an integer of 1 to 3.
Corresponding onium ions are ammonium, phosphonium, sulfonium, and iodonium. Of these, ammonium, phosphonium, sulfonium, and iodonium, which are stable and easy to handle, are preferable, and sulfonium and iodonium, which are excellent in cationic polymerization performance and cross-linking reaction performance, are more preferable.
アンモニウムイオンの具体例としては、テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどのテトラアルキルアンモニウム;N,N-ジメチルピロリジニウム、N-エチル-N-メチルピロリジニウム、N,N-ジエチルピロリジニウムなどのピロリジニウム;N,N'-ジメチルイミダゾリニウム、N,N'-ジエチルイミダゾリニウム、N-エチル-N'-メチルイミダゾリニウム、1,3,4-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウムなどのイミダゾリニウム;N,N'-ジメチルテトラヒドロピリミジニウムなどのテトラヒドロピリミジニウム;N,N'-ジメチルモルホリニウムなどのモルホリニウム;N,N'-ジエチルピペリジニウムなどのピペリジニウム;N-メチルピリジニウム、N-ベンジルピリジニウム、N-フェナシルピリジウムなどのピリジニウム;N,N'-ジメチルイミダゾリウム、などのイミダゾリウム;N-メチルキノリウム、N-ベンジルキノリウム、N-フェナシルキノリウムなどのキノリウム;N-メチルイソキノリウムなどのイソキノリウム;ベンジルベンゾチアゾニウム、フェナシルベンゾチアゾニウムなどのチアゾニウム;ベンジルアクリジウム、フェナシルアクリジウムなどのアクリジウムが挙げられる。
Specific examples of ammonium ions include tetraalkylammoniums such as tetramethylammonium, ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium, and tetraethylammonium; N, N-dimethylpyrrolidinium, N-ethyl-N-methylpyrrolidi. Pyrrolidiniums such as Nium, N, N-diethylpyrrolidinium; N, N'-dimethylimidazolinium, N, N'-diethylimidazolinium, N-ethyl-N'-methylimidazolinium, 1,3 Imidazolinium such as 4-trimethylimidazolinium, 1,2,3,4-tetramethylimidazolinium; tetrahydropyrimidinium such as N, N'-dimethyltetrahydropyrimidinium; N, N'-dimethylmol Morphorinium such as holinium; piperidinium such as N, N'-diethylpiperidinium; pyridinium such as N-methylpyridinium, N-benzylpyridinium, N-phenacylpyridium; N, N'-dimethylimidazolium, etc. Imidazolium; quinolium such as N-methylquinolium, N-benzylquinolium, N-phenacylquinolium; isoquinolium such as N-methylisoquinolium; thiazonium such as benzylbenzothiazonium, phenacylbenzothiazonium Acridium such as benzylacrydium and phenacylacrydium can be mentioned.
ホスホニウムイオンの具体例としては、テトラフェニルホスホニウム、テトラ-p-トリルホスホニウム、テトラキス(2-メトキシフェニル)ホスホニウム、テトラキス(3-メトキシフェニル)ホスホニウム、テトラキス(4-メトキシフェニル)ホスホニウムなどのテトラアリールホスホニウム;トリフェニルベンジルホスホニウム、トリフェニルフェナシルホスホニウム、トリフェニルメチルホスホニウム、トリフェニルブチルホスホニウムなどのトリアリールホスホニウム;トリエチルベンジルホスホニウム、トリブチルベンジルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、テトラヘキシルホスホニウム、トリエチルフェナシルホスホニウム、トリブチルフェナシルホスホニウムなどのテトラアルキルホスホニウムなどが挙げられる。
Specific examples of phosphonium ions include tetraarylphosphoniums such as tetraphenyl phosphonium, tetra-p-tolyl phosphonium, tetrakis (2-methoxyphenyl) phosphonium, tetrakis (3-methoxyphenyl) phosphonium, and tetrakis (4-methoxyphenyl) phosphonium. Triarylphosphoniums such as triphenylbenzylphosphonium, triphenylphenacylphosphonium, triphenylmethylphosphonium, triphenylbutylphosphonium; triethylbenzylphosphonium, tributylbenzylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, tetrahexylphosphonium, triethylphenacilphosphonium , Tetraalkylphosphoniums such as tributylphenacilphosphoniums and the like.
スルホニウムイオンの具体例としては、トリフェニルスルホニウム、トリ-p-トリルスルホニウム、トリ-o-トリルスルホニウム、トリス(4-メトキシフェニル)スルホニウム、1-ナフチルジフェニルスルホニウム、2-ナフチルジフェニルスルホニウム、トリス(4-フルオロフェニル)スルホニウム、トリ-1-ナフチルスルホニウム、トリ-2-ナフチルスルホニウム、トリス(4-ヒドロキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジフェニルスルホニウム、4-(p-トリルチオ)フェニルジ-p-トリルスルホニウム、4-(4-メトキシフェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジ-p-トリルスルホニウム、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウム、[4-(2-チオキサントニルチオ)フェニル]ジフェニルスルホニウム、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド、ビス〔4-{ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホニオ}フェニル〕スルフィド、ビス{4-[ビス(4-フルオロフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メチルフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メトキシフェニル)スルホニオ]フェニル}スルフィド、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルジフェニルスルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジ-p-トリルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジフェニルスルホニウム、2-[(ジ-p-トリル)スルホニオ]チオキサントン、2-[(ジフェニル)スルホニオ]チオキサントン、4-(9-オキソ-9H-チオキサンテン-2-イル)チオフェニル-9-オキソ-9H-チオキサンテン-2-イル フェニルスルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジ-p-トリルスルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジフェニルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジ-p-トリルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジフェニルスルホニウム、5-(4-メトキシフェニル)チアントレニウム、5-フェニルチアントレニウム、5-トリルチアントレニウム、5-(4-エトキシフェニル) チアントレニウム、5-(2,4,6-トリメチルフェニル) チアントレニウムなどのトリアリールスルホニウム;ジフェニルフェナシルスルホニウム、ジフェニル4-ニトロフェナシルスルホニウム、ジフェニルベンジルスルホニウム、ジフェニルメチルスルホニウムなどのジアリールスルホニウム;フェニルメチルベンジルスルホニウム、4-ヒドロキシフェニルメチルベンジルスルホニウム、4-メトキシフェニルメチルベンジルスルホニウム、4-アセトキシフェニルメチルベンジルスルホニウム、4-アセトキシフェニルジメチルスルホニウム、4-ヒドロキシフェニル(1-ナフチルメチル)メチルスルホニウム、2-ナフチルメチルベンジルスルホニウム、4-ヒドロキシフェニル(4-ニトロベンジル)メチルスルホニウム、2-ナフチルメチル(1-エトキシカルボニル)エチルスルホニウム、フェニルメチルフェナシルスルホニウム、4-ヒドロキシフェニルメチルフェナシルスルホニウム、4-メトキシフェニルメチルフェナシルスルホニウム、4-アセトキシフェニルメチルフェナシルスルホニウム、2-ナフチルメチルフェナシルスルホニウム、2-ナフチルオクタデシルフェナシルスルホニウム、9-アントラセニルメチルフェナシルスルホニウムなどのモノアリールスルホニウム;ジメチルフェナシルスルホニウム、フェナシルテトラヒドロチオフェニウム、ジメチルベンジルスルホニウム、ベンジルテトラヒドロチオフェニウム、オクタデシルメチルフェナシルスルホニウムなどのトリアルキルスルホニウムなどが挙げられる。
Specific examples of the sulfonium ion include triphenylsulfonium, tri-p-tolylsulfonium, tri-o-tolylsulfonium, tris (4-methoxyphenyl) sulfonium, 1-naphthyldiphenylsulfonium, 2-naphthyldiphenylsulfonium, and tris (4). -Fluorophenyl) Sulfonium, Tri-1-naphthylsulfonium, Tri-2-naphthylsulfonium, Tris (4-hydroxyphenyl) Sulfonium, 4- (phenylthio) phenyldiphenylsulfonium, 4- (p-trilthio) phenyldi-p-tolyl Sulfonium, 4- (4-methoxyphenylthio) phenylbis (4-methoxyphenyl) sulfonium, 4- (phenylthio) phenylbis (4-fluorophenyl) sulfonium, 4- (phenylthio) phenylbis (4-methoxyphenyl) sulfonium , 4- (Phenylthio) phenyldi-p-tolylsulfonium, [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium, [4- (2-thioxanthonylthio) phenyl] diphenylsulfonium, bis [4- (Diphenylsulfonio) phenyl] sulfide, bis [4- {bis [4- (2-hydroxyethoxy) phenyl] sulfonio} phenyl] sulfide, bis {4- [bis (4-fluorophenyl) sulfonio] phenyl } Sulfate, bis {4- [bis (4-methylphenyl) sulfonio] phenyl} sulfide, bis {4- [bis (4-methoxyphenyl) sulfonio] phenyl} sulfide, 4- (4-benzoyl-2-chlorophenylthio) ) Phenylbis (4-fluorophenyl) sulfonium, 4- (4-benzoyl-2-chlorophenylthio) phenyldiphenylsulfonium, 4- (4-benzoylphenylthio) phenylbis (4-fluorophenyl) sulfonium, 4- (4) -Benzoylphenylthio) phenyldiphenylsulfonium, 7-isopropyl-9-oxo-10-thia-9,10-dihydroanthracene-2-yldi-p-tolylsulfonium, 7-isopropyl-9-oxo-10-thia-9 , 10-Dihydroanthracene-2-yldiphenyl sulfonium, 2-[(di-p-tolyl) sulfonio] thioxanthone, 2-[(diphenyl) sulfonio] thioxanthone, 4- (9-oxo-9H-thioxanthene-2- Il) thiophenyl- 9-oxo-9H-thioxanthene-2-ylphenylsulfonium, 4- [4- (4-tert-butylbenzoyl) phenylthio] phenyldi-p-tolylsulfonium, 4- [4- (4-tert-butylbenzoyl) Phenylthio] phenyldiphenylsulfonium, 4- [4- (benzoylphenylthio)] phenyldi-p-tolylsulfonium, 4- [4- (benzoylphenylthio)] phenyldiphenylsulfonium, 5- (4-methoxyphenyl) thiantrenium , 5-Phenylthiantrenium, 5-Triluciantrenium, 5- (4-ethoxyphenyl) thiantrenium, 5- (2,4,6-trimethylphenyl) triarylsulfonium such as thiantrenium; diphenylphena Diarylsulfoniums such as silsulfonium, diphenyl4-nitrophenacylsulfonium, diphenylbenzylsulfonium, diphenylmethylsulfonium; phenylmethylbenzylsulfonium, 4-hydroxyphenylmethylbenzylsulfonium, 4-methoxyphenylmethylbenzylsulfonium, 4-acetoxyphenylmethylbenzyl Sulfonium, 4-acetoxyphenyldimethylsulfonium, 4-hydroxyphenyl (1-naphthylmethyl) methylsulfonium, 2-naphthylmethylbenzylsulfonium, 4-hydroxyphenyl (4-nitrobenzyl) methylsulfonium, 2-naphthylmethyl (1-ethoxy) Carbonyl) ethyl sulfonium, phenylmethyl phenacil sulfonium, 4-hydroxyphenyl methyl phenacil sulfonium, 4-methoxyphenyl methyl phenacil sulfonium, 4-acetoxyphenyl methyl phenacil sulfonium, 2-naphthyl methyl phenacil sulfonium, 2-naphthyl octadecyl Monoarylsulfoniums such as phenacylsulfonium, 9-anthrasenylmethylphenacylsulfonium; trialkyls such as dimethylphenacylsulfonium, phenacyltetrahydrothiophenium, dimethylbenzylsulfonium, benzyltetrahydrothiophenium, octadecylmethylphenacylsulfonium Examples include sulfonium.
ヨードニウムイオンの具体例としては、ジフェニルヨードニウム、ジ-p-トリルヨードニウム、ジ(4-tert-ブチルフェニル)ヨードニウム、ジ(4-ドデシルフェニル)ヨードニウム、ジ(4-メトキシフェニル)ヨードニウム、(4-オクチルオキシフェニル)フェニルヨードニウム、ジ(4-デシルオキシフェニル)ヨードニウム、4-(2-ヒドロキシテトラデシルオキシ)フェニルフェニルヨードニウム、4-イソプロピルフェニル(p-トリル)ヨードニウム、フェニル(2,4,6-トリメトキシフェニル)ヨードニウムおよび4-イソブチルフェニル(p-トリル)ヨードニウムなどのヨードニウムイオンが挙げられる。
Specific examples of iodonium ions include diphenyl iodonium, di-p-tolyl iodonium, di (4-tert-butylphenyl) iodonium, di (4-dodecylphenyl) iodonium, di (4-methoxyphenyl) iodonium, (4-methoxyphenyl) iodonium. Octyloxyphenyl) Phenyl Iodonium, Di (4-decyloxyphenyl) Iodonium, 4- (2-Hydroxytetradecyloxy) Phenylphenyl Iodonium, 4-Isopropylphenyl (p-Trill) Iodonium, Phenyl (2,4,6- Examples include iodonium ions such as trimethoxyphenyl) iodonium and 4-isobutylphenyl (p-tolyl) iodonium.
本発明の式(1)で表されるオニウム塩は、複分解法によって製造できる。複分解法は例えば、新実験化学講座14-I巻(1978年、丸善)p-448;Advance in Polymer Science、62、1-48(1984);新実験化学講座14-III巻(1978年、丸善)pp1838-1846;有機硫黄化学(合成反応編、1982年、化学同人)、第8章、pp237-280;日本化学雑誌、87、(5)、74(1966);特開昭64-45357号、特開昭61-212554号、特開昭61-100557号、特開平5-4996号、特開平7-82244号、特開平7-82245号、特開昭58-210904号、特開平6-184170号などに記載されているが、まずオニウムカチオンのF-、Cl-、Br-、I-などのハロゲンイオン塩;OH-塩;ClO4
-塩;FSO3
-、ClSO3
-、CH3SO3
-、C6H5SO3
-、CF3SO3
-などのスルホン酸イオン類との塩;HSO4
-、SO4
2-などの硫酸イオン類との塩;HCO3
-、CO3
2-、などの炭酸イオン類との塩;H2PO4
-、HPO4
2-、PO4
3-などのリン酸イオン類との塩などを製造し、これを式(1)で表されるオニウム塩を構成するアニオンのアルカリ金属塩、アルカリ土類金属塩または4級アンモニウム塩と、必要により、KPF6、KBF4、LiB(C6F5)4などの他のアニオン成分とを理論量以上含む溶媒および水溶液中に加えて複分解させる。溶媒としては、水や有機溶剤を使用できる。有機溶剤としては、炭化水素(ヘキサン、ヘプタン、トルエン、キシレン等)、環状エーテル(テトラヒドロフラン及びジオキサン等)、塩素系溶剤(クロロホルム及びジクロロメタン等)、アルコール(メタノール、エタノール及びイソプロピルアルコール等)、ケトン(アセトン、メチルエチルケトン及びメチルイソブチルケトン等)、ニトリル(アセトニトリル等)及び極性有機溶剤(ジメチルスルホキシド、ジメチルホルムアミド及びN-メチルピロリドン等)が含まれる。これらの溶剤は、単独で使用してもよく、また2種以上を併用してもよい。
The onium salt represented by the formula (1) of the present invention can be produced by a metathesis method. The compound decomposition method is, for example, New Experimental Chemistry Course 14-I (1978, Maruzen) p-448; Advance in Composer Science, 62, 1-48 (1984); New Experimental Chemistry Course 14-III (1978, Maruzen). ) Pp1838-1846; Organic Sulfur Chemistry (Synthetic Reactions, 1982, Chemistry), Chapter 8, pp237-280; Nihon Kagaku Magazine, 87, (5), 74 (1966); , Japanese Patent Application Laid-Open No. 61-212554, Japanese Patent Application Laid-Open No. 61-100557, Japanese Patent Application Laid-Open No. 5-4996, Japanese Patent Application Laid-Open No. 7-82244, Japanese Patent Application Laid-Open No. 7-82245, Japanese Patent Application Laid-Open No. 58-210904, JP-A-6- such as are described in EP 184 170, but the first onium cation F -, Cl -, Br - , I - halide ion salts such as; OH - salt; ClO 4 - salt; FSO 3 -, ClSO 3 - , CH 3 Salts with sulfonic acid ions such as SO 3 − , C 6 H 5 SO 3 − , CF 3 SO 3 − ; Salts with sulfate ions such as HSO 4 − , SO 4 2- ; HCO 3 − , CO 3 2, a salt with carbonate ions such as; H 2 PO 4 -, HPO 4 2-, manufactures and salts with phosphate ions such as PO 4 3-, which is represented by the formula (1) Theory of anion alkali metal salts, alkaline earth metal salts or quaternary ammonium salts constituting the onium salt and, if necessary, other anion components such as KPF 6 , KBF 4 , LiB (C 6 F 5 ) 4 It is compounded by adding it to a solvent and an aqueous solution containing more than the amount. As the solvent, water or an organic solvent can be used. Examples of the organic solvent include hydrocarbons (hexane, heptane, toluene, xylene, etc.), cyclic ethers (tetrahexyl, dioxane, etc.), chlorine-based solvents (chloroform, dichloromethane, etc.), alcohols (methanol, ethanol, isopropyl alcohol, etc.), ketones (methanol, ethanol, isopropyl alcohol, etc.), ketones ( Includes acetone, methyl ethyl ketone and methyl isobutyl ketone, etc.), nitriles (acetriform, etc.) and polar organic solvents (dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, etc.). These solvents may be used alone or in combination of two or more.
これにより生成した目的のオニウム塩は、結晶または油状で分離してくる。油状物の場合、析出した油状物を有機溶剤溶液から分離し、さらに油状物に含有する有機溶剤を留去することにより得られる。結晶の場合、析出した固体を有機溶剤溶液から分離し、さらに、固体に含有する有機溶剤を留去することにより得られる。このようにして得られた目的のオニウムの塩を必要により再結晶または水や溶媒による洗浄等の方法で精製することができる。
The desired onium salt thus produced is separated by crystals or oil. In the case of an oily substance, it is obtained by separating the precipitated oily substance from the organic solvent solution and further distilling off the organic solvent contained in the oily substance. In the case of crystals, it is obtained by separating the precipitated solid from the organic solvent solution and further distilling off the organic solvent contained in the solid. The desired onium salt thus obtained can be purified by a method such as recrystallization or washing with water or a solvent, if necessary.
再結晶による精製は、目的のオニウム塩を少量の有機溶剤で溶解し、その有機溶剤からの分離は、目的のオニウム塩を含む有機溶剤溶液に対して直接(又は濃縮した後)、貧溶剤を加えて目的のオニウム塩を析出させることにより行うことができる。ここで用いる貧溶剤としては、鎖状エーテル(ジエチルエーテル及びジプロピルエーテル等)、エステル(酢酸エチル及び酢酸ブチル等)、脂肪族炭化水素(へキサン及びシクロヘキサン等)及び芳香族炭化水素(トルエン及びキシレン等)が含まれる。また、温度による溶解度差を利用して、精製を行うこともできる。 精製は、再結晶(冷却による溶解度の差を利用する方法、貧溶剤を加えて析出させる方法及びこれらの併用)によって精製することができる。また、目的物が油状物である場合(結晶化しない場合)、油状物を水又は貧溶媒で洗浄する方法により精製できる。
Purification by recrystallization dissolves the target onium salt in a small amount of organic solvent, and separation from the organic solvent is performed by directly (or after concentrating) the poor solvent in the organic solvent solution containing the target onium salt. In addition, it can be carried out by precipitating the desired onium salt. Examples of the poor solvent used here include chain ethers (diethyl ether, dipropyl ether, etc.), esters (ethyl acetate, butyl acetate, etc.), aliphatic hydrocarbons (hexane, cyclohexane, etc.) and aromatic hydrocarbons (toluene and cyclohexane, etc.). Xylene, etc.) is included. Purification can also be performed by utilizing the difference in solubility depending on the temperature. Purification can be performed by recrystallization (a method utilizing the difference in solubility due to cooling, a method of adding a poor solvent to precipitate, and a combination thereof). When the target product is an oil (when it does not crystallize), the oil can be purified by washing with water or a poor solvent.
このようにして得られたオニウム塩の構造は、一般的な分析手法、例えば、1H、13C、19F、などの各核磁気共鳴スペクトル、赤外吸収スペクトルあるいは元素分析などによって同定することができる。
The structure of the thus obtained onium salts generally analytical techniques, for example, 1 H, 13 C, 19 F, the nuclear magnetic resonance spectrum, such as that identified by like infrared absorption spectrum or elemental analysis Can be done.
本発明の酸発生剤は単独で使用してもよいし、2種以上併用して使用してもよい。
The acid generator of the present invention may be used alone or in combination of two or more.
式(1)で表されるオニウム塩(酸発生剤)は、カチオン重合性化合物への溶解を容易にするため、あらかじめ重合や架橋反応を阻害しない溶剤に溶かしておいてもよい。
The onium salt (acid generator) represented by the formula (1) may be dissolved in advance in a solvent that does not inhibit the polymerization or cross-linking reaction in order to facilitate dissolution in the cationically polymerizable compound.
溶剤としては、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートなどのカーボネート類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノンなどのケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール及びジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテルなどの多価アルコール類及びその誘導体;ジオキサンのような環式エーテル類;蟻酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類;トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。
Examples of the solvent include carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate and diethyl carbonate; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone and 2-heptanone; ethylene glycol and ethylene glycol. Polyhydric alcohols such as monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate, dipropylene glycol and dipropylene glycol monoacetate monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether. And derivatives thereof; cyclic ethers such as dioxane; ethyl acetate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, ethyl ethoxyacetate , Methyl methoxypropionate, ethyl ethoxypropionate, methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl Esters such as acetate and 3-methyl-3-methoxybutyl acetate; aromatic hydrocarbons such as toluene and xylene can be mentioned.
溶剤を使用する場合、溶剤の使用割合は、本発明の式(1)で表されるオニウム塩(酸発生剤)100重量部に対して、15~1000重量部が好ましく、さらに好ましくは30~500重量部である。使用する溶媒は、単独で使用してもよく、または2種以上を併用してもよい。
When a solvent is used, the ratio of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 1000 parts by weight, based on 100 parts by weight of the onium salt (acid generator) represented by the formula (1) of the present invention. It is 500 parts by weight. The solvent used may be used alone or in combination of two or more.
本発明の硬化性組成物は、上記酸発生剤とカチオン重合性化合物とを含んでなる。
The curable composition of the present invention comprises the above acid generator and a cationically polymerizable compound.
硬化性組成物の構成成分であるカチオン重合性化合物としては、環状エーテル(エポキシド及びオキセタン等)、エチレン性不飽和化合物(ビニルエーテル及びスチレン等)、ビシクロオルトエステル、スピロオルトカーボネート及びスピロオルトエステル等が挙げられる{(たとえば、活性エネルギー線硬化性組成物中のカチオン重合性化合物成分として、特開平11-060996号、特開平09-302269号、特開2003-026993号、特開2002-206017号、特開平11-349895号、特開平10-212343号、特開2000-119306号、特開平10-67812号、特開2000-186071号、特開平08-85775号、特開平08-134405号、特開2008-20838、特開2008-20839、特開2008-20841、特開2008-26660、特開2008-26644、特開2007-277327、フォトポリマー懇話会編「フォトポリマーハンドブック」(1989年、工業調査会)、総合技術センター編「UV・EB硬化技術」(1982年、総合技術センター)、ラドテック研究会編「UV・EB硬化材料」(1992年、シーエムシー)、技術情報協会編「UV硬化における硬化不良・阻害原因とその対策」(2003年、技術情報協会)、色材、68、(5)、286-293(1995)、ファインケミカル、29、(19)、5-14(2000)等が挙げられる。これらは熱硬化性組成物中のカチオン重合性化合物成分として使用しても差し支えない。}。
Examples of the cationically polymerizable compound that is a constituent of the curable composition include cyclic ethers (epoxides and oxetane, etc.), ethylenically unsaturated compounds (vinyl ether, styrene, etc.), bicycloorthoesters, spirooltocarbonates, spirooltoesters, and the like. (For example, as the cationically polymerizable compound component in the active energy ray-curable composition, JP-A-11-060996, JP-A-09-302269, JP-A-2003-026993, JP-A-2002-206017, Japanese Patent Application Laid-Open No. 11-349895, Japanese Patent Application Laid-Open No. 10-212343, Japanese Patent Application Laid-Open No. 2000-119306, Japanese Patent Application Laid-Open No. 10-67812, Japanese Patent Application Laid-Open No. 2000-186071, Japanese Patent Application Laid-Open No. 08-85775, Japanese Patent Application Laid-Open No. 08-134405, Kai 2008-20838, Japanese Patent Application Laid-Open No. 2008-20389, Japanese Patent Application Laid-Open No. 2008-20841, Japanese Patent Application Laid-Open No. 2008-26660, Japanese Patent Application Laid-Open No. 2008-26644, Japanese Patent Application Laid-Open No. 2007-277327, Photopolymer Social gathering edition "Photopolymer Handbook" (1989, industry Study Group), "UV / EB Curing Technology" edited by General Technology Center (1982, General Technology Center), "UV / EB Curing Material" edited by Radtech Study Group (1992, CMC), edited by Technical Information Association "UV Curing" Causes of Curing Poor / Inhibition and Countermeasures ”(2003, Technical Information Association), Coloring Materials, 68, (5), 286-293 (1995), Fine Chemicals, 29, (19), 5-14 (2000), etc. These may be used as a cationically polymerizable compound component in a thermosetting composition.}.
エポキシドとしては、公知のもの等が使用でき、芳香族エポキシド、脂環式エポキシド、複素環式エポキシド及び脂肪族エポキシドが含まれる。
As the epoxide, known epoxides and the like can be used, and aromatic epoxides, alicyclic epoxides, heterocyclic epoxides and aliphatic epoxides are included.
芳香族エポキシドとしては、少なくとも1個の芳香環を有する1価又は多価のフェノール(フェノール、ビスフェノールA、フェノールノボラック及びこれらのアルキレンオキシド付加体した化合物)のグリシジルエーテル等が挙げられる。
Examples of the aromatic epoxide include glycidyl ethers of monovalent or polyvalent phenols (phenols, bisphenol A, phenol novolacs and compounds having alkylene oxide adducts thereof) having at least one aromatic ring.
脂環式エポキシドとしては、少なくとも1個のシクロヘキセンやシクロペンテン環を有する化合物を酸化剤でエポキシ化することによって得られる化合物(3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン等)が挙げられる。
The alicyclic epoxide is a compound obtained by epoxidizing a compound having at least one cyclohexene or cyclopentene ring with an oxidizing agent (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, (3). , 4,3', 4'-diepoxy) bicyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane , 2,2-Bis (3,4-epoxycyclohexane-1-yl) propane, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, etc.).
複素環式エポキシドとしては、例えば、分子内にエポキシ基以外の複素環[例えば、テトラヒドロフラン環、テトラヒドロピラン環、モルホリン環、クロマン環、イソクロマン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、アジリジン環、ピロリジン環、ピペリジン環、ピペラジン環、インドリン環、2,6-ジオキサビシクロ[3.3.0]オクタン環、1,3,5-トリアザシクロヘキサン環、1,3,5-トリアザシクロヘキサ-2,4,6-トリオン環(イソシアヌル環)、ジヒドロイミダゾ[4,5-d]イミダゾール-2,5-ジオン環(グリコールウリル環)等の非芳香族性複素環;チオフェン環、ピロール環、フラン環、ピリジン環等の芳香族性複素環等]と、エポキシ基とを有する化合物が挙げられ、例えばモノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、ジアリルモノグリシジルイソシアヌレート、1,3-ジアリル-5-(2-メチルエポキシプロピル)イソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-グリシジルイソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-(2-メチルエポキシプロピル)イソシアヌレート、トリグリシジルイソシアヌレート、トリス(2-メチルエポキシプロピル)イソシアヌレート、1,3,4,6-テトラグリシジルグリコールウリル、1,3,4,6-テトラキス(2-メチルエポキシプロピル)グリコールウリル、1-アリル-3,4,6-トリグリシジルグリコールウリル、1-アリル-3,4,6-トリス(2-メチルエポキシプロピル)グリコールウリル、1-(2-メチルプロペニル)-3,4,6-トリグリシジルグリコールウリル、1-(2-メチルプロペニル)-3,4,6-トリス(2-メチルエポキシプロピル)グリコールウリル、1,4-ジアリル-3,6-ジグリシジルグリコールウリル、1,4-ジアリル-3,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,4-ビス(2-メチルプロペニル)-3,6-ジグリシジルグリコールウリル、1,4-ビス(2-メチルプロペニル)-3,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,3-ジアリル-4,6-ジグリシジルグリコールウリル、1,3-ジアリル-4,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,3-ビス(2-メチルプロペニル)-4,6-ジグリシジルグリコールウリル、1,3-ビス(2-メチルプロペニル)-4,6-ビス(2-メチルエポキシプロピル)グリコールウリル、1,6-ジアリル-3,4-ジグリシジルグリコールウリル、1,6-ジアリル-3,4-ビス(2-メチルエポキシプロピル)グリコールウリル、1,6-ビス(2-メチルプロペニル)-3,4-ジグリシジルグリコールウリル、1,6-ビス(2-メチルプロペニル)-3,4-ビス(2-メチルエポキシプロピル)グリコールウリル、1,3,4-トリアリル-6-グリシジルグリコールウリル、1,3,4-トリアリル-6-(2-メチルエポキシプロピル)グリコールウリル、1,3,4-トリス(2-メチルプロペニル)-6-グリシジルグリコールウリル、1,3,4-トリス(2-メチルプロペニル)-6-(2-メチルエポキシプロピル)グリコールウリル等が挙げられる。
Examples of the heterocyclic epoxide include heterocycles other than epoxy groups in the molecule [for example, tetrahydrofuran ring, tetrahydropyran ring, morpholin ring, chroman ring, isochroman ring, tetrahydrothiophene ring, tetrahydrothiopyran ring, aziridine ring, pyrolysine ring. Ring, piperidine ring, piperazine ring, indolin ring, 2,6-dioxabicyclo [3.3.0] octane ring, 1,3,5-triazacyclohexane ring, 1,3,5-triazacyclohexa- Non-aromatic heterocycles such as 2,4,6-trione ring (isocianul ring), dihydroimidazole [4,5-d] imidazole-2,5-dione ring (glycolyluryl ring); thiophene ring, pyrrole ring, Aromatic heterocycles such as furan ring and pyridine ring] and compounds having an epoxy group include, for example, monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxide propyl). Isocyanurate, 1- (2-methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxidepropyl) isocyanurate, diallyl monoglycidyl isocyanurate , 1,3-Diallyl-5- (2-methylepoxidepropyl) isocyanurate, 1,3-bis (2-methylpropenyl) -5-glycidyl isocyanurate, 1,3-bis (2-methylpropenyl) -5 -(2-Methylepoxidepropyl) isocyanurate, triglycidyl isocyanurate, tris (2-methylepoxidepropyl) isocyanurate, 1,3,4,6-tetraglycidyl glycoluryl, 1,3,4,6-tetrakis ( 2-Methylepoxide propyl) glycol uryl, 1-allyl-3,4,6-triglycidyl glycol uryl, 1-allyl-3,4,6-tris (2-methylepoxide propyl) glycol uryl, 1- (2-) Methylpropenyl) -3,4,6-triglycidyl glycoluryl, 1- (2-methylpropenyl) -3,4,6-tris (2-methylepoxidepropyl) glycoluryl, 1,4-diallyl-3,6 -Diglycidyl glycol uryl, 1,4-diallyl-3,6-bis (2-methylepoxidepropyl) glycol uryl, 1,4-bis (2-methylpropenyl) -3,6-diglycidyl glycol uryl, 1, 4-bis (2-methylpropenyl) -3,6-bis (2-methylepoxide) Sipropyl) glycol uryl, 1,3-diallyl-4,6-diglycidyl glycol uryl, 1,3-diallyl-4,6-bis (2-methylepoxypropyl) glycol uryl, 1,3-bis (2-methyl) Propenyl) -4,6-diglycidyl glycol uryl, 1,3-bis (2-methylpropenyl) -4,6-bis (2-methylepoxypropyl) glycoluryl, 1,6-diallyl-3,4-di Glycidyl glycol uryl, 1,6-diallyl-3,4-bis (2-methylepoxypropyl) glycol uryl, 1,6-bis (2-methylpropenyl) -3,4-diglycidyl glycol uryl, 1,6- Bis (2-methylpropenyl) -3,4-bis (2-methylepoxypropyl) glycoluryl, 1,3,4-triallyl-6-glycidyl glycoluryl, 1,3,4-triallyl-6- (2-) Methylepoxypropyl) glycoluryl, 1,3,4-tris (2-methylpropenyl) -6-glycidyl glycoluril, 1,3,4-tris (2-methylpropenyl) -6- (2-methylepoxypropyl) Glycoluryl and the like can be mentioned.
脂肪族エポキシドとしては、脂肪族多価アルコール又はこのアルキレンオキシド付加体のポリグリシジルエーテル(1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等)、脂肪族多塩基酸のポリグリシジルエステル(ジグリシジルテトラヒドロフタレート等)、長鎖不飽和化合物のエポキシ化物(エポキシ化大豆油及びエポキシ化ポリブタジエン等)が挙げられる。
Aliphatic epoxides include aliphatic polyhydric alcohols, polyglycidyl ethers of this alkylene oxide adduct (1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.), and aliphatic polybasic acids. Examples thereof include polyglycidyl esters (diglycidyl tetrahydrophthalate, etc.) and epoxidized long-chain unsaturated compounds (epoxidized soybean oil, epoxidized polybutadiene, etc.).
オキセタンとしては、公知のもの等が使用でき、例えば、3-エチル-3-ヒドロキシメチルオキセタン、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、オキセタニルシルセスキオキセタン及びフェノールノボラックオキセタン等が挙げられる。
As the oxetane, known ones and the like can be used, for example, 3-ethyl-3-hydroxymethyloxetane, 2-ethylhexyl (3-ethyl-3-oxetanylmethyl) ether, 2-hydroxyethyl (3-ethyl-3-3). Oxetanylmethyl) ether, 2-hydroxypropyl (3-ethyl-3-oxetanylmethyl) ether, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, oxetanylsilsesquioxetane, phenol novolac oxetane, etc. Can be mentioned.
エチレン性不飽和化合物としては、公知のカチオン重合性単量体等が使用でき、脂肪族モノビニルエーテル、芳香族モノビニルエーテル、多官能ビニルエーテル、スチレン及びカチオン重合性窒素含有モノマーが含まれる。
As the ethylenically unsaturated compound, known cationically polymerizable monomers and the like can be used, and includes aliphatic monovinyl ethers, aromatic monovinyl ethers, polyfunctional vinyl ethers, styrene and cationically polymerizable nitrogen-containing monomers.
脂肪族モノビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル及びシクロヘキシルビニルエーテル等が挙げられる。
Examples of the aliphatic monovinyl ether include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether and the like.
芳香族モノビニルエーテルとしては、2-フェノキシエチルビニルエーテル、フェニルビニルエーテル及びp-メトキシフェニルビニルエーテル等が挙げられる。
Examples of the aromatic monovinyl ether include 2-phenoxyethyl vinyl ether, phenyl vinyl ether and p-methoxyphenyl vinyl ether.
多官能ビニルエーテルとしては、ブタンジオール-1,4-ジビニルエーテル及びトリエチレングリコールジビニルエーテル等が挙げられる。
Examples of the polyfunctional vinyl ether include butanediol-1,4-divinyl ether and triethylene glycol divinyl ether.
スチレンとしては、スチレン、α-メチルスチレン、p-メトキシスチレン及びp-tert-ブトキシスチレン等が挙げられる。
Examples of styrene include styrene, α-methylstyrene, p-methoxystyrene, p-tert-butoxystyrene and the like.
カチオン重合性窒素含有モノマーとしては、N-ビニルカルバゾール及びN-ビニルピロリドン等が挙げられる。
Examples of the cationically polymerizable nitrogen-containing monomer include N-vinylcarbazole and N-vinylpyrrolidone.
ビシクロオルトエステルとしては、1-フェニル-4-エチル-2,6,7-トリオキサビシクロ[2.2.2]オクタン及び1-エチル-4-ヒドロキシメチル-2,6,7-トリオキサビシクロ-[2.2.2]オクタン等が挙げられる。
Bicycloorthoesters include 1-phenyl-4-ethyl-2,6,7-trioxabicyclo [2.2.2] octane and 1-ethyl-4-hydroxymethyl-2,6,7-trioxabicyclo. -[2.2.2] Octane and the like can be mentioned.
スピロオルトカーボネートとしては、1,5,7,11-テトラオキサスピロ[5.5]ウンデカン及び3,9-ジベンジル-1,5,7,11-テトラオキサスピロ[5.5]ウンデカン等が挙げられる。
Examples of the spiro orthocarbonate include 1,5,7,11-tetraoxaspiro [5.5] undecane and 3,9-dibenzyl-1,5,7,11-tetraoxaspiro [5.5] undecane. Be done.
スピロオルトエステルとしては、1,4,6-トリオキサスピロ[4.4]ノナン、2-メチル-1,4,6-トリオキサスピロ[4.4]ノナン及び1,4,6-トリオキサスピロ[4.5]デカン等が挙げられる。
Spiro orthoesters include 1,4,6-trioxaspiro [4.4] nonane, 2-methyl-1,4,6-trioxaspiro [4.4] nonane and 1,4,6-trioxas. Pyro [4.5] decane and the like can be mentioned.
さらに、1分子中に少なくとも1個のカチオン重合性基を有するポリオルガノシロキサンを使用することができる(特開2001-348482号公報、特開2000-281965号公報、特開平7-242828号公報、特開2008-195931号公報、Journal of Polym. Sci.,Part A、Polym.Chem.,Vol.28,497(1990)等に記載のもの)。
これらのポリオルガノシロキサンは、直鎖状、分岐鎖状、環状のいずれでもよく、これらの混合物であってもよい。 Further, a polyorganosiloxane having at least one cationically polymerizable group in one molecule can be used (Japanese Patent Laid-Open No. 2001-348482, JP-A-2000-281965, JP-A-7-242828, JP. Japanese Unexamined Patent Publication No. 2008-195931, Journal of Polymer. Sci., Part A, Polymer. Chem., Vol. 28,497 (1990), etc.).
These polyorganosiloxanes may be linear, branched, or cyclic, or may be a mixture thereof.
これらのポリオルガノシロキサンは、直鎖状、分岐鎖状、環状のいずれでもよく、これらの混合物であってもよい。 Further, a polyorganosiloxane having at least one cationically polymerizable group in one molecule can be used (Japanese Patent Laid-Open No. 2001-348482, JP-A-2000-281965, JP-A-7-242828, JP. Japanese Unexamined Patent Publication No. 2008-195931, Journal of Polymer. Sci., Part A, Polymer. Chem., Vol. 28,497 (1990), etc.).
These polyorganosiloxanes may be linear, branched, or cyclic, or may be a mixture thereof.
これらのカチオン重合性化合物のうち、エポキシド、オキセタン及びビニルエーテルが好ましく、さらに好ましくはエポキシド及びオキセタン、特に好ましくは脂環式エポキシド及びオキセタンである。また、これらのカチオン重合性化合物は単独で使用してもよく、または2種以上を併用してもよい。
Among these cationically polymerizable compounds, epoxides, oxetane and vinyl ethers are preferable, and epoxides and oxetanees are more preferable, and alicyclic epoxides and oxetanees are particularly preferable. Further, these cationically polymerizable compounds may be used alone or in combination of two or more.
硬化性組成物中の本発明の式(1)で表されるオニウム塩(酸発生剤)の含有量は、カチオン重合性化合物100重量部に対し、0.05~20重量部が好ましく、さらに好ましくは0.1~10重量部である。この範囲であると、カチオン重合性化合物の重合がさらに十分となり、硬化体の物性がさらに良好となる。なお、この含有量は、カチオン重合性化合物の性質や活性エネルギー線の種類と照射量(活性エネルギー線を使用する場合)、加熱温度、硬化時間、湿度、塗膜の厚み等のさまざまな要因を考慮することによって決定され、上記範囲に限定されない。
The content of the onium salt (acid generator) represented by the formula (1) of the present invention in the curable composition is preferably 0.05 to 20 parts by weight, more preferably 0.05 to 20 parts by weight, based on 100 parts by weight of the cationically polymerizable compound. It is preferably 0.1 to 10 parts by weight. Within this range, the polymerization of the cationically polymerizable compound becomes more sufficient, and the physical properties of the cured product become even better. This content is determined by various factors such as the properties of the cationically polymerizable compound, the type and irradiation amount of the active energy ray (when the active energy ray is used), the heating temperature, the curing time, the humidity, and the thickness of the coating film. Determined by consideration and not limited to the above range.
本発明の硬化性組成物には、必要に応じて、公知の添加剤(増感剤、顔料、充填剤、導電性粒子、帯電防止剤、難燃剤、消泡剤、流動調整剤、光安定剤、酸化防止剤、密着性付与剤、イオン補足剤、着色防止剤、溶剤、非反応性の樹脂及びラジカル重合性化合物等)を含有させることができる。
The curable composition of the present invention may contain known additives (sensitizers, pigments, fillers, conductive particles, antistatic agents, flame retardants, defoamers, flow modifiers, photostabilizers, if necessary. Agents, antioxidants, adhesion-imparting agents, ion-supplementing agents, anti-coloring agents, solvents, non-reactive resins, radically polymerizable compounds, etc.) can be contained.
増感剤としては、公知(特開平11-279212号及び特開平09-183960号等)の増感剤等が使用でき、ベンゾキノン{1,4-ベンゾキノン、1,2-ベンゾキノン等};ナフトキノン{1,4-ナフトキノン、1,2-ナフトキノン等};アントラキノン{2-メチルアントラキノン、2-エチルアントラキノン、等}、アントラセン{アントラセン、9,10-ジブトキシアントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジプロポキシアントラセン等};ピレン;1,2-ベンズアントラセン;ペリレン;テトラセン;コロネン;チオキサントン{チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン及び2,4-ジエチルチオキサントン等};フェノチアジン{フェノチアジン、N-メチルフェノチアジン、N-エチルフェノチアジン、N-フェニルフェノチアジン等};キサントン;ナフタレン{1-ナフトール、2-ナフトール、1-メトキシナフタレン、2-メトキシナフタレン、1,4-ジヒドロキシナフタレン、及び4-メトキシ-1-ナフトール等};ケトン{ジメトキシアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン及び4-ベンゾイル-4’-メチルジフェニルスルフィド等};カルバゾール{N-フェニルカルバゾール、N-エチルカルバゾール、ポリ-N-ビニルカルバゾール及びN-グリシジルカルバゾール等};クリセン{1,4-ジメトキシクリセン及び1,4-ジ-α-メチルベンジルオキシクリセン等};フェナントレン{9-ヒドロキシフェナントレン、9-メトキシフェナントレン、9-ヒドロキシ-10-メトキシフェナントレン及び9-ヒドロキシ-10-エトキシフェナントレン等}等が挙げられる。
As the sensitizer, known sensitizers (Japanese Patent Laid-Open No. 11-279212, JP-A-09-183960, etc.) can be used, and benzoquinone {1,4-benzoquinone, 1,2-benzoquinone, etc.}; naphthoquinone { 1,4-naphthoquinone, 1,2-naphthoquinone, etc.}; Anthracene {2-methylanthracene, 2-ethylanthracene, etc.}, anthracene {anthracene, 9,10-dibutoxyanthracene, 9,10-dimethoxyanthracene, 9, 10-Diethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-dipropoxyanthracene, etc.}; pyrene; 1,2-benzanthracene; perylene; tetracene; coronen; thioxanthone {thioxanthone, 2-methylthioxanthone , 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone and 2,4-diethylthioxanthone}; phenothracene {phenothracene, N-methylphenothracene, N-ethylphenothracene, N-phenylphenanthrene, etc.}; 1-naphthol, 2-naphthol, 1-methoxynaphthrene, 2-methoxynaphthalene, 1,4-dihydroxynaphthalene, 4-methoxy-1-naphthol, etc.}; Ketone {dimethoxyacetophenone, diethoxyacetophenone, 2-hydroxy-2 -Methyl-1-phenylpropan-1-one, 4'-isopropyl-2-hydroxy-2-methylpropiophenone and 4-benzoyl-4'-methyldiphenylsulfide, etc.}; Carbazole {N-phenylcarbazole, N- Ethylcarbazole, poly-N-vinylcarbazole, N-glycidylcarbazole, etc.}; anthracene {1,4-dimethoxycrisen and 1,4-di-α-methylbenzyloxythracene, etc.}; phenanthrene {9-hydroxyphenanthrene, 9- Methoxyphenanthrene, 9-hydroxy-10-methoxyphenanthrene, 9-hydroxy-10-ethoxyphenanthrene, etc.} and the like can be mentioned.
増感剤を含有する場合、増感剤の含有量は、酸発生剤100部に対して、1~300重量部が好ましく、さらに好ましくは5~200重量部である。
When a sensitizer is contained, the content of the sensitizer is preferably 1 to 300 parts by weight, more preferably 5 to 200 parts by weight, based on 100 parts by weight of the acid generator.
顔料としては、公知の顔料等が使用でき、無機顔料(酸化チタン、酸化鉄及びカーボンブラック等)及び有機顔料(アゾ顔料、シアニン顔料、フタロシアニン顔料及びキナクリドン顔料等)等が挙げられる。
As the pigment, known pigments and the like can be used, and examples thereof include inorganic pigments (titanium oxide, iron oxide, carbon black, etc.) and organic pigments (azo pigments, cyanine pigments, phthalocyanine pigments, quinacridone pigments, etc.).
顔料を含有する場合、顔料の含有量は、酸発生剤100部に対して、0.5~400000重量部が好ましく、さらに好ましくは10~150000重量部である。
When the pigment is contained, the content of the pigment is preferably 0.5 to 400,000 parts by weight, more preferably 10 to 150,000 parts by weight, based on 100 parts by weight of the acid generator.
充填剤としては、公知の充填剤等が使用でき、溶融シリカ、結晶シリカ、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、酸化ジルコニウム、炭酸マグネシウム、マイカ、タルク、ケイ酸カルシウム及びケイ酸リチウムアルミニウム等が挙げられる。
As the filler, known fillers and the like can be used, and molten silica, crystalline silica, calcium carbonate, aluminum oxide, aluminum hydroxide, zirconium oxide, magnesium carbonate, mica, talc, calcium silicate, lithium aluminum silicate and the like can be used. Can be mentioned.
充填剤を含有する場合、充填剤の含有量は、酸発生剤100部に対して、50~600000重量部が好ましく、さらに好ましくは300~200000重量部である。
When the filler is contained, the content of the filler is preferably 50 to 600,000 parts by weight, more preferably 300 to 200,000 parts by weight, based on 100 parts by weight of the acid generator.
導電性粒子としては、公知の導電性粒子が使用でき、Ni、Ag、Au、Cu、Pd、Pb、Sn、Fe、Ni、Al等の金属粒子、この金属粒子にさらに金属メッキをしたメッキ金属粒子、樹脂粒子に金属メッキしたメッキ樹脂粒子、カーボン等の導電性を有する物質の粒子が使用できる。
As the conductive particles, known conductive particles can be used, and metal particles such as Ni, Ag, Au, Cu, Pd, Pb, Sn, Fe, Ni, and Al, and plated metals obtained by further metal-plating these metal particles. Particles, plated resin particles obtained by metal-plating resin particles, and particles of a conductive substance such as carbon can be used.
導電性粒子を含有する場合、導電性粒子の含有量は、酸発生剤100部に対して、50~30000重量部が好ましく、さらに好ましくは100~20000重量部である。
When conductive particles are contained, the content of the conductive particles is preferably 50,000 to 30,000 parts by weight, more preferably 100 to 20,000 parts by weight, based on 100 parts by weight of the acid generator.
帯電防止剤としては、公知の帯電防止剤等が使用でき、非イオン型帯電防止剤、アニオン型帯電防止剤、カチオン型帯電防止剤、両性型帯電防止剤及び高分子型帯電防止剤が挙げられる。
As the antistatic agent, known antistatic agents and the like can be used, and examples thereof include non-ionic antistatic agents, anionic antistatic agents, cationic antistatic agents, amphoteric antistatic agents and polymer antistatic agents. ..
帯電防止剤を含有する場合、帯電防止剤の含有量は、酸発生剤100部に対して、0.1~20000重量部が好ましく、さらに好ましくは0.6~5000重量部である。
When an antistatic agent is contained, the content of the antistatic agent is preferably 0.1 to 20000 parts by weight, more preferably 0.6 to 5000 parts by weight, based on 100 parts of the acid generator.
難燃剤としては、公知の難燃剤等が使用でき、無機難燃剤{三酸化アンチモン、五酸化アンチモン、酸化錫、水酸化錫、酸化モリブデン、ホウ酸亜鉛、メタホウ酸バリウム、赤燐、水酸化アルミニウム、水酸化マグネシウム及びアルミン酸カルシウム等};臭素難燃剤{テトラブロモ無水フタル酸、ヘキサブロモベンゼン及びデカブロモビフェニルエーテル等};及びリン酸エステル難燃剤{トリス(トリブロモフェニル)ホスフェート等}等が挙げられる。
As the flame retardant, a known flame retardant or the like can be used, and an inorganic flame retardant {antimony trioxide, antimony pentoxide, tin oxide, tin hydroxide, molybdenum oxide, zinc borate, barium metaborate, red phosphorus, aluminum hydroxide , Magnesium hydroxide and calcium aluminate}; brominated flame retardants {tetrabromophthalic anhydride, hexabromobenzene and decabromobiphenyl ethers, etc.}; and phosphate ester flame retardants {tris (tribromophenyl) phosphate, etc.} Be done.
難燃剤を含有する場合、難燃剤の含有量は、酸発生剤100部に対して、0.5~40000重量部が好ましく、さらに好ましくは5~10000重量部である。
When the flame retardant is contained, the content of the flame retardant is preferably 0.5 to 40,000 parts by weight, more preferably 5 to 10,000 parts by weight, based on 100 parts by weight of the acid generator.
消泡剤としては、公知の消泡剤等が使用でき、アルコール消泡剤、金属石鹸消泡剤、リン酸エステル消泡剤、脂肪酸エステル消泡剤、ポリエーテル消泡剤、シリコーン消泡剤及び鉱物油消泡剤等が挙げられる。
As the defoaming agent, a known defoaming agent or the like can be used, and an alcohol defoaming agent, a metal soap defoaming agent, a phosphoric acid ester defoaming agent, a fatty acid ester defoaming agent, a polyether defoaming agent, a silicone defoaming agent. And mineral oil defoamers and the like.
流動調整剤としては、公知の流動性調整剤等が使用でき、水素添加ヒマシ油、酸化ポリエチレン、有機ベントナイト、コロイド状シリカ、アマイドワックス、金属石鹸及びアクリル酸エステルポリマー等が挙げられる。
光安定剤としては、公知の光安定剤等が使用でき、紫外線吸収型安定剤{ベンゾトリアゾール、ベンゾフェノン、サリチレート、シアノアクリレート及びこれらの誘導体等};ラジカル補足型安定剤{ヒンダードアミン等};及び消光型安定剤{ニッケル錯体等}等が挙げられる。
酸化防止剤としては、公知の酸化防止剤等が使用でき、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。
密着性付与剤としては、公知の密着性付与剤等が使用でき、カップリング剤、シランカップリング剤及びチタンカップリング剤等が挙げられる。
イオン補足剤としては、公知のイオン補足剤等が使用でき、有機アルミニウム(アルコキシアルミニウム及びフェノキシアルミニウム等)等が挙げられる。
着色防止剤としては、公知の着色防止剤が使用でき、一般的には酸化防止剤が有効であり、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。 As the flow conditioner, known fluidity adjusters and the like can be used, and examples thereof include hydrogenated castor oil, polyethylene oxide, organic bentonite, colloidal silica, amidowax, metal soap and acrylic acid ester polymer.
As the light stabilizer, known light stabilizers and the like can be used, and ultraviolet absorption type stabilizers {benzotriazole, benzophenone, salicylate, cyanoacrylate and derivatives thereof, etc.}; radical supplement type stabilizers {hindered amine, etc.}; and quenching. Examples include type stabilizers {nickel complexes, etc.}.
As the antioxidant, known antioxidants and the like can be used, and examples thereof include phenol-based antioxidants (monophenol-based, bisphenol-based and polymer phenol-based, etc.), sulfur-based antioxidants, phosphorus-based antioxidants, and the like. Be done.
As the adhesion-imparting agent, a known adhesion-imparting agent or the like can be used, and examples thereof include a coupling agent, a silane coupling agent, and a titanium coupling agent.
As the ion catching agent, known ion catching agents and the like can be used, and examples thereof include organic aluminum (alkoxyaluminum, phenoxyaluminum and the like) and the like.
As the anti-coloring agent, known anti-coloring agents can be used, and in general, antioxidants are effective, and phenol-based antioxidants (monophenol-based, bisphenol-based, high-molecular-weight phenol-based, etc.), sulfur-based oxidation. Examples thereof include antioxidants and phosphorus-based antioxidants.
光安定剤としては、公知の光安定剤等が使用でき、紫外線吸収型安定剤{ベンゾトリアゾール、ベンゾフェノン、サリチレート、シアノアクリレート及びこれらの誘導体等};ラジカル補足型安定剤{ヒンダードアミン等};及び消光型安定剤{ニッケル錯体等}等が挙げられる。
酸化防止剤としては、公知の酸化防止剤等が使用でき、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。
密着性付与剤としては、公知の密着性付与剤等が使用でき、カップリング剤、シランカップリング剤及びチタンカップリング剤等が挙げられる。
イオン補足剤としては、公知のイオン補足剤等が使用でき、有機アルミニウム(アルコキシアルミニウム及びフェノキシアルミニウム等)等が挙げられる。
着色防止剤としては、公知の着色防止剤が使用でき、一般的には酸化防止剤が有効であり、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。 As the flow conditioner, known fluidity adjusters and the like can be used, and examples thereof include hydrogenated castor oil, polyethylene oxide, organic bentonite, colloidal silica, amidowax, metal soap and acrylic acid ester polymer.
As the light stabilizer, known light stabilizers and the like can be used, and ultraviolet absorption type stabilizers {benzotriazole, benzophenone, salicylate, cyanoacrylate and derivatives thereof, etc.}; radical supplement type stabilizers {hindered amine, etc.}; and quenching. Examples include type stabilizers {nickel complexes, etc.}.
As the antioxidant, known antioxidants and the like can be used, and examples thereof include phenol-based antioxidants (monophenol-based, bisphenol-based and polymer phenol-based, etc.), sulfur-based antioxidants, phosphorus-based antioxidants, and the like. Be done.
As the adhesion-imparting agent, a known adhesion-imparting agent or the like can be used, and examples thereof include a coupling agent, a silane coupling agent, and a titanium coupling agent.
As the ion catching agent, known ion catching agents and the like can be used, and examples thereof include organic aluminum (alkoxyaluminum, phenoxyaluminum and the like) and the like.
As the anti-coloring agent, known anti-coloring agents can be used, and in general, antioxidants are effective, and phenol-based antioxidants (monophenol-based, bisphenol-based, high-molecular-weight phenol-based, etc.), sulfur-based oxidation. Examples thereof include antioxidants and phosphorus-based antioxidants.
消泡剤、流動調整剤、光安定剤、酸化防止剤、密着性付与剤、イオン補足剤又は、着色防止剤を含有する場合、各々の含有量は、酸発生剤100部に対して、0.1~20000重量部が好ましく、さらに好ましくは0.5~5000重量部である。
When a defoaming agent, a flow conditioner, a light stabilizer, an antioxidant, an adhesion imparting agent, an ion supplementing agent, or a coloring inhibitor is contained, the content of each is 0 with respect to 100 parts of the acid generator. It is preferably 1 to 20000 parts by weight, more preferably 0.5 to 5000 parts by weight.
溶剤としては、カチオン重合性化合物の溶解やエネルギー線硬化性組成物の粘度調整のために使用できれば制限はなく、上記酸発生剤の溶剤として挙げたものが使用できる。
The solvent is not limited as long as it can be used for dissolving a cationically polymerizable compound or adjusting the viscosity of an energy ray-curable composition, and the above-mentioned solvent for an acid generator can be used.
溶剤を含有する場合、溶剤の含有量は、酸発生剤100部に対して、50~2000000重量部が好ましく、さらに好ましくは200~500000重量部である。
When a solvent is contained, the content of the solvent is preferably 50 to 2000000 parts by weight, more preferably 200 to 500,000 parts by weight, based on 100 parts by weight of the acid generator.
非反応性の樹脂としては、ポリエステル、ポリ酢酸ビニル、ポリ塩化ビニル、ポリブタジエン、ポリカーボナート、ポリスチレン、ポリビニルエーテル、ポリビニルブチラール、ポリブテン、スチレンブタジエンブロックコポリマー水添物、(メタ)アクリル酸エステルの共重合体及びポリウレタン等が挙げられる。これらの樹脂の数平均分子量は、1000~500000が好ましく、さらに好ましくは5000~100000である(数平均分子量はGPC等の一般的な方法によって測定された値である。)。
Non-reactive resins include polyester, polyvinyl acetate, polyvinyl chloride, polybutadiene, polycarbonate, polystyrene, polyvinyl ether, polyvinyl butyral, polybutene, styrene butadiene block copolymer hydrogenated material, and (meth) acrylic acid ester. Examples include coalescence and polyurethane. The number average molecular weight of these resins is preferably 1000 to 500,000, more preferably 5000 to 100,000 (the number average molecular weight is a value measured by a general method such as GPC).
非反応性の樹脂を含有する場合、非反応性の樹脂の含有量は、酸発生剤100部に対して、5~400000重量部が好ましく、さらに好ましくは50~150000重量部である。
When a non-reactive resin is contained, the content of the non-reactive resin is preferably 5 to 400,000 parts by weight, more preferably 50 to 150,000 parts by weight, based on 100 parts by weight of the acid generator.
非反応性の樹脂を含有させる場合、非反応性の樹脂をカチオン重合性化合物等と溶解しやすくするため、あらかじめ溶剤に溶かしておくことが望ましい。
When a non-reactive resin is contained, it is desirable to dissolve the non-reactive resin in a solvent in advance in order to easily dissolve the non-reactive resin with a cationically polymerizable compound or the like.
ラジカル重合性化合物としては、公知{フォトポリマー懇話会編「フォトポリマーハンドブック」(1989年、工業調査会)、総合技術センター編「UV・EB硬化技術」(1982年、総合技術センター)、ラドテック研究会編「UV・EB硬化材料」(1992年、シーエムシー)、技術情報協会編「UV硬化における硬化不良・阻害原因とその対策」(2003年、技術情報協会)}のラジカル重合性化合物等が使用でき、単官能モノマー、2官能モノマー、多官能モノマー、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びウレタン(メタ)アクリレートが含まれる。
Known radically polymerizable compounds include {Photopolymer Social gathering edition "Photopolymer Handbook" (1989, Industrial Research Council), General Technology Center edition "UV / EB Curing Technology" (1982, General Technology Center), Radtech Research. "UV / EB Curing Materials" (1992, CMC) edited by the Society, "Causes of Curing Failure / Inhibition in UV Curing and Countermeasures" (2003, Technical Information Association)}, etc. It can be used and includes monofunctional monomers, bifunctional monomers, polyfunctional monomers, epoxy (meth) acrylates, polyester (meth) acrylates and urethane (meth) acrylates.
ラジカル重合性化合物を含有する場合、ラジカル重合性化合物の含有量は、酸発生剤100部に対して、5~400000重量部が好ましく、さらに好ましくは50~150000重量部である。
When the radically polymerizable compound is contained, the content of the radically polymerizable compound is preferably 5 to 400,000 parts by weight, more preferably 50 to 150,000 parts by weight, based on 100 parts by weight of the acid generator.
ラジカル重合性化合物を含有する場合、これらをラジカル重合によって高分子量化するために、熱又は光によって重合を開始するラジカル重合開始剤を使用することが好ましい。
When a radically polymerizable compound is contained, it is preferable to use a radical polymerization initiator that initiates polymerization by heat or light in order to increase the molecular weight of these by radical polymerization.
ラジカル重合開始剤としては、公知のラジカル重合開始剤等が使用でき、熱ラジカル重合開始剤(有機過酸化物、アゾ化合物等)及び光ラジカル重合開始剤(アセトフェノン系開始剤、ベンゾフェノン系開始剤、ミヒラーケトン系開始剤、ベンゾイン系開始剤、チオキサントン系開始剤、アシルホスフィン系開始剤等)が含まれる。
As the radical polymerization initiator, known radical polymerization initiators and the like can be used, and thermal radical polymerization initiators (organic peroxides, azo compounds, etc.) and photoradical polymerization initiators (acetophenone-based initiators, benzophenone-based initiators, etc.) Michler ketone-based initiators, benzoin-based initiators, thioxanthone-based initiators, acylphosphine-based initiators, etc.) are included.
ラジカル重合開始剤を含有する場合、ラジカル重合開始剤の含有量は、ラジカル重合性化合物100部に対して、0.01~20重量部が好ましく、さらに好ましくは0.1~10重量部である。
When the radical polymerization initiator is contained, the content of the radical polymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the radically polymerizable compound. ..
本発明の硬化性組成物は、カチオン重合性化合物、酸発生剤及び必要により添加剤を、室温(20~30℃程度)又は必要により加熱(40~90℃程度)下で、均一に混合溶解するか、またはさらに、3本ロール等で混練して調製することができる。
In the curable composition of the present invention, a cationically polymerizable compound, an acid generator and, if necessary, an additive are uniformly mixed and dissolved at room temperature (about 20 to 30 ° C.) or, if necessary, heating (about 40 to 90 ° C.). It can be prepared by kneading with 3 rolls or the like.
本発明の硬化性組成物は、エネルギー線を照射することにより硬化させて、硬化体を得ることができる。
エネルギー線としては、本発明の酸発生剤の分解を誘発するエネルギーを有する限りいかなるものでもよいが、低圧、中圧、高圧若しくは超高圧の水銀灯、メタルハライドランプ、LEDランプ、キセノンランプ、カーボンアークランプ、蛍光灯、半導体固体レーザ、アルゴンレーザ、He-Cdレーザ、KrFエキシマレーザ、ArFエキシマレーザ又はF2レーザ等から得られる紫外~可視光領域(波長:約100~約800nm)のエネルギー線が好ましい。なお、エネルギー線には、電子線又はX線等の高エネルギーを有する放射線を用いることもできる。 The curable composition of the present invention can be cured by irradiating it with energy rays to obtain a cured product.
The energy ray may be any as long as it has the energy to induce the decomposition of the acid generator of the present invention, but it may be a low pressure, medium pressure, high pressure or ultra high pressure mercury lamp, metal halide lamp, LED lamp, excimer lamp, carbon arc lamp. , fluorescent lamps, semiconductor solid-state laser, argon laser, the He-Cd laser, KrF excimer laser, ArF excimer laser or F 2 ultraviolet to visible light region derived from a laser or the like (wavelength: about 100 to about 800 nm) energy ray is preferred .. As the energy ray, radiation having high energy such as an electron beam or an X-ray can also be used.
エネルギー線としては、本発明の酸発生剤の分解を誘発するエネルギーを有する限りいかなるものでもよいが、低圧、中圧、高圧若しくは超高圧の水銀灯、メタルハライドランプ、LEDランプ、キセノンランプ、カーボンアークランプ、蛍光灯、半導体固体レーザ、アルゴンレーザ、He-Cdレーザ、KrFエキシマレーザ、ArFエキシマレーザ又はF2レーザ等から得られる紫外~可視光領域(波長:約100~約800nm)のエネルギー線が好ましい。なお、エネルギー線には、電子線又はX線等の高エネルギーを有する放射線を用いることもできる。 The curable composition of the present invention can be cured by irradiating it with energy rays to obtain a cured product.
The energy ray may be any as long as it has the energy to induce the decomposition of the acid generator of the present invention, but it may be a low pressure, medium pressure, high pressure or ultra high pressure mercury lamp, metal halide lamp, LED lamp, excimer lamp, carbon arc lamp. , fluorescent lamps, semiconductor solid-state laser, argon laser, the He-Cd laser, KrF excimer laser, ArF excimer laser or F 2 ultraviolet to visible light region derived from a laser or the like (wavelength: about 100 to about 800 nm) energy ray is preferred .. As the energy ray, radiation having high energy such as an electron beam or an X-ray can also be used.
エネルギー線の照射時間は、エネルギー線の強度やエネルギー線硬化性組成物に対するエネルギー線の透過性に影響を受けるが、常温(20~30℃程度)で、0.1秒~10秒程度で十分である。しかしエネルギー線の透過性が低い場合やエネルギー線硬化性組成物の膜厚が厚い場合等にはそれ以上の時間をかけるのが好ましいことがある。エネルギー線照射後0.1秒~数分後には、ほとんどのエネルギー線硬化性組成物はカチオン重合により硬化するが、必要であればエネルギー線の照射後、室温(20~30℃程度)~250℃で数秒~数時間加熱しアフターキュアーすることも可能である。
The energy ray irradiation time is affected by the intensity of the energy ray and the permeability of the energy ray to the energy ray curable composition, but at room temperature (about 20 to 30 ° C.), about 0.1 to 10 seconds is sufficient. Is. However, when the energy ray permeability is low or the film thickness of the energy ray curable composition is thick, it may be preferable to take a longer time. Most of the energy ray-curable compositions are cured by cationic polymerization 0.1 seconds to several minutes after the energy ray irradiation, but if necessary, after the energy ray irradiation, the room temperature (about 20 to 30 ° C.) to 250 It is also possible to aftercure by heating at ° C for several seconds to several hours.
本発明の硬化性組成物は、加熱することにより硬化させて、硬化体を得ることができる。
The curable composition of the present invention can be cured by heating to obtain a cured product.
硬化させるための加熱方法としては、例えば、熱循環式加熱、赤外線加熱、高周波加熱等従来公知の方法を用いることができる。
As a heating method for curing, conventionally known methods such as heat circulation heating, infrared heating, and high frequency heating can be used.
硬化に必要な加熱温度は、硬化が十分に進行し、基材を劣化させない範囲であれば特に限定されるものではないが、好ましくは50~250℃、より好ましくは80~200℃の範囲であり、加熱時間は加熱温度に依存するものの、生産性の面から数分から数時間が好ましい。
The heating temperature required for curing is not particularly limited as long as the curing proceeds sufficiently and does not deteriorate the substrate, but is preferably in the range of 50 to 250 ° C, more preferably 80 to 200 ° C. Although the heating time depends on the heating temperature, it is preferably several minutes to several hours from the viewpoint of productivity.
また、本発明の硬化性組成物を硬化して得られる硬化物は耐熱性に優れ、5%重量減少温度は、例えば260℃以上、好ましくは280℃以上、特に好ましくは300℃以上である。尚、5%重量減少温度は示差熱-熱重量同時測定(TG-DTA)により求められる。そのため、リフロー方式による半田付け等の高温条件下においても形状を保持することができる。
The cured product obtained by curing the curable composition of the present invention has excellent heat resistance, and the 5% weight loss temperature is, for example, 260 ° C. or higher, preferably 280 ° C. or higher, and particularly preferably 300 ° C. or higher. The 5% weight loss temperature is determined by differential thermal-thermogravimetric simultaneous measurement (TG-DTA). Therefore, the shape can be maintained even under high temperature conditions such as soldering by the reflow method.
更に、本発明の硬化性組成物を硬化して得られる硬化物は透明性に優れ、耐熱試験に付す前の硬化物の黄色度(YI)は、例えば1.5以下である。また、本発明の硬化性組成物を硬化して得られる硬化物はリフロー方式による半田付け等の高温条件下においても黄変を抑制して透明性を保持することができ、耐熱試験に付した後の硬化物の黄色度(YI)は、例えば1.5以下である。尚、黄色度の測定方法は実施例に記載の通りである。
Further, the cured product obtained by curing the curable composition of the present invention has excellent transparency, and the yellowness (YI) of the cured product before being subjected to the heat resistance test is, for example, 1.5 or less. Further, the cured product obtained by curing the curable composition of the present invention can suppress yellowing and maintain transparency even under high temperature conditions such as soldering by a reflow method, and has been subjected to a heat resistance test. The yellowness (YI) of the later cured product is, for example, 1.5 or less. The method for measuring the yellowness is as described in the examples.
本発明の硬化性組成物を硬化して得られる硬化物を、構成要素として含有する光学素子は優れた耐熱性と耐熱黄変性を兼ね備える。例えば、レンズ、プリズム、LED、有機EL素子、半導体レーザー、トランジスタ、太陽電池、CCDイメージセンサ、光導波路、光ファイバー、代替ガラス(例えば、ディスプレイ用基板、ハードディスク基板、偏光フィルム)等に用いられる光学素子として好適に用いられる。
An optical element containing a cured product obtained by curing the curable composition of the present invention as a constituent element has both excellent heat resistance and heat-resistant yellowing. For example, optical elements used for lenses, prisms, LEDs, organic EL elements, semiconductor lasers, transistors, solar cells, CCD image sensors, optical waveguides, optical fibers, alternative glasses (for example, display substrates, hard disk substrates, polarizing films) and the like. Is preferably used as.
また本発明の硬化性組成物を硬化して得られる硬化物を、構成要素として含有する光学素子は耐熱性に優れるので、基板実装の際にリフロー処理により他の部品と共に一括して実装が可能である。また、耐熱性が求められる車載用電子機器にも使用することができる。
上記光学素子を備えた光学装置としては、例えば、携帯電話、スマートフォン、タブレットPC等の携帯型電子機器;近赤外センサ、ミリ波レーダー、LEDスポット照明装置、近赤外LED照明装置、ミラーモニター、メーターパネル、ヘッドマウントディスプレイ(投影型)用コンバイナ、ヘッドアップディスプレイ用コンバイナ等の車載用電子機器等を挙げることができる。 Further, since the optical element containing the cured product obtained by curing the curable composition of the present invention as a constituent element has excellent heat resistance, it can be mounted together with other parts by reflow processing at the time of substrate mounting. Is. It can also be used for in-vehicle electronic devices that require heat resistance.
Examples of the optical device provided with the above optical elements include portable electronic devices such as mobile phones, smartphones, and tablet PCs; near-infrared sensors, millimeter-wave radars, LED spot lighting devices, near-infrared LED lighting devices, and mirror monitors. , Instrument panels, head-mounted display (projection type) combiners, head-up display combiners, and other in-vehicle electronic devices.
上記光学素子を備えた光学装置としては、例えば、携帯電話、スマートフォン、タブレットPC等の携帯型電子機器;近赤外センサ、ミリ波レーダー、LEDスポット照明装置、近赤外LED照明装置、ミラーモニター、メーターパネル、ヘッドマウントディスプレイ(投影型)用コンバイナ、ヘッドアップディスプレイ用コンバイナ等の車載用電子機器等を挙げることができる。 Further, since the optical element containing the cured product obtained by curing the curable composition of the present invention as a constituent element has excellent heat resistance, it can be mounted together with other parts by reflow processing at the time of substrate mounting. Is. It can also be used for in-vehicle electronic devices that require heat resistance.
Examples of the optical device provided with the above optical elements include portable electronic devices such as mobile phones, smartphones, and tablet PCs; near-infrared sensors, millimeter-wave radars, LED spot lighting devices, near-infrared LED lighting devices, and mirror monitors. , Instrument panels, head-mounted display (projection type) combiners, head-up display combiners, and other in-vehicle electronic devices.
以下、実施例により本発明を更に説明するが、本発明はこれに限定されることは意図するものではない。なお、以下特記しない限り、部は重量部、%は重量%を意味する。
Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not intended to be limited thereto. Unless otherwise specified, parts mean parts by weight and% means% by weight.
<アニオン部の合成>
合成例1 リチウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(A-1)の合成
窒素雰囲気下で十分に乾燥させた還流管つき200mL4つ口フラスコに水素化リチウムアルミニウム0.95g、ジメトキシエタン5.0gを仕込み、そこへさらにトルエン150mLを加え撹拌した。これを氷浴にて10℃に冷却した。2-トリフルオロメチル-2-プロパノール16.0gを滴下し、その後室温で1時間撹拌した。さらにこれを5時間加熱還流した。反応液を室温に戻し、析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより白色固体を得た(11.6g)。H-NMR、F-NMRよりこの白色固体が(A-1)であることを確認した(収率86%、フッ素置換率33%)。 <Synthesis of anion part>
Synthesis Example 1 Synthesis of lithium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (A-1) 0.95 g of lithium aluminum hydride in a 200 mL four-necked flask with a reflux tube sufficiently dried under a nitrogen atmosphere, 5.0 g of dimethoxyethane was charged, 150 mL of toluene was further added thereto, and the mixture was stirred. This was cooled to 10 ° C. in an ice bath. 16.0 g of 2-trifluoromethyl-2-propanol was added dropwise, and then the mixture was stirred at room temperature for 1 hour. Further, this was heated under reflux for 5 hours. The reaction solution was returned to room temperature, the precipitated solid was filtered, the reaction solution was transferred to an evaporator, and the solvent was distilled off to obtain a white solid (11.6 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-1) (yield 86%, fluorine substitution rate 33%).
合成例1 リチウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(A-1)の合成
窒素雰囲気下で十分に乾燥させた還流管つき200mL4つ口フラスコに水素化リチウムアルミニウム0.95g、ジメトキシエタン5.0gを仕込み、そこへさらにトルエン150mLを加え撹拌した。これを氷浴にて10℃に冷却した。2-トリフルオロメチル-2-プロパノール16.0gを滴下し、その後室温で1時間撹拌した。さらにこれを5時間加熱還流した。反応液を室温に戻し、析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより白色固体を得た(11.6g)。H-NMR、F-NMRよりこの白色固体が(A-1)であることを確認した(収率86%、フッ素置換率33%)。 <Synthesis of anion part>
Synthesis Example 1 Synthesis of lithium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (A-1) 0.95 g of lithium aluminum hydride in a 200 mL four-necked flask with a reflux tube sufficiently dried under a nitrogen atmosphere, 5.0 g of dimethoxyethane was charged, 150 mL of toluene was further added thereto, and the mixture was stirred. This was cooled to 10 ° C. in an ice bath. 16.0 g of 2-trifluoromethyl-2-propanol was added dropwise, and then the mixture was stirred at room temperature for 1 hour. Further, this was heated under reflux for 5 hours. The reaction solution was returned to room temperature, the precipitated solid was filtered, the reaction solution was transferred to an evaporator, and the solvent was distilled off to obtain a white solid (11.6 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-1) (yield 86%, fluorine substitution rate 33%).
合成例2 リチウムテトラキス(2-ペンタフルオロエチル-2-プロポキシ)アルミナート(A-2)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ペンタフルオロエチル-2-プロパノール22.3gに変更した以外、合成例1と同様にして白色固体を得た(15.6g)。H-NMR、F-NMRよりこの白色固体が(A-2)であることを確認した(収率84%、フッ素置換率45%)。 Synthesis Example 2 Synthesis of Lithium Tetrakis (2-Pentafluoroethyl-2-Propoxy) Aluminate (A-2) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-pentafluoroethyl-2. -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 22.3 g of propanol (15.6 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-2) (yield 84%, fluorine substitution rate 45%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ペンタフルオロエチル-2-プロパノール22.3gに変更した以外、合成例1と同様にして白色固体を得た(15.6g)。H-NMR、F-NMRよりこの白色固体が(A-2)であることを確認した(収率84%、フッ素置換率45%)。 Synthesis Example 2 Synthesis of Lithium Tetrakis (2-Pentafluoroethyl-2-Propoxy) Aluminate (A-2) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-pentafluoroethyl-2. -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 22.3 g of propanol (15.6 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-2) (yield 84%, fluorine substitution rate 45%).
合成例3 リチウムテトラキス(2-ヘプタフルオロプロピル-2-プロポキシ)アルミナート(A-3)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ヘプタフルオロプロピル-2-プロパノール28.5gに変更した以外、合成例1と同様にして白色固体を得た(18.0g)。H-NMR、F-NMRよりこの白色固体が(A-3)であることを確認した(収率76%、フッ素置換率54%)。 Synthesis Example 3 Synthesis of Lithium Tetrakis (2-Heptafluoropropyl-2-Propoxy) Aluminate (A-3) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-heptafluoropropyl-2. -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 28.5 g of propanol (18.0 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-3) (yield 76%, fluorine substitution rate 54%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ヘプタフルオロプロピル-2-プロパノール28.5gに変更した以外、合成例1と同様にして白色固体を得た(18.0g)。H-NMR、F-NMRよりこの白色固体が(A-3)であることを確認した(収率76%、フッ素置換率54%)。 Synthesis Example 3 Synthesis of Lithium Tetrakis (2-Heptafluoropropyl-2-Propoxy) Aluminate (A-3) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-heptafluoropropyl-2. -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 28.5 g of propanol (18.0 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-3) (yield 76%, fluorine substitution rate 54%).
合成例4 リチウムテトラキス(ヘキサフルオロ-tert-ブトキシ)アルミナート(A-4)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gをヘキサフルオロ-tert-ブタノール22.8gに変更した以外、合成例1と同様にして白色固体を得た(16.0g)。H-NMR、F-NMRよりこの白色固体が(A-4)であることを確認した(収率84%、フッ素置換率67%)。 Synthesis Example 4 Synthesis of lithium tetrakis (hexafluoro-tert-butoxy) aluminate (A-4) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was converted to 22.8 g of hexafluoro-tert-butanol. A white solid was obtained in the same manner as in Synthesis Example 1 except for the modification (16.0 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-4) (yield 84%, fluorine substitution rate 67%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gをヘキサフルオロ-tert-ブタノール22.8gに変更した以外、合成例1と同様にして白色固体を得た(16.0g)。H-NMR、F-NMRよりこの白色固体が(A-4)であることを確認した(収率84%、フッ素置換率67%)。 Synthesis Example 4 Synthesis of lithium tetrakis (hexafluoro-tert-butoxy) aluminate (A-4) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was converted to 22.8 g of hexafluoro-tert-butanol. A white solid was obtained in the same manner as in Synthesis Example 1 except for the modification (16.0 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-4) (yield 84%, fluorine substitution rate 67%).
合成例5 リチウムテトラキス(2-ビニル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-5)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ビニル-ヘキサフルオロ-2-プロパノール24.3gに変更した以外、合成例1と同様にして微黄色固体を得た(15.7g)。H-NMR、F-NMRよりこの微黄色固体が(A-5)であることを確認した(収率78%、フッ素置換率67%)。 Synthesis Example 5 Synthesis of Lithium Tetrakis (2-Vinyl-Hexafluoro-2-Propoxy) Aluminate (A-5) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-vinyl-hexafluoro. A slightly yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 24.3 g of -2-propanol (15.7 g). It was confirmed by 1 H-NMR and F-NMR that this slightly yellow solid was (A-5) (yield 78%, fluorine substitution rate 67%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ビニル-ヘキサフルオロ-2-プロパノール24.3gに変更した以外、合成例1と同様にして微黄色固体を得た(15.7g)。H-NMR、F-NMRよりこの微黄色固体が(A-5)であることを確認した(収率78%、フッ素置換率67%)。 Synthesis Example 5 Synthesis of Lithium Tetrakis (2-Vinyl-Hexafluoro-2-Propoxy) Aluminate (A-5) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-vinyl-hexafluoro. A slightly yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 24.3 g of -2-propanol (15.7 g). It was confirmed by 1 H-NMR and F-NMR that this slightly yellow solid was (A-5) (yield 78%, fluorine substitution rate 67%).
合成例6 リチウムテトラキス(2-アリル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-6)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-アリル-ヘキサフルオロ-2-プロパノール26.0gに変更した以外、合成例1と同様にして微黄色固体を得た(13.2g)。H-NMR、F-NMRよりこの微黄色固体が(A-6)であることを確認した(収率61%、フッ素置換率55%)。 Synthesis Example 6 Synthesis of Lithium Tetrakis (2-allyl-Hexafluoro-2-Propoxy) Aluminate (A-6) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-allyl-hexafluoro. A slightly yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 26.0 g of -2-propanol (13.2 g). It was confirmed by 1 H-NMR and F-NMR that this slightly yellow solid was (A-6) (yield 61%, fluorine substitution rate 55%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-アリル-ヘキサフルオロ-2-プロパノール26.0gに変更した以外、合成例1と同様にして微黄色固体を得た(13.2g)。H-NMR、F-NMRよりこの微黄色固体が(A-6)であることを確認した(収率61%、フッ素置換率55%)。 Synthesis Example 6 Synthesis of Lithium Tetrakis (2-allyl-Hexafluoro-2-Propoxy) Aluminate (A-6) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-allyl-hexafluoro. A slightly yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 26.0 g of -2-propanol (13.2 g). It was confirmed by 1 H-NMR and F-NMR that this slightly yellow solid was (A-6) (yield 61%, fluorine substitution rate 55%).
合成例7 リチウムテトラキス(2-フェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-7)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-フェニル-ヘキサフルオロ-2-プロパノール30.5gに変更した以外、合成例1と同様にして白色固体を得た(17.5g)。H-NMR、F-NMRよりこの白色固体が(A-7)であることを確認した(収率70%、フッ素置換率55%)。 Synthesis Example 7 Synthesis of Lithium Tetrakis (2-Phenyl-Hexafluoro-2-Propoxy) Aluminate (A-7) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-phenyl-hexafluoro. A white solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 30.5 g of -2-propanol (17.5 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-7) (yield 70%, fluorine substitution rate 55%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-フェニル-ヘキサフルオロ-2-プロパノール30.5gに変更した以外、合成例1と同様にして白色固体を得た(17.5g)。H-NMR、F-NMRよりこの白色固体が(A-7)であることを確認した(収率70%、フッ素置換率55%)。 Synthesis Example 7 Synthesis of Lithium Tetrakis (2-Phenyl-Hexafluoro-2-Propoxy) Aluminate (A-7) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-phenyl-hexafluoro. A white solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 30.5 g of -2-propanol (17.5 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-7) (yield 70%, fluorine substitution rate 55%).
合成例8 リチウムテトラキス(2-ペンタフルオロフェニル-2-プロポキシ)アルミナート(A-8)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ペンタフルオロフェニル-2-プロパノール33.3gに変更した以外、合成例1と同様にして白色固体を得た(15.9g)。H-NMR、F-NMRよりこの白色固体が(A-8)であることを確認した(収率68%、フッ素置換率45%)。 Synthesis Example 8 Synthesis of Lithium Tetrakis (2-Pentafluorophenyl-2-Propoxy) Aluminate (A-8) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-pentafluorophenyl-2. -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 33.3 g of propanol (15.9 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-8) (yield 68%, fluorine substitution rate 45%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ペンタフルオロフェニル-2-プロパノール33.3gに変更した以外、合成例1と同様にして白色固体を得た(15.9g)。H-NMR、F-NMRよりこの白色固体が(A-8)であることを確認した(収率68%、フッ素置換率45%)。 Synthesis Example 8 Synthesis of Lithium Tetrakis (2-Pentafluorophenyl-2-Propoxy) Aluminate (A-8) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-pentafluorophenyl-2. -A white solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 33.3 g of propanol (15.9 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-8) (yield 68%, fluorine substitution rate 45%).
合成例9 リチウムテトラキス(2-p-トリル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-9)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-p-トリル-ヘキサフルオロ-2-プロパノール32.3gに変更した以外、合成例1と同様にして淡黄色固体を得た(12.5g)。H-NMR、F-NMRよりこの淡黄色固体が(A-9)であることを確認した(収率47%、フッ素置換率46%)。 Synthesis Example 9 Synthesis of Lithium Tetrakis (2-p-Trill-Hexafluoro-2-Propoxy) Aluminate (A-9) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-p-. A pale yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 32.3 g of trill-hexafluoro-2-propanol (12.5 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-9) (yield 47%, fluorine substitution rate 46%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-p-トリル-ヘキサフルオロ-2-プロパノール32.3gに変更した以外、合成例1と同様にして淡黄色固体を得た(12.5g)。H-NMR、F-NMRよりこの淡黄色固体が(A-9)であることを確認した(収率47%、フッ素置換率46%)。 Synthesis Example 9 Synthesis of Lithium Tetrakis (2-p-Trill-Hexafluoro-2-Propoxy) Aluminate (A-9) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-p-. A pale yellow solid was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 32.3 g of trill-hexafluoro-2-propanol (12.5 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-9) (yield 47%, fluorine substitution rate 46%).
合成例10 リチウムテトラキス(2-p-クロロフェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-10)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-p-クロロフェニル-ヘキサフルオロ-2-プロパノール34.8gに変更した以外、合成例1と同様にして淡黄色固体を得た(12.8g)。H-NMR、F-NMRよりこの淡黄色固体が(A-10)であることを確認した(収率45%、フッ素置換率60%)。 Synthesis Example 10 Synthesis of lithium tetrakis (2-p-chlorophenyl-hexafluoro-2-propoxy) aluminate (A-10) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-p-. A pale yellow solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 34.8 g of chlorophenyl-hexafluoro-2-propanol (12.8 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-10) (yield 45%, fluorine substitution rate 60%).
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-p-クロロフェニル-ヘキサフルオロ-2-プロパノール34.8gに変更した以外、合成例1と同様にして淡黄色固体を得た(12.8g)。H-NMR、F-NMRよりこの淡黄色固体が(A-10)であることを確認した(収率45%、フッ素置換率60%)。 Synthesis Example 10 Synthesis of lithium tetrakis (2-p-chlorophenyl-hexafluoro-2-propoxy) aluminate (A-10) In Synthesis Example 1, 16.0 g of 2-trifluoromethyl-2-propanol was added to 2-p-. A pale yellow solid was obtained in the same manner as in Synthesis Example 1 except that it was changed to 34.8 g of chlorophenyl-hexafluoro-2-propanol (12.8 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-10) (yield 45%, fluorine substitution rate 60%).
合成例11 リチウムトリス(ヘキサフルオロ-tert-ブトキシ)(2-トリフルオロメチル-2-プロポキシ)アルミナート(A-11)の合成
窒素雰囲気下で十分に乾燥させた還流管つき200mL4つ口フラスコに水素化リチウムアルミニウム0.95g、ジメトキシエタン5.0gを仕込み、そこへさらにトルエン150mLを加え撹拌した。これを氷浴にて10℃に冷却した。ヘキサフルオロ-tert-ブタノール13.6gを滴下し、その後室温で1時間撹拌した。そこへ2-トリフルオロメチル-2-プロパノール6.4gを加え、さらにこれを5時間加熱還流した。反応液を室温に戻し、析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより白色固体を得た(13.2g)。H-NMR、F-NMRよりこの白色固体が(A-11)であることを確認した(収率75%、フッ素置換率58%)。 Synthesis Example 11 Synthesis of lithium tris (hexafluoro-tert-butoxy) (2-trifluoromethyl-2-propoxy) aluminate (A-11) In a 200 mL four-necked flask with a reflux tube that has been sufficiently dried under a nitrogen atmosphere. 0.95 g of lithium aluminum hydride and 5.0 g of dimethoxyethane were charged, and 150 mL of toluene was further added thereto and stirred. This was cooled to 10 ° C. in an ice bath. 13.6 g of hexafluoro-tert-butanol was added dropwise, and then the mixture was stirred at room temperature for 1 hour. To this was added 6.4 g of 2-trifluoromethyl-2-propanol, which was further heated to reflux for 5 hours. The reaction solution was returned to room temperature, the precipitated solid was filtered, the reaction solution was transferred to an evaporator, and the solvent was distilled off to obtain a white solid (13.2 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-11) (yield 75%, fluorine substitution rate 58%).
窒素雰囲気下で十分に乾燥させた還流管つき200mL4つ口フラスコに水素化リチウムアルミニウム0.95g、ジメトキシエタン5.0gを仕込み、そこへさらにトルエン150mLを加え撹拌した。これを氷浴にて10℃に冷却した。ヘキサフルオロ-tert-ブタノール13.6gを滴下し、その後室温で1時間撹拌した。そこへ2-トリフルオロメチル-2-プロパノール6.4gを加え、さらにこれを5時間加熱還流した。反応液を室温に戻し、析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより白色固体を得た(13.2g)。H-NMR、F-NMRよりこの白色固体が(A-11)であることを確認した(収率75%、フッ素置換率58%)。 Synthesis Example 11 Synthesis of lithium tris (hexafluoro-tert-butoxy) (2-trifluoromethyl-2-propoxy) aluminate (A-11) In a 200 mL four-necked flask with a reflux tube that has been sufficiently dried under a nitrogen atmosphere. 0.95 g of lithium aluminum hydride and 5.0 g of dimethoxyethane were charged, and 150 mL of toluene was further added thereto and stirred. This was cooled to 10 ° C. in an ice bath. 13.6 g of hexafluoro-tert-butanol was added dropwise, and then the mixture was stirred at room temperature for 1 hour. To this was added 6.4 g of 2-trifluoromethyl-2-propanol, which was further heated to reflux for 5 hours. The reaction solution was returned to room temperature, the precipitated solid was filtered, the reaction solution was transferred to an evaporator, and the solvent was distilled off to obtain a white solid (13.2 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-11) (yield 75%, fluorine substitution rate 58%).
合成例12 リチウムトリス(2-フェニル-ヘキサフルオロ-2-プロポキシ)(ノナフルオロ-tert-ブトキシ)アルミナート(A-12)の合成
合成例11において、ヘキサフルオロ-tert-ブタノール13.6gを2-フェニル-ヘキサフルオロ-2-プロパノール18.3gに、2-トリフルオロメチル-2-プロパノール6.4gをノナフルオロ-tert-ブタノール11.8gに変更した以外、合成例11と同様にして淡黄色固体を得た(13.6g)。H-NMR、F-NMRよりこの淡黄色固体が(A-12)であることを確認した(収率55%、フッ素置換率64%)。 Synthesis Example 12 Synthesis of lithium tris (2-phenyl-hexafluoro-2-propoxy) (nonafluoro-tert-butoxy) aluminate (A-12) In Synthesis Example 11, 13.6 g of hexafluoro-tert-butanol was added in 2-. A pale yellow solid was prepared in the same manner as in Synthesis Example 11 except that 18.3 g of phenyl-hexafluoro-2-propanol and 6.4 g of 2-trifluoromethyl-2-propanol were changed to 11.8 g of nonafluoro-tert-butanol. Obtained (13.6 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-12) (yield 55%, fluorine substitution rate 64%).
合成例11において、ヘキサフルオロ-tert-ブタノール13.6gを2-フェニル-ヘキサフルオロ-2-プロパノール18.3gに、2-トリフルオロメチル-2-プロパノール6.4gをノナフルオロ-tert-ブタノール11.8gに変更した以外、合成例11と同様にして淡黄色固体を得た(13.6g)。H-NMR、F-NMRよりこの淡黄色固体が(A-12)であることを確認した(収率55%、フッ素置換率64%)。 Synthesis Example 12 Synthesis of lithium tris (2-phenyl-hexafluoro-2-propoxy) (nonafluoro-tert-butoxy) aluminate (A-12) In Synthesis Example 11, 13.6 g of hexafluoro-tert-butanol was added in 2-. A pale yellow solid was prepared in the same manner as in Synthesis Example 11 except that 18.3 g of phenyl-hexafluoro-2-propanol and 6.4 g of 2-trifluoromethyl-2-propanol were changed to 11.8 g of nonafluoro-tert-butanol. Obtained (13.6 g). It was confirmed by 1 H-NMR and F-NMR that this pale yellow solid was (A-12) (yield 55%, fluorine substitution rate 64%).
合成例13 リチウムトリス(2-トリフルオロメチル-2-プロポキシ)(ノナフルオロ-tert-ブトキシ)アルミナート(A-13)の合成
合成例11において、ヘキサフルオロ-tert-ブタノール13.6gを2-トリフルオロメチル-2-プロパノール9.6gに、2-トリフルオロメチル-2-プロパノール6.4gをノナフルオロ-tert-ブタノール11.8gに変更した以外、合成例11と同様にして白色固体を得た(7.1g)。H-NMR、F-NMRよりこの白色固体が(A-13)であることを確認した(収率44%、フッ素置換率50%)。 Synthesis Example 13 Synthesis of lithium tris (2-trifluoromethyl-2-propoxy) (nonafluoro-tert-butoxy) aluminate (A-13) In Synthesis Example 11, 13.6 g of hexafluoro-tert-butanol was added to 2-tri. A white solid was obtained in the same manner as in Synthesis Example 11 except that 9.6 g of fluoromethyl-2-propanol and 6.4 g of 2-trifluoromethyl-2-propanol were changed to 11.8 g of nonafluoro-tert-butanol. 7.1 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-13) (yield 44%, fluorine substitution rate 50%).
合成例11において、ヘキサフルオロ-tert-ブタノール13.6gを2-トリフルオロメチル-2-プロパノール9.6gに、2-トリフルオロメチル-2-プロパノール6.4gをノナフルオロ-tert-ブタノール11.8gに変更した以外、合成例11と同様にして白色固体を得た(7.1g)。H-NMR、F-NMRよりこの白色固体が(A-13)であることを確認した(収率44%、フッ素置換率50%)。 Synthesis Example 13 Synthesis of lithium tris (2-trifluoromethyl-2-propoxy) (nonafluoro-tert-butoxy) aluminate (A-13) In Synthesis Example 11, 13.6 g of hexafluoro-tert-butanol was added to 2-tri. A white solid was obtained in the same manner as in Synthesis Example 11 except that 9.6 g of fluoromethyl-2-propanol and 6.4 g of 2-trifluoromethyl-2-propanol were changed to 11.8 g of nonafluoro-tert-butanol. 7.1 g). It was confirmed by 1 H-NMR and F-NMR that this white solid was (A-13) (yield 44%, fluorine substitution rate 50%).
<酸発生剤の合成>
実施例1 [4-(フェニルチオ)フェニル]スルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG101)の合成
ジフェニルスルホキシド16g、ジフェニルスルフィド15g、無水酢酸25g、トリフルオロメタンスルホン酸15g及びアセトニトリル130gを均一混合し、40℃で6時間反応させた。反応溶液を室温まで冷却し、イオン交換水500g中に投入し、ジクロロメタン500gで抽出し、水層のpHが中性になるまでイオン交換水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して、溶媒を留去し、褐色液状の生成物を得た。これに酢酸エチル200gを加え、60℃の水浴中で溶解させた後、ヘキサン600gを加え撹拌した後、5℃まで冷却し30分間静置してから上澄みを除く操作を2回行い、生成物を洗浄した。これをロータリーエバポレーターに移して溶媒を留去することにより、[4-(フェニルチオ)フェニル]スルホニウムトリフルオロメタンスルホン酸塩(中間体-1)30gを得た。
(中間体-1)5.2gをジクロロメタン50mLに溶かし、等モルのリチウム塩(A-1)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG101)を得た。 <Synthesis of acid generator>
Example 1 Synthesis of [4- (phenylthio) phenyl] sulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG101) Diphenyl sulfoxide 16 g, diphenyl sulfide 15 g, acetic anhydride 25 g, trifluoromethanesulfonic acid 15 g and acetonitrile 130 g was uniformly mixed and reacted at 40 ° C. for 6 hours. The reaction solution was cooled to room temperature, poured into 500 g of ion-exchanged water, extracted with 500 g of dichloromethane, and washed with ion-exchanged water until the pH of the aqueous layer became neutral. The dichloromethane layer was transferred to a rotary evaporator and the solvent was evaporated to give a brown liquid product. After adding 200 g of ethyl acetate and dissolving in a water bath at 60 ° C., adding 600 g of hexane and stirring, the product was cooled to 5 ° C. and allowed to stand for 30 minutes, and then the supernatant was removed twice. Was washed. This was transferred to a rotary evaporator and the solvent was distilled off to obtain 30 g of [4- (phenylthio) phenyl] sulfonium trifluoromethanesulfonate (intermediate-1).
(Intermediate-1) 5.2 g is dissolved in 50 mL of dichloromethane, 70 g of an equimolar lithium salt (A-1) aqueous solution is mixed at room temperature, stirred as it is for 3 hours, and the dichloromethane layer is separated by water. After washing 5 times, the mixture was transferred to a rotary evaporator and the solvent was distilled off to obtain an acid generator (AG101).
実施例1 [4-(フェニルチオ)フェニル]スルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG101)の合成
ジフェニルスルホキシド16g、ジフェニルスルフィド15g、無水酢酸25g、トリフルオロメタンスルホン酸15g及びアセトニトリル130gを均一混合し、40℃で6時間反応させた。反応溶液を室温まで冷却し、イオン交換水500g中に投入し、ジクロロメタン500gで抽出し、水層のpHが中性になるまでイオン交換水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して、溶媒を留去し、褐色液状の生成物を得た。これに酢酸エチル200gを加え、60℃の水浴中で溶解させた後、ヘキサン600gを加え撹拌した後、5℃まで冷却し30分間静置してから上澄みを除く操作を2回行い、生成物を洗浄した。これをロータリーエバポレーターに移して溶媒を留去することにより、[4-(フェニルチオ)フェニル]スルホニウムトリフルオロメタンスルホン酸塩(中間体-1)30gを得た。
(中間体-1)5.2gをジクロロメタン50mLに溶かし、等モルのリチウム塩(A-1)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG101)を得た。 <Synthesis of acid generator>
Example 1 Synthesis of [4- (phenylthio) phenyl] sulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG101) Diphenyl sulfoxide 16 g, diphenyl sulfide 15 g, acetic anhydride 25 g, trifluoromethanesulfonic acid 15 g and acetonitrile 130 g was uniformly mixed and reacted at 40 ° C. for 6 hours. The reaction solution was cooled to room temperature, poured into 500 g of ion-exchanged water, extracted with 500 g of dichloromethane, and washed with ion-exchanged water until the pH of the aqueous layer became neutral. The dichloromethane layer was transferred to a rotary evaporator and the solvent was evaporated to give a brown liquid product. After adding 200 g of ethyl acetate and dissolving in a water bath at 60 ° C., adding 600 g of hexane and stirring, the product was cooled to 5 ° C. and allowed to stand for 30 minutes, and then the supernatant was removed twice. Was washed. This was transferred to a rotary evaporator and the solvent was distilled off to obtain 30 g of [4- (phenylthio) phenyl] sulfonium trifluoromethanesulfonate (intermediate-1).
(Intermediate-1) 5.2 g is dissolved in 50 mL of dichloromethane, 70 g of an equimolar lithium salt (A-1) aqueous solution is mixed at room temperature, stirred as it is for 3 hours, and the dichloromethane layer is separated by water. After washing 5 times, the mixture was transferred to a rotary evaporator and the solvent was distilled off to obtain an acid generator (AG101).
実施例2~13 酸発生剤(AG102~AG113)の合成
実施例1において、リチウム塩(A-1)をリチウム塩(A-2)~(A-13)に変更した以外、実施例1と同様にして、それぞれ酸発生剤(AG102~AG113)を得た。 Examples 2 to 13 Synthesis of acid generators (AG102 to AG113) In Example 1, the lithium salt (A-1) was changed to the lithium salt (A-2) to (A-13), but the same as in Example 1. In the same manner, acid generators (AG102 to AG113) were obtained, respectively.
実施例1において、リチウム塩(A-1)をリチウム塩(A-2)~(A-13)に変更した以外、実施例1と同様にして、それぞれ酸発生剤(AG102~AG113)を得た。 Examples 2 to 13 Synthesis of acid generators (AG102 to AG113) In Example 1, the lithium salt (A-1) was changed to the lithium salt (A-2) to (A-13), but the same as in Example 1. In the same manner, acid generators (AG102 to AG113) were obtained, respectively.
実施例14 チオジ-p-フェニレンビス(ジフェニルスルホニウム)ジ[テトラキス(2-トリフルオロメチル-2-プロポキシ)]アルミナート(AG201)の合成
特許文献(特開2013-227368)の方法(チオジ-p-フェニレンビス(ジフェニルスルホニウム)ビス(ヘキサフルオロホスフェート)の合成方法)を参考に、ヘキサフルオロリン酸カリウムの代わりにリチウム塩(A-1)を用いて酸発生剤(AG201)を得た。 Example 14 Synthesis of thiodi-p-phenylenebis (diphenylsulfonium) di [tetrakis (2-trifluoromethyl-2-propoxy)] aluminate (AG201) The method (thiodi-p) of Patent Document (Japanese Patent Laid-Open No. 2013-227368). -A method for synthesizing phenylene bis (diphenylsulfonium) bis (hexafluorophosphate)) was used as a reference to obtain an acid generator (AG201) using a lithium salt (A-1) instead of potassium hexafluorophosphate.
特許文献(特開2013-227368)の方法(チオジ-p-フェニレンビス(ジフェニルスルホニウム)ビス(ヘキサフルオロホスフェート)の合成方法)を参考に、ヘキサフルオロリン酸カリウムの代わりにリチウム塩(A-1)を用いて酸発生剤(AG201)を得た。 Example 14 Synthesis of thiodi-p-phenylenebis (diphenylsulfonium) di [tetrakis (2-trifluoromethyl-2-propoxy)] aluminate (AG201) The method (thiodi-p) of Patent Document (Japanese Patent Laid-Open No. 2013-227368). -A method for synthesizing phenylene bis (diphenylsulfonium) bis (hexafluorophosphate)) was used as a reference to obtain an acid generator (AG201) using a lithium salt (A-1) instead of potassium hexafluorophosphate.
実施例15~26 酸発生剤(AG202~AG213)の合成
実施例14においてリチウム塩(A-1)をリチウム塩(A-2)~(A-13)に変更した以外、実施例14と同様にして、それぞれ酸発生剤(AG202~AG213)を得た。 Examples 15 to 26 Synthesis of acid generators (AG202 to AG213) Same as in Example 14 except that the lithium salt (A-1) was changed to the lithium salt (A-2) to (A-13) in Example 14. Then, acid generators (AG202 to AG213) were obtained.
実施例14においてリチウム塩(A-1)をリチウム塩(A-2)~(A-13)に変更した以外、実施例14と同様にして、それぞれ酸発生剤(AG202~AG213)を得た。 Examples 15 to 26 Synthesis of acid generators (AG202 to AG213) Same as in Example 14 except that the lithium salt (A-1) was changed to the lithium salt (A-2) to (A-13) in Example 14. Then, acid generators (AG202 to AG213) were obtained.
実施例27 [4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG301)の合成
4-[(フェニル)スルフィニル]ビフェニル11g、4-(フェニルチオ)ビフェニル12g、無水酢酸22g及びメタンスルホン酸16部を均一混合し、65℃で3時間反応させた。反応溶液を室温まで冷却し、イオン交換水100mL中に投入し、ジクロロメタン100gで抽出し、水層のpHが中性になるまで水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して溶媒を留去することにより、褐色固体を得た。これを酢酸エチル/ヘキサンで洗浄を行い、有機溶媒を濃縮することで[4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウムメタンスルホン酸塩(中間体-2)20gを得た。
(中間体-2)6.2gをジクロロメタン60mLに溶かし、等モルのリチウム塩(A-1)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG301)を得た。 Example 27 Synthesis of 4- (4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG301) 4-[(phenyl) sulfinyl] biphenyl 11 g, 12 g of 4- (phenylthio) biphenyl, 22 g of anhydrous acetic acid and 16 parts of methanesulfonic acid were uniformly mixed and reacted at 65 ° C. for 3 hours. The reaction solution was cooled to room temperature, poured into 100 mL of ion-exchanged water, extracted with 100 g of dichloromethane, and washed with water until the pH of the aqueous layer became neutral. The dichloromethane layer was transferred to a rotary evaporator and the solvent was distilled off to obtain a brown solid. This was washed with ethyl acetate / hexane, and the organic solvent was concentrated to obtain 20 g of [4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium methanesulfonate (intermediate-2).
(Intermediate-2) 6.2 g is dissolved in 60 mL of dichloromethane, 70 g of an equimolar lithium salt (A-1) aqueous solution is mixed at room temperature, stirred as it is for 3 hours, and the dichloromethane layer is separated by water. After washing 5 times, the mixture was transferred to a rotary evaporator and the solvent was distilled off to obtain an acid generator (AG301).
4-[(フェニル)スルフィニル]ビフェニル11g、4-(フェニルチオ)ビフェニル12g、無水酢酸22g及びメタンスルホン酸16部を均一混合し、65℃で3時間反応させた。反応溶液を室温まで冷却し、イオン交換水100mL中に投入し、ジクロロメタン100gで抽出し、水層のpHが中性になるまで水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して溶媒を留去することにより、褐色固体を得た。これを酢酸エチル/ヘキサンで洗浄を行い、有機溶媒を濃縮することで[4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウムメタンスルホン酸塩(中間体-2)20gを得た。
(中間体-2)6.2gをジクロロメタン60mLに溶かし、等モルのリチウム塩(A-1)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG301)を得た。 Example 27 Synthesis of 4- (4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG301) 4-[(phenyl) sulfinyl] biphenyl 11 g, 12 g of 4- (phenylthio) biphenyl, 22 g of anhydrous acetic acid and 16 parts of methanesulfonic acid were uniformly mixed and reacted at 65 ° C. for 3 hours. The reaction solution was cooled to room temperature, poured into 100 mL of ion-exchanged water, extracted with 100 g of dichloromethane, and washed with water until the pH of the aqueous layer became neutral. The dichloromethane layer was transferred to a rotary evaporator and the solvent was distilled off to obtain a brown solid. This was washed with ethyl acetate / hexane, and the organic solvent was concentrated to obtain 20 g of [4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium methanesulfonate (intermediate-2).
(Intermediate-2) 6.2 g is dissolved in 60 mL of dichloromethane, 70 g of an equimolar lithium salt (A-1) aqueous solution is mixed at room temperature, stirred as it is for 3 hours, and the dichloromethane layer is separated by water. After washing 5 times, the mixture was transferred to a rotary evaporator and the solvent was distilled off to obtain an acid generator (AG301).
実施例28~39 酸発生剤(AG302~AG313)の合成
実施例27において、リチウム塩(A-2)~(A-13)に変更した以外、実施例27と同様にして、それぞれ酸発生剤(AG302~AG313)を得た。 Examples 28 to 39 Synthesis of acid generators (AG302 to AG313) Acid generators in the same manner as in Example 27, except that they were changed to lithium salts (A-2) to (A-13) in Example 27. (AG302 to AG313) were obtained.
実施例27において、リチウム塩(A-2)~(A-13)に変更した以外、実施例27と同様にして、それぞれ酸発生剤(AG302~AG313)を得た。 Examples 28 to 39 Synthesis of acid generators (AG302 to AG313) Acid generators in the same manner as in Example 27, except that they were changed to lithium salts (A-2) to (A-13) in Example 27. (AG302 to AG313) were obtained.
実施例40 (4-イソプロピルフェニル)トリルヨードニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(A401)の合成
反応容器に4-メチルヨードベンゼン20gを加え、さらに酢酸50g、硫酸10gを加えて溶解させ、氷水浴にて冷却しながら15℃以下で過硫酸カリウム10gを少しずつ加えた。20℃で4時間反応させ、そこへクメン(イソプロピルベンゼン)24.4gを20℃を超えないように滴下した。その後室温で20時間反応させた。反応液を、等モルのリチウム塩(A-1)を含む水溶液500部へ投入し、さらに3時間攪拌した。そこへジクロロメタン500部を加えた。静置後水層を分液により除去し、有機層を水100部にて5回洗浄を行った。ジクロロメタンを濃縮し、シクロヘキサンで再結晶を行い、酸発生剤(A401)を得た。 Example 40 (4-Isopropylphenyl) Trilliodonium Tetrakiss (2-trifluoromethyl-2-propoxy) Aluminate (A401) Synthesis Add 20 g of 4-methyliodobenzene to a reaction vessel, and further add 50 g of acetic acid and 10 g of sulfuric acid. 10 g of potassium persulfate was added little by little at 15 ° C. or lower while cooling in an ice-water bath. The reaction was carried out at 20 ° C. for 4 hours, and 24.4 g of cumene (isopropylbenzene) was added dropwise thereto so as not to exceed 20 ° C. Then, it was reacted at room temperature for 20 hours. The reaction solution was added to 500 parts of an aqueous solution containing an equimolar lithium salt (A-1), and the mixture was further stirred for 3 hours. 500 parts of dichloromethane was added thereto. After standing, the aqueous layer was removed by liquid separation, and the organic layer was washed 5 times with 100 parts of water. Dichloromethane was concentrated and recrystallized from cyclohexane to obtain an acid generator (A401).
反応容器に4-メチルヨードベンゼン20gを加え、さらに酢酸50g、硫酸10gを加えて溶解させ、氷水浴にて冷却しながら15℃以下で過硫酸カリウム10gを少しずつ加えた。20℃で4時間反応させ、そこへクメン(イソプロピルベンゼン)24.4gを20℃を超えないように滴下した。その後室温で20時間反応させた。反応液を、等モルのリチウム塩(A-1)を含む水溶液500部へ投入し、さらに3時間攪拌した。そこへジクロロメタン500部を加えた。静置後水層を分液により除去し、有機層を水100部にて5回洗浄を行った。ジクロロメタンを濃縮し、シクロヘキサンで再結晶を行い、酸発生剤(A401)を得た。 Example 40 (4-Isopropylphenyl) Trilliodonium Tetrakiss (2-trifluoromethyl-2-propoxy) Aluminate (A401) Synthesis Add 20 g of 4-methyliodobenzene to a reaction vessel, and further add 50 g of acetic acid and 10 g of sulfuric acid. 10 g of potassium persulfate was added little by little at 15 ° C. or lower while cooling in an ice-water bath. The reaction was carried out at 20 ° C. for 4 hours, and 24.4 g of cumene (isopropylbenzene) was added dropwise thereto so as not to exceed 20 ° C. Then, it was reacted at room temperature for 20 hours. The reaction solution was added to 500 parts of an aqueous solution containing an equimolar lithium salt (A-1), and the mixture was further stirred for 3 hours. 500 parts of dichloromethane was added thereto. After standing, the aqueous layer was removed by liquid separation, and the organic layer was washed 5 times with 100 parts of water. Dichloromethane was concentrated and recrystallized from cyclohexane to obtain an acid generator (A401).
実施例41~52 酸発生剤(AG402~AG413)の合成
実施例40において、リチウム塩(A-2)~(A-13)に変更した以外、実施例40と同様にして、それぞれ酸発生剤(AG402~AG413)を得た。 Examples 41 to 52 Synthesis of acid generators (AG402 to AG413) Acid generators in the same manner as in Example 40, except that they were changed to lithium salts (A-2) to (A-13) in Example 40. (AG402 to AG413) were obtained.
実施例40において、リチウム塩(A-2)~(A-13)に変更した以外、実施例40と同様にして、それぞれ酸発生剤(AG402~AG413)を得た。 Examples 41 to 52 Synthesis of acid generators (AG402 to AG413) Acid generators in the same manner as in Example 40, except that they were changed to lithium salts (A-2) to (A-13) in Example 40. (AG402 to AG413) were obtained.
実施例53 ジ(4-tert-ブチルフェニル)ヨードニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG501)の合成
反応容器にジ(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート5.4gとジクロロメタン50gを加えた。攪拌しながら等モルのリチウム塩(A-1)を含む水溶液50部を加えて室温下8時間攪拌した。静置後水層を分液により除去し、さらに有機層を水50部で5回洗浄した。有機溶媒を減圧下で留去することにより酸発生剤(AG501)を得た。 Example 53 Synthesis of di (4-tert-butylphenyl) iodonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG501) Di (4-tert-butylphenyl) iodonium hexafluorophosphate in a reaction vessel. 4 g and 50 g of dichloromethane were added. While stirring, 50 parts of an aqueous solution containing an equimolar lithium salt (A-1) was added, and the mixture was stirred at room temperature for 8 hours. After standing, the aqueous layer was removed by liquid separation, and the organic layer was further washed with 50 parts of water 5 times. An acid generator (AG501) was obtained by distilling off the organic solvent under reduced pressure.
反応容器にジ(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート5.4gとジクロロメタン50gを加えた。攪拌しながら等モルのリチウム塩(A-1)を含む水溶液50部を加えて室温下8時間攪拌した。静置後水層を分液により除去し、さらに有機層を水50部で5回洗浄した。有機溶媒を減圧下で留去することにより酸発生剤(AG501)を得た。 Example 53 Synthesis of di (4-tert-butylphenyl) iodonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG501) Di (4-tert-butylphenyl) iodonium hexafluorophosphate in a reaction vessel. 4 g and 50 g of dichloromethane were added. While stirring, 50 parts of an aqueous solution containing an equimolar lithium salt (A-1) was added, and the mixture was stirred at room temperature for 8 hours. After standing, the aqueous layer was removed by liquid separation, and the organic layer was further washed with 50 parts of water 5 times. An acid generator (AG501) was obtained by distilling off the organic solvent under reduced pressure.
実施例54~65 酸発生剤(AG502~AG513)の合成
実施例53において、リチウム塩(A-2)~(A-13)に変更した以外、実施例53と同様にして、それぞれ酸発生剤(AG502~AG513)を得た。 Examples 54 to 65 Synthesis of acid generators (AG502 to AG513) In Example 53, the acid generators were obtained in the same manner as in Example 53, except that they were changed to lithium salts (A-2) to (A-13). (AG502 to AG513) were obtained.
実施例53において、リチウム塩(A-2)~(A-13)に変更した以外、実施例53と同様にして、それぞれ酸発生剤(AG502~AG513)を得た。 Examples 54 to 65 Synthesis of acid generators (AG502 to AG513) In Example 53, the acid generators were obtained in the same manner as in Example 53, except that they were changed to lithium salts (A-2) to (A-13). (AG502 to AG513) were obtained.
実施例66 フェニル(2,4,6-トリメトキシフェニル)ヨードニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG601)の合成
反応容器にフェニル(2,4,6-トリメトキシフェニル)ヨードニウムp-トルエンスルホナート5.4gとジクロロメタン50gを加えた。攪拌しながら等モルのリチウム塩(A-1)を含む水溶液50部を加えて室温下8時間攪拌した。静置後水層を分液により除去し、さらに有機層を水50部で5回洗浄した。有機溶媒を減圧下で留去することにより酸発生剤(AG601)を得た。 Example 66 Synthesis of phenyl (2,4,6-trimethoxyphenyl) iodonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG601) Phenyl (2,4,6-trimethoxyphenyl) in a reaction vessel. 5.4 g of iodonium p-toluenesulfonate and 50 g of dichloromethane were added. While stirring, 50 parts of an aqueous solution containing an equimolar lithium salt (A-1) was added, and the mixture was stirred at room temperature for 8 hours. After standing, the aqueous layer was removed by liquid separation, and the organic layer was further washed with 50 parts of water 5 times. An acid generator (AG601) was obtained by distilling off the organic solvent under reduced pressure.
反応容器にフェニル(2,4,6-トリメトキシフェニル)ヨードニウムp-トルエンスルホナート5.4gとジクロロメタン50gを加えた。攪拌しながら等モルのリチウム塩(A-1)を含む水溶液50部を加えて室温下8時間攪拌した。静置後水層を分液により除去し、さらに有機層を水50部で5回洗浄した。有機溶媒を減圧下で留去することにより酸発生剤(AG601)を得た。 Example 66 Synthesis of phenyl (2,4,6-trimethoxyphenyl) iodonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG601) Phenyl (2,4,6-trimethoxyphenyl) in a reaction vessel. 5.4 g of iodonium p-toluenesulfonate and 50 g of dichloromethane were added. While stirring, 50 parts of an aqueous solution containing an equimolar lithium salt (A-1) was added, and the mixture was stirred at room temperature for 8 hours. After standing, the aqueous layer was removed by liquid separation, and the organic layer was further washed with 50 parts of water 5 times. An acid generator (AG601) was obtained by distilling off the organic solvent under reduced pressure.
実施例67~78 酸発生剤(AG602~AG613)の合成
実施例66において、リチウム塩(A-2)~(A-13)に変更した以外、実施例66と同様にして、それぞれ酸発生剤(AG602~AG613)を得た。 Examples 67 to 78 Synthesis of acid generators (AG602 to AG613) In Example 66, the acid generators were obtained in the same manner as in Example 66, except that they were changed to lithium salts (A-2) to (A-13). (AG602 to AG613) were obtained.
実施例66において、リチウム塩(A-2)~(A-13)に変更した以外、実施例66と同様にして、それぞれ酸発生剤(AG602~AG613)を得た。 Examples 67 to 78 Synthesis of acid generators (AG602 to AG613) In Example 66, the acid generators were obtained in the same manner as in Example 66, except that they were changed to lithium salts (A-2) to (A-13). (AG602 to AG613) were obtained.
実施例79 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG701)の合成
4-ヒドロキシフェニル-メチル-ベンジルスルホニウムクロライド3.0gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG701)を得た。 Example 79 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG701) 3.0 g of 4-hydroxyphenyl-methyl-benzylsulfonium chloride was dispersed in 50 g of dichloromethane. , 30 g of an aqueous solution containing an equimolar lithium salt (A-1) was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG701).
4-ヒドロキシフェニル-メチル-ベンジルスルホニウムクロライド3.0gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG701)を得た。 Example 79 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG701) 3.0 g of 4-hydroxyphenyl-methyl-benzylsulfonium chloride was dispersed in 50 g of dichloromethane. , 30 g of an aqueous solution containing an equimolar lithium salt (A-1) was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG701).
実施例80~91 酸発生剤(AG702~AG713)の合成
実施例79において、リチウム塩(A-2)~(A-13)に変更した以外、実施例79と同様にして、それぞれ酸発生剤(AG702~AG713)を得た。 Examples 80 to 91 Synthesis of acid generators (AG702 to AG713) Acid generators in the same manner as in Example 79, except that they were changed to lithium salts (A-2) to (A-13) in Example 79. (AG702 to AG713) were obtained.
実施例79において、リチウム塩(A-2)~(A-13)に変更した以外、実施例79と同様にして、それぞれ酸発生剤(AG702~AG713)を得た。 Examples 80 to 91 Synthesis of acid generators (AG702 to AG713) Acid generators in the same manner as in Example 79, except that they were changed to lithium salts (A-2) to (A-13) in Example 79. (AG702 to AG713) were obtained.
実施例92 4-ヒドロキシフェニル-メチル-1-ナフチルメチルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG801)の合成
4-ヒドロキシフェニル-メチル-1-ナフチルメチルスルホウムクロライド3.2gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG801)を得た。 Example 92 Synthesis of 4-hydroxyphenyl-methyl-1-naphthylmethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG801) 4-Hydroxyphenyl-methyl-1-naphthylmethylsulfoum chloride 3. 2 g was dispersed in 50 g of dichloromethane, and 30 g of an aqueous solution containing an equimolar lithium salt (A-1) was mixed at room temperature and stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG801).
4-ヒドロキシフェニル-メチル-1-ナフチルメチルスルホウムクロライド3.2gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG801)を得た。 Example 92 Synthesis of 4-hydroxyphenyl-methyl-1-naphthylmethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG801) 4-Hydroxyphenyl-methyl-1-naphthylmethylsulfoum chloride 3. 2 g was dispersed in 50 g of dichloromethane, and 30 g of an aqueous solution containing an equimolar lithium salt (A-1) was mixed at room temperature and stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG801).
実施例93~104 酸発生剤(AG802~AG813)の合成
実施例92において、リチウム塩(A-2)~(A-13)に変更した以外、実施例92と同様にして、それぞれ酸発生剤(AG802~AG813)を得た。 Examples 93 to 104 Synthesis of acid generators (AG802 to AG813) Acid generators in the same manner as in Example 92, except that they were changed to lithium salts (A-2) to (A-13) in Example 92. (AG802 to AG813) were obtained.
実施例92において、リチウム塩(A-2)~(A-13)に変更した以外、実施例92と同様にして、それぞれ酸発生剤(AG802~AG813)を得た。 Examples 93 to 104 Synthesis of acid generators (AG802 to AG813) Acid generators in the same manner as in Example 92, except that they were changed to lithium salts (A-2) to (A-13) in Example 92. (AG802 to AG813) were obtained.
実施例105 4-アセトキシフェニルジメチルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG901)の合成
4-アセトキシフェニルジメチルスルホニウムヘキサフルオロホスファート3.4gをジクロロメタン50gに溶解させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG901)を得た。 Example 105 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG901) 3.4 g of 4-acetoxyphenyldimethylsulfonium hexafluorophosphate was dissolved in 50 g of dichloromethane and equimolar. 30 g of an aqueous solution containing the lithium salt (A-1) of No. 1 was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG901).
4-アセトキシフェニルジメチルスルホニウムヘキサフルオロホスファート3.4gをジクロロメタン50gに溶解させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG901)を得た。 Example 105 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG901) 3.4 g of 4-acetoxyphenyldimethylsulfonium hexafluorophosphate was dissolved in 50 g of dichloromethane and equimolar. 30 g of an aqueous solution containing the lithium salt (A-1) of No. 1 was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG901).
実施例106~117 酸発生剤(AG902~AG913)の合成
実施例105において、リチウム塩(A-2)~(A-13)に変更した以外、実施例105と同様にして、それぞれ酸発生剤(AG902~AG913)を得た。 Examples 106 to 117 Synthesis of acid generators (AG902 to AG913) Acid generators in the same manner as in Example 105, except that they were changed to lithium salts (A-2) to (A-13) in Example 105. (AG902 to AG913) were obtained.
実施例105において、リチウム塩(A-2)~(A-13)に変更した以外、実施例105と同様にして、それぞれ酸発生剤(AG902~AG913)を得た。 Examples 106 to 117 Synthesis of acid generators (AG902 to AG913) Acid generators in the same manner as in Example 105, except that they were changed to lithium salts (A-2) to (A-13) in Example 105. (AG902 to AG913) were obtained.
実施例118 4-ヒドロキシフェニル-4-ニトロベンジルメチルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG1001)の合成
4-ヒドロキシフェニル-4-ニトロベンジルメチルスルホニウムクロライド3.1gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG1001)を得た。 Example 118 Synthesis of 4-hydroxyphenyl-4-nitrobenzylmethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG1001) 4.1 g of 4-hydroxyphenyl-4-nitrobenzylmethylsulfonium chloride (3.1 g) is made up of dichloromethane. It was dispersed in 50 g, 30 g of an aqueous solution containing an equimolar lithium salt (A-1) was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG1001).
4-ヒドロキシフェニル-4-ニトロベンジルメチルスルホニウムクロライド3.1gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG1001)を得た。 Example 118 Synthesis of 4-hydroxyphenyl-4-nitrobenzylmethylsulfonium tetrakis (2-trifluoromethyl-2-propoxy) aluminate (AG1001) 4.1 g of 4-hydroxyphenyl-4-nitrobenzylmethylsulfonium chloride (3.1 g) is made up of dichloromethane. It was dispersed in 50 g, 30 g of an aqueous solution containing an equimolar lithium salt (A-1) was mixed at room temperature, and the mixture was stirred as it was for 3 hours. The dichloromethane layer was washed 5 times with water by a liquid separation operation, and then transferred to a rotary evaporator to distill off the solvent to obtain an acid generator (AG1001).
実施例119~130 酸発生剤(AG1002~AG1013)の合成
実施例118において、リチウム塩(A-2)~(A-13)に変更した以外、実施例118と同様にして、それぞれ酸発生剤(AG1002~AG1013)を得た。 Examples 119 to 130 Synthesis of acid generators (AG1002 to AG1013) Acid generators in the same manner as in Example 118, except that they were changed to lithium salts (A-2) to (A-13) in Example 118. (AG1002 to AG1013) were obtained.
実施例118において、リチウム塩(A-2)~(A-13)に変更した以外、実施例118と同様にして、それぞれ酸発生剤(AG1002~AG1013)を得た。 Examples 119 to 130 Synthesis of acid generators (AG1002 to AG1013) Acid generators in the same manner as in Example 118, except that they were changed to lithium salts (A-2) to (A-13) in Example 118. (AG1002 to AG1013) were obtained.
比較例1 [4-(フェニルチオ)フェニル]スルホニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG121)の合成
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(A-21)を用いる以外は実施例1と同様にして酸発生剤(AG121)を得た(フッ素置換率100%)。 Comparative Example 1 Synthesis of 4- (phenylthio) phenyl] sulfonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG121) In Example 1, lithium tetrakis (perfluoro-tert-pentoxy) was used instead of the lithium salt (A-1). An acid generator (AG121) was obtained in the same manner as in Example 1 except that aluminate (A-21) was used (fluorine substitution rate 100%).
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(A-21)を用いる以外は実施例1と同様にして酸発生剤(AG121)を得た(フッ素置換率100%)。 Comparative Example 1 Synthesis of 4- (phenylthio) phenyl] sulfonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG121) In Example 1, lithium tetrakis (perfluoro-tert-pentoxy) was used instead of the lithium salt (A-1). An acid generator (AG121) was obtained in the same manner as in Example 1 except that aluminate (A-21) was used (fluorine substitution rate 100%).
比較例2 (4-イソプロピルフェニル)トリルヨードニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG421)の合成
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-21)を用いる以外は実施例40と同様にして酸発生剤(AG421)を得た(フッ素置換率100%)。 Comparative Example 2 Synthesis of (4-isopropylphenyl) trilliodonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG421) In Example 40, a lithium salt (A-21) is used instead of the lithium salt (A-1). An acid generator (AG421) was obtained in the same manner as in Example 40 except for the above (fluorine substitution rate 100%).
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-21)を用いる以外は実施例40と同様にして酸発生剤(AG421)を得た(フッ素置換率100%)。 Comparative Example 2 Synthesis of (4-isopropylphenyl) trilliodonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG421) In Example 40, a lithium salt (A-21) is used instead of the lithium salt (A-1). An acid generator (AG421) was obtained in the same manner as in Example 40 except for the above (fluorine substitution rate 100%).
比較例3 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG721)の合成
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-21)を用いる以外は実施例79と同様にして酸発生剤(AG721)を得た(フッ素置換率100%)。 Comparative Example 3 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG721) In Example 79, a lithium salt (A-21) was used instead of the lithium salt (A-1). An acid generator (AG721) was obtained in the same manner as in Example 79 except that it was used (fluorine substitution rate 100%).
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-21)を用いる以外は実施例79と同様にして酸発生剤(AG721)を得た(フッ素置換率100%)。 Comparative Example 3 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG721) In Example 79, a lithium salt (A-21) was used instead of the lithium salt (A-1). An acid generator (AG721) was obtained in the same manner as in Example 79 except that it was used (fluorine substitution rate 100%).
比較例4 4-アセトキシフェニルジメチルスルホニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG921)の合成
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-21)を用いる以外は実施例105と同様にして酸発生剤(AG921)を得た(フッ素置換率100%)。 Comparative Example 4 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG921) In Example 105, except that a lithium salt (A-21) was used instead of the lithium salt (A-1). An acid generator (AG921) was obtained in the same manner as in Example 105 (fluorine substitution rate 100%).
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-21)を用いる以外は実施例105と同様にして酸発生剤(AG921)を得た(フッ素置換率100%)。 Comparative Example 4 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (perfluoro-tert-pentoxy) aluminate (AG921) In Example 105, except that a lithium salt (A-21) was used instead of the lithium salt (A-1). An acid generator (AG921) was obtained in the same manner as in Example 105 (fluorine substitution rate 100%).
比較例5 [4-(フェニルチオ)フェニル]スルホニウムテトラキス(デカフルオロ-tert-ペントキシ)アルミナート(AG122)の合成
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(デカフルオロ-tert-ペントキシ)アルミナート(A-22)を用いる以外は実施例1と同様にして酸発生剤(AG122)を得た(フッ素置換率91%)。 Comparative Example 5 Synthesis of 4- (phenylthio) phenyl] sulfonium tetrakis (decafluoro-tert-pentoxy) aluminate (AG122) In Example 1, lithium tetrakis (decafluoro-tert) was used instead of the lithium salt (A-1). An acid generator (AG122) was obtained in the same manner as in Example 1 except that (pentoxy) aluminate (A-22) was used (fluorine substitution rate 91%).
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(デカフルオロ-tert-ペントキシ)アルミナート(A-22)を用いる以外は実施例1と同様にして酸発生剤(AG122)を得た(フッ素置換率91%)。 Comparative Example 5 Synthesis of 4- (phenylthio) phenyl] sulfonium tetrakis (decafluoro-tert-pentoxy) aluminate (AG122) In Example 1, lithium tetrakis (decafluoro-tert) was used instead of the lithium salt (A-1). An acid generator (AG122) was obtained in the same manner as in Example 1 except that (pentoxy) aluminate (A-22) was used (fluorine substitution rate 91%).
比較例6 (4-イソプロピルフェニル)トリルヨードニウムテトラキス(デカフルオロ-tert-ペントキシ)アルミナート(AG422)の合成
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-22)を用いる以外は実施例40と同様にして酸発生剤(AG422)を得た(フッ素置換率91%)。 Comparative Example 6 Synthesis of (4-Isopropylphenyl) Trilliodonium Tetrakis (Decafluoro-tert-Pentoxy) Aluminate (AG422) In Example 40, a lithium salt (A-22) was used instead of the lithium salt (A-1). An acid generator (AG422) was obtained in the same manner as in Example 40 except that it was used (fluorine substitution rate 91%).
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-22)を用いる以外は実施例40と同様にして酸発生剤(AG422)を得た(フッ素置換率91%)。 Comparative Example 6 Synthesis of (4-Isopropylphenyl) Trilliodonium Tetrakis (Decafluoro-tert-Pentoxy) Aluminate (AG422) In Example 40, a lithium salt (A-22) was used instead of the lithium salt (A-1). An acid generator (AG422) was obtained in the same manner as in Example 40 except that it was used (fluorine substitution rate 91%).
比較例7 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(デカフルオロ-tert-ペントキシ)アルミナート(AG722)の合成
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-22)を用いる以外は実施例79と同様にして酸発生剤(AG722)を得た(フッ素置換率91%)。 Comparative Example 7 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (decafluoro-tert-pentoxy) aluminate (AG722) In Example 79, a lithium salt (A-22) was used instead of the lithium salt (A-1). An acid generator (AG722) was obtained in the same manner as in Example 79 (fluorine substitution rate 91%).
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-22)を用いる以外は実施例79と同様にして酸発生剤(AG722)を得た(フッ素置換率91%)。 Comparative Example 7 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (decafluoro-tert-pentoxy) aluminate (AG722) In Example 79, a lithium salt (A-22) was used instead of the lithium salt (A-1). An acid generator (AG722) was obtained in the same manner as in Example 79 (fluorine substitution rate 91%).
比較例8 4-アセトキシフェニルジメチルスルホニウムテトラキス(デカフルオロ-tert-ペントキシ)アルミナート(AG922)の合成
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-22)を用いる以外は実施例105と同様にして酸発生剤(AG922)を得た(フッ素置換率91%)。 Comparative Example 8 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (decafluoro-tert-pentoxy) aluminate (AG922) In Example 105, a lithium salt (A-22) was used instead of the lithium salt (A-1). Obtained an acid generator (AG922) in the same manner as in Example 105 (fluorine substitution rate 91%).
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-22)を用いる以外は実施例105と同様にして酸発生剤(AG922)を得た(フッ素置換率91%)。 Comparative Example 8 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (decafluoro-tert-pentoxy) aluminate (AG922) In Example 105, a lithium salt (A-22) was used instead of the lithium salt (A-1). Obtained an acid generator (AG922) in the same manner as in Example 105 (fluorine substitution rate 91%).
比較例9 [4-(フェニルチオ)フェニル]スルホニウムテトラキス(ノナフルオロ-tert-ペントキシ)アルミナート(AG123)の合成
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(ノナフルオロ-tert-ペントキシ)アルミナート(A-23)を用いる以外は実施例1と同様にして酸発生剤(AG123)を得た(フッ素置換率81%)。 Comparative Example 9 [4- (Phenylthio) phenyl] Sulfonium Tetrakis (Nonafluoro-tert-Pentoxy) Synthesis of Aluminate (AG123) In Example 1, lithium tetrakis (Nonafluoro-tert-pentoxy) was used instead of the lithium salt (A-1). An acid generator (AG123) was obtained in the same manner as in Example 1 except that aluminate (A-23) was used (fluorine substitution rate 81%).
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(ノナフルオロ-tert-ペントキシ)アルミナート(A-23)を用いる以外は実施例1と同様にして酸発生剤(AG123)を得た(フッ素置換率81%)。 Comparative Example 9 [4- (Phenylthio) phenyl] Sulfonium Tetrakis (Nonafluoro-tert-Pentoxy) Synthesis of Aluminate (AG123) In Example 1, lithium tetrakis (Nonafluoro-tert-pentoxy) was used instead of the lithium salt (A-1). An acid generator (AG123) was obtained in the same manner as in Example 1 except that aluminate (A-23) was used (fluorine substitution rate 81%).
比較例10 (4-イソプロピルフェニル)トリルヨードニウムテトラキス(ノナフルオロ-tert-ペントキシ)アルミナート(AG423)の合成
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-23)を用いる以外は実施例40と同様にして酸発生剤(AG423)を得た(フッ素置換率81%)。 Comparative Example 10 (4-Isopropylphenyl) Trilliodonium Tetrakis (Nonafluoro-tert-Pentoxy) Synthesis of Aluminate (AG423) In Example 40, a lithium salt (A-23) is used instead of the lithium salt (A-1). An acid generator (AG423) was obtained in the same manner as in Example 40 except for the above (fluorine substitution rate 81%).
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-23)を用いる以外は実施例40と同様にして酸発生剤(AG423)を得た(フッ素置換率81%)。 Comparative Example 10 (4-Isopropylphenyl) Trilliodonium Tetrakis (Nonafluoro-tert-Pentoxy) Synthesis of Aluminate (AG423) In Example 40, a lithium salt (A-23) is used instead of the lithium salt (A-1). An acid generator (AG423) was obtained in the same manner as in Example 40 except for the above (fluorine substitution rate 81%).
比較例11 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(ノナフルオロ-tert-ペントキシ)アルミナート(AG723)の合成
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-23)を用いる以外は実施例79と同様にして酸発生剤(AG723)を得た(フッ素置換率81%)。 Comparative Example 11 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (nonafluoro-tert-pentoxy) aluminate (AG723) In Example 79, a lithium salt (A-23) was used instead of the lithium salt (A-1). An acid generator (AG723) was obtained in the same manner as in Example 79 except that it was used (fluorine substitution rate 81%).
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-23)を用いる以外は実施例79と同様にして酸発生剤(AG723)を得た(フッ素置換率81%)。 Comparative Example 11 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (nonafluoro-tert-pentoxy) aluminate (AG723) In Example 79, a lithium salt (A-23) was used instead of the lithium salt (A-1). An acid generator (AG723) was obtained in the same manner as in Example 79 except that it was used (fluorine substitution rate 81%).
比較例12 4-アセトキシフェニルジメチルスルホニウムテトラキス(ノナフルオロ-tert-ペントキシ)アルミナート(AG923)の合成
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-23)を用いる以外は実施例105と同様にして酸発生剤(AG923)を得た(フッ素置換率81%)。 Comparative Example 12-Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (nonafluoro-tert-pentoxy) aluminate (AG923) In Example 105, except that a lithium salt (A-23) was used instead of the lithium salt (A-1). An acid generator (AG923) was obtained in the same manner as in Example 105 (fluorine substitution rate 81%).
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-23)を用いる以外は実施例105と同様にして酸発生剤(AG923)を得た(フッ素置換率81%)。 Comparative Example 12-Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (nonafluoro-tert-pentoxy) aluminate (AG923) In Example 105, except that a lithium salt (A-23) was used instead of the lithium salt (A-1). An acid generator (AG923) was obtained in the same manner as in Example 105 (fluorine substitution rate 81%).
比較例13 [4-(フェニルチオ)フェニル]スルホニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG124)の合成
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(A-24)を用いる以外は実施例1と同様にして酸発生剤(AG124)を得た(フッ素置換率73%)。 Comparative Example 13 Synthesis of 4- (phenylthio) phenyl] sulfonium tetrakis (octafluoro-tert-pentoxy) aluminate (AG124) In Example 1, lithium tetrakis (octafluoro-tert) was used instead of the lithium salt (A-1). An acid generator (AG124) was obtained in the same manner as in Example 1 except that (pentoxy) aluminate (A-24) was used (fluorine substitution rate 73%).
実施例1において、リチウム塩(A-1)の代わりにリチウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(A-24)を用いる以外は実施例1と同様にして酸発生剤(AG124)を得た(フッ素置換率73%)。 Comparative Example 13 Synthesis of 4- (phenylthio) phenyl] sulfonium tetrakis (octafluoro-tert-pentoxy) aluminate (AG124) In Example 1, lithium tetrakis (octafluoro-tert) was used instead of the lithium salt (A-1). An acid generator (AG124) was obtained in the same manner as in Example 1 except that (pentoxy) aluminate (A-24) was used (fluorine substitution rate 73%).
比較例14 (4-イソプロピルフェニル)トリルヨードニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG424)の合成
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-24)を用いる以外は実施例40と同様にして酸発生剤(AG424)を得た(フッ素置換率73%)。 Comparative Example 14 (4-Isopropylphenyl) Trilliodonium Tetrakis (Octafluoro-tert-Pentoxy) Synthesis of Aluminate (AG424) In Example 40, a lithium salt (A-24) was used instead of the lithium salt (A-1). An acid generator (AG424) was obtained in the same manner as in Example 40 except that it was used (fluorine substitution rate 73%).
実施例40において、リチウム塩(A-1)の代わりにリチウム塩(A-24)を用いる以外は実施例40と同様にして酸発生剤(AG424)を得た(フッ素置換率73%)。 Comparative Example 14 (4-Isopropylphenyl) Trilliodonium Tetrakis (Octafluoro-tert-Pentoxy) Synthesis of Aluminate (AG424) In Example 40, a lithium salt (A-24) was used instead of the lithium salt (A-1). An acid generator (AG424) was obtained in the same manner as in Example 40 except that it was used (fluorine substitution rate 73%).
比較例15 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG724)の合成
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-24)を用いる以外は実施例79と同様にして酸発生剤(AG724)を得た(フッ素置換率73%)。 Comparative Example 15 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (octafluoro-tert-pentoxy) aluminate (AG724) In Example 79, a lithium salt (A-24) was used instead of the lithium salt (A-1). An acid generator (AG724) was obtained in the same manner as in Example 79 (fluorine substitution rate 73%).
実施例79において、リチウム塩(A-1)の代わりにリチウム塩(A-24)を用いる以外は実施例79と同様にして酸発生剤(AG724)を得た(フッ素置換率73%)。 Comparative Example 15 Synthesis of 4-hydroxyphenyl-methyl-benzylsulfonium tetrakis (octafluoro-tert-pentoxy) aluminate (AG724) In Example 79, a lithium salt (A-24) was used instead of the lithium salt (A-1). An acid generator (AG724) was obtained in the same manner as in Example 79 (fluorine substitution rate 73%).
比較例16 4-アセトキシフェニルジメチルスルホニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG924)の合成
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-24)を用いる以外は実施例105と同様にして酸発生剤(AG924)を得た(フッ素置換率73%)。 Comparative Example 16 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (octafluoro-tert-pentoxy) aluminate (AG924) In Example 105, a lithium salt (A-24) was used instead of the lithium salt (A-1). Obtained an acid generator (AG924) in the same manner as in Example 105 (fluorine substitution rate 73%).
実施例105において、リチウム塩(A-1)の代わりにリチウム塩(A-24)を用いる以外は実施例105と同様にして酸発生剤(AG924)を得た(フッ素置換率73%)。 Comparative Example 16 Synthesis of 4-acetoxyphenyldimethylsulfonium tetrakis (octafluoro-tert-pentoxy) aluminate (AG924) In Example 105, a lithium salt (A-24) was used instead of the lithium salt (A-1). Obtained an acid generator (AG924) in the same manner as in Example 105 (fluorine substitution rate 73%).
これら酸発生剤について構造を表1~6に記載した。
The structures of these acid generators are shown in Tables 1-6.
<硬化性組成物の評価-1>
実施例131~244、比較例17~48
本発明および比較例の酸発生剤各2部とカチオン重合性化合物として下記エポキシ樹脂100部を配合し、室温で自転公転ミキサーを用いて撹拌・混合することにより、均一で透明な硬化性組成物を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。結果は表7~10に記載した。
<エポキシ樹脂>
EP-1:2,2-ビス(4-グリシジルオキシフェニル)プロパン
EP-2:3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート
EP-3:3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン <Evaluation of curable composition-1>
Examples 131-244, Comparative Examples 17-48
A uniform and transparent curable composition is prepared by blending 2 parts each of the acid generator of the present invention and the comparative example and 100 parts of the following epoxy resin as a cationically polymerizable compound, and stirring and mixing them at room temperature using a rotation / revolution mixer. Got The obtained curable composition was evaluated according to the following evaluation method. The results are shown in Tables 7-10.
<Epoxy resin>
EP-1: 2,2-bis (4-glycidyloxyphenyl) propane EP-2: 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate EP-3: 3-ethyl-3-{ [(3-Epoxyoxetane-3-yl) methoxy] methyl} oxetane
実施例131~244、比較例17~48
本発明および比較例の酸発生剤各2部とカチオン重合性化合物として下記エポキシ樹脂100部を配合し、室温で自転公転ミキサーを用いて撹拌・混合することにより、均一で透明な硬化性組成物を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。結果は表7~10に記載した。
<エポキシ樹脂>
EP-1:2,2-ビス(4-グリシジルオキシフェニル)プロパン
EP-2:3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート
EP-3:3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン <Evaluation of curable composition-1>
Examples 131-244, Comparative Examples 17-48
A uniform and transparent curable composition is prepared by blending 2 parts each of the acid generator of the present invention and the comparative example and 100 parts of the following epoxy resin as a cationically polymerizable compound, and stirring and mixing them at room temperature using a rotation / revolution mixer. Got The obtained curable composition was evaluated according to the following evaluation method. The results are shown in Tables 7-10.
<Epoxy resin>
EP-1: 2,2-bis (4-glycidyloxyphenyl) propane EP-2: 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate EP-3: 3-ethyl-3-{ [(3-Epoxyoxetane-3-yl) methoxy] methyl} oxetane
[光硬化性]
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、高圧水銀ランプを下記条件で使用して光照射を行った。光照射後室温で60分間放置して硬化物を得た。
光照射条件
<高圧水銀ランプ>
照射装置:商品名「LC-8」(浜松ホトニクス(株)製)
照射強度:100mW/cm
積算照射量:3000mJ/cm2 [Photocurability]
Spacers of 0.03 mm were installed at both ends of the slide glass (trade name "S9112", manufactured by Matsunami Glass Industry Co., Ltd.), and the curable composition was dropped in the middle. The curable composition was spread to a thickness of 0.03 mm using a squeegee, and light irradiation was performed using a high-pressure mercury lamp under the following conditions. After light irradiation, it was left at room temperature for 60 minutes to obtain a cured product.
Light irradiation conditions <High pressure mercury lamp>
Irradiation device: Product name "LC-8" (manufactured by Hamamatsu Photonics Co., Ltd.)
Irradiation intensity: 100 mW / cm
Cumulative irradiation dose: 3000mJ / cm 2
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、高圧水銀ランプを下記条件で使用して光照射を行った。光照射後室温で60分間放置して硬化物を得た。
光照射条件
<高圧水銀ランプ>
照射装置:商品名「LC-8」(浜松ホトニクス(株)製)
照射強度:100mW/cm
積算照射量:3000mJ/cm2 [Photocurability]
Spacers of 0.03 mm were installed at both ends of the slide glass (trade name "S9112", manufactured by Matsunami Glass Industry Co., Ltd.), and the curable composition was dropped in the middle. The curable composition was spread to a thickness of 0.03 mm using a squeegee, and light irradiation was performed using a high-pressure mercury lamp under the following conditions. After light irradiation, it was left at room temperature for 60 minutes to obtain a cured product.
Light irradiation conditions <High pressure mercury lamp>
Irradiation device: Product name "LC-8" (manufactured by Hamamatsu Photonics Co., Ltd.)
Irradiation intensity: 100 mW / cm
Cumulative irradiation dose: 3000mJ / cm 2
得られた硬化物について、その表面のタック性の有無から硬化性を確認した。尚、タック性の有無は触診により判断した。
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した The curability of the obtained cured product was confirmed based on the presence or absence of tackiness on the surface. The presence or absence of tackiness was judged by palpation.
Evaluation Criteria ◯: There was no tackiness on the surface and there was no change in the surface shape of the cured product Δ: There was no tackiness on the surface, but the surface shape of the cured product changed ×: The surface had tackiness
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した The curability of the obtained cured product was confirmed based on the presence or absence of tackiness on the surface. The presence or absence of tackiness was judged by palpation.
Evaluation Criteria ◯: There was no tackiness on the surface and there was no change in the surface shape of the cured product Δ: There was no tackiness on the surface, but the surface shape of the cured product changed ×: The surface had tackiness
[耐熱性]
縦30mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、離型処理[商品名「オプツールHD1000」(ダイキン(株)製)に浸漬した後、24時間ドラフト内で放置]を施したスライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行って硬化物を得た。得られた硬化物10mgを切り取り、下記条件でTG-DTA(商品名「EXSTAR6300」、(株)日立ハイテクサイエンス製)を使用して5%重量減少温度を測定することにより耐熱性を評価した。
TG-DTA条件
昇温速度:20℃/min
雰囲気:窒素
温度条件:30℃~400℃ [Heat-resistant]
A Teflon (registered trademark) spacer with a length of 30 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared, and after being immersed in a mold release process [trade name "Optur HD1000" (manufactured by Daikin Corporation), it was left in a draft for 24 hours. ] Was applied to the slide glass (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap, and light irradiation was performed in the same manner as described above to obtain a cured product. 10 mg of the obtained cured product was cut out, and the heat resistance was evaluated by measuring the 5% weight loss temperature using TG-DTA (trade name "EXSTAR6300", manufactured by Hitachi High-Tech Science Corporation) under the following conditions.
TG-DTA conditions Temperature rise rate: 20 ° C / min
Atmosphere: Nitrogen Temperature condition: 30 ° C-400 ° C
縦30mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、離型処理[商品名「オプツールHD1000」(ダイキン(株)製)に浸漬した後、24時間ドラフト内で放置]を施したスライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行って硬化物を得た。得られた硬化物10mgを切り取り、下記条件でTG-DTA(商品名「EXSTAR6300」、(株)日立ハイテクサイエンス製)を使用して5%重量減少温度を測定することにより耐熱性を評価した。
TG-DTA条件
昇温速度:20℃/min
雰囲気:窒素
温度条件:30℃~400℃ [Heat-resistant]
A Teflon (registered trademark) spacer with a length of 30 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared, and after being immersed in a mold release process [trade name "Optur HD1000" (manufactured by Daikin Corporation), it was left in a draft for 24 hours. ] Was applied to the slide glass (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap, and light irradiation was performed in the same manner as described above to obtain a cured product. 10 mg of the obtained cured product was cut out, and the heat resistance was evaluated by measuring the 5% weight loss temperature using TG-DTA (trade name "EXSTAR6300", manufactured by Hitachi High-Tech Science Corporation) under the following conditions.
TG-DTA conditions Temperature rise rate: 20 ° C / min
Atmosphere: Nitrogen Temperature condition: 30 ° C-400 ° C
[透明性-1]
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行い、光照射後室温で60分間放置して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性-1を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。 [Transparency-1]
A spacer made of Teflon (registered trademark) having a length of 20 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared and sandwiched between slide glasses (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). The curable composition was cast into the gaps, irradiated with light in the same manner as described above, and left at room temperature for 60 minutes after the light irradiation to obtain a cured product. Transparency -1 was evaluated by measuring the transparency (YI) of the obtained cured product using a spectrophotometer (trade name "U-3900", manufactured by Hitachi High-Technologies Corporation). As for the yellowness (YI), the value of the 2 degree field of view in the D65 light source was read.
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行い、光照射後室温で60分間放置して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性-1を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。 [Transparency-1]
A spacer made of Teflon (registered trademark) having a length of 20 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared and sandwiched between slide glasses (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). The curable composition was cast into the gaps, irradiated with light in the same manner as described above, and left at room temperature for 60 minutes after the light irradiation to obtain a cured product. Transparency -1 was evaluated by measuring the transparency (YI) of the obtained cured product using a spectrophotometer (trade name "U-3900", manufactured by Hitachi High-Technologies Corporation). As for the yellowness (YI), the value of the 2 degree field of view in the D65 light source was read.
[耐熱透明性(透明性-2)]
上記[透明性-1]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性(透明性-2)を評価した。 [Heat-resistant transparency (transparency-2)]
Heat resistance based on the reflow temperature profile (maximum temperature: 270 ° C) described in the JEDEC standard using a tabletop reflow furnace (manufactured by Shinapec) for the cured product obtained by the same method as the above [Transparency-1] evaluation. After the test was carried out three times in succession, the heat-resistant transparency (transparency-2) was evaluated by measuring the transparency (YI) in the same manner as described above.
上記[透明性-1]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性(透明性-2)を評価した。 [Heat-resistant transparency (transparency-2)]
Heat resistance based on the reflow temperature profile (maximum temperature: 270 ° C) described in the JEDEC standard using a tabletop reflow furnace (manufactured by Shinapec) for the cured product obtained by the same method as the above [Transparency-1] evaluation. After the test was carried out three times in succession, the heat-resistant transparency (transparency-2) was evaluated by measuring the transparency (YI) in the same manner as described above.
表7~10から、本発明によって得られる硬化性組成物は、光照射によるカチオン重合能に優れ、かつ得られる硬化物の耐熱透明性に優れることがわかる。また、本発明の酸発生剤におけるアニオン部のフッ素含有率は特に耐熱透明性に影響し、表7~8における実施例131~169(フッ素含有率70%以下)と比較例17~20(フッ素含有率70%より大)および表9~10における実施例188~226と比較例33~36を比較することにより、アニオンのフッ素含有率が70%以下であることが耐熱透明性に有効であることが分かる。さらに、表7における実施例170~187および表9における実施例227~244より本発明の酸発生剤が種々のカチオン重合性化合物に対し有効であることがわかる。また、表8における比較例21~32および表10における比較例37~48が示すように、耐熱透明性の傾向はカチオン重合性化合物の種類によらず同様である。
From Tables 7 to 10, it can be seen that the curable composition obtained by the present invention is excellent in cationic polymerization ability by light irradiation and excellent in heat resistance and transparency of the obtained cured product. Further, the fluorine content of the anion portion in the acid generator of the present invention particularly affects the heat resistance and transparency, and is compared with Examples 131 to 169 (fluorine content of 70% or less) in Tables 7 to 8 and Comparative Examples 17 to 20 (fluorine). By comparing Examples 188 to 226 in Tables 9 to 10 with Comparative Examples 33 to 36, it is effective for heat resistance and transparency that the fluorine content of the anion is 70% or less. You can see that. Furthermore, it can be seen from Examples 170 to 187 in Table 7 and Examples 227 to 244 in Table 9 that the acid generator of the present invention is effective against various cationically polymerizable compounds. Further, as shown in Comparative Examples 21 to 32 in Table 8 and Comparative Examples 37 to 48 in Table 10, the tendency of heat-resistant transparency is the same regardless of the type of the cationically polymerizable compound.
<硬化性組成物の評価-2>
実施例245~320、比較例49~80
本発明および比較例の酸発生剤各2部とカチオン重合性化合物として下記エポキシ樹脂100部を配合し、室温で自転公転ミキサーを用いて撹拌・混合することにより、均一で透明な硬化性組成物を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。結果は表11~12に記載した。
<エポキシ樹脂>
EP-1:3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート
EP-2:2,2-ビス(4-グリシジルオキシフェニル)プロパン
EP-3:3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン <Evaluation of curable composition-2>
Examples 245 to 320, Comparative Examples 49 to 80
A uniform and transparent curable composition is prepared by blending 2 parts each of the acid generator of the present invention and the comparative example and 100 parts of the following epoxy resin as a cationically polymerizable compound, and stirring and mixing them at room temperature using a rotation / revolution mixer. Got The obtained curable composition was evaluated according to the following evaluation method. The results are shown in Tables 11-12.
<Epoxy resin>
EP-1: 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate EP-2: 2,2-bis (4-glycidyloxyphenyl) propane EP-3: 3-ethyl-3-{ [(3-Epoxyoxetane-3-yl) methoxy] methyl} oxetane
実施例245~320、比較例49~80
本発明および比較例の酸発生剤各2部とカチオン重合性化合物として下記エポキシ樹脂100部を配合し、室温で自転公転ミキサーを用いて撹拌・混合することにより、均一で透明な硬化性組成物を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。結果は表11~12に記載した。
<エポキシ樹脂>
EP-1:3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート
EP-2:2,2-ビス(4-グリシジルオキシフェニル)プロパン
EP-3:3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン <Evaluation of curable composition-2>
Examples 245 to 320, Comparative Examples 49 to 80
A uniform and transparent curable composition is prepared by blending 2 parts each of the acid generator of the present invention and the comparative example and 100 parts of the following epoxy resin as a cationically polymerizable compound, and stirring and mixing them at room temperature using a rotation / revolution mixer. Got The obtained curable composition was evaluated according to the following evaluation method. The results are shown in Tables 11-12.
<Epoxy resin>
EP-1: 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate EP-2: 2,2-bis (4-glycidyloxyphenyl) propane EP-3: 3-ethyl-3-{ [(3-Epoxyoxetane-3-yl) methoxy] methyl} oxetane
[熱硬化性]
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、ホットプレートにて各温度で10分間加熱し硬化物を得た。加熱条件は表11および表12に記載のとおりである。 [Thermosetting]
Spacers of 0.03 mm were installed at both ends of the slide glass (trade name "S9112", manufactured by Matsunami Glass Industry Co., Ltd.), and the curable composition was dropped in the middle. The curable composition was spread using a squeegee to a thickness of 0.03 mm, and heated on a hot plate at each temperature for 10 minutes to obtain a cured product. The heating conditions are as shown in Tables 11 and 12.
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、ホットプレートにて各温度で10分間加熱し硬化物を得た。加熱条件は表11および表12に記載のとおりである。 [Thermosetting]
Spacers of 0.03 mm were installed at both ends of the slide glass (trade name "S9112", manufactured by Matsunami Glass Industry Co., Ltd.), and the curable composition was dropped in the middle. The curable composition was spread using a squeegee to a thickness of 0.03 mm, and heated on a hot plate at each temperature for 10 minutes to obtain a cured product. The heating conditions are as shown in Tables 11 and 12.
得られた硬化物について、その表面のタック性の有無から硬化性を確認した。尚、タック性の有無は触診により判断した。
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した The curability of the obtained cured product was confirmed based on the presence or absence of tackiness on the surface. The presence or absence of tackiness was judged by palpation.
Evaluation Criteria ◯: There was no tackiness on the surface and there was no change in the surface shape of the cured product Δ: There was no tackiness on the surface, but the surface shape of the cured product changed ×: The surface had tackiness
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した The curability of the obtained cured product was confirmed based on the presence or absence of tackiness on the surface. The presence or absence of tackiness was judged by palpation.
Evaluation Criteria ◯: There was no tackiness on the surface and there was no change in the surface shape of the cured product Δ: There was no tackiness on the surface, but the surface shape of the cured product changed ×: The surface had tackiness
[耐熱性]
縦30mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、離型処理[商品名「オプツールHD1000」(ダイキン(株)製)に浸漬した後、24時間ドラフト内で放置]を施したスライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に加熱を行って硬化物を得た。得られた硬化物10mgを切り取り、下記条件でTG-DTA(商品名「EXSTAR6300」、(株)日立ハイテクサイエンス製)を使用して5%重量減少温度を測定することにより耐熱性を評価した。
TG-DTA条件
昇温速度:20℃/min
雰囲気:窒素
温度条件:30℃~400℃ [Heat-resistant]
A Teflon (registered trademark) spacer with a length of 30 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared, and after being immersed in a mold release process [trade name "Optur HD1000" (manufactured by Daikin Corporation), it was left in a draft for 24 hours. ] Was applied to the slide glass (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap and heated in the same manner as described above to obtain a cured product. 10 mg of the obtained cured product was cut out, and the heat resistance was evaluated by measuring the 5% weight loss temperature using TG-DTA (trade name "EXSTAR6300", manufactured by Hitachi High-Tech Science Corporation) under the following conditions.
TG-DTA conditions Temperature rise rate: 20 ° C / min
Atmosphere: Nitrogen Temperature condition: 30 ° C-400 ° C
縦30mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、離型処理[商品名「オプツールHD1000」(ダイキン(株)製)に浸漬した後、24時間ドラフト内で放置]を施したスライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に加熱を行って硬化物を得た。得られた硬化物10mgを切り取り、下記条件でTG-DTA(商品名「EXSTAR6300」、(株)日立ハイテクサイエンス製)を使用して5%重量減少温度を測定することにより耐熱性を評価した。
TG-DTA条件
昇温速度:20℃/min
雰囲気:窒素
温度条件:30℃~400℃ [Heat-resistant]
A Teflon (registered trademark) spacer with a length of 30 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared, and after being immersed in a mold release process [trade name "Optur HD1000" (manufactured by Daikin Corporation), it was left in a draft for 24 hours. ] Was applied to the slide glass (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap and heated in the same manner as described above to obtain a cured product. 10 mg of the obtained cured product was cut out, and the heat resistance was evaluated by measuring the 5% weight loss temperature using TG-DTA (trade name "EXSTAR6300", manufactured by Hitachi High-Tech Science Corporation) under the following conditions.
TG-DTA conditions Temperature rise rate: 20 ° C / min
Atmosphere: Nitrogen Temperature condition: 30 ° C-400 ° C
[透明性-1]
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に加熱して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性-1を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。 [Transparency-1]
A spacer made of Teflon (registered trademark) having a length of 20 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared and sandwiched between slide glasses (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap and heated in the same manner as described above to obtain a cured product. Transparency -1 was evaluated by measuring the transparency (YI) of the obtained cured product using a spectrophotometer (trade name "U-3900", manufactured by Hitachi High-Technologies Corporation). As for the yellowness (YI), the value of the 2 degree field of view in the D65 light source was read.
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に加熱して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性-1を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。 [Transparency-1]
A spacer made of Teflon (registered trademark) having a length of 20 mm, a width of 20 mm, and a thickness of 0.1 mm was prepared and sandwiched between slide glasses (trade name "S2111", manufactured by Matsunami Glass Co., Ltd.). A curable composition was cast into the gap and heated in the same manner as described above to obtain a cured product. Transparency -1 was evaluated by measuring the transparency (YI) of the obtained cured product using a spectrophotometer (trade name "U-3900", manufactured by Hitachi High-Technologies Corporation). As for the yellowness (YI), the value of the 2 degree field of view in the D65 light source was read.
[耐熱透明性(透明性-2)]
上記[透明性-1]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性(透明性-2)を評価した。 [Heat-resistant transparency (transparency-2)]
Heat resistance based on the reflow temperature profile (maximum temperature: 270 ° C) described in the JEDEC standard using a tabletop reflow furnace (manufactured by Shinapec) for the cured product obtained by the same method as the above [Transparency-1] evaluation. After the test was carried out three times in succession, the heat-resistant transparency (transparency-2) was evaluated by measuring the transparency (YI) in the same manner as described above.
上記[透明性-1]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性(透明性-2)を評価した。 [Heat-resistant transparency (transparency-2)]
Heat resistance based on the reflow temperature profile (maximum temperature: 270 ° C) described in the JEDEC standard using a tabletop reflow furnace (manufactured by Shinapec) for the cured product obtained by the same method as the above [Transparency-1] evaluation. After the test was carried out three times in succession, the heat-resistant transparency (transparency-2) was evaluated by measuring the transparency (YI) in the same manner as described above.
表11~12から、本発明によって得られる硬化性組成物は、熱によるカチオン重合能に優れ、かつ得られる硬化物の耐熱透明性に優れることがわかる。また、本発明の酸発生剤におけるアニオン部のフッ素含有率は特に耐熱透明性に影響し、表11における実施例245~270(フッ素含有率70%以下)と比較例49~52(フッ素含有率70%より大)および表12における実施例283~308と比較例65~68を比較することにより、アニオンのフッ素含有率が70%以下であることが耐熱透明性に有効であることが分かる。さらに、表11における実施例271~282および表12における実施例309~320より本発明の酸発生剤が種々のカチオン重合性化合物に対し有効であることがわかる。また、表12における比較例53~64および表12における比較例69~80が示すように、耐熱透明性の傾向はカチオン重合性化合物の種類によらず同様である。
From Tables 11 to 12, it can be seen that the curable composition obtained by the present invention is excellent in cationic polymerization ability by heat and excellent in heat resistance and transparency of the obtained cured product. Further, the fluorine content of the anion portion in the acid generator of the present invention particularly affects the heat resistance and transparency, and is compared with Examples 245 to 270 (fluorine content of 70% or less) and Comparative Examples 49 to 52 (fluorine content) in Table 11. By comparing Examples 283 to 308 and Comparative Examples 65 to 68 in Table 12 (greater than 70%), it can be seen that a fluorine content of an anion of 70% or less is effective for heat resistance and transparency. Furthermore, it can be seen from Examples 271 to 282 in Table 11 and Examples 309 to 320 in Table 12 that the acid generator of the present invention is effective against various cationically polymerizable compounds. Further, as shown in Comparative Examples 53 to 64 in Table 12 and Comparative Examples 69 to 80 in Table 12, the tendency of heat-resistant transparency is the same regardless of the type of the cationically polymerizable compound.
本発明の硬化性組成物は上記構成を有するため硬化性に優れ、光照射又は加熱処理を施すことにより、硬化性、透明性、耐熱性、及び耐熱黄変性に優れた硬化物を形成することができる。そのため、本発明の硬化性組成物は、光学素子材料(レンズ又はプリズム材料、封止材、光導波路形成材料、接着剤、光ファイバー形成材料、インプリント材料、代替ガラス形成材料等)、レジスト、コーティング剤等として好適に使用することができる。
Since the curable composition of the present invention has the above-mentioned structure, it is excellent in curability, and by subjecting it to light irradiation or heat treatment, a cured product having excellent curability, transparency, heat resistance, and heat-resistant yellowing is formed. Can be done. Therefore, the curable composition of the present invention comprises an optical element material (lens or prism material, encapsulant, optical waveguide forming material, adhesive, optical fiber forming material, imprint material, alternative glass forming material, etc.), resist, coating. It can be suitably used as an agent or the like.
Since the curable composition of the present invention has the above-mentioned structure, it is excellent in curability, and by subjecting it to light irradiation or heat treatment, a cured product having excellent curability, transparency, heat resistance, and heat-resistant yellowing is formed. Can be done. Therefore, the curable composition of the present invention comprises an optical element material (lens or prism material, encapsulant, optical waveguide forming material, adhesive, optical fiber forming material, imprint material, alternative glass forming material, etc.), resist, coating. It can be suitably used as an agent or the like.
Claims (4)
- 下記一般式(1)で表されるオニウム塩を含有する酸発生剤。
- 一般式(1)で表されるオニウム塩のEがS又はIである請求項1に記載の酸発生剤。 The acid generator according to claim 1, wherein E of the onium salt represented by the general formula (1) is S or I.
- 請求項1又は2に記載の酸発生剤とカチオン重合性化合物とを含有してなる硬化性組成物。 A curable composition comprising the acid generator according to claim 1 or 2 and a cationically polymerizable compound.
- 請求項3に記載の硬化性組成物を硬化した硬化物。
A cured product obtained by curing the curable composition according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021546542A JP7177281B2 (en) | 2019-09-19 | 2020-08-07 | ACID GENERATOR AND CURABLE COMPOSITION CONTAINING THE SAME |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-170044 | 2019-09-19 | ||
JP2019170044 | 2019-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021053993A1 true WO2021053993A1 (en) | 2021-03-25 |
Family
ID=74883466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030342 WO2021053993A1 (en) | 2019-09-19 | 2020-08-07 | Acid generator and curable composition containing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7177281B2 (en) |
WO (1) | WO2021053993A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7572267B2 (en) | 2021-03-05 | 2024-10-23 | サンアプロ株式会社 | Curable composition and cured product thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3184569A1 (en) * | 2015-12-23 | 2017-06-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Curing initiators for cationic polymerization |
JP2018529831A (en) * | 2015-09-02 | 2018-10-11 | テヒニッシュ・ウニベルズィテート・ウイーンTechnische Universitat Wien | Frontal polymerization method of cationically polymerizable monomers |
JP2018532866A (en) * | 2015-09-02 | 2018-11-08 | テヒニッシュ・ウニベルズィテート・ウイーンTechnische Universitat Wien | Novel initiators and their use for cationic photopolymerization |
JP2019085358A (en) * | 2017-11-06 | 2019-06-06 | サンアプロ株式会社 | Heat acid generator and curable composition |
CN110317320A (en) * | 2018-03-28 | 2019-10-11 | 常州格林感光新材料有限公司 | Cationic photo-curing compound and composition comprising it |
-
2020
- 2020-08-07 WO PCT/JP2020/030342 patent/WO2021053993A1/en active Application Filing
- 2020-08-07 JP JP2021546542A patent/JP7177281B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018529831A (en) * | 2015-09-02 | 2018-10-11 | テヒニッシュ・ウニベルズィテート・ウイーンTechnische Universitat Wien | Frontal polymerization method of cationically polymerizable monomers |
JP2018532866A (en) * | 2015-09-02 | 2018-11-08 | テヒニッシュ・ウニベルズィテート・ウイーンTechnische Universitat Wien | Novel initiators and their use for cationic photopolymerization |
EP3184569A1 (en) * | 2015-12-23 | 2017-06-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Curing initiators for cationic polymerization |
JP2019085358A (en) * | 2017-11-06 | 2019-06-06 | サンアプロ株式会社 | Heat acid generator and curable composition |
CN110317320A (en) * | 2018-03-28 | 2019-10-11 | 常州格林感光新材料有限公司 | Cationic photo-curing compound and composition comprising it |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021053993A1 (en) | 2021-03-25 |
JP7177281B2 (en) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3345951B1 (en) | Curable composition and cured article using same | |
US8227624B2 (en) | Aromatic sulfonium salt compound | |
JP5706651B2 (en) | Fluorinated alkyl phosphate sulfonium salt, acid generator and curable composition | |
US10683266B2 (en) | Sulfonium salt, photoacid generator, photocurable composition, and cured product thereof | |
TWI513689B (en) | Aromatic salt compounds | |
JP7444791B2 (en) | Sulfonium salts, photoacid generators, curable compositions and resist compositions | |
JP2014205624A (en) | Onium borate-based acid generator | |
JP5699080B2 (en) | Photoacid generator, photocurable composition, and cured product thereof | |
WO2019225185A1 (en) | Sulfonium salt, photoacid generator, curable composition, and resist composition | |
JP5767040B2 (en) | Sulfonium salt, photoacid generator, curable composition, and resist composition | |
JP7126344B2 (en) | Curable composition and optical element using the same | |
JP7177281B2 (en) | ACID GENERATOR AND CURABLE COMPOSITION CONTAINING THE SAME | |
JP5828679B2 (en) | Fluorinated alkyl phosphate onium salt acid generator | |
JP2013227368A (en) | Active energy ray-sensitive acid-generating agent | |
JP6046540B2 (en) | Sulfonium salt, photoacid generator, curable composition, and resist composition | |
WO2022130796A1 (en) | Photoacid generator, and photosensitive composition using same | |
JP2022135247A (en) | Curable composition and cured body thereof | |
JPWO2016132413A1 (en) | Sulfonium borate salt, acid generator and curable composition | |
KR20230047050A (en) | mine generator | |
WO2022018968A1 (en) | Photoacid generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20866667 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021546542 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20866667 Country of ref document: EP Kind code of ref document: A1 |